Delay-gate generators are used in abundance in nuclear laboratories for gating of scalers and other instruments and for timing synchronization of slow coincidence pulses. These units are used in a direct mode or in a gated mode in which the output is inhibited unless a second input or gate is present. The unit described here will perform these functions and is relatively simple to construct.

The unit consists of five integrated circuits and a few discrete components. The circuit is shown in Fig. 1. Two Texas Instruments monostable univibrator integrated circuits, SN74121, are the heart of the unit. The delay is produced by using the trailing edge of the output of the first univibrator to trigger the second univibrator. The pulse width of each univibrator is determined by external timing components - 20K potentiometer and switch selected capacitors from 10 pf to 1\(\mu\)f. Delay and pulse width can be varied between 30 ns and 10 ms with these component values.

The output of the second univibrator is fed to two T.I. SN74450 driver ICs. The unit fed by the \(Q\) output produces positive going pulses from ground to 3.9v with the selected delay and width. The unit fed by the \(\bar{Q}\) output produces an output complementary to the above - negative going from 3.9v to ground. This second output is useful for anticoincidence gating. The driver ICs consist of an NAND gate and a discrete

*Work supported by Contract No. AT(11-1)-3058 with the U.S. Atomic Energy Commission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
transistor. With the addition of the second transistor, 2N1711 or 2N3866, the unit is capable of driving a terminated 50 ohm cable.

A standard TTL logic level will trigger the first univibrator. Minimum width of this signal is 30 ns. The univibrator input is protected from inadvertent overvoltages by an SN7404 inverter. In this manner inexpensive inverters will be blown instead of the more expensive univibrators. A simple diode clamp circuit could also be used for this purpose. The gate input is switch selectable. When in the gated position both inputs must be present to produce an output.

This unit can be constructed in a single width NIM bin. NIM voltages must be dropped to +5 volts for the ICs. Power supplies for this purpose are not critical since pulse width is virtually independent of V_{cc} and temperature of the IC. Pulse stability will be limited by temperature dependence of the external timing components.

The author wishes to thank George Krycuk for construction of these units.
FIGURE 1. Delay-gate generator circuitry.