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ABSTRACT

A‘Sﬁme*criteria are established to test whether invariance. under a con-
-tinuous transformation will léad.to a.conservation law. The scalé;fransformation
isiexamined as a.special case,-and shown not only to lead to‘nd general cbnser-
vation law, but.also in fact to ﬁe.éf a triviél nature. This is due to the
rather artifical way in which scale invariance.is usually introduced. A theory
- is then .consftructed by introducing an internal coordinate of dimension. (length)
in order to allow.only the dimensionalss ratio‘of‘lenéths to enter, and by
exploiting the gauge-like. structure . of the scale .transformation. 1In thiS"theory
_ the scale transformation does lead .to a new. conserved current. (as well as to
an "almbst-conserved" one), and the internal coordinate is shown to play the
same role for the scale transformation as the internal coordinate.spin plays

" for  the case.of rotatidns;
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THE SCALE TRANSFORMATION IN PHYSICS¥
Daniel M. Greenberger
Lawrence Radiation Iaboratery
. University of Californis

Berkeley,. California

- August 29, 1962

I. . INTRODUCTION

:It seems to‘be.inherentiy:réasonablé-to.require thafvthe laws of physiecs
bé independent;of the.size of the units used by the physicist to meésure them.

In fact’(at,leégt»in a. flat .geometry), this would appear to be‘azrather trivial
statement, with‘a‘change in scale implying'ndthing,mqre than.the usual conversion.
of, say, centimeters to inches. - The only theoretical problem seems to be Whethér‘
“to multiply,or‘divide,byj2.5h.

However, thereAare.other-types of restrictions that we.place on physical
theories, which.seem sﬁperficially quite similar in nature to-scaleAinvariance,
and &et,which.haveiréther profqund.consequences.A For example, the reguirement
.that the 1ocatiop,of the origin of the coordinate system be.irrelevant leads to
consefvation of momentum, and tb@ requirement.that-the.oriehtation of thévaxes
be irrelevant.leads to.conservation.of angular momenfum.

The qgestion arises then why the scale invariance.of a theory appears
to be trivigl.and devoid of phyéicai significance--is.it dée to a propériy of
thé.sqale transformation itself, or-ﬁerelyfto the manner in which we:choose to
incorppfaté,it,into‘physics? To answer:this question we .shall examine in'

- Section II the connection between invariance principles and .conservation. lavs,
and establishzsome.criteria,that an invariance pfinciple shoﬁld.satisfy‘in order-
to yield a conservation law. Unforfunatelygscale invafiance as usually formulated

fails rather dismally to meet these criteria, Because of this, scale invariance
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has been relegated to the role of a formal operation Vhich‘has been studied
rather extensively in the 1iféfatgré;l.primariiy:in connection with‘applications
to the virial theorem.and a "scalé pérdmeter"tperturbation theory, but not with
respect to any possible physical cohseq;ienées° ' |

Next, in Section III, we.develop some simple.formal apparatus- for describing
scale transformations and develop a tew ¢onseyuences of scoic invariance.

' ian tﬁebr& were to contain a meaningful form of sCaie'inVariance, it
would have to be formulated in terms of ratios of‘léngthé'(sééisec.‘Ii); jﬁét.as

a translatidn-invariant.theofy contains only the'differencés'Betwééh coordinates.
In'Section.IV; the facf.that a change in scale resembles a.gaugé ﬁransférmation

is used to build a model theory in which an internal coordinate With the dimension
- "length" is introduced for the purpose of'havihg only.diménsionless'rafios eniter
the theory;

Finally, in Section V}Ithé;scale invariance of this theory is examined
and shown to be nontrivial. ﬁdt.only does &cale invariance then lead to a new
.conservation law, but also the internal coordinate is shown to-énter the theory
in a manﬁér exactlyvahalogous to the'wéy in which the internal'Cobfdinate‘spin
“enters for rotational invariance.

" In this light, thé usual manner of introducing scale’iﬁvafiance:appears
to be as artifical as Woﬁld'bé the attémpt»to'diécuSS‘thé«fotational invériahce
.of a vector field by consideriﬁg'onlyjthe~orbita1 angular momentum, where the
effectS'bf the spin would have.tb be eiiminated'by introducing an éxternalhpafa;
meter and forcing it to vary in. just. such manner as to cancel ‘the spin (and in

the scale trahsformation,‘the'"conversion.of units" plays jﬁstfsuch a role).
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Ii. -INVARIANCE-PRIN&IPEES AND CONSERVAIION”LAWS
A The‘faét tﬁat é theory ekhiﬁité invariancé.aifﬁ réépeéffté a ﬁérticular
iﬂfinitésimél tréhsférmétiéh dbesjnot héceséarily;imply,tﬁat there ekisfs a
conservation law. Even when théréidoes'exist a’conservation léﬁ; it does ot
-have to be. of the form ofja local conservation law-wsthat is, a law,stating tha£
Athe divergence of some tensor vaniéhes everywhére, yielding a continuity equation.
It,may;merel&_assert that some particular integral over all space . vanishes,
Withéut any local conséquences.
| If there is no.censervation law at all, the'ihvariance.is rather trivial,
and we shall call it. "external™ inyariance.e th.occurs when.thé theory depends
upon an.external parameter (éﬁéh as.an‘origin of céordinatcs), whiéh.is cﬂosén
-to vary ﬁnder the infinitesimal transformation in such a way as to cancel the
effecﬁldue'tb the variation in theéoordinatés° For‘example, cohsider a system
-described by an action integral A =“/;Q(x -Ag)dx,.wheré Y 1i§ an external origin
introduced into the thedry. Then under- the translation x = x + 50; tE >t + do,
the éctibn remains invafianf, butjﬁhis invariance-ﬁlaces no restriction mn/fv
and leads to no conservation law.

Another::simple example of such a theory would be é fotationally:invariaﬁt
.description of the temperaﬁure apdve»thensurface~of the earth. Assuﬁe T= Toé”a;,
where fz .representé‘vertical'distance fromrtﬁe (flat) éarth. This can be written
.in the.invariantJform T = Toed?§7£u, where k 1is a unit vector pointing verti-
-caiiy upﬁard, énd‘ r fié the vec£or ffoﬁ some<poiht 0 .on the surface.td the
point.in space. Then, under a rotation about.O, where £~+~R{, § - R%, the
scalar product .is invariant. .Such a theory is rotationally invariant but.implies
nothing further, and in fact even contains a preferred axis.

For a theory to be free of such trivial external invariances, the external

parameters thatAénter into. it (such as masées, charges,'and the velocity of
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.light) should remain unaffected.by_the infinitesimal transformatiop in question.

If such is the case, then we can proceed to derive .the usual.conservation~laws.

We assume that the - theory is described.by an action
s ek, )

where the uy represent. the various fields occurring in the theory. Let.the

coordinates Xu.-be.subject-to‘the’transformation

AL L e @

.Where the wk,.(k =.1 «+° 5) represent s parameters. It suffices to consider

the infinitesimal transformations
x“'_ = ‘x“v+8xp’,.~':',6x“u=‘ }: a ”&D > (5)
.Under this transfor@ation law the fields transform as‘V:
ifi(x)'_)“u'i(};') = ui(x)-““‘éu..i’ Buy - Z Qikiﬁbk‘;l | . V‘ | <L‘)

. The variation ghi(x) in the form of the function at.the point x is therefore’

Bu, = u',(x).-u, (x) =Z [qik'-'(aui/aiu')',ak“‘]:&pk.. o (5)

' x v ) .

, (We use :the suﬁ@ation:conﬁentidh for Greek indices -which label the coordinates.)

:The usual procedure for deriving the variation:in the_actiori3 due to the

infinitesimal transformations(3) and (L) yields
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=) (,['dx 308, .8
3 | |

;where . .
| 3K | u :
._.Okp' __. ag;—? [(a u )a, - ajk] - Zak L . (7)

(we shall often use the notation»BuEE,:B/Bxg), and uhere the limits. of integration
in Eg. (6),can'be‘anyjarbitrary_regioniof'space-time, Then the.condition.§A<= 0

.leads to the conservation laws
a@ IJ:;: ,O’ (k":.l, R S) ‘A- . . . | . (8)

. However, it may happen that . for the transformatlon in questlon we :do not demand
that. the varlatlon in. Eq. (6) vanish over any arbltrary volume, buu only over

- some reglon of spec1al 1nterest, such as a volume suff1c1ently large that the
fields vanish.on 1ts surfaces. Then ‘we:cannot .generally conclude anythlng as
strong as Eq. (8) but.must-be.centent.withithe weaker-conservation:laws

fd—x au.gku: 0, (k = 1, Tttt ). . ] . (9)
_Of course Eq. (8) might follow.even in the latter case, and we shall

examine this possibility. .Let.us assume that the‘Lagrangianéi(x) satisfies

the simple law

A (x) = Kl(x). . ~ (10)

Then the variation® ®A -over an:arbitrary-region of space-time. can be written
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fd%'és'(xw : fdx Z(x)

«fdx_,[J(x,a))-l] A (x)

BA .

) ax (3/36y) Lo & (%) 80y O a
where .J(x,@) is the. Jacobian a{xV’(x,w)]/a(xH)v‘ Numeri;ally,wé hive

- .OT k

el IR v EECEERRRE 2)

.The first.line of Eq. (11) is true, because in the derivation of’ BA.the beundaries
-of the fegion;also take part. in the variation. Equation.(6)_yields BA over:an

arbitrary region regardless of whether BA vanishes;or-not, so that.we have

Cow e VL S
:-’aligku= W wk:o X(X);.' (13)

_Then the local conservation law follows provided thaﬁ.either

.(a.)‘:v (aJ/awk)mFo: °

- or

® L (x) =0,

which.- may happen by virtue of the fiéld.equation--ituneedﬂnot'be identically

.zero .in the variational sense. In the special cases:of translational:invariance,

B M

where x ~ X .+ XP,, and rotational invariance, where <

LV
.="‘avu.(a; B, 73v)x )
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we have dJ =1, independsntlylof’x% or.of the apgles_q,“ﬁ?ﬁynu%nd‘velocity Vo,
Thus, the local Qonservationllaés“ﬁollowsfrom;condipiop,ﬂg),“n

.. Another. possible case.leading to.the local congervation.laws, Eq. (8),
even if neither condition (a) nor (b) holds,_occursAWoen.ﬁhe,slmpleéEq,ﬁ(lO)n

.no longef‘holds,_butwrather: 1;tp§nsforms.as
L ox) =X (x).. e al)

.Equation .(14) implies the local’ laws immediately,'from the first line of Eq. (11).

‘An interesting situation arises in the case .of a quantized field.theory,
because,of fluctuationsscaused.by‘the unoertainty:pr;noiple, .Eor;example,
,ﬁomentumﬁconservatlonMis expressed asAthe\constancyﬁoj'somsuintegral over all
of 3-space, and indeed the(momentum:densityiinﬁsgrated over.a finlte,volume.does
not commute with the .observables of the theory, anqlmust be‘consistgntﬂwlth the
.condition .Op-dx~h. .However, the theory is looally invariant.in our sense:[i.e.,

. (8) holds for the stress tensor], because tfsnslation invariance follows
for the actlon integral deflned over an srbltrary space-time region, so that
our remarks apply, and we have 8 T u = .0, A further subtlety. occurring 'in
quantlzed theories is the ex1stence of a class of invariants, such as the charge;
for which finite volume intégrals'do commuté with the obsérVables;'bﬁt'this
dlstinotionldoes»not affect. anything discussed .in this paper -and will not Dbe
considered further.u T D ,

In thls discussion the parameters’ 8w have been assumed not to be functions
of fho:coordlnates xH.y For those casesuln which this is not true, ‘such as the
gauge.invsfianoe.ofltﬂe slectromagnetlc (e-m) fleld, the quant1t1es:8®k in Eq.
(6) appear under the integral as arbitrary functions, and local invariance

~[1 eo, Eq. (8)] follows, With. Qku sti11 formally glven by Eq. (7) However, in
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such casés there are alsé terms of the.form--b(aﬁnk)i.‘The‘coéffiqients.of‘these
terms vanish; though,.so long as.the fields are correctly,couplediin avgadge-
invafianfgmanner,5 and therefore need not.be explicitly considered. - The. theory
of SectionzIV.will be of this type.

. If we apply. the foregoing considerations'to the scale .transformation,
we see that the very fact that ﬁhe-equations of physics have :dimensional units
atfached implies that the scale tranéformatiqn.is trivial; For example, .an
external parameter like mass defermines-a Compton wavelength, and ﬁnder d.change
.of scéle-this wavelength.chénges accordingiy, making the theory‘extefnélly
,invariant, |

.The obvioué-remedy_would be to have only the ratio of lengths -enter the

theory,'as these Would be unaffected by a -scale transformation. In fact, if two
léﬁgths'xl and‘x2 enter é theory, and the theory,ig to be invariant.under the
tfahéfofﬁafion’x

H*Axg(l + 80), then we .have

1

.f gl(l +v60),‘x2

QK QR .
.Sf(xl, }(_2) = &I '.XlBO'-?- g}g -X2'50'

and the general solution.offﬁhe,equation 5¢fa=v0 is
K= Kitn ) - 4 x,) = Kx,/x,) .

- For this reason, in the theory of Sec. IV, we introduce an internal degree .of

freedom k, whose-dimension;is (length)-}, and demanq,thath?bgiof the form

A ).

. It :should be mentioned that there .is a.class of physical theories that

are scale-ihvariant.by virtue of the fact.that.no scale-dependent.external
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parameters. enter--for example, the field'theories.describing fregﬁma;sless
particlesf ‘Although these theories are free from any externgl‘invariénce,
theyAposs¢§s»the'slightly complicating feature that‘fpg;the trgnsforméfion

- xM(1 + 80) we have the Jacobian J = (1 + nda), vﬁere n_ is the dimension

of the.spaée? and therefore 8J/80,=,n..‘However, in #he usual lb-dimensional
theories the. Iagrangian density has the dimensions (}ength)f% and dqes_not trans-
form by Eq. (10), but rather by Eq. (1k). fhus these theories can lead to local
conservation laws, as will be“discussed in.the nexyt secﬁign,: $he,theqry of
Section IV will have. the advantage of being capable of including»massive fields,
as well as being intrinsically dimensionléss, which the usual masslesé theories

.are not.

.IIT. SOME PROPERTiES OF THE SCALE TRANSFORMATION
 Consider a field ¥(x) with the, dimensions (1ength)®. The variable x is
~the dimensionless number X/a, where X represents an actual physical length,
independént-of the éoordinate system, and a ié j;he size of the unit used for
measurement. Now, if the size df the uﬁit .a .is changed to a/%v.then the same
;Lezigth X is represented in the new units. by x/:(a/x)«:_;xx =-x', and the field
' w'(x')vﬁeasuréd by an observer using the new.units.is related to thg old field

v(x) by the equation

1

A"

V) =L oy . )

 Equation .(15) is the equivalent .of the transformation law.for tensors:




10- “UCRL-10445

In the relativistic case, "length" as used above pertains to the- f-vector ‘
xM: (et x).

A simple illustration of Eq. (15) would be the case in which ¥ (x)
describes'tﬁe height. of a water wave WiﬁhAthé dimenéi&h (length) measured -in
inches. - Tet ‘the height of a wave at.x = 2 be 3 iﬁ. Then ¥ (2) = 3., If now.an

observer were to‘measure'theHSame wave'inAl/E-in,ﬂuhits, he would write ¥'(4) = 6,

or v(2) = 1/2 ' (k).

‘V(?\S) = .}?/2 ‘1"(?\(1') . ' : R . (16)

: Similarily, for a relativistic Fermi .or Bose field, Eq. (15) takes the. form

312

WF(X) 'F(X');’

(17)

LBl = )

-Under a scale transformation, the argument -x .of* the nonrelativistic wave

function.w(ﬁ) transforms as
x> x' = x(1 +50). . (18)

.(The infinitesimal expression.(l + 80) becomes the finite'expressionféUEE?Q) »

The wave function of transformed ‘coordinates becoumes

.. -:ﬂr({% x:60) = ¥(x) + 86 x-T¥(x) .

4=~:\|f(x),+ i 60 Eog\h(i) e ' (19)

~
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The operator generating this change. is r.p.. However, this operator<is,not

Hermitian, so we introduce the operator .-

1 . ) B 5  ,' | -
h=3 Z [?'i"* Pi] T ERToeroe (20)
.For a finite,transformation4(inxonewvériable).we haye
ox 3fdx [, . ... | B . o
§ O iy y(xe%) , , (21)

which may be proved by expanding. both . dides in a:Taylor .series in.@.  Thus, we
have

Uy ‘1"(35) = eia{\. ‘I’(f) = e?q%gf \lf(,‘}fec) ’r ‘ (22)

~s0 that the variation.in the. wave function at .a point.can be written

¥(x) = U ¥ (x) (23)

2
, or

BH() = ) - (k) = -1 Bo M), (21)

which agrees with the result of a,difectlapplication.of'Eq. (5). The operator
A obeys the commutation~rgie (A, £n Xi] =al/i,Awhich'says that a'scale trans-
formation can be intérpreted-as a”displacément.in £n Xss Just.as the momentum
4operator‘produces a;displaéement.in xi itsglf. '

It. should be noted that Eq. (l6);d§es:not.dépend upoen oﬁr-ﬁse of a’

3/2

.Cartesian.coordinate system, and that the factor N in Eq.  (16) merely
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represents a factor V J, ‘where J' is the Jacobidn® d(x')/{x):.*"In-diffefential

form Eq. (16) reads AT

oy = ¥ (E) - ¥(0) = -3/ ¥(x) 80T (25)

~ In this form we can see that the scale transformation is essentially of the form
of a gauge transformation and has no physical significagce, in accordance with
':the remarks in Section II. | |
For a set of relativistic fields uk(x) of dimension.(length)nk trans-
forming ‘under a scale transformation according to Eq. (15), the variation in the
action can be calculated from Eq. (16). By using 5x” = x* 80 and 6gk =n, uk.Sq

we obtain

BA

S Llmay [ me] - An

»—jd“x 3, [x‘-v TVM-an uk aﬁ{-]
k :
-‘j‘ h?:aﬁzeu.j : e .i.ltf ' (26)'_

whefe'T;”:ié the"stfeSé-ehéréy?fénsofl' For' a .field thht. transformed &s -

Cu(x) = a"(x")," and for which ‘% (x) =0, we would obtdin .the conservation law

,au(x", TV*-_*)_= Tp“':“o;‘fd’% xv;:Pv,.=‘-'c<:)n"s't'f.i. A : (27)

T,

where :P;!.is'ﬁhéimOméntﬁm.aéﬂéity; T?Q’ﬁ
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For a massless relativistic field the ILagrangian satisfies the trans-

formation law

K =t L= e,
(28)
K(x') = dx f(x):
'so that Eq. (26) should lead to the.local4conserv;tion.1aw
N .ok - A |
98t =0. . L o -(29)

. In.fact, ' i

o AR 3R
f 8{1@“.: ']34““L - Zk:nk [uk gu; (auuk) W]

j.-hif;' : [n' e (- l)(a-.:)v .a-. ] . (30)
2; k% Su, ARy 1% 5?3;3;7 g

';To.dériﬁe Eq. .(30) we have used the field equations and energy conservation,

1

au[a?a"iy] Séf pymteo. Ce
For a Lagrangian Whlch s a functlon only of the fields and their- derlvaflves, such
that e‘very term:has the same dlmen31ons, (length)” -,‘ so that Eq. (28).is satisfied,
the right-hand. side of Eq. (30) vanishes because it is merely the Euler ‘equation
.for a homogeneous ‘function (all terms having the same dimensionaliﬁy) , and local

invariance .holds.
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“ A massless ‘scalar field has the Lagrangian g J=-%(5u¢ ¥(3"@), ‘and the

quantityy@“ is‘
G NP FE R A - (32)
For a massless chafged.scalafffield, we have ©-

EEEE L SR WA SR R )

and . for a massless Dirac -field,
o! = va~u;, ' N (3%) -

As an iliu;pgéﬁion“of”some Qf5tHeifemgfks:iﬁgSéctiéanI, we can introduce
a  "truncated" scale transtormation for fhe three :above-mentioned fields--the
transformation x" - x"e? , while §'(x*') = #(x). 'Under‘this transformation, neither
X (x) norfdg.;?(k) is inéérianﬁ. Nejeftheléés, we have 8A = O if the action
integral is taken over all.spaée and the ields are assumed to vanish in remote
regionsz Thgg ong hégﬂﬁhg'iqtegral,invé;iantu/agx TuEeriéll:thre§ fieldS«
However, for this transformation the condition & (x).= O still ieadé*thiocal
- invariance, and that-is why the Dirac fields satigfies ;au(ivTVH)éi Tu“fe'o,
whereas for the §Calar-field§ én extra ferm mustfbé.addéd for alocal conseryétion
lawutol‘hol,c'l;° .
PFip@l}y;léfbg§dcg}chlate:the scale transformation properties of a massive

Diracﬁbérgiclegcouplgqipééphe efm,field;;'Aﬁ; “Thg,fie;q1equations are
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1R () -k () = @ al(x). T ()
Tate) =.- ¥ ),
where .a" = AM/e (e being the electromic.charge), @ is:the.fine-structure constant,
and k is the reciprocal Compton wavélength.of the,fermion.'_Under,the transformation
\ 3/2
¥~ ()

at(x) = K-au'(x'):,

theseﬂequationS'become
2R W) - (/) ¥ ) = et )
and L | | C(36)

1

] p—
O M (') =.- W'(Xf):Y“ﬁw’(X') .
. Thus we have the.transformation laws

3/2~¢'(X',n).= W(X:xK)

N
L (37)
“h'aE'(x';n) = aH(x,kn)4,
: ‘
which are more,complicated.thqn'that*of Eq. (15) because of the change in K,
ﬁhich.shows:explicitiy,the:external nafure of the scaie trénsformation>for
massive fields. -Injthe<pex§:section“we attempt to formulate:a;quel‘theory

Athatzgill.overcome'this‘ﬁefect.h
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IV. A SCALE-TNVARTANT THECRY OF PARTTCLES WITH MASS
‘We attempt to construct .a.scale-invariarnt theory by 1ntroduc1ng an
. internal coordinate. whose dlmen51on is* length. ThlS allews us to formulate
~theitheorylin terms of dimensionless quantities‘by exploiting the qauge-like
‘structure ‘of | the sbéieszénSTérméfiéﬁfi | R |
Tn 41ustrate. the procédure,” we lise’ the' case of a massive Dirac -free -

field. Equatien~(35) (without.the e-m coupling) can be written in the form
LY /o) “"3/2 V() - Py - 0. (38)

If we introduce.-the dimensionless quantities

and

\Vl(xl’ K-) = ‘I’(X; K) ) - (5913)
Eq. (38) becomes
0y ()i Gg) = O - (%)

: ;Eqpation (L0) is dimensionless, but. it is dependent .upon a .particular Compten
wavelength, namely'l/n. -To be.ablefﬁb”pfevide:forfe ﬁafficle of any. mass, we
write

ety Y,Ll 'alu‘l"i'-“" ;m!l. 20 e TR el L L (.)4-1)

wheré "I ‘is & dimerisioniess parameter ‘actually répresenting the Tation. of the

wavelength. of the particle.to the. arbitrary originaltﬁdveieﬁgﬁh;;ifﬁt. Thus -
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when we vary k -in the theory, we actually vary the‘éiie,@fﬁthgvpn;tVof'length,
While;the.maSS~of1the particle,. p, in dimensienless units;- remains.fixed.

- Because. it. is dimensionless,. the field.of Eq. (39) .ne lenger transforms

under the-scale-transformation:XH.A i”;ég according to Eq. (37), but.rather as
AN I N CR
W(l.x K d< ¢l«x,ne .

.or

Wl e b ()

. Thus we{can change the scalé by making a. variatien :in kg, leaving Xy fixed; as
well as by making'a‘variationjin:x, for fixed k. -Alternatively, we nete- that
.the field is invariant.under the simultaneous transformation va+~xHeq,
. 0}
K = ke

In the rest .of this section-we~uses0nly‘thé.field Wl(xl),and'subsequently

we will drop.the subscript 1. Equation.(he);ih infinitesimal . form reads

A (X, K)": \V(X:K') + 8o K% V’(X:TK-) 2 _'

Vo) = ¥, 400 L (1), )

< By.= 8o T (%,7)

14

. where ‘we -have. introduced .the notation T = £n.k ’for-éénVenience,:and.the symbol
‘5 now. refer's ‘to-the .change in the form of y‘at:the peint (x,T) rather than
merely at the point (x). - The final step we ‘take. is to make an independent. scale

. transformation at.every peint .in space, .and to cancel the effect .of this trans-

-formation we intreduce-a vector~field“bu(x,T),by a slight extension of the
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method of ‘Yang and Mills: VO

_We mote “that under the transformation
é'gg(x )

g = ¢
K> K= R 'y

(k)

;T:f;gU(X).,

. where g is a dimensionless-coupling constant,..the function. ¥(x).is transformed

as

'\I!(XJT)"—; W'«(X)T').= ‘II(XJT):‘ o T . ()4'5)
We introduce.a,new.field .bu(X,T), which transforms as

BT = B g Ymm blg ) 2D o)t (46)

'so that .bu(x,}) undergoes a gauge transformation during the. change of scale.

The infinitesimal form. of this equation .is

; ab.

-Sbu?;WMgTX-bM&T)=$§0&#&ﬁ)-8$0@ (47)

.Then to couple the field “buA.to the field V¥ , we must make the replacement

T - T L ey

".Thus we .have



=19~ . ~UCRL~-10445

B, - () g2 d () = {au &b () - 3.0) Bj’—} v
S0D m b W) e e e (19)

gde

,Equation. (49) follews from the fact that

SR GeT) = B (o). - 80,0 S5 (1)
| (50)

- and.the relation

coyi(rt) _oou(r)
or' or - °
AThese\:ope'ra';.,t‘;Lo%s‘ are -j_‘anal:égous" te'._ﬁhose "u‘sjed in . intreducing the e-m

‘field, 9 where -the. equivalent relations are

.-ieor(,x)‘:

¥ ye

J

A .~ A =~0.0. L : 51
Tt T ? (51)
‘and
"d ~d .- dieA ., ’
STANT

- In the .e-m.case-the field. A ;::ocbeys ‘the subsidiary éonditien - -

-au A* = o, , . (52)

IS

where [Do'=0, and. the relevant gauge-lnvarlant quantltyls
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%

P =aA -a A ,:"'. E : ,‘-,.‘: :_ 3 .i_.'
SR VIR RS ! .
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(53)

,For our -bu,.field,.the conditioh’aﬁbufé 0'iould give a.condition on. o which

would make o a.function of 7. However, we may choose the gauge-invariant

.condition
) i i p_ K .
LAt g bR St o)
i Lo T
and now o ‘may ‘be any function of x :satisfyiné:tﬁé,bonditions

i Oo=0..

' .The gauge-invariant. field tensor-is

D b , - Db .0
(VIR VU
The quantities-T, V, Dnbu, and’Fuv all. transform as

£(57) > £ (1) = £(x7).

b + g B b <Ly,
FIJ-V _\Bubv. - vau + g(bVB_’F - bu E: )

(54)

" (55)

- (56)

(57

,The quanfity;buaacquireSxan extra gradient -under the transformation} however,

when properly coupled,: ~via: Eq.- (48), -it. makes the Iagrangian transform according

. to Eq. (57). -The. action is given by

(58)
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and is invariant umer the transformation. It should be mentioned that the

. range of the variable 1 is from -® to +o, which follows from its definition
as #n g and from the fact that «k 1is intrinsically positive, both in its
original role as a wavelength and in its new role as the size of the length uni
We place on all fields that depend upon T the condition .that they vanish suffi-
ciently fast at 7 = ¥ w, Note~that-an important. difference between the bu.field
and the e-m field is that there is no 71. in the opefator 'Dﬁ, so that.it has

the same form when operating on both V¥ and'ﬁ’.

The field equationé are” of ‘the form

3, [5—(2‘%]+ 3%[5(&67%] ,-—f%j}‘—a =0, (u= w,%bv)..f o (59)

)

For the free~field lagrangian for bu,:we'choose

Ay R | |
Lo = (1/l+)er - (60)
which yields the field equations
p P -2g £ -0 | (61)

i

.(For gauge invariance the term bu must océur-only‘in.the operator Dp,.but

Bb”/aT ‘may appear.) In the presence of a Dirac :field -the lagrangian becomes
] .
e 1 = — 1 i =y =
- 1 - m—— . > — | Al 3 - 3 o
L =AW DV .+ 1] + 5% [{(Du\v)ﬁlv i) (62)

This Lagrangian leads to the equations
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db

#oy - § Sy ety -0,

7 g‘abvu 7 - | ‘ B

DHWY“’.E-&‘-.WYH-- iy = 0, . - : ; "'V (65)
ob

DHFW - 2g —+ o= ga’,

where . .
v _ 1 oy v, = v =
G—ﬁ[g; Yy -Vv7r %]. ‘ | (6h),'_

.The last equation of the Egs. (63) leads to. current conservation,
34Y -0 -’ L v F”"]+-a—Eab Y | (65)
v?f - ’Ca " o n . T )
The ordinary charge current,
M=vty, (66)
satisfies the equation

<M ) Mq : |
Bu.J -85, [bu yl=0, , (67)

which leads to current conservation when integrated over theinternai variable T:
aujj”d7=o. ' | (68)

Thus there are two conserved currents in the theory, fjp’d'r and %,p.
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The latter is a function of (x', ), whereas the former-is a function of the xM

alone, The other matter "current, " ,G.p', satisfies the equation

. . . . ab ) - ‘ . N
au‘ c* - g{% [bu.GH] - g'-sjr’-i. et =0, - (69)

which is equivalent to Eq. (65), so that jGudT is conserved only to lowest
.order in ‘g and thus plays the role.of al:l. "s1lmost conderved" current in the
theory. The.quantity .Gu.vanishes for a free Dirac -field (i.e., one uncoupled
to b}-i)o

Energy conservation takes the form
" T, ‘ .

where . '

__X
T, =) Mo/ Wxr (72)
and T‘;p','is the usual stress tensor. Thus, the.divergence..of the energy-

momentum. tensor -vanishes when integrated over -the internal coordinate-=that . is,
Bufd'r T, =0 L e . (72)

.For ‘use in.the next section, -we note that under-the transformation-

M M edy gk fixed, the varia,tion in the action, Eq. (58), is given by

BA fd xj’d-r[a (x'T H) + ga;‘(xy%)]m

fduxf dr Tu}'L do .

(73)
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V. - SCALING PROPERTIES -OF THE THEORY
In‘order to consider the scaling properties of the theory it will be
convenient for us to reintroduce the dimensional variables x and k, remembering’
that the theory of Section IV was formulated for-the ficld Wl(xl,n), defined |

by Eq. (39). This theory was formulated to be invariant under the transformation

(74)

where x and l/n both have the dimension of length, rather than invariant merély
under the tra,nsformation‘xH - xM ex, with k fixed.
Equation (42) can be used to determine the transformation properties of

Wl(xl,k)under‘the transformation (T74), as

\l;’l(xegc ke 8% e 8% = Wl(XK,K) ' (75)

or

vy et) = ) - . (76)

Equation (75) says that only k changes under the transformation (74) but not the
dimensionless variable X . .This of course is equivalent to Eq. (45), the
starting point of the theory (remémber that .in the last section, "x" stands for
xl"). |

We shall now compute what it is that is conserved under the transformation -
(7&). To do so, we must be a%are that the transformation of the fields, Eq. (47),

is not actually a gauge transformation, but rather a combination of a gauge and

a coordinate transformation, and it will be’impbrtant-to take into account the
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variation .of the boundary of the region;of.integration{,«Since the boun@ary does
vary, and also because:the fiejld‘bu multiplies a deqivative=g%‘iof the field ¥,

5_mustebe-slightly;extended, but .dees give .the correct

the formalism of Utiyama
result.

4We~note that;the deriva:tives-o'f\bu appear-only‘in.the combination Fpﬂ’
which.tre.nsformsas:Eqo (57), so that.for T *-T.;~g50'we.may write

T - _ -
F,=gbo——. - ‘ (77)

el

(1Y

.The only other appeeranceaofﬁthe field'b ;is in the. operator bA, so the explicit
.varlaLLOu Bb refers only to those terms of the Lagranglan Whlch couple b .te
the fields,. ¥, ¢ o. Flnally ‘we use the symbol u to collectlvely represent ¥ and
Jiﬂ and any;termlin‘S of the form. f(u) is to’be»lnterpreted as £(¥) + £(¥).

We now 1list all relevant. variations that are induced by the transformation

(T4):
: .8Xl =O e |
81.= -g 50,
gu..::'~%ulf g 50, ; ‘ . .. ..
: /N ou du : :
- Bo w =, - . ..0) : 8
: B uw=.(3, 5 ) g 80~ 58830, (78)
g% 82 g bo ”
2 J
o §
Bb
5' —g g foYo 5(3 0) 'y
- KV
5 =§§7- g 50 .
‘ ~ In these equations we have used the fact that .the operators 8 and Bu .commute.

A1l the fields listed undergo coordinate transformations.(i.e., T - 7'), and
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‘their variations are given by Eq. (5). Howéver, -the fields bg and Bpu also
undergo gauge transformations. The equation for & bu is just Eq. (47). -The

gauge part of the transformation of Buu is given by Egq. -(50),
(i) = 3w (r') = du(r) = -g Ls(do),
g " T o TV
-/
and the variation S(BQu) follows from Eg. (5).

If now the Lagrangian.is'cdnSidéred to be & function of all the parameters

on the left-hand sides-of Egs. (78), we may write

A2)

o e[ 33L e P
5?~"=85°["'r = m.—y u(?) v

afab . a;e BFI'W
u oT BFHVF or

- 8(0y9) [gs%%%‘i 3—] SR

'In Eq. (79), .the variations &¢ andAS(Buc) are assumed to be.taken independently.
Then, as was promised in.Section II, thé coefficient of'S(aﬁc) vanishes auto-

matically if the field bHAis coupled to ¢,$ via Eq. (48). The last term .is the -
s

-contribution from the variation of the boundary,” but vanishes because 8o is a

function of the xu

alone, which $hows the importance of taking the subsidiary
condition in the form of Eq. (5&), as was explained previously. .If we use the

-equation of motion, Eq. (59), to replace the term 9,{/0u, we arrive at
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(80)

‘Inserting the explicit form of ‘the Iagrangian, Eq. (62), inte Eq.. (80), we:find

_ . , 3 . W _ -
W o) i Woon 1., -OF KL :
5f =A80'[allG - 8§57 (qu) -g6G '—&'.- 5 Fuv >+ ﬂ]' g ‘ (81)

It happens that. the terms in ¢;$~iﬁ‘the-LagréngianivaniSh because:of the equations ;
of motion,.so that.the last.two terms.:of Eq. (81) cancel. .Then the .condition
8L = O:giVeé‘exactly;Eq.-(69), which.is. equivalent.to Eq. (65),‘buifu.é-0,
Thus we -see that.conservation. of the. current %}H arises by virtue.of the scale_
invariance .of the theory. A
o  Finally, we 'should . like-to pointvéut.that.the introductien.of an. internal
coordinate 'k . is exactly analégéas-to the introduction of the internal.coordinate
spin in thélcase of angular moméntum, In that case, one.no lenger requires the

.transformationnlaw
g¢ = &’1\)1; ovv"M‘, . . . . . . © (82) ‘

. where the operator ‘%l‘transforms the spatial cbordinates,,bdt.requires*rather
that A

where the operator: $ -is. independent of x but rearranges the internal. coeordi-

.nates.(k);‘~0ne-then derives. the conservation.law
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W

a2y [T - T ) w3 s o0, (BW
'}l.:: - u N : M

where the term in parentheses comes from.the operator 'L, and angular-momentum
“conserﬁationjcomés about..only by virfué‘bf'the<combinéafopérétion‘g;: L+ 8.
- In the case of the scale transformation, we have the transformation law

- (74) that states
. b W o . e ‘:. . .
v-5¢1~— 60~x48uwl; o T ¥y S (85)

.analogbusly,td Eq. (81): Then Eq. (85) corresponds-to a more general scale
trapsformation because .of the. internal coordinate. ' The first term corresponds
to the "orbital" part..of the transforuwation, and the;seéond,term‘corresponds to
- a rearrangement of the internal coordinates. .Now thevcoordinéte X .occurs only

" in. the dimensionless form 'xl’ and Eg. (85) can be broken into the form:
= - R Ry 4 oo B TR 3 TV
By = x Bx"(3/0%," )\1{1..+ x,t (a/axl,;)wl 1«80 5=V - D (86)

The variation under a scale transformation in x

1 is given by Eq. (73), so that

.we have

‘é oM =1 H(x ) B0+ BQKL5-~T Hx. )80 . A 8
O = M) - 1)) | ®7)
,In;qu (87). the first term comes from- the variation:in,k, and the second.term
~from.the variatien inf%KJ(orﬂé)Q*lThus;“inlexactly;ﬁhe:same»way as the total:J

: determineé-angular-momentum.ébﬁserVation; the "total.scale transformation™ (i.e.,

variation.of all dimensional coordinates xH ,and'K),;deter.min_es(conservation:of%}.l°
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Although.there is no eVidence.that-natureyhas any use,for'the<specifie
theory developed above, our maln p01nt is that the br1v1al appearance -of the
scale transformatlon in phy51os is. 1llnaory, and thab 1b can- be made 1nto a
powerful and ultlmately, perhaps; even usefnl tool |

We would llke to thank Dr Albert Flnn for readlng portlons of the manu-
. scrlpt, and Professor Geoffrey F Chew and Dr. Dav1d L. Judd for: the hospltallty

exterided :by the Lawrenoe-Radlatlon Laboratory.
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1.

,8“

A good summary of the usual treabments of the scale transformatlon can

‘be found in P.»LOWdln, J. Mol. Spectr é, L6 (1959), whlch also contains
a good blbllography on the subject.

The remarks on "external" invariance_cbnfained in this section ere
presumably known to everyone; however, they are particﬁlarly relevant
to the scale transformation and so are stated explicitly.

. See, for example, N. N. Bogoliuboev.and D. V. Shirkov, Intfoduction to

the Theory of Quantized Fields, (inferscience’Publishers,.Inc., New
York, .1959), .Sec. 2.5,
A discussion of such points is contained in the book, W. Thirring,

Principles of Quantum Electrodynamics (Academic Press, Inc., New York,

159). o

See R. Utiyama, . Phys. Rev. 101, 1597 (1'956)°

For particles in finite enclosures, the transformation of the boundaries
is very important. .However, we are considering thy,the‘case:inewhich
»\y(x), W (x) = O at the boundaries. | |

The method was introduced by C. N. Yang and R. L. Mllls, Phys. Rev. 96,
191 (1956), for the case of 1sotoplc spin, and extended to general Lie
groups by R. Utiyama; reference 5. The individual Lie groups are dis-
cussed by S. L. Glashow and M. Gell-Mann, Ann. Phys. 15, 437 (1961).
The present case is for a continuous parameter},T,_upon‘which’the new

field bu.may depeﬁd. ‘ - :

,éhe.methodhmay be~appliédgfortany*continubuSﬁparameterﬂandfdoes hot.depend

onathel. scalg: transformation.
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9. However, there is a rather subtle conceptual difference, which is

discussed in the next section,
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