NONLINEAR WAVE CONVERSION AT THE LOWER HYBRID RESONANCE

BY

I. FIDONE

PLASMA PHYSICS LABORATORY

MATT-961

APRIL 1973

This work was supported by U. S. Atomic Energy Commission Contract AT(11-1)-3073. Reproduction, translation, publication, use, and disposal, in whole or in part, by or for the United States Government is permitted.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Nonlinear Wave Conversion at the Lower Hybrid Resonance

I. Fidone*
Plasma Physics Laboratory, Princeton University
Princeton, New Jersey 08540

ABSTRACT

Excitation of ion cyclotron waves by nonlinear mixing of two waves with frequencies near the lower hybrid frequency is investigated. The conversion efficiency is estimated for moderately hot plasmas and the result indicates that the process can be of practical interest.

Excitation of low-frequency ion waves in warm plasmas is of great interest for the possibility of further heating of ions in a fusion device. In this note we investigate the excitation of ion cyclotron waves by the nonlinear mixing of two large amplitude waves with frequencies \(\omega_1, \omega_2 \) close to \(\omega_R \), the lower hybrid frequency. In the usual slab geometry with the direction of the density gradient normal to the slab faces and the external

*Permanent address: Departement de la Physique du Plasma, Centre d'Etudes Nuclaires, Fontenay-aux-Roses, France.
magnetic field \(\mathbf{B}_0 = \mathbf{B}_0 \hat{e}_z \), the lower hybrid layer is defined by
\[
\omega^2 = \omega_{\text{pi}}^2 (x_R), \quad \text{where} \quad \omega = \omega_1, \, \omega_2.
\]
Except very close to the slab boundaries (\(N_0 \to 0 \)) we assume \(\omega_{\text{hi}}^2 << \omega_{\text{pi}}^2 \leq \omega^2 << \omega_{\text{pe}}^2 \), where \(\omega_0 = q_0 B_0 / m_0 c \) and \(\omega_{\text{pa}}^2 = 4 \pi q_0^2 N_0 / m_0 \). The electric field of the interacting waves is written as
\[
\mathbf{E}(x,t) = \frac{1}{2} \mathbf{E}_j(x) \exp i(k_3 z - \omega_j t) + \text{c.c.},
\]
where we assume \(n_{jz}^2 = (ck_{jz}/\omega_j)^2 >> 1 \). For \(j = 3 \) we have
\[
\frac{d}{dx} \varepsilon_{zz} (\omega_3) E_{3x} + ik_3 z \varepsilon_{zz} (\omega_3) E_{3z} = \sum_{\alpha} 4 \pi q_\alpha N_{\alpha,3} \exp i \psi,
\]
(1)
\[
ik_3 z E_{3x} = \frac{d}{dx} E_{3z},
\]
(2)
where \(\varepsilon_{xx} = 1 - (\omega_{\text{pi}}^2 / \omega_3^2 - \omega_1^2) \), \(\varepsilon_{zz} = 1 - (\omega_{\text{pi}}^2 / \omega_3^2) + (m_i^\omega_{\text{pi}}^2 / k_{3z}^2 T_e) \), \(k_{3z} \psi_i << \omega_3 - \omega_i << k_{3z} \psi_e \), \(\psi_\alpha = 2 T_\alpha / m_\alpha \), \(\psi = k_{1z} - k_{2z} - k_{3z} \) and we assume \(\omega_3 = \omega_1 - \omega_2 << \omega \). The nonlinear density \(N_{\alpha,3}^{(2)} \) is obtained from the equations
\[
\frac{\partial N_{\alpha,3}^{(2)}}{\partial t} + \frac{\partial}{\partial \mathbf{r}} \cdot \int d\mathbf{v} \mathbf{v} f_\alpha (2) = 0, \quad (3)
\]
\[
\frac{\partial f^{(2)}}{\partial t} + \mathbf{v} \cdot \frac{\partial f^{(2)}}{\partial \mathbf{r}} + \frac{q_\alpha}{m_\alpha c} + \mathbf{v} \times \mathbf{B}_0 \cdot \frac{\partial f^{(2)}}{\partial \mathbf{v}} = - \frac{q_\alpha}{m_\alpha} \mathbf{E} \cdot \frac{\partial f^{(1)}}{\partial \mathbf{v}}. \quad (4)
\]
In Eq. (1) the dominant contribution is given by \(N_{1,3}^{(2)} \).
Moreover, for \(\omega_3 \approx \omega_1 \) and \(\omega_3 \gg k_{3z} \psi_i \) in Eq. (4) we neglect the \(\mathbf{v} \cdot [\partial f_i^{(2)} / \partial \mathbf{r}] \) term, thus.
and we have used the fact that $E_{jx} \gg E_{jz}$, $j = 1, 2$. Now, $\omega_j \ll \omega_1, \omega_2 \approx \omega_i$ and $\omega_1, \omega_2 \gg k_{1z} v_\alpha, k_{2z} v_\alpha$, hence

$$N_{i,1}^{(1)} = \frac{q_i N_0}{m_i \omega_j} \frac{d}{dx} E_{jx}, \quad j = 1, 2,$$

and Eq. (1) becomes

$$\frac{d^2 E_{3z}}{dx^2} + \frac{\omega_j^2}{c^2} p_3 E_{3z} = -ik_{3z} \exp (i\psi) \frac{q_i}{2m_i \omega_j} \frac{d^2}{dx^2} (E_{1x} E_{2x})^*, \quad (5)$$

where $\omega^2 = \omega_1^2 \approx \omega_2^2$ and $p_3^2 = -n_j^2 \varepsilon_{zz}(\omega_3)/\varepsilon_{xx}(\omega_2) = (m_i c^2/T_e)^2 (\omega_3^2 - \omega_1^2/\omega_3^2)$.

Equation (5) must be solved simultaneously with the corresponding equations for E_{1x}, E_{2x}. To get an idea of the efficiency of the mixing process we solve Eq. (5) by an iteration method. For $x > x_j$ the field of the primary waves is given by

$$E_{jz} = A_j \varepsilon_{xx}^{-1/2}(\omega_j) p_j^{-1/2} \exp \left[-i \frac{1}{c} \int_{x_j}^{x} p_j(x) dx \right], \quad (6)$$

$$E_{jx} = -\frac{p_j}{n_j} E_{jz},$$

where $p_j^2 = -n_j^2 \varepsilon_{zz}(\omega_j)/\varepsilon_{xx}(\omega_j) = n_j^2 (m_i/m_e)(\omega_i^2/\omega_j^2 - \omega_i^2)$, $\varepsilon_{xx}(\omega_j) = 1 - (\omega_i^2/\omega_j^2)$, $\varepsilon_{zz}(\omega_j) = -(\omega_i^2/\omega_j^2)$ and x_j is determined by the relation $\omega_j^2 = \omega_i^2(x_j)$. The amplitude A_j is determined by $E_{jz}(x = 0)$ and the density profile in the region $0 \leq x \leq x_j$. Equations (6) are valid as long as x is not too close to x_jR where
$$\omega_j^2 = \omega_{p_i}(x_j R) \text{ and } \varepsilon_{xx}(x_j R) \approx 0. \text{ For } x \text{ close to } x_j R \text{ linear wave conversion must be taken into account}^2 \text{ and we have}^1,^3$$

$$E_{jx} = -B_j \left(3\rho_j^2\right)^{1/3} F_j(\sigma_j, \eta_j), \quad i k_{jz} E_{jx} = \frac{dE_{jz}}{dx} \quad (7)$$

where

$$B_j = \frac{w_j \lambda_j}{\pi \eta_{jz}} \left(\int_{x_j}^{x_j R} \rho_j dx + \frac{\pi}{4} \right),$$

$$\eta_j = -(3\rho_j^2)^{1/3} \frac{w_j}{c} (x-x_j R), \quad \lambda_j^{-1} = \frac{1}{\omega_j^2} \left(\frac{d\omega_{p_i}^2}{dx} \right)_{x_j R} > 0,$$

$$\rho_j^2 = \frac{c}{w_j \lambda_j (3T_i/m_i c^2)}, \text{ and } \sigma_j = -\frac{w_j \varepsilon_{zz}(x_j R) \lambda_j n_{jz}}{(3\rho_j^2)^{1/3} c} > 0.$$}

For $\eta_j \gg 1$

$$F(\sigma, \eta) = i \pi \frac{\sigma}{\eta} \frac{1}{2} H_1(1) (2\sigma^{1/2} \eta^{1/2})$$

$$+ \exp \left(-\frac{3\pi i}{4}\right) \frac{\eta^{1/2}}{(3\eta)^{1/4}} \exp \left[i2(\eta^{3/2}) \right], \quad (8)$$

and it can be checked that for $2\sigma^{1/2} \eta^{1/2} >> 1$ the first term of Eq. (8) yields Eq. (6). The second term of Eq. (8) represents the converted plasma wave. For arbitrary values of η, $F(\sigma, \eta)$ can be written as a double series3 in σ and η. A simple analytical form of F is obtained for $\sigma << 1$;

$$F(\sigma, \eta) = -i \int_0^\infty dt \exp \left[-i(t^3 - \eta t)\right]. \quad (9)$$
The right side of Eq. (6) has a localized behavior. For
\[|\eta| > 1 \] and \[\eta < 0 \] \(x > x_R \) it is exponentially decreasing and for \(\eta > 0 \) we have
\[
\frac{d^2}{d\eta^2} (F_1^* P_2) \approx \frac{d^2}{d\eta^2} |F_1|^2 \approx \eta^{-5/2}.
\]

Since the source of \(E_3 \) is localized in a thin region around \(x_R \), the solutions of Eq. (5) are
\[
E_{3x}^{(\pm)} = -k_{3x} \frac{q_i}{4m_1 \omega^2} \left(\frac{c}{\omega_3 p_3} \right) \exp (\pm i \frac{\omega_3}{c} p_3 x)
+ i \psi \int_{-\infty}^{\infty} dx \exp (\mp i \frac{\omega_3}{c} p_3 x) \frac{d^2}{dx^2} (E_1 x E_2^*)
\]
where in \(E_3^x \) \(x \) is taken above the source layer and in \(E_3^- \) it is taken below. The energy flux is defined by
\[
\mathcal{S}_{3x} = -\frac{\omega_3}{16\pi} \frac{\partial}{\partial \omega_3} \left| \frac{\partial}{\partial \omega_3} E_3 \right|^2 , \quad \mathcal{S}_{3x} = \frac{k_{3x}^2 \varepsilon_{xx}(\omega_3) + k_{3x}^2 \varepsilon_{zz}(\omega_3)}{k_{3x}^2}
\]

hence \(S_{3x}/S_{3x} = -k_{3x}/k_{3x} \) and
\[
\frac{S_{3x}^+}{S_{1x}} = \pm \left(\frac{q_i |A_2|}{4\pi T_i k_{2z}} \right)^2 \frac{\omega_2}{p_3 (\omega_3^2 - \omega_1^2)} \left| \int_{-\infty}^{\infty} d\eta \exp (\pm i \eta \omega_3) \frac{d^2}{d\eta^2} F(\eta) F^*(\eta - \delta) \right|^2 ,
\]
(10)
where \(S_{1x} = (c/8\pi)(|A_1|^2/n_{1z}^2) \), \(\beta = (\omega_3/\omega)(p_3/(3p^2)^{1/3}) \) and
\(\epsilon = 2(3p^2)^{1/3}(\omega_3/c)l \).

We calculate the integral in Eq. (10) for \(\sigma \ll 1 \), i.e. with \(F \) given by Eq. (9). Moreover, from Eq. (6) it is clear that \(|A_2| \) is approximately \(E_{2z}(x=0) \), the value of \(E_{2z} \) at the boundary, then \(q_i|A_2|/k_{2z} = q_i\phi_2 \) is the potential energy of the wave far away from \(x_R \). We get \(S_{3x}^{(+)} \approx 0 \) and

\[
\frac{S_{3}^{(-)}}{S_{1x}} = \frac{\pi}{12} \left(\frac{q_i\phi_2}{T_i} \right)^2 \frac{\omega_p^2 \beta^3}{|n_{1z}|(\omega_j^2 - \omega_i^2)}. \tag{11}
\]

Equation (11) has a limited range of application since it is for \(\sigma \ll 1 \) which can be fulfilled for low temperature and small \(\lambda \). For a plasma of 10 cm diameter we take \(\lambda = 3 \), \(T_e = 100 \text{ eV} = 10 \text{ } T_i \),
\(N_0(x_R) = 10^{12} \text{ cm}^{-3} \), \(\omega = \omega_p(x_R) = 1.3 \cdot 10^9 \text{ sec}^{-1} \), \(\omega_i/\omega = 10^{-1} \),
\((\omega_3 - \omega_i)/\omega_i = 1/5 \), which gives \(\beta = 1/3 \) and

\[
\frac{S_{3}^{(-)}}{S_{1x}} \approx \frac{2}{|n_{1z}|} \left(\frac{q_i\phi_2}{T_i} \right)^2. \tag{12}
\]

It must be noted that in this case \(\sigma \approx (n_z^2/4) \) and the result must be considered an order of magnitude estimation. The interesting feature of Eq. (12) is that the numerical coefficient is of the order of one and therefore as \(q_i\phi_2 \) approaches \(T_i \) we have a good conversion. On the other hand for the validity of the perturbation theory we have assumed \((q_i\phi_2)/T_i \ll 1 \).
ACKNOWLEDGMENTS

I wish to thank J. Hosea for useful discussions during the preparation of this paper. This work was supported by U. S. Atomic Energy Commission Contract AT(11-1)-3073.
REFERENCES

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.