The Normalization of the Resolution Function for Inelastic Neutron Scattering and its Application

B. Dorner

Brookhaven National Laboratory, Upton, New York 11973 U. S. A.

and

Institut für Festkörperforschung KFA - Jülich, Germany

*Work performed under the auspices of the U. S. Atomic Energy Commission.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.
The Normalization of the Resolution Function for Inelastic Neutron Scattering and its Application

B. Dorner

Brookhaven National Laboratory, Upton, New York 11973 U. S. A.

Institut für Festkörperforschung KFA - Jülich, Germany

Abstract

By extending the considerations of Maier-Leibnitz, the normalization of the resolution function is found to be the product of the volumes in reciprocal space of the incident and scattered beams. Each volume is defined by an integration in reciprocal space over the probability of finding a particular \(k \), where \(k \) is the wave vector of the neutron. The resolution can be understood as a convolution of these two volumes. For three-axis spectrometers explicit expressions for these volumes are given. The knowledge of the normalization is necessary for numerical unfolding of experimental data. For two cases, which often occur in inelastic neutron scattering, it is possible to directly...
correct the experimental data without resorting to numerical unfolding. After applying these corrections the data represent the scattering law folded with a resolution function normalized to unity, i.e. the integral over the corrected data is the integral over the scattering law. It is shown that in this case, the unfolding of the corrected data turns out to be a one-dimensional problem.
1. Introduction

The resolution function of an instrument for inelastic neutron scattering depends on the wave vectors \mathbf{k}_1 and \mathbf{k}_f of the incoming and scattered neutrons, respectively. In the Gaussian approximation the surfaces of equal probability are four-dimensional ellipsoids.

For a nominal setting Q_0 and ω_0 of the instrument the resolution function R can be written

$$R(Q - Q_0, \omega - \omega_0) = R_0(Q_0, \omega_0) \exp \left\{ -\frac{1}{2} \sum_{k=1}^{4} \sum_{l=1}^{4} M_{kl}(Q_0, \omega_0) X_i X_j \right\}$$

(1)

Here $\Delta Q = \mathbf{k}_1 - \mathbf{k}_f$ is the momentum and $\Delta \omega = \frac{\hbar^2}{2m} (k_1^2 - k_f^2)$ the energy transfer. ΔQ_0 and $\Delta \omega_0$ represent the most probable momentum and energy transfers and are defined in terms of the most probable values k_1 and k_f of k_1 and k_f. The matrix M_{kl} describes the ellipsoids and the four coordinates X_k represent the three components of $(Q - Q_0)$ and $\omega - \omega_0$.

The semi-major axes of these ellipsoids have been derived for a three-axis spectrometer by Stedman and Nilsson[1], Cooper and Nathans[2], Stedman[3], and Nielsen and Bjerrum Møller[4] and for a time-of-flight instrument by Komura and Cooper[5]. But the efficiency factor $R_0(Q_0, \omega_0)$ and the normali-

†By Gaussian approximation, we mean that Gaussian distributions are used for all quantities, which determine the properties of the neutron beams, such as collimators, mosaic widths, pulse lengths, energy widths, counter thicknesses, etc.
zation (by which we mean the integral over R) has not yet been discussed in the literature, although they play an important role in resolution corrections. For example, failure to take the normalization into consideration in analyzing experimental data can cause errors in the determination of both peak positions and line shapes. Integrated intensities, which are of increasing interest in inelastic neutron scattering measurements also depend crucially on the normalization.

In this paper a general and surprisingly simple expression for the normalization of the resolution is derived by extending Maier-Leibnitz's [6] treatment of intensity and resolution in neutron scattering. Tucciarone, Lau, Corliss, Delapalme, and Hastings [7] have also considered the question of normalizing resolution calculation. Their results are in agreement with those reported here after taking into account an improper normalization in Cooper and Nathans' [2] original paper. Nevertheless, in practice this error is relatively minor and a computer program based on these considerations has been used to successfully analyze experimental data in the Brookhaven group for several years [8-11]. This program and another one written by Hutchings and Samuelson [12], which uses the erroneous expression by Cooper and Nathans, too [13], were found in good agreement with calibration measurements of phonons in copper [14]. Werner and Pynn's [15] cal-

† In the course of deriving the normalization we discovered an error in formula (24) of Cooper and Nathans. This is discussed in Appendix I.
Calculations of corrections for resolution effects follow a different approach, but appear to include a normalization. Unfortunately, they are difficult to compare analytically with ours.

The authors cited in the last paragraph have only considered resolution effects in three-axis spectrometers. Dietrich [16] has treated the analogous problem for a time-of-flight spectrometer and has derived not only the parameters of the resolution function but the normalization as well.

The paper is organized in the following way. In Section 2 the counting rate at the detector is calculated following the "phase space" considerations of Maier-Leibnitz. This approach is the key to a transparent interpretation of the normalization of the resolution function, which is derived in Section 3. An explicit expression of the normalization for a three-axis spectrometer is given in Section 4. In Section 5 we discuss the corrections to experimental data obtained with a three-axis spectrometer and in Section 6 we show that by using the Gaussian approximation in calculating the resolution function the unfolding of the data often becomes a one-dimensional problem.

2. The Neutron Counting Rate at the Detector

From equations (5) and (7) of Maier-Leibnitz [6], we get the infinitesimal current incident on the sample
where \(dF \) is an element of the geometric beam cross section. For a

sample small compared to the beam area, the current can be assumed constant and

\(dF \) can be integrated to \(F \), which is the area of the sample. \(p_i(k_i) \)

is the probability of finding a neutron with wave vector \(k_i \) in the

beam produced by any monochromator and incident on the sample.

\(\rho_i(k) \) replaces the quantity \(\phi \) used by Maier-Leibnitz.

Under the assumption of a Maxwell distribution in the reactor we write

\[
\Lambda'(k_i) = \frac{\phi}{2\pi k_T^2} e^{-\frac{k_i^2}{k_T^2}}
\]

where \(\phi \) is the thermal flux in the reactor, \(k_T = \left[\frac{2m}{\hbar^2} k_B T \right]^{1/2} \), \(k_B \) is

the Boltzmann constant and \(T \) the temperature of the moderator. Fig. 1

shows schematically the scattering in real and in reciprocal space.

The scattering cross section of the sample is

\[
\frac{d^2\Sigma}{d\Omega dw} = N \frac{k_F}{k_i} S(\Omega, \omega).
\]
density of unit cells in the sample. By equation (3) we define a scattering law \(S(\mathbf{Q}, \omega) \), which contains the scattering lengths of all nuclei in the sample.

In order to derive the infinitesimal current at the detector we use elements of the scattered beam in units, which are compatible with the cross section given in equation (3). These elements are

\[
d\Omega_f = \frac{d\Omega_f}{k_f^2} = \frac{\pi}{m} k_f dk_f dz
\]

Let \(p_f(k_f) \) be the probability that a neutron with wave vector \(k_f \) passes the analyzer and is counted at the detector. Then for a sample of thickness \(t \) the infinitesimal current detected is

\[
dJ_f = \frac{d^2j_f}{d\Omega_f} \cdot t \cdot p_f(k_f) \cdot d\Omega_f \cdot dw_f
\]

where \(A \) includes among other factors \(A'(k_i) \cdot t \) and the sample area \(F \).

By substituting

\[
dV_i = dk_{ix} \cdot dk_{iy} \cdot dk_{iz}
\]

\[
dV_f = dk_{fx} \cdot dk_{fy} \cdot dk_{fz}
\]
in equation (4) one sees that the infinitesimal current at the detector is proportional to the volume elements in k space for the incoming and outgoing beam, as Maier-Leibnitz has shown.

Equation (4) is not as simple as it appears since the scattering law depends on Q and ω, while the independent variables in equation (4) are k_1 and k_f. Therefore, we collect all combinations of k_1 with k_f, which contribute to a given Q and ω, and write dJ proportional to elements in Q, ω space.

$$dJ = A \cdot S(Q, \omega) \int \int_{V_1V_F} P_{\lambda}(k_1) \cdot P_{\lambda^*}(k_f) \cdot \delta\left[Q - (k_1 - k_f)\right] \cdot \delta\left[\omega - \frac{\mathbf{n}}{2m}(k_1^2 - k_f^2)\right] \cdot dV_1 \cdot dV_f \cdot d^3Q \cdot d\omega$$ \hspace{1cm} (6)

Both dJ and dJ^* have the dimension neutrons per second. Although $\int dJ^* = \int dJ$, dJ^* is defined in elements of k_1, k_f whereas dJ is written for elements of Q and ω. The δ-functions in (6) represent conservation of momentum and energy. We can rewrite equation (6) in a more condensed form

$$dJ = A \cdot S(Q, \omega) \cdot R(Q, \omega) \cdot d^3Q \cdot d\omega$$ \hspace{1cm} (7)
where the scattering law \(S(\vec{q}, \omega) \) describes the physical characteristics of the sample and \(R'(\vec{q}, \omega) \) the transmission or resolution function of the instrument. A particular setting of the instrument can be described by the most probable values \(\vec{k}_I \) and \(\vec{k}_F \) or preferably by \(\vec{Q}_0 \) and \(\omega_0 \).

The resolution function \(R'(\vec{Q}, \omega) \) can be redefined in terms of \(\vec{Q}_0 \) and \(\omega_0 \)

\[
R'(\vec{Q}, \omega) \equiv R(\vec{Q} - \vec{Q}_0, \omega - \omega_0) = \iint_{V_i V_f} \delta\left[(\vec{Q} - \vec{Q}_0) \right] \cdot \left\{ \vec{k}_I - \vec{k}_F - (\vec{k}_I - \vec{k}_F) \right\} \cdot p_I(\vec{k}_I) \cdot p_F(\vec{k}_F) \cdot dV_i \cdot dV_f
\]

Thus the counting rate at the detector for a position \(\vec{Q}_0, \omega_0 \) is given by the expression

\[
J(\vec{Q}_0, \omega_0) = A \int S(\vec{q}, \omega) \cdot R(\vec{Q} - \vec{Q}_0, \omega - \omega_0) d^3Qd\omega
\]

Note that our definition of the resolution function \(R \) differs from that of Cooper and Nathans [2] by the factor \(k_F / k_I \), which we have included.

3. The Resolution Function

To visualize the resolution function, it is convenient to show that \(R \) as a function of \(\vec{Q} \) is a convolution of the probability \(p_I \) with
the probability p_f. Therefore we integrate $R'(\hat{Q}, \omega)$ (see equation (6) and (7)) over ω and obtain

$$R''(\hat{Q}) = \int_{V_I}^R R'(\hat{Q}, \omega) d\omega = \int_{V_I}^R \int_{V_F} \delta \left[\hat{Q} - (\hat{k}_1 - \hat{k}_2) \right] \cdot p_i(\hat{k}_1) \cdot p_f(\hat{k}_2) \cdot dV_I \cdot dV_F$$

(10)

The probabilities p_i and p_f describe only neutrons traveling in the direction of the beam. When k is negative (z being the direction of the beam) p_i and p_f are zero. This enables us to integrate from $-\infty$ to $+\infty$. The integration of equation (10) is equivalent to a projection of R' onto the $\omega=0$ plane (see Section 6).

After integration over V_F we have

$$R''(\hat{Q}) = \int_{V_I}^R p_i(\hat{k}_1) \cdot p_f(\hat{k}_1 - \hat{Q}) \cdot dV_I$$

(11)

which shows that $R''(\hat{Q})$ is a convolution of the distribution of k_1 within V_I with the distribution of k_1 within V_F.

Alternatively, if we integrate $R'(\hat{Q}, \omega)$ over \hat{Q} we get

$$R'''(\omega) = \int R'(Q, \omega) d^3Q = \int_{V_I}^R \int_{V_F} \delta \left[\omega - \frac{m}{2} (k_1^2 - k_2^2) \right] \cdot p_i(\hat{k}_1) \cdot p_f(\hat{k}_2) \cdot dV_I \cdot dV_F$$

(12)
The problem here is that the δ-function is a condition on the energy, which means that it selects particular combinations of k_1^2 and k_2^2, whereas the integration is performed in k-space, that is with equal steps in k.

First we define a new quantity $\text{prob}(k_z)$ obtained by integrating over k_x and k_y. k_z is parallel to the most probable $\vec{k}(k_1$ or $k_2)$

$$\text{prob}(k_z) = \int p(\vec{k}) \, dk_x \, dk_y. \quad (13)$$

After integration of equation (12) over the x and y components and dk_{f2} we get

$$R''(\omega) = \int \text{prob}_1(k_{1z}) \, \text{prob}_f(\sqrt{k_{1z}^2 - \frac{2m}{\hbar^2} \omega}) \, dk_{1z}. \quad (14)$$

While previously p was defined to be nonzero only when k_z is positive, now we must define $\text{prob}(\sqrt{k_{1z}^2})$ to be nonzero only for positive k_2.

Again we can integrate from $-\infty$ to $+\infty$. It is easily seen that equation (14) turns out to be a convolution in energy

$$R'''(\omega) = \int \text{prob}_1(\sqrt{k_{1z}^2}) \, \text{prob}_f(\sqrt{k_{1z}^2 - \frac{2m}{\hbar^2} \omega}) \frac{1}{2k_{1z}} \, d(k_{1z}). \quad (15)$$

But equation (15) is not just a convolution of the probabilities of finding a particular k_{1z} or a k_{f2}, but rather the convolution of the
probabilities weighted by $1/k_z$. Another interpretation is, that (15) is a convolution of the two probabilities with respect to energy, but the step width is weighted to get equal steps in k-space rather than in k^2 or energy space.

The properties of the resolution function discussed so far in this section are intended to help visualize the contributions from various components. We will make use of this convolution consideration in Section 5.

Let us now turn to the very important question of normalization. This requires, that we integrate equation (10) over Q

$$
\int\int R'(\tilde{Q}, \omega) \, d^3\tilde{Q} d\omega = \int\int R(\tilde{Q} - \tilde{Q}_0, \omega - \omega_0) d^3\tilde{Q} d\omega = \int\int \frac{p_I(\tilde{k}_I)}{V_I} \cdot \frac{p_f(\tilde{k}_f)}{V_f} \, dV_I \, dV_f = V_I \cdot V_f
$$

(16)

with

$$
\int_{V_P} p_I(\tilde{k}_I) \, dV_I = V_I
$$

and

$$
\int_{V_P} p_f(\tilde{k}_f) \, dV_f = V_f
$$

(17)

The normalization is proportional to the product of the volumes (as defined by (17)) in reciprocal space: V_I around \tilde{k}_I and V_f around \tilde{k}_f, and is independent of the scattering angle. Equation (16)
contains no approximations and holds for three-axis spectrometers as well as for time-of-flight instruments.

4. The Volumes V_I and V_F for Single-Crystal Systems

From the derivation given in Appendix I, we find

$$V_I = P_M(k_I) \cdot k_1^3 \cdot \cot \theta_M \cdot (2\pi)^{3/2} \frac{\beta_0 \beta_1}{\sqrt{4\sin^2(\theta_M) n_M^2 + \beta_0^2 + \beta_1^2}} \cdot \frac{\eta_M \cdot \alpha_0 \cdot \alpha_1}{\sqrt{\alpha_0^2 + \alpha_1^2 + 4\eta_M^2}} \quad (18a)$$

$$V_F = P_A(k_F) \cdot k_F^3 \cdot \cot \theta_A \cdot (2\pi)^{3/2} \frac{\beta_2 \beta_3}{\sqrt{4\sin^2(\theta_A) n_A^2 + \beta_2^2 + \beta_3^2}} \cdot \frac{\eta_A \cdot \alpha_2 \cdot \alpha_3}{\sqrt{\alpha_2^2 + \alpha_3^2 + 4\eta_A^2}} \quad (18b)$$

α_0, α_1, α_2, α_3 and β_0, β_1, β_2, β_3 are the horizontal and vertical divergencies of the collimators, where 0, 1, 2, 3 refer to inpile, monochromator to sample, sample to analyzer and analyzer to detector respectively; n_M, η_M, and n_A, η_A are the horizontal and vertical mosaic widths of the monochromizing and analyzing crystals respectively and θ_M, θ_A are the Bragg angles of monochromator and analyzer.

In many cases $(4\sin(\theta_M) n_M^2)$ can be neglected compared to $(\beta_0^2 + \beta_1^2)$. Further, if $P_M(k_I)$ and $P_A(k_F)$ are assumed to be constant, one gets
It is easy to understand relations (19a) and (19b) by referring to Fig. 2 which shows the V_I projected onto the scattering plane for $\alpha_0 > \alpha_1$. The projection of V_I is proportional to $(n_M \cdot k_I \cdot \cos \theta_M) \cdot (\alpha_1 \cdot k_I / \sin \theta_M)$. For $\beta_0 \cdot \beta_1$ the vertical contribution (normal to the plane of the Fig. 2) gives a factor $k_1^* \beta_1$. It then follows that

$$V_I \propto k_I^3 \cdot \frac{\cos \theta_M}{\sin \theta_M} \cdot n_M \cdot \alpha_1 \cdot \beta_1$$

Besides $P_M(k_I)$ and $P_A(k_F)$, n_M^*, n_M^t, n_A and n_A^* also depend on k_I and k_F, respectively [17], but the dependence on the wave vector can be measured and incorporated empirically into the expressions (18a) and (18b).

The above expressions for V_I and V_F contain no additional
approximations beyond those made by Cooper and Nathans [2], i.e. the widths of $p_i(k_i)$ and $p_f(k_f)$ small compared to k_i and k_f, respectively and Gaussian distributions representing collimators and mosaic widths.

5. Intensity Corrections for Resolution Effects

In Section 3 the resolution function has been derived as a property of the measuring instrument. In other words, $R(Q_0, \omega)$ describes the characteristics of the instrument at a nominal position Q_0, ω. In this section, we are going to combine the characteristics of the sample, given by $S(Q, \omega)$, with the resolution function R. From equation (9) we see that the counting rate J is a folding of S and R. There is a complication in that the four-dimensional Gaussian R has different widths and heights at different Q_0 and ω, as can be seen from equation (1). If we diagonalize the matrix $M_{kl}(Q_0, \omega)$ to $M'_{kl}(Q_0, \omega)$, then we can find the widths $w_k(Q_0, \omega)$ in the directions of the four principal axes by using the relation

$$\frac{1}{2} M'_{kl}(Q_0, \omega) = \frac{1}{w_k^2(Q_0, \omega)} \delta_{kl}$$ \hspace{1cm} (20)

We integrate equation (1) and use equations (16) and (20) to obtain

$$\int R(Q_0, \omega) d^3Q dw = R_0(Q_0, \omega) \pi^2 \prod_{k=1}^{4} v_k(Q_0, \omega) = V_I \cdot V_F$$ \hspace{1cm} (21)
The efficiency factor R_o now can be expressed in terms of the normalization and the widths

$$R_o(Q_0,\omega_0) = \frac{V_I V_F}{\pi^2 \prod_{k=1}^{\infty} w_k(Q_0,\omega_0)}$$ \hspace{1cm} (22)

As mentioned in the introduction, the w_k for a three-axis spectrometer have been calculated by several authors. V_I and V_F for such an instrument are given in Section 4 of this paper. Hence equation (22) fully determines $R_o(Q_0,\omega_0)$.

R_o is the quantity which we must have to numerically integrate equation (9), i.e. to fold our resolution function with the scattering law.

But there are two situations, which are commonly encountered in inelastic neutron scattering measurements, in which it is not necessary to do the numerical integration when the product $V_I V_F$ is known. Let us consider these in more detail.

a) $S(Q,\omega)$ slowly varying in all four dimensions.

By slowly varying we mean that S varies linearly within the resolution volume. Then, since R (within Gaussian approximation) is an even function, $S(Q,\omega)$ can be replaced by $S(Q_0,\omega_0)$ and with the help of (16) and (17) equation (9) reduces to
Thus fitting a theoretical $S(\mathbf{Q}_o, \omega_o)$ to $J(\mathbf{Q}_o, \omega_o)$ involves only multiplying S by $V_I \cdot V_F$ and it is not necessary to unfold the data in this case. This method has been used to analyze results on quartz [18].

As an illustrative example, we have applied equation (23) to inelastic neutron scattering data from $\text{Tb}_2(\text{MoO}_4)_3$ as described by Axe, Dorner, and Shirane [19]. This is shown in Fig. 3. The scattering law, which describes a heavily damped phonon of a soft mode, is in good approximation linear within the resolution volume, while the temperature is high enough compared to the energy transfers so that the scattering law can be taken to be symmetric for energy gain and loss. Therefore, the asymmetry in Fig. 3 is entirely due to the normalization of the resolution function. A least squares fit using equation (23) gives excellent agreement with the experimental data.

b) $S(\mathbf{Q}, \omega)$ planar in four-dimensional space.

By planar we mean that i) $S(\mathbf{Q}, \omega)$ is restricted in the dimension perpendicular to a plane, ii) $S(\mathbf{Q}, \omega)$ is not curved within the resolution volume. For harmonic phonons with infinite lifetime the plane, which represents the dispersion surface has effectively zero thickness, and this can be expressed by means of a δ-function. When scanning through such an $S(\mathbf{Q}, \omega)$ one has to consider the variation

$$J(\mathbf{Q}_o, \omega_o) = A S(\mathbf{Q}_o, \omega_o) \cdot V_I \cdot V_F$$

(23)
of two quantities, the efficiency factor R_0 and the shape of the resolution function. The shape is given by the widths w_k. We assume that the orientations of the principal axes of R do not change during the scan.

We must now consider how much of the change in the normalization $V_1 V_F$ along the scan is coming from a change in the efficiency factor and how much from a change in the widths. To do this, we must refer back to equation (11), where we showed that at least as far as the Q dependence is considered R is a convolution of $p_1(k_f)$ with $p_f(k_f)$. Simplifying, we describe both p_1 and p_f by one-dimensional Gaussians with widths η_1 and η_2, respectively. The folding of these two Gaussians $G(x)$ now represents the resolution function R. In this expression x stands for the four dimensions of R. Later, x will represent only the dimension perpendicular to the plane representing S.

$$G(x-x_0) \propto \frac{\eta_1 \cdot \eta_2}{\sqrt{\eta_1^2 + \eta_2^2}} \cdot \exp \left\{ - \frac{(x-x_0)^2}{2(\eta_1^2 + \eta_2^2)} \right\}$$

(24)

$$\int G(x-x_0) dx \propto \eta_1 \cdot \eta_2 = \text{normalization}$$

$$\frac{\eta_1 \cdot \eta_2}{\sqrt{\eta_1^2 + \eta_2^2}} = \text{efficiency factor} \propto \frac{\text{normalization}}{\text{width}}$$
Let us assume \(\eta_1^2 \gg \eta_2^2 \) or in other words that \(p \) is much wider than \(p_F^* \). Then the width of \(G(x) \) is entirely determined by \(\eta_1 \) and the efficiency factor is \(\eta_2 \).

\[
G(x-x_0) \approx \eta_2 \cdot \exp \left\{ \frac{(x-x_0)^2}{2\eta_2^2} \right\}
\]

Equation (25)

An inelastic scan can be made either by varying \(k_F \) and holding \(k_L \) fixed or vice versa. The first possibility, i.e. \(k_F \) fixed means in this example \(\eta_1 \) fixed. Hence, the width of the resolution is unchanged, during the scan and the "overlapping" of \(S \) and \(R \) is the same on both sides of the maximum. Only the efficiency factor \(\eta_2 \) varies. Dividing the data at each point by \(\eta_2 \) (which in effect is dividing by \(V \)) is equivalent to a representation in which the scattering law \(S \) is folded with a normalized resolution function (see Section 6).

A second possibility is that \(\eta_2 \) be fixed while \(\eta_1 \) varies. This is more complicated because now the efficiency factor is constant and all of the variation is due to the change in the width of the resolution function. Now we assume that \(x \) represents only one dimension perpendicular to the plane. This means that the resolution function is already integrated over all three dimensions in the plane, or in other words that the resolution function is projected (see Section 6) onto an axis perpendicular to the plane.

We are interested in the value of \(G \) at \(x \), where \(x \) is assumed to be the intersection with the plane, while the instrument is at a nominal
position \(x_0 \). The width \(\eta_1 \) of \(G \) depends on \(x_0 \). Expanding equation (25) in a Taylor series (with respect to \(\eta_1 \) around \(\eta_{10} \) (at \(x=x_0 \))) gives

\[
G(x-x_0, \eta_1) = G(x-x_0, \eta_{10}) + \eta_2 \cdot \exp \left(\frac{(x-x_0)^2}{2n_{10}^2} \right) \left(\frac{(x-x_0)^2}{n_{10}^3} \right) (\eta_1 - \eta_{10}) + \ldots
\]

(26)

For small \((\eta_1 - \eta_{10})\), we now obtain \(G(x-x_0, \eta_1) \) for a scan which changes the nominal position \(x_0 \). The variation of \(\eta_1 \) with \(x_0 \) is not of particular interest in this context. Fig. 4 shows \(G(x-x_0, \eta_1) / G(x-x_0, \eta_{10}) \) as a function of \(\eta_1 \). At the position \(x-x_0 = \eta_{10} \)

\[
\frac{G(\eta_{10}, \eta_1)}{G(\eta_{10}, \eta_{10})} = 1 + \frac{\eta_1}{\eta_{10}} - 1 = \frac{\eta_1}{\eta_{10}}
\]

(27)

In Fig. 4 the result of applying equation (27) appears as the broken line. It can be seen that equation (27) agrees with equation (26) at \(x-x_0 = 0 \), and \(x-x_0 = \eta_{10} \), i.e. at positions where \(G(x, \eta_{10}) \) is 1 and .61. The broken line is the approximation to the correction obtained by simply dividing by \(\eta_1 \), which is equivalent to dividing by \(\sqrt{4} \).

Fig. 4 gives the impression that the disagreement between the true correction (the solid line) and the approximate correction (the broken line is much larger than in fact it actually is for the four-
dimensional resolution function. This is because we have been considering only one dimension. The integration over three dimensions within the plane is already done for every point by the instrument and the approximation therefore affects only one of the four dimensions of the resolution function.

The approximation is even better if \(\eta_1 \approx \eta_2 \) (i.e. \(V_I \approx V_F \)), because the change in the width is smaller. The variation of \(\eta_1 \) will now affect both the width and the efficiency factor, and the change in the efficiency factor will be exactly taken into account by \(V_I V_F \) as was shown above.

So, for well-defined phonons the method of dividing every measured point by \(V_I V_F \) is a good way to obtain data which represent a convolution of the phonon scattering law with a normalized resolution function (see Section 6).

A monitor to master the counting time, set in the monochromatic beam in front of the sample, with a \(\frac{1}{k_I} \) characteristic directly corrects for the variation of \(V_I \). Hence, for cases 5a and 5b with \(k_F \) fixed and a \(\frac{1}{k_I} \) monitor, no corrections for changing resolution are necessary.

6. Discussion of the Data Corrected by the Normalization

In Section 5 we discussed how the normalization of the resolution function affects the intensity of each measured point. Now we will consider the measured widths and integrated intensities in more detail.

To do this, we will first show an interesting property of Gaussian
functions for a two-dimensional example. This is most easily understood by imagining that \(x \) is a coordinate perpendicular to the plane representing \(S(\mathbf{Q},\omega) \) and \(y \) stands for the three coordinates in the plane, as was done in Section 5. We mentioned there that the instrument performs an integration within the plane, i.e. along \(y \). If we assume \(S(\mathbf{Q},\omega) \) to be constant, the integration can be performed over the resolution function alone for every \(x \).

\[
\int \exp \left\{ -(a_{11}x^2 + 2a_{12}xy + a_{22}y^2) \right\} \, dy = \text{const.} \exp \left\{ -\frac{a_{11}a_{22} - a_{12}^2}{a_{22}} x^2 \right\}
\]

(28)

At \(x^2 = \frac{a_{22}}{a_{11}a_{22} - a_{12}^2} \) the probability has dropped to \(e^{-1} \) of the probability at \(x=0 \).

Now we compare the result of the above integration with the result of projecting the ellipse

\[
a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = 1
\]

(29)

onto the \(x \)-axis. We set \(\frac{dx}{dy} = 0 \) and calculate the coordinate \(x_p \) and find

\[
x_p^2 = \frac{a_{22}}{a_{11}a_{22} - a_{12}^2}
\]

(30)
Thus we see that a projection gives the same width as an integration. This holds for more than two dimensions as well.

Using the projection of the ellipse helps to visualize the factors affecting the measured intensity and line shape. In a scan, in which \(\hat{Q}_o \) and \(\omega_o \) vary, we define ellipsoids of different probabilities, so that for each value of \(\hat{Q}_o, \omega_o \) one ellipsoid just contacts the plane representing \(S(\hat{Q}, \omega) \) at \(\hat{Q}_t, \omega_t \) (see Fig. 5). A scan perpendicular to the plane yields the smallest measured width.

Under the assumption that \(S(\hat{Q}, \omega) \) is constant, the probability associated with the "ellipsoid of contact" times \(S \) gives the measured intensity also, the measured width for any direction of scan is larger than the smallest width by a factor \(\frac{1}{\cos \phi} \) (\(\phi \) being the angle between the scan and the normal to the plane). As long as \(S \) is constant, a "perpendicular" scan will not reveal more physical information than an inclined one.

A more realistic \(S(\hat{Q}, \omega) \) varies with \(\hat{Q} \) and \(\omega \). Then to a good approximation, \(S(\hat{Q}_t, \omega_t) \) at the contact point can be considered as giving the "mean value" of \(S(\hat{Q}, \omega) \), which contributes to the scattering at a nominal setting, \(\hat{Q}_o, \omega_o \) (see Fig. 5). Therefore, the counting rate at \(\hat{Q}_o, \omega_o \) is \(S(\hat{Q}_t, \omega_t) \) times the probability on the surface of the contacting ellipsoid. For most scans \(\hat{Q}_t, \omega_t \) will change with the variation of \(\hat{Q}_o, \omega_o \). At the position of maximum overlap between \(S \) and \(R \) it follows that \(\hat{Q}_t = \hat{Q}_o \) and \(\omega_t = \omega_o \).
We understand that the "mean value" of $S(\vec{Q},\omega)$ described above will change during a scan varying \vec{Q}_0,ω_0. If $S(\vec{Q}_0,\omega)$ is known approximately, one can evaluate the values of \vec{Q}_t,ω_t and take into account the varying "mean value" of $S(\vec{Q},\omega)$. This correction has been performed for phonon measurements in argon\[20]\ and in CD$_4$\[21]. For $3(\vec{Q},\omega)$ described by a plane all \vec{Q}_t,ω_t along the scan lie on a straight line through the center of R. Having taken into account both the "mean value" of S and the normalization corrections explained in Section 5, the unfolding reduces to a one-dimensional problem even if the phonon has an intrinsic line shape, since the contribution of the resolution to the measured width is known. A favorable scan is a scan which has the same \vec{Q}_t,ω_t for all \vec{Q}_0,ω_0.

After this discussion of measured widths we turn now to consideration of the measured intensities $I(\vec{Q}_0,\omega_0)$ corrected by $V_I(k_1(\vec{Q}_0,\omega_0))$ and $V_F(k_F(\vec{Q}_0,\omega_0))$. We rewrite equation (9)

$$\frac{I(\vec{Q}_0,\omega_0)}{V_I \cdot V_F} = \frac{J(\vec{Q}_0,\omega_0)}{V_I \cdot V_F} \cdot \Delta t = A \cdot \Delta t \int S(\vec{Q},\omega) \cdot \frac{I(\vec{Q},\omega-\omega_0)}{V_I \cdot V_F} \, d^3Q \, d\omega$$

(31)

where Δt is the measuring time which is assumed to be the same for each point. Since $R(\vec{Q}-\vec{Q}_0,\omega-\omega_0)$ depends on the zero points \vec{Q}_0 and ω_0, an integration of equation (9) over \vec{Q}_0 and ω_0 would not be easy. But
\(R(\hat{Q}_o, \omega_o) \) is the same function for every \(\hat{Q}_o \) and \(\omega_o \), and its integral over \(d(\hat{Q}_o) d(\omega_o) \) is unity. Since this integral is independent of \(\hat{Q} \) and \(\omega \), we integrate equation (31) over \(d\hat{Q}_o d\omega_o \) and get

\[
\int \frac{I(\hat{Q}_o, \omega_o)}{V_I V_F} d\hat{Q}_o d\omega_o = A \cdot \Delta t \cdot \int S(\hat{Q}, \omega) d^3Q d\omega
\]

Equation (32) shows us that the integration (effectively a summation) over the corrected intensities yields the integral over the scattering law.

Hence \(I(\hat{Q}_o, \omega_o) \) is a folding of \(S(\hat{Q}, \omega) \) with a resolution function normalized to unity. The unfolding of a Gaussian with \(S(\hat{Q}, \omega) \) will not be further discussed here.

7. Conclusion

We have derived an exact normalization of the resolution function and we show that the so-called efficiency factor \(R_o \) can be expressed as a function of the normalization and the widths in the direction of the principal axes. This simple result for \(R_o \) should be a great help for numerical evaluation of the folding of the resolution function with the scattering law.

Assuming that \(S(\hat{Q}, \omega) \) varies linearly over the volume of \(R \) (at least
with respect to three dimensions) we give a method for correcting the measured data without numerical convolution. In the case of phonons it is necessary to assume that $S(\hat{Q}, \omega)$ is planar to apply this technique. In this case, we show that the unfolding of the data reduces to a one-dimensional problem and the integral over the corrected data yields the integral over the scattering law.

Acknowledgments

The author has benefited from many discussions with Dr. G. Shirane and especially with Dr. J. D. Axe. He is indebted to Drs. L. Passell and O. W. Dietrich for their careful reading and help with the manuscript.
References

[16] DIETRICH, O. W. Resolution determined by Monte Carlo calculation, to be published.
References (cont'd.)

[22] CHESSER, N., private communication.
Appendix I

Starting with Cooper and Nathans ([2] equation (6)) we find

\[p_i(k_i) \cdot dk_{ix} \cdot dk_{iy} \cdot dk_{iz} = P_M(k_i) P_0 \exp \left\{ -\frac{1}{2} \left[\frac{(\Delta k_i/k_i) \tan \theta_M + \gamma_1}{\eta_M} \right] \right\} \]

\[+ \left(\frac{2(\Delta k_i/k_i) \tan \theta_M + \gamma_1}{\alpha_0} \right)^2 \frac{\gamma_1}{\alpha_1} \]

\[+ \left(\frac{1}{4 \sin^2 \theta_M \eta_M^2 + \beta_0^2} + \frac{1}{\beta_1^2} \right) \delta^2 \left\{ d(\Delta k_i) \cdot k_i \cdot dy_1 \cdot k_i \cdot d\delta_1 \right\} \]

(33)

where \(d(\Delta k_i) \) is the component in the direction of \(k_i \), \(k_i \cdot dy_1 \) is the component in the scattering plane perpendicular to \(k_i \) and \(k_i \cdot d\delta_1 \) is the component perpendicular to the scattering plane.

Equation (6) of Cooper and Nathans (1967) contains several minor errors. First, the denominator of the \(\delta_1 \) and \(\delta_2 \) expressions should contain \(\sin \theta_M \) and \(\sin \theta_A \) instead of \(\tan \theta_M \) and \(\tan \theta_A \). Second, they include only one \(P_0 \), which is derived in their Appendix 1 for the monochromator; a similar expression for the analyser is missing.

There is a more serious objection to their expression for \(P_0 \), as given in their equation (24). If we assume \(\beta_1 > \beta_0 \) and \(\eta_M^2 \), then all incoming neutrons with vertical divergence defined by \(\beta_0 \) must be reflected by the monochromator. To understand how this comes about, we note that the attenuation produced by the finite reflectivity of the monochromator is expressed by \(P_M \) (actually \(P_M(k_i) \)). The vertical
collimation plays no role in determining the values of \(k_1 \), which will be reflected; this is entirely determined by the horizontal Bragg condition. Thus, if \(P_M(k_1) \) is set equal to unity, we should expect that the integral over \(\delta_1 \) is proportional to \(\beta_0 \) or in other words that every neutron with an acceptable \(k_1 \) and a vertical divergence within \(\beta_0 \) will be reflected. In fact, this condition is not satisfied if Cooper and Nathans' formula (24) is integrated.

This consistency consideration has been used to derive correct expressions for \(P_{OM} \) and \(P_{OA} \), which are

\[
P_{OM} = \frac{\beta_0}{\sqrt{4\sin^2(\theta_M)\eta_M^2 + \beta_0^2}}
\]

\[
P_{OA} = \frac{\beta_3}{\sqrt{4\sin^2(\theta_A)\eta_A^2 + \beta_3^2}}
\]

Chesser [22] has pointed out that this error is a consequence of the fact that Cooper and Nathans' equation (14) is not normalized. Their equation (14) describes the probability of vertical broadening of the beam by reflection from a crystal with a vertical mosaic spread. When it is properly normalized, their equation (14) leads to the correct expressions for \(P_{OM} \) and \(P_{OA} \) given above.

Integrating equation (33) we get
This reduces to

\[
V_I = P_M(k_I) \cdot (2\pi)^2 \cdot \frac{3}{2} \cdot \frac{k_I}{\tan \theta_M \cdot \left(\frac{1}{\alpha_M^2} + \frac{4}{\alpha_0^2} \right) \left(\frac{1}{\alpha_M^2} + \frac{1}{\alpha_0^2} + \frac{1}{\alpha_1^2} \right) \left(\frac{1}{\alpha_M^2} + \frac{2}{\alpha_0^2} \right)^{-2}}
\]

\[
\cdot \frac{\beta_0}{\sqrt[4]{\sin^2(\theta_M) n_M^2 + \beta_0^2}} \cdot \sqrt{\frac{1}{\sqrt[4]{\sin^2(\theta_M) n_M^2 + \beta_0^2}} + \frac{1}{\beta_1^2}} \cdot \frac{k_1^2}{k}
\]

A similar expression can also be derived for the analyzer, where

\[
P_A(k_F) \]

represents the counter efficiency and the reflectivity of

the analyzing crystal.
Figure Captions

Fig. 1. Schematic drawing of an inelastic neutron scattering experiment: a) in real space b) in reciprocal space.

Fig. 2. Distribution of monochromatic neutrons in the scattering plane produced by a single crystal monochromator, where θ_M is the Bragg angle, $2\pi_M$ the rec. lattice vector of the reflecting planes, α_0 and α_1 are the horizontal collimations of the incoming and outgoing beams and η_M is the horizontal mosaic width of the crystal.

Fig. 3. Inelastic neutron scattering results of Tb$_2$(MoO$_4$)$_3$. The solid line represents a least squares fit of a symmetric scattering law multiplied with the normalization of the resolution function.

Fig. 4. The solid line represents the true effect of the resolution for varying η_1 and the broken line gives the approximation discussed in Section 5.

Fig. 5. The ellipses represent projections of four-dimensional ellipsoids for different probability. For a const-Q_0 scan the Q_{t_1,ω_1} of contact with the scattering law $S(Q,\omega)$ are shown for four different ω_1. Note that the lines connecting Q_{0,ω_1} with Q_{t_1,ω_1} are parallel.
FIGURE 1

(a) Collimation and monochromator

(b) Incident beam

Scattered beam

Collimation and analyzer

Counter
Tb$_2$(MoO$_4$)$_3$

$Q = 1/2 (9, 5, 0)$

$T = 414{}^\circ$C

Energy Width of the Resolution

Figure 3

- Counted Neutrons
- Energy Transfer $h\omega$ [meV]

![Graph showing energy transfer and resolution width](image-url)