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- ABSTRACT.

A nearly monochromatic beam of 25-keV neutrons has been obtained
from the HG'—AS beam facility of the Materials Testing Reactor (MTR) .by
using a combination of‘natural irdn; aluminum and sulphur filters. The
actual peak energy of the beam is 24.5 % 0.5 keV and the full-width-
at-half-maximum (FWHM) is approximately 1.8_keV. This Well-éollimated
beam has an initial diameter of 3.50 inches and a neutron flux of
approkimafely 2x10° neutrons/cm?/sec. The gamma-ray field associated
with the beam was found to be.less than 20 mr/hr. The neutron’
energy spectrum of the beam has been analyzed from 1 keV to 1 meV with _
a proton-recoil spectrometer. The raw proton—fecoil_data which were
obtained with a hydrogen-filled detector and a mulfichannel pulse-
height analyzer were used to "optimize" the beam, i.e. to obtain the
maximum ratio between the magnitude .of the 25 keV neutron peak and
the general '"background" level. The best "signal-to-background" ratio
was obtained with 26.84" of Fe (99.72%), 8.22" of Al (99.99%), and
2;31" of S (99.9%). The "background" intensity has been reduced to

approximately 2% of the 25 keV neutron-intensity.
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CHAPTER I
INTRODUCTION

Test reactors such as the Materials Testing Reactor (MTR) were
designed to provide very intense sources of néutrons for experimentél
applications. $ince the MTR was the first test reactor to be built,
its désign was éery versatile with provisions for beam holes, thermal
columns and pneumatic rabbit facilities to mention a few. Consequently,
many complex and diverse neutron physics experiments can be conducted
concurrently without necessarily requiring that the reactor be shut -
down in order to make changes in the experiment. The MTR offers unique
opportunities to conduct experiments and perform measurements which
could not be done otherwise. This manuscript will describe how the;MfRV
was utilized to develop and‘then produce an intense beam of 25-keV
neutrons. |

Most experiments involving reactor development and neutron
physics research have one thing in common. They are generally neutron
energy dependent and information concerning the neutron enviromment of
thé experiment is essential. This information can be very gross such
as integrated neutron flux values or very detailed such as a complete
neutron energy spectrum. For example, many reactor oriented experi-
ments are conducted inside of test reactors near the fuel in order to

take advantage of the high neutron fluxes which exist there.' The
neutron energy spectrum inside a reactor is very complex and practically
impossible to measure in complete detail. Therefore, if an experiment
is conducted inside a test reactor the neutron energy dependence must

be of secdndary importance since only integrated neutron flux values



are‘presentl& available. -For most neutron physics experiments, the
measurements.are not méaningful unless the energies of the neutrons
involved are known or can be determined.

Outside a reactqr's sealed pressure vessel conditipns are vastly
improved for obtaining neutron énergy information since many ingenious
electronic and mechanical aevices can be used. The MTR has beam ports
which allow neutrons to e€scape from the core or shieiding,and drift to
different types of spectrometers and monochromators. The,fast;neutron
chopper facility of the MTR makes use of these neutrou beams tA meas-
ure total neutron cross sections. Crystal spectrometers are used in
solid state physics studies at the MIR to obtain monochromatic neutrons
’from these inhomogeneous neﬁtron beams. Proton-recoil spectrometers
which areAat a disadvantage inside of a reactor due to high counting
rates and iﬁterfering gamma rays are extremely useful outside a reactor
under controlled neutron and gamma-ray conditions as will be demonstratcd.

The séandium 2-keV neutron beam facility of the MIR first -
demonstrated the practicality and usefuluess of a nuew concept for.ob-i
taining intense sources of monochromatiphneutrons. The large inter-
ference dip in the cross section of “%Sc was found to be 0.05 barns at

(1)

2 keV which encouraged the development of a 2-keV neutron facility

at the MTR;(Z)

The low interference dip in the total cross sect;on of
iron at approximately.?25 keV indicated.that iron would also make a good

‘- filter. The rélatively lOW'COSt of a good gfade of natural irbn made
it a promising filter material for-obtaining 25~keV neutrons. In addi=-
tion, it was felt that the transmission properties of aluminum and sul-

phur were such that a combination of these three elements would filter

or remove practically all neutrons of energies other than 25-keV from

the beam.



CHAPTER II
DESCRIPTION OF EXPERIMENTAL EQUIPMENT

Three major pieces of experimental equipment were employed in
the development of the 25-keV neutron beam. A fast-neutron chopper
was used in a feasibility study of the individualvand éombined trans;
mission properties of iron, aluminum and sulphur. A proton-recoil
spectromgter was used.to measure the neutron energy spectrum of the
beam transmitted by the finished filter pieces in the HG-5 beaﬁ hole
of the MTR. Finally, a CDC 1604 digital computer was utilized to
calculate transmission values based on experimental cross-section data
for various thicknesses of Fe and Al. The com?gter was also used £o
reduce the raw proton-recoil data obtained with the proton-recoil

(3)

spectrometer and calculate a differential neutron energy spectrum.

The Fast-Neutron Chopper

The MTR fast-neutron chopper uses a time-of-flight technique to

determine total neutron cross sections as a function of neutron

energy.(h) A rotor with eight slits equally spaced every L5° chops

the neutron beam into eight bursts per revolution of the rotor. The
time-of-flight of the neutrons present in each burst is then
determined with a timing system which consists of a light pulse, -

(5,6,7)

banks of 10BF3 proportional counters, and a TMC L4096-channel

analyzer. The light pulse traverses the rotor 45° to the neutron

(8)

beam to prevent radiation damage to the photocell. The light
pulse is used to initiate the timing sequence of the analyzer. Five

banks of 16 1OBF3 counters per bank detect the arrival of the neutrons



at the end of a 20 meter flight path. The individual ionization
pulses due to the 10B(n,0)’Li reactions in the counters are amplified
and sent to the analyzer where they accumulate counts in time channels

according to their relative time of arrival.

The Proton-Recoil Spectrometer

The proton-recoil spectrometer used in thisiexperiment
consisted of a eoaxial cylinder—type detector and a 2564cnannei pulse¥v
height analyzer. The 256-channel TMC model CN-110 pulsc-height
anaiyZer is a mobile nnit which can be placed near the experiment for
-easier manipulation.' The detector was filled to 200 cm Hg pressure
of hydrdgen gas. A single anode wire with a diameter of 0.001" is
located aleng the axis of the i" diameter stainless steel tube.

The effective length of the proportional counter was three inches. A
preamplifier is mounted to the counter to provide additional amplification
of the recoil-proton pulses.

Neutrons which enter the sensitive region of the hydrogen=filled
detector and'colliderith-the hydrogen molecules transfer a pnrtion of
their energy to recoil-protons. The energy of each recoil-prolon is
then dissipated in the chamber (providing the track lengths are small
compared with the dimensions of the chamber) through electromagnetic
interactionS'with the gas which produces ionization. The negatively
charged ions are accelerated towards the positively nhargod anode wire
causing secondary ionization .(gas multiplication) to occur. The
transient collection of these negatively charged particles at the anode
causes pulses in the electronics which, if accepted, are recorded in

memory channels of the analyzer according to the voltage (height) of

each pulse.



The Collimator and Filter Pieces

The collimator which would be used to prevent neutrons from
being scattered into the beam was constructed primarily of LllL2
stainless steel. One end of the collimator was fitted with a 6" long
brass section and the other end %as fitted with a 6.25" long nickel
section to preveht transmission of 25 keV neutrons through the

"streaming" of neutrons belween the

collimator. lIn order to prevént
surface of the filter pieces and the collimator, the bore of the
collimator waskstepped to accomodate progressi&ely larger diameter
filter pieces.A The overall dimensions of the collimator were 6.875"
0.D. x L46.5" long. The inside diameter of the bore was 3.50" at
the exit and 2.78" at the entrance.

The iron filter pieces were machined from cold drawn Armco
magnetic ingot iron (99.72%). "The aluminum filter pieces were machined

from 1100 Al (99.99%) and the sulphur pieces were cast from 'sulphur

flakes (99.9%). Table I shows the dimensions of the filter pieces.

The CDC 160k Computer and PSNS Computer Code

The complex task of transformihg the integral.raw proton-recoil
spectrum into a differential neutron flux spectrum was accomplished
with a CDC 1604 computer and computér program. The PSNS (Proton

3)

Spectrum to Neutron Spectrum) computer code(_ accepts a set of pulse-
height distribution measured at various voltages with two counter types
(optional) and provides a neutron energy $pectrum as output. A plot
of the recoil-proton and neutron flux energy spectrum can also be

(3)

obtained from the output data with a calcomp program.



TABLE I

Dimensions and Types of Filter Pieces Used in Sfudy

Type Nd. Dia. Thickness
Fe 3 2.990" - 2.66"
Fe .3 | . 3.115" » 2.66"
Fe -3 3.240" 5.66"
Fe 3 3365t 3.50"
Fe ' 3 3.L4y0" - 2.06"
a1 | 2.990" 2.66"
AL S| 3.115" 2.66" |
A 1 3.2u0" 2.66"
Al . ‘ 1 | ~ 3.365" 3.50"
Al © 1 3.hg0" 2.06"
S , 1 3.36" | ’ 2.75"
s - : 1 3.36" 1.75"

S 1 3.36" ©o2,31"




CHAPTER IIT
THE EXPERIMENT

The Preliminary Fast Chopper Runs

Theé presehce of a relatively sharp decrease in the neutron cross

section of a material followed by a neutron scattering resonance is a

(9)

nuclear phenomenon aptly described by the Breit-Wigner theory.

(Also, see Appendix A.) The interference dip (called a "window") which

occurs in the total neutron cross section of natural iron at approxi-

mately 24 keV(lo)

(10)

'is due to the large scattering resonance of SbFe at
27.9 kev see Figure 1). The total cross section of 56Fe has been
measured at 24 keV using time-of-flight techniques and a minimum valué
of approximately 0.16 barns has been reported.(lo)
The >6Fe isotope, then, would be an excellent filter material
except for thg prohibitive expense involved. -For practical reasons,
it was decided to investigate thé possibility of using a naturaivgrade
of iron. Since natural iron consists of °Fe (5.82 o/w), °Fe (91.66

o/w), 37Fe (2.19 o/w), 58Fe (0.33 o/w) and in most commercial grades a

host of impurities, the total cross section of natural iron will be

(10)

higher than 0.16 barns at 2k keV.
It was decided to test a sample piece of cold drawﬁ Armco

magnetic ingot iron. A'spectrachemicél analysis of the sample indi-

cated that it was 99.7 o/w iron. A 2.25" diameter by 14.5" long bar

of Armco iron was placed in the sample changer of the MTR fast-neutron

chopper facility. The time-of-flight spectrum data which were obtaiﬁed

during this run are shown in the top curve of Figure 2. These results
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were encouraging because of the magnitude of the transmission peak at
approximately 25 keV.

A 5" thick piece of aluminum (99.99 o/w) waé then placed in the
sample changer with the 14.5" of iron to investiéate their combined
transmission properties. The results of this second fast chopper run
are élotted as the intermediate curve in Figure 2. The 5" of aluminum
removed approximately 90% of the high energy neutron_component and
about 30% of the 25-keV neutrons.

A 5.375" thick piece of snlphur (99.9 o/w) wao then placed iu
the sample changer wifh the iron and alumimm piecec and time-of-fliglil
spectrum data were taken for this combination of filters with the fast
chopper. The sulphur piece was effective in reducing the high energy
neutron component as shown in the data plotted in Figure 2; howéver,

the 25-keV neutron peak was reduced an additional 50%.

The Computer Studies

It was apparent froﬁ the fast chgpper runs that the Armco ingot
iron could be used to produée a reasonably monochromatic beam of 25-keV
neutrons providing the prope}'émounts of aluminum'aﬁd sulphur were used
to remove mo;t of the higher energy neutrons. Unfortunately, this
approach would also reduce the ﬁotential 25-keV neutron flu;. There-
fore; it was decided to conduct a computef simulated study of feactor
neutron transmission as a function of Te and Al.phickncsses in order
to arrive at an‘"optimum" combination. 'Fiéufe é ;hows the type of

neutron transmission information which was obtained from computer

calculations.

10
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Although the computer results %ere difficult to interpret in
terms of which combination of Fe and Al would provide an optimum ratio
between the 25-keV neutron peak and the general negtron'"backgroﬁnd",
they were informative. The areas of the transmission beakg were inte-
grated by hand using the trapezoidal me£hod.‘ Table II lists the results
and compares the "signal—to—backgrouhd" ratios.

The computer results were based on total neutron cross-section
information.  Sulphur was not included because it was felt that the
amount wﬁich woulg be used would be minor comparcd with tlLe relulive

amounts of Fe and Al.

Experiméntal Arrangement in HG-5

After the collimator was placed in the HG-5 beam hole facility

of the MIR the chaﬁber was filled with L40.62" of Armco iron. A hydrogen-
filled proportional counter was then mounted on a stand and placedl3"
from the. face of the coiiimator and oriented with its axis pefpendicu-
lar to the beam. A neutron catcher was placed in the projected path
of the béam épproximatély hvfeet from the hydrogen-filled detector.
The neutron catcher cqﬁsisted of a lead brick core 2&" x 24" x 36" long
surrounded by a borated polyethylene cave 6" thick. The surface of the
shielding which faced the detector was covered with a_.OHO" thick sheet
of cadmium to prevent thermal neutrons from-being scattered baék to the
detector. Figure L.shows the experimental arrangement with the colli-

mator and filters in the HG~-5 beam hole of the MTR.

Optimizing the Filters

The HG-5 beam facility of the MTR has a lead "door" which

effectively stops neutrons and gamma rays coming from the reactor.

12



Table II

Results of Computer Transmission Calculations

Fiiters $25 keV - , f¢(E)dE ¢25/f32(E)dE
. >

>30 keV

1k.5" Fe 1.43 x 1072 1.02 x 10-2 , 1.k%0
lg.‘.5 ii 7.95 x 1073 0.524 x 10-3 | 15.2
36" Fe —L* . _l+
&M 1.03 x 10 0.170 x 10 , 6.07
36" Fe -5 ) ) -5
o M 6.77 x 10 0.19% x 10 35.0
24" Fe . : : A

1.04 x 1073 0.0901 x 1073 .. 11.6

6" Al

13
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Figure L. Experlmental Arrangement of the Iron Fllter Located in the Horizontal
Beam Holé (HB-5) of the MTR Reactor.



This door had to be opened manually with a socket wrench prior to taking
proton-recqil data.’ A typical set of proton-recoil measurements re-
quired eight runs at different voltage settings in order to cover the
entire neutron spectrum from 1 keV to 1 MeV. Fér a particular voltage
setting the upper and lower electronic discriminators will allow
proton-recoil ionizétion pulses of é particular voltage (height) range
to be analyzed. Increasing or decreasing the anode voltage simp]y
increases or decreases the gas multiplication of the detector; there-
fore, different energy groups of recoil-proton pulses can be analyzed
in this manner. Approximately_two'hours of total counting time were
required to accumulate sufficient counting statistics.

The proton energy spectrum which was obtained with 40.62" of
Armco iron is shown in Figure 5. These data ha&e been processed using
the PSNS computer code which also calculates the neutron energy spectrum
which is shown in Figure 6. These neutron spectral data agree quali-
tatively with time-of-flight measurements(ll), i.e., the energies of
the transmitted neutrons correspond with the energies of the inter-
ference dips in the iron cross section. All of the proton-recoil épec—
trometer data were taken in the éingle paraméter mode since the gamma-

(3)

ray effects had been observed to be small. Gamma effects increase
the "background" in the energy region below approximately 20 keV (see
Figure 6).

Figure T shows the neutron energy spectra which were obtained
from proton-recoil spectrometer data taken in the HG-5 beam wifh the
following filters: (1) 40.62" Fe; (2) 37.96" Fe, 2.66" Al; (3) 30.96"

Fe, 6.16" Al, 2.75" S. These three spectra have been normalized to
b

the same peak intensity at 25 keV and the data below 15 keV have been

15
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extrapolated (gamméﬁeffects). The FWHM of the 25-keV neutron peak was
found to be 4.3 keV which is iq reasonable agreement with the pre-
dicted resolution of the detector (3.75 keV)(le).

As indicated in Figure T, various thicknesses of Fe, Al and S
filtgrs were ﬁsed in an effort to "opfimize“ or enhance the magnitude,
M, of the 25-keV neutron peak relative to the "background", B.

Table IIT compares the relative magnitudes, M, and ratios, R, of the
total’proton—fecoil pulées collected in channel 60 and channel 80 at

an -anode voltage of 2800 V. For example, in Figufe 8 éhannel 60 falls
at about 25 keV. Similarly, at channel 80 the proton-recoil pulse'dis-
tribution has a constant slope which indicates that the neutron spec-
(12)

trum is at ‘the "background" level in this region. The magnitudé

of the pulse distribution can be used to determine the magnitude of "~

the neutron flux.(l3)

Therefoye, this was a useful means of inter-
preting the effects of changing the amounts of filter material in the -
beamn.

A criterion for optimizing the beam was to obtain the'highesf
value for the ra£io, R, and then obtain the highest value fof the mag-
nitude, M, while mainfaining R relatively constant. The "optimum" beam
under these conditions was obtained with 26.84" of Fe, 8.22" of Al and

-2.31" of S. Figure 8 shows an integral distribution spectrum of the

"optimized beam".

Neutron Flux and Gamma-Ray Measurement

The 25-keV neutron flux which was obtained with 26.8h" of Fe,
2.31" of'S and 8;22"‘of Al was measured with an indium foil. The

indium foil was 3 cm x 3 cm in area and 0.0127 cm thick. When exposed

19



Table III

Iron Filter "Optimizing" Data

Inches of Fe Inches of Al | Inches of S (c/fecj R(M/B)
40.62 none none 43 3.6
37.56" 2.66 none L1 11.1
35.90 2.66 none 56 11.7
33.84 2.66 none 68 11.7
3k. 46 2.66 2.75 56 16.5
32.%0 2.66 2.75 65 16.3
32.40 L.72 2.75 58 20.1
30.96 . 6.16 2.75- 60 21.9
30.96 6.16 1.75 6h 21.L
30.96 8.82 1.75 L9 23.L
30.96 8.82 none 58 18.0
28.90 8.82 1.75 - 60 22.1
28.90 6.16 1.75 79 23.8
27.46 6.16 1.75 9 19.9
28. 40 6.16 1.75 7 20.8
28.90 6.16 1.75 72 21.3
26. 8k 8.22 2.31 76 25.4
25.40 8.22 2.31 90 23.0

analyzer minus the "background",

A sample of the type of information which was obtained with a
proton-recoil spectrometer is listed above.
Al .and S shown above a value was obtained for M and R; where M was the
relative number of proton-recoil counts stored in channel 60 of the

stored in channel 80.

R = M/B.

20
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to the 25-keV neutron beam for a period of 7 hours the saturated Sui-
minute 116MTp gamﬁa-ray activity was sufficiently intense to be analyzed
with-a 3" x 3" Nal crystal and a 512-channel pulse-height analyzer.

(10)

Assuming a-llsln(n,y)llsmln cross section of 0.77 barns at 2b-keV,
a neutron flux value of 2.15 x 10° n/cmz/sec was obtained.

The gamma-ray component of the 25-keV neutron beam was found to
be less than 20 mr/hr. Kodak AA x-ray film was exposed in the beam for‘
16 hoﬁrs. The film is relatively insensitive to neutrons; howe&er,
some neutron effects can.be exfected from (n,p) reactions in the film.
A calibrated §°Co source was uséd td’calibrate the x—ray'filﬁ. It wasv
found that a 300-mr dosage of 6OCQ gaﬁma rays caused equivalent dafk-

ening of the film. Therefore, the exposure rate for the film in the

25-keV neutron beam was less than 20 mr/hr.
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CHAPTER IV
DISCUSSION OF RESULTS

The optimization of the iron filtered MTR neutron beam has
produced a new research tool cap;ble of providing experimeéentalists
with a high intensity source of monochromatic 25-keV heutrénél
(v107 n/cm?/sec).

The concept which was used to obtain the 25-keV neuntron beam
was new §E§ing an interference dip and the inherent cross section of
several select materials to filter all but the 25-keV neutrons from a
_ non-homogeneous beam). For practical reasons it was desirable to
obtain the highest possible 25-keV neutron flux from a particular
neutron source. It was soon discovered, however, that any attempts
to remové the high energy neutron .component from the beam with
aluminum and sulphur filters resulted in a decrease of the 25—kev
neutron flux. Therefore, it was necessary to arrive at some sort of
a ‘compromise.

It was found that a proton-recoil spectrometer was the best
means of "optimizing" the filters. Although computer studies of
neutron transmission through Al and iron had been made, in general,
these results were difficult to interpret. The cross-section errors
which were involved coupled with computer code treatment of the data
made this type of analysis very unsatisfying.  Fortunately, the
proton-recoil spectrometer ulffers a much quicker and ﬁore meaningful
method for obtaining representative neutron transmission data.

The FWHM of the 25-keV neutron peak éhown in Figure T was

found to be 4.3 keV which is in reasonable agreement with the predicted
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resolutién of the hydrpgen-filled.détector (3.75 keV).(le) The actual
FWHM of the 25-~keV neutron peak will be a function of the améunts of
filter material in the neutron beam. The calculated FWHM of the
és-kev neutron peak transmitted by 26" of _56Fe is 1.8 keV. 'I'he
increased width of the 25-keV neutron peak and the increased gamma
ray intensit& caused by reducing the amounts of filter material in the
beam were additional factors to be considered during the selecﬁion of

an "optimum" filter arrangement.
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CHAPTER V
SUMMARY.

The results 6f this study show that a near monochromatic
source of 25-keV neutrons can be obtained with a neutron flux of
approximately 107 n/cm?/sec by utilizing one -of the high intensity
beam holes of the MIR. For exampie, the thermal neutron source flux
in HG-5 is approximately 2 x 1013 n/cm?/sec compared with a-thermal
neutron source flux of approximately 3 x 10'* n/cm?/sec -in the HB-3
beam hoie of the MTR. . The indium-cadmium ratios in HG-5 and HB-3
are approximately 8 and k, respectlvely, therefore, the‘magnltude
of the 1/E segment of the source neutron energy“;pectrum is approx~ - f&u:* "
imately 35 times greater in HB-3. A 25-keV neutron flux of 2 x 10°
n/cm?/sec was obtained from HG-5. The gamma-ray component in the
25-keV neutron beam was found to be less than 2Q mr/hr. The proton-
recoil spectrometer was found to be the best means of optimizing the
beam. 'The best "signal—to—background" ratio was obtained with
26.84" of Fe, 8.22" of Ai and 2.31" of S. 'The "background" (neutrons
having energies other than 25 keV, gamma rays, counter effects)
intensity has been reduced to less than 2% of the 25~keV neutron
inteﬁsify. Examples of experiments that will be performed using

the 25-keV'beam are listed in Appendix B.
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APPENDIX A
DERIVATION OF NEUTRON SCATTERING EQUATIONS

The basic ‘Breit-Wigner theory yields for a single isolated
nuclear level a value for the scattering cross section of slow
(2.= 0) s-wave neutrons.

/2 R 17 : .
—— e = - 2 _
EE_+ir/2 g | " b (1-g)R (A-1)

1
&= 1/2[1 * 2‘1’71‘]

I is the spin of the target nucleus,

o (E) = hﬁ-hozg

where

E 1is the resonancé energy,

2rA is the wavelength of the neutron with kinetic energy, Eo’
R is the nuclear radius,

I' is the partial level width for neutron emiésion at Eogxand

I is the total levei width (FWHM).

Expandiné exﬁression (A-1) gives:

, Pn/2 R rn/z R ,
o (B) =bm ‘el g—vire * i l|lEE -2 [t Yr(l-elR
(0] . o] Qo . O
| (r /2)2 rr /2\  2(E-E) 2
OS(E) = h"*dzg TG-E )2n+ /22 " An (E-E )Z + ((13/2)2 i
) _ o) o] .o o)
+ ihr(l—g)R2
bax 2g(r_/2)2 bnx g RT_ (E-E )
_ o n o n_ "o 2
CS(E) = (E—Eo)2 + (I‘/2)Z + (E—EO)2 + (F/2)2 + ,-HTR (A-z)



The first term in expression (A-2) is comménly referred to as the
"resonance scatteringA@erm". The second term is the "interference
xséatteriﬁg term" and the last term is the constant "potential scatter-
ing term".

Differentiating e%pression (A-2) with respect to ‘the -neutron
energy, E, and setting fhe differential equal to zero results in'a

quadratic equafion.

a0 (8)  [8m %a(r /2)2 + 8m gRT (55 )] (E-E)

T [(EE_)2 + (72)2] '

A gRT
o] n
(E~E0)2 + (r/2)%

+ =0 .

or - .

2 ' ‘ 2 2
(E—Eo) 8nxogan + (E-Eo) 8nlo g(Fn/2)
— 2 2 _>
hnAOgRFn [(E—Eo)’ + (r/2)21 =o0
then
' 2" o'n 2
(E-E_)* + R (E—Eo) -(r/2)2 =0

AT, /(Aornr
— = — / 2
EE_O _ﬁ—il/2 SR + T<.

A maximum and a minimum value* in the single-level scattering

‘cross section, OS(E), exist -at

A'rn - 2R T ’

N

E=E "R 1Y 'l+(x_r_ (A-3)
on

*A second derivative would be necessary to show this.
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The energy at which the minimum scattering cross section occurs .

is given by:

The minimum scattering cross section from equation (A-2) is:

A 2
nAongn 1+ iRFF
(E .. ) = kR — — c il
s min ) ' ' 2
Aolp 2R I'\2 o
‘=) |tV +‘>\ T + (r/2)?
' on ‘
- . o ; )
g Aorn) \/l +“2R'F-2
, LR AT
o (E.. ) =Uu4mR? ( 1-— ——
s min AT (2 r. 2
c.n 2R T 2 2
R l.+ 1+ T + (r/2) _
. L on hE ,
2R Tf?2
hgv 1+ (
i AT
o (B . )= bR2 {1-— . 2.2
‘ ' 2R 1|2 2R I |?
2+ 2 1+ N T ’ + 2 T ’
o) on
s = 2 — 28 » -
os.(Emin) UrRZ {1 . _ =172 : . (A=N)
1 e o+ 1
Aorn' .
5
if err) <<l
on
then
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2RI |2 _ {2RT {2
1+ (A‘F ) =1+ 1/2 {75 ) + ..
o n on
and
o (E. )% byr2 {1 — —2& .
m o 4+ ?( RT )
“Ix T
on
Similarly, if ARﬁ <1 o
on
) Rr_ |2
N - B
cs(Emin) bnRe (1 - g |1 Aorn

For 56Fe
I=0
g =1
A = 56
R =5.7T5x lO"13 cm :
I = 1601 eV
I, = 1600 eV
Ay = 2.7k x 10-1? cm
E = 27.9 x 103 ev
then
2
(flgi; = (0.42)2 = 0.176
ryron )

From equation (A-U4)
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24 -
o Emin 4,16 x 10 (1 - 508

) em?

—~
~—
[}

)

‘+.
. 0.160 x 10~2" em? = 0.160 barns
S min » .

or from equation (A—S)

g (E .
s ' min

@

AT
on

lmRz( R )2 o (1-6)

4.16 x 10-2% (0.0Lk4) cm?

0.183 barns

Also, from equation (A-3)

E . (27.9 x 103 -'3t96 x 103) ev
min : .

E .
min

23.9 kev

It is of interest to investigate the conditions under which the
scattering cross section might be zero.

from (A—h), (A-5) and (A-6) it éan be seen that

min

when

g=1
and

R _

r. o9

on
since

T -

1

n
and )

1.5 x 10-13 A1/3

o 4,57 x 10

>
I
R

-10
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Then

when
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APPENDIX B

APPLICATIONS FOR A 25-keV NEUTRON BEAM

Neutron Cross Section Measurements

The potential applications for a beam facility capable of
providing an intense flux of 25-keV neutrons are numerous. The beam
can be used to measure total and partial cross sections at 25 keV.

: - (1k,15)
Although gamma-neutron sources have been used for that purpose 5
the improved intensity and resolution of the 25-keV filtered neutron
beam will provide additional information in this area.

A second area of application which is related to the measure-
ment of neutron capture cross sections is in astrophysics. The peak
of the neutron Maxwellian distribution that occurs in a certain class
of stars (red giants, s-process) is located at approximately 20-30

(16,17) e
keV. . Therefore, an investigation of the neutron capture
cross sections in this energy region is of considerable importance
to‘the theories that predict the creation of the elements. The

information which could be obtained from this intense source of

25-keV neutrons would be most valuable to this nucleosynthesis study.

Prompt Gamma-Ray Studies

The extremely low gamma-ray field associated with the 2-keV

(2)

scandium filtered neutron beam and the 25~keV iron filtered neutron

beam facilities of the MIR makes them ideal for measuring the prompt
gamma rays from neutron capture in various materials.(18) Since a

better understanding of nuclear structure and the fission process might

~be obtained by prompt gamma-ray investigations as a function of incident
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(19)

neutron energies , filtered beam facilities are currently being

utilized for this purpose at the MTR.

Measureﬁents of Resonance Neutron Parameters

‘Tﬁe powér reactors of the futufe will pfdbably bé fést bfeédef
reactors. The neutron energy spectra of bréede? reactors peak.in“tﬁe
resonance neutron region. Therefore, it is necessary:to obtain more

accuratesmeasurements of. average resonance neutron parameters which

(2)

might affect the safety and operation of breeder reactors. The

scandium 2-keV neutron beam facility has already been used to measure.

the change in neutron cross section as a function of sample temper-

(2)

ature for several materials and is currently being used to measure

the neutron multiplication factor, eta, of 23%9pu at 2 keV.(?o)

Similar measurements with the 25-keV neutron beam are being planned

because of the relative importance of neutrons at that energy in

-

a breeder reactor.

Neutron Therapy

Another important area of application for filtered neutron beams
may be in the field of medicine. Considerable effort has been devoted

by members of the medical profession to the development of a technique

(21)

s

/
involves the assimjlation of tumor-seeking chemicals which have a

for treating malignant tumors with neutron therapy. The treatment
relatively large neutron-fission cross section and the subsequent bom-
bardment. of the tumor with neutrons. Recoiling fission fragments
destroy cancer cells in their process of slowing down either through

ionization or collisions. Since it is important to the technique that
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the thermal neutron density be concentrated at the tumor rather than at
the skin surface (which would be the case with a thefmal neutron
source), a néutron source with a mean energy in the low keV energy_“

. region is necessary.
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