
....

...t.'.,

ANL-7307
Reactor Technology

(TID-4500)
AEC Research and

Development Report/\.:

' ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

MONTE CARLO ANALYSIS OF
REACTIVITY COEFFICIENTS IN FAST REACTORS;

GENERAL THEORY AND APPLICATIONS

by

Laurence B. Mille r

Reactor Physics Division

6.
'                                          Submitted in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy in Nuclear Engineering

in the Graduate College of the
University of Illinois, 1967

March 1967

E- LEGAL NOTICEThis report was prepared as an account of Governrnent sponsored work. Neither the United 

States, nor the Commission, nor any person acting on behalf of the Commission:
t .A.   Makes any warranty or representation, expreeied or  implied, with  respect to  the  accu-
racy, completeness, or usefulness of the informauon contained in this report. or that the use

of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights, orB. Assumes any ilabilities with respect to the use of, or for damagee resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As  used  in the above, "person acting on behalf of  Lhe   Commieiton"   includes   any  em-
I
plc>yee or contractor of the Commission, or employee of such contractor, to the extent that

j Buch employee or contractor of the Commisslon  or employee of such contractor prepares,
I djsse/Inates. or provides access to, any informallon pursuant to his employment or contract

1 with the Commisdon. or his employment with such contractor.

13,7

1'\
3;37RlaUTION OF  MIS DOCUMENT tS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



3

TABLE OF CONTENTS

3„r Page

*             CHAPTER I.' INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .    7

A.   The.Problem in General  . . . . . . . . . . . . . . . .        7

B. Limitations of Curient Theory . . . . . . ......   8

C.  Scope of Research . . . . . . . . . . . . . . . . . . . .     12

CHAPTER II. MATHEMATICAL THEORY FOR SOLVING THE
SPACE- AND ENERGY-DEPENDENT BOLTZ-
MANN EQUATION BY INDIRECT ANALOGY . . . . . ·1 4

A. General Background . . . . . . . . . . . . . . . . . . .    14
1: Theory of Resonance Reactions. . . . . . . . . .     14
2. Theery of Stochastic Analysis. . . . . . . . . . .     17
3. Techniques for Space Transport, Collision

Mechanics, and Estimation of Probabilities. . 23

B. Perturbation Methods . . . . . . . . . . . . . . . . . .    26
1. Source Perturbation . . . . . . . . . . . . . . . . .    26
2. Computation of Temperature Derivatives . . . 27

3.  Variation in Fuel-element Diameter . . . . . . . 29

C. Special Techniques . . . . . . . . . . . . . . . . . . . .    32
2                                        1. An Absolutely Random Number Generator...     32

2. The Fractional Interaction Model . . . . . . . . 33

3. The Source Distribution. . . . . . . . . . . . . . . 45
4. Evaluation of Cross Sections . . . . . . . . . . . 47

CHAPTER III. IMPLEMENTATION OF THE THEORY . . . . . . . . .    50

A. Logical Sequence and Description of the
50Calculation . . . . . . . . · . . . . . . . . . . . . . . . . . .

1. Logical Sequence . . . . . . . . . . . . . . . . . . .    50
2. Determination of the Absorption Probability

and Statistical E r r o r. . . . . . . . . . . . . . . . .     50
3. Geometric Techniques for the Full-core

Calculations . . . . . . . . . . . . . . . . . . . . . .   51
4. Tabulation of Results  . . . . . . . . . . . . . . . ,     52

B.  Verification of the Theory and Techniques  . : ..     52
1. Homogeneous Resonance-integral Test.....    53
2. Resonance Integral Test for Multiregion

Problems . . . . . . . . . . . . . . . . 55

Ce) 3. Test of Full-core Calculation. . . . . . . . . . . 55

1,7



4

TABLE OF CONTENTS

Page
4. Test with Two Resonance Absorbers with

Two Resonances Each 55
5.  Test of Perturbation Technique for Tem-

perature Derivative Calculations. . . . . . . . . 55

6. Test of the Variational Method for Calcula-
tion of Rod-size E f f e c t s. . . . . . . . . . . . . . .    56

7. Comparison with Other Numerical and
Monte Carlo Methods . . . . . . . . . . . . . . . . 57

CHAPTER IV. VERIFICATION OF THE THEORY BY COMPARI-
SON WITH EXPERIMENTS . . . . . . . . . . . . . . . . .    59

A. Rod-size Tests in a Critical Facility........     59
1. Description of the Experiment . . . . . . . . . . .5 9
2. Mathematical Model . . . . . . . . . . . . . . . . .    60
3. Results and Conclusions . . . . . . . . . . . . . .    61
-WI

B.  Tests with Various Materials Surrounding the
Doppler Sample . . . . . . . . . . . . . . . . . . . . . .    62

CHAPTER V. THE EFFECT OF HETEROGENEITY ON THE
DOPPLER COEFFICIENT OF A LARGE FAST

REACTOR ...... . . ............ .. ... , . . 64   .,·. 1
A.  Description of Reactor . . . . . . . . . . . . . . . . .    64                 2

B. Mathematical Model . . . . . . . . . . . . . . . . . . .    64

C.    R e sults.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .
65

CHAPTER VL SUMMARY  ............................          67

A.  Summary of the Present W o r k. . . . . . . . . . . .    67

B. Possible Future Applications . . . . . . . . . . . . .    68

APPENDIXES

A.  Calculation of the Escape Probability for a
Finite Cylinder . . . . . . . . . . . . . . . . . . . . . .   70

B.  Calculation of Multiregion, Hot-Cold Inter-
ference Effects . . . . . . . . . . . . . . . . . . . . . . 73
A. Introduction ...................... 73
B.    AMC  Calculations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . . 74

C.  C o n c l u s i o n s. . . . . . . . . . . · . . . . . . . . . . .    76               C
V

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES.................................... 78



5

LIST OF FIGURES'

No. T itl e Page2
•              ·1. Equivalent Hexagonal and Rectangular Cells . . . . . . . . . . . . .    52

2. ZPR-3 Critical Facility. . . . . . . . . . . . . . . . . . . . . . . . . . .   59

3. Doppler. Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   60

4.  Geometry and Composition for Rod-size Experiment . . . . . . .    61

5.   Geometry and Composition Used in Study of Effect of Sur-
rounding Material on the Doppler Coefficient.............    63

6.  Unit Cell of 1000-MW Westinghouse Reactor . . . . . . . . . . . . .    64

7.   Calculation of Absorption Probability in a Finite Cylinder . . . .     71

LIST OF TABLES

No. Title Page

I.  Results of Test of Temperature-perturbation Method . . . . . .    56

II.  Results of First Test of Fuel Rod-size Variation Calculation .     57

b III. Results of Second Test of Fuel Rod-size Variation
Calculation .................,............ · · · ·   57

IV.  Comparison of Results from Four Computational Methods
(Two-region cell with 25 resonances in Region 1). . . . . . . . .     58

V. Isotopic Compositions for Rod-size Experiment. . . . . . . . . .    61

VI.  Variation of Doppler Coefficient with Diameter of Doppler
Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   62

VII. Relative Doppler Coefficient of a 1.125-cm Thorium Fuel
Element Surrounded by Various Blankets . . . . . . . . . . . . . .    63

VIII.  Effect of Surrounding Doppler Element by Material of
Different Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

IX.  Effect of Structural Material Separating Doppler Element and
Surrounding Material with the Same Resonances . . . . . . . . . 75

X.  Variation of Interference Effect with Blanket Thickness . . . .    76

2 >
9



7

MONTE  CAR LO ANALYSIS  OF
REACTIVITY COEFFICIENTS IN FAST REACTORS;

... GENERAL THEORY AND APPLICATIONS

by

Laurence B.'Miller

CHAPTER I

INTRODUCTION

A.  The Problem in General

Recent design studies for fast power reactors6li63,84,93 have pointed
out the difficulty of achieving reactor stability.  In each design, neutron
economy had to be compromised in order to achieve a stable reactor system.

Although stability is a major consideration in the design of any reac-
tor system, the difficulty is most acute in the design of a fast reactor.  The
mechanisms that contribute to power stability in thermal-reactor systems
cannot be relied upon to provide the prompt negative temperature coefficient
required in fast reactors, which have a much shorter neutron lifetime.  The

 ,                mechanisms of fuel expansion, low-energy spectrum shift, and coolant ex-
pansion are delayed by the time required for heat transfer, and are not,
therefore, of primary importance in fast reactors. The effect of increased
leakage with increasing temperature is important in small fast reactors.
However, in reactors of the most economic size, with power levels of
approximately 1000 MW, the surface-to-volume ratio is much smaller, and
the leakage effect is not sufficiently large to guarantee reactor stability
and safety. Therefore, the Doppler effect is of primary importance in estab-
lishing power stability in fast reactors. The ability to predict the Doppler
coefficient in any proposed design is of the utmost importance, and all
possible methods of increasing the magnitude of the Doppler effect must
be understood. Techniques.that accurately predict the Doppler coefficient
in fast-reactor systems have been developed and are described here in
detail. These techniques have been applied to investigate the l>ossibility of
increasing the Doppler coefficient by varying the size of the fuel elements
while preserving the overall composition of the core. Particular emphasis
has been placed upon eliminating certain approximations and assumptions
that limit the accuracy and reliability of other current techniques. 41,56,60

The elimination of these approximations and assumptions, which was to make
it possible to investigate the effect of fuel diameter on the Doppler coefficient,

".,

i
resulted in a more accurate technique for the analysis of the Doppler coeffi-
cient in fast reactors.
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B.  Limitations of Current Theory

Shortly after Breit and Wigner14. suggested that neutron cross
sections as a function of energy could be represented by a formula similar
to that for the natural shape of an optical line, Bethe and Placzekll discussed             '
Doppler broadening of resonance cross sections due to thermal motion, and
derived expressions for the temperature dependence of the cross sections,
based on a Maxwell-Boltzmann distribution of nuclear velocities. These
expressions, which are now universally used in the study of resonance
absorption and its temperature dependence, are rigorously correct only for
a monotomic gas. However, recent intensive studies i have shown that the
error involved in using these expressions for a crystalline material is quite
small, and these formulas remain as the basic analytic representation of
temperature-dependent cross sections.

Wigner95,98 first formulated the theory of resonance absorption in
heterogeneous systems. His formulation was based upon the following
assumptions:

1.   The characteristics of a reactor can be studied by considering
only a unit cell that is defined so that the reactor is composed of a number
of such cells. Leakage can be ignored.

2.   The collision density in the fuel is constant in lethargy (NR
approximation).

4
3.   The collision density in the moderator is constant in lethargy.                e

4.   The neutron flux is independent of space in each material.

5.   Scattering is isotropic in the laboratory system.

Chernick20,21 introduced a more detailed formalism involving
coupled integral equations for the collision densities in the moderator and
the fuel.  With this formalism he used either assumption 2 or the assumption:

6.   The fuel resonances are narrow compared to the average energy
loss in collisions with the moderator, but wide compared to that in colli-
sions with the fuel (NRIA--narrow resonance-.infinite mass absorber--
approximation).

Corngold24 eliminated assumption 4 by expanding the space- and
angular-dependent flux in spherical harmonics. Unfortunately, the resulting
formalism is quite unwieldy,   and  fur ther  work  in this direction is discouraged
by the formidable mathematics involved.                                                                          , ,
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Because of the difficulty in obtaining .a better approximation to the
theory of resonance absorption by analytic ·techniques, recent work has been
directed toward developing more exact numerical techniques.   In  1963,
Kier55 developed a multigroup method for slab lattices which requires

·             assumptions 1 and 5. He also assumed that::

7.   Neutrons are scattered into the resonance region from a. 1/E flux
at higher energies.

Simultaneously, extending a technique developed by Nordheimlo for
homogeneous media, Lewis60 developed a numerical-integration technique
for a lattice of cylindrical fuel rods based on the same assumptions, but,
in order to consider the commonly used cylindrical rods instead of flat
plates, he required, in addition, the assumptions:

8.   The unit cell can be approximated by a circular cell of the same
volurne.

9.   The correct boundary condition for the circularized cell is:  for
each neutron leaving the cell, a neutron of the same energy enters the cell
traveling in the opposite direction. Honeck 6 pointed out that the latter
assumption is reasonably valid only for very large cells. He showed that a
better approximation is:

-                                                                                                                                                                                                                                                                                     i

10. For each neutron leaving the cell a neutron of the same energy
iA'               enters the cell with all directions of travel equally probable.

Kier56 developed a method for a two-·region cell based upon this
assumption and assumptions 1, 5, 7, and 8, as well as the assumption:

11. The flux-crossing boundaries between materials is isotropic.

Also, the code is limited to considering resonance materials in the central
region of the two-region circularized cell.

As Wigner97 pointed out, neutron transport can be analyzed from two
distinct points  of view, analogous  to the Lagrangian and Eulerian formulations

of hydrodynamics.  One can either consider the particle density in a unit
volume of phase space, as particles continually enter and leave the volume,
or one can focus attention on the individual particles and consider their
motion through phase space.  In the Lagrangian formulation of fluid
mechanics, the particles are aggregates of many molecules, which can be
considered to behave in a deterministic manner. However, in the form-
ulation of neutrbn-transport theory, because of the more complex nature
of the interactions, it is necessary to consider the motion of the individual
neutrons and the probabilistic nature of their motion.  One way to take this
into account is to use sets of random numbers with frequency distributions
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corresponding to the physical probabilities. The first serious attempt to
solve neutron-transport problems  in this way wasby Fermi and Ric.htmyer

31

92
in  Chicago  and  Ulam     in Los Alamos. Los Alamos  gave  the name Monte
Carlo to the method in 1946. Development of the method was continued,
notably, by Kahn, Berger,8,9 Albert,2 and Goertzel and Kalos. It   wa s48-52                                                             39

first used to solve resonance escape problems by Richtmyer, Van Norton,
and Wolfe. They developed the REP code,78 which treats the slowing down77

of neutrons from a 1/E source in a rectangular cell, with a cylindrical fuel
rod containing one resonance absorber. Dannels modified the code to treat
a second resonance absorber. His Repetitious III code is currently in

4,27

use.  Candelore and Gast15 made a similar modification to produce the
RECAP II code. However, the approximate expression,

1
a= copo·                                                      (1)

1 + (xwo)2,

where

x =  2(E - Eo)/r,                                                                  (2)

P   =   the  total re sonance width,
E = neutron energy,

Eo = energy of the resonance level,

90  =   9(x  =  0, e ),
4

9 = the Doppler line-shape function (defined by Eq. 25),
48 = square of the ratio of the Doppler width to the natural width,

and

Go = the unbroadened peak cross section,

is used to represent the cross sections of fuel materials in Repetitious III,
and to represent the cross sections of all materials in the unresolved range
in the RECAP II code.

If the expression

90    ,                                                      (3)
1  +  (x 90)2

is substituted for 9 in the J integral, which is defined by

J= / dx,                                                                     (4)rE  9

J°  1' +  
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where a  is the potential scattering cross section, and

B = ap/GO,                            ...:

we obtain

1 / 1

J   = -FV(1/0  +  B) B.                                                                                                                                 
  (5)

Therefore, the use of the approximation to the dross section given by Eq. 1
would give, for the resonance integral of a narrow resonance,

I    =    2 ra.I .  =   2[  22   r            /        1                                                                                                                 (6)0           2 Eo   a 1/ (40 +  )P '

where

r a    =    ry   +   r f                                                                                                                                                                (7
)

This  can be expanded as follows' for  90 ,8  <  1:

I =i29[,-19.49-- ..:]:                            (8)
In the region of interest, to first order in, 8,

41,     =        /1-      -2.  .                                                                                                                                                              (9)90 -1/ 2    r
. 42

Therefore, using the approximate expression for c gives

. rs
.

r

2 1,  =  [1  - (1,/5 02,  + (1 Af) (1)* - I.  0]0 (10)Iappr -Z E  A

Using the correct expression for a gives 29

Idnt   =  f  IP      a   [1   -  ( i-1/3 f) , (il    i  .4) -   ..   ] .                         (1 1)

The second term of I is equal to the second term of INR divi;ded by 1/i .
appr

Therefore,

> INR (12)Iappr
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Also,

BIBIappr NR        .1= -
he                             ae           42

or, since 0 is directlyproportional to the temperature, T,

BIappr - BINR    1 '
-

BT
BT      JZ-'                                  

                                              
 (13)

This implies that the capture rate in Pu computed by Repetitious III is239

too high, and the temperature derivative of the capture rate is too low.  If
we compute the value of the second term in the brackets of Eq. 11,

*49 f, (14)

using the average of the resonance parameters of Pu239, we find that the
error in the fission rate is only about 3% at 1 keV, but the error in the
temperature derivative of the fission rate is about 40%.

Olhoeft71 used these methods, together with a temperature-derivative
estimator based on Albert' s Neumann Series solution2 of the Boltzmann
equation, to investigate the effect of a nonuniform temperature distribution
in reactor fuel elements on the Doppler coefficient. These Monte Carlo
methods represented a distinct improvement over previous analytic and
numerical techniques. However, they retained assumptions 1 and 7, and
were further limited by insufficient accuracy in the computation of cross
sections from the resonance parameters, excessive computing time require-
ments, and geometrical restrictions. 'The development of a complete
algorithm based upon theories and techniques not dependent on the above
assumptions and limitations was a major objective of the research described
here.

C.  Scope of Research

Chapter II deals with the development of the general theory and
techniques used in this research. Chapter III describes the incorporation
of these techniques into a highly versatile computer program, the
characteristics of the code that contribute to its accuracy and speed, and
the numerous tests carried out to verify the accuracy and reliability of
the code.

V
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The  ability of the  code to -accurately ·predict Doppler effects  was
checked by comparison with experiments carried out in critical facilities.
The results of the comparisons, described in Chapter IV, Verify the utility
of the theory and techniques incorporated in the code.

Finally, computations were performed to determine tha Doppler
co.efficient of a large fast-reactor system, and to investigate the possibility
of increasing the Doppler coefficient by varying the fuel-rod diameter.
Chaptet V gives the computed value of the Doppler coefficient and con-
clusions concerning' its 'variation with fuel-rod diameter.

Chapter VI· discusses- the applicability of the theory and techniques
used in this research, describes some possible extensions of the present
work, and, finally, summarizes general conclusions concerning the effect
of fuel rod diameter on the Doppler coefficient.

U
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CHAPTER II

MATHEMATICAL THEORY FOR SOLVING THE SPACE- AND ENERGY-
DEPENDENT BOLTZMANN EQUATION BY INDIRECT ANALOGY

A. General Background

1.   Theory of Resonance Reactions

The study of nuclear-resonance phenomena began in the 1930's,
following very closely in time and to some extent overlapping the develop-
ment of the theory of atomic-resonance phenomena. Atomic-resonance
theory was developed rapidly in the 1920's and 1930's by such authors as
Henri, Teaves, Bonhoeffer, Wentzel, Kronig, Dirac, and Rice and the con-
cepts evolved by their study were applied to nuclear-resonance phenomena
by Bethe,10 Fermi,3 Moon and Tillman,66 Beck and Horsley,6 and Szilard87
between 1930 and 1935. Breit and Wigner, in 1936, made a major contribu-
tion when they postulated the existence of quasi-stationary energy levels to
account for the observed high-absorption cross sections without accompany-
ing large scattering cross sections. The theory was improved by Kapur14

and Peierls,53 Bethe and Placzek,11 Breit,13 and Feshback, Peaslee, and
Weisskopf.32 Wigner and Eisenbud'6,99 and Teichmann9o finally provided a
treatment that took into account the strong nuclear interaction. Excellent
summaries of their work are contained in books by Blatt and Weisskopf12
and by Sachs.82 The theory of resonance reactions is based on the concept
of the compound nucleus.  It has been inferred that a finite delay occurs
between the time a neutron strikes a nucleus and the time the reaction prod-
ucts appear. During this time, the target nucleus plus the bombarding neu-
tron exist as a single nucleus in an excited state, corresponding to a virtual

energy level of the compound nucleus. The criterion for a reaction to take
place is related to this delay time and to the existence of a virtual energy
level of the compound nucleus at an energy corresponding to the energy of
the ground state of the target nucleus plus the kinetic energy and binding
energy of the neutron.

The virtual energy levels   can be calculated from quantum -
mechanical principles in exactly the same manner as bound energy levels
are calculated. Experimentally, however, bound energy levels are iden-
tified by observing the energy of gamma rays emitted in transitions between
bound states, while virtual energy levels are found from a study of the reso-
nances observed when neutron cross sections are measured as a function
of energy.

The observed virtual energy states are metastable, and the
mean lifetime of the compound nucleus can be related to the width of the
virtual energy level by Heisenberg's Uncertainty Principle,
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h
AE AT = -. (15)

27T

where

AE = energy,

87-  =  mean. lifetime,

and

h = Planck's constant.

Applied to the theory of resonance,reactions, AE represents
the width of the virtual energy level, which can be observed experimen-
tally as the width at half-maximum (or the "half-width") of the resonance

peaks on a plot of cross section vs incident neutron energy. Since the mean
life of.the compound nucleus, represented by·AT,·is inversely proportional
to the decay constant, X, we can·write

AE    = Xh/27r. (16)

The  AE in this equation is usually denoted by F.  If the compound;nucleus
is capable of disintegrating in several ways, a  Fi for each mode of decay
is defined by

r i .=: Xih/27T.·         ·                                                                      (17)

Obviously,

r=Tr (18)
Lj  .i·
i

The fact that the .virtual energy levels  of the compound nucleus
hav.e finite widths implies that the incident neutron need not have precisely
the ·right amount of kinetic energy to form a compound nucleus at a precise
energy of excitation.  If the neutron energy is such as to produce a com-
pound nucleus with an excitation energy within ·+* F of the center of a virtual

energy level, there is a high probability the reaction will take place. Since

systems of subatomic particles exist stably only in discrete energy states,

only neutrons and nuclei with appropriate relative vel'ocities have a high
probability of interacting. The interaction probability as a function of the
total kinetic energy of the neutron and nucleus in the center of mass system,
as given by the Breit-Wigner formula, is 14,30
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X2     2IC + 1 rnr'

C  = -41-(2In + 1)(2I+1) (E-·Eo)2 + (r//2)2' (19)

where

X  = deBroglie wavelength of the neutron,

Ic   = angular momentum  of the compound nucleus,

In = intrinsic angular momentum of the neutron,

I = intrinsic angular momentum of the nucleus,

rn = neutron width of the excited level,

r = total width of the excited level,

E = kinetic energy of the neutron and the nucleus in the center
of the mass system,

and

Eo = excitation energy of the compound hucleus.

The interaction probability, or cross section, as a function of
neutron velocity in the laboratory system, can be obtained by averaging the
above function with the probability function for the velocity of the nuclei.
The probability function for the velocity of the nuclei can be represented
by the Maxwell-Boltzmann velocity distribution, 1,58

P(V) = (20)
exp [- V2/4 e]

[47re] 3/2 ,

where

e = KT/ZM, (21)

K = Boltzmann constant,

T = ternperature,

M = mass of the nucleus,

and

V = velocity af the nucleus.
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If the nonresonance potential scattering is taken into,account, the .resulting
express:ions :for the, Doppler-.broadened absorptionand scattering cross
sections··are, r·esp6ctively,29

p a        =        C o    - El     #j(  8,
x), .(22)

and

Fn
as ·= coirv/(e, x) +·(coqpgr.Il/r)1 2 x(e,.x).+ ap, (23)

where

1-rn     4 (24)co  = .Ar'

P = radiation:width,
7

A CDC)

9 (e, x) =
'  exp L-     48     ]

dy, (25)
1., 1 r (x_ *)21

e   ,    2 47TJ -co   1    +   y.

x(e, X) =    1     f-  Y   exp  (Xieff  dy,                   (26)e   .   z  ,/E   J_-  1.t  yz
0-'1

x  =  2(E -· Eo)/P, (27)

and

4KTEe= .(28)(M + 1) r2.

2. Theory.of Stochastic Analysis

The method of stochastic analysis, when applied.to neutron-
transport problems is now commonly referred to as the Monte Carlo method.
Briefly, the ·Monte Carlo ·method consists of. following individual imaginary
neutrons in their·travel  thr ough space and energy, and using random  num-
bers drawn from the appropriate probability distributions to determine the
distances between collisions and the results of each collision. The colli-
s:ion points determined in.this.way constitute an unbiased sample which can
be used:to evaluate various :integral functionals such as the absorption·and
fission rates.. The.theoretical basis of this method can be developed rigor-

.'1'

ously starting with a few well-established principles of the theory of
36statistical analysis.
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These concepts can be most easily explained in terms of the
application of statistical analysis  to the evaluation of integrals.   Let S(X)
be a function of X defined on the interval [a, b].  If we choose N .sample
values of S(X), corresponding to N values of X chosen randomly on the
interval [a, b], we obtain an estimate for the mean of S(X) given by

-1  
St   --N 2, S(Xi), (29)

1=1

where Xi, Xz, ···, XN are the N randomly chosen values of X.

If we choose other sets of N sample values of S(X), we obtain
other estimates of the mean, Sz' S3' ···' etc. These estimates have a fre-
quency distribution, called the sampling distribution. The sampling distri-
bution has a mean, g, and standard deviation, B. . The mean, g, is the same
as the ·mean.of S(X), and the standard deviation,  5, is equal to a//Ri, where
a  is the standard deviation of S(X) from <S(X)>.   Thus Sl approximates
<S(X)> more closely the larger the sample size.

Thes·e statistical results can be immediately applied to the
evaluation of integrals, since

rb

    S(X) dX  = <S(X)> · (b - a)
Ja

N
1  r-

= .R ' 1 S(Xi)(b - a) +
a. (30)

It is often advantageous to write the integral as

rb

I =     f(X) g(X) dX, (31)
Ja

where g(X) = S(X)/f(X), and f(X) is a convenient probability-distribution
function.

This can be evaluated by choosing N values of X from the
probability distribution

'
f(X)/c as·X s b

P (X)    =  1         0                                        X  <
a, (32)

.

l o . X>        b
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where. c is the normalization constant such that

 b f(X) (33)
 ac       dX    =     l.

The value of the integral is then

N

I =   g(Xi). (34)

1=1

The validity of Eq. 34 can be easily established.  For f(X) =  1, c =b- -a
and g(X) = S(X), so Eq. 34 is identical to Eq. 30. Now suppose that f(X) is
such that f(Xl) = F.  Then, the probability of X1 being chosen from P(X) is
increased by the factor  F.   But, at the same time,. g(Xl)  =  S(Xl)/f(Xi) is
decreased by the factor 1/F.  So ·the probable contribution of g(Xi) to the
sum of Eq. 34 is the same as in the case of f(X) = 1, and Eq. 34 is an
unbiased estimator fon the value of the integral  I..

Now if we want to find the absorption probability for neutrons
traversing a region of phase space, we can evaluate the absorption integral

rb

I =  2 0(R) s (X)
dX (35)

by letting

f(R) = 0(R) st(X) (36)

and

E:(R):
g(X) (37)

Itt(R) ·'

where

0(R) s c ala r   flux,

St(X)   total macroscopic cross section,

s (-X) macroscopic absorption cross section of isotope z,

and '

X. = a point iIi six-dimensional phase space.
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Here f(X) is the collision density, and the points, Xi, may be
chosen from the probability distribution p(X), by following individual neu-
trons throu h phase space and taking the successive collision points to be
the points Xi.

We have only to determine the normalization constant, c, such
that

rb

        0 (R)  st (R)  dX/c  · = 1. (38)

Ja

Since                   '

A
           0(R)    E t(R)   dy= N (39)

Ja

is the total collision rate due to Ns source neutrons per unit time entering
the region under consideration, c = N. The value of the absorption integral
is,  explicitly,

N Ez/X.1F o a\1, (40)I = L St(Xi) '1=1

and the absorption probability is I/Ns.

The first major consideration in any Monte Carlo calculation is
the problem of choosing random numbers.  One must be able to select num-
bers in such a way that the ·probability of choosing a given number,  p,  is
proportional to some function of p, f(p). For example, to determine the
distance a neutron goes between one collision and the next, one must be able
to choose random numbers in such a way thai the probability of choosing a
given number, Pi, is proportional io the probability of interaction at a dis-
tance p from the initial point X; i. e.,

f (p)   =   E (3 + pg)   exp I-0-j' P ECX+P'9) dpil,                       (41)

where E is the total cross section and Q · is the direction of travel.

This problem can be broken into two parts. The first part is
generating random numbers uniformly distributed on the interval [0,1].
The second part is using these numbers to obtain random numbers satis -

fying a given probability distribution.
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The most common method of generating:a geries:of random
numbers on the interval [0,1] is to multiply the preceding number in the

series by a fixed multiplier, and to'·retain thi· least significant part of the
product. For example, on a 40-bit computer,

Pnti  = 324 Pn(mod 239)                .          . . . .                            (42)

is frequently used; i.e., we use a multiplier of 324 and retain the least sig-
nificant 40 bits.   This is known as the multiplicative congrudntial method.

Many. other methods of generating pseudo-random number sequences  have
been used, but the .multiplicative congruential method gives'series that best
satisfy the various tests for randomness. 47

The techniques used to obtain random numbers satisfying a given
probability distribution, utilizing a supply of random numbers uniformly
distributed on the interval [0,1] are very simple in theory,'but ingenious in
practice. Theoretically, one can obtain the random numbers, Xi, distributed
according to the probability density function, f(X), from the relation

rxi
     f(X) dX =

pi, (43)
0

where the Pi are random numbers uniformly distributed on the interval

[0,1].   This  can be shown as follows.

Let R(p)  be the probability ·density function for the Pi; i.e.,
R (p) 8.p is the probability that Pi will lie between p and p + Ap.  (R(p) = 1
for the uniform distribution [0,1].) Define Xi and AX by the relations

rxi
F(Xi) = / f(X) dX = Pi (44)

JO

and

rxi+Ax
F (Xi +  AX)    =

 110
f(X)  dX  =  Pi + AP, (45)

where f(X) is an arbitrary positive definite function of X.  Then,

F( i+AX) - F( i) = Pi+Ap- Pi = AP (46)

By Eqs. 44 and 45 and the fact that F(Xi) is monotonic, there.is an Xi in
•             :the interval [X, X + AX] for each Piinthe interval [p, p + Ap]. So if·S(X) is

the resultant probability distribution function for the Xi, then
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S(X) AX = R(p) Ap =.Ap. (47)

Combining  Eqs.  46 and  47 and taking the limit as  AX ·-*  0,  we have

F(Xi+X) - F(Xi)
lim                      = S(X), (48)

tx-O 8x

or

dF- =.S(X). (49)dX

But from Eqs. 44 and 45,

dF- = f(X), (50)dX

s o  that

S (X)    a   f(X)                                                                                '                                                                                   (51)

and the Xi defined by Eq. 44 are distributed according to the probability
distribution function f(X).

For example, if the desired probability distribution is

f(X) = cos X, (52)

the random numbers Xi can be obtained from uniformly distributed random
numbers Pi by using the relation

BX·/1j    cos X dX = pi; (53)
JO

i.e., the Xi with the desired distribution may be computed from

Xi  =  arc sin Pi. (54)

In practice, the evaluation.of such transcendental functions is
usually.avoided by some ingenious use of random numbers. For example,
should we need.to compute the square root of a random number,

(55)

D



23

we would avoid the time-consuming process of extracting the square root,
by obtaining two random numbers and choosing the.maximum of the two to
be Xi. This procedure is based on the previous theorem and on a modifi-
cation of what is known as the "rejection technique. Working backwards„44

from: the previous method, we see'that if Xi = JFT,

Pi = x8 (56)
1'

and

Pi =  xi 2X dX.                                                   (57)

So the probability density function for the Xi is f(X) = 2X,
which, normalized to 1 2 on its support, is

f(X) = X. (58)

Now if we choose a tentative value for Xi and accept this value only if a
second random number is less than f(Xi), the probability of accepting a
given Xi is proportional to f(X).· .if we adopt this procedure, it might appear
that we will have to reject one-half of the tentative values.   But one final
consideration shows this to be unnecessary. ·If we next interchange the role
of the two random numbers,.we note·that one member of every pair of ran-
dom numbers will be accepted--always the larger one. Whenever posdible,
such time-saving schemes are used in choosing from nonuniform probabil-
ity distributions. If such.a scheme cannot be found,  Eq.  44 can always  be
used.

Having available a supply of random numbers distributed ac-

cording to any desired probability distribution,.we can follow individual
neutrons in their flight from collision to collision. By tabulating the events
that occur in the life of a sufficient number of neutrons, we can determine
what actually occurs:in a given physical system.

3.   Techniques for Space Transport, Collisiolk Mechanics, and
Estimation of Probabilities

A Monte Carlo calculation can be set up in many ways to get
the same result. For example, there are at least six alternate ·ways of

treating space transport. The simplest approach is to carry out the calcu-
lation in direct analogy with the physical process.  At each collision point,
the neutron is either absorbed or scattered as determined by the selection
of a random number. After each collision, the point of next collision is

determined by the direction.chosen from the appropriate probability distri-
bution function and the distance, s, chosen from the relationship
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rs

/    St(x, E) ds· = ':-ln p. (59)
JO

The second possibility is·similar tothe first, except the distance
between collisions is determined from the relationship

rS
1    Es(x, E)  ds =.-ln p; (60)
JO

i.e., only scattering.collisions are considered, and the absorption is cal-
culated as

   Eae-Sts.ds,                                                  (61)
where s is the path length.

In the third method, the space transport is handled by a slight
modification to the direct analog of the·physical process, in which the·neu-
tron,is allowed to continue ·without absorption at any collision and the neu-
tron weight is adjusted as required to obtain the correct values for the
absorption probability. This technique ·is discussed more fully in Chapter III.

A fourth possibility is the fractional interaction model, which
will be described in detail in-Section C of this chapter.  In this model, the
distance between collisions is determined from the relationship

- _ -ln p
  - C(E)' (62)

where

C(E)  = supremum{Et(X, E'):E'  = E}; (63)

i.e., C(E) is the largest cross section in the entire nuclear system at
energy E.  Then at each collision point the probability of an interaction
that changes the speed and direction of the neutron is

E t(X, E)
C(E)

(64)

The selection of a random number determines whether such a true inter-
action takes place :at the collision point or whether the neutron continues                       :
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with its previous direction and speed. The advantage of this technique is
that it eliminates the complicated pr.ocedures required to cross boundaries
between. different materials. Since it permits the determination of the next
collision point without reference to the space dependence of the cross sec-
tions, it makes calculations on systems with extremely complex geometry
practical. The .validity of this method is proven in Section C of this chapter.

The fifth possibility is to permit the neutron to go exactly one:
mean free path between collisions and to adjust the neutron weight appro-
priately. This eliminates the need to evaluate ln p once for each collision.
However, the·validity of this approach has not been rigorously established.

A sixth method closely related to the last one is to require the
neutrons to have not only fixed path lengths, but:also a limited number of
possible directions. Lattice points are set up, and neutrons are .required to
travel from lattice· point to lattice point.

Which of these methods is the most efficient depends on the
problem being studied.  If the object of the calculation is to obtain a quick
answer to a relatively simple .problem, direct physical analogy should

probably be used by anyone except the most practiced analyst.  If the prob-
lem is more complicated--·and all problems involving space- and energy-
dependent neutronics  fall in this claas- -one of the nonanalog methods  must
be used in order to obtain sufficient accuracy in a reasonable amount of
computer time.   If the geometry isany: more complicated than a two- or
three-region cell, the fourth method, the fractional interaction model, is
the most efficient.

The determination of the direction of emission from a collision
point does not permit the application of such a wide variety of techniques as
in the case of space transport. Either the angle of emission is chosen from
the known probability distribution function, or the angle of emission is
chosen from the isotropic distribution and the neutron weight is multiplied
by the actual probability of emission at the selected angle.

There ·are, however, many alternate ways of tabulating the events
in the particle histories. The estimator used depends upon the quantity to be
calculated. However, the various scoring methods used can be illustrated

for just one quantity, and the ·methods will apply also to the calculation of
other quantities. Suppose that the desired quantities are the probabilities
for absorption in hypercubes of phase space.  In the direct physical analogy,
the number of absorptions in each unit of lethargy and in each unit of volume
are recorded and divided by the total number of source neutrons to obtain
the absorption probability in each region of phase space.  In the modification
of the direct physical analogy in which a fraction of the neutron is absorbed
at each point, the appropriate absorption estimator  is  the  sum over  all  col-
lision points 9f the ratio of the absorption to total cross section times the
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neutron weight.at each point. The appropriate.,estimator to be·used when the
distances between collisions is determined by:the s'cattering· cross ·section
only,.is :the integral of the neutron weight times the absorption cross sec-
tion over the neutron ·path·.length. Inthis case, the neutron weight is given
by                                                                                                                                              ..

exp [-fs.'adsl,                                                      '                                  (65)

where s is the·path length.

A scoring method that can be used to reduce the variance in the
results is to compute the desired result as the sum of the probable contri-
butions ·f,rom all scattering points. ·. For example, the absorption probability
per source neutron:at.the point, ri,  can be ·computed as

'.

N

expf-L'  3,3, f '0-,E)  ds}
Ei'   I' iss(ri, Tii -+ Ti,  Ei -'E)          -     -                                         Ea(rl),

i=o. (66)

where

Wi  = the neutron weight· (initially one, reduced.by Is/St at each
collision),

s   =    Iri  - ri|, (67)

N = total number of collision points,

-   -

ri - ri
0

-- Iri - Fil " (68)

)-

and

Ns = number of source neutrons'.

This method of scoring can sometimes be used to advantage
with each of the above-mentioned space-transport models.

B. Perturbation Methods

1. Source Perturbation

If the ·flux is due·to a specified s.ource, . Sl(R), itis·possible to
choose starting coordinates, Xo, from a simple function S(X), and obtaih·
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the correct value. of the absorption integral; Eq. 3,5, by.c·orrespondingly
modifying g(X). (The notation of Section II-A-2 is used here.) The neces-

sary modification of g(X) is most easily established by considering the
contribution to the sum in Eq. 31 from the points Xin generated in the nth
neutron history.  Let Xon denote the starting coordinates for the nth neu-
trori. The probability of the coordinates Xon :being chosen, when the func-
tion S(X) is used, is a factor of S(Ron)/Sl(Ron) greater (or less) than the
probability of the coordinates Ron being chosen when the function  Sl(X)  is
used.  Accordingly, the probability of the points Xin being chosen is in-
creased (or decreased) by the factor S(Ron)/Sl(Xon) when the starting coor-
dinates are selected from the ·distribution 5(X) instead of Sl(X).

Formulating the theory of stochastic evaluation in this way, we
immediately observe that we can use one set of neutron trajectories with
starting coordinates chosen from a simple distribution, S(R), to obtain re-
sults for any number of specified sources, Si(R). We consider Si(R)/S-(X)
as a.weighting function and refer to this as a multiple·weighting technique.
The probability that g(Rin) will contribute to the sum in Eq. 31 is multiplied
by the same factor. However, to obtain the correct value of the integral,
the probable contribution of g(Xin) must remain constant. So, the value of
g(Rin) must be divided by 5(Xon)/Sl(Ron)· The value of the integral is
therefore given by

N g(Ri) Sl(Ron)
I =     S(Ron) (69)

i=1

As an instructive exercise to develop familiarity with the capa-
bilities of stochastic methods, the technique ·was applied to obtain the prob-
ability of escape from a finite rod, of neutrons incident on the rod with
various incident angular distributions. Because of its pedagogic potential,
the calculation is described in Appendix A.

2..   Computation of Temperature Derivatives

The absorption rate in each isotope of a system at a given tem-
perature is easily obtained by the stochastic techniques described in Chap-
ter III. The change in absorption rates as the temperature increases could
be obtained by taking the difference between absorption rates computed at
two temperatures. However, this method is quite inefficient. An increase
in reactor temperature of several hundred degrees ·will typically produce an
increase in absorption rate of about 1%.  If the change in absorption rates
is desired to two significant digits, the ·absorption rates must be obtained to
four significant digits. Since the statistical error is approximately propor-
tional to the inverse square ·root df the number of sample points, the time
required to obtain four significant digits is a factor of 10,000 greater than
the time required to obtain two significant digits.
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To. compute Doppler reactivity coefficients efficiently,  a new
method for directly computing the temperature derivative of the absorption
rates was derived. The integral to be evaluated is

I _ - - f0(R) sa(X) dX. (70)BT J

Following the usual convention, the temperature dependence of the flux, 0,
and the cross sections, Ea and St' is not shown explicitly.

Equation 70 may be written as

T = ff(R) 2(R) dR, (71)

where

3 za/BT        1   f   Ea2(R) = s (72)
t     + 0 3 T"ZI-

and

f (X) = 0(X) St(X) (73)

as before, so that we can obtain the points Xi from the trajectories that
are used to compute the absorption rates.

Section C of this, chapter discusses the evaluation of the cross
sections and their temperature derivatives at each collision point.

A method for evaluating the logarithmic derivative of the flux
can be most efficiently and rigorously derived if we remember that the flux
in a reactor is the result of the trajectories in phase space of individual
neutrons.   The  flux,   0(X),   in Eq.  70 is found computationally by following
individual trajectories and computing a weight, W, associated with each
point of the trajectory.  The flux in a unit of volume is, then, proportional
to the sum of the weights at all collision points in the volume divided by the
macroscopic total cross section..

To determine the temperature derivative of the flux at the ith
collision point, we must consider the effect on Wi of a temperature change
at all previous collision points. This effect is due to the temperature depen-
dence of the ratio Es/Et by which W is multiplied at each collision point.
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·, ....  Let Wi.denote: the weight before the ith collision, W.£+1'.denote
the weight after the ith collision, and Ri denote the ratio Es/St at th  ith
collision point. Since the contribution of each neutron to the flux at Xi is
proportional to Wi/Sti, we Can write

.

1 30i 1 Bwi 1    Bsti

   B T    =   Wi  3-9    -  SH-3T

1      8(pri-1 Ri-1)    i  asti
-

w -1 Ri-1      BT      - sti BT

1 BRi-1 1          Bwi- 1 1   8 sti

-  Fli- 1    aT     + wi- 1     BT     -  26-3*-

1  aMil.i,·   i·  BRi-'2 ;':'       1 -BRI   1 .awp 1   82 ti
=  Ri--1   8'r    + Ri-2    8'r    + ···  + Ri  2-r '+ WI -2-r-' -  iti -3;F

3  '...': W FEE·3.::/Es:\1  ·.t' · l  a.*ti:     .
=    2.   [ -28  -3T  (Et)]      -   z ti     aTp=l             P

i-1 r.  1 BEs(ip) 1         82 t(xp) 1 1     82 ti
=  I  I ss(Xp)     BT:    - st(Rp)     BT     J - ETI -39--'          (74)

P=l L

The cross sections and their· derivatives are evaluated and the
required sums accumulated as each neutron history is traced.

3.   Variation in Fuel-element Diameter

As part of this research to study the effect of heterogeneity on
the Doppler-coefficient:in, fast reactors·,: it:was desired to compare the Dopp-
ler coefficient in two -reactor sirstems having identical fuel and moderator
-volume fractions, but different-sized fuel elements. Computing the Doppler
coefficient in each system and obtaining the difference by subtraction are
complicated by statistical errors. To avoid this difficulty, a method of com-
puting the Doppler coefficieht for two 'such systems using one set of neutron
histories was developed based on the fact that two geometrically similar

transport problems have identical solutions if each produtt of distance times
cross section in one system is identical to the corresponding product in the
other system.

Dresner has shown that this equivalence theorem is true for
various approximate models.  That it is true in any system to which the

transport equation applies, can be shown by comparing the integral transport
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equations for equivalent systems:: The space- and' energy-dependent flux in
one system is given by the equation

01(r, E)
.  -Lf   fv.f S - ry-2 exp[-Ir - r'ISt(E)]

  01(71, E') C.(E') St(E') f(E' -·E) dE' + 47rS 1(P, E)   dV',   (75)

and the equation for an equivalent system K times as large (with cross
section St(E)/K) is

02(-X, E)  -  A       jf'IR - 2,1-2 exp(-IR - X,Ist/K)

<   2(x',E') C(E')[Et(E')/K] f(E' -+E).dE' + 47rS,(5Et, E)  dv',
(76)

where

01   = the neutron flux in system  i,

Vi = the volume of system i,

St = the total macroscopic cross section of system one,

C = the expected number of neutrons emitted per collision,

f (E' - E)  =  the.prohability that a neutron emitted from a collision.,
of a neutron of energy E', will have the energy E,

and

Si = the neutron source density in system i.

With the substitutions
, '. .t».

X   =  Kf  and  X'   = KP', (77)
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Eq. 76 becomes

02(Kr, E)  =  tf f, f IKF - KF' 1-2 exp[- IKF - KF'jE,(E)/K]

'

   02(Kf",E,) C(E') [Et(E')/K] f(E'-E) dE' +47rS2(Krl, E) K?dV:LJ
(78)

When Eq. 78 is simplified by cancelling K3/K3, it becomes

02(KF, E)
. "b f  f.. f |'r   _   r q-2  exp[ - Ir  -   F l s t]

' {02(KF!,E') 6(Ef') Et(E') 2(E' -E) dE' + 47'rST(Kr',E) K}dV: (79)

Comparing Eqs. 79 and 75, we see that if we take

S2(Kr, E) = Sl(F, E)/K, (80)

then 02(Kr, E)'must be identically equal to 01(r, E).

For the systems to be equivalent, the external source in the
second system must be K-1 times the source in the first system.  Also, K
must  be ind ependent of energy  but  may  be a function of space.

This equivalence makes it possible to study the effect of heter-

ogeneity in systekns composed of identical materials but different dimen-
sions, by studying the corresponding systems having identical dimensions
but different macroscopic cross sections.

The Doppler coefficient for two such systems may be computed
using one set of neutron histories. The histories are generated for one of
the systems using the fractional interaction model, discussed below, and
the Doppler coefficient for this system is obtained using an absorption-
derivative (with respect to temperature) estimator. The Doppler coefficient
for the second system is obtained at the same time in the same way, except
that the neutron weight for this system is multiplied at each collision by
the factor

E taF  = - exp[(Sti - Etz) x], (81)
Stl
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where

Sti = the ·macroscopic total cross section in the first system,

Stz = the macroscopic total cross section in the second system,

and

x = the distance between collisions.

Since the free path lengths are selected from the probability density
function

Pl(x) = Stl exp(-E·tiX), (82)

the factor, F, is the importance function required to obtain the correct
answer in the second system in which the probability density function for
free ·path lengths is

PZ x) = S.t2 exp(-St2X); (83)

i.e., F is the ratio of P2(x) to Pl(x).  That F is the correct importance
function can be established by the following argument.  If Sti.'.is less than
Sti' then choosing the path length, x, from the distribution

P.1(x) = Sti exp(-Stix) (84)

will result in too many path lengths shorter than 1 /Et:· To compensate for
this, the weights of neutrons ·with short path lengths are decreased by the
factor ·F. The effective (weighted) distribution of path length is

rE t2
PI(x) F(x) = [Eti exp(-Stix)]< - exp[(Sti -Stz) x] lxti

= Stz exp(-Stix), (85)

which is the correct distribution of path lengths in system 2.

C. Special Techniques

1.   An Absolutely Random Number Generator

Basic to all stochastic techniques is a method of generating
random numbers satisfying some known probability distribution. No satis-
factory method for generating truly random numbers was known previously,
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so it became customary to use numbers from a pseudo-random chain gen-
erated by the multiplicative or mixed congruential method.  As part of this
research, a method of obtaining random numbers by sampling arbitrary
memory locations in a digital computer was developed. Previoui attempts
to obtain random numbers by sampling memory locations have failed be-
cause of inevitable bias  in the results.   A new technique for eliminating
this bias was developed and used as the basis for an absolutely random
number generator.   In its simplest form the technique  is as follows:

Identical bit positions of successive memory locations are sam-
pled.  If the two sampled bits are (0,0) or (1,1), the result is discarded and
another sample is taken.  If the result is (0,1) or (1, 0) then 0 or 1, respec-

tively, is taken to be the first bit of our random nurnber. The remaining
bits are selected similarly. This procedure completely eliminates any
bias due to an excess of."0.",or "1" bits inthe memory, since the probabil-
ity of obtaining (0,1) is exactly equal to the probability of obtaining (1,0).
Serial and moments tests of this procedure have verified the randomness
of numbers selected in this way. However, the time required to obtain a
random number by this procedure exceeds the time required to bbtain a
pseudo-random number by the multiplicative congruential technique.

2.   The Fractional Interacti6n Model

The standard method of tracking neutrons in heterogeneous
systems requires the calculation of the optical distances from the point of
each collision to each of the region boundary points through which the neu-
tron passes on its flight to the next collision.  This is a very time-consuming

process, and the possibility .of avoiding it merits serious atteritidn because
of the potential savings in computing time.

A rigorous mathematical theory for a technique that eliminates
the calculation of intermediate optical distances is given here. Calculations
performed on a CDC- 3600 computer using this technique indicate that the

required computing time to obtain a given accuracy is reduced by a factor
of two or three, compared to the time required for standard tracking

techniques.

Followin*·-d suggestion implicit in Chilton's work 2 on thick
shields, the steady-state transport equation can be written in the form

 i  ·  90(r, E, Ii)  + C(r, E).0(r, E.,  2)   =.    P(El, Ti! --E, -R)  Es(T, E')0(F, E', Il')  dEdil'

+ [C(F, E)- E (F, E)] 0(F, E,n) + s(r, E,Ii), (86)
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where

St = the total macroscopic cross section of the·medium,

Es  = the macroscopic scattering cross section of the medium,

and

C = a fictitious cross section such that C 2 St·

This  suggests:that the ·flux can be considered to be the average
density of trajectories generated by particles that migrate according to the
following rules. The particles travel with constant velocity between colli-
sions and may change velocity but not position in collisions. The distance
between collisions is given by the·probability-density function,

-               -

rs

f(s)   =   C(r, E)  exp_- 1       C(F, E)   ds
· (87)

When a collision occurs at phase point (r, E, 0), there is a
probability given by

Es (F,E,  R  )    P(E,   Ti  -E',   Q ' )
C (r,  E)

(88)

that the neutron will be transferred to phase point (r, E', O'). Also there is
an independent probability that a neutron will be emitted at (F, E, 0) given by

CV, E) - Et( ,E)
C(r, E)

(89)

We could use this model to simplify the solution of the Boltzmann equation
by. choosing C(r, E) independent of r. However, this model introduces the
complication of branching of trajectories.

We can eliminate branching of trajectories by an arbitrary

change in the model.  The form of the modification is suggested by the argu-
ments of Steen and Woodcock Et &1. concerning the use of a fictitious15,85 100

scattering process called "delta scattering" by Steen.  We will show rigor-
ously that this modified m6del correctly represents neutron transport.

We make the probability of emission of a new neutron contingent
on the result of the collision of the original neutron.  If the original neutron
is scattered or absorbed, i.e., if a random number, p, satisfies p < St(F, E)/
C(F, E), the probability of emission of a new neutron by the .fictitious source
is taken as zero; otherwise it is one.
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Hence the possibility of· a scattered· neutron. appearing at
(F, E",0 ')  simultaneously ·with a new neutron at  (r, E, 0) is eliminated,  and
we can consider any new neutron emitted bythe soubce, [C(F·, E) - St(F, E)] ·
0(FI E, 0), to be the reincarnation of the origirial Dartidl·er· So. at each col-
lision, there are three mutually exclusive poss-ibilities. The neutron is
absorbed, scattered, or not changed at all. The probability of interaction  
is   given by St(r, E)/Ce,  E),    and  the  probability  of 'rio  i teractiori  is   iven
by [C(r, E) - St(F, E)]/C(F, E). This corresponds to Woodcock's model.

The validity of this model, which we will call the fractional
interaction model, can be shown rigorously by comparing the distribution
of free path lengths, between true collisions generated by this model with
the known physica Ily cdr;tect distribution.

As a first step, we show that the meah, fre,e path and the mean-
square path length generated by the fractionkl interaction model are iden-
tical to the physically correct mean free path and mean-square path lengths.

In the fractional interaction model, the distanceltraveled is
found by first computing x1 from the integral equation,

r xl
     Ce-Cx dx = pi; (90)
JO

i.e.,

1

Xi    =    -C   ln
p l, (91)

where C is the fictitious cross section and Pl is a random number from
the dniform distribution on [0,1].

The probability, Pl, that this is a true interaction point and x1

is.the path length,   is   St/C.

Similarly, there is a probability,

(C       S t\ /  S t,
F:.  7 .\ r   c  ·Ac):·  . '' (92)

that the total distance traveled before a true collision .will be xi + x2, where

1

(93)Xi = -C ln pi.
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In general, there is.a probability,

n-1

(  C    -      Et               (-E -t,),                                                                                                                                                                       (9 4)
P n= (  C  /

1

that the total distance traveled will be

n

dn E   xi. (95)
1=1

The expected value for the free path length is, therefore,

<d> = <I pnd./9 -1 (96)
\n=l 1      nl
00

2, Pn<dr,3
n-1

.  5 . (97)

The sum in the denominator is

00 Co F n-1

I p. = x e( , -  C )                                            (98)n-1

= * f  (1 - *). (99)
n=o

= * [, I (1 -3,)]-,                                           (100)
= 1.

To evaluate the numerator, we note that the expected value of a sum is equal
to the sum of expected values; i.e.,

n

<  1    -t  l. p i>   =   fl    <- i'  l.  'i>.                                                                             (1 0 1)
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The expected value of each term in the  sum on the ·right is ,

/1     f 1    1F-C  ln pi> = -E·ln p dp = is: (102)

Therefore the expected value of the sum on the left is simply n/C.  Also,
we will need to use the identity

00

r   n-1      1
2,      nx             .      =..(1 -x)2' (103)
n=o

which results fr6m differentiating the firniliar identity

00
1

E x" = 1.x·
n=0

Using these two results, we find.that the numerator is

2 *'(C - E')"-' / f-·1 l. 8,>n=1

= Et i (C   Et)"-1, „

= (Et  1 -  C I Et)-' =  1 (104)
Z.t'

Therefore, the expected value of the free path .length in the fractional inter-
action model is

1

<d> = - (105)
St'

which is physically correct.

Similarly, the mean-square path length (i.e., the second moment
of the path-length distribution) produced by the model is,
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/     od'        l'       · : / .

<d'> =i nT'pnd:'/ f     \\ 4.P n  .

00

2.p.<dan>n=l
00

2, Pn
n=1

-  D (1 fl 1 C  -
- , .1 1 n j,   -' jl,  F 4 - 1,n Pi)' dpi ... dpn

6 st /   21)n.'It F   ,n\1 2
=  '61 -E (1  -   c /        [n· + (2 4  E-,

Et   6   /       St    -1
=Er  z.   (1  - -E       (na·+ n)

n=1

, .9 (1  -  1  t *)7
2

F
ET.

(106)

Here we have used the identities '

r 1   rl/..n      z

il   ····1 ·ti .-In. pi   dpi r... dpn ='n: + ri,            -               (107)
«O

and

CO

  (nz+n) xn-1 = 2(1-x)-3.                                   (108)
n=1

..

The first can be derived Ey n6ting that the integrhnd cobsists ·-of n +    
terms, and the integral of each term is 2. The second is found by differen-
tiating the familiar identity
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00                                                                  · · · ·                                                   '

     (n t  1)  xn    =    (1 -x) -2. (109)

n=o

The second morinent o<the physical distributio'n of mean free
paths is known to be

r- - itx            2
1       x: E te dx = 22, (110)
JO

which is the same as the second moment of the distribution generated by the
fractional interaction model.  So the first and.second moments of.the model
distribution are identical to the first and second moments of the physical
distribution.

In general, the mth moment of the path-length distribution pro-
duced by the model is, for m = 1, 2, 3, ..., 00,

( drn)    / f p.dr/f P.>
= ( Z.,n=l , n=1   '

00 i.22-

=  I pn <dr>/ 1 pn
n=1 ri=l

00                    1 rl ,n rn

= X pn f ·,·    1( T -ln pi   dpi ...dpn
n-1 Jo Jo    Cm \ iS;               /

(DO n-1

, 22 Et 0 - ft) (n + m -   1)   !·      1
(n  -    1)     !         -ETEn=1

- (rn:) Cm+i  1 - 1 +- J                            (111)
S   , - (mti)t          ti
C 1

or                  ·          ···

<drn>      =    ·  .                                                                                                                                     (1 1 2)
E. It



40

We have used the identities

91 rn

1 ··-1'(,t -ln pi    dpi. ... dpn = (ntm-1)!
(n- 1).'I  " (113)

and

  (n+m-1)!,xn-11= m! (1-x)-(m+i)·. (114)
161        (n +  1)

To prove the first of these identities, we will need the following identity:

'  (N-2+K)!m!. _ (Ntrn-1)!
L + K!(N-·2)'.:

-
(N-  1) ! ·    '

(115)
K=o

which is equivalent to

  (N-2+K)!r _
(Ntm-l)! (116)K!             -     m! (N -  1)   +K=o

The validity of this identity can be shown by mathematical induction; i.e.,

1)   It is true for m = 0, by direct substitution.

2)    Ifitis true ·form  =M-1, i.e.,

M-1

  (N-2+K)! .=
(N+M-2)! (117)

K!             (M - 1):(N.- 1')''K=o

then

M

  (N-2+K)!    (N+M-2)!    (N-2+M)!K!                          (M  -1) 1 (DI, - .1 ):'·
'

M!K=o

M(N * .M-2> : .  +  (N -  1)(Nt·M-2)
M!(N - 1)

= (N + M -l)!,
M! (N -  1)   '

(118)

and it is true for m = M. Therefore, it is true for all m for any value of n.
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Using this result, we can prove the first identity'by.mathemati
ical induction.  It is true for n = 1. (See Handbook of Chemistry and Phys-
ics, 45th Edition, definite integral No. 433.) Suppose it is true for n=N-1.
Then,

rl
1

... f'(   -l· pif" dpi ··· «PN
Jo     Jo \ i=i

\m
.f -Ist -ln  pi   -   ln

PN/1
dpi   . . .  dPN

0  \ 1=1

= f1 ··· fi i (2)(1' -l" pi)K (-l" PN)"·-K dpi 0 - dPN

=   1  (2)  f 1  ( -l·  PN)rn- K  'PN f I   · · ·  f 1(t  -l· pii dp 1 ... dPN - 1
K

rn
m:!  .(m - K).I    (N +K- 2)!

=    0   K!(rn -K),I 1                 (N-  2) !

(N+m- 1):
(119)

=     (N + l)'     '

and it is true for n = N.  Then it is true for all n for any value of m.

The second identity  can  also be proven by mathematical induc -
tion.  It is true for m = 1, by direct substitution. If it is true for m =
M - 1, i.e.,

f  (n +'M- 2)!
L         (n  -  1)1 xn-1 = (M- 1)!(1 -x)-M, (120)
n-1
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then differentiating with respect to x gives

00

  (n·+M- 2)! (n- 1) xn-2 = M!(1-x)-(M+1)(n - 1)!
n=1

00

Fl  (n +M- 2) ! , - (M+1)xn-2  = M!(1 - x)
25           (n  -  2) !
n-2

00

X (ni:'M- 11)1 Xn-1 = M:(1-x)-(M+,), (121)
n=1

and it is true for m = M. T.herefore it is true for all M.

The mth moment of the physical distribution is

ST
Xmzte dx   =   -                                                                                                          (1 2 2)

_E tx rn'

Ern.
t

Thus all the moments of the fractional interaction model distribution are
identical to the moments of the physical distribution. However, this is a
necessary but notsufficient condition for the identity of the two distributions.

94This is a variation of the Stieltjes moment problem, which is
to find a nondecreasing function 0(x) taking on infinitely many values in the
interval (0,00),  such that

roe

Cn =  
xn d0(x) n = 0, 1, 2, ..., co, (123)

JO

16given Co, Cl, C2, •·• • Carleman's Theorem states that if a solution to a
Stieltjes moment problem exists, a sufficient condition for the uniquenes s
of the solution is divergence of the series

1

6    C    i   l Tn

'6, (EJ
. ( 124)
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Since the series

1
-

2rn

m , ( 5)                                                                                                                                                  (1 2 5,

is divergent, our Stieltjes problem has a unique solution.

The divergence of the series is shown by the ratio test. Expand-
ing  the  (m+ 1)st term, as follows,

1

(   (::F t,       j  , (rnt, )       - ( z,    '(rn+,)  2m  Z< tl + l)! / \m + 17

1           -i          1

St ) 2(n:1+1)  .Em  ),m,int.) (- 1 : ,-= <rn + J (126)

shows that the ratio of the (m + 1)st to the nth term is

  St j' ™tl) sm 2=,(,r,+l)
(m  +   1/                   rn:                      , -                                                                                             (1 2 7)

which can be written as

1            1 1 -1

2(mtl)
(St) (St) irn(rn+1)   In  1·  1 2(In+i)      2rn(rn+1)                             (128)

The limits of the first and second factors as m - co are equal
to 1. To find the limit of the third factor, we note that

1

/    1   ) 2(rnti)lim  ln 1 ,    'UT=(2 (""  1)   l.  „'  t    j      =     0 (129)
n-co     \ rn + 1/

Therefore,

1

/ 1 )rntilirn = 1. (130)
rn-00 (m t  l)
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Similarly, the limit of the fourth term as m -+ 06' is'1. Combining· these
results, the ratio of the (n+1)st tothe nth terms of the series is 1.  So
the series is divergent by the ratio test, and the sufficient condition for
the uniqueness of the solution to our Stieltjes problem is established.

In conclusion, all the moments of the path-length distribution
produced by the fr.actional interaction model are ·identical to the corre-

sponding moments of the physically correct distribution, and there is only
one distribution with this  set of moments.

Therefore, the distribution of free path lengths produced.by .the
fractional interaction model is identical to the physically correctdistribution.

We have shown that the fractional interaction model preduces
the correct distribution of neutron path lengths in a homogeneous rnedium.
This proof can be extended to heterogeneous media by considering·the·dis-
tribution of path lengths for those neutrons that cross a boundary before
suffering a collision. These neutrons 'should produce a path-length distri-
bution in the second media corresponding to the probability density function

f(x) = E ze                                        , .(131)- 22X

where 22 is the total cross section in the second media. Using the frac-
tional interaction model; the distances to the first collisions of these neu-
trons kre distributed according to the probability density function,

P(x) = Ce-(X+Sl CeSiC = Ce-Cx, (132)

where

Sl = the distance traveled in the first media,

and

eSic  = the normalization factor required to make  f P(x) dx  =  1.

The first collision is accepted as a true collision if p < 22/'C..
Otherwise, the neutron continued in its original direction a distance chosen
from P(x). This method has been shown to produce the path-length distri-
bution

f(x) = F.2e                        ·             (133)-S 2X
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Therefore, the fractional interaction model produces the correct path-
length distribution in the second media for those particles that cross the

boundary.

3. The Source Distribution

If the neutron trajectories are traced from a sufficiently high
energy, the form of the sgurce is not important.  The flux as a function of
energy in the energy range where the Doppler effect occurs will be deter-
mined correctly as the neutrons are scattered through the higher-energy
region. However, determining the neutron source in this way requires
considerable tracking of neutrons outside the energy region of intel:est and
significantly increases the required computing time. An alternative pro-
cedure is to compute the neutron source for the Doppler region using the
assumption that the flux is asymptotic above the Doppler region.  In some
cases this may be a reasonable assumption, but in many cases, particularly
in reactors without significant moderator, it is not.

A reasonable description of the energy dependence of the neutron
source for the Doppler region can be given for a particular reactor by spec-
ifying,a value for the exponent,  a,  in the expression.

0 « 1/Ea ( 134)

If the flux as a function of energy is specified in this way for
the energy region between the maximum energy of interest, El, and El/a,
where a is the maximum fractional change in energy that a neutron can
suffer in an elastic collision with the lightest isotope present, then the neu-
tron source in the energy region below E due to scattering collisionsInax
with the nth isotope is

rE/an 1 1
Sn =  

E s  Ea  (1  -an)  E
dE. (135)

JEl

Performing the integration gives

1      [ /1\a
- (0&2)']I              ·                 (136)S n    =     S s    (1   -an)   a  L  (E l)

The total source due to, each nuclide is proportional to

pn =   'El  Sn(E) dE.                                         (137)
a nE.1
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Performing the integration gives

P = S sEi-·af
a

+
CCn    (an)a 1  for a 01; (138)

n                     Ll-an      1  -a- (1-a) a l

Pn = Ess for a = 1. (139)

The probability that a neutron scatters into the energy range of
interest due to a collision with the nth isotope in the jth region is

Pn,jVj
(140)

I It P.J.,
j = i  n= 1

where

Vj  = volume of the jth region,

Nj  = the number of isotopes in the jth region,

J = the number of spacial regions,

and

PrI,j = total source due to the nth nuclide in the jth region.

The spacial region in which each neutron is scattered from
above  El to below El can be determined by solving for j'  in the equation

j'-1 Nj ji   N.I I p..ivi       I i p..ivi
j-1 n=l j-1 n=l

(141)
S        <P<        S

where p is a random number and

J . Nj
S= I I pn·j Vi. (142)

j-1 n-1

This is easily done since j takes on only small integer values.  Also the
equation
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1 n'-1 ' I. ,

I pn,j' Z 'p..i,
n=l

P., <  P...<  n=pj,       ,
(143)

3

where

N·,]
P.- =. r p . (144)

J,       L     n,j·
n-i

is easily solved for n' to determine the scattering nuclide.

However, solving .the appropriate integral equation for the ini-
tial energy below El would be·more difficult.  This can be avoided by
choosing E from the uniform normalized distribution

S'(E) - (145)
1

n            -  ·E l(1  -an)

and setting the starting neutron weight equal to

Sn(E)
SACE)

(146)

(See Section B of this chapter for a discussion of the correct procedure
for selecting from an arbitrary source.)

4.   Evaluation of Cross Sections

To accurately treat the energy dependence of the collision den-
sity, and to avoid.the uncertainties introduced in earlier Monte Carlo codes
by interpolation of a necessarily limited table of cross sections vs energy,
the cross sections of all materials are computed from the resonance param-
eter s at each energy of each neutron. The Doppler-broadened cross sections

are given by Eqs. 22 and 23. Differentiation of these equations and use of
the relations 89

-%     =    TTLC      2 8          -    1 1   9   -  .3  x   +  *                                                                                                     (1 4 7)

1 .F/x2 -1   \

and

&& -   1 [cx''i 1 )x. 1-,- Me] (148)
BT   -   2TL
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yields equations for Baa/BT and Bas//BT in terms of the Doppler-line-
shape functions, 9(x, G)  and X(x, 8).   One of the algorithms of O'Shea and
Thacher72 is used to evaluate these functions at each neutron energy for
each of a given number of resonance levels above and below the neutron
energy, using the resonance parameters specified as input.

Resonance parameters for the lowest-energy resonances of
most isotopes have been obtained from experimental measurements.  For
example, the 217 resonances of U238 between 0 and 4.0 keV have been re-
solved. The average value and distribution of level widths and spacing of38

the resolved resonances may be determined and used to select a set of
resonance parameters for the unresolved region. The distribution of re-
duced neutron widths, fission widths, and capture widths  have been found ·
to approximate Chi-squared distributions with 1, 2, and 00 degrees of free-
dom, respectively. For example, the distribution of reduced neutron73

widths    P   is given  by the probability distribution

P(x) = 7)(nx)71-le-7]x
(149)

r(71)

with 71 = 1/2, where

rl
X =

<r >

2(71) is the gamma function,

and

71 = one -half the number of degrees of freedom.

The level spacings follow the Wigner distribution,

71- 2              '
        =    Ye-Ty (150)

C
-

where

D
y=-.

<13>

The level spacings, fission widths, and capture widths are                     .·
determined from the explicit formulas
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D   =<D>       -fnp (2/4#), (151)

rf = - T<Ff> in·p, (152)

-           and

ry = <ry>. (153)

where p denotes a different random number in each formula each time it
is used. Resonance parameters are determined in this way, starting from
the highest resolved resonance and continuing until resonance parameters
have been determined for the entire energy region of interest, or until the
limit of core storage is reached.  In the latter case, the cross sections in
the energy region above the highest resonance are computed by choosing
an energy in the region covered by the resonance parameters, and comput-
ing the cross sections that would result if the surrounding resonances were
instead located around the higher energy of interest. The variation of Fn  '
with energy is taken into account by multiplying the P n of the lower reso-
nance by the square root of the ratio of the higher to the lower energy.
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CHAPTER III

IMPLEMENTATION OF THE THEORY

A. Logical Sequence and Description of the Calculation

The theory formulated in Chapter II was combined with other care-
fully selected numerical and stochastic techniques in the new Monte Carlo
code, AMC (Argonne Monte Carlo). The logical sequence of the calculation
incorporating these techniques is described herd.

1. Logical Sequence

After the initial coordinates of each neutron in phase space are
determined, as described in Chapter II, the absorption, scattering, and fis-
sion cross sections for a neutron of the selected initial energy are computed
for all regions. The distance the neutron travels before its first collision
is then determined using the fractional interaction model, and simple trigo-
nometry is used to find the coordinates of the first collision. The position
of the neutron is specified by the indices of the cell it is in and its rectan-
gular Cartesian coordinates in the cell. A series of simple tests determines
the cell indices and the region of the cell containing the neutron.  The prob-
abilities of absorption and fission at this collision point, E /St and EnE/St'
for each nuclide, n, in the region are multiplied by the neutron weight and
tabulated as this neutron's contribution to the absorption and fission prob-
abilities   in the hypercube of phase space containing this collision point.
Correspondingly, the neutron weight is reduced by the factor Es/St·  The
neutron leaves the collision in a direction determined by three random num-
bers.   The exit energy of the neutron is easily calculated. Assuming that
energy and momentum are conserved in the center-of-mass system, the
energy of the scattered neutron depends only on the angle between its initial
and final direction. The position and results of succeeding collisions are
found by repeating the above procedure for each flight and collision of the
neutron. The neutron trajectory is traced until the neutron is emitted from
a collision with an energy 1pwer than the lower bound of the energy region
of interest.  The sum of these final weights, divided by the total of the initial
weights for all neutrons, is the resonance-escape probability for the energy
region considered. Similarly, the sums of the contributions of the individual
neutrons to the absorption and fission probabilities in each hypercube of
phase space, divided by the total of the initial weights of all neutrons, are
the absorption and fission probabilities in each hypercube.

2.    Determination of the Absorption Probability and Statistical Error

At each collision point, Xi, the quantity

Ai   =    Wisai//E Ti (154)
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is tabulated as a contribution to the absorption probability, as mentioned in
Section 1 above. To determine the probable error in the final estimate of
the absorption probability, the quantity Ai is also tabulated. After an
arbitrary (input) number of neutron histories hav.e been traced, the absorp-
tion probability is determined according to the general theory formulated
in Section II-A. Explicitly, the absorption probability is

P                   1    FAi
, (155)abs  = N  L-K'

Pi

where the surnmation is over all collision points, N  is the total number of
collision points, and K is the required normalization factor. Since the ex-

pected value  of the neutron starting weight is  <Wo>   =1, the norrnalization
factor could be taken as N/N , where N is the number of histories.  This
was commonly done in earlier Monte Carlo work. However, the average
value of the starting weights of any finite number of neutrons is different
from the expected value. This difference, which is a random variable,  in-
troduces additional variance in the computed value of the absorption proba-
bility when N/N  is used as the normalization factor. This additional
statistical error is avoided by taking K=Wtotal/'N , where W total is the
total of all initial neutron weights.

The fission probability is determined in a manner precisely
analogous to that used to determine the absorption probability.

Similarly, the variance is computed from the tabulated values
of Ai and Ai, using the formula

«2   =  -i  Z   ' '  - 1 ,p lij'-    1
P i Nz \4'  K/    NPl -   P

= W.'  [EA:-i(IA,)'].                    (156)total  1

The probable error is 0.67449 times the standard deviation, C.

3. Geometric Techniques for the Full-core Calculations

To achieve some economy in fabrication, reactor cores are
commonly designed as repeating arrays of identical components. There-
fore, the reactor core can be represented for nucleonics analysis as a
composite of identical unit cells. Typically, the fuel rods are arranged in
either a square or a hexagonal pattern, with the hexagonal pattern usually
preferred because it results in better coolant circulation.
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To facilitate the, development of the
geometric algorithms, hexaggnal arrays are

9,0              considered to be composed of appropriately
Ge constructed rectangular cells. The arrange-

C\.+             0.0       ment of fuel, cladding, and moderator isGiO'              c€»o represented exactly in the rectangular cells.
9,

cio· The rectangular boundaries are a calcula-
c\P tional convenience and have no effect on the

G€»
accuracy of the result.  (See Fig. 1.)  The
neutron position is defined by the indices of
the cell in which it is located, and by its
Cartesian coordinates relative to the center
of that cell. After each neutron flight,.the

Fig. 1. Equivalent Hexagonal and
neutron coordinates relative to the center of

Rectangular Cells the cell of its previous collision (real or
fictitious; see Section II-C) are transformed

to coordinates relative to the center of the cell 9f its latest collision.
Simultaneously, the cell indices of the latter cell are determined. Keeping
the neutron coordinates relative to the cell containing the neutron sim-
plifies the tests for determining in which region of the cell the neutron is
located. This information is necessary to find the flight-path length by the
fractional interaction technique, described in Chapter II.  Also, the region
and cell containing the neutron at each collision must be known in order
to compute the absorption and fission probability in each isotope in each
spacial region of each cell.

4.   Tabulation of Results

The absorption and fission probabilities in each isotope are
computed as a function of the cell indices (x and y), the spacial region of
the cell, the energy region, and the characteristic dimension of the cell.
Also, the absorption and fission probabilities are computed as integrals
over:

a.   All isotopes, all spacial regions, and all cells.

b.   All cells.

c.   All isotopes, all spacial regions, all cells, and all
energy regions.

Finally, the resonance-escape probability and the slowing-down
densities at the lower limit of the energy range of interest are computed.

B.  Verification of the Theory and Techniques

To verify the accuracy of the coding and the reliability of the de-
tailed algorithm encompassing the theory and techniques described in
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Chapters II and III, numerical calculations·were ,performed with the AMC
code to test each section of the code.  Some of these tests are enumerated
and described here.

1. Homogeneous Resonance-integral Test

The resonabce integral for an element with a single narrow
resonance. uniformly distributed in a highly moderatihg,·weakly absorbing
medium can be well approximated by the homogeneous, narrow-resonance
theory of Wigner. Therefore, such a system was prescribed and the ab-
sorption probability was calculated using the AMC code. The result was
compared with a separate hand calculation based on the narrow-resonance
approximation. The parameters used in the comparison calculations were

- Total width, r =   0.5  e V;

Capture width, ry =    0.2  e V;

Neutron width, rn =   0.3  e V;

Resonance energy, Eo = 100 eV;

Potential-scattering cross section per absorber atom,

a    =   2  x  1 0 6 barns/atom;

and

Average logarithmic energy decrement, E = 0.158.

The effective resonance integral is defined by the equation

 EZ Spaa(E)
I- dE, (157)

-  El   St(E)
where

aa = microscopic absorption cross section,

Sp = macroscopic potential-scattering cross section,

and

 t = macroscopic total cross section.

62The resonance-escape probability is defined by

   E2 Ea dEj

Pe,0 6,6.41- E,  EEt- -/

=  exp(- =LI).
tap
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For   I  <<  1, this is approximately

Pesc  =  1-  El  I.                                                                      (159)

The pr6bability that a neutron will be absorbed in slowing
through the energy region of the resonance is, therefore,

Pabs = 1 - P.esc = E. I.                               (160)

In the narrow-resonance approximation, the effective reso-
62nance integral, I, is given by

71'ar r 7  ·-1/2

I. 07|1 GO| (161)
2Eo L ap]   '

where

4'Tr i In
00

= = peak value of the resonance,
r

X1= - = reduced neutron wavelength,271-

X = h(2 BE)-1/2 = h/BV,

h = Planck's constant,

p = reduced nnass of neutron,

V = neutron velocity,

and

E    =    1/2   B VZ,

or

2.6  x  1 0 6 r n
CO ; Er

The value of the absorption probability computed using the AMC
code was. (1.49 + 0.03) x 10-4; the narrow-resonance approximation gives
1.52 x 10-4.
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In addition to verifying this integral rehult, the accuracy of
many subsidiary calculations was verified. -For example, cross sections
and their temperature derivatives, geometric areas, and the distribution in
ene'rgy and space of the source neutrons were compared with hand
calculati6ns.

2. Resonance Integral Test for Multiregion Problems

To test additional parts of the code, a problem with two spatial
regions and two energy regions was specified. Both spatial regions con-
tained the same material that was specified for the first problem.  The
energy range of the calculation was divided into two regions, one above and
one below the energy of the resonance peak.  The set of random numbers
used in the first problem was also used for this problem, and the same
value for the effective resonance integral was obtained. Since the resonance
is narrow, compared to the average energy loss in a scattering collision,
the flux is nearly constant over the resonance. Therefore, a symmetrical
absorption cross section should result in approximately equal absorption
above and below the energy of the resonance peak. As expected, the calcu-
lated absorption probabilities in the two regions were within 1% of being.
equal.  Also, as expected, the absorption probabilities in the spatial regions
were proportional to the volumes of the spatial regions, verifying the accu-
racy of the nnultiregion calculation.

3.   Test of Full-core Calculation

-                            The AMC code can consider a full reactor core composed of
any number of identical cells.  To test this option, a test problem was de-
vised using 25 cells, each composed of two regions identical to those of the
previous test problem. The cells were surrounded by a perfect reflector.
The correct resonance integral was again obtained.

4.   Test with Two Resonance Absorbers with Two Resonances Each

The AMC code can consider any number of resonance absorbers,
each having any number. of resonances, limited only by the dimension state-
ment used. To verify the accuracy of the algorithm used, the calculation
was performed with two identical resonance absorbers, each having two
identical resonances like the resonances considered in the first test prob-
lem. The absorption probabilities computed for each resonance were
identical for the resonances at the same energy, and within 1% for reso-
nances at different energies.

5.   Test of Perturbation Technique for Temperature Derivative
Calculations

.

A  series of seven problems  was  run to test the ability  of the  
code to calculate the temperature derivatives of the reaction rates.  The
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results of this series of calculations are tabulated in Table I. The table
indicates the accuracy of the perturbation technique. Comparison of the
third and fifth columns shows that the change in the absorption proba-                    -
bility per degree computed by the perturbation technique agrees with the
temperature derivative computed from the results of two problems for
different temperatures.

TABLE I. Results of Test of Ternperature-perturbation Method

Average
Temperature, Absorption* 6A/6 T  x 1 0 5, Derivative* x 10;    Derivative x 105,**

'K          Probability x ·102 *K-1 %-1  K-1

100 3.33 t 0.12 4,93 1 0.25
3.48 t 0.70 3.26 + 0.14

350 4.20 + 0.13 2.58 + 0.11
2.12 + 0.76 2.18 + 0.06

600 4.73 + 0.14 1.77 + 0.07
1.56 + 0.79 1.56 + 0.04

850 5.12 + 0.14 1,39 i 0.05
1.28 + 0.79 1.28 + 0.03

1100 5.44 + 0.14 1.16 + 0.04
1.08 i 0.79 1.08 + 0.02

·1350 5.71 + 0.14 1.00 k 0.03

0.89 + 0.82'                               0.89 + 0.02
1850 6.15 + 0.15 0.78 + 0.03

*The absorption probability, A, is defined as the fraction of the neutrons that enter the
energy region considered that are absorbed in this energy region. The absorption proba-
bility and its derivative are computed directly by the AMC code. The other two columns
are derived from the computed quantities and are directly comparable.

**The absorption probability is the tabulated number times 10-2; the derivatives are the
tabulated numbers times 10-5

6.    Test of the Variational Method for Calculation of Rod-size
Effects

Two types of problems were run to test the variational method
used to obtain reaction rates in systems with different characteristic di-
mensions. The first problem was chosen to minimize the effect of a change
in the fuel diameter.  This was accomplished by choosing cross sections
and dimensions so the mean free path of the neutron extended through
several fuel rods.  Thus, the probability that a neutron will have successive
collisions in fuel regions is little affected by a change in the diameter of
the fuel rods. The deviations in the results are an indication of the vari-
ance that resultd from the method of calculation. As shown in Table II, the
error depends upon the fractional change in rod size considered.  The
1-cm rod is considered the base case.  For a 25% perturbation (0.75-cm
rod), errors of 0.1% in the absorption probability and 2% in its derivative
were obtained. The results for changes larger than 25% are unsatisfactory.
From these results, it is concluded that variations of rod size of more
than 25% should be treated by running a series of problems with a size dif-
ference of 25% between successive problems.
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TABLE II. Results of First Test of Fuel Rod-size Variation Calculation,

Radius of Fuel Absorption BA/aT x 106
Rod, cm Probability x 102* 90 Error eK-1 % Error ' Obtained' by

1.00 0.01666 2.91 ·- Direct calculation

0.75 0.01658           '1           .2.86 2 Variation calculation

0.50 0.0172            3 3.10 6 Variation calculation

0.25 0,0175             5           3.69 26 Variation calculation

*The absorption probability, A, is the tabulated number times 10-2.

The second type of problem was designed to have a large rod-
size effect. The results tabulated in Table III show that a large effect was
indeed obtained, and that the technique gave results very close to the results
obtained by direct calculation for variations of 25%.

TABLE III. Results of Second Test of Fuel Rod-size Variation Calculation

.Radius of Fuel Absorption BA/BT x 105.*
Rod, cm Piobability, A  K--1 Obtained by

1.00 0.158 + 0.004 0.80 1 0.07 Direct calculation

0.75 0.205 + 0.004 1.07 & 0.08 Variation calculation

0.75 0.203 + 0.004 1.11 + 0.07 Direct calculation

0.50 0.224 + 0.009 1.37 t 0.15 Direct calculation

* BA/BT is the tabulated number times 10-5.

7.   Comparison with Other Numerical and Monte Carlo Methods

The next test involved a problem of considerably greater com-
plexity. It consisted of a two-region cell with one resonance absorber and
two scattering isotopes in the central region, and with four scattering iso-
topes in the outer region. The resonance parameters for the 25 resonances
of U between 1 and 1.4 keV were used.34 This problem was selected so238

as to be within the range of applicability of two existing numerical tech-
niques

56,57 and the RECAP II Monte Carlo code.15

The techniques used in the AMC code are quite different from
the standard Monte Carlo techniques used in the RECAP II code. In parti-
cular, the fractional interaction technique used in the AMC code represents
an entirely different geometric method than the standard method used in
the RECAP II code. Furthermore, different sets of random numbers were
used in the two Monte Carlo calculations. However, both programs treat
the transport process correctly without approximations at the boundaries
and, therefore, arrive at the same value for the absorption probability.

The absorption probabilities computed by the numerical tech-

niques differ from the Monte Carlo results by 5 and 13%, as shown in
Table IV.
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TABLE IV. Comparison of Results from Four Computational Methods
(Two-region cell with 25 resonances in Region.1)

Absorption
Program Name T,  K Probability x 102** 6.A500-11000K  x 102 Reference

AMC 500 1.23 1 0.03                -                 -
RECAP II 500 1.23 1 0,04                -                 15
RABBLE 500 1.31                      -                57
RIFF RAFF 500 1.393                     -                56

AMC 1100 1.35 +'0.04 0.122 + 0.004*         -
RIFF RAFF 1100 1.564 0.17                  56

*Determined from derivatives  at  500 and 1100°K,
**The absorption probability is the tabulated number times 10-2.

The temperature derivative of the absorption rate computed
directly by the AMC code is in agreement with the temperature derivative
obtained from the absorption rates computed by the AMC code at 500 and
1100 K. The difference in the absorption rates at 500 and 11009K is shown
in the fourth column of Table IV. The value computed by one of the approxi-
mate numericai methods differs from the AMC Monte Carlo result by 40%.

The variation in the results gives some indication of the errors
due to the assumptions necessary in the numerical techhiques.  (See Chap-
ter I.)

11-
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CHAPTER IV

VERIFICATION OF THE THEORY BY
COMPARISON WITH EXPERIMENTS

A.   Rod- size Tests  in a Critical Facility

1.   Description of the Experiment

The Doppler coefficient of uranium in a large plutonium-
uranium carbide fast- reactor composition has been measured by heating
uranium oxide fuel rods of two different diameters. The expe rirnent s33

were performed on the  ZPR- 3 reactor shown in Fig.  2.   The  ZPR- 3  reac-
tor is a zero-power critical facility designed and operated by the Argonne
National Laboratory. The plutonium-uranium carbide compo sition was19

constructed of plates of separate materials held in 2-in.- sq stainless steel
drawers, supported in turn by a square matrix of stainless steel tubes.  A
device for holding the uranium Doppler sample, surrounded by heater wires

'
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Fig. 2. ZPR-3 Critical Facility



60

and sealed in a vacuum jacket, is inserted in one of the matrix tubes.  The
construction of the Doppler element is shown in Fig. 3. The reactivity
worth of the Doppler sample is measured relative to the worth of a refer-                  -
ence  sample  of  the same composition  by alte rnately placing the Doppler
sample and the reference sample in the center of the core and recording
the position of an automatic control rod, which maintains the system at
criticality. The Doppler sample is then heated by means of the heater
wires, and the measurement is repeated. The change in the reactivity
worth of the Doppler sample is found by subtracting the worth of the un-
heated Doppler sample relative to the reference sample from the worth of
the heated Doppler sample relative to the reference sample. The reference
sample is made as nearly identical to the Doppler sample as possible, so
that the reactivity variation, when samples are interchanged, is minimized.
Thus a more sensitive control rod can be used, and a more precise mea-
surement of the change in reactivity when the Doppler sample is heated is
obtained.

*

ASSEMBLED DOPPLER ROD

 5/0....,CAPSULE2/ Fig.   3

-

 I- Doppler Element
E .6
It:. A   FUEL

QUARTZ SPACER 4 /(. PELLETA#III/v

I- 0  07
* I/\

ENDCAP                                               112-5704

2. Mathematical Model

The mathematical model used for the comparison calculation
accurately described the geometry and composition of the experiment in
the region of the temperature perturbation and within about 30 mean free
paths of the perturbed region, as shown in Fig. 4 and Table V. Specifically,
four concentric cylindrical regions, infinite in height, were considered:  the
uranium-oxide  rod, the vacuum jacket and structural materials,  a thin
scattering zone surrounding the Doppler equipment, and a fuel zone con-
taining the plutonium-uranium carbide fast- reactor composition.   The ura-
nium oxide rod contained depleted uranium, combined stoichiometrically
with oxygen and sintered to 70% of theoretical density. The vacuum jacket,
heater wires, and support structure filled the surrounding space with iron,
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nickel, and chromium with atomic  den-
sities, respectively, of 0.0127, 0.0018,
and 0.0046 (10-24 atoms/cc).  The scat-
tering zone containing carbon was used
in the experiment to eliminate inter-
ference between the resonances in the
Doppler sample and the core.   The

 GION surrounding core volunne containing
1 DOPPLER ELEMENT- DEPLETED URANIUM OXIDE thin   plates   o f uraniunn, plutoniunn,
2 HEATER, VACUUM JACKET, AND STRUCTURE

sodium, and graphite were represented
3 SCATTERING ZONE-GRAPHITE AND IRON in the calculation as a homogeneous
4      FUEL ZONE -PLUTONIUM, URANIUM, SODIUM, ETC. mixture. The Doppler sample is located

Fig. 4.  Geometry and Composition near the center of the core where the
for Rod-size Experiment gradient of the flux is small. Therefore,

zero net current was assumed at a boundary 5 cm from the Doppler sample,
and a reflecting boundary condition was used.

The energy range from TABLE V. Isotopic Compositions
29 eV to 9.1 KeV was considered. This for Rod-size Experiment
is the energy range that produces the
Doppler effect.  Near the top of this atorns   
energy range,the resonances overlap Region Composition barn- cm
so strongly, even at room temperature,
thatafurtherincreasein temperature      1 U238 0.0156
does not result in an increased ab- U235 0.0001

sorption rate.  Near the bottom of this Oxygen 0.0314
range, the neutron  flux  is so small

2 Iron 0.0127that any change in the cross sections
Nickel 0.0018

is not important. Neutron histories
Chromium 0.0046

aretracedinthis regionofphase space
in whichthe Doppler effect occurs; and 3 Carbon 0.0354
the temperature derivatives of the ab- Iron 0.0257

sorption and fission rates are com- Nickel 0.0036
puted as described in Chapters II and Chromium 0.0069
III.

4 0238 0.0075
Pu239 0.0014

3.  Results and Conclusions
Iron 0.0118
Nickel 0.0016The calculation with the
Chromium 0.0032

AMC code determines the fractional
Sodium 0.0107

change in the fission rate in the region Carbon 0.0057
of phase space considered.  This must
be multiplied by the fraction of fis-
sions in the reactor that take place in the region of phase space considered,
in order to obtain the temperature coefficient of reactivity. Using a value
for the latter quantity determined by multigroup methods, the computed
Doppler coefficients differed from the measured values by 10%.  Of more



62

significance to this work is the ratio of the Doppler coefficients per unit
mass, of the 0.5-in. uranium oxide rod and the 1-in. rod. This ratio is
independent of the fraction of total fissions occurring in the region of phase             -
space considered in the calculation with the AMC code and is obtained
directly from the results obtained with the AMC code. The computed value
of this ratio was 1.16+0.03. The measured value was 1.19 i 0.03.  This  +
agreement is considered quite satisfactory. Detailed results are shown in
Table VI.

TABLE VI. Variation of Doppler Coefficient
with Diameter of Doppler Element

Computed Measured

Fraction of fissions in the reactor that occur
in the region of phase space considered 0.0072

Fractional change in the fission rate in the
region of phase space considered:

0.5-in. rod               ·              -1.83 x 10-6
1.0-in. rod -6.30 x 10-6

Doppler coefficient per unit mass
(computed at 500°K; measured 500- 1100°K)

0.5-in. rod -4.54 x 10-8 -4.62 x 10-8

1.0-in. ro.d -3.91 x 10-8 -3.88 x 10-8

Doppler coefficient per unit mass of 0.5-in.  rod 1.16+0.03 1.19+0.04
Doppler coefficient per unit mass of 1.0-in. rod

B.  Tests with Various Materials Surrounding the Doppler Sample

Experiments have been performed in which the material surround-
ing the Doppler sample was varied and the Doppler coefficient determined
as a function of the surrouhding material. The experiments indicated that17

the measured Doppler coefficient depended significantly on the material
surrounding the Doppler element.

Since this phenomenon results from the complex variation of the
neutron cross slactions with temperature, space, and neutron energy, these
experiments were chosen as the basis for a final test of the theory and
techniques used in the AMC code. The experimental configurations and
techniques were similar to those used in the rod-size test described above,
and the mathematical model was chosen in the same manner. The Doppler
region was a 1. 125-cm-diam circular cylinder of thorium metal.   The
Doppler element was surrounded by a 0. 635-cm annulus of 25% iron,
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75% void, to represent the heater and heat shields.  This, in turn, was sur-

rounded by a 0.95-cm-thick blanket region of void, thorium metal, or
uranium metal. The outer region contained core material of 15 v/0 U238,
15 v/0 U235, 15 v/0 iron, and 55 v/0 sodium. Figure 5 shows the geometry

and composition used.

1 DOPPLER SAMPLE
0.5625 Cm 2 HEATER AND

HEAT SHIELDS
1.198 cm

3 BLANKET
2.15 cm REGION VOLUME FRACTIONS

4 CORE

4.0 Cm                                                                                                                                                   1                          Th                            1.00
2                             Fe                                  .2 5

VOID .75
1                -

3     Th, U,ORVOID 1.00
4 Na .55

Fe .15

U-238 15·

U-235 . 15

Fig.  5.    Geometry and Composition  Used in Study of Effect of Surrounding Material on the Doppler Coefficient

TABLE VII. Relative Doppler Coefficient Table VII shows the results
of a 1.125-cm Thorium Fuel Element of the experiment and calculation.

Surrounded by Various. Blankets The theoretical results agree at
Relative Relative least qualitatively with the experi-
Value of Doppler ment. Surrounding the thorium
BA/BT/A Coefficient Doppler sample with a thorium

17
Blanket Computed Measured blanket increases the measured

Void 1.00 1.00 Doppler coefficient. Surrounding it
with a uranium blanket decreases

Thorium 1.13 1.25
the Doppler coefficient. The

Uranium 0.77 0.79 estimated error in both the experi-
mental and theoretical results is

14%. The discrepancy between the experimental and theoretical results is
slightly outside this range   for the thorium blanket,   but well within   thi s

range for the uranium blanket.
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CHAPTER V

THE EFFECT OF HETEROGENEITY ON THE DOPPLER COEFFICIENT
OF A LARGE FAST REACTOR

A.  Description of Reactor

The accuracy of the theory and techniques described in Chapters II
and III, having been verified by comparison with known solutions to simple
problems and by comparison with experiments, the study was extended to
investigate the effect on the Doppler coefficient of changing the size of the
fuel rods in an advanced fast power reactor.

Nuclear power stations now under design and construction in the
United States typically have an electrical power capacity of about 1000 MW.
The first economical fast reactors will probably also be about this size.
Therefore, recent fast-reactor design studies have concentrated on this
size reactor.  For the present work, a 1000-MW fast-reactor design pro-
posed by the Atomic Power Division of the Westinghouse Electric Corpora-

84tion was taken as the reference design, and the possibility of enhancing
the Doppler coefficient by reducing the size of the fuel rods was investigated.

The core is composedof stainless-
1      .5410 Cm- steel-clad plutonium-uranium-carbide

-.3810 cm- fuel rods surrounded by sodium coolant.SODIUM BOND
-3558 cm- Sodium also fills the gap between the fuel

CLAD -.3403 cm- and cladding. Figure 6 shows the di-

mensions of a unit cell of the core, com-
posed of a fuel rod and a proportionate

.. part of the coolant associated with one\ fuel rod. Figure 6 also indicates the
atomic composition. The nominal en-

FUEL    richment of the fuel is 15%.

B. Mathematical Model

Since the reactor under consid-
eration is very large and contains thou-
sands of fuel elements, a unit cell

COOLANT calculation should provide an accurate

description of the phenomenon involved.
The cell indices, then, may be dimen-

REGION COMPOSITION (ATOMS/ b-cm) sioned for a maximum of one, leaving
1 U-238 02499

adequate computer memory available for
Pu-239 00441
C .02940 the treatment of other variables.  This

2 Na .02160
memory space was utilized to store res-

3 Fe .08520
4 Na 02160 onance parameters for 11 plutonium res-

onances and 215 U238 resonances that have
Fig. 6.  Unit Cell of 1000-MW been resolved, and for 109 additional38

Westinghouse Reactor
plutoniurn resonances and 145 additional
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uz38 resonances. selected from the appropriate statistical distributions73 in
the unresolved regions. The. heterogeneous arrangement of fuel, bond, clad-
ding, and coolant was represented exactly. The entire energy region from
100 eV to 30 keV in which the Doppler effect occurs was considered.

C. Results

The -Doppler. ·coefficient.(D.C:):is defined,·as.the .logar.ithmic .deriva-
tive with respect to temperature of the multiplication constant, due' to res-
onance broadening; i. e.,

1 BK       ·                            (162)DC =--K BT'

where

T = temperature,

and

K = the multiplication constant.

The effect of a temperature perturbation in the core is to modify the neutron
cross sections in the region of phase space, R, where R encompasses the
volume of the core and the energy range, 0<E<3 0 keV. The region, R,
is chosen sufficiently large that BF/aT = 0 outside of R, where F is the

-             fission rate. Then

aFR/BT . ER = 8Ft/BT = BK/a'r = D. C., (163)FR        Ft         Ft            K

where

FR = fission rate in R,
and

Ft = total fission rate.

The factor (aF]R/BT) /FR is obtained from the Monte Carlo calcula-
tion; the factor FR/Ft is obtained to sufficient accuracy by the faster ELMOE

74calculation.   In the present case, the factor (BFR BT)/FR was computed to
be 0.18, and the factor (BFR/BT)/FR was found to be -8.89 x 10-5/oC.  This
leads to a Doppler coefficient of -1.60 x 10-5AK/K C, which is about 10%

84less than the number reported in the original design report.
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Changing the fuel-rod size and pitch both by the same factor leaves
the average composition of the core unchanged. The·fractional change in
fission rate per degree for a reactor with fuel rods of half the reference
size and pitch, 0.3 cm OD, 0.43 cm OC, was computed by the AMC-code to
be -10.0 x 10-5. This leads toa Doppler coefficient of -1.8x 10-5 AK/K C.
The ratio of the Doppler coefficient in the system with the small fuel rods
to the Doppler coefficient in the system with the larger fuel rods is there-
fore 1.13 + 0.03. This result is independent of the ratio FR/FT, and is
obtained directly from the AMC results.

Despite the fact that the problem investigated here is quite different
from the question of what happens when the diameter of a single rod in the
center of a critical assembly is varied, the result is nearly the same.  In
the case of the critical assembly, reducing the diameter of the Doppler rod
by 1/2 resulted in an increase in the Doppler coefficient per unit mass of
16 to 19%.  Here a decrease in the diameter of the fuel rods by a factor of

1./2 resultA inanincreasein the Doppler coefficient of 13%, which is aneffect
of the same order of magnitude and in the same direction. This effect,
although significant, is not sufficiently large to override other considera-
tions, such as heat-transfer and fabrication costs. Nonetheless, it does

provide incentive for reducing the fuel-rod size in addition to the incentive

provided by the desirability of increasing heat-transfer rates. These con-
siderations may influence reactor designers toward a preference for
smaller fuel rods.
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CHAPTER VI

SUMMARY

A.  Summary of the Present Work

This work has developed a theoretical method for the analysis of
the Doppler effect and applied the method to determine the effect of the size

· of the fuel elements on the Doppler coefficient of a typical fast breeder
reactor.

In the development of this method, particular emphasis was placed
on the elimination of the approximations and assumptions that have limited
the accuracy and reliability of previous methods. This required the de-
velopment of several additions to Monte Carlo theory; specifically,

1.   The temperature derivative of the absorption rate was formu-
lated as an integral involving the collision density times a function of the
neutron cross sections. The latter function is a temperature-derivative
estimator that involves the neutron cross sections only at the collision
points, eliminating the integral over the neutron flight path in the
temperature-derivative estimator previously used.

2.   A technique was developed for determining the variation of the
Doppler coefficient when the size of the fuel elernents in a fast reactor is
changed without changing the fuel and coolant volume fractions.

3.   A rigorous mathematical theory was formulated for a technique
that eliminates the calculation of optical distances from the point of each
collision to each region boundary point through which the neutron passes
on its way to the next collision.

4.   A technique was developed that permits a more versatile
description of the energy distribution of the neutrons scatterlng into the
resonance region.

5.   The continued-fraction expansions of the Doppler broadening
functions suggested by O'Shea and Thacher72 were adapted to provide fast
and accurate evaluation of the neutron cross sections at each neutron
energy.

The theoretical method developed by combining these theories into
a consistent algorithm was used as the basis for the AMC digital-computer
program. In addition to the speed and accuracy provided by these new
techniques, the program has the advantage of considerable generality.  For
example, it can be applied to determine the effect of temperature pertur-
bations that occur either throughout the core or in a single cylindrical
region.
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The program was checked by comparing the resonance integral for
a simple case computed by the program with the resonance integral deter-
mined by analytic methods known to be valid for the simple case considered.
Further tests involved comparisons of the resonance escape probabilities
computed for cases within the capabilities of the RIFF RAFF, RABBLE,                -
and RECAP II codes. The similarity of results corroborated the reliability
of the AMC program. Finally the program was checked by comparison with
Doppler experiments performed in critical assemblies.  In each case, the
agreement with' the experimental results was good, further corroborating
the reliability of the theory and the AMC program.

The program was then used to determine the effect on the Doppler
coefficient of varying the size of the fuel elements in a typical fast breeder
reactor. Reducing the diameter of the fuel elements by one-half, and re-
ducing the pitch of the lattice by one:-half to maintain the same volume
fractions in the core, would increase the Doppler coefficient by 13%.

B. Possible Future Applications

The theory developed in this research and incorporated into the
AMC program constitutes an efficient procedure for handling geometrical
data, computing cross sections, tracing neutron histories, and tabulating
the results.  In its present form, the program is applicable to a wide range
of neutron-transport problems such as the·one investigated in the present
research. By modifying these procedures or building upon the framework
provided, one can analyze many additional problems that arise in the de-
sign of fast reactors, e.g., determining the sodium-void coefficient.

With the present version of the program, the effect on the mea-
sured Doppler coefficient of varying the material surrounding the heated
sample in a Doppler experiment will be studied further.

One planned application of the AMC program is the investigation
of the error introduced into earlier numerical methods by various theo-
retical approximations. For example, the assumption used in the advanced
resonance integral code RIFF RAFF that the flux crossing the boundaries
between, dissimilar materials is isotropic can be readily investigated using
the AMC program. Many other previously used assumptions of a similar
nature will also be investigated in the near future.

Although the AMC code, incorporating the theory developed in this
research, has been found b,y direct comparison to be considerably more
efficient than earlier Monte Carlo methods, the time required to obtain
the answer for a complex problem is still considerable.  For this reason

it may be desirable to use faster (though approximate) multigroup methods
for survey calculations. However, for these calculations to be meaningful,
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one must have available correctly averaged group constants.  With a slight
modification, the AMC code will produce group constants appropriately
averaged, taking.into .consideration a detailed description of the cross sec-
tions as a function of both energy and space.

Additional questions that should be investigated include the following:

1.   The variation of the Doppler coefficient as a function of the ratio
of fertile and fissile isotope atomic densities.

2.   The variation of the Doppler coefficient as a function of the ratio
of coolant and fuel volume fractions.
-.

3.   The variation of the Doppler coefficient with temperature.

4.   The possibility of increasing the Doppler coefficient by adding
isotopes to the ·core specifically for this purpose. For example,
the effect of adding beryllium might be investigated.
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APPENDIX A

Calculation of the Escape Probability for a Finite Cylinder

The physical system considered is a finite cylinder of scattering
and absorbing elements, characterized by macroscopic cross sections Es
and Ia. Neutrons enter the cylinder with isotropic angular distributions
and are eventually absorbed or leave the system.  It is required to de-
terrnine the escape probability, defined as the fraction of neutrons that
eventually escape from the cylinder.

In the Monte Carlo solution of this problem a di·rect physical analog
is used, except for one deviation.  None of the neutrons are absorbed.  In-
stead an initial weight of one is assigned to each neutron.  Then in each col-
lision the weight is reduced by a factor of Es/St·  Thus, a fraction Ea/St of
the neutron is absorbed in each collision until the neutron escapes from the
cylinder. The weight at the time of escape is the faction of the neutron
that escapes. The average weight at the time of escape for 1000 neutrons          '
is the escape probability.

Figure 7 shows the details' of the calculation. The physical inter-
pretations of the undocumented symbols used on the flow diagram are the
following:

N = number of entering neutrons,

W  = neutron weight, i.e., the fraction of the neutron not
already absorbed,                                                        -

WSUM = sum of the neutron weights at time of escape from the
cylinder,

L = number of neutron histories processed between print-
outs of results,

Es = macroscopic scattering cross section,

St = macroscopic total cross section,

Sa = macroscopic absorption cross section,

A = fractions of neutrons absorbed,

A = absorption probability (in print statement),

and

ESP = escape probability.
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One neutron at a time is followed from the time it enters the rod
until it escapes. The initial position of the neutron is taken to be at

y = 0, x =  1, with no loss of generality since the properties of the rod
and the intensity of the incident flux are assumed to be independent of the
azimuthal angle. The axial coordinate,  z, is chosen from a Uniform dis-
tribution onthe interval, [ O, 8 ], where f is the length of the cylinder.
Operationally, z is computed from the equation

Z = Ep, (164)

where p is a random number chosen from a uniform distribution on the

inte rval  [0,1] ,
0

The initial direction is chosen from an isotropic distribution of all
possible incident directions by choosing a set of three random numbers
for which pz + pz + pj < 1, and Pz < 0. The direction 0 along a line
drawn from the origin through the point (Pl' P2' P3) is taken as the initial
direction of the neutron.

Next, the distance the neutron travels before its first collision is
determined from the equation

1

d   =   -  2 ln
p. (165)

Having determined the neutron' s initial position and direction, and
the distance to its first collision, the program determines the point of
collision by trigonometry.  If the point of collision is in the cylinder, the
neutron weight is adjusted as previously explained, and the contribution to
the absorption estimate for this sample point is computed.

The exit direction is determined from an isotropic distribution,
and the distance to the next collision is again determined from Eq. 165.
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The neutron history is traced in this way until a collision occurs outside
the cylinder.  At this time the neutron has escaped and its weight is added
to the sum of the weights of preceding neutrons.  This sum divided by the
number of neutrons processed is the escape probability. Similarly, the
absorption probability is the sum of the individual contributions to the ab-               -

sorption estimator divided by the number of neutrons processed. These

quantities are computed and printed after every 100 neutron histories, and
the calculation is terminated after 1000 histories. Determination of the
absorption probability in this way for a given cylinder size and composition
requires about 5 sec on the CDC-3600 computer.

If the number of incident neutrons per unit solid angle is propor-
tional to cos 8, where e is the angle between the incident neutron direction
and the normal to the surface of the cylinder, we can still choose the start-

ing direction of each neutron from an isotropic distribution if we assign to
each neutron a starting weight of

W = cos 8. (176)

The escape probability is then the sum of the final weights divided by the
sum of the initial weights.

By using this technique we can obtain the escape probabilities for
any number of incident angular distributions from one set of neutron his-
tories.  It is only necessary to keep track of one weight for each neutron

for each angular distribution.



73

APPENDIX B .

Calculation of Multiregion, Hot-Cold Interference Effects

A. Introduction

What influence,  if any, the unheated material surrounding the
heated element.in a Doppler-coefficient measurement has on the measured
reactivity is a question that has been investigated and discussed by theo-
retical and experimental reactor physicists for several years. Storrer

86et al concluded, theoretically, that the Doppler coefficient of a sample
could be measured to first order if the surrounding core was composed of
the same material as the sample. They further concluded that the Doppler
coefficient could be measured to first order, even if the sample compo-
sition is different from that of the surrounding medium, provided that the
sample is "very small."

91
Experiments at Argonne showed no significant change in the

Doppler coefficient as the material surrounding the Doppler element was
varied. However, later measurements by Carpenter et al·17 at Atomics
International, with the sample blanketed by various materials, showed sig-
nificant variations in the Doppler coefficient.

The usual analytic and numerical methods are inadequate to treat
the rapid fluctuations of the neutron flux in space and energy that result
from the heterogeneous arrangement of resonance absorbers in these ex-
periments. Therefore, thenew Monte Carlo program, AMC, was employed
to calculate the space- and energy-dependent reaction rates and their deriv-
atives with respect to the temperature of the Doppler sample, in the reso-
nance region, for several exemplary cases.

Four cases of practical significance were investigated.  The phe-
nomena considered were:

1.    The effect of " cold" resonances on the heated sample, with dif-
ferent resonance absorbers in the cold material and heated samples.

2.     The effect of " cold" resonances on the heated sample, with the
cold material containing the same resonance absorber as the sample.

3.   The effect of separating the interacting resonance materials
with nonresonant structural materials.

4.   The effect of varying the thickness of the blanket surrounding
the Doppler element.
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The resonance parameters of Firk34 were used for U238 in the
energy region 1.0 to 1.4 keV. The resonance parameters for thorium were

.

taken from BNL-325.t

B.  AMC Calculations

1.    Case 1: Doppler Element Surrounded by Different Resonance
Material

To isolate the effect of the interaction of the broadened reso-
nances in the Doppler element and the unbroadened resonances in the sur-
rounding medium, four two-region problems were run. The Doppler
region was a 1. 125-cm-diam circular cylinder, surrounded by a cylinder
of hexagonal cross section, 3 cm on a side.  In all four problems, ·the outer
region contained a reference core material of 15 v/0 U238, 15 v,/0 U235,
15 v/0 iron, and 55 v/0 sodium.

In the first two problems, the Doppler element was thorium
metal. Therefore the resonances in the two regions were at different ener-
gies. To determine the effect of the interference of these resonances, the
first problem was run with resonances in both regions, and the second was
run with the resonance cross sections in the outer region set equal to zero.
As shown in Table VIII, the effect was very small. The fractional increase
in the absorption rate of the Doppler element, per degree, was 6% higher
with the interacting resonances present.

TABLE VIII. Effect of Surrounding Doppler Element  by
Material of Different Resonances

Composition - -r- X.104,* °K-1,1 8Al
Al dT

Region 1 Region 2 in   R e gi on   1

Thorium U-Na-Fe 4.55 + 0.09
(with resonances) (with resonances)

Thorium U-Na-Fe 4.20 k 0.09
(with resonances) (without resonances)

Uranium U-Na-Fe 5.04 f 0.10

(with resonances) (with resonances)

Uranium U-Na-Fe 2.69 k 0.07

(with resonances) (without resonances)

*A = absorption probability. The logarithmic derivative is the tabu-
lated nurnber times 10-4.

tJ· R. Stehn et il·· Neutron Cross Sections, Second Edition, Supplement No. 2, Volume III (Feb 1965).
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2.      Case 2: Doppler Element Su·rrounded·by.·€Ke Same Resonance
Absorber

In the third and fourth problems, the Doppler element was ura-
nium metal. Therefore the resonances in the two regions were at the same
energies. The resulting interaction was found to be significant.   The reso-
nances in the outer region increased-the Doppler effect in the uranium
Doppler element by 87%

3.   Case 3: Interacting Materials Separated by Iron

Additional problems were run to determine the effect of the
heater and the structural material separating the sample from the unheated

core region. The interaction effect was significantly reduced when the in-
teracting resonance materials were separated by iron. The amount of iron   -
considered was equivalent to 1 16, 1/8, and 1 /4 in. The presence of these
iron cans reduces the interaction effect from 87 to 64,56 and 30%, respec-
tively, as shown in Table IX. The amount of iron present in the Argonne
experiments was probably sufficient to prevent the detection of any inter-
action effect.

TABLE IX.. Effect of Structural Material Separating Doppler Element
and Surrounding Material with the Same Resonances

1 BA
Composition - -x  104  * OK-1,A Bt

Region 1 Region 2 Region 3 iri Region 1

 -1238 Void U-Na-Fe 2.69.k 0.07

(with resonances) (without resonances)

LI238 Void U-Na-Fe 5.04

(with resonances) (with resonances)

IJ 238 1/16 in. Fe U-Na-Fe 4.40

(with resonances) (with resonances)

UI
238

1/8 in. Fe U-Na-Fe 4.28

(with resonances) (with resonances)

IJ 238
1,/4 in. Fe U-Na-Fe - 3.51

(with resonances)         · .(with resonances)

*A = absorption probability. The logarithmic derivative is the tabulated
number times 10-4.

4.   Case 4: Variation of Interference Effect with Blanket Thickness

Additional problems were run to determine the optimum thick-
ness of the blanket to produce the maximum interference affect. As shown

by Table X, the optimum thickness is about 3/8 in. of thorium metal.
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TABLE X. Variation of Interference Effect
with Blanket Thicknes s

Region 1: Thorium Doppler element
Region 2:  1/16 in. iron
Region 3: Thorium blanket
Region 4: Uranium-sodium-iron core

1 BA·-    x   104*  °K- 1
1   Blanket   A.BT

Thickness, in.       ' ' in Regi6n 1   -

0                          -5.4

3/16               -5.9
3/8                     .-6.2
3/4                                                                         -4.4

*A = absorption probability.  The loga-
rithmic derivative is the tabulated
number times 10-4.

C. Conclusions

The results given in Tables VIII-X lead to the following conclusions:
.''

1.     The presence of the unbroadened resonances in the " cold"  sur-
rounding material significantly increases the Doppler effect of the heated

sample when the Doppler element and surroundings contain the same· reso-
nance absorber,

2.   The Doppler effect of the heated sample is relatively insensi-
tive to the presence of unbroadened resonances in the surroundings that
are different from those of the sample.

3.   The cold-hot interaction effect, which is closely analogous to
the usual Dancoff effect, is extremely sensitive to the presence of the non-
resonant scatterers surrounding the sample. The presence of a large
amount of the6e.nonresonant scatterers such as stainless steel tube and
structure materials, which exist in almost all Doppler measurements, may
substantially decrease the interaction effect discussed abeve.
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