Nuclear Safety of an Airborne Thermal Reactor

Status Report of the
Reactor Criticality Analysis Program
to October 1, 1971
scientific laboratory of the University of California

LOS ALAMOS, NEW MEXICO 37544
f

Notice
This report was prepared as $3 n$ account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commisalon, nor any of their employees, nor any of their contractors, eubocmatractors, or their employees, makes any warranty, express or implied, or eatumes any reply lability or responsibility for the accuracy, comploteneme or usefulate of any information, apparatus, product or process diecloned, or represents that its we would not infringe privately owned rights.

This report was prepered as an sccount of work sponsored by the United States Government. Nelther the United Suntes nor the United States Atomic Energy Commission, nor any of thoir employses, nor any of their contractors, subcontractors, or their employees, makes eny wermaty, expreas or implied, or assumes any legil liability or responsibility for the accurecy, completeness of usefulness of any information, epparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report, like other special-purpose documents in the LA. . .MS series, has not been reviewed or verified for accuracy in the interest of prompt distribution.

Nuclear Safety of an Airborne Thermal Reactor
 Status Report of the Reactor Criticality Analysis Program to October 1, 1971

by
J. C. Vigil
B. M. Carmichamal
G. H. Bent

nuclear safety of an alrborne therval peatior

by

J. C. Vigil, B. N. Carischael, and G. H. Best

PEEFACE

The Air Force Weapons Laboratory (AFWL) is evaluating various aspects of che safety of mobile nuclear reactors, particularly airborne reactors. AFWL is aponsoring tests to essist in the development of containment vesgeis which will survive impact deformations without rupturing or leaking, to determine the deformation of the reactor cores due to impact and to evaluate engineered afety features under impact. Tha Reactor Theory Group of the Los Alamos Scientific Laboratory (LASL) is supporting this work by aseasing the nuclear cricicality and other reactor paramsters for both normal and deformed cort configurations.

This report covers initial investigetions of possible shutdown nechenisms for: meltdemn of a proposed gas-cooled, lisht-water-moderated thermal reactor. AFWh ia also considering a liquid-metal-cooled faat raactor that LASL will evaluate for nuclear aafety when design opecificstions are available. The applicability of proposed shutdown mechanisns will be evaluated for the experimentally detarinined corz and containsent configurations when data are available frow the AFWL impact tests.

I. SUMMARY

Neutronic calculations weze perfosmed to insse tigate the feasibility of using a diluent-poison to solve the criticality problem arising from core meltdown for the sirborne thermal reactor concept. Survey calculetions were performed in onedimenaional apherical geonetry on both bare and reflected spheres containing diluent: UO_{2} core volume ratios of $0.0,0.5,1.0,2.0$, and 3.0 . Twodimensionsl calculations were also perforsed for one particular diluent in order to obtein an indication of how the one-dimensional realts relate to core realiatic geonetrical configurations.

The diluents studied were $\mathrm{W}_{1} \mathrm{WB}, \mathrm{WB}_{2^{\prime}}, \mathrm{Ta}, \mathrm{Ta} 2^{\prime}$ and Re. Both natural boron and ${ }^{10}$ B were ised ta, the survey calculations for the borides. With the exceprion of $W_{\text {F }}$ the calculation indicate that any of these diluents could be usad to molve the crizicality problen with diluentito y_{2} voluse racios of 7.7 st leas. For $H_{\text {s }}$ a voluee ratio of 3.0 is required.

On a volune basis, the ordar of decrensing effectivenass of the various diluents is: $\mathrm{T}^{10} \mathrm{~B}_{2}$,
$W^{10} \mathrm{~B}_{2}, \mathrm{~W}^{10} \mathrm{~B}, \mathrm{TaB}_{2}, \mathrm{Re}, \mathrm{WB}_{2}, \mathrm{Ta}, \mathrm{WB}$, and W. on a mass basis, the order is the anat, except that Re comes after WB.

II. INTRODUCTION

The airborne thereal reactor concept is a watermociezated and reflected, helium-cooled reactor tueled with enciched UO_{2}. Initial neutronic calculations of thig roncept were devoted to determining the feasibility of wing a diluant-poison to solve the meltdown criticality problew. Meltdown of the core is aseumed to occur solely as a reault of the deciy of fission products (afterheat) followiag a loss of coolant. The loss of coolant causes scramming of the control elmant ar ". rapid removal of the moderator-reflector water from within the core preseure vassel. Beating from the decay of fission producte then causes the core to malt and sollect in a pool at the botton of the pressure veasel which is protected by a tungeten inaar and tharanl insulation. Corn stractural materials are aasumed to collect in one or nore Layers over the pool of molten $\mathbf{U O}_{2}$.

The amount of enriched UO_{2} in the core was asm sumed to be $868 \mathrm{~kg}(1914 \mathrm{lb})$ at density $10.8 \mathrm{~g} / \mathrm{cm}^{3}$ with uranium isotopic abundances as shown in Table I. This amount of enriched UO_{2}, if aliowed to collect within the pressure veasel and if undiluted with a geutron poison, will become supercritical. For a bare sphere of erriched UO_{2}, the critical radius is 13.4 cm and the critical mase $1 s 109 \mathrm{~kg}$. If the sphere is reflected with an essentially infinite thickness of ${ }^{238} \mathrm{UO}_{2}$, tne critical core radius is 9.1 cm , and the eritical mass is 34 kg . Thus, in the most reactive configuration conceivable, only 4% of the original. 868 kg of enriched UO_{2} is required to form a critical wass,

TABLE I
URANIUM ISOTOPIC ABUNDANCES IN $\vdots \mathrm{NRICHED} \mathrm{UO}_{2}$

Isotope $^{235} \mathrm{U}$	Abundance $($ at. $\%)$
U_{U}	93.10
234_{U}	5.75
	0.886

Any material that is co ba used as a diluent must satisfy the following three requirements:

1. Density greater tinan that for UO_{2},
2. Melting point appraciably higher than that for UO_{2}, and
3. Capture cross section sufficiently high so that the ailuent and enriched UO_{2} mixtura is subcritical with a diluent:UO 2 volume ratio of 3 or less.

The first requirement is neceasary to engure that the diluent does not float on top of the miten UO_{2}. The eecond requirement is necessary to ensure that the diluent does not melt and form a lager at the bots 500 of the UO_{2} pool. The third requirement arises from the method in which the diluant is in troduced in case of a meltdown. It is conterplated that amall epheres (say $\leq 1 \mathrm{in}$. dian) of the diluent material would be contained in an annulus surrounding the reflestor regions of the reactor. The cortainaent for the apheres would be auch that, when the core melts, the spheres would fall to the bottom of the pressure vegeal and dilute the molten UO_{2}. For sheres of uniform sise, the largest packing fraction achievale is 0.74. This packing fraction, which is obtained with a face-centered cubic
lattice, would allow a diluent: UO_{2} volume ratio of 2.8. For a body-centered cubic lattice, the packing fraction is 0.68, which would allow a Alluent: UO_{2} volume ratio of 2.1. Under conditions other than close packing, a packing fraction of 0.60 is probably reasonable. This would allow a diluent: VO_{2} volume ratio of 1.5 .

Schematic diagrams of the normal and meltdown configurations using the "diluent-spheres" concept are shown in Figh. 1 and 2. Because atratification of the VO_{2} and core structural materials presents the most severe criticality problem, the meltdown configuration of Fig. 2 is conservative.

Materiale considered as possible diluents are given to Table II. Aa shown in the table, these materisls satdefy the requirements on density and melting temperature. Note that che melting temperatures of WB_{2} and TaB_{2} are uncertain but potentially In the right naighbortood. Densities and melting

Fig. 1. Noreal configuration.

Fig. 2. Meltdown configuretion

TABLE II
MATERLALS CONSIDERED AS POSSIBLE DILUENTS

Material

W
WB

Re

$\begin{aligned} & \text { Density } \\ & \left(\mathrm{g} / \mathrm{ca}^{3}\right) \end{aligned}$
19.3
15.7
12.75
16.6
12.4
20.5

Malting Temperature (${ }^{\circ} \mathrm{C}$)

3370
2920
2900 (?)
3000
3000 (?)
3167
temperature in Gable II were obtained from Ref. 1. Survey calculations ware performed in onedimenional apharical geomatry to establish the calative effectiveness of thamerateriaie in solving the meltdown criticality problem. The eurvey calculutions are diecmaed in Sac. III. Trodimenaional calculations, difcivened in Sec. IV,
were parformad to obtain an indicatiou of how the one-dimensional reaulta relate to more realistic geometries.

Because the moderator-reflector water is assumed to be rearved from the preasure vessel prior to core meltadow, the meltown configuration is a fest oystem, and dezailed thermal cross sections are not required for the neutronic compurations. For this reason, cross sections from the HansenRoach (H-R) 16-group library ${ }^{2,3}$ were used in the one-dimensional analyses. These cross sertions have bean tested extenaively on many fast and intexmediate assemblies. The group boundaries and fission apectrum for the 16 -group structura are given in Table III.

TABLR III
GROUP BOUNDARIES AND FISSION SPECTRUY FOR 16-GIOUP STRUCTURE

Group	Energy Range			Fiesion Spactrua (235U)
1	3	- 10	MeV	0.204
2	1.4	- 3	"	0.344
3	0.9	- 1.4	11	0.168
4	0.4	- 0.9	11	0.180
5	0.1	- 0.4	"	0.090
6	17	- 100	keV	0.014
7	3	- 17	"	0.0
8	0.55	- 3	1	,
9	100	- 550	eV	
10	30	- 100	1	
11	10	- 30	"	
12	3	- 10	"	
13	1	- 3	11	
14	0.4	- 1	"	
15	0.1	- 0.4	*	
16	0.0	- 0.1	11	7

Crons sections for nuclides not in the fle library ware corputed with the EnOG code ${ }^{4}$ fron the Evaluated Nuclear Date File (ENDF/B). Theae nuclides
 ${ }^{187} \mathrm{Re}_{\text {e }}$ and Ti. Natural tungoten and rhenive croas aections ware obtained.from the iectopic crose mections uoing the natursl abundance siven in Table TV. The maturally occurring isotope ${ }^{180}$ w (0.14% abundance) is not in the EUDF/B date file and we ifrored in. the calculationy.

The onedinerasional calculations iodicated that thare ie very little flux below Group 7 of the 16 group etructwiz. Mherefore, for the twodinenatonel

TABLE Iy
ABUNDANCES OF NATURALLY OCCURRING ISOTOPES OF TUNGSTEN AND RHENIUM

$\frac{\text { Isotope }}{182}$

${ }^{183}$ W
184 W
${ }^{186} W$
${ }^{185_{R e}}$
${ }^{187}$ Re

Natural Abundance
(at. 2
26.41
14.40
30.64
28.41
37.07
62.93
calculations, the 16 -group structure was reduced to seven groups by collapsing Groups 7 through 16 into one group.

III. ONE-DIMENSIONAL SURVEY CALCULATIONS

Survey calculations were pade it one-
dimensional spherical geometry to establish the relative effectivencss of the materials in Table II as neutron poisons. The calculations ware performed with the DTF-IV code, ${ }^{5}$ a tranaporc theory program. in S_{4} approximation using the 16 -group energy etructure of Table III. Spherical geometry was usad because it is the most reactive configuration that can be assumed by the molten UO_{2}.

Both bare and reflected apheres were calcuiated for the various diluent- VO_{2} mixtures. The core in each case was a homogeneous mixture of enriched UO_{2} and diluent. Calculations ware made for diluent: UO_{2} volume ratios of $0.0,0.5,1.0,2.0$, and 3.0 . The amount of HO_{2} was held fixed at 868 kg (density $10.8 \mathrm{~g} / \mathrm{cm}^{3}$), which 18 the initial core loading. For the diluents containing boron, both natural boron and ${ }^{10}$ B were used in the calculations.

Atom densities for the uranium isotopes and oxygan are given in Table V for the various diluent: UO_{2} volume ratios. Aleo given in the cable are the volume and apherical radius of the diluent $-\mathrm{HO}_{2}$ mixture. Atom densities for the dilueat materials and total diluant mass are given in Table VI for the various diluent: UO_{2} volue ratios.

In the reflected calculations, 25 ce of ${ }^{238} \mathrm{UO}_{2}$ (density $10.8 \mathrm{~g} / \mathrm{cm}^{3}$) was used to aimulate reflection from the heavy whield material outaide the preasure vesel sind from layera of core otructural meteriale
trame v

TABLS VI

Diluent Material	$\begin{aligned} & \text { Diluant: } \mathrm{NO}_{2} \\ & \text { Volue } \\ & \text { Ratio } \\ & \hline \end{aligned}$	Diluent Mase (kg)	Atom Density of Diluant (1024 atomicn 3)	
			Component 1	Component 2
Al1	0.0	0.0	0.0	0.0
W	0.5	775	0.02107	-
	1.0	1551	0.03161	-
	2.0	3102	0.04215	-
	3.0	4653	0.04742	
4	0.5	631	0.01619	0.01619
	1.0	1262	0.02429	0.02479
	2.0	2524	0.032's8	0.03238
	3.0	3785	0.03643	0.03643
Wb_{2}	0.5	512	0.01246	0.02491
	1.0	1025	C. 01869	0.03737
	2.0	2049	0.02491	0.04983
	3.0	3074	0.02803	0.05606
Ta	0.5	667	0.01842	--
	1.9	1334	0.02762	-
	2.0	2668	0.03683	-
	3.0	4002	0.04144.	
TaB_{2}	0.3	498	0.01229	0.02458
	1.0	996	0.01843	0.03687
	2.0	1993	0.02458	0.04915
	3.0	2990	0.02765	0.05530
Re	0.5	824	0.02210	--
	1.0	1648	0.03315	-
	2.0	3295	0.04420	-
	3.0	4943	0.04973	--

${ }^{3}$ In HB 2 , for extmple, W ie Coaponent 1 and B is Component 2.
that may form over the pool of UO_{2}. The 25 mm of ${ }^{238} \mathrm{UO}_{2}$ was establisped by calculations to be exfectively an infinite thicknegs as far as ito effect on $k_{\text {eff }}$ is concernod. This can be seen in Fig. 3, which showe $k_{\text {eff }}$ an function of ${ }^{238} \mathrm{UO}_{2}$ refiector thickness for a $\mathrm{WB}_{2}: \mathrm{UO}_{2}$ core volume ratio of 2.0 . Atom densities ueed in the reflector were 0.02409 and 0.04817 (10^{24} atoms/cm cm^{3} for ${ }^{238}$ and 0 , reapactively.

Reaults of the one-dimensional survey calculacions are gumarised in Tebles VII through XII. These reale are plotked in Fige. 4 and 5 for easy comparison of the various diluence. In Fig. 4, the aultiplication-factor ($\mathrm{K}_{\text {eff }}$) ia ahown an fuaction of diluant stO_{2} core volume ratio fur the bare sphere case. Correoponding reauls: for the reflected ephere are bown in Fig. 5.

Fig. j. Effect of reflector thickneas on reactivity for $\mathrm{WB}_{2}: \mathrm{UO}_{2}$ core volume ratio of 2.0 .
table vil
survey calcilations for $\mathrm{W}^{-} \mathrm{UO}_{2}$ Mdxtures

| WiUO_{2}
 Volume | Multiplication Factor (keff) |
| :---: | :--- | :---: |
| Ratio | |

TABL? VIII

SURvey caiculations for wb-U0 $\mathbf{2}_{2}$ mixtures

WB: UO_{2} Volume Ratio	Multiplication ractor ($\mathrm{k}_{\text {aff }}$)			
	Bare		Raflected	
	$\begin{aligned} & \text { Natural } \\ & \text { Boran } \end{aligned}$	10_{B}	Natural Boron	${ }^{10}{ }_{\text {B }}$
0.0	1.609	1.609	1.772	1.772
0.5	1.386	1.086	1.483	1.146
1.0	1.198	0.82]	1.264	0.855
2.0	0.934	0.555	0.97!	0.571
3.0	0.762	0.420	0.787	0.430

table IX
SURVEY CALCULATIONS FOR $\mathrm{HB}_{2}-\mathrm{UO}_{2}$ hixturas

$\mathrm{WH}_{2}: \mathrm{UO}_{2}$ Voluse Ratio	Muitiplication Factor ($\mathbf{k f f i f}^{\text {) }}$)			
	Bare		Raflected	
	Natural 3oron	${ }^{10}{ }_{B}$	$\begin{aligned} & \text { Matural } \\ & \text { Boron } \end{aligned}$	${ }^{10} \mathrm{~B}$
0.0	1.609	1.609	1.772	1.772
0.5	1.346	0.973	1.438	1.020
1.0	1.139	0.707	1.199	0.732
2.0	0.863	0.459	0.896	0.472
3.0	0.693	0.341	0.714	0.351

TABLE X
survey calculations for ta- UO_{2} mixtures
$\mathrm{Ta}: \mathrm{UO}_{2}$

Volume Ratio

0.0
0.5
1.0
2.0
3.0

Muitiplication Facfor (${ }_{\text {eff }}$)	
Beri	Reflected
1.609	1.772
1.345	1.455
1.154	1.237
0.902	0.955
0.742	6.779

TABLE KI.
SURVEY ChlCulations for TaB $\mathbf{T}^{-U C_{2}}$ MLXTURES

$\begin{gathered} \mathrm{TaB}_{2}: \mathrm{UO}_{2} \\ \text { Volume } \\ \text { Ratio } \\ \hline \end{gathered}$	Multiplication Fastor ($\mathrm{k}_{\text {eff }}$)			
	Bare		Reflectex	
	Natuzal Boron	10_{3}	ilatural Boron	${ }^{10}{ }_{B}$
0.0	1.609	1.609	1.772	1.772
0.5	1.275	0.943	1.359	0.989
1.0	1.042	0.875	1.094	0.700
2.0	0.758	0.433	0.786	0.445
3.0	0.595	0.319	0.613	0.330

table xit
SURVEY GALCULATIONS FOR Re-UO 2 MIXTURES

Re: UO_{2}
Volume
Ratio
0.0
0.5
1.0
2.0
3.0

Maltiplication Factor ($\mathbf{k e f f}_{\text {e }}$)	
Bare	Raflacted
1.609	1.772
1.330	1.424
1.120	1.183
0.847	0.852
0.680	0.704

Asmuping a spherical pressure vessel, a twodinersional calculation (Sac. IV) indicates that the mitiplication factor for a more realistil geometry is about 3% amaller than that computed for the bare sphere. That is, the results obtained for the bare aphare can be used conservatively to entimate the reactivity in more realistic geomery. The diluant: VO_{2} volume ratio and diluent mags requited to raduce $\dot{k}_{\text {eff }}$ to unity in the bare aphere case are oumarised in Table XIII. In the table, the diluenta are given in order of decreasing affectiveners on volumo basie. On a mase basie, the order is the aene except for key which woulid fall between $W B$ and W. \&ote that all of the dilients excépt W. could potentially be used in the form of uphered (ae diecuased previouly) to "olye thin criticality problea. Since the largent diluantitho voluse

4. Bare sphere survey calculations.

TABLE XIII

atto' able with the "diluent spheres" scheme , a different scheme would have to be used
n the bare sphere calculationa, thirty equal 1 mesh intervals were used. In the reflected ations, the mesh uned was twenty equal intern the core and ten squal intervale in the rer. Typically, the median fission energy

Fig. 5. Reflected sphere survey calculations.
occurred in Group 4, which covers the range 0.4 to 0.9 MeV (Table III).

IV. TWO-DIMENSICNAL CALCULATIONS

Two-dimensional calculations were performed for a particular diluent- UO_{2} mixture in order to obtain an indicetion of how the one-dimeneional results relate to more realistic geometrical models. The calculations were performed with the TWOTEAN codes ${ }^{6}$, in S_{4} approximation using seven energy groups. Seven-group cross sections were obtained from the 16-group sets by collapsing Groups 7 through 16 into a single group. Fluxes from the corresponding 16group one-dimensional reflected sphere calculation were used to perform the collapse of the cross sections.

Two-dimensional calculations were performed for two different models. The first model, shown in Fig. 6, is baged on a spherical presure vessel and was calculated in $\mathrm{R}-\phi$ epherical geometry. The inner radius of the preasure vassel (AM-355) is 93.98 cm (37 in)) ite thicknege is 2.54 cm (1 in .1 , and it is linad with 2.54 cm of tungaten (density 19.3 $\mathrm{g} / \mathrm{cm}^{3}$). The thermal inaulation between the ilner

Fig. 6. Two-dimensional $R-\phi$ epherical model.
and the vessel was neglected in thia aimple modal. At the bottom of the vessal ia a homenized ragion of WB and enriched UO_{2} with a $\mathrm{WB}^{\mathrm{WO}} \mathrm{UO}_{2}$ volume ratio of 2.0. The $\mathrm{NB}_{\mathrm{NO}}^{2}$ region (volume $2.4111 \times 10^{5} \mathrm{~cm}^{3}$) contains 868 kg of enriched UO_{2} and 2524 kg of WB . Floating on top of the $\mathrm{WB}-\mathrm{UO}_{2}$ aixture in tromge nized region containing structural materiale. The volume of this region, $5.6818 \times 10^{5} \mathrm{cs}^{3}\left(20.1 \mathrm{ft}^{3}\right)$, Is based on in initisi core voluna of 2.4975×10^{6} cm^{3} ($88.2 \mathrm{ft}^{3}$) containing 22.75 vol8 atructural materiale. The remaining mpece within the praseure

TABLB XIV

ATOM DENSITIES FOR RMGIOAS OF TWO-DIMRNSIONAL MODEL

Rerton	Slement	$\begin{gathered} \text { Atom Denalty } \\ \left(10^{24} \text { atona/ca }{ }^{3}\right) \end{gathered}$
Structur*	Ho	0.03928
	T1	0.00039
	H1	0.00590
	Cr	0.00300
	Fe	0.02322
Core	${ }^{235}$	0.00755
	2340	0,00007
	238u	0.00047
	0	0.01623
	H	0.03238
	8	0.03238
Liner	W	0.06322
Vessel	Fe	0.08359
Shield	238u	0.04731

Tanes x

Eatsatil	confocitiom of stughuth Matreill			
	$\begin{aligned} & \text { Deosecy } \\ & \text { intin } \end{aligned}$		Premer	
\% TEM	10.2	0.6056	m_{II}	$\begin{aligned} & 0.9 p 45 \\ & 0.005 \end{aligned}$
matalloy 2	0.27	0.2420	$\begin{aligned} & \mathrm{m}_{A} \\ & \mathbf{C r}^{\mathbf{7 a}} \\ & \mathrm{He}_{0} \end{aligned}$	$\begin{aligned} & 0.489 \\ & 0.020 \\ & 0.200 \\ & 0.000 \end{aligned}$
M-3ss	1.63	0.2505	7.	0.00

vengal is void, as it was asemed that the moderatorreflector water was removed prior to meltdown. Outside the preanure veaenl is apherical shell 34.1 con (13.4 in.) thick. This region, which repreannts the ehield, coataing $104,330 \mathrm{lg}(230,000 \mathrm{lb})$ of ${ }^{238}$ U at donsity $18.7 \mathrm{~g} / \mathrm{cr}^{3}$. (It vae eprumad that the shield water is not present.) Note that the miltcown configuration of Pig. 6 doms not depend on the orientation of the aysters.

Aton denaitiea for the varicus regions of the rodel are given in Table XIV. The componition of the $\mathrm{WF}_{\mathrm{WO}}^{2}$ mixture is the ame as that used in the onedimeneic: 21 adculaticn for a $\mathrm{WB}_{2} \mathrm{UO}_{2}$ volume ratio of 2.0. The composition of the stsuctural material ragion is kased on the information given 1n Table XV.

The horisental surfaces of the $\mathrm{WB}-\mathrm{NO}_{2}$ and otrucrural meterial rasions cannot be repregented exactly In $\mathrm{B}-\mathrm{p}$ geometry. These boundarien were approximated by portions of opherical murface at ohow in Fig. 7. In the approsination, the volume of the two regione

Fig. 7. Approximation of horizontal esrfaces in R-ф model.
were conserved. The spatisl mesh contained 26 radial intervals and 24 intervals in the ϕ direction.

The $\mathrm{R}-\phi$ model yielded a multiplication factor of: 0.901. For the same $\mathrm{WB}_{\mathrm{UO}}^{2}$ volume ratio, the onedimensional calculations yielded 0.934 and 0.971 for the bare sphere and reflected sphere, respectively. Thus, it appears that the bare ophere rasulte of Sec. III can be used conservativeity to entinate the reactivity in a more realistic geometry.

Figure 8 shows the second model used in the two-dimensional calculations. This model is based on a cylindrical pressure vessel and wan represented in $R-Z$ geometry. The dimensions of the veasel are radius 37 in., height 74 in., and thicknces 1 in., and the vessel is lined with 1 In of turgsten. The

Fig. 8. Two-dimensional R-Z cylindrical model.
volumes of the structural material, $\mathrm{WB}_{\mathrm{WO}}^{2}$, and shiald regions are the same as before but in sylindrical geometry. Compositions of the various regions are exactly the aame ae for the $R-\phi$ calculation (Table XIV).

For the R-Z calculation, the spatial mesh used was 26 radial intervals and 30 axial intervals. This calculation yielded a multiplication factor of 0.67?, considerably leas than that (0.901) obtained for the opherical preasure veasel case. The reason is that, with a sherical vessel, the WB-UO ${ }_{2}$ region Is much more compact. An idea of the difference in compactnese can be obtained from che fact that the surface area of the $\mathrm{WB}_{-1 \mathrm{UO}_{2}}$ region is 3.14 times
larger within the uprighic cyliadrical veasel thin within the spherical vesael.

With a cylindrical preasure vaseel, the meltdown configuration will depend on the orientation of the veasel. The upright vessel case was calculated because this configuration can be repregented exactly in two dimenaions. If the veasel is horizontal, an $R-\theta$ cylindrical celculation wth buckling to represent the leakage in the axdsi direction could be used to approximate the configuration. If the vessel is inclined at some angle, say 45*, thraedimensional code would be raquired for tha analyaia.

The $\mathrm{WB}_{\mathrm{UO}}^{2}$ region in the horizontal cylindrical vessel case is more compact than in the upright case. However, the surface erea of the $W B-\mathrm{NO}_{2}$ region is gtill 2.37 times ierger than in the spherical vessel case. For intermediete orientation, the surface area should lie between the vertical and horizontal cases. Thus, for a given voluet of diluent and UO_{2}, the reactivity of the mixture should always be less in the cylindrical veseel thar. in the spherical vessel regerdless of orientation of the cylindrical vessel. In thit respect, the cylindrical vessel is to be preferred over the spherical vessel. The advantages of the epherical vessel are its independence of orientetion and the fact that deformation of the vessel will result in a less reactive meltdown configuration.

v. DISCUSSION

It has been shown that several diluent miterials could be used to solve the meltown criticality problem. A decision on which diluent material to use will have to be based not only on the effectiveness of the material an a poison; but aleo on such factors as availability, ease of fabrication, feight, and cost. As evidenced by the uncertainty in the melting temperature of WB_{2} and TaB_{2}, materials reaearch will have to be carried out for some of the diluents.

Feasibility of using a diluent-poison to solve the meltdown criticality proble hinges on containment of the molten UO_{2} within the presaure vessel and on assuring mixing of the diluant and VO_{2}. The scheme of surrounding the reflector regions of the reactor with an annulus containing emall epheren of high-áasity and high-melting-point diluent material
ghould be worlemble. The schere, however, depend on movenant of the diluent epheres to the bottom of the premsura vassel as the core melts. Tests on a mandracale model should be carried out to study thie problen.

The "diluant apheres" echent also requires a diluent density and melting temperature greater than tiat for VO_{2} and is 11mited to a maxinum diluantivO VO_{2} volun ratio of about 3. A variation of this echema could be uned that requites only that the diluent have a meing temperature higher then that for UO_{2}. In thin variation, a fixed annular region of diluant meterial would surround the reflector regione. The diluent region would be in the form of a honaycomb etructure with void friaction and thicknese dependinz on the diluent. For example, if the diluent is $\mathrm{Ta}^{10} \mathrm{~B}_{2}$ and assuming a epherical preseure vessel, void fraction of ≈ 0.7 and annulus thicknese of ≈ 21 ce would be required. One dieadvantage of this scheme is that a larger volum and tasa of diluent would be required than vith the nobila "diluant apheres" mehere. This is not aerious diandvantage in thet the diluent can also atere sata shielding fand neutron shielding in the case of tha boriden) and thue reduce the amount of ghielding required outside the preanure venael. A more seriou diaadvantaga is that deformation of the preanure veasel on impact might reduce or completely eliminate the void fraction in the dilument swoulus.

For the maltdonn configuration, use of a spherical preanure vessel has the advantage that the geonetry is indepandent of orientation of the vessel. Another advantage is that deformation of the veatel will remult in lema reactive meitdom geometry becaua the diluent $-\mathrm{VO}_{2}$ region will be leas compact than in the undaformed cage. On the other hand, a cylindrical presaure veasel ($1 / D=1$ and D the anse as for the sherical case) hat the advantage of a much lesa reactive aeltdown configuracion than in the ephericnl case. However, deformation of the cylindrical pressure veseel could reault in a more reactive maltdown geomatry than in the undeforied case. Aleo, for veseel orientetions deviating from the vertical or horizontal. the cylindrical veasel requiree three-dimensional code for analyele. Although three-disengionsl trangport
theory codes are not presently available, the analyais could be performed with a three-dimensi mal diffugion theory program (e.g., the 3DDT code ${ }^{8}$).

Regardless of whather a cylindrical or apharical presgure vessel is used, daformetion of the shield region outside the premsure vessel ahould have little effect on the reactivity of the meltdown configuration. This is because the configuration is already well reflected.

Future calculations should be directed toward determining the effect of the diluent on the criticait mas of the normal configuration. Calculations are also required to determine the affect of deformations on both the normal and meltdown configurations. Quantitative reaults from impact tests should be factored iato theas calculations. As discussed above, deformations hould not present serious problene for the meltdorn case if the undeformed meltdown configuration is eubcritical.

Since the thermel reactor concept is undermoderated, amall compactions of the noreal core configuration should reduce reactivity if the noderatorreflector water is still in the preasure vessel at impact. Extreme compaction, in which all the moderator and coolant passages and all the voide are squeezed out, may be a problem because the neutron spectrum will be hardened considerably.

In the fast reactor concapt, any compaction of the normal cors configuration will add reactivity unless the design incorporaten built-in afaty feature, e.g., control elemente that are driven into the core at impact. Such an engineerod eafety feature can be more eacily incorporatid if the core has a spherical shape.

REFERENCES

1. Handbook of Chemetry ari Physics (38th Edition), Cheacel Zubber Publishing Company, Cleveland, Ohio (1956).
2. G. E. Hangen and W. H. Roach, "Six and Sixteen Group Crona Saction for Fant and Intermediate Critical Ansemblien," LAMS-2543, Loe Alamos Scientific Laboratory (1961).
3. L. D. Connolly, "Los Alanoe Group-Averaged Cross Sections," LaMS-2941, Los Alanos Scientific Laboratory (1953).
4. D. R. Khener and S. Kellman, "ETOG-1, A FORTRAN IV Program to Froceas Data from the ENDF/B File to the MUFT, CAM, and ANISN Formate," WCAP-3845-1 (EnDF-116), Westinghouse Electric Corporation (1969).
5. K. D. Lathrop; 'DTF-IV, A FORTRAN-IV Program for Solving the Multigroup Transport Equation with Anisotropic Scattering," LA-3373, Los Alame Scientific Labozatory (1965).
6. K. D. Lathrop and F. W. Brinkley, "THOTRAN SPHERE: A FORTRAN Progran to Solve che Multigroup Transport Equation in Two-Dimeneional Spherical Geometry," LA-4567. Loe Alamos Scientific Laboratory (1970).
7. K. D. Lathrop and P. W. Brinkley, "Theory and Uee af the General-Geonetry TWOTRAN Program." :A-4432, Los Alama Scientific Laboratory (1970).
8. J. C. Vigil, "3DDT, A Threc-Dimensionel Maltigroup Diffueion-Burnup Progran," La-4396, Los Alamos Sciantific Laboratory (1970).
