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AN APPROXIMATE METHOD FOR SOLVING THE SOFA PROBLEM

Abstract

A procedure for the solution of the two-dimensional sofa
problem is described. A new class of polygons, angularly simple poly-
gons, is defined as a class of permissible sofas., The pattern represen-
tation, Sr(xo), developed for this class of polygons has the advantage
of allowing easy polygonal transformations. The procedure callea GSPS,
described herein, gives a good approximate solution to the sofa problem
in reasonable time. Slight modificationAof the procedure leads to an

algorithm for the solution of the general sofa problem.

Index terms--sofa problem, hallway, objective function, polygonal -

Jordan curve, polygon, angularly simple, pattern sequence.
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I. INTRODUCTION

The sofs problem — determining the largest region (or sofa)

which can be moved through a two-dimensional hallway of width 1 (See
Figure 1) - was originally proposed by Leo Moser [11]. Some snalytical
solutions for the sofa problem of Moser's hallway have been given by
Goldberg [5] and Hammersley and Sebastian [15]. These solutions by
Goldberg and Hammersley are illustrated in Figures 2 and 3, resﬁectively.
problem and the‘upper'bound for the proﬁlem is given by Sebastian as
2/2, which is illustrated in Figure L. |

The lower bound sofa is that sofa which can be mqved through
the hallway with continuous transformations, while the upper bound ‘sofa
cennot be moved through the hallway. That is to say that these sofas
bound the area size of the maximal achieyable sofa. for a given hallway.

A computer approach for the solution of Moser's hallway with

an objective function, here selected to be largest rectangle for a given

width w<l, has been studied by Howden [6]. He used a chain representation
[4] for his rectangular sofa and his search strategy evoked straight-
forward exhaustive trials for a given width, w, of the rectangle. By
increasing the length, {, of his sofa, he found what maximal rectangulsar
sofa could go through the hallway, where the theoretical upper bound, .
 gmax’ is given by 2(/2 - w). Hdwden showed by his approach that 8L4% of
the bound,_jﬁax, could be moved through the hallway. He also pointed ou%
that the accuracy is more dependent on the size of an unit translation,.

A, than on the size of an unit rotation angle,§.

Howden's approach can be applied if the given objective function
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specifigs the gemeri¢ shape, e.g. the largest square, the widest rectangle
for a given length, the longest rectangle for a given width, etc. However,
it cannot be applied if the objective function is the largegt aregs sofa,
i.e, Moser's objective function,.since the shape of the solution for such
a problem is unknown. Accordingly the solution of the sofa problem with
Moser's objective fuhctipn is, in general,'non-trivial.

Our éomputer algorithm for the solutioﬁ‘of a two-dimensional
sofa problem~generalizes to a procedure for almést any hallway (or for ‘
sequentially connected hallwayS'called 'composite hallways') as well as
for almost any objective fuﬁétiéh. However, the technique is especially
ééod for the sofa problem with Moser's obJective function. We introduce
a new class of sofas which will restrict the shape of sofas to angularly

simple polygons, yet will give a good approximate solution to the shape

of the sofa, the size of the sofa and the sequence of the traﬁsformations
required to move the sofa'fhrough the given hallway, all computed within
a reéspnable amounﬁ of time, |

In Table I, we show analytical solutions for some hallways
with Mosef's objective function and these hallways are illustrated in
Figure 5. We show these lower and upper bounds for some hallwasys to get
some ideaiof what'size sofa can move through and what size cannot. ‘It is
quite possible that somedne may improve these boﬁnds, but this is not the

purpose of this paper.



Table I  Analytical Solutions for Hallways : .

of Figure 5 With Moser's Objective Soiution

‘\\\\\\\\\ Bounds ‘Ar A A, _ Ku E(

-Hdllwayg ..............................

Moser's Hallway - .
of Figure 1. | . 1 ¥2 12242 /1 2/2 n/2+2/n

Inverse L and L —
Hallway, Fig. 1 2/2-1" ¥ 42 ¥2-1 1/2
5§a) '

U~shape : : .
Hallway, Fig. /b 2.381 2.324 3.03 2.96
5(v)

S—shape ‘
Hallway, Fig. /b ©1.95 . 1.82 2.48 2.32
5(c)

Hallway of '
Figure 5(d) "/? 1.82 n/2 2,32 2.oo.

" A: denotes area

Af: Maximum area which can go through
without rotation.

>Au: An upper bound of area with
rotation.

41: A Lower bound of area with rotation.

K: déqotes ratio
K : Ar/Ar =1

r
K Au/Ar ,
Kf: A /Ar
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II. SEQUENTIAL REPRESENTATION OF SOFA

Let us first describe a class of sofas and then we will ihtro—
duce the representation of this class.

A polygonél Jordan curve, ¥, is a simple closed curve consist-

ing of a finite number of line segments. Its inside region is called
the polygonal region or .polygon and is denoted by Qy A polygonal

Jordan curve, Y (or a polygon QY)’ with basic points p;, 1 =1, 2, ..., B,

is said to be angularly simple if there exists & point X, in QY such that

the line segﬁent between x, and pi does not intersect any edge of QY for

0

all i, In other words, £, is angularly simplé'if there exists an Xq in

Y

£ such that at x

Y o ¥ is'tota;ly visible (See Figure 6).

Lemma 1:

Let QY be an angularly simple polygon. Let us also assume that

QY is angularly simple at X, and xé, xd # xé. Then QY is angularly simple

at x", where

0°
o X'C; = .QX‘O_"' (1 - w)?cé , 0 2w =x1,

In other wordé, N is totally visible at any point on the line Segment

Xo,xé, .

Proof:

Let us assume that there exists a point Xy

on the line segment

xo,xé such that xg does not define QY to be angularly simple.. Then by the

definition of angular sinmplicity, the line segment xg,pi,intersects at

least one edge of y for some i. This implies that the line segment xo,xé
intersects at least twice with edges of vy, and sincefQY is aggu¥arly 'simple
0 0 °

at x. and x! this implies that the line segments XqsP; and xé;pi have

no intersection with y except at P;> for all i. Let e, be an edge of :T

J
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(a) An Angularly Siﬁple Curve (b) A Curve That Is Not Angularly
Simple

(¢) An Angularly Simple Polygon

Figure 6. The Definition of a New Class of Objects
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vwhlch intersects X5 and let pj‘and pJ+1 be two epd p01n§s of ej.
Without loss of generality, let us assume that pj is contained in the

. s ' sy . .
triangle of points Xgs X, and Pse Then it is clear that either xo,pj+l
or'xé, pj+l' intersects an edge of y. This implies that at lesst one of
Xy OF xé does not defirne QY to be angularly simple, which is a contradiction.

" Q.E.D.

Lemma 1 implies that if QY is.angularly simple at points Xss

i=1,2, ¢eey m, then QY is angularly simpie at -any point which is the

linear convex sum of the xiﬁs, i.e. at

Theorem 1:
Let QY be an angularly simple polygon. Then the set of points

which defines QY to be angularly simple is a convex set.

Proof: A ' -
Let us assume that such a set is not convex. Then there exists'

two points, xj and X in the set such that some points on the line segment

xj,xk are not contained in the set. Any such point is obviously defined’
by the linear convex sum of x'j and ik."Since QY is apgularly simple at
xj and Xy by our gssumption, ény point on such a line segment defines Q
to be angularly simple by Leﬁma 1, which is a contradiction.

Q.E.D.
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Hereafter we consider our class of sofas to be angularly

éimple polygons. Other properties of the angularly simple polygons and

the generalization of angularly simple pdlygons_;o cover any polygonal

regions have beeﬁ studied by Maruyam;4[9]. - |
Since any angular;y simple éolygon, QY,'coﬁtainsAa point

(or a set of points) x

0

trace y in one direction, we can use such a vector sequence to -denote

such that a vector from X5 to a point on y can

angularly simple cuses as well. Such a vector éequence is illustrated
in Figure T, where the region covered by the vectors shows the polygon
and the curvature formed by connecting the tops of vectors indicates
the polygonal Jordan curve. Let us define such a sequence as follows:

A pattern sequence, S, is an ordered set of elementary patterns,

- - m
S - SO, Sl, 52', LIRS Si, LRC Y Sn—l SieR

where m denotes the dimension of the elementary patterns and n is called
the circularity of S. To make S denote an unique polygon we assume that

any two adjacent elementary patterns, s and s, have an angular

i+l1?
difference of 2r/n. In practice, we choose n;}S. For our present pur-
pose of déscribing QY, it is sufficient to consider that th¢ dimension,
m, of S5 is one, since we assume that each s denotes ﬁhe distance between
xo.andfthe intersectipn point of y and the vector whose'directian corres-
ponds to 2¢i/n, for i = 0, 1, 2, ...; n-l.

wﬁen we consider rotations ﬁnd_franslations of a polygon
Whoséwfeéreséntaﬁiﬁn is in basié point!coor&inates (possibl& with line
equalitiés), it is ﬁsu;lly‘necessary té chﬁnge the point coordinates

(and line. equalities).. However,,a transformation of a polygon which is




(a) An Angularly Simple Polygon

1

(b) A Pattern Sequence Corresponding to Polygon (a) -

Figure 7. An Angularly Simple Polygon and Its Pattern Sequence
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denoted_bx 8 pattern sequence, S{ is simple;

(i) a translation of an angularly simple'polygon,,QY,.corres_
ponds simply to a translation of Xq of the pattern sequence, S, and

(ii) & rotation of QY at x, corresponds to circular shifting
of indices of elementary patterns,_i.e. it is adequate to consider the

rotation index, r, which will be defined later.

Before we define the rotational transformation of S, let us
&efine the canonical patfern sequence. A pattern sequence, S, is called
a canonical pattern sequence if the first elementary pattern corresponds
to the direction of the X-coordinate, and the ordering of the elementary
patterns corresponds to the counter-clockw1se rotation of corresponding
vectors. Henceforth, we assume that each pattern sequence is canonical.
' Thls assigns the orientation of the correspondlng polygon (w1thout con-
fusion, We-sometlmes use polygon when refering to angularly simple polygons).
‘ Forlthe rotation of a pattern sequence, S, at a point Xgo it
:1s conven1ent to assume that the unit rotation angle, 6, is 2x/n (or possibly,

an 1nteger multiple of 2¢/n). For example, if

Skxo) = 83> 515 Sps eees Sia eees S 55 S o

then the clockwise rotation of S(xo) through § degrees is given by

sl’ 82’ o0 ¢ 9 si, ®* 0y sn-l’ SO

and the counter-clockwise rotation of S(xo) through § degrees is given by

®n-12 50> S12 cevs S5a eees Sy o

We will define r to be the rotation index. If r>0 S(xo) has been rotated

in a clockwise direction through an angle of r degrees. If r<0, S(xo)
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hag been rotated in a counter-clockwise direction through‘an angle of
rs degrees. Thus, in general, we have the following expression for a

pattern sequence:

S (x = s s s eses S ,.3. .03 S
r( O) r® Tr+l? Tr+2° > Crei? > "r+n-1

if r +.i <O then r + i becomes n + r + i

(r + i (mod n) for all i.)

Thus far we have described rotation of S(xo) around x,. Rotation
around any point is accomplishea simply by the_change of the rotation
index with an appropriate traﬁslation of x, of S(xo).‘ "

To generaﬁe a sequence, S, for a specified Xqs Ve project.a ray

starting from x. along each direction 2mi/n, for i = 0, 1, «.., n-1.

0
Then we measure the distance, S5 by detecting the intersecﬁion between
the ray and an edge of the givep hallway, if.any intersection exists
within thé distance V, called the visibility‘Aisténce from xo. Fof the
representation of hailways we use the usual chain representétioﬁ, i.e,

points and line segments are connected in such a way that the clockwise .

sequence describes the free space as its right hand side.
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III. STRATEGY OF THE SOFA PROGRAM AND GSPS

The procedure for the solution of the arbitrary two-dimensional
sofa problem, which will be described, is intuitive. It is as simpleé-as’bhe
?

"paper-cut" approach in which one takes a sufficiently large round pa.perl

Sr(xo) (r‘énd X, not important), and cuts aﬁay ﬁhé minimum mount of paper
) nécesséry,to enable the paper to:move through the hallway. 'in other words
one trys to maximize the remaining paper area which can still go through
- the hallway.
A To get an idea of this proceduré, let us consider an example which
is illﬁstrated in Figure 8. Two canonical pattern sequences, So(xl) and
SO(X2)’ denote papers which a?e possibly maximal at locations Xy and X5

respectively, where the circularity, n, is 24,

o l) T Sgs 515 Sps eees Sis eess Spg

' ' 1 ' .
o' ¥s: SO’ sl, 52’..'.’ si, ey 823

92}
—~
>
~
i}

The paper, Sr(mx + (1 -w)x,), which can be located at both x. and x. and

1 2 1 2
whose area becomes maximal, is obtained by intersecting the paper So(xl)
and the reoriented paper §3(x2) of So(xg)’ namely:

= a! ' ' ' ' '
S_3(x2) sl3s 8lps 8175 805 «ves 81 2y wuey 81,

1 ]

] t ) 1)
$51% Soo» S533 803 e Si_3% *e*s Spg

" 1" 1" n n 1"
S S S oo S, vee S .
O’ l,’ 2" 39 E] 13 ’ 23 .

S

1. The term "a paper" is used to reference a two-dimensional object which
may or may not go through a given hallway. An edge trimmed paper which
can go through a given hallway is called a sofa for the given hallway.
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(5)  Solwxy+(1-W)xp) = Solx) N S_3(xs)

Figure 8. Sofas at Point x, and x, and

Their Intersection, SO (wxl + (1 —~m)x2)
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Thus

Sr(wxl + (1 - w)xg) = So(xl) N 8-3(x2)

= min(si,sg) fori=0,1, ..., 23

where w = 0 or 1, and r=0 if =1 and
r=-3 if @=0.

Let us consider the case where the distance between xl and X5
denoted by d(xl,xg) = A (where X is a unit translation distance), is
small and the circularity, n, of the pattern sequence is sufficiently
large. Then both the unit rotation angle, §, and the unit translation
distance, ), are sufficiently'small. Hence, application of such trans-
formations can be thought of as "continuous" transformations of S from
X, to x,. So, in general, we have:

1 2

Sr(wxl + (1 - w)X2 =5, (x VW.Sr (x2)

a(xl %)

= X and 0 <w<l1.

The above intersection operation may be interpreted as "min" operation
and the following tree search strategy may be thought of as the "max"
operation.

Many studies have been done on both combinatorial and heuristic_
search algorithms [2, 10, 12, 1k, etc.], and a comprehensive survey of
them has most recently been done by Pohl [13]. While Howden [6] used a
straight-forward exhaustive search strategy for the solution of the sofa

problem by computer, we use the following heuristic tree search strategy.
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Our partial ternary tree (sometimes s-ary is required depending
on the complexity of the given hallway) is developed to a depth 6f L
levels in the following way. Nodes are divided into two classes: active
and terminal. Nodes coming from an acfive node are examined f§r bounding.
This stops further-wastefui expioration by usihg the property that the
area of paper is monotonically non-increasing (because of the intersection
operation which wés defined above). As soon és the paper area becomes
smaller than the bound B at a node Vs the tree exploration from such a
node is terminated. Then the pafh from such a terminal node to the root
node is eliminated (or pruned) from the partial tree which/is currently
being developed. When the partial search tree is completed to L levels
by the repetition of the above generatioh and pruning, the paper will be
moved down in the tree until the paper encounters a node that leads to
more than two active nodes. It is possible that the paper cannot be moved
down in the tree by the above process. In such évcase.the paper will be
moved one level down the tree in such a way that the next node which has
been chosen leads to a better solution. If the developed L level partial
search tree has no active nodes to be explored in the next, then our ﬁrocedure
will stop and we conclude that a "sofa" which is larger than the present
bound caﬁnot be moved through the given hallway.

To expand an act;ve node, Vs whose paper orientation is Sr,
whgre § = 2n/n, we attach to V. three successor ﬁodes, v;_l, V; and v;;l
whose orientations correspond to rotation indices r-l, r and r+l, respectively.
Here the distance between V. and any of v! ¥!' or v! is the unit transla-

r-1° 'r r+l

tion distance A.z Thus the node v; of the rotation index r means simply the

2 Some successor nodes can have only rotational transformations.



unit translation A of a paper at node Ve in the direction 6r coupled with

the intersection opération. The nodes v;_l and v;+l indicate the uqit
translation of the paper at v_ in the directions 6(r-1) and §(r+l), respec-
tively. That is, the former contains the unit angle fotation of the paper
in the clockwise direction and the latter rotates the.paper_through the
unit angle in the counter-clockwise direction. . Thus by our_approach, we
treat translation and rotation of a paper simultaneously. This is the major
advantage of our representation of the paper. (With a slight. change of the
above strategy, one can deal with rotation independently. )

An example of a L-level ternary search tree with bounding is
shown in-Figu;e 9, Those doubly circled nodes are terminal nodes and

(

xlg)lare actually

active nodes for the expansion of the next search tree whose next root

others are active nodes. Those marked Ar(XIT) and A,

node will be A + ). TFigure 10 shows the data structure of our tree

r+1%12
search approach ﬁhich corresponds to the example of Figure 9.

If the le&el of the partially developed tree is one, L = 1, then
the procedﬁre discussed above is simplé a "mini-max" strategy which turns
oﬁt to be'sfrictly a‘local optimization. If L >1 then theAprocedure con-—
tains some global optimization as well as local optimization.

We repeat the above L-level partial search tree generation and
pruning process until the paper reaches the other end of the given hallway.

(k)

Then the resulting paper, S' ', is stored as the present maximal "sofa"

for the given problem as weli as the new bound B<k). A slightly larger

(k) S.(k)

paper than S , is fed into the hallway next and the paper~cut
process is repeated unless there is no gain of the sofa obtained since the
previous iteration. Because we use a heuristic search strategy rather than

an exhaustive type strategy, the iteration of the paper-cut process as well
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N

Figure 10. Double Linked List Used for the
Search Strategy (the state corresponds
to the partial search tree of Fig. 9).
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A and S
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Terminate
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Figure 11. A Simplified Flow Chart of GSPS
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as the incpementation of the obtained sofa for the next:ifefa£ion become
quité important in finding an éptimal trza.,jectory.‘3

From the gbove argument, we have the simplified'flow chart of
GSPSu (6eneral Sofa Problem Soiver) which is illustrated in Figure 1l.

The following is a description of the flow chart.

Initialization of the Pattern Sequence (or Paper)

We can choose any one of the following starting papers:
(i) A sufficiently large sofa.
(ii) The lower -or the upper bound sofa.

(iii) A sofa which can go through the glven hallway w1thout
rotation (this can be found easily).’

(iv) A sufficiently small sofa.
Of course the number of iterations required for the‘convergence to the
solution by GSPS depends upon which of the papers we choose as the initial
paper, upon the initial bound for the sofa area,.and upon the means to
inerement the sofa for the next iteration (this will be discussed next).
To reduce the number of iterations, it is preferable to choose a smaller,
lower bound sofa as an initial paper, if such a shape of the bound sofa is

easily estimatable,

3. An optimal trajectory T is described by a sequence of pairs of elements,

X and r:
T = (X, 5T, )5 eees tX. ,r. )
100 ‘m tm
Or it is determined by a pair of sequences of x and r.

L. GSPS will find both an optimal trajectory (or path) and an optimal
shape of a sofa. However, if a trajectory is given, then GSPS will
find an optimal shape of a sofa for a given hallway.
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Incrementation of Sofa

Let us éssﬁme that after the k-th iteration we have a pattern

sequence:

(k) (k)
Sy seers S, 3

$() L 406,

whose area is denoted by A(k):

n-2 '
A < sinGerm) {5 75 o) /2

Then the.paper which will be proﬁidéd for the (k+1)st iteration is the one
whose area is slightly larger that A(k). For sSuch an incremeﬁtation of
thé sofa, we may consider tﬁe‘following approaches.

(i) Equi-increment: ) .

(k) < sik) + ¢ » for all i (e small).

sl
1

(ii) Isomorphic-increment:

si(k) “~ C sék), for all i, ¢ >1.

(iiif Differential-increment:

k) (k-1)

s‘k) « ssk) + ¢f s, ), for all i, 0< ¢ < 1.
i i =

1 1

One may consider some other incrementation approaches as well as the mixed
approaches of the above three. If we know the lower bound sofa and if we
have chosen our starting paper relatively far from the bound sofa, then it
seems that the-best incrementation approach is to consider the difference
betweeﬁ thé-iower bound sofa and the present paper. However, if theAlower

'bound sofa is unknown or not accurately estimatable, then this approach
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be used. We will see that any one of the above three can be used satis-
factorily, and we will also consider the combination of the above three,

namely:

si(k) <« sik)kl + cl) N + e .

(k)

For the new bound B! of the (k+1l)st tree search interation, the present

(k)

A » Which is not incremented, is used.

Paperfcut‘Method

We apply the following conjecture foerur paper-cut process., If
the given hallway is symmetric, then the solution for the sofa problem
with Moser's objéctive-function, i.,e. the maximal region which can go
through the hallway, is also symmetric. This conjecture gives us a little
gimmic to simplify our GSPS and makes it easier to implement as well as

enabling a faster convergence of the solution.
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IV. SOME COMPUTATIONAL RESULTS

Solutions for those hallways which are illustrated in Figure 5,
as well as a solution to Moser's hallwasy of Figure 1, by GSPS are illus-
trated in Figures 12 through 16. Since the solutions for the sofa problems
with Moser's objective function areAnon-trivial, it mey be preferable to
indicate the obtained solution as the ratio between the solution area, A,
and Ar; the sofa areaAwhich can go th?ough the given ﬁallway without an
application of any rdtational transforma£ion (%his-is also the oﬁtained
area).

Table II shows the solutions (the unit translation, A, and the .
unit.rotation 8§ = 2¢/n) for quer's sofa probiem using Mini-Max strategy
(L =1).' The table shows that the larger n is, the larger A we get; -this
agrees with our intuitive knowledge since with larger n we gef 8 more'accuréte
representatioh of angularly simple polygons by a pattern sequeﬁce, especially
if séme elementary patte?hs are hugg. .Also.for larger ) we get larger A,
This result seems to contradict Howden's statement ([6] p. 300): "indicating
that accuracy (of approximately three units) is more dependent on x, the
fineness G, than on the size of A8". However, Howdén's,method and ours are
quite different - the sofa will be operated on in such a way so that it
can-move through the given hallway and will %herefore have less constraints
from the hallwsy for larger A. Of course A should be less than a certain
amount, e.g. 8/20, otherwise the traﬂslation of the sofa becomes so discrete
that a solution by our GSPS does not make sense,

After testing our GSPS for different L > 1, we found that L = hAis
enough for iteréting the paper-cut prpcess. Thus we set L = 4, n = 48, and
A = 1/10.

A solution for Moser's sofa problem with an equi-incrementation of -
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Table II. Results Obtained by Mini-Max Strategy

For Moser's Sofa Problem

the unit rotation angle is

§ = 21/n.

Computer area/Ar s A

2.
2.

Upper bound =
Lower bound =

8
2

28
o7

r

1

n 24 48
A
1/20 1.1 1.38
2/20 1.35 1.61
4/20 1.38 1.73
6/20 1.75 - 1.86
A: Unit translation distance
n: Circularity (the number of
elementary patterns). Thus
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feed-back for the sofa is shown in Figure 12. 7Figure 12(a) shows the
shape of the sofa after the first iteration. A(l) = 1.88 which is about
85% of the lower bound, Al = n/2 + 2/7, indicated in Table I, After the
Lth iteration, the sofa is about 90% of A}, which is a good approximate
solution for the given problem. Figure 13 shows the solution for the

hallway of Figure 5(a). After the 3rd iteration we get A§3)=K(3)

= 1.27 -.
81% of the lower bound, Ay = /2. A solution for the hallway of Figure
5(b) is illustrated is Figure 1L, and we get about 95% of the lower bound
Ay = 2.324 (2.8 times the area ofvfhe sofa which can go through the hallway
without rotationj. From these results we may conclude that for a smooth
hallway GSPS works very well. Figure 15 shows the solution for the hall-
way of Figure S(C) in which we achieved 88% of the lower bound, Ay = 1.82,
Figﬁre 16 shows the soiﬁtion for the haIlwa§-of Figure 5(d) wﬁose lower |
bound ;s Ay = n/2, and we get 77%'of the lower bound. Thié percentage
sounds low, but it is fairly ggod considering the severe constraints.
The shape is, still, quite similar to the lower bound sofa which coﬂsists
of two connected 'circles,

Solutions for the sofa problems in Figures 5(e) and (f) are not
illustrated since their solutions are quite similar to those of Figures
12 and 13, respectively. The ratio~betwéen the area obtained and the sofa
which can move through the hallway without rotational transformations are
different, as are the areas.

From these solutions we conclude that GSPS gives a fairly good
approximate solution for two—diménsiohal sofa problems (including an |
optimal trajectory for such a sofa) with Moser's objective function in a

reasonable amount of time. The average run time for a single hallway is

10 to 15 seconds per iteration and sbout 1;5 times this for a doubly
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¢onnected hallway. The procedure was written in PL/1 language and

implemented on an IBM 360/75 at the University of Illinois.
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- (a) After the First Iteration
A 2 k(1) ) ee

(b) After the Fourth Iteration

RO

= 1.98

Figure 12. A Solution for Moser's Sofa Problem
With Moser's Objective Function By GSPS

. Equi-Increment
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Figure 13 A Solution for the Hallway of Figure 5(a)
With Moser's Objective Function By GSPS;
After the Third Iteration A(3)=K(3)= 1.27.

Isomorphic Increment




(a) After the First Iteration

A(l)_= 2.09, K(l,) = 2.66

Figure 1L,

(b) After the Second Iteration

(2)

2@ o0 k@ 2o

A Solution for the Hallway of Figure 5(b)
With Moser's Objective Function By GSPS

Mixed (Equi-Isomorphic) Increment
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(a) After the First Iteration

A 217, k) 2000

(b) After the Second Iteration

A? 2160, k2 2 2.03

Figure 15. A Solution for the Hallway of Figure S(c)
With Moser's Objective Function By GSPS

Differential Increment




(a) After the First Iteration

A 2007, k) 2103

(b) After the Third Iteration

A(3) = 1.21, K(3) = 1,5k

Figure 16. A Solution for the Hallway of Figure 5(b)
With Moser's Objective Function By GSPS

Mixed (Equi-Isomorphic) Increment
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- V. CONCLUSION

By restricting the class of sofas to a class of angglarly simple
‘polygons:, we have developed the most easily transformable representation
of such a polygon, called a sequential pattern sequence. However, és we
have pointed out, the restriction of objects to a class of aﬁg&larly
simple polygons is the strongest restriction and such a polygoﬁ may not
represent exactly a solution for some sofa problems. Still, the shapes
of the sofas obtained are quite similar to those of the lower bound sofas
found analytically.

Through the restriction of sofas to angularly siﬁple polygons
and the heuristic tree search strategy which is applied by the character
of non-incresasing sofgs, we have dgveloped the two-dimensidnal sqfa éroﬁ
blem solver, GSPS., As we can see from our computation examples, the
system is fast enough to give us "good" approximate, or near optimal,
solutions for the sofa problem. A little modification of GSPS leads to
the most generalized sofa problem solver, with not only Moser's objective
function but with some other predefined objective function, such as
Howden's objective function.

| The idea of angularly simple polygons and their representation
leads us not only to the computer solution of the sofa problem but also
to the solution of the two-dimensional hiden line problem, the path
finding problem [8] in a geometrically constrained space with l;mited
sight, the dynamie sofa problem 19], and form perception in psychology
[1], among others. We feel positive that there are more applications of
this -class of-objects as well as applications of the generalized angularly
simple polygons [9] with a combination of artificial intelligence. Finally,

we feel that "analog" approaches rather than numerical approaches for solving

prOblems gives some clues to solving other problems by computer.
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