r

This is an informal report intended primarily for internal or limited external distribution. (The opinions and conclusions stated are those of the author and may or may not be those of the laboratory.) Trinomporvidenentemegivanodditional axtaronal

LAWRENCE LIVERMORE LABORATORY
University of California/Livermore, California

JUL EQUATION OF STATE COEFFICIENTS FOR HIGH EXPLOSIVES
E. Lee, M. Finger, W. Collins

January 16, 1973

This report was prepared as an account of work This report was prepared as Government. Neither pe United States nor the United States Atomic Energy Con Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This document is
PUBLICLY RELEASABLE Ban Steel
Authorizing Official
Date: \qquad
gISTRIBUTION OF IHIS OOCUMENT IS OHLIAITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

JWL EQUATION OF STATE COEFFICIENTS FOR HIGH EXPLOSIVES

E. Lee, M. Finger, W. Collins

Introduction

The compilation of equations of state for high explosives now includes some 38 entries. Additions and revisions have recently introduced errors in the listirgs. To avoid transcribing errors, we have computerized the list and will issue computer updates periodically.

Previous lists should be discarded. If you are maintaining equation of state files for hydrodynamic codes and would like IBM card records of our lists, we will be happy to send you a copy of our card deck. We have noted those entries where changes or corrections have been made. Of special note for this update are the corrections to PBX-9404 and IX-04 from the most recent memo, dated August 23, 1972.

HIGH EXPLOSIVE EQUATION OF STATE DESCRIPTION

The Jones-Wilkins-Lee (JWL) equation of state has been used to accurately describe the pressure-volume-energy behavior of the detonation products of explosives in metal acceleration applications. The equation is:

$$
P=A\left(1-\frac{\omega}{R_{1} V}\right) e^{-R_{1} V}+B\left(1-\frac{\omega}{R_{2} V}\right) e^{-R_{2} V}+\frac{\omega E}{V}
$$

The equation for P as a function of V at constant entropy, i.e., the isentrope, is

$$
P_{s}=A e^{-R_{1} V}+B e^{-R_{2} V}+C V^{-(\omega+1)}
$$

where:

$$
\begin{aligned}
& V=\text { (volume of detonation products)/(volume undetonated explosive) } \\
& P=\text { pressure in megabars } \\
& E=\text { energy in } \mathrm{Mb} \mathrm{cc} / \mathrm{cc}
\end{aligned}
$$

A limited number of explosives have been subjected to a rigorous comparison in which coefficients are determined by matching the equation with experimental C-J conditions, calorimetric data, and expansion behavior -- generally cylinder test data. ${ }^{(1,2,3)}$ These explosives are listed in the Table attached without additional notation. It has proven very useful to estimate coefficients for explosives for which a limited amount of data is available. For these explosives the estimated parameters are noted. The best estimates are for those explosives for which cylinder test data is available. We have estimated $P_{c j}$ in many instances by assuming $2.7<\Gamma<2.8$. In cases where data was extremely limited we have made estimates from Ruby calculations for $P_{c j}, D$, and E_{0} and estimated R_{1}, R_{2} and ω.
${ }^{1}$ J. W. Kury, H. C. Hornig, E. L. Lee, J. L. McDonnel, D. L. Ornellas, M. Finger, F. M. Strange, M. L. Wilkins, "Metal Acceleration by Chemical Explosives", Fourth Symposium on Detonation, p. 3, Office of Naval Research (1965).
${ }^{2}$ E. L. Lee, H. C. Hornig and J. W. Kury, UCRL-50422, May 2, 1968, "Adiabatic Expansion of High Explosive Detonation Products".
$3_{\text {E. L. Lee and H. C. Hornig, "Equation of State of Detonation Product Gases", }}^{\text {, }}$ Twelfth Symposium (International) on Combustion, p. 493 (1969).

EZUATION OF STATE PARAMETERS FOR SOME EXPLOSIVES

NAME		CJMPJSITION		C.J. PARAMETERS					J H L		STATE GOEFFICIENTS				
		P MBAK		$\begin{gathered} D \\ \text { CH PER } \\ \text { MICSEC } \end{gathered}$	$\begin{gathered} \equiv 0 \\ M 8-\mathrm{CC} / \mathrm{CC} \end{gathered}$	$\begin{aligned} & \text { RHO } \\ & \text { GH/C } \end{aligned}$	SAMMA	A	8	C	R1	R2	\downarrow		
	4x-10		$\begin{aligned} & \text { HMX } \\ & \text { YITON } \end{aligned}$	$\begin{array}{r} 95.0 \\ 5.0 \end{array}$	0.375	U. 882	0.1040%	1.860	2.861	8.842	0.17437	0.00809	4.60	1.20	0.30
	Lx-11	HMX VITON	$\begin{aligned} & 80.0 \\ & 20.0 \end{aligned}$	0.330	0.832	$0.090{ }^{*}$	1.875	2.930	7.791	0.10668	0.00885	4.50	1.15	0.30	
	NH		100.0	0.125	0.628	0.0510	1.128	2.538	2.092	J. 05689	0.00770	4.45	1.20	0.30	
	OCTOL	$\begin{aligned} & \text { HMX } \\ & \text { TNT } \end{aligned}$	$\begin{aligned} & 70.0 \\ & 22.0 \end{aligned}$	0.342	0.848	$0.4960 *$	1.821	2.830	7.486	0.13380	0.31167	4.50	1.20	0.38	
	P8X 3020	$\begin{aligned} & \text { RJX } \\ & \text { KEL F } \end{aligned}$	$\begin{aligned} & 90.0 \\ & 10.0 \end{aligned}$	0.340	0.839	0.090 .5	1.787	2.700	5.814	0.06801	0.00234	4.10	1. ƠU	0.35	
\neq	P8X 9011	$\begin{aligned} & \text { HMX } \\ & \text { ESTAVE } \end{aligned}$	$\begin{aligned} & 90.0 \\ & 10.0 \end{aligned}$	0.340	0.85 u	0.0890%	1.777	2.775	6.347	0.07998	3.00727	4.20	1.00	0.30	
\neq	P8X 9404-3	$\begin{aligned} & \text { HMX } \\ & N= \\ & C E F \end{aligned}$	$\begin{array}{r} 94.0 \\ 3.0 \\ 3.0 \end{array}$	0.370	U. 88 u	0.1020	1.840	2.850	3.545	0.20493	0.00754	4.60	1.35	0.25	
\#	PETN		100.0	U. 335	0.830	0.1010	1.770	2.640	0.170	0.16926	4.04699	4.40	1.20	0.25	
\neq	PEIN		100.0	0.220	0.745	$0.0856 *$	1.500	2.788	6.253	0.23290	0.01152	5.25	1.60	0.28	
	PETN		100.0	0.140	0.654	0.67197	1.260	2.831	5.731	0.20160	$\checkmark .01267$	6.00	1.80	0.23	
	PETN**		100.0	0.062	0.517	0.0502°	0.880	2.668	3.486	$0.112 d 8$	0.00941	7.00	2.00	0.24	
\#	pentolite	$\begin{aligned} & \text { TNT } \\ & \text { PETN } \end{aligned}$	$\begin{aligned} & 50.0 \\ & 50.0 \end{aligned}$	0.250*	0.747	0.0800	1.670	2.727	4.911	0.09061	0.30876	4.4is	1.16	0.30	
	RX-01-AE	NM SI 22 GUAR	$\begin{array}{r} 87.0 \\ 10.0 \\ 3.0 \end{array}$	0.125^{*}	0.611	0.0450%	1.210	2.614	2.111	0.04754	0.00795	4.30	2.30	0.34	
	RX-OS-OR	HyX EONP SIJ2	$\begin{array}{r} 76.0 \\ 22.0 \\ 2.0 \end{array}$	$0.290 *$	4.796	0.0800^{*}	1.711	2.736	5.267	0.06823	J.00991	4.20	1.45	0.36	
RX-04-DS		HyX AL VITUV	$\begin{aligned} & 80.0 \\ & 10.0 \\ & 10.0 \end{aligned}$	0.340%	0.852	$0.145 u^{*}$	1.865	2.981	9.073	0.16400	0.151473	4.70	1.40	0.40	
		- estruateo zuantities				* - \%LIN	ER TEST	DATA N	AVAILA						

[^0]External:
Los Alamos Scientific Laboratory
P.O. Box 1663

Los Alamos, New Mexico 87544

D. Burton	L-396	C. McDonald/J. Kury	L-31
E. Bissell	L-402	P. Newcomb	L-24
T. Butkovich	L-51	D. Oakley	$\mathrm{L}-24$
J. Bryan	L-51	J. Parker	L-24
R. Carr	L-125	T. Perlman	L-125
H. Cheung	L-437	G. Repp	L-24
B. Crowley	L-33	H. Reynolds	L-21
B. Dobratz	L-402	K. Ristad	L-125
F. Eby	L-24	H. Rizzo/R. Hatfield	L-401
K. Froeschner	L-24	S. Sack	L-24
W. Grayson	L-24	L. Schwartz	L-401
A. Holzer	L-41	K. Scribner	L-402
J. Hannon	L-51	R. Selden	L-24
J. Hegarty	L-71	G. Staehle	L-24
A. Holt	L-504	D. Steinberg	L-24
B. L. Hord	I-504	D. Stephens	L-437
H. Hornig	L-402	J. Stroud	L-125
E. James	L-402	D. Stephens	L-437
C. Johnson	L-125	R. Terhune	L-47
J. Kahn	I-41	A. Todaro	L-125
J. Kane	I-401	M. Van Thiel	L-504
H. Kruger	L-24	R. Wagner	L-24
A. Kusubov	L-504	F. Walker	I-402
J. Lyle	L-24	R. Weingart	I-24
L. Marino	L-24	M. Wilkins	L-24
		TID	L-9

NOTICE
"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, not any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privatelyowned rights."

[^0]: - estiyateo zuantities
 * Eylinjer test data not availadle
 \# Revised data

