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AN APPROXIMATE METHOD FOR SOLVING THE SOFA PROBLEM

Abstract

A procedure for the solution of the two-dimensional sofa

problem is described.  A new class of polygons, angularly simple poly-

gons, is defined as a class of permissible sofas.  The pattern represen-

tation  S (x )  developed for this class of polygons has the advantage'  r --0 '

of allowing easy polygonal transformations.  The procedure called GSPS,

described herein, gives a good approximate solution to the sofa problem

in reasonable time. Slight modification of the procedure leads to an

algorithm for the solution of the general sofa problem.

Index terms--sofa problem, hallway, objective function, polygonal

Jordan curve, polygon, angularly simple, pattern sequence.
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I.  INTRODUCTION

The sofa problem - determining the largest region (or sofa)

which can be moved through a two-dimensional hallway of width 1 (See

Figure 1) - was originally proposed by Leo Moser [11].  Some analytical

solutions for the sofa problem of Moser's hallway have been given by

Goldberg [5] and Hammersley and Sebastian [15].  These solutions by

Goldberg and Hammersley are illustrated in Figures 2 and 3, respectively.

To the author's knowledge, A/2 + 2/K is the known lower bound for Moser's

problem and the upper bound for the problem is given by Sebastian as

2/F, which is illustrated in Figure 4.

The lower bound sofa is that sofa which can be moved through

the hallway with continuous transformations, while the upper bound sofa

cannot be moved through the hallway.  That is to say that these sofas

bound the area size of the maximal achievable sofa for a given hallway.

A computer approach for the solution of Moser's hallway with

an objective function, here selected to be largest rectangle fdr a given

width w.<L,  has been studied by Howden  [61.    He used a chain representation

[4] for his rectangular sofa and his search strategy evoked straight-

forward exhaustive trials for a given width, w, of the rectangle.  By

increasing the length,   f,   of  his   sofa, he found what maximal rectangular

sofa could go through the hallway, where the theoretical upper bound,

4    , is given by 2(/F - w). Howden showed by his approach that 84% Of
max

the  bound, fmax' could be moved through the hallway.     He also pointed  out

that the accuracy is more dependent on the size of an unit translation,

X, than on the size of an unit rotation angle,6.

Howden's approach can be applied if the given objective function
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Figure 1.  Moser's Hallway (from [11])
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Figure 2.  A Solution By Goldberg:

the Lower Bound is 2.044
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specifies the generiW shape, e.g. the largest square, the widest rectangle

for a given length, the longest rectangle for a given width, etc.  However,

it cannot be applied if the objective function is the largest area sofa,     1

i.e. Moser's objective function, since the shape of the solution for such

a problem is unknown.  Accordingly the solution of the sofa problem with

Moser's objective function is, in general, non-trivial.

Our computer algorithm for the solution of a two-dimensional

sofa problem generalizes to a procedure for almost any hallway (or for

sequentially connected hallways called 'composite hallways') as well as

for almost any objective function.  However, the technique is especially

good for the sofa problem with Moser's objective function.  We introduce

a new class of sofas which will restrict the shape of sofas to angularly

simple polygons, yet will give a good approximate solution to the shape

of the sofa, the size of the sofa and the sequence of the transformations

required to move the sofa.through the given hallway, all computed within

a reasonable amount of time.

In Table I, we show analytical solutions for some hallways

with Moser's objective function and these hallways are illustrated in

Figure 5.  We show these lower and upper bounds for some hallways to get

some idea. of what size sofa can move through and what size cannot. It is

quite possible that someone may improve these bounds, but this is not the

purpose of this paper.
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Table I Analytical Solutions for Hallways

of Figure 5 With Moser's Objective Solution

'-         Bounds          ·A                        A                       A                        K                        Kr                                 R                u

-Hallways     -

Moser's Hallway 1 12 *72+2/A 2/F 7T/2+2/wof Figure 1

Inverse L and L
Hallway, Fig.       1 2/F-1 412 2/9-1 *12
54.a)

U-shape
Hallway, Fig. 1/4 2.381 2.324 3.03 2.96
5(b)

S-shape
Hallway, Fig. 7T/4 1.95 1.82 2.48 2.32
5(c)

Hallway of
Figure 5(d) 7T/4 1.82 A/2 2.32 2.00

A:  denotes area

A :  Maximum area which can go through
without rotation.

Au:  An upper bound of area with
rotation.

A :  A Lower bound of area with rotation.

K:  denotes ratio

Kr:  Ar/Ar = 1

.u.:      Au/  r

Kf:    A /Ar
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II. SEQUENTIAL REPRESENTATION OF SOFA

Let us first describe a class of sofas and then we will intro-

duce the representation of this class.

A polygonal Jordan curve, ¥, is a simple closed curve consist-

ing of a finite number of line segments.  Its inside region is called

the polygonal region or.polygon and is denoted by 07.  A polygonal

Jordan curve, Y (or a polygon Oy), with basic points Pi, i = 1, 2, ..., n,

is said to be angularly simple if there exists a point x  in Ry such that

the line segment between.xQ and pi does not intersect any edge of ny for

all i.  In other words, 0  is angularly simple if there exists an xQ in

Oy such that at x , Y is totally visible (See Figure 6).

Lemma 1:

Let Oy be an angularly simple polygon.  Let us also assume that

ny is angularly simple at xl and x6, xl 4 x6·  Then fly is angularly simple

at x8, where

x8   =    Wxl   +    (1    -w)][6        ,        0.   'S w   =<1.

In other words, Ry is totally visible at any point on the line segment

kO,x '

Proof:

Let us assume that there exists a point x8 on the line segment

xl,xl such that xQ does not define n  to be angularly simple.  Then by the
Y

definition of angular simplicity, the line segment xl,Pi,intersects at
least one edge of y for some i.  This implies that the line segment x .,xQ

intersects at least twice with edges  of y, abd since ·n   is  aRgidarly ·simple

at xl and x6 , this implies that the line segments x.,p. and xl;p.  have
U 1 U  1

no intersection with y except at Pi, for all i.  Let e  be an edge of T
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(a) An Angularly Simple Curve (b) A Curve That Is Not Angularly

Simple
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(c)  An Angularly Simple Polygon

Figure 6.  The Definition of a New Class of Objects
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which intersects xQ,x6 and let p  and p be two end points of e..
j+1                      J

Without loss of generality, let us assume that p  is contained in the

triangle of points xl, x0 and Pi.   Then it is clear that either xb,Pjtl '
or x' n intersects  an  edge  of  y. This implies  that at led'st  one  of0'   rj +1

x  or x6 does not define n  to be angularly simple, which is a contradiction.

Q.E.D.

Lemma  1  implies  that  if  0  is angularly simple at points  xi,

i = 1, 2, ..., m, then o is angularly simple at·anypoint which is the
Y

linear convex sum of the xi's, i.e. at

m m

E  wixi , where   E  wi = 1.i =1 i=1

Theorem 1:

Let n  be an angularly simple polygon.  Then the set of points
Y

which defines  n    to be angularly simple  is a convex  set.
Y

Proof:

Let us assume that such a' set is not convex. Then there exists

two  points,  x   and  x   in  the  set  such  that some points  on  the line segment

x ,x  are·not contained in the set.  Any such point is obviously defined

by the linear convex sum of x  and x . Since n is angularly simple at
Y

x  and x ' by our assumption, any point on such a line segment defines n 

to be angularly simple by Lemma 1, which is a contradiction.

Q.E.D.
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Hereafter we consider our class of sofas to be angular] y

simple polygons.  Other properties of the angularly simple polygons and

the generalization of angularly simple polygons to cover any polygonal
. '.

regions have been studied by Maruyama [9].

Sinde any angularly simple polygon, n , contains. a point
Y

(or a set of points) x  such that a vector from xd to a point on Y can

trace y in one direction, we can use such a vector sequence to.denote

angularly simple curkes as well.  Such a vector sequence is illustrated

in Figure 7, where the region covered by the vectors shows the polygon

and the curvature formed by connecting the tops of vectors indicates

the polygonal Jordan curve.  Let us define such a sequence as follows:

A pattern sequence, S, is an ordered set of elementary patterns,

S = s , sl' 32'  e'' si, ···, sn-1 siERm

where m denotes the dimension of the elementary patterns and n is called

the circularity of S.  To make S denote an unique polygon we assume that

any  two adj acent elementary patterns,   si   and  si+1'  have an angular

difference  of  2Tr/n. In practice, we choose  n248.     For our present  pur-

pose of describing Q , it is sufficient to consider that the dimension,
Y

m, of s. is one, since we assume that each s. denotes the distance between
1                                                  1

x  .andfthe intersection point of y and the vector whose direction corres-

ponds to 2#i/n, for i = 0, 1, 2, ..., n-1.

When we consider rotations and translations of a polygon

whose representation is in basic point coordinates (possibly with line

equalities), it is usually necessary to change the point coordinates

fand line equalities). However„a transformation of a. polygon which is
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(b)  A Pattern Sequence Correspondink to Polygon (a)

Figure 7.  An Angularly Simple·Polygon and Its Pattern Sequence
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denoted by a pattern sequence, S, is simple;

(i)  a franslation of an angularly simple polygon,,n , corres-
ponds simply  to a translation  of  xQ  of the pattern sequence,  S,   and

(ii)  a rotation of n  at x  corresponds to circular shifting

of indices of elementary patterns, i.e. it is adequate to consider the

rotation index, r, which will be defined later.

Before we define the rotational trans formation  of  S,  let  us

define the canonical pattern sequence.  A pattern sequence, S, is called

a canonical pattern sequence if the first elementary pattern corresponds

to the direction of the X-coordinate, and the ordering of the elementary

patterns corresponds to the counter-clockwise rotation of corresponding

vectors.  Henceforth, we assume that each pattern sequence is canonical.

This assigns the orientation of the corresponding polygon (without con-

fusion, we sometimes use polygon when refering to angularly simple polygons).

For the rotation of a pattern sequence, S, at a point xQ, it

is convenient to assume that the unit rotation angle, 6, is 2A/n (or possibly,

an integer multiple of 2A/n).  For example, if

S#xO) = s , sl' s2'   *' si, "'' sn-2, sn-1

then the clockwise rotation of S(x ) through 6 de8rees is given by

si, s2' I.I' si, ..., s     sn-1'  0

and the counter-clockwise rotation of S(xl) through 6 deAreed is glven by

sn-1, So, sl' ','' si,   ', sn-2'

We will define r to be the rotation index.  If r>0 S(x ) has been rotated

in a clockwise direction through an angle of r  degrees.  If r<0, S(x )
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has been rotated in a counter-clockwise direction through an angle of

r6 degrees.  Thus, in general, we have the following'expression for a

pattern sequence:

Sr(x ) = sr' sr+1' sr+2' "'' sr+i' "'' sr+n-1

if r+i<0 then r+i becomes  n+r+i

(r + i (mod n) for all i.)

Thus far we have described rotation of S(x ) around x .  Rotation

around any point is accomplished simply by the change of the rotation

index with an appropriate translation of xQ of S(x ).

To generate a sequence, S, for a specified xQ, we project a ray

starting from x  along each direction 2ti/n, for i = 0, 1, ..., n-1.

Then we measure the distance, si, by detecting the intersection between

the ray and an edge of the given hallway, if any intersection exists

within the distance V, called the visibility distance from xQ.  For the

representation of hallways we use the usual chain representation, i.e.

points and line segments are connected in such a way that the clockwise

sequence describes the free space as its right hand side.
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III. STRATEGY OF THE SOFA PROGRAM AND GSPS

The procedure for the solution of the arbitrary two-dimensional

sofa problem, which will- be.described,  is. intuitive.·' DIt;·is  as  sin*;La, as. bhe
"paper-cut" approach in which   one   takes a sufficiently large round paperl,

Sr(xo) (r and x  not important), and cuts away the minimum amount of paper

neces.sary to enable the paper to:move through the hallway. In other words

one trys to maximize the remaining paper area which can still go through

the hallway.

To get an idea of this procedure, let us consider an example which

is illustrated in Figure 8.  Two canonical pattern sequences, S (xl) and

SO(x2)' denote papers which are possibly maximal at locations x1 and x2'

respectively, where the circularity, n, is 24.

SO(xl) = s , sl' s2' 'o'' si, "", s23

SO(X2) = s6, st, s2, ..., s;, ...', s23

The paper, Sr(wxl + (1 -w)x2)' which can be located at both xl and x2 and

whose area becomes maximal, is obtained by intersecting the paper S (xl)

and the reoriented paper S3(x2) of SO(x2)' namely:

S-3(x2) = s'3' s'2' s'1' s6, ..., si-3, "'' s o

=  s l,   822 '   523 '   56,   . . . ,   Si-3 ' ...
, S20

= S „ 9„ 9" „ . 11 ,-4110' vl,v  2' s ' "''  i, "" ©23  '
li  The term "a paper" is uaed to reference a two-dimensional object which

may or may not go through a given hallway.  An edge trimmed paper which
can go through a given hallway is called a sofa for the given hallway.
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Thus

Sr(wxl + (1 - W)X2) = SO(xl) A S-3(x2)

min(si,si) for i = 0, 1, ..., 23

where ·w=O o r 1, and r=0 if w=l and
r=-3 if W=O.

Let us consider the case where the distance between x1 and x2'

denoted by d(xl'x2) = A  (where A is a unit translation distance), is

small and the circularity, n, of the pattern sequence is sufficiently

large.  Then both the unit rotation angle, 6, and the unit translation

distance, A, are sufficiently small.  Hence, application of such trans-

formations can be thought of as "continuous" transformations of S from

xl to x2.  So, in general, we have:

Sr(wxl + (1 - w)x2) = Sr (xl) A.Sr (x2)12

where        r l   -   r 2| · -3  1,   r  =   rlw   +   r2(1   -   J ) ,

d(xl'x2) = A and    0 -5 015 1.

The above intersection operation may be interpreted as "min" operation

and the following tree search strategy may be thought of as the "max"

operation.

Many studies have been done on both combinatorial and heuristic

search algorithms [2, 10, 12, 14, etc.], and a comprehensive survey of

them has most recently been done by Pohl [13].  While Howden [6] used a

straight-forward exhaustive search strategy for the solution of the sofa

problem by computer, we use the following heuristic tree search strategy.
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Our partial ternary tree (sometimes 5-ary is required depending

on the complexity of the given hallway) is developed to a depth of L

levels in the following way. Nodes are divided into two classes: active

and terminal.  Nodes coming from an active node are examined for bounding.

This stops further wasteful exploration by using the property that the

area of pBper is monotonically non-increasing (because of the intersection

operation which was defined above).  As soon as the paper area becomes

smaller than the bound B at a node vr' the tree exploration from such a

node is terminated.  Then the path from such a terminal node to the root

node is eliminated (or pruned) from the partial tree which is currently

being developed.  When the partial search tree is completed to L levels

by the repetition of the above generation and pruning, the paper will be

moved down in the tree until the paper encounters a node that leads to

more than two active nodes. It is possible that the paper cannot be moved

down in the tree by the above process. In such a case the paper will be

moved one level down the tree in such a way that the next node which has

been chosen leads to a better solution. If the developed L level partial

search tree has no active nodes to be explored in the next, then our procedure

will stop and we conclude that a "sofa" which is larger than the present

bound cannot be moved through the given hallway.

To expand an active node, v ' whose paper orientation is 6 r,
where 6 = 27T/n, we attach to v  three successor nodes, vr_1, vr and v'r+1
whose orientations correspond to rotation indices  r-1,  r  and r+1, respectively.

Here the distance between vr and any of vr-1, *r or v'   is the unit transla-
r+1

tion  distance   A.2     Thus  the  node  v;  of the rotation index r means simply  the

2  Some successor nodes can have only rotational transformations.
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unit translation X  of a paper at node vr in the direction 6r coupled with

the intersection operation.  The nodes v'   and v' indicate the unit
r-1 r+1

translation of the paper at vr in the directions 6(r-1) and 6(r+1), respec-

tively.  That is, the former contains the unit angle rotation of the paper

in the clockwise direction and the latter rotates the paper through the

unit angle in the counter-clockwise direction.  Thus by our approach, we

treat translation and rotation of a paper simultaneously.  This is the major

advantage of our representation of the paper.  (With a slight change of the

above strategy, one can deal with rotati6n independently.)

An example of a 4-level ternary search tree with bounding is

shown in·Figure 9.·· Those doubly circled nodes are terminal nodes and

others are Active nodes.  Those marked Ar(x  ) and A   (x  ) are actually17       r+2  19

active nodes for the expansion of the next search tree whose next root

node   will  be  Ar+1( x12) ' Figure 10 shows   the data structure   of   our   tree

search approach which corresponds to the example of Figure 9.

If the level of the partially developed tree is one, L = 1, then

the procedure discussed above is simple a "mini-max" strategy which turns

out to be strictly a local optimization. If L >1 then the procedure con-

tains some global optimization as well as local optimization.

We repeat the above L-level partial search tree generation and

pruning process until the paper reaches the other end of the given hallway.

(k)
Then the resulting paper, S , is stored as the present maximal "sofa"

for the given problem as well as the new bound B .  A slightly larger
(kO

(k)   ,(k)paper than S ,S , is fed into the hallway next and the paper-cut

process is repeated unless there is no gain of the sofa obtained since the

previous iteration.  Because we use a heuristic search strategy rather than

an exhaustive type strategy, the iteration of the paper-cut process as well
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those Doubly Circled Nodes are Terminal Nodes

and Others are Active Nodes
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to the partial search tree of Fig. 9).
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Figure 11.  A Simplified Flow Chart of GSPS
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as the incrementation of the obtained sofa for the next iteration become

3
quite important in finding an optimal trajectory.

From the above argument, we have the simplified flow chart of

GSPS4 (General Sofa Problem Solver) which is illustrated in Figure 11.

The following is a description of the flow chart.

Initialization of the Pattern Sequence (or Paper)

We can choose any one of the following starting papers:

(i)  A sufficiently large sofa.

(ii)  The lower or the upper bound sofa.

(iii)  A sofa which can go through the given hallway without
rotation (this can be found easily).

(iv)  A sufficiently small sofa.

Of course the number of iterations required for the convergence to the

solution by GSPS depends upon which of the papers we choose as the initial

paper, upon the initial bound for the sofa area, and upon the means to

increment the sofa for the next iteration (this will be discussed next).

To reduce the number of iterations, it is preferable to choose a smaller,

lower bound sofa as an initial paper, if such a shape of the bound sofa is

easily estimatable.

3.  An optimal trajectory T is described by a sequence of pairs of elements,
x and r:

T = (xil'ril)' "'' Cxim'rim)
Or it. is aetermined by a pair of sequences of x and r.

4.  GsPS will find both an optimal trajectory (or path) and an optimal

shape of a sofa.  However, if a trajectory is given, then GSPS will
find an optimal shape of a sofa for a given hallway.
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Incrementation of Sofa

Let us assume that after the k-th iteration we have a pattern

sequence:

S(k) = s(k), ..., s(k),0.., s(k)

(k)whose area is denoted by A   :

A(k) = sin(2A/n) • (s(k)s(k) +   2 s(k)s(k)) /2  .
n-1   i=o  i   i+1

Then the paper which will be provided for the lk+1)st iteration is the one

(k)whose area is slightly larger that A For duch an incrementation of

the sofa, we may consider the following approaches.

(i)  Equi-increment:

si( ) + s(k) + E , for all i (6 small).

(ii)  Isomorphic-increment:

s:lk) +c· s k), for alI i, c >1.

liii)  Differential-increment:

s k) + s(k) + c(s(k) - s(k-1)), for all i, 0 < c 61.

One may consider some other incrementation approaches as well as the mixed

aPRroaches   of the above three.      If  we   know the lower bound   sofa   and   if  we

have chosen our starting paper relatively far from the bound sofa, then it

seems that the best incrementation approach is to consider the difference

between the lower bound sofa and the present paper.  However, if the lower

bound sofa is unknown or not accurately estimatable, then this approach.
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be used.  We will see that any one of the above three can be used satis-

factorily, and we will also consider the combination of the above three,

namely:

s,lk) + s(k) s(k-1) + Ei       i  (1+Cl)-%i

For the new bound B of the (k+1)st tree search interation, the present
(k)

Alk)  which is not incremented, is used.

Paper-cut Method

We apply the following conjecture for our paper-cut process.  If

the given hallway is symmetric, then the solution for the sofa problem

with Moser's objective·function, i.e. the maximal region which can go

through the hallway, is also symmetric.  This conjecture gives us a little

gimmic to simplify our GSPS and makes it easier to implement as well as

enabling a faster convergence of the solution.
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IV. SOME COMPUTATIONAL RESULTS

Solutions for those hallways which are illustrated in Figure 5,

as well as a solution to Moser's hallway of Figure 1, by GSPS are illus-

trated in Figures 12 through 16.  Since the solutions for the sofa  roblems

with Moser's objective function are non-trivial, it may be preferable to

indicate the obtained solution as the ratio between the solution area, A,

and A , the sofa area which can go through the given hallway without anr

application of any rotational transformation (this·is also the obtained

area).

Table II shows the solutions (the unit translation, A, and the.

unit rotation 6 = 2A/n) for Moser's sofa problem using Mini-Max strategy

(L = 1). The table shows that the larger n is, the larger A we get; ·this

agrees with our intuitive knowledge since with larger n we get a more accurate

representation of angularly simple polygons by a pattern sequence, especially

if some elementary patterns are hugm. .Also.for larger A we get larger A.

This result seems to contradict Howden's statement ([6] p. 300): "indicating

that accuracy (of approximately three units) is more dependent on  x, the

fineness G, than on the size of 60". However, Howden's method and ours are

quite different - the sofa will be operated on in such a way so that it

can move through the given hallway and will therefore have less constraints

from the hallway for larger X.  Of course A should be less than a certain

amount, e.g. 8/20, otherwise the translation of the sofa becomes'so discrete

that a solution by our GSPS does not make sense.

After testing our GSPS for different L 2-1,w e found that L=4 i s

enough for iterating  the paper-cut prpcess.  Thus we set L = 4, n = 48, and

A = 1/10.

A solution for Moser's sofa problem with an equi-incrementation of·
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Table II. Results Obtained by Mini-Max Strategy

For Moser's Sofa Problem

n             24              48
X

1/20 1.1 1.38

2/20 1.35 1.61

4/20 1.38 1.73

6/20 1.75 1.86

X: Unit translation distance

n:  Circularity (the number of
elementary patterns).  Thus
the unit rotation angle is
6 = 2f/n.

K:  Computer area/Ar ' Ar = 1

Upper bound = 2.828

Lower bound = 2.207
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feed-back for the sofa is shown in Figure 12.  Figure 12(a) shows the

shape of the sofa after the first iteration. A = 1.88 which is about(1)

85% of the lower bound, A& = Tr/2 + 2/A, indicated in Table' I. After the

4th iteration, the sofa is about 90% of Ay, which is a good approximate

solution for the given problem.  Figure 13 shows the solution for the

<3)  (3)
hallway of Figure 5(a).  After the 3rd iteration we get A =K = 1.27 -·

81% of the lower bound, Aj = 1/2.  A solution for the hallway of Figure

5(b) is illustrated is Figure 14, and we get about 95% of the lower bound

A# = 2.324 (2.8 times the area of the sofa which can go through the hallway

without rotation).  From these results we may conclude that for a smooth

hallway GSPS works very well.  Figure 15 shows the solution for the hall-

way of Figure 5(c) in which we achieved 88% of the lower bound, Af = .1.82.
Figure 16 shows the solution for the hallwai of Figure 5(d) whose lower

bound is Ap = 7r/2, and we get 77% of the lower bound. This percentage

sounds low, but it is fairly good considering the severe constraints.

The shape is, still, quite similar to the lower bound sofa which consists

of two connected'circles.

Solutions for the sofa problems in Figures 5(e) and (f) are not

illustrated since their solutions are quite similar to those of Figures

12  and 13, respectively. The ratio between  the area obtained  and  the  sofa

which can move through the hallway without rotational transformations are

different, as are the areas.

From these solutions we conclude that GSPS gives a fairly good

approximate solution for two-dimensional sofa problems (including an

optimal trajectory for such a sofa) with Moser's objective function in a

reasonable amount of time.  The average run time for a single hallway is

10 to 15 seconds per iteration and about 1.5 times this for a doubly
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connected hallway.  The procedure was written in PL/1 language and

implemented on an IBM 360/75 at the University of Illinois.
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(a)  After the First Iteration

A(1) = K(1) = 1.88

\

(b)  After the Fourth Iteration

A(4) = K(4) = 1.98

Figure 12. A Solution for Moser's Sofa Problem

With Moser's Objective Function By GSPS

Equi-Increment
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Figure 13  A Solution for the Hallway of Figure 5(a)

With Moser's Objective Function By GSPS;
(3)  (3)After the Third Iteration A =K = 1.27.

Isomorphic Increment
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*

(a) After the First Lteration

A(1)          (1)= 2.09, K = 2.66

il

(b)  After the Second Iteration                   

A(2) = 2.2, K(2) = 2.8

Figure 14.  A Solution for the Hallway of Figure 5(b)

With Moser's Objective Function By GSPS

Mixed (Equi-Isomorphic) Increment
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+

(a) After the First Iteration
(1)          (1)

A    = 1.57, K = 2.0

(b)  After the Second Iteration
(2)          (2)

A    =1.60, K = 2.03

Figure 15.  A Solution for the Hallway of Figure 5(c)

With Moser's Objective Function By GSPS

Differential Increment
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»lie
(a)  After the First Iteration

(1)          (1)
A    = 0.97, K = 1.23

I

(b)  After the Third Iteration
(3)          (3)

A    = 1.21, K = 1.54

Figure 16.  A Solution for the Hallway of Figure 5(b)

With Moser's Objective Function By GSPS

Mixed (Equi-Isomorphic) Increment
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V. CONCLUSION

By restricting the class of sofas to a class of angularly simple

polygans,  we have developed the most easily transformable representation

of such a polygon, called a sequential pattern sequence.  However, as we

have pointed out, the restriction of objects to a class of angalarly

simple polygons is the strongest restriction and such a polygon may not

represent exactly a solution for some sofa problems.  Still, the shapes

of the sofas obtained are quite similar to those of the lower bound sofas

found analytically.

Through the restriction of sofas to angularly simple polygons

and the heuristic tree search strategy which is applied by the character

of non-increasing sofas,  we have developed the two-dimensional sofa prow

blem solver, GSPS.  As we can see from our computation examples, the

system   is fast enough  to   give   us "good" approximate,   or near optimal,

solutions for the sofa problem.  A little modification of GSPS leads to

the most generalized sofa problem solver, with not only Moser's objective

function but with some other predefined objective function, such as

Howden's objective function.

The idea of angularly simple polygons and their representation

leads us not only to the computer solution of the sofa problem but also

to the solution of the two-dimensional hiden line problem, the path

finding problem [8] in a geometrically constrained space with limited

sight, the dynamic sofa problem l 9 ], and form perception in psychology

[1], among others.  We feel positive that there are more applications of

this  ·class of·· objects  as  well as applications  of the generalized angularly

simple polygons [9] with a combination of artificial intelligence.  Finally,

we   feel that "analog" approaches rather than numeric al approaches for solving

problems gives some clues to solving other problems by computer.
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