CHEMISTRY DIVISION
ANNUAL PROGRESS REPORT
FOR PERIOD ENDING JUNE 20, 1962

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
CHEMISTRY DIVISION ANNUAL PROGRESS REPORT
for Period Ending June 20, 1962

E. H. Taylor, Director
M. A. Bredig, Associate Director

DATE ISSUED

DEC 11 1962

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
Summary

1. NUCLEAR CHEMISTRY

Values of 920 ± 90 and 48 ± 5 barns were measured for the resonance integral and (mean) thermal cross section of Pa233, with a cadmium-filter technique. On the assumption that Pa233 obeys the $1/v$ law for cadmium-absorbable neutrons, a 2200-m/sec cross section of 46 ± 5 barns was obtained. A comparison of measurements made with cadmium and gadolinium filters indicated that no large resonances exist in the thermal-to-cutoff energy ranges.

With cadmium-filter techniques and irradiating samples of bismuth containing Bi210, the thermal cross section and resonance integral to form the 2.16-min Bi211 (AcC) were found to be 0.054 and 0.20 barn respectively.

Effective energy cutoffs were calculated on an IBM 7090 computer for cadmium, gadolinium, samarium, and boron filters as functions of the ratio of Maxwellian to epithermal (assumed to be $1/E$) flux, the lower energy limit of the $1/E$ flux, the energy corresponding to the Maxwellian most probable (modal) velocity, the filter thickness, and the height/diameter ratio (of cylindrical filters). The filters were spherical (which on the assumptions made is equivalent to a beam flux case), cylindrical, and slab. By the use of two or three different filters (cadmium and gadolinium and perhaps samarium), it should be possible to detect resonances in the thermal-to-cutoff energy regions, in addition to measuring resonance integrals and thermal cross sections of unknown nuclides. The calculated cutoff varied by at least 2% as the lower limit of the $1/E$ flux was varied between 3 and 6 times the Maxwellian temperature.

Values of 97 ± 10 and 255 ± 25 barns were found for the activation thermal cross section and resonance integral of Sm150 respectively. These values are of interest because Sm150 is the nuclide of lowest cross section in the sequence starting with Pm147; this sequence, via successive neutron capture, results in Gd156. Samarium-150 can effectively interrupt the chain of neutron losses at mass 150 in a high-flux reactor.

By measuring the specific activity of the 2.615-Mev gamma ray in a reactor-irradiated and calutron-enriched sample of bismuth and by measuring the Bi208 content mass-spectrographically, a half-life of $(5.61 ± 0.15) \times 10^5$ years was found for Bi208.

By irradiating samples of pure Ce140 with neutrons and measuring, with both mass spectograph and neutron activation analyses, the Ce141 produced as the result of double neutron capture, a value of 30 ± 3 barns was obtained for the effective neutron cross section of Ce141 in a reactor with a ratio of thermal flux to resonance flux of 12.4.

Values of 0.59 and 0.48 barn, respectively, were obtained for the thermal-neutron cross section and resonance integral of Ce140.

The beta and gamma radiations of 2.7-hr Pm150 were investigated by using single- and multicrystal scintillation spectrometers. A decay scheme is proposed which involves excited states in Sm150 at 0.333, 0.743, 1.18, 1.66, 1.96, 2.07, 2.41, and 3.08 Mev, together with tentative assignments at 1.77, 1.90, 2.86, and 2.91 Mev.

A study of the decay properties of Cs132 disclosed energy levels in Xe132 at 669, 1300, 1808, and 1988 kev and levels in Ba132 at 464 and 1034 kev. From angular correlation measurements, spins are assigned for all of these states. A comparison of these levels with those predicted by various nuclear models is made.
Recent experiments extended the information on fission-product yields and half-lives in the mass-99 decay chain; in particular, the existence of a new isomer of Nb59 ($T_{1/2} = 10$ sec) was established.

A comprehensive literature survey and evaluation of U233 fission-yield data led to the selection of a set of preferred fission-product yield values for the thermal-neutron-induced fission of U233.

The level structures of Ge71, Ge73, Ge75 and Ge77 were studied with the (d,p) reaction. The energy spectra of proton groups leading to excited levels up to approximately 1 Mev were obtained through the use of a silicon surface-barrier detector. The Q values corresponding to newly observed levels were determined.

Some of the properties of lithium-drifted silicon diodes were studied. Measurements with these diodes were used in an investigation of the Ce135 decay scheme.

2. ISOLATION AND CHEMICAL PROPERTIES OF SYNTHETIC ELEMENTS

The preparation and properties of a number of rhenium species in aqueous or organic solution which may be prepared from pentavalent and hexavalent rhenium in 18 M H_2SO_4 are described. All the species have the common property of exhibiting very intense absorption bands in the visible region.

Nonaqueous acidimetric titrations of H_2ReCl_6 and H_2SO_4 suggested that the second ionization constant for the rhenium compound is significantly larger than that for H_2SO_4.

Measurements of the near-infrared absorption spectrum of pertechnetate ion revealed a characteristic strong absorption band at 906 cm$^{-1}$.

3. CHEMICAL SEPARATION OF ISOTOPES

Ion exchange of alkali metal ions has been studied in systems involving ion exchange resins equilibrated with nonaqueous solutions. Diffusion and selectivity coefficients were determined.

Vapor pressure measurements were made of various mixtures of BF_3 and ethyl sulfide. Single-stage isotopic equilibrium constants were determined for the exchange of boron between BF_3 and $BF_3\cdot(CH_3)_2O$ at 22, 4, and -8^\circC.

Nitrite and nitrate ions were shown to exchange nitrogen atoms in acid solutions. The rate is pH dependent.

The salt $K_4[(NC)_4CoOOC(CN)_4]$ in solution does not exchange its peroxoxygen bridge with O_2.

Preoperational testing of the water distillation cascade of the Oxygen-17 Plant was completed during fiscal year 1962. The unit was placed "on stream" during June. The cascade is expected to attain steady-state operation during the latter part of 1963.

The single-stage separation factor for carbon and oxygen isotopes between carbon dioxide and dimethyl carbamic acid was measured.

Separation factors per mass unit for the system, aqueous metal hydroxide-metal amalgam, at 25$^\circC$ were 1.0023 for sodium and 1.00017 for rubidium. With sodium, the light isotope concentrates in the amalgam; with rubidium, the heavy isotopes concentrate in the amalgam. A rubidium-cesium separation factor larger than 2 was obtained for the same system.

A nuclear magnetic resonance study of rates of exchange, activation energies, and equilibrium constants for mixtures of BF_3 with two donor solvents was begun.

Dielectric-constant measurements on diethylammonium diethylcarbamate indicate the material is salt-like in the molten state, but undissociated in organic solvents.

Mass spectroscopic investigations of metastable ions produced in the isotopic nitrous oxides by electron impact were published. Infrared and Raman spectral studies of isotopic molecules were continued. Observations of the spectra of $BF_3\cdot(CH_3)_2O$ and its B10, B11, and D-substituted analogs were completed and published. The isotopic equilibrium constant between BF_3 and $BF_3\cdot(CH_3)_2O$ was calculated from the spectral data and compared with experimental observations. A computer program for using isotopic data in calculating force constants was refined and used to calculate vibrational frequencies for N$_2^2$O$_4$ and N$_2^{15}$O$_4$, which agree closely with observed values.

4. RADIATION CHEMISTRY

In the electron bombardment studies of mixtures of (C$_2$N$_2$ + H$_2$) and (C$_2$H$_2$ + N$_2$), a common ion at mass 27 was shown by appearance-potential
techniques to be HCN$^+$ and not C$_2$H$_3$+ instead. Other common masses were not identified as to specific ions. This study of the (C$_2$H$_2$ + N$_2$) mixture is in agreement with early alpha radiolysis studies of the same mixture in that only small amounts (not more than 10%) of nitrogenated products are produced.

The gaseous and liquid products resulting from the alpha radiolysis of ethylene were analyzed. The results show that hydrocarbons with an even number of carbon atoms predominate and that the straight-chain hydrocarbons predominate over the branched compounds. Infrared spectra show the major unsaturated products to be RCH=CHR$^+$. Molecular weight and iodine number determinations on the liquid polymer show an average of 16 carbons per molecule and one double bond per 10 carbons.

The catalytic activity and activation energy of germanium for H$_2$-D$_2$ exchange and its catalytic activity for formic acid dehydrogenation varied significantly with the Fermi level as the latter was altered by doping with n- and p-type impurities.

Colors produced on irradiation of certain polynuclear aromatic compounds adsorbed on silica gel were used as evidence for ionic intermediates in the radiolysis. Further experiments on the enhancement by radiation of the H$_2$-D$_2$ exchange activity of silica gel make it even less likely that the mechanism is the removal of a poison by radiolysis.

The photolysis of hydrogen peroxide was studied in the presence of dissolved hydrogen and oxygen. The ratio of rate constants, $k_{H_2-OH}/k_{H_2O_2-OH} = 0.93$, is the same as that previously reported for the radiolysis of water. This indicates that the hydroxyl radical produced in the radiolysis of water has the same chemical structure as OH produced by the photodecomposition of hydrogen peroxide. Presumably, the H$_2$O$^+$ initially produced in the radiolysis of water is rapidly converted to OH. The above ratio is insensitive to hydrogen ion concentration. However, HSO$_4^-$ and OH$^-$ react with OH to form, presumably, HSO$_4$ and OH$^-$, respectively. The ratios of rate constants $k_{H_2-OH}/k_{HSO_4^+OH}$ and k_{OH^-OH} were evaluated. The measurements extend the range previously covered (to 10 Mev at Argonne and Brookhaven National Laboratories) into the lower LET range. Methods were devised for accurately measuring both the proton energy and the proton beam current.

The Co60 gamma irradiation of aqueous H$_2$SO$_4$ solutions produces the free radicals, H, OH, H$_2$O, and HSO$_4^-$ and HSO$_3^-$ and the molecular products H$_2$, H$_2$O$_2$, H$_2$S, O$_2$, H$_2$SO$_3$, and SO$_2$. The 100-ev yield of each of these intermediates as a function of H$_2$SO$_4$ concentration is presented graphically. The hydroxyl atom reacts with both oxygen molecules and H$_2$O$^+$ ions. The ratio of rate constants $k_{(H+O_2)/k_{(H+H_2O)}}$ has been calculated from the the ferrous-sulfuric acid system to be 700,000 (±5%).

When Ce$^{4+}$-0.8 N H$_2$SO$_4$-NaNO$_3$ solutions are irradiated with Co60 gamma rays, the G(Ce$^{3+}$) increases with increasing NaNO$_3$ concentration. Mass spectrophotometric analyses of molecular oxygen in the H$_2$O$_{18}$-NaNO$_3$ system are correlated with the ion spectrophotometric analyses of Ce$^{4+}$ in the Ce$^{4+}$-0.8 N H$_2$SO$_4$-NaNO$_3$ system to explain the enhanced G(Ce$^{3+}$). The measured G(Ce$^{3+}$) is deduced to be a composite of the following: (1) the G(Ce$^{3+}$) measured in the absence of NaNO$_3$, (2) the stoichiometrically equivalent G(Ce$^{3+}$) resulting from the suppression of G(H$_2$), (3) a direct-action effect on nitrate ion which is directly proportional to nitrate ion concentration, and (4) a possible scavenging reaction of nitrate ion.

The investigation of radiolysis by transferred energy was continued with a study of the decomposition of nitrite ions dispersed in potassium
bromide. It was found that the nitrite ion is so distributed in the matrix as to decompose simultaneously by two first-order processes. The initial rates of both processes vary in a regular manner with the initial concentration of nitrite ion. This is qualitatively explained by considering each un-irradiated mixture of potassium nitrite and potassium bromide to have a different structure varying regularly with concentration.

Discontinuities were found in turbidity-concentration curves measured on pressed disks of dispersions of large ions in potassium bromide. It is believed that this behavior may be compared to that of "colloidal electrolytes" in liquid solutions.

By means of low-temperature cells and absorption spectrophotometry, the formation of ozone in liquid oxygen and oxygen-nitrogen mixtures was observed in situ at 77°K by alternate gamma irradiation and ultraviolet absorption measurement. Extensive energy transfer and enhanced ozone yields were found in the O2-N2 system. In a solution only 0.050% O2, the yield of ozone is equal to 32% of that from pure oxygen. In pure oxygen at 77°K, G(O3) = 12.5 molecules/100 ev.

The two cobalt sources of the Radiation Chemistry Group were reloaded with 2900 and 280 curies; the maximum dose rates are about 2 × 10^18 and 2 × 10^17 ev g^-1 min^-1 respectively. The cobalt is distributed to provide a uniform dose rate (within ±2%) over a 3-in. length along the vertical axis.

Measurements of the decompositions of the alkali-metal bromates by nuclear reactor radiations as a function of exposure dose at ambient temperatures showed that the gross radiolytic stability sequence was the same as that observed previously with Co60 gamma rays. In some instances, however, the relative stabilities differed, and these differences could be attributed to the production of internal radiation sources by thermal-neutron capture in the alkali-metal cation or by the formation of high-LET recoil fragments, as in the fission of Li6. The separate decompositions by thermal neutrons, fast neutrons, and reactor gamma rays were estimated from experiments performed in a thermal column, with thick lithium or metal shielding, and with thick bismuth metal shielding, respectively. Evidence was obtained for the stepwise radiolytic decomposition of the BrO3 ion.

5. ORGANIC CHEMISTRY

The differential method developed at this Laboratory for studying small isotope effects—particularly the secondary effects of C14 and deuterium—was extended to include several isotope-position isomers of acetylphenone, phenyl t-butyl ketone, and propiophenone. In general, substitution of deuterium in the aliphatic side chains of these ketones increases the reaction rate, the only exception being propiophenone-ω-d3. Carbon-14 in the carbonyl groups of all ketones studied decreases the reaction rate by 5.0%, whereas in adjacent positions it causes a small rate increase.

A study was made of the nuclear magnetic resonance spectrum of erythro-2-amino-1-phenylpropanol hydrochloride. The population of the various conformations was estimated from the appropriate spin-spin coupling constant. The data were used to predict the product ratio upon deamination of the compound, and the validity of the prediction was confirmed from experimental evidence.

The compound (−)-exo-norbornyl amine was prepared in the optically pure form and subjected to deamination. The retention of optical activity in the product, exo-norbornyl acetate, was evidence that the reaction intermediate was not a non-classical cyclic ion.

A nuclear magnetic resonance study of the syn- and anti-stereoisomers of iso-butyrophene-2,4-dinitrophenylhydrazone was started. The syn-anti chemical shifts for both α and β-protons were in the same direction. The two isomers do not exist in equilibrium in solution, because of the rotational isomerization about the C=N bond. The reaction between sodium nitrate and tributyl phosphate (TBP) was further studied with differential-thermal-analysis techniques. The first reaction (exothermic, 79 cal per g of TBP) was partially quenched by an endothermic reaction of sodium nitrate. The return to a net exothermic reaction was finally quenched by the fusion of sodium nitrate.

Organic thiophosphorus compounds form complexes with silver and mercuric cations that can be used for solvent extraction. Electronic distributions are important in that more stable complexes are formed with neutral thiophosphorus compounds that have more electron-releasing groups attached to the phosphorus. The cor-
responding monobasic thiophosphoric acids form complexes with silver that are soluble in and show association between molecules in benzene.

6. CHEMISTRY OF AQUEOUS SYSTEMS

The solubilities of Ag_2SO_4 were measured in $\text{KNO}_3-\text{K}_2\text{SO}_4$, $\text{K}_2\text{SO}_4-\text{MgSO}_4$ and $\text{K}_2\text{SO}_4-\text{H}_2\text{SO}_4$ aqueous mixtures in the range 90° to 175°C. Two different types of expressions were tried for representing the logarithm of the solubility product vs ionic strength: (1) a single-parameter Debye-Hückel equation and (2) a Debye-Hückel expression with fixed parameter plus a linear term with an adjustable parameter. The adjustable Debye-Hückel parameter in expression (1) was very nearly temperature independent, while the adjustable linear parameter in (2) varied quadratically with temperature in all mixed-electrolyte media.

A generalized least-squares technique can be used to calculate equilibrium constants in solvent extraction equilibria by minimizing the difference between observed and calculated distribution ratios. The method was successfully applied to the extraction of uranyl nitrate and nitric acid by TBP dissolved in an inert diluent.

The optical absorption of hydrolyzed U(VI) in 1 M chloride solutions was correlated with a hydrolysis scheme based on acidity and ultracentrifugation measurements, involving as principle species $\text{(UO}_2^2\text{)}_2\text{(OH)}_2^{2+}$, $\text{(UO}_2^2\text{)}_3\text{(OH)}_4^{2+}$, and $\text{(UO}_2^2\text{)}_3\text{(OH)}_5^{5+}$. Ultracentrifugation of Bi(III) perchlorate solutions as a function of concentration and degree of hydrolysis indicates that estimates of equilibrium quotients and their temperature coefficients for polymeric reactions may be possible by comparing experimental equilibrium refractive index patterns with those computed on the basis of an assumed model. Equilibrium ultracentrifugations of hydrolyzed Pb(II) solutions in general confirm the scheme postulated on the basis of emf measurements carried out elsewhere.

The NbO_5^{2-} ion and the NbF_6^{2-} ion were identified in 0% to 50% HF solutions by comparing the Raman spectra of the solutions with the spectra of crystalline CsNbF_6, K_2NbF_7, and $\text{K}_2\text{NbOF}_5 \cdot \text{H}_2\text{O}$. The NbF_7^{2-} ion was not found in the solutions.

A new spectrophotometer cell assembly was constructed for high-temperature aqueous spectrophotometric studies. In both sample and reference cells, temperature and pressure are precisely controlled, and liquid-gas equilibration is provided for.

Preliminary study indicates that the DCIO_4^--D$_2$O-H$_2$O system is a usable solvent for spectrophotometry of inorganic ions at least to 1 / DCIO_4^-, 250°C, and over the wavelength range 0.33 to 1.8 μ.

The applicability of the mass law to ion exchange equilibria with concentrated aqueous salt solutions was demonstrated with a liquid anion exchanger. Equilibria involving concentrated hydrochloric acid solutions with both liquid and resinous anion exchangers, however, could not be rationalized because of the invasion of these exchangers by this electrolyte. An attractive explanation for this invasion and the associated nonideality of the resultant organic phase was that hydrogen dichloride ions, HCl_2^-, were being formed at the exchange sites. Infrared absorption, vapor pressure and other measurements have appeared to give support to the explanation.

Systematic measurements of the osmotic and activity coefficients at 25°C for a wide variety of quaternary ammonium halides in aqueous solutions as a function of concentration have continued. The degree of interaction between a given halide ion and the quaternary ammonium cation depended on the structure of the latter. For example, substitution of a benzyl for a methyl group greatly increased the anion binding of the resulting quaternary ammonium cation.

Calorimetric measurements of the heat of exchange of bromide for chloride ion with high-molecular-weight linear anionic polyelectrolyte gave values in reasonable agreement with previously observed heats for the same reaction with cross-linked anion exchangers.

Heat of solution and dilution measurements were completed on p-ethylbenzene sulfonic acid (the “model” compound for Dowex 50) and on the lithium, sodium, potassium, and cesium salts of the acid. The heat content-concentration dependency observed with these compounds was notable in that the initial slopes were larger than for any other common alkali-metal salt of the 1:1 type.

The extraction of microquantities of Fe(III) from concentrated hydrochloric and perchloric acid solutions by a strong acid liquid cation exchanger and by a lightly cross-linked Dowex 50 have been
compared. In all four cases a marked increase in the extraction of iron above acid concentrations of 3 to 4 M was observed.

A systematic study is in progress of the ion exchange properties of essentially all metallic elements with the objective of developing a general ion exchange separations scheme. Anion and cation exchange methods are being explored in HCl, HNO₃, HClO₄, H₂SO₄, and HF solutions and various mixtures of these acids. High-ionic-strength media are being stressed. Approximately six major ion exchange groups, which are expected to form the basis of a generalized scheme, have been evaluated.

The cation exchange behavior of U(VI) was studied in mixtures of HClO₄, HNO₃, HCl, and H₂SO₄ solutions at high ionic strength. The presence of small amounts of chloride affects the adsorbability of U(VI) greatly. Some of the unique features of the adsorbability of U(VI) at high ionic strength can be utilized for a number of novel separations techniques.

A large number of vanadates were found to have interesting cation exchange properties. Zirconium antimonate was found to be a cation exchanger with relatively unique selectivities.

7. ELECTROCHEMICAL KINETICS AND ITS APPLICATION TO CORROSION

By use of tracer techniques, a study was made on the kinetics of ion exchange between the passive surface of iron or stainless steel and an aqueous solution. The results can be interpreted mathematically by assumption of a linear variation in the heat of activation with the extent of exchange.

It has been shown that hydrogen penetration into the metal is an important factor in determining the electrochemical behavior of iron in acid media. This conclusion results from quantitative analyses of cathodic polarization transients on cylindrical electrodes, and from observations of the effects of hydrogen diffusion through an iron membrane electrode on the rates of the reactions occurring at the metal-solution interface.

An investigation of the dissolution of zirconium in aqueous solutions containing HF is underway. Pulse methods are being used to obtain dissolution rates and kinetic parameters. The studies on passive zirconium are being continued, with the application of current pulses in an effort to calculate film thicknesses from the capacities due to the thin film present on the electrode surface.

A model of the passive state on iron, developed on the basis of certain concepts of semiconductor theory and electrochemical kinetics, is discussed in relation to experimental observations. The model predicts correctly the observed potential independence of corrosion rate in the passive region as well as the proper pH dependence of the corrosion rate. The assumption of a hole-catalyzed corrosion reaction accounts for the existence of the transpassive state and for the observed pH dependence of corrosion rate in this region. The existence of a limiting potential analogous to the Flade potential follows directly from the model.

Measurements of the electrode potential and the differential capacity of the electrical double layer on electrolytic iron in Cl⁻, Br⁻, I⁻, and SO₄²⁻ solutions show that specific adsorption plays an important role in the mechanism of corrosion inhibition by halide ions. Electrode potentials and differential capacities were measured as a function of time, acidity, and anion concentration. For the case of inhibition by iodide ions, the data support an electrochemical desorption mechanism proposed previously for the explanation of transient and steady-state polarization characteristics of iron in iodide solutions.

8. NONAQUEOUS SYSTEMS AT HIGH TEMPERATURE

The electrical conductivity of rare-earth metal solutions in their molten triiodides was found to reflect the stability of Nd²⁺ and the instability or nonexistence of La²⁺ and Ce²⁺, as first indicated by phase diagrams, with Pr²⁺ exhibiting intermediate stability. The entropies of fusion of the trihalides were determined calorimetrically and yielded, in conjunction with the phase diagrams, a cryoscopic number n ≈ 3 for the dissolution of the metals in the trihalides, corresponding either to the reaction M + 2M³⁺ → 3M²⁺, as for Nd and, partially, Pr, or to the ionization M → M³⁺ + 3e⁻, as for La and Ce, and, partially, Pr.

Large differences in the electronic conductance of pairs of systems such as K-KX and La-LaX₃, involving salts of different stoichiometry, are explained by the assumption that the electronic
conductance is proportional not only to the concentration of mobile electrons but also to the concentration of the metal ions between which the electrons are being exchanged.

The suggestion that electron exchange between Nd\(^{2+}\) and Nd\(^{3+}\) contributes to the conductance in molten NdX\(_3\)-NdX\(_2\) mixtures was supported by measurements on molten NdCl\(_3\)-SrCl\(_2\) and NdI\(_3\)-SrI\(_2\) mixtures, in which a similar exchange is not possible.

The decrease in the rate of increase in electrical conductance with increasing metal concentration in the alkaline earth systems CaBr\(_2\)-Ca, CaI\(_2\)-Ca, and SrBr\(_2\)-Sr is attributed, as in CaCl\(_2\)-Ca, to the pairing of the mobile electrons, which are present in dilute solution, to form M\(_2\)\(^{2+}\) ions.

The alleged existence, in molten CdCl\(_2\)-KCl mixtures, of a minimum in electrical conductance at the composition KCl:CdCl\(_2\) = 1:1, attributed to the formation of CdCl\(_4\)\(^{-}\) ions, was ruled out by measurements at 460\(^\circ\), 500\(^\circ\), and 570\(^\circ\)C. The data are in agreement with higher-temperature data of the literature and with the assumption of CdCl\(_4\)\(^{-}\) rather than CdCl\(_3\)\(^{-}\) ions. An analysis of emf measurements by Russian investigators leads to the same result.

Heat capacities over limited temperature ranges and heats of fusion were determined by means of a drop calorimeter for a number of rare-earth and alkaline-earth halides. SrBr\(_2\) and BaCl\(_2\) undergo phase changes just below their melting points with fairly large heats of transition. Their high-temperature forms are believed to have the fluorite type of structure characterized, as in CaF\(_2\) and SrCl\(_2\), by an unusually low entropy of fusion, probably because a high degree of disorder occurs in that structure at elevated temperatures.

9. CHEMICAL PHYSICS

The laboratories for paramagnetic resonance work were enlarged, and new spectrometers for studies at 9000 and 23,000 Mc were assembled and put into operation. Progress was made in the design of a new cavity for extending work to liquid-helium temperature.

The single crystal paramagnetic resonance parameters of NO\(_2\) in irradiated NaNNO\(_2\) and in irradiated KNO\(_3\) were found to differ significantly. The differences are satisfactorily explained if NO\(_2\) in KNO\(_3\) is undergoing rapid reorientations between two mirror-related sites in a nitrate ion vacancy. Study of KNO\(_3\) doped with nitrogen-labeled NO\(_2\)^\(-\) showed that NO\(_2\) is produced from NO\(_2\)^\(-\) by irradiation at 77\(^\circ\)K. Studies of the production of NO\(_2\) suggest that NO\(_2\)^\(-\) is not produced in pure KNO\(_3\) at 77\(^\circ\)K but is produced after the irradiated salt is warmed.

A paramagnetic resonance study of irradiated single crystals of hydrogen peroxide has been reactivated. Conditions for forming three distinct spectra by ultraviolet irradiations have now been found.

A paramagnetic species exhibiting chlorine hyperfine structure and believed to be ClO\(_2\) has been studied in gamma-irradiated KClO\(_3\). Machine computations were made in an attempt to fit the data to a spin Hamiltonian which included the quadrupole interaction. If Ba(ClO\(_3\))\(_2\)\(_2\)H\(_2\)O is irradiated at 77\(^\circ\)K and then warmed to room temperature, a species with a similar spectrum is formed.

The crystal structure of chloral hydrate was determined to high precision by three-dimensional neutron diffraction methods. Complete details of the molecular structure and hydrogen bonding have been elucidated.

Neutron diffraction measurements on NaCl, KCl, and RbCl single crystals have (1) demonstrated the consistency and precision of intensity measurements with the Oak Ridge automatic neutron diffractometer, (2) refined the values for the nuclear scattering amplitudes of the metals relative to Cl, and (3) yielded precise values of the thermal-displacement parameters in these crystals. X-ray diffraction studies of structure in molten alkali halides and aqueous solutions are continuing. Work on liquid water and on aqueous Pb(OH)ClO\(_4\) is nearing completion. The data for water are consistent with a model based on the ordinary ice structure, with "interstitial" water molecules filling approximately half the ice structure cavities. The Pb(OH)ClO\(_4\) data were interpreted in terms of a model containing a tetrahedral arrangement of lead atoms, each lead atom having three other lead atom neighbors at a distance of about 3.83 A.

A program has been prepared to plot contours of a two-dimensional density function using the California Computer Products model 570 magnetic tape plotter.

An experimental computer program has been prepared which will postulate crystal structures...
when given the unit cell size, symmetry, and number of molecules per cell.

Several computer programs for crystallographic calculations were rewritten in FORTRAN language in order to permit their use on different machines and to facilitate any modifications which may become necessary.

Low-temperature heat capacity measurements on a third preparation of K_2ReBr_6 agree poorly with previous measurements. This places a large uncertainty upon the calculated entropy; the revised value is $S(298.16\,\text{K}) = 108.0 \pm 1.5 \,\text{cal deg}^{-1}\,\text{mole}^{-1}$.

The heat of mixing in the molten-salt system LiF-KF was measured with the Bunsen ice calorimeter as a function of composition. The system exhibits energetic asymmetry and has a maximum heat of solution of about 1200 cal/mole.

In a mass spectrometric study of both the catalytic decomposition of ammonia on platinum and its radiolytic decomposition by 90-ev electrons, the NH_4^+ ion was the most abundant transient species observed.

The two-stage mass spectrometer was developed into a highly sensitive and reliable instrument for the accurate determination of isotopic abundance ratios.

Studies on electron shake-off and molecular fragmentation as the result of nuclear decay were reported in the Physics Division Annual Progress Report, ORNL-3268.

In preliminary experiments with crossed molecular beams of D and H$_2$ it was possible to observe part of the angular distribution of the product HD. If the results can be taken at their face value, they present an ambiguity concerning the distribution of the energy between various internal modes.

In the same apparatus, a surprising specularity was observed in the reflection of D$_2$ and helium beams from a polycrystalline platinum foil.

The differential surface-ionization detector for alkali metals and their compounds was revised to eliminate previous difficulties caused by scattering from supporting members of the gage. A fast surface-ionization detector with electron multiplier was constructed and found to be satisfactory for use with phase-sensitive detection. A velocity selector was also built and tested.
Contents

SUMMARY .. iii

1. NUCLEAR CHEMISTRY .. 1
 Reactor Neutron Cross Sections ... 1
 Thermal Cross Section and Resonance Integral of Pa233 ... 1
 Activation Cross Section of the 2.6×10^6 yr Bi210 ... 2
 Effective Cutoff Energies for Cadmium, Gadolinium, Samarium, and Boron Filters 3
 Thermal Neutron Cross Section and Resonance Integral of Sm150 ... 5
 Half-Life of Bi208 .. 7
 Effective Capture Cross Section of Ce141 for Thermal Neutrons .. 7
 Thermal Neutron Absorption Cross Section and Resonance Integral of Ce140 8
 Fission Studies and Characterization of Low-Energy Properties of Nuclei 8
 Decay of Pm150 ... 8
 Decay of Cs132 .. 9
 Yields and Half-Lives in the Mass-99 Fission-Product Chain... 12
 Survey and Evaluation of U233 Fission-Yield Data... 14
 Level Structures of Ge71, Ge73, Ge75, and Ge77 from the (d,p) Reaction 14
 Nuclear Spectroscopy ... 15
 Semiconductor Detector Measurements of Ce135 Radiations ... 15

2. ISOLATION AND CHEMICAL PROPERTIES OF SYNTHETIC ELEMENTS 16
 Chemistry of Technetium .. 16
 Rhenium Species Derived from Rhenium(V) and Rhenium(VI) in Concentrated Sulfuric Acid 16
 Acid Strength of H$_2$ReCl$_6$.. 20
 Measurement of the Near-Infrared Absorption Spectrum of Pertechnetate Ion 21

3. CHEMICAL SEPARATION OF ISOTOPES ... 22
 Ion Exchange Studies in Nonaqueous Solvents .. 22
 Isotopic Chemistry of Boron .. 23
 Nitrogen Exchange Between Nitrite and Nitrate .. 24
 Oxygen Exchange Study of a Peroxygen Bridge .. 24
 Oxygen-17 Enrichment ... 24
 Isotopic Fractionation Between Carbon Dioxide and Dimethyl Carbamic Acid 25
 Separation of Alkali-Metal and of Alkaline-Earth Isotopes .. 25
 NMR Study of BF$_3$ Addition Compounds ... 26
 Structure of Alkylammonium Carbamates ... 26
 Spectroscopic Investigations of Isotopic Molecules .. 26
 Isotopic Mass Spectroscopy ... 29
4. RADIATION CHEMISTRY

Electron-Bombardment Studies of the Gaseous Mixtures (C₃N₂ + H₂) and
(C₂H₄ + N₂) in a Mass Spectrometer ... 30
Alpha Radiolysis of Ethylene .. 30
Catalytic Reactions on Semiconductors ... 31
Radiation Effects on Surface Reactivity of Silica Gel 33
Photolysis of Dilute Hydrogen Peroxide Solution in the Presence of Dissolved
Hydrogen and Oxygen: Evidence Relating to the Nature of the Hydroxyl
Radical and the Hydrogen Atom Produced in the Radiolysis of Water 35
Radiation Chemistry Studies of Water as Related to the Initial Linear Energy
Transfer of 10–23 Mev Protons ... 36
Radiation Chemistry of Sulfuric Acid Solutions .. 37
Radiolysis of Aqueous Nitrate Solutions .. 38
Radiolysis by Transferred Energy of Nitrite Ion in a Potassium Bromide Matrix
Apparent Solubility of Some Substances in Potassium Bromide 40
Radiolysis of Liquid Oxygen and Oxygen-Nitrogen Mixtures 41
Reloading of Cobalt Sources .. 42
Radiolysis of Solid Crystalline Alkali-Metal Bromates by Neutron Reactor Radiations

5. ORGANIC CHEMISTRY

Determination of Carbon-14 and Deuterium Isotope Effects by the Differential
Method ... 47
Nuclear Magnetic Resonance Studies: Conformation and the Deamination Reaction
of erythro-2-Amino-1-phenylpropanol .. 49
The Deamination Reaction: Rearrangement of (−)-exo-Nobornyl Amine 51
The syn- and anti-Isomers of iso-Butyrophenone-2,4-Dinitrophenylhydrazone.. 52
Thermally Induced Reactions of Tributyl Phosphate with Sodium Nitrate 53
Organic Thiophosphorus Compounds as Ligands .. 54

6. CHEMISTRY OF AQUEOUS SYSTEMS

The Solubility of Silver Sulfate in KNO₃-K₂SO₄, K₂SO₄-MgSO₄, and K₂SO₄-H₂SO₄
Mixtures .. 56
A Mathematical Model for the Solvent Extraction of Uranyl Nitrate and Nitric Acid
Hydrolysis of Metal Ions .. 58
Identification of Niobium Double Fluoride Species in HF Solutions by Raman
Spectroscopy .. 60
Chemistry of Heavy Elements: Aqueous Spectrophotometry at Elevated Temperatures
and Pressures ... 68
An Improved High-Temperature Aqueous Spectrophotometer Cell Assembly
Spectrophotometric Studies of the DCIO₄-D₂O-H₂O System at Elevated Temperatures
Physical Chemistry of Ion Exchangers ... 71
Absorption of Bromide Ion from Aqueous Chloride Solutions by Liquid Amine and
Resin Anion Exchangers: Evidence for Dichloride Ion in Anion Exchangers
Osmonic Coefficients of Quaternary Ammonium Halides 75
Heat-of-Exchange Measurements with Linear Anion Exchangers 75
Heat of Solution and Dilution Measurements with the p-Ethylbenzene Sulfonates
Extraction of Fe(III) from Aqueous Hydrochloric and Perchloric Acid Solutions by
Liquid and Resinous Cation Exchangers ... 77
Ion Exchange Studies .. 79
Development of an Ion Exchange Separations Scheme 79
Cation Exchange Studies of Uranium at High Ionic Strength 80
Adsorption on Inorganic Materials .. 81
7. ELECTROCHEMICAL KINETICS AND ITS APPLICATION TO CORROSION

- Ion Exchange at the Passive Film on Iron and Steel .. 83
- The Role of Hydrogen Penetration into the Metal in the Electrochemistry of Iron 86
- Electrochemistry of Zirconium ... 89
- Passivity and Transpassivity in Iron and Ferrous Alloys ... 91
- The Differential Capacity of the Electrical Double Layer on Electrolytic Iron in Neutral and Acid Solutions .. 95

8. NONAQUEOUS SYSTEMS AT HIGH TEMPERATURE ... 98

- Electrical Conductivity of Solutions of Metals in Their Molten Halides 98
- Electrical Conductivity and Formation of Complex Ions in Cadmium-Potassium Chloride Melts .. 101
- The Heat of Fusion of Alkaline-Earth and Rare-Earth Metal Halides 102

9. CHEMICAL PHYSICS .. 104

- Microwave and Radiofrequency Spectroscopy .. 104
- Paramagnetic Resonance Equipment .. 104
- A Paramagnetic Resonance Study of Irradiated Potassium Nitrate 105
- A Paramagnetic Resonance Study of Irradiated Hydrogen Peroxide 105
- Paramagnetic Resonance of Irradiated Chlorates .. 106
- Neutron and X-Ray Diffraction ... 107
- A Neutron Diffraction Study of Chloral Hydrate ... 107
- Neutron Diffraction Measurements from Alkali Halide Crystals .. 108
- X-Ray Diffraction Studies of Liquid Structure .. 112
- A Contour-Plotting Computer Program ... 114
- A Computer Program to Postulate Crystal Structures ... 115
- Computer Programs for Crystallography .. 116
- Calorimetry .. 117
- Low-Temperature Heat Capacity of Potassium Hexabromorhenate(IV) 117
- Molar Enthalpies of Mixing in the Molten LiF-KF System .. 117
- Mass Spectrometry .. 118
- A Mass Spectrometric Investigation of the Decomposition of Ammonia 118
- Two-Stage Mass Spectrometer ... 121
- Electron Shake-Off and Molecular Fragmentation as the Result of Nuclear Decay 121
- Molecular Beam Studies ... 122
- Reaction of D with H2 .. 122
- Interactions of Gases and Surfaces .. 124
- Reactions of Alkali Metals .. 124

PUBLICATIONS ... 126

PAPERS PRESENTED AT SCIENTIFIC AND TECHNICAL MEETINGS 130
1. Nuclear Chemistry

REACTOR NEUTRON CROSS SECTIONS

Thermal Cross Section and Resonance Integral of Pa233

Joseph Halperin R. E. Druschel
R. W. Stoughton A. E. Cameron
R. L. Walker

Eastwood and Werner2 reported 39 ± 5 and 930 ± 135 barns for the 2200-m/sec cross section σ_0 and resonance integral I (including the $1/\nu$ "tail") of Pa233. Since effective cross section measurements of Pa233 in the LITR and a graphite reactor indicated higher values3 than those computed from the results of Eastwood and Werner, it appeared that there might be a low-lying resonance in the region 0.1 to 0.5 ev which might explain the discrepancy. In order to check this possibility and to redetermine the Pa233 thermal cross section and resonance integral, reaction rates for Pa233 neutron capture were measured inside and outside both gadolinium and cadmium filters by measuring the U234/U233 ratios in the beta decay products.

Bare and filtered samples of ThO$_2$ were irradiated in the ORR at thermal fluxes of about 1014 n/(cm2 sec) for periods of 3 to 5 days. The cadmium filters were 40 mils thick, which involves an effective cutoff of 0.55 ev; the gadolinium filters contained 80 mg/cm2 of Gd, which results in an effective cutoff of 0.2 ev. Dilute alloys of cobalt (0.151% Co) and aluminum were put with the samples as flux monitors. Flux computations were based on values of 37 and 75 barns for the cobalt σ_0 and I respectively. In general the procedures and conventions used have been described previously.3

After the irradiations the samples were left to cool for about two weeks; subsequently the uranium fractions (several micrograms each) were separated from the mixture by anion exchange. The U234/U233 ratios were determined mass-spectrographically with a 12-in. 2-stage mass spectrometer using thermal ionization and electron multiplier detectors.

The ratio U234/U233 obtained in a bare irradiation at constant flux is given by

$$N_{234}/N_{233} = \phi_{th}(\sigma_{eff})_{13} t / \langle f(t,T) \rangle,$$ \hspace{1cm} (1)

where

$$f(t,T) = \frac{1}{\Lambda_{13} t} \frac{1 - (1 - e^{-\lambda_{13} t}/\Lambda_{13} t)}{1 - (1 - e^{-\lambda_{13} t}/\Lambda_{13} t)e^{-\lambda_{13} T}}.$$

In the above equations t is the irradiation time, T is the cooling time, ϕ_{th} is the thermal flux, and the subscript 13 refers to Pa233. Equation (1) holds for the filtered irradiation if ϕ_{th} and σ_{eff} are replaced by ϕ_r (the epithermal flux per lethargy unit) and I respectively. Although a second-order reaction is involved, the equation assumes the usual form of $(\sigma_{th}/I)_{13} = (\phi_r/\phi_{th})(C.R. - 1)$, where C.R. is the ratio of the bare to the filtered ratios (U234/U233).

Data from these irradiations are summarized in Table 1.1, where the reported cross sections have been corrected for capture by U233 during irradiation. The mean thermal cross section from the cadmium-filtered irradiations is 48 ± 5 barns. The corresponding 2200-m/sec cross section σ_0 is 46 ± 5 barns, on the assumption that Pa233 obeys the $1/\nu$ law in the thermal and cutoff regions. The mean thermal and 2200-m/sec cross sections obtained with the gadolinium filter were both about

1Analytical Chemistry Division.
Table 1.1. Irradiation Data for Pa^{233} Cross Section Measurement

<table>
<thead>
<tr>
<th>Filter Material</th>
<th>$\phi_{th} \times 10^{14}$</th>
<th>ϕ_{th}/ϕ_{t}</th>
<th>Irradiation Time (sec)</th>
<th>Cooling Time (sec)</th>
<th>$f(t, T)$</th>
<th>N_{24}/N_{23}</th>
<th>σ_{th}^a (barns)</th>
<th>σ_{th}^a (barns)</th>
<th>σ_{2200} (g = 1) (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>1.830</td>
<td>10.81</td>
<td>4.46</td>
<td>1.28</td>
<td>1.342</td>
<td>1.515</td>
<td>135</td>
<td>924</td>
<td>49.5</td>
</tr>
<tr>
<td>Cd</td>
<td>1.249</td>
<td>10.63</td>
<td>2.35</td>
<td>1.33</td>
<td>1.43</td>
<td>0.550</td>
<td>130</td>
<td>915</td>
<td>46.4</td>
</tr>
<tr>
<td>Gd</td>
<td>1.273</td>
<td>11.96</td>
<td>2.59</td>
<td>1.20</td>
<td>1.54</td>
<td>0.565</td>
<td>110</td>
<td>796</td>
<td>43.0</td>
</tr>
</tbody>
</table>

aCorrected.

b Bare.

c Filtered.

43 ± 5 barns. Since the values obtained with the two different filters are probably in agreement within the precision of the method, there must not be any large resonance between thermal energies and the cadmium cutoff (0.35 ev).

The resonance integrals (including the $1/\nu$ portion) measured with cadmium and gadolinium filters were 920 ± 90 and 800 ± 80 barns, respectively. While these two values agree within the overall estimated errors, the disagreement is definitely outside the experimental precision. The lower value in the case of the gadolinium filter is consistent with the fact that some of the gadolinium and Pa^{233} resonances overlap.4

The values of 46 ± 5 and 920 ± 90 barns reported here for the 2200-m/sec cross section and resonance integral for cadmium filters compare favorably with the 39 ± 5 and 930 ± 135 barns reported by Eastwood and Werner.

Activation Cross Section of the 2.6×10^6 yr Bi^{210}

Joseph Halperin J. H. Oliver

The thermal cross section and resonance integral for the reaction

\[
\text{Bi}^{210} (\sigma, \gamma) \rightarrow \text{Bi}^{211} (\text{AcC})
\]

\[
\alpha \text{ Bi}^{210} \rightarrow \text{Bi}^{211} \text{ (AcC) } \rightarrow 2.6 \times 10^6 \text{ yr } \alpha \rightarrow 2.16 \text{ min}
\]

were measured using a cadmium-filter technique. Samples from two batches of bismuth containing Bi^{210} produced in reactor irradiations were used. Batch A contained 8.0 ppm Bi^{210}; batch B, of different irradiation history and calutron-concentrated,5 contained 0.268% Bi^{210}. The bismuth samples were mounted on 7-mil polyethylene film and placed in polyethylene "rabbits." They were then irradiated in the pneumatic tube of the ORR with and without cadmium filters. In general it was possible to retrieve the sample and transfer it to a 2π proportional alpha counter in times ranging from 30 sec to 2 min. Only the 2.16-min

5We are indebted to J. R. Huizenga of the Argonne National Laboratory for the use of this material.
period of Bi\(^{211}\) (AcC) was observed over the length of time (about 15 min) that the decay was followed. Irradiated blanks gave no evidence for contributing to the background by beta and gamma "pile up." After a period of hours to days, Po\(^{210}\) alphas could be observed as they were formed from the beta decay of the 5.0-day Bi\(^{210}\) (RaE).

The Bi\(^{210}\) was assayed\(^6\) by measurement of the alpha decay rate in weighed samples of either vacuum-evaporated bismuth metal or a BiONO\(_3\) solution precipitated under vacuum with NH\(_3\) vapor. The spectrum was examined with a Frisch chamber and a multichannel analyzer and found to be sufficiently thin that self-absorption losses were negligible.

The neutron flux was measured with a manganese monitor in an aluminum alloy containing 0.087% Mn. The computation was based upon the values of \(\sigma_{210} = 13.2\) and \(l = 13.1\) barns for forming 2.58-hr Mn\(^{56}\).

The data are summarized in Table 1.2. An average effective cross section of 0.063 barns for a flux ratio \(\phi_{\text{th}}/\phi_{\text{r}} = 25\) was observed. The thermal cross section \(\phi_{\text{th}}\) was found to be 0.054 barn and the resonance integral \(l\) was 0.20 barn. These values are considered uncertain to \(\pm 10\%\).

Effective Cutoff Energies for Cadmium, Gadolinium, Samarium, and Boron Filters

R. W. Stoughton Joseph Halperin

Previous calculations of effective neutron cutoff energies for cylindrical and spherical filters of cadmium or boron have been extended to include gadolinium and samarium filters and slab-shaped filters by using a new program written for the IBM 7090 computer.\(^7\) The model assumed a point \(1/v\)

\(^6\)We are indebted to C. R. Baldock and L. E. Idom for checking the assays by mass analysis. They were found to be consistent with the radiochemical measurements.

Table 1.2. Irradiation Data for the Reaction Bi\(^{210}(n,\gamma)Bi\(^{211}\)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Weight (µg)</th>
<th>Bi(^{210}) Weight (µg)</th>
<th>(\phi_{\text{th}}) ([n/(cm^2 \text{ sec})])</th>
<th>(\phi_{\text{r}}) ([n/(cm^2 \text{ sec})])</th>
<th>Irradiation Time (sec)</th>
<th>N(^{211}) Chain</th>
<th>(\sigma_{\text{eff}}) (barn)</th>
<th>(\sigma_{\text{th}}) (barn)</th>
<th>(l) (barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare(^b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\times 10^{-10})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>414</td>
<td>3.21</td>
<td>5.81</td>
<td></td>
<td>6.7(_6)</td>
<td>6.5(_6)</td>
<td>6.8(_4)</td>
<td>0.062</td>
<td>0.053</td>
</tr>
<tr>
<td>2</td>
<td>114</td>
<td>6.23</td>
<td></td>
<td></td>
<td>7.3(_9)</td>
<td>7.3(_4)</td>
<td></td>
<td>0.065</td>
<td>0.054</td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\times 10^{-10})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1616</td>
<td>12.9</td>
<td>0.251</td>
<td>20</td>
<td>0.96(_1)</td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>78.0</td>
<td>0.273</td>
<td>20</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td>0.19(_6)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>123.5</td>
<td>0.273</td>
<td>20</td>
<td>0.70(_2)</td>
<td></td>
<td></td>
<td></td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>

\(\sigma_{\text{eff}}\) and \(\sigma_{\text{th}}\) are for the first irradiation of each sample. Samples 1 and 2 were irradiated in the same geometry; samples 3, 4, and 5 in another. Flux ratios should be compared for samples irradiated in the same geometry.

\(^b\)Samples reirradiated (e.g., the three sets of values for sample No. 1 are for three irradiations of that sample).
detector inside the filter and a Maxwellian plus a $1/E$ epithermal flux, both isotropic with respect to the detector. The parameters varied were the Maxwellian temperature T_m (where $E_m = kT_m$), the ratio r of Maxwellian flux to $1/E$ flux per lethargy unit, the lower limit μ of the $1/E$ flux, the filter thickness l_0, and, in the case of cylindrical filters, the height/diameter ratio.

Also calculated were differential reaction rates vs energy and the fraction $FRACT$ of total reactions occurring below the cutoff, both of which give a measure of the filter efficiency. The effective cutoff was defined in terms of the cutoff of a perfect filter (infinitely sharp) which gave the same reaction rate, for the filtered sample, as the filter actually used.

In the cases of cadmium and gadolinium the cross sections were set equal to Breit-Wigner expressions for the resonances at 0.178 and 0.03 ev, respectively. In the case of samarium the resonance most pertinent to its properties as a filter is that at 0.0976 ev. However, because of other relatively near higher-energy resonances, particularly that at 0.88 ev, the cross section does not continue to decrease as $E^{-5/2}$ above 0.0976 ev, and the 0.88-ev resonance causes a perturbation on the filter properties. The cross section of samarium for most calculations was set equal to a single Breit-Wigner expression (one level: $E_r = 0.0976$ ev) plus a $1/\nu$ term; for comparative purposes some calculations were conducted in which the cross section was set equal to the sum of two Breit-Wigner expressions (two levels: $E_r = 0.0976$ and 0.88 ev) plus a $1/\nu$ term.

The boron cross section was set equal to a $1/\nu$ term normalized to 755 barns at 0.0253 ev.

Cutoffs and Filter Efficiencies. Effective cutoffs and $FRACT$'s are shown for the various filter materials for a typical set of conditions in Figs. 1.1 and 1.2. As expected, boron is the poorest filter. Of the others, cadmium shows the lowest values of $FRACT$ (i.e., the most efficient filter) and the highest cutoffs, for reasonable thicknesses. The effect on the cutoff E_c of taking into account the resonance at 0.88 ev in samarium is seen in Fig. 1.1.

Recently Hickman and Leng\(^8\) published a similar calculation of effective cutoffs for cadmium, gadolinium, and samarium in which they considered only the beam flux and isotropic flux cases. On the assumptions made, these should be the same as the spherical and slab filters, respectively, of the current work. The agreement in all cases, except for samarium with isotropic flux (slab filter), was good—within about 5% in E_c. Since the cross-section parameters and certain aspects of the calculational procedures were not identical in the two calculations, the agreement is probably as good as should be expected. In the case of a samarium slab, the current E_c results were higher by a maximum of about 20% than those of Hickman and Leng. This discrepancy may result largely from the fact that Hickman and Leng did not include a $1/\nu$ term (as did the current calculations).

The inclusion of a $1/\nu$ term should increase the calculated values of E_c; the increase should be greater in the slab than in the sphere, because of the greater effective thickness of the filter (for given actual thickness). Thus the discrepancy is at least in the expected direction.

Hickman and Leng\(^8\) also varied the thickness of the $1/\nu$ detector from essentially infinite thinness to near opacity, and found a maximum variation of

Fig. 1.2. Comparative Values of FRACT (Fraction of Reactions Below Cutoff) for B, Cd, Gd, and Sm Cylindrical Filters (H/D = 2, \(E_m = 0.0253\) ev, \(\mu = 5, r = 10\)).

only about 10% in \(E_c\). Thus the effect is relatively small, and a correction could be made if necessary for thick detectors.

Filter Thickness and Efficiency. – From a study of the differential rates vs energy and filter thickness an appraisal can be made of the desired thicknesses of the filters. For example, for cadmium at a thickness of 10 mils \(E_m = 0.0253\) ev, \(r = 10\), some 40% of the reactions result from Maxwellian neutrons below the cutoffs; at 30 mils or thicker, only 7% of the reactions result from neutrons below the cutoff, and these are near the cutoff rather than near the Maxwellian maximum \(E_m\). For gadolinium, samarium, and boron, reactions resulting from neutrons near the Maxwellian maximum become relatively unimportant at thicknesses above about 100, 500, and 300 mg/cm^2, respectively (although of course boron is a poor filter at all thicknesses).

In the case of gadolinium, its resonance at 0.03 ev is only slightly above the value of \(E_m\) even at low values of the latter (around 0.025 ev). The low value of the resonance is desirable in providing a cutoff near the lower limit of the \(1/E\) flux (some 5 \(E_m\)). However, it is undesirable in that the lower the cutoff the more Maxwellian neutrons are transmitted by the filter.

Variation in the Lower Limit of the \(1/E\) Flux. – Westcott^9 has reported that experimental measurements in thermal reactors indicate that the \(1/E\) flux goes to zero at some 3 to 6 times the energy \(E_m\) corresponding to the Maxwellian most probable velocity, and he discusses four different continuous expressions which go rapidly to zero with decreasing energy.

In the calculations reported here, variation between \(\mu = 3\) and \(\mu = 5\) for reasonable thicknesses of filters showed only a 1% change in \(E_c\) for cadmium and only about 2% for the others. In going to \(\mu = 10\) and still using reasonable thicknesses, variations of 10% in \(E_c\) were observed. Hickman and Leng^8 found only a 1% variation in \(E_c\) in going from \(\mu = 4\) to \(\mu = 6\). Hence it does not appear to be important to know the exact lower limit of the \(1/E\) flux or to have a continuous function for its termination. A sharp termination at \(\mu = 5\) should be satisfactory.

Additional Conclusions. – Cadmium with a thickness of 30 or (preferably) 40 mils is perhaps the most useful all-around filter, with gadolinium a reasonably good second choice. Cylindrical filters are probably best for in-pile work.

By the use of cadmium and gadolinium (and perhaps samarium too) with their different cutoffs, it should be possible to detect resonances in the thermal-to-cutoff regions in an unknown sample.

Thermal Neutron Cross Section and Resonance Integral of Sm\(^{150}\)

Joseph Halperin R. E. Druschel
C. R. Baldock

A number of fission products of relatively high cross section occur in the rare earth region. Their cross sections are of particular interest in the problem of reactor poisoning. In the sequence of nuclides starting with Pm\(^{147}\), successive neutron

capture in a high-flux reactor finally results in Gd\(^{156}\). Therefore one atom of fission product poison can result in the loss of a number of neutrons, thus multiplying the poisoning effect. The cross section of Sm\(^{150}\) has been measured and found to be sufficiently low to effectively interrupt these sequences which start at masses 147 and 149, thus limiting reactor poison losses.

Several samples of samarium oxide enriched in Sm\(^{150}\) to 96.3% were irradiated in the ORR with a cadmium ratio technique. The irradiation tube contained a sample in a cadmium capsule at each end and an unfiltered sample in the middle; thus three samarium samples were irradiated simultaneously. A cobalt monitor in the form of a cobalt-aluminum alloy \((0.159, \text{Co})\) was placed on each side of each samarium sample. Following the irradiation the samples were examined in a two-stage 12-in. mass spectrometer using a thermal ionization source and electron multiplier detectors. Ratios of Sm\(^{151}/\text{Sm}^{150}\) were measured.

Three runs were made (see Table 1.3), from about 40 to 95 hr in duration, on submilligram quantities of \(\text{Sm}_{2}O_{3}\). The flux measurements were based on cobalt cross sections of \(\sigma_{2200} = 57\) barns and \(I = \int_{0.54 \text{ ev}}^{\infty} \sigma dE/E = 75\) barns. The specific activities of the cobalt monitors were compared with standards calibrated with 47

\[\text{beta-gamma coincidence measurements. The samples in run B apparently stuck at a point short of the normal high-flux position in the hydraulic tube. This is evident from the flux measurement of about } 2 \times 10^{12} \text{ n/(cm}^2 \text{ sec), which is almost 100-fold less than its normal value, and is further attested to by the lower mass ratio measurements. The smaller value of both the effective cross section } \sigma_{\text{eff}} \text{ and the resonance integral } I \text{ is attributed to the larger uncertainty in the mass measurements at the level of 7 ppm, and these values were not included in the final average.}

Due to the large cross section of Sm\(^{151}\), it was necessary to take into account its burnup in the cross section computation. The computation was based on \(\sigma_{2200} = 16,080\) barns, \(I = 3450\) barns, and \(g(0.033 \text{ ev}) = 0.85\) as given by Westcott. The samples were sufficiently thin so that no self-shadowing took place in the Sm\(^{151}\).

The cross section conventions used have been described previously. The thermal flux \(\phi_{th}\) is taken as the Maxwellian component of the flux spectrum, and \(\phi_{t}\) is the epithermal flux per unit in \(E\). The effective cross section is taken as the reaction rate divided by the thermal flux. The thermal cross section \(\sigma_{th}\) is the subcadmium reaction rate divided by thermal flux; that is,

\[\sigma_{th} = \frac{g\sigma_{0}}{\phi_{th}} \int_{0.54 \text{ ev}}^{\infty} \sigma dF/E.\]

\[10\text{R. W. Stoughton and Joseph Halperin, Nucl. Sci. Eng. 6, 100 (1959).}

\[11\text{The authors are indebted to L. E. Idom for his aid in making these measurements.}

\[12\text{H. Westcott, Effective Cross Section Values for Well-Moderated Thermal Reactor Spectra (3d ed. corrected) CRRP-960 (Nov. 1, 1960).}

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Sample Weight ((\mu g \text{ of } \text{Sm}{2}O{3}))</th>
<th>Irradiation Time at 30 Mw (hr)</th>
<th>(\phi_{th}(n/(\text{cm}^2 \text{ sec})))</th>
<th>(\phi_{th}/\phi_{t})</th>
<th>(\text{Sm}^{151}/\text{Sm}^{150})</th>
<th>(\sigma_{\text{eff}}) (barns)</th>
<th>(\sigma_{th}) (barns)</th>
<th>1 (\text{ (barns)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>688</td>
<td>726</td>
<td>673</td>
<td>95.4</td>
<td>1.46</td>
<td>10.65</td>
<td>446</td>
<td>115</td>
</tr>
<tr>
<td>No. 2</td>
<td>690</td>
<td>702</td>
<td>702</td>
<td>95.4</td>
<td>0.0205</td>
<td>16.82</td>
<td>6.7</td>
<td>0.66</td>
</tr>
<tr>
<td>No. 3</td>
<td>652</td>
<td>638</td>
<td>645</td>
<td>41.5</td>
<td>1.56</td>
<td>11.74</td>
<td>230</td>
<td>51.0</td>
</tr>
<tr>
<td>Sample Weight ((\mu g \text{ of } \text{Sm}{2}O{3}))</td>
<td>Irradiation Time at 30 Mw (hr)</td>
<td>(\phi_{th}(n/(\text{cm}^2 \text{ sec})))</td>
<td>(\phi_{th}/\phi_{t})</td>
<td>(\text{Sm}^{151}/\text{Sm}^{150})</td>
<td>(\sigma_{\text{eff}}) (barns)</td>
<td>(\sigma_{th}) (barns)</td>
<td>1 (\text{ (barns)})</td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td>688</td>
<td>726</td>
<td>673</td>
<td>95.4</td>
<td>1.46</td>
<td>10.65</td>
<td>446</td>
<td>115</td>
</tr>
<tr>
<td>No. 2</td>
<td>690</td>
<td>702</td>
<td>702</td>
<td>95.4</td>
<td>0.0205</td>
<td>16.82</td>
<td>6.7</td>
<td>0.66</td>
</tr>
<tr>
<td>No. 3</td>
<td>652</td>
<td>638</td>
<td>645</td>
<td>41.5</td>
<td>1.56</td>
<td>11.74</td>
<td>230</td>
<td>51.0</td>
</tr>
</tbody>
</table>

Table 1.3. Irradiation Data for Sm\(^{150}\) Cross Section Measurement
An average effective cross section of about 120 barns for Sm150 was observed in these irradiations for a ratio of thermal to resonance flux of about 11. An average thermal cross section of 97 barns and a resonance integral of 255 barns were measured. These values are considered uncertain to ±10%.

Half-Life of Bi208

Joseph Halperin
R. E. Druschel
C. R. Baldock

Bi208 has been found by Millar et al. 13 to decay by orbital electron capture to the 2.615-Mev level in Pb208 so that all decay transitions involve emission of this gamma ray. A reactor-irradiated sample 14 of bismuth was sufficiently enriched in Bi208 by a calutron separation 15 to enable a mass spectrographic analysis. From measurement of the specific activity of the 2.615-Mev gamma ray in this sample, the half-life of this nuclide was estimated to be $(5.61 \pm 0.15) \times 10^2$ years.

The bismuth sample had a history of a one-year irradiation in the MTR. The Bi208 is formed in the reactor through the reaction Bi$^{208}(n,2n)$Bi208 by neutrons in the fission spectrum of energy greater than about 8 Mev. Consequently it would be formed in low yield; in fact an effective cross section based on the thermal flux of ~ 3 mb was observed, assuming a 20-mb cross section for the formation of the 2.6 $\times 10^6$ year Bi210.

The concentrated sample was found 16 to contain 184 ± 4 ppm of Bi208, compared with the 25 ± 5 ppm in the pile-irradiated sample. A measurement of the 2.615-Mev gamma ray in 100.8 mg of the concentrated sample in the form of Bi$_2$O$_3$, yielded a specific activity of $(1.39 \pm 0.03) \times 10^3$ dis/min of Bi208 per mg of bismuth. Calibration of the $2\frac{1}{2} \times 2\frac{1}{2}$ in. NaI crystal used was carried out using the 2.754-Mev photopeak of Na24, which in turn was calibrated by the 4π beta-gamma coincidence technique. A correction of 2.5% was applied for the difference in photopeak efficiency of the 2.754- and 2.615-Mev gamma rays.

Effective Capture Cross Section of Ce141 for Thermal Neutrons

P. M. Lantz

Although Ce141 is formed in high yield (6.3%) in U235 fission, a literature search revealed no measurement of its neutron capture cross section. In this work the effective capture cross section of Ce141 was determined by irradiating samples of Ce140 containing about 9 ppm Ce142 in the MTR for periods of 113 and 222 days. The Ce142 formed by two successive neutron captures was determined both by activation and by mass analysis.

The irradiations were carried out in the L-45 position of the MTR, where the thermal flux is 3.43×10^{14} neutrons cm$^{-2}$ sec$^{-1}$. The average ratio of thermal flux to resonance flux per $\ln E$ interval was about 12. This is based on a cadmium ratio of 7.25 for a 600-Mwd cycle at a 40-Mw power level. The samples were monitored with cobalt in a Co-Al alloy (0.15% Co59). The values of 36.7 (ref 17) and 75 (ref 18) barns for the thermal cross section σ_0 and resonance integral l_0 of cobalt and the value of 0.0253 for the peak E_m in the Maxwellian neutron spectrum were used in the determination of the flux ratio ϕ_0/ϕ_f.

Mass spectrographic analysis 19 of the Ce140 irradiated 113 days showed an increase to 35.5 ppm at the 142 mass position and the sample irradiated 222 days showed 187 ppm (both relative to Ce140). After the tetravalent cerium had been exhaustively purified by extraction with di(2-ethylhexyl) phosphoric acid in n-heptane, the abundance at the 142 mass position had dropped to 32 ppm and 116 ppm, respectively, indicating that a secondary process such as neutron capture by Pr141, the daughter of 32.5-day Ce141, had contributed mass 142.

14. The authors are indebted to J. R. Huizenga of Argonne National Laboratory for making this reactor sample available.
15. The authors are grateful to L. O. Love and numerous associates for their generous aid in making this separation.
16. The authors wish to thank L. E. Idom for his help in the mass measurements.
The Ce142 content in the purified Ce140 sample was confirmed by neutron activation, by irradiating in the LITR with natural cerium monitors. The 3-min Ce143 produced by \((n,\gamma)\) reaction on Ce142 was determined by following the decay of the separated 13.8-day Pr143 daughter for several half-lives with a 4th beta counter and extrapolating back to the time of removal from the reactor. This analysis showed that the Ce142 contents of the initial Ce140 and of the Ce140 irradiated 113 days in the MTR were 12 and 34 ppm, respectively.

The data necessary for the determination of the effective neutron capture cross section of Ce141 were programmed20 for the IBM 7090 computer. In developing the program, the radiation time represented reactor operation time at full power (40 Mw). Consideration was also given to the beta decay of Ce141 during reactor shutdown. This determination a 32.5-day half-life for Ce141 and a 0.59-barn thermal neutron capture cross section21 for Ce140 were used. Since no information could be found on the resonance absorption integral for Ce140, several measurements were made in the LITR using pure Ce140 and are reported separately. The value of 0.48 barn for the resonance integral21 of Ce140 was used in the determination of the 0.63-barn effective neutron capture cross section \(\sigma_{\text{eff}}\) for Ce140 in the MTR. An effective cross section of 30 \(\pm 3\) barns was found for Ce141.

Since mass analysis of the Ce140 irradiated 222 days showed a reduction of 71 ppm at the 142 mass position after the Ce(IV) purification, a check was made to determine whether the difference was consistent with the published values. On the assumption that the 71-ppm difference at the 142 mass position was due to the reaction

\[
\text{Pr}^{141}(n,\gamma) \rightarrow \text{Pr}^{142} \rightarrow ^{142}\text{Nd} \beta^-
\]

in the MTR, the effective cross section for Pr141 would be 11.1 barns. The effective cross section for Pr141 in the MTR determined from the values \(\phi_{\text{th}}/\phi_\beta = 12.4\), \(\sigma_{\text{th}} = 10.8\) barns,22 and \(I_0 = 11.3\) barns23 would be 11.7 \(\pm 0.4\) barns by the formula24

\[
\sigma_{\text{eff}} = \sigma_{\text{th}} + \frac{\phi_\beta}{\phi_{\text{th}}} I_0.
\]

20By R. W. Stoughton.

21Reported in the section, "Thermal Neutron Absorption Cross Section and Resonance Integral of Ce140" (this chapter).

Thermal Neutron Absorption Cross Section and Resonance Integral of Ce140

P. M. Lantz

Since a value for the \(I_0\) of Ce140 was unavailable, yet essential for the determination of the \(\sigma_{\text{eff}}\) of Ce141, and a pure source of Ce140 was available, both the \(\phi_{\text{th}}\) and the \(I_0\) of Ce140 were measured. Several samples of Ce140O\textsubscript{2}, the same source material used in the Ce141 cross section measurement, were irradiated in the LITR with cobalt and gold monitors, both with and without (40 mil) cadmium filters. The Ce141 produced was determined by \(4\pi\) beta-gamma coincidence counting. Values of \(\sigma_{\text{th}} = 0.59\) barn and \(I_0 = 0.48\) barn were measured. The conventions used in these determinations have been discussed by Stoughton and Halperin.25 This thermal cross section may be compared with a value of 0.31 \(\pm 0.07\) barn measured by Katcoff \textit{et al.}26

Fission Studies and Characterization of Low-Energy Properties of Nuclei

Decay of Pm15027

N. B. Gove28 G. D. O'Kelley

The preliminary investigation29 of radiations from 2.7-hr Pm150 has been extended with the aid of additional single-crystal and coincidence scintillation spectrometry experiments.

Gamma-ray spectra taken with a \(3 \times 3\) in. NaI scintillation spectrometer disclosed gamma rays with energies in Mev (and relative intensities)

26P. M. Lantz, \textit{Nucl. Sci. Eng.} 6, 100–118 (1959).

27Neutron Cross Sections, BNL-325, 2d ed. (1958).

of 0.333 (100), 0.407 (10), 0.59 (5), 0.72 (11), 0.84 (30), 0.88 (12), 1.02 (4), 1.18 (32), 1.23 (7), 1.330 (31), 1.625 (2.6), 1.75 (14), 1.96 (3.5), 2.07 (1.7), 2.2 (0.8), 2.41 (0.35), 2.53 (1.3), 2.75 (0.4), 2.91 (0.5), and 3.08 (0.16). Gamma-ray spectra were recorded in coincidence with the gamma-ray peaks at 0.333, 0.407, 0.85, 1.18, 1.23, 1.33, and 1.75 Mev. Three gamma-beta coincidence experiments were performed, in which gamma-ray spectra were recorded in coincidence with beta rays of energy greater than 1.1, 1.4, and 1.8 Mev.

Fermi analyses of beta-ray spectra recorded with an anthracene scintillation spectrometer yielded beta components at 3.16 ± 0.08 Mev, 2.28 ± 0.08 Mev, and lower energies. Additional information was obtained on the energies of the beta groups and their places in the decay scheme by a series of beta-gamma coincidence experiments, in which beta-ray spectra were measured in coincidence with peaks at 0.333, 0.407, 0.84, 1.18, 1.33, and 1.75 Mev in the gamma-ray spectrum. The single-crystal and coincidence results identified the following beta groups with energies in Mev (and intensities) of 1.4 (8%), 1.8 (19%), 2.28 (36%), 2.77 (weak), and 3.16 (16%). The remaining beta-ray intensity is associated with unresolved beta groups which decay to some of the higher energy levels.

The decay scheme shown in Fig. 1.3 is consistent with most of the information available from this investigation. The levels in Sm150 at 0.333, 0.743, 1.18, 1.66, 1.96, 2.07, 2.41, and 3.08 Mev were established by means of the coincidence data. The remaining level assignments must be considered only tentative at present. Several of the low-lying levels in Sm150 seen in this investigation correspond to levels observed in Eu150 decay, in the Sm149 neutron-capture gamma-ray spectrum, and in nuclear reactions.

The disintegration energy for Pm150 is 3.50 ± 0.08 Mev, which is about 1.5 Mev lower than the previously published value. The present energy is in accord with the systematics of Way and Wood.

Decay of Cs132

R. L. Robinson\(^{35}\) N. R. Johnson E. Eichler

A previous investigation\(^{36}\) of 2.3-hr I132 by this group established many of the properties for nine low-lying levels in Xe132. Since a study of Cs132 would be expected to disclose additional information about levels of Xe132, an investigation of its gamma rays was undertaken. This type of information provides a test of the numerous nuclear models that have been proposed to explain the properties of low-lying levels of even-even, medium-weight nuclei. It should also prove useful in the future development of these models.

The Cs132 sources used in this study were prepared with the ORNL 86-in. cyclotron by means of the nuclear reaction Cs133 (p, pn)Cs132. Gamma-ray spectra were measured with 3×3 in. NaI crystals; the singles intensities are shown in Table 1.4. From the rate of decay of the intense 669-kev gamma ray, the half-life of Cs132 was computed to be 6.54 ± 0.03 days.

Coincidence measurements were made with the single-channel analyzer gating on the 464-, 509-, 669-, 1139-, and 1319-kev gamma rays. In Table 1.4 we show, for each designated transition, the intensity of the gamma ray(s) in coincidence with the gating gamma ray of interest. The coincidence intensities have been corrected for contributions from Compton scattering caused by entrance of higher-energy gamma rays through the single-channel window and for the angular correlation, when known, between the coincident gamma rays.

Energy levels and transitions of Xe132 and Ba132 compatible with the results of Table 1.4 are illustrated in Fig. 1.4b. Levels of Xe132 with

35. Physics Division.
Fig. 1.3. Decay Scheme Proposed for Pm150. The pair of numbers shown for each gamma ray gives its energy in Mev and its relative intensity. The numbers shown for each beta-ray transition give the energy in Mev, the intensity, and the log ft value. The numbers shown with each gamma ray designate the energy and relative intensity, whereas those shown for the decay by electron capture, positron emission, and beta-ray emission give the relative intensity and log ft value. These log ft values are based on an energy separation of 1.48 Mev between Cs132 and the 0.669-Mev level of Xe132. This energy difference was calculated from the ratio of decay by electron capture to that by positron emission.

The coincidence experiments showed that the 464- and 1035-kev gamma rays were not associated with Xe132 levels, and yet their half-lives link them with the decay of Cs132. They are therefore assigned as transitions in Ba132. The energy of the 464-kev transition is consistent with the value of 470 \pm 7 kev reported by Fagg38 for a Coulomb-}

Table 1.4. Cesium-132 Gamma-Ray Energies and Relative Intensities

The intensities are normalized to a value of 1000 for the 669-kev gamma ray in the singles spectrum.

<table>
<thead>
<tr>
<th>E_g (kev)</th>
<th>Singles Spectrum Intensities</th>
<th>Intensities in Spectra in Coincidence with Gating Gamma Rays of Indicated Energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>464 ± 5</td>
<td>21 ± 5</td>
<td>464 kev</td>
</tr>
<tr>
<td>509 ± 7</td>
<td>17 ± 4</td>
<td>509 kev a</td>
</tr>
<tr>
<td>569 ± 6</td>
<td>2.7 ± 0.8</td>
<td>669 kev</td>
</tr>
<tr>
<td>631 ± 8</td>
<td>5.6 ± 1.9</td>
<td>1139 kev</td>
</tr>
<tr>
<td>669 ± 4</td>
<td>1000 ± 30</td>
<td>1319 kev</td>
</tr>
<tr>
<td>1035 ± 12</td>
<td>1.6 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>1139 ± 11</td>
<td>5.2 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>1304 ± 20</td>
<td>0.58 ± 0.20</td>
<td></td>
</tr>
<tr>
<td>1319 ± 10</td>
<td>6.5 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>2000 ± 30</td>
<td>0.53 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

aThe intensities are for the spectrum taken with $\theta = 90^\circ$.

bThis gamma ray is believed to result from coincidences with the 1304-kev gamma ray.

Fig. 1.4. (a) Transitions and Energy Levels of Xe132 Below 2.0 Mev in the Decay of Xe132 as Previously Reported (ref 36); (b) Transitions and Energy Levels of Xe132 and Ba132 in the Decay of Cs132. The pair of numbers with each gamma ray gives its energy in kev and its relative intensity. Those pairs of numbers shown for decay by electron capture, beta-ray emission, and positron emission give the relative intensities and log β values.
excited 2+ level of Ba\(^{132}\). Coincidences between this gamma ray and a weak 569-kev transition establish a second level in Ba\(^{132}\) at 1034 kev. Additional evidence for this latter level is provided by the 1035-kev gamma ray.

Gamma-gamma angular correlations were measured for each gamma ray coincident with the 669- and 464-kev transitions. Data were taken every 10° between 90° and 180° and were fitted by the method of least squares to the equation \(W(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta) \) on an IBM 7090 computer. These measurements led to the spins assigned for the 1300-, 1808-, and 1988-kev levels in Xe\(^{132}\) and for the 1034-kev state in Ba\(^{132}\).

Although in Fig. 1.4 the energies of the (1988 ± 12)-kev level populated by Cs\(^{132}\) and the (1966 ± 15)-kev level populated by I\(^{132}\) are in reasonable agreement, their spins and the branching ratios of gamma rays from them are different. Therefore, it is concluded that they are not the same level.

We have previously compared the levels of Xe\(^{132}\) populated by I\(^{132}\) with levels predicted by various nuclear models.\(^{36}\) This comparison, which is reproduced in Fig. 1.5, includes the information about the 1300-, 1808-, and 1988-kev levels obtained from the present study of Cs\(^{132}\). As pointed out before, the second 2+ and the first 4+ levels can be explained by all models\(^{39-44}\) except that of Davydov and Filippov.\(^{41}\) However, none of the models can account for all four levels between 1.8 and 2.1 Mev. It is possible that a low-lying 0+ level as predicted by several of the models does exist. Neither Cs\(^{132}\) nor I\(^{132}\) would be expected to populate a level of this spin with sufficient intensity to be observed.

\(^{40}\) Lawrence Wilets and Maurice Jean, Phys. Rev. 102, 788 (1956).

molybdenum, following brief thermal-neutron irradiations of U²³⁵ solutions. The zirconium was separated by coprecipitation with Fe(OH)₃ in an NH₄OH-H₂O₂ medium. The results of these experiments are shown in Fig. 1.6, with data from the earlier work, in which a zirconium-niobium fraction was separated from molybdenum.

It is apparent that the upper curve of Fig. 1.6 (labeled Zr + Nb) represents primarily the decay of niobium precursors of Mo⁹⁹, since the lower curve ("Zr only") is at all times <5% of the Zr + Nb curve. The 140-sec half-life obtained for the longer-lived niobium component is in good agreement with the published value⁴⁷ for Nb⁹⁹. The 10-sec activity is due to a previously-unknown isomer of Nb⁹⁹, which has been found to decay directly to Mo⁹⁹ in at least 65% of its disintegrations. Attempts to observe gamma radiation from this isomer in rapidly separated niobium fission products were inconclusive, because of the relatively long time (~60 sec) between irradiation and counting and because of the very complex spectra of the short-lived niobium fission products. The ordinate intercept of the upper curve gives the total fractional cumulative yield of both Nb⁹⁹ isomers (0.94 ± 0.11), which is consistent with the predicted⁴⁸ value (~0.99). Unfortunately, this result is not accurate enough to test the postulated preference for a 50-42 proton division in uranium fission.⁴⁹

The 75-sec half-life obtained from the "Zr only" data of Fig. 1.6 does not agree with the published value⁴⁷ (35 sec) for the half-life of Zr⁹⁹, and the fractional cumulative yield (0.019), given by the ordinate intercept of the curve, is in disagreement with the predicted⁴⁸ yield (~0.80). In addition, control experiments with Nb⁹⁵ tracer showed that at least 2% of the niobium was carried by zirconium-iron hydroxide precipitate. Therefore, since it is probable that the Mo⁹⁹ observed in the zirconium fraction was due to niobium contamination, the data from these experiments provide no evidence for a 35-sec zirconium precursor of Mo⁹⁹. If it is assumed that the predicted yield is correct (i.e., assume ordinate intercept = 0.80), then the upper limit of the Zr⁹⁹ half-life is 1.6 sec, as calculated from the minimum amount of Mo⁹⁹ observed at the earliest separation time (9 sec). However, the Mo⁹⁹ activities determined for separation times of 13, 24, and 27 sec were equal, within experimental error, to that found at 9 sec, indicating that only a small part of the observed Mo⁹⁹ could be due to

decay of a short-lived Zr99. Therefore, the half-life of Zr99 may be much less than 1.6 sec.

Survey and Evaluation of U233 Fission-Yield Data

R. L. Ferguson G. D. O’Kelley

A comprehensive literature survey has been made to ascertain the status of data on U233 fission-product yields. The various experimental determinations were evaluated, and the most recent mass-spectrometric results were used as a basis for deriving a set of preferred yields. These results were compared with values reported in two other recent compilations,50,51 and, for yields $>$ 1%, the three groups of values agreed with an average deviation of $<$ 5%. A report52 has been prepared which outlines the procedure used in obtaining these selected yields and includes a tabulation of all published U233 thermal-neutron-induced fission yields, an extensive list of references, and some recommendations concerning additional experimental work.

Level Structures of Ge71, Ge73, Ge75, and Ge77 from the (d,p) Reaction

R. J. Silva E. Eichler

Separated isotopes of germanium were bombarded with 5.2-Mev deuterons from the ORNL 5.5-Mev Van de Graaff accelerator. The energy spectra of proton groups leading to excited levels in Ge71, Ge73, Ge75, and Ge77 up to approximately 1 Mev were obtained through the use of a silicon surface-barrier detector. For the highest-energy proton group from Ge71, Ge73, Ge75, and Ge77, Q values of 5.140 \pm 0.050, 4.429 \pm 0.050, 4.200 \pm 0.050, and 3.554 \pm 0.050 Mev, respectively, were determined. The first three of these values are in agreement with published Q values for ground-state transitions.53 Within the measured resolution of the system (30–35 kev fwhm), proton groups corresponding to all previously known levels were observed, with the exceptions of the 139-kev level in Ge75 and the ground state in Ge77. These two levels have assigned spins of $7/2^+$. They are probably multiparticle states arising from coupling of an odd number of $g_{9/2}$ neutrons to give a resultant spin of $7/2$. One would then not expect transitions to these levels, as d,p stripping would be shell-model forbidden. The Q values for proton groups leading to newly observed levels were: for Ge71, 4.625, 4.071 Mev; for Ge73, 3.939, 3.789, 3.550, 3.417 Mev; for Ge75, 4.158 (?), 4.005, 3.959, 3.894, 3.627, 3.535, 3.335 Mev; for Ge77, 3.484, 3.218, 3.092, 2.844, 2.709, 2.494 Mev. The relative error between the Q values for a given isotope is \pm 10 kev. A typical spectrum is shown in Fig. 1.7.

50S. Kacoff, Nuclonics 18(11), 201 (1960).
NUCLEAR SPECTROSCOPY

Semiconductor Detector Measurements of Ce135 Radiations

A. R. Brosi, B. H. Ketelle, E. Sakai

The emphasis in this work has been on the application of semiconductor detector measurements to decay-scheme studies. The detectors used were lithium-drifted, silicon diodes made in the Instrumentation and Controls Division; in general, they had a resolution (full width at half maximum) of about 8 kev for the Cs137 K-conversion electrons.

Monoenergetic electrons were focused on semiconductor detectors with an electrostatic or a thin-magnetic-lens spectrometer. The pulse-height distributions obtained with lithium-drifted diodes showed that electrons with energies up to about 700 kev were counted with constant efficiency. Although some high-energy electrons lost their full energy by scattering within the detector, the most probable energy loss in the detector was approximately 700 kev. Because of scattering, these detectors could be used for electron energy measurements up to about 2 Mev, but intensity measurements required calibration in the energy region above 700 kev. In the case of electrons with energies below 700 kev, the pulse-height distributions had a peak with a relatively flat region on the low-pulse-height side, which resulted from backscattering with partial loss of energy in the detector. The counting rate per channel in the flat region was about 1% of the counting rate per channel at the peak.

In the work on Ce135, Ce139O$_3$ with the isotopic composition 30% Ce136, 0.7% Ce138, 65.2% Ce140, and 4.1% Ce142 was bombarded with 22-Mev protons in the ORNL 86-in. cyclotron. The initial products were largely 22-min Pr135 and 4.5-hr Pr139. These decayed to 18-hr Ce135 and 140-day Ce139. The Ce135 was separated after decay of the 22-min Pr135 parent by solvent extraction of tetravalent cerium from trivalent praseodymium and lanthanum. The chief impurities, 140-day Ce139 and 20-hr La135, did not interfere with most measurements until after the Ce135 had decayed through several half-lives.

A semiconductor detector was used to measure the conversion-electron spectrum of Ce135. Because of the high resolution, many more lines were present than were found in the scintillation counter gamma-ray spectrum. In those cases where the gamma rays were resolved, conversion coefficients were computed. In some cases there was ambiguity as to whether a line was due to K- or L-shell conversion. It was possible to resolve the uncertainty by the use of photoelectron spectra obtained with gold or lead radiators, which gave photoelectron peaks with 25 to 50% poorer resolution than the conversion-electron peaks. In spite of the resolution loss caused by use of relatively thick radiators, the semiconductor detector with a radiator gave much better resolution of gamma rays than a scintillation detector.

Coincidence measurements were made using a semiconductor detector for conversion electrons and a scintillation counter for gamma rays. Gamma-gamma coincidences were also measured using two scintillation detectors.

On the basis of an incomplete analysis of the data, a tentative decay scheme has levels at 0.266, 0.300, 0.486, 0.609, 0.786, 0.872, 0.970, 1.14, 1.46, and 1.76 Mev. It is hoped that a more complete analysis of the data will lead to a more detailed energy-level scheme and permit the assignment of spins and parities to some of the levels.

54 Guest from Japan Atomic Energy Research Institute.
2. Isolation and Chemical Properties of Synthetic Elements

CHEMISTRY OF TECHNETIUM

Rhenium Species Derived from Rhenium(V) and Rhenium(VI) in Concentrated Sulfuric Acid

R. H. Busey

This paper briefly describes a spectrophotometric study of a number of rhenium species in aqueous or organic solution which may be prepared from Re(V) and Re(VI) in 18 M H₂SO₄. The preparation and properties of, and equilibria between, the penta- and hexavalent species in 18 M H₂SO₄ have been described. This work has been preliminary to a similar study to be made on oxidation states of technetium above Tc(IV).

Hexavalent Rhenium Chloride Complexes. — Observation of the spectra of solutions obtained by the controlled addition of Cl⁻ (HCl or NaCl) to a solution containing the maximum concentration of hexavalent rhenium in 18 M H₂SO₄ revealed the existence of at least three Re(VI) chloride species. The first readily recognized species, with a strong absorption band at 5300 Å, developed to a maximum at a Cl/Re ratio of 5 to 6. Before this species fully developed, a second, with an absorption band at 4200 Å, began to form at Cl/Re > 5. At Cl/Re > 25, a third species began to develop, with an absorption band at 4360 Å. This third species was apparently fully developed at Cl/Re ~ 75, giving a molar absorbancy of 3900 at 4360 Å. (Some chloride complexes containing less Cl⁻ than the species with an absorption band at 5300 Å probably exist, as shown by a shift in the wavelength of the maximum absorption as Cl/Re was increased from 1 to 4.) The spectra demonstrated that each of the above complexes readily dissociates into the next lower chloride-containing complex.

The highest chloride-containing complex, with an absorption maximum at 4360 Å in 18 M H₂SO₄, is readily extracted into CCl₄ or CHCl₃, in which the species shows an intense, sharp absorption band at 4400 Å with a molar absorbancy of 4500. The spectrum in CCl₄ is given in Fig. 2.1. The stability of the complex in the organic solvent is shown by the fact that it, and it alone, is extracted from a solution of Re(VI) in sulfuric acid containing insufficient Cl⁻ to form the highest chloride-containing species (i.e., containing only the 5300- or 4200-Å-absorbing species).

Fig. 2.1. Absorption Spectrum of Hexavalent Rhenium Chloride Complex in Carbon Tetrachloride.
Analysis of the spectrophotometric observations of the SnSO₄ reduction of Re(VII) in 18 M H₂SO₄ in the presence of excess HCl (Cl/Re ~ 75) revealed that the Re(VII) is reduced to Re(VI) (highest chloride complex), which in turn is reduced to Re(IV). This is in contrast to the same reduction in absence of Cl⁻ (ref 1). The presence of excess Cl⁻ causes the sapphire blue Re(VI) to disproportionate into the Re(VI) chloride complex and Re(IV): [Re(VI)-xCl][Re(IV)][Re(V)]²= 5.6 ± 3.

Hexavalent Rhenium Bromide Complexes. - Three bromide species of Re(VI) in 18 M H₂SO₄ were detectable, but only the highest bromide-containing complex could be characterized. The spectrum in 18 M H₂SO₄ gave two absorption bands, at 6475 and 5525 Å with molar absorbancies of approximately 4500 and 4200, respectively. Analogous to the highest chloride complex, the bromide complex is extractable from the sulfuric acid solution with CC₄, CHCl₃, or n-C₆H₁₄, giving an intense blue solution; the species corresponding to lower bromide contents do not extract. The spectrum for CC₄ is given in Fig. 2.2. Unlike the chloride complex, the Re(VI) bromide complex in 18 M H₂SO₄ was formed slowly, the rate of formation from Re(V) being first-order with respect to HBr, with an apparent bimolecular rate constant of 4.9 liters mole⁻¹ min⁻¹. A study of the effect of Br⁻ on the disproportionation of Re(V) was not possible in this case, because Br⁻ causes reduction of Re(VII) in 18 M H₂SO₄.

Violet and Amber Species. - Wehner and Hindman² observed a violet species and an amber species of rhenium in 6 M H₂SO₄. The amber species was obtained by H₂S reduction of the violet species; coulometric measurements gave 0.5 as the oxidation state difference between the two species. They were unable to obtain reproducible results for the apparent oxidation state of the violet species by Ce(SO₄)₂ titration, a fact which they attributed to a reducing impurity in the solutions. From other observations, however, they tentatively concluded that the amber species is Re(V) and the violet species a mixed Re(V).Re(VI) species.

In this research, the violet species has been prepared from sapphire blue Re(V) (ref 1) in 18 M H₂SO₄ by dilution to 6 M H₂SO₄ and allowing the resulting suspension to oxidize in air. The violet species so produced was usually contaminated with some other rhenium species, as evidenced by excess absorption on each side of the 5450-Å absorption band (Fig. 2.3). The solution was freed of this contaminating species by further dilution to 3 M H₂SO₄ and allowing the solution to stand overnight protected from atmospheric oxygen. Concentrated H₂SO₄ was then added to stabilize (toward oxidation by air) the violet species in 6 M H₂SO₄. Approximately 10% of the rhenium was converted to the violet species; the remainder was oxidized to ReO₄⁻, which was removed by precipitation as Re₂S₇ with H₂S. The H₂S reduced the violet species to the amber species, as previously observed.² The amber species is extremely sensitive to air oxidation to the violet one, after the solution is freed of H₂S by argon or nitrogen purging.

The spectra of the two species are given in Fig. 2.3. The molar absorbancy was determined spectrophotometrically by oxidation of an aliquot of the violet species to ReO₄⁻ with 1 M HClO₄. Spectrophotometric titrations with Ce(SO₄)₂ gave 5.54 ± 0.10 as the apparent oxidation state of the violet species, based on the linear portion of the

Fig. 2.3. Absorption Spectrum of Violet (Solid Curve) and Amber (Broken Curve) Species of Rhenium in 6 M H₂SO₄.

curve of absorbancy at 5450 Å vs the Ce(SO₄)₂ added; the last 20 to 35% of the Ce(SO₄)₂ required to oxidize the violet species gave a concave upward curve. Based on the total Ce(SO₄)₂ titer, the apparent oxidation state was 5.29 ± 0.10. Evidence presented later indicates that the solutions of the violet species were contaminated with excess Re(V). The above result and the 0.5 difference in oxidation states between the violet and the amber species lead to the conclusion that the amber species is Re(V).

These results are in agreement with the tentative conclusion of Wehner and Hindman² that the violet is an Re(V)-Re(VI) dimer and that the amber is Re(V). There are serious discrepancies, however. They give 2320 for the molar absorbancy of the violet species at 5450 Å and 2740 for the amber species at 4150 Å (values obtained from Fig. 3 of ref 2). The values obtained in this research are 1720 and 1990, respectively. The absorption band at 5450 Å (Fig. 2.3) is considerably sharper than that given by Wehner and Hindman; for the ratio of peak absorption to valley absorption they give 2.9, vs 4.5 ± 0.2 observed in this research. A difference in behavior was observed when solutions of the violet species were diluted in 10 to 11 M HCl; they state that their violet solutions appeared to be stable in 10 M HCl, whereas our violet solutions were not.

Dilution of the amber species in 11 M HCl ultimately gave a pure Re(V) chloride species with an absorption band at 2410 Å, as previously observed.² The process is not a simple reaction of amber Re(V) giving Re(V) chloride. Approximately 30 min after mixing, the spectrum of the solution shows an absorption band at 5450 Å, presumably due to the presence of the violet species. (The solution was protected by argon from oxidation by air.) Within 2 hr, the 5450-Å band was replaced by a band at 4080 Å. After three weeks, the 4080-Å band decreased to 5% of its original value, and the spectrum of the solution was that of pure Re(V) chloride species. During the course of the disappearance of the 4080-Å species, the ultraviolet spectrum of the solution was observed to be that of Re(V) chloride and showed essentially no change, indicating that the ultraviolet spectrum of the 4080-Å species must be very similar to that of the Re(V) chloride species.

Dilution of the violet species in 11 M HCl was similarly complicated but ultimately gave a solution whose spectrum indicated the presence of Re(V) chloride and ReO₄⁻, a result which is consistent with the hypothesis:

\[
\text{Re(V)}_\text{violet} + \text{Re(VI)}_\text{HCl} \rightarrow 11 \text{M HCl} \rightarrow 1.5 \text{Re(V)} \text{ chloride} + 0.5 \text{ReO}_4^-. \]

Both the Ce(SO₄)₂ titrations and the dilutions in 11 M HCl showed that the solutions of the violet species so far prepared were contaminated with varying amounts of excess Re(V).

An alternative method was devised for determining the apparent oxidation state of the violet species, based on the extraction with CCl₄ of the Re(VI) chloride complex (Fig. 2.1) from a concentrated H₂SO₄-HCl solution of the violet species. No reaction with HCl or extraction occurred until Re(VII) in the form of KReO₄ was added to the acid phase. The observed ratio of moles of Re(VI) chloride produced per mole of rhenium in the violet species was 1.5 ± 0.1, which gives the reaction:

\[
\text{Re(V)}_\text{violet} + \text{Re(VII)} + \text{H}_2\text{SO}_4 \rightarrow 3\text{Re(VI)}_\text{HCl} + \text{Cl}^-. \]
It is readily seen that a ratio of 2.0 would signify an apparent oxidation state of 5, etc.

The violet species in 1 M H₂SO₄ (protected by argon from air oxidation) was extracted by 0.1 N tri-n-octylamine in toluene. The spectrum of the species was essentially the same in both phases. These two observations demonstrate that the violet species is ionic.

Wine-Red Species. — Solutions of Re(V) and Re(VI) in 18 M H₂SO₄ are not stable indefinitely; after a few months to a year, a black or blue-black solid usually precipitates, forms a colloidal suspension, or plates out on the sides of the flask holding the solution. Suspension of this solid in 6 M H₂SO₄ and oxidation with O₂ usually results in the formation of a wine-red solution. In contrast, suspension of freshly precipitated Re(V), made by dilution with H₂O of Re(V) or Re(VI) in 18 M H₂SO₄, in 6 M H₂SO₄ and oxidation with O₂ produced the violet species described above. Presumably an aging process is required before the precipitated solid yields the wine-red solution.

The majority of the solutions of the wine-red species used for study were prepared from a colloidal suspension of rhenium in 18 M H₂SO₄ with an apparent oxidation state of 5.9. This colloidal Re(VI) was approximately four years old. The wine-red species was prepared by dilution with H₂O of the colloidal Re(VI) solution to 7–8 M H₂SO₄ and passing O₂ into the solution for a few days to a week. The wine-red species produced was usually contaminated with a species having appreciable absorption in the region of 6500 Å; this was eliminated by further dilution to 5 M H₂SO₄ and exposure to air overnight. Sufficient 18 M H₂SO₄ was then added to stabilize the wine-red species in 6 M H₂SO₄.

Approximately 20% of the rhenium was converted to the wine-red species; the remainder was oxidized to ReO₄⁻, which was separated by precipitation as Re₂S₇ by H₂S. The wine-red species is not reduced by the H₂S. The spectrum of the wine-red species is given in Fig. 2.4.

Spectrophotometric titrations with Ce(SO₄)₂ established the apparent oxidation state as 5.2 ± 0.1. The molar absorbancy was determined spectrophotometrically by dilution of an aliquot of the species to approximately 1 M H₂SO₄ at which acid concentration the species is readily oxidized by air to ReO₄⁻. The method for determining the apparent oxidation state by CCl₄ extraction of Re(VI) chloride complex from a concentrated H₂SO₄-HCl solution of the wine-red species confirmed the oxidation state determined by Ce(SO₄)₂ titration. As in the case of the violet species, no reaction with HCl or extraction occurred until Re(VII) was added to the acid phase. The behaviors of both the violet and wine-red species in this respect are in contrast to the behavior of the sapphire blue Re(V).

Tri-n-octylamine in toluene extracted the wine-red species from a 1 M H₂SO₄ solution with no change in the spectrum, demonstrating that the species is anionic.

The behavior of the wine-red species in 11 M HCl is very complex. Whereas dilution of the violet species in 11 M HCl ultimately gave Re(V) chloride and ReO₄⁻, and the amber species gave Re(V) chloride, the wine-red species in 11 M HCl produced a solution whose spectrum showed, in addition to Re(V) chloride, the presence of a species (or a mixture of species) which was apparently stable indefinitely. Dilution of the wine-red species in 11 M HCl with H₃PO₄ present produced, on heating, a species (or a mixture of species) of Re(IV) with two intense (molar absorbancy ~ 3000) absorption bands in the visible.

Fig. 2.4. Absorption Spectrum of Wine-Red Species of Rhenium in 6 M H₂SO₄.
region. This Re(IV) species must be the same type of complex as the amber, violet, wine-red, and Re(VI) chloride and bromide species, all of which have in common very intense absorption bands in the visible region.

Acid Strength of H$_2$ReCl$_6$

Q. V. Larson, Siegfried Lindenbaum, G. E. Boyd

Aqueous and nonaqueous titrations of H$_2$SO$_4$ and H$_2$ReCl$_6$ were performed to obtain an estimate of the acid strength of H$_2$ReCl$_6$.

Curves of the potential of the glass-calomel electrode pair as a function of titrant delivered were produced with an automatic recording titrator. Titrant was delivered with a syringe buret for which 1.000 ml gave a full-scale reading. All samples were diluted to 10 ml before titrating.

For the aqueous titration 0.1 N NaOH was used as the titrant. Nonaqueous titrations were performed in ethylene glycol, and the titrant was 0.1 N piperidine in ethylene glycol. This system was chosen because it best resolved the two breaks in the titration curve of H$_2$SO$_4$. The presence of water (5%) considerably decreased the slope of the first break in the titration of H$_2$SO$_4$. The water concentration was therefore kept to a minimum (less than 1%) in all the nonaqueous titrations.

Sulfuric acid solutions in ethylene glycol were prepared by adding concentrated H$_2$SO$_4$ to ethylene glycol by means of a micropipet.

The hexachlororhenic acid, H$_2$ReCl$_6$, was prepared by dissolving K$_2$ReCl$_6$ in a slurry of Dowex 50-X10 in the hydrogen-ion form. The solution and resin were poured onto a column of the same resin, and the column rinsed with sufficient water to give a 0.05 N solution of H$_2$ReCl$_6$. This procedure minimized the hydrolysis of ReCl$_6^{2-}$, since the solution was at a low pH at all times.

For the nonaqueous titrations, samples of H$_2$ReCl$_6$ were pipetted into the titration cell and evaporated at room temperature in vacuo nearly to dryness. Ten milliliters of ethylene glycol was added and the solution titrated with 0.1 N piperidine in ethylene glycol.

Titration curves for H_2SO_4 and H_2ReCl_6 in water are shown in Fig. 2.5. Typical strong-acid titration curves were obtained, with no apparent differentiation between the first and second ionization.

The nonaqueous titration curves (Fig. 2.6) show two distinct breaks for the sulfuric acid titration, but only one for H_2ReCl_6. Apparently, therefore, the second ionization for H_2ReCl_6 is considerably greater than that for H_2SO_4 ($pK_2 = 2.0$).

Measurement of the Near-Infrared Absorption Spectrum of Pertechnetate Ion

C. A. Horton Q. V. Larson G. E. Boyd

The near-infrared absorption spectrum of pertechnetate ion was determined (Fig. 2.7) with the KBr-pellet technique, wherein milligram quantities of crystalline $KTcO_4$ were mixed with spectro-grade KBr. A characteristic, strong absorption band at 906 cm$^{-1}$ was found which corresponded in its general shape to that observed with $KReO_4$ at 915 cm$^{-1}$. A Beckman model IR-7 was used for the measurements in the range from 2.5 to 16 μ.

4Analytical Chemistry Division.
3. Chemical Separation of Isotopes

Ion Exchange Studies in Nonaqueous Solvents

D. A. Lee

Selectivities and diffusion coefficients were determined for exchange of some alkali-metal ions between cation exchange resins and nonaqueous salt solutions. A new ion exchange resin, Amberlite 200, was studied. It enables relatively rapid exchange in nonaqueous systems. Cesium-134 was used as the tracer in these experiments. Generally, the diffusion coefficients were smaller and the selectivities higher in nonaqueous systems than in aqueous systems.

An experiment was performed using Amberlite 200 in an aqueous system to compare this resin with Dowex 50. The effective diffusion coefficient for the exchanging cations (Cs⁺ and K⁺) was 3.4 × 10⁻⁷ cm²/sec, and the selectivity coefficient K_{Cs}^K was 1.27. These results compare favorably with those given for alkali-metal ions on Dowex 50 in an aqueous system.

A series of experiments was made in amides; 0.1 N KSCN solutions in formamide, dimethylformamide, and dimethylacetamide were equilibrated with K⁺-form Amberlite 200 containing Cs¹³⁴ tracer. The results are given in Table 3.1. N-Methylacetamide was also tried, but the exchange was so slow that no data were obtained. In the same system, using propylene carbonate as the solvent, the diffusion coefficient was 8.53 × 10⁻⁹ cm²/sec and K_{Cs}^K was 0.76.

Several experiments performed with Dowex 50 resins in ethylenediamine (EDA) solutions are summarized in Table 3.2.

Table 3.1. Ion Exchange Diffusion and Selectivity Coefficients in Amides

<table>
<thead>
<tr>
<th>Solvent</th>
<th>D_1 (cm²/sec)</th>
<th>K_{Cs}^K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formamide</td>
<td>2.03 × 10⁻⁸</td>
<td>1.09</td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td>2.02 × 10⁻⁸</td>
<td>5.45</td>
</tr>
<tr>
<td>Dimethylacetamide</td>
<td>2.05 × 10⁻⁸</td>
<td>7.21</td>
</tr>
</tbody>
</table>

Table 3.2. Ion Exchange Diffusion and Selectivity Coefficients in Ethylenediamine

<table>
<thead>
<tr>
<th>System</th>
<th>D_1 (cm²/sec)</th>
<th>K_{Cs}^M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowex 50-X1-K⁺-Cs⁺ vs 0.16 N KSCN-EDA</td>
<td>1.15 × 10⁻⁹</td>
<td>0.97</td>
</tr>
<tr>
<td>Dowex 50-X1-Na⁺-Cs⁺ vs 0.16 N NaBr-EDA</td>
<td>2.63 × 10⁻⁹</td>
<td>5.04</td>
</tr>
<tr>
<td>Dowex 50-X1-Cs⁺-Cs⁺ vs 0.16 N CsSCN-EDA</td>
<td>1.31 × 10⁻⁹</td>
<td>3.25</td>
</tr>
<tr>
<td>Dowex 50-X1-Cs⁺-Cs⁺ vs 0.16 N NaBr-EDA</td>
<td>3.99 × 10⁻⁹</td>
<td>3.93</td>
</tr>
<tr>
<td>Dowex 50-X8-K⁺-Cs⁺ vs 0.15 N KSCN-EDA</td>
<td>3.37 × 10⁻¹⁰</td>
<td>3.93</td>
</tr>
<tr>
<td>Dowex 50-X16-K⁺-Cs⁺ vs 0.16 N KSCN-EDA</td>
<td>9.81 × 10⁻¹¹</td>
<td>7.63</td>
</tr>
</tbody>
</table>

The effect of the amount of water in the resin was studied in the system $K^+\text{-Amberlite 200-Cs}^{134}$ vs 0.02 N KSCN in CH$_3$OH. The resin, the KSCN, and the CH$_3$OH were rigorously dried. Increasing amounts of water were added to separate portions of the resin which were then equilibrated with the methanol solution. The results are given in Table 3.3. The diffusion coefficient is seen to decrease rapidly with increasing water concentration in the resin, up to 1 molecule per resin site (Fig. 3.1). This effect appears to be related to changes in charge density of the sulfonic group and to steric effects. Further studies are in progress.

Isotopic Chemistry of Boron

A. A. Palko

The systematic study of BF$_3$-organic complexes has continued. Characterization of the (C$_2$H$_5$)$_2$S-BF$_3$ system was completed. The procedures and methods used were reported previously. Lack of consistency of earlier data made it necessary to repeat many of the vapor pressure–composition determinations. These corrected data may be expressed by the least-squares equation and constants shown in Table 3.4.

Table 3.3. Effect of Water in the Resin on Diffusion and Selectivity Coefficients

<table>
<thead>
<tr>
<th>H$_2$O in CH$_3$OH Phase at Equilibrium (mg/ml)</th>
<th>D_i (cm2/sec)</th>
<th>K^C_{Cs} (crn2/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>3.07×10^{-7}</td>
<td>2.69</td>
</tr>
<tr>
<td>0.45</td>
<td>2.10</td>
<td>2.55</td>
</tr>
<tr>
<td>0.74</td>
<td>1.66</td>
<td>2.56</td>
</tr>
<tr>
<td>1.45</td>
<td>1.52</td>
<td>2.47</td>
</tr>
<tr>
<td>5.26</td>
<td>1.41</td>
<td>2.26</td>
</tr>
</tbody>
</table>

Table 3.4. Vapor Pressure–Temperature Constants for the System (C$_2$H$_5$)$_2$S + BF$_3$ \rightleftharpoons (C$_2$H$_5$)$_2$S·BF$_3$

<table>
<thead>
<tr>
<th>Moles of BF$_3$ per Mole of (C$_2$H$_5$)$_2$S</th>
<th>Constants for the Equation log $p = a - b/T$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>0.230</td>
<td>9.173</td>
</tr>
<tr>
<td>0.530</td>
<td>10.400</td>
</tr>
<tr>
<td>0.804</td>
<td>11.369</td>
</tr>
<tr>
<td>0.881</td>
<td>12.006</td>
</tr>
<tr>
<td>0.896</td>
<td>11.126</td>
</tr>
<tr>
<td>0.941</td>
<td>12.069</td>
</tr>
<tr>
<td>0.972</td>
<td>11.833</td>
</tr>
<tr>
<td>1.000</td>
<td>9.989</td>
</tr>
</tbody>
</table>

Single-stage isotopic equilibrium constants have been determined at $-8, 4$, and 22°C for the exchange

$$(\text{CH}_3)_2\text{O}\cdot\text{B}^{11}\text{F}_3(l) + \text{B}^{10}\text{F}_3(g) \rightleftharpoons \text{B}^{11}\text{F}_3(g) + (\text{CH}_3)_2\text{O}\cdot\text{B}^{10}\text{F}_3(l).$$

These data are shown in Table 3.5; they may be expressed by the least-squares equation $\log \alpha = (7.769/T) - 0.0141$.

Table 3.5. Single-Stage Isotopic Equilibrium Constants for the (CH₃)₂O-BF₃ System

<table>
<thead>
<tr>
<th>Temperature</th>
<th>+22°C</th>
<th>+4°C</th>
<th>−8°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0293</td>
<td>1.0373</td>
<td>1.0330</td>
<td></td>
</tr>
<tr>
<td>1.0207</td>
<td>1.0384</td>
<td>1.0343</td>
<td></td>
</tr>
<tr>
<td>1.0338</td>
<td>1.0328</td>
<td>1.0426</td>
<td></td>
</tr>
<tr>
<td>1.0348</td>
<td>1.0328</td>
<td>1.0345</td>
<td></td>
</tr>
<tr>
<td>1.0329</td>
<td></td>
<td>1.0339</td>
<td></td>
</tr>
<tr>
<td>1.0253</td>
<td>1.0305</td>
<td>1.0328</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0338</td>
<td>1.0346</td>
<td></td>
</tr>
<tr>
<td>1.0263</td>
<td>1.0285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0259</td>
<td>1.0321</td>
<td>1.0403</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0297</td>
<td>1.0397</td>
<td></td>
</tr>
<tr>
<td>1.0315</td>
<td></td>
<td>1.0387</td>
<td></td>
</tr>
<tr>
<td>1.0245</td>
<td>1.0286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0250</td>
<td></td>
<td>1.0325</td>
<td></td>
</tr>
<tr>
<td>1.0264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0340</td>
<td></td>
<td>1.0382</td>
<td></td>
</tr>
<tr>
<td>1.0313</td>
<td></td>
<td>1.0333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0367</td>
<td></td>
</tr>
<tr>
<td>av 1.029 ± 0.003</td>
<td>av 1.033 ± 0.002</td>
<td>av 1.036 ± 0.002</td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen Exchange Between Nitrite and Nitrate
L. L. Brown

A study was made of the rate of exchange of nitrogen between NO₂⁻ and NO₃⁻ in aqueous solution, as a function of pH. This exchange does not take place in neutral or basic solutions. The reaction was studied with labeled nitric acid (12.6% N₁⁵) and normal sodium nitrite at 0°C. The acidity of the exchange solution was adjusted by adding NaOH. Samples were taken at intervals and quenched with caustic. The nitrite portion was separated by precipitation as AgNO₂ and analyzed for N₁⁵.

The data in Table 3.6 clearly indicate that exchange will take place in slightly acid solution (such as I), but only at high acid concentration is the rate appreciable.

Oxygen Exchange Study of a Peroxygen Bridge
L. L. Brown

The separation factor between oxygen and oxygenated solid cobalt di(salicylal)ethylenediamine was reported earlier. A recent paper by Haim and Wilmarth described a water-soluble cobalt complex with a peroxygen bridge similar to that in the solid complex previously examined. Such a complex, when equilibrated with molecular oxygen, should provide a mechanism for fractionating the isotopes of oxygen if exchange of oxygen occurs at a reasonable rate between the isotopic species.

To determine whether such exchange occurs, an aqueous solution of K₂[(NC)₂CoOOCO(CN)₂] was equilibrated with O₂ enriched in O₁⁸ to 1.248%. The potassium salt was prepared according to Haim; it assayed: K, 34.2; Co, 19.2; CN, 37.7% (calculated: K, 32.2; Co, 18.1; CN, 35.5%). Samples of the gas phase taken at 46, 52, and 92 hr averaged 1.187 ± 0.006% O₁⁸. Complete exchange of oxygen in the system would have resulted in 0.846% O₁⁸ in both the salt and the gas (ignoring an isotope effect). Thus, exchange of oxygen does not occur under the conditions of the experiment. (The slight decrease in O₁⁸ content of the gas phase was attributed to an impurity in the salt; it does not represent exchange with O₂²⁻ as it is time independent.)

Oxygen-17 Enrichment
A. H. Narten

Preoperational testing of the water distillation cascade was completed during fiscal year 1962. The unit was placed "on stream" during June. Barring mechanical failures, the cascade is expected to reach steady-state operation during the summer or fall of 1963. Projections of the cascade's separative capacity, based on transient isotopic gradients, are favorable; they predict that design performance will be attained.

Table 3.6. Nitrogen Exchange Between NO_2^- (0.38% N^{15}) and NO_3^- (12.6% N^{15})

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Composition (moles per liter)</th>
<th>Time (hr)</th>
<th>N^{15} in NO_2^-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO_3^-</td>
<td>NO_2^-</td>
<td>OH^-</td>
</tr>
<tr>
<td>I</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>II</td>
<td>0.88</td>
<td>1.00</td>
<td>0.75</td>
</tr>
<tr>
<td>III</td>
<td>0.88</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>1.32</td>
<td>1.00</td>
<td>0</td>
</tr>
</tbody>
</table>

aPartly as sulfate, partly as nitrate.

Isotopic Fractionation Between Carbon Dioxide and Dimethyl Carbamic Acid

A. C. Rutenberg

The single-stage carbon and oxygen isotopic fractionation factors were measured for the exchange reaction

$$\text{C}^{13}\text{O}^{16}\text{O}^{16} + (\text{CH}_3)_2\text{NC}^{12}\text{O}^{18}\text{O}^{16}\text{H}$$

$$\rightleftharpoons \text{C}^{12}\text{O}^{18}\text{O}^{16} + (\text{CH}_3)_2\text{NC}^{13}\text{O}^{16}\text{O}^{16}\text{H}.$$

The reaction was studied as an aid to interpreting isotopic fractionation data for alkyl ammonium carbamates.

The dimethyl carbamic acid was prepared by reacting CO_2 with dimethylamine in benzene and was used in solution. Forty milliliters of 4.6 M $(\text{CH}_3)_2\text{NCOOH}$ in benzene was equilibrated with ~ 200 cc of CO_2 gas at about 1 atm. Two experiments at 23.5°C were similar except that the time allowed for exchange was increased from 9 hr in the first to 92 hr in the second, to ensure attainment of equilibrium. The CO_2 was liberated from the liquid phase with H_3PO_4; it was sampled directly from the gas phase. The CO_2 samples were sublimed several times at dry-ice temperature before mass-spectrometer analysis. The analysis showed no significant impurities. The observed separation factors and average deviations were:

$$(\text{O}^{18}/\text{O}^{16})_{(g)}/(\text{O}^{18}/\text{O}^{16})_{(l)} = 1.006 \pm 0.001,$$

$$(\text{C}^{12}/\text{C}^{13})_{(g)}/(\text{C}^{12}/\text{C}^{13})_{(l)} = 1.006 \pm 0.000.$$

Separation of Alkali-Metal and of Alkaline-Earth Isotopes

Donald Zucker

The single-stage separation factor for Na^{22} and Na^{23} in the system, aqueous NaOH--Na amalgam, was 1.0023 ± 0.0016 (95% confidence interval) at 25°C, with the light isotope concentrating in the amalgam phase. The radioactive Na^{22} (half-life, 2.6 years) was assayed by counting gamma rays with a scintillation counter. Na^{23} was determined by converting the sample to NaCl and titrating Cl^{-}. Quartz, Vycor, and polyethylene containers were used to reduce contamination with normal sodium and other metals.

The separation factor for rubidium isotopes in a similar system was determined by mass-spectrometric analysis of Rb^{85} and Rb^{87} after eight stages of separation, and by counting 0.525- and 1.08-Mev gammas from Rb^{85} and Rb^{87} after nine stages. The weighted average of the two results was 1.00017 ± 0.00007 (95% confidence interval) per mass unit, with the heavy isotopes concentrating in the amalgam phase.

In the rubidium experiment, it was found that cesium, present as an impurity, was very strongly concentrated in the amalgam phase, with an Rb-Cs separation factor larger than 2. The application of this technique to the preparation of rubidium-free cesium is being investigated more fully.
NMR Study of BF₃ Addition Compounds

A. C. Rutenberg

A kinetic study of the reactions

\[\text{XBF}_3 + \text{Y} = \text{X} + \text{YBF}_3 \]

where X is \((\text{C}_2\text{H}_5)_2\text{O}, (\text{CH}_3)_2\text{O}, \text{C}_6\text{H}_5\text{OCH}_3,\) or \((\text{C}_2\text{H}_5)_2\text{S},\) was begun, using nuclear magnetic resonance (NMR) techniques. Rates of exchange for pairs of donor solvents were studied over the range +45 to −75°C, or over as much of this range as the physical properties of each system permits. Preliminary data indicated that the geometric mean of the average lifetime for a BF₃ stay on sites X and Y, \(\tau,\) was about \(3 \times 10^{-5}\) sec at 25°C for the methyl ether or ethyl sulfide systems, and about an order of magnitude longer for the anisole or tetrahydrofuran systems. The \(\tau\) values were dependent on composition, and the values quoted are representative of systems containing comparable amounts of XBF₃ and YBF₃ and an \((X + Y)/BF₃\) mole ratio of about 2.

The activation energies for the BF₃ exchanges are about 11, 12, 14, and 15 kcal/mole for the methyl ether, tetrahydrofuran, anisole, and ethyl sulfide systems, respectively.

The methyl ether system was the only one of the four which had an equilibrium constant within the range \(10^{-2}\) to \(10^2\) and, therefore, measurable by the techniques employed. The equilibrium constant for the reaction

\[(\text{C}_2\text{H}_5)_2\text{O} \cdot \text{BF}_3 + (\text{CH}_3)_2\text{O} \]

\[\rightleftharpoons (\text{CH}_3)_2\text{O} \cdot \text{BF}_3 + (\text{C}_2\text{H}_5)_2\text{O} \]

was about 2 at −50°C; it exhibited a complex temperature and concentration dependence. A detailed study of the effects of changes in composition on the rates and equilibrium constants is in progress.

The BF₃-organic mixtures used in this study were prepared by A. A. Palko.

Structure of Alkylammonium Carbamates

A. C. Rutenberg

The nuclear magnetic resonance (NMR) study\(^5\) of alkylammonium carbamates was discontinued after low-temperature experiments in several solvents indicated that the rates of exchange of the hydrogen atoms of interest were still so rapid that only average positions, which were compatible with more than one structure, were observed.

The infrared spectra of these compounds gave evidence for both covalent and ionic species. The presence of contaminants, such as alkyl carbamic acids which would not interfere with the NMR spectra unless present in large quantities, complicated the infrared spectra.

Dielectric-constant measurements were made on diethy lammonium diethylcarbamate using the equipment of W. J. McDowell\(^6\) of the Chemical Technology Division. The carbamate had a molar composition of 1.95 amine/CO₂ and melted at \(\sim 30^\circ\)C. The molten carbamate at \(31^\circ\)C indicated a very large apparent dielectric constant. The cell resembled an electrolytic capacitor with a very high capacitance, well outside the range of the equipment.

A 0.12 M solution of diethy lammonium diethylcarbamate in cyclohexane at 24°C gave a dielectric constant of 2.034, compared with 2.019 for the pure solvent. An 18 wt % (0.85 M) solution of the diethy lammonium diethylcarbamate in benzene at 24°C gave a dielectric constant of 2.80, compared with 2.28 for the pure solvent. The data indicate that this carbamate is salt-like in the molten state, and probably exists as ion pairs when dissolved in nonpolar solvents. The present data are, however, not extensive enough to eliminate the existence of covalent structures, such as tetraethylurea hydrate, in nonpolar solvents.

Spectroscopic Investigations of Isotopic Molecules

G. M. Begun W. H. Fletcher\(^7\)

Infrared and Raman studies of isotopic molecules were made to provide information for the calculation of isotopic equilibrium constants. These investigations were also concerned with the potential fields in molecules and ions and the use of isotopic substitution to study these properties.

\(^7\)Consultant from Chemistry Department, University of Tennessee, Knoxville.
Such studies of BF$_3$·(CH$_3$)$_2$O and BF$_3$·(CD$_3$)$_2$O substituted with B10 and B11 were completed and published. The experimental determination of the boron-isotope shifts in the BF$_3$·(CH$_3$)$_2$O molecule made possible the first theoretical treatment of the isotope separation system BF$_3$·BF$_3$·(CH$_3$)$_2$O. The distillation of BF$_3$·(CH$_3$)$_2$O as a means of separation of boron isotopes was first proposed in 1944 at Columbia University. It was quickly recognized that the isotopic fractionation in this system was due primarily to the exchange reaction between the liquid complex and gaseous BF$_3$. The concentration of B11 in the BF$_3$ phase, however, is contrary to expectation and has not been previously explained theoretically. Using the isotopic-shift data shown in Table 3.7, with similar data for BF$_3$, isotopic partition function ratios and equilibrium constants for the exchange reaction were calculated at several temperatures.

The calculated equilibrium constants are compared with experimental values measured by mass-spectrometric analyses of equilibrated samples in Table 3.8. The experimental results are reported separately by A. A. Palko ("Isotopic Chemistry of Boron," this chapter).

If all the uncertainties are considered, the agreement between the experimental and calculated equilibrium constants is quite good.

Physically, the picture of the concentration of B10F$_3$ in the addition complex, contrary to expectation, can be seen to be due to a weakening of the B–F bonds upon complex formation. In the planar BF$_3$ molecule, the B–F distance is 1.295 Å, and the B–F symmetric and antisymmetric stretches in B11F$_3$ occur at 888 and 1453.9 cm$^{-1}$, respectively. In BF$_3$·O(CH$_3$)$_2$ the BF$_3$ changes from planar to pyramidal form. The boron and oxygen are now tetrahedrally bonded with a lone pair of electrons occupying the fourth orbital of the oxygen atom. The B–F bond distance is increased to 1.43 Å, and the B–F symmetric and antisymmetric stretches for B11F$_3$·O(CH$_3$)$_2$ are found at 805 cm$^{-1}$ and at 1216 and 1177 cm$^{-1}$, respectively. (The antisymmetric frequency, a doubly degenerate one, is split into two by the destruction of the molecular symmetry in the complex.) Thus the change in BF$_3$ from planar to tetrahedral results in an increase in the B–F distance and a weakening of the B–F force constant. This effect is so marked that it overbalances the formation of the B–O bond, which has the opposite effect upon the partition function ratio. Thus the B11 concentrates in the BF$_3$ and the B10 in the BF$_3$·(CH$_3$)$_2$O.

The computer program for the evaluation of force constants which describe molecular force fields was continued. The general program for computing the force constants for molecules containing up to 15 atoms has been corrected and refined. A Urey-Bradley treatment of N$_2$O$_4$ yielded a set of 13 constants, which reproduced the spectral data for N$_2^{15}$O$_4$ and N$_2^{14}$O$_4$ quite well. The observed and calculated frequencies are shown in Table 3.9. Further studies, with other types of potential functions, are being made to enable comparisons with similar nitrogen and oxygen compounds.

During the year the mass spectroscopic investigations of the isotopic nitrous oxides (N15-substituted) were completed and published.

9M. Kilpatrick et al., Separation of Boron Isotopes (ed. by G. M. Murphy), TID-5227 (1952).

Table 3.7. Vibrational Frequencies of BF$_3$·O(CH$_3$)$_2$ that Shift upon Boron-Isotope Substitution

<table>
<thead>
<tr>
<th>Frequency (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>B11</td>
</tr>
<tr>
<td>506</td>
<td>505</td>
</tr>
<tr>
<td>672</td>
<td>661</td>
</tr>
<tr>
<td>810</td>
<td>805</td>
</tr>
<tr>
<td>925</td>
<td>918</td>
</tr>
<tr>
<td>1225</td>
<td>1177</td>
</tr>
<tr>
<td>1259</td>
<td>1216</td>
</tr>
</tbody>
</table>

Table 3.8. Equilibrium Constants for Boron Isotope Exchange

<table>
<thead>
<tr>
<th>T (°K)</th>
<th>$\frac{Q(B^{11}F_3)}{Q(B^{10}F_3)}$</th>
<th>$\frac{Q[B^{11}F_3 \cdot O(CH_3)_2]}{Q[B^{10}F_3 \cdot O(CH_3)_2]}$</th>
<th>α^a</th>
<th>Calculated</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.310</td>
<td>1.256</td>
<td>1.043</td>
<td>1.041b</td>
<td></td>
</tr>
<tr>
<td>265.16</td>
<td>1.283</td>
<td>1.233</td>
<td>1.040</td>
<td>1.036</td>
<td></td>
</tr>
<tr>
<td>277.16</td>
<td>1.264</td>
<td>1.217</td>
<td>1.038</td>
<td>1.033</td>
<td></td>
</tr>
<tr>
<td>295.16</td>
<td>1.239</td>
<td>1.196</td>
<td>1.036</td>
<td>1.029</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>1.205</td>
<td>1.167</td>
<td>1.032</td>
<td>1.024b</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>1.182</td>
<td>1.148</td>
<td>1.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>373.16</td>
<td>1.164</td>
<td>1.132</td>
<td>1.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.146</td>
<td>1.118</td>
<td>1.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aThe equilibrium constant $\alpha = \frac{[B^{10}F_3 \cdot O(CH_3)_2](l) / [B^{11}F_3 \cdot O(CH_3)_2](l)}{[B^{10}F_3](g) / [B^{11}F_3](g)}$.

b Estimated graphically.

Table 3.9. Observed and Calculated Fundamental Frequencies for N_2O_4 (cm$^{-1}$)

<table>
<thead>
<tr>
<th>Assignment</th>
<th>$N_2^{14}O_4$</th>
<th>$N_2^{15}O_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observedd</td>
<td>Calculated</td>
</tr>
<tr>
<td>ν_1</td>
<td>1380</td>
<td>1379.4</td>
</tr>
<tr>
<td>ν_2</td>
<td>808</td>
<td>808.6</td>
</tr>
<tr>
<td>ν_3</td>
<td>266</td>
<td>265.8</td>
</tr>
<tr>
<td>ν_4</td>
<td>(Inactive)</td>
<td></td>
</tr>
<tr>
<td>ν_5</td>
<td>1712</td>
<td>1713.8</td>
</tr>
<tr>
<td>ν_6</td>
<td>482</td>
<td>481.2</td>
</tr>
<tr>
<td>ν_7</td>
<td>429</td>
<td>429.5</td>
</tr>
<tr>
<td>ν_8</td>
<td>672</td>
<td>672.6</td>
</tr>
<tr>
<td>ν_9</td>
<td>1748</td>
<td>1746.9</td>
</tr>
<tr>
<td>ν_{10}</td>
<td>381</td>
<td>380.7</td>
</tr>
<tr>
<td>ν_{11}</td>
<td>1262</td>
<td>1262.9</td>
</tr>
<tr>
<td>ν_{12}</td>
<td>750</td>
<td>749.5</td>
</tr>
</tbody>
</table>

Isotopic Mass Spectroscopy

Lawrence Landau

The 60° copper tube of the Nuclide Analysis Associates RMS-1 ratio mass spectrometer was replaced with an Inconel tube. The elimination of copper from the system should reduce error caused by memory for certain samples, particularly SO₂ and BF₃. The new tube also provides a gold-wire vacuum seal and an improved design for differential pumping.

Analyses of BF₃ were made by peak-height analysis for the B⁶⁰/B¹¹ ratio at mass positions 10 and 11. The BF₃ samples compared were from gas and liquid phases of BF₃ in contact with (CH₃)₂O and with (C₂H₅)₃N at several temperatures.

Analyses of CO₂, N₂, O₂, and CO were made by direct ratio analysis of 46/44 and 45/44 for the CO₂ samples, 29/28 for the N₂, 34/32 for the O₂, and 30/28 for the CO. The CO₂ was from samples of CO₂ in contact with a variety of amine carbanates, the N₂ converted from NO in equilibrium with NO₂⁻ or NO₃⁻, the O₂ from exchange experiments between K₆[(CN)₅CoOOC(CN)₅] and O₂ enriched in O¹⁸, and the CO from acetaldehyde in equilibrium with paraldehyde.

Samples of (C₂H₅)₃B were analyzed by the peak heights of mass positions 10 and 11; the compound appeared to give quite acceptable results. Duplicate analyses of the samples showed the 10/11 ratio to be 0.248 ± 0.002 (95% confidence interval). This compound shows very little memory in the mass spectrometer, and may prove to be very useful for the determination of B⁶⁰/B¹¹ ratios.

4. Radiation Chemistry

Electron-Bombardment Studies of the Gaseous Mixtures \((C_2N_2 + H_2)\) and \((C_2H_2 + N_2)\) in a Mass Spectrometer

P. S. Rudolph C. E. Melton S. C. Lind

In the alpha radiolysis of an equimolecular mixture of \((C_2N_2 + H_2)\) it was observed\(^1\) that the ratio \(-\Delta P_{C_2N_2}/-\Delta P_{H_2}\) remained constant at about 1.5 to complete depletion of the 536 mm (partial pressure) of \(C_2N_2\). A dark solid (with a reddish cast) was formed, which from material balance had an empirical formula of \(C_6N_6H_4\). In a complementary experiment\(^2\) a mixture of approximately \((2C_2H_2 + 1N_2)\) was irradiated, and very little nitrogenated products were observed. Of the initial 358 mm of \(N_2\), final analysis showed a deficiency of only 29 mm. Upon heating the solid product from the \((2C_2H_2 + 1N_2)\) irradiation, 16 mm of condensable (in liquid air) gas was evolved which had the properties of HCN. Further, the yellow solid had a darker hue than the polymer from pure \(C_2H_2\), indicating possible traces of a nitrogenated product admixed with the acetylene polymer.

An exploratory experiment in our research mass spectrometer\(^3,4\) at a total pressure of 50 \(\mu\) in the ionization chamber indicated that at least one ion, HCN\(^+\), is formed by ion-molecule reactions in equimolar mixtures of both systems \((C_2N_2 + H_2)\) and \((C_2H_2 + N_2)\). Appearance-potential techniques\(^5\) show that mass 27 cannot be attributed to \(C_2H_2^+\). Numerous other masses common to both systems were detected but were not identified. For example, mass 54 could be \(C_3NH_4^+\), \(C_2N_2H_2^+\), and/or \(CN_3^+\), and mass 80 could be \(C_2N_4^+\), \(C_3N_3H_2^+\), and/or \(C_4N_3H_4^+\). In a previous mass spectrometric study of \(C_2N_2\) (ref 6), ions of varying proportions of C to N were observed, including \((CN)_n^+\). In the alpha-particle mass spectrometric studies of \(C_2H_2\) (ref 7), nine ions each of whose percentage abundance exceeded 0.5% were observed, from \(C_2H_2^+\) to \(C_6H_3^+\). This complexity of ions in the individual gases made it advisable to limit this study of the mixtures to mass 27, which was known to be HCN\(^+\). The approximate rate constants \(k\) (cc molecule\(^{-1}\) sec\(^{-1}\)) for the reactions producing HCN\(^+\) are given below (the probable reactions were determined by appearance-potential technique):

<table>
<thead>
<tr>
<th>Equimolecular Mixture</th>
<th>Probable Reaction</th>
<th>(k \times 10^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_2N_2 + H_2)</td>
<td>(CN^+ + H_2 \rightarrow HCN^+ + H)</td>
<td>6</td>
</tr>
<tr>
<td>(C_2H_2^+ + N_2)</td>
<td>(N_2^+ + C_2H_2 + HCN^+ + (HCN))</td>
<td>3</td>
</tr>
</tbody>
</table>

In the present study of the \(C_2H_2 + N_2\) mixture, over 80% of \(N_2^+\) ions react by ion-molecule reactions (principally charge transfer to \(C_2H_2\)), which do not yield nitrogenated products. Hence, on the basis of ion-molecule reactions one would expect a maximum of 5 to 10% of the final products of this mixture to contain nitrogen. This is in agreement with early alpha-particle radiolysis\(^8\) of \(C_2H_2 + N_2\) quoted previously.

Alpha Radiolysis of Ethylene
P. S. Rudolph W. H. Baldwin

The current literature contains many references to the radiolysis of ethylene. A few authors have analyzed the gaseous products. Yang8 reports five gaseous products. Lampe9 reports 12, which account for only about a third of the \(\text{C}_2\text{H}_4 \) consumed. The only reference10 to the composition of the polymer reports six gaseous products and a liquid consisting of \(\text{C}_6\text{H}_{14} \), \(\text{C}_6\text{H}_{12} \), \(\text{C}_8\text{H}_{18} \), \(\text{C}_8\text{H}_{16} \), and possibly aromatics containing more than two rings. Yang8 used gamma irradiation, and the other workers9,10 used fast electrons.

In a previous report11 on the alpha radiolysis of \(\text{C}_2\text{H}_4 \), insufficient polymer was produced for study (only \(4 \times 10^{-4} \) mole of \(\text{C}_2\text{H}_4 \) was irradiated). Hence, the authors initiated a series of alpha irradiations of \(\text{C}_2\text{H}_4 \), wherein about 0.1 mole of \(\text{C}_2\text{H}_4 \) could be irradiated, thereby producing a reasonable amount of polymer.

In this series of irradiations 3-liter flasks were used. A well was blown into the bottom of each so that the polymer, which first forms as a liquid, could drain into the well. Here it would be subjected to considerably less radiation than if it remained on the wall of the sphere.

The flasks were filled with reagent \(\text{C}_2\text{H}_4 \) to about 1 atm, and about 165 mc of radon was introduced. The volume of the vessel, the initial pressure of \(\text{C}_2\text{H}_4 \), and the charge of radon were accurately determined. The irradiations were continued until the radon had decayed to less than 1 mc. The total residual gas pressures were determined, and samples of this gas were analyzed by gas chromatography.12 The results of the two runs thus far analyzed and other pertinent data are reported in Table 4.1.

Attempts were made to calculate \(G \) values for the appearance of products and the disappearance of \(\text{C}_2\text{H}_4 \) on the basis of energy absorbed in large spheres.13 These calculated values varied by about 20%. However, both values were approximately twice the value calculated for a small sphere.11 The ratio of surface to volume was 7 times as large in the small sphere. A possible explanation is termination of reaction at the wall, which is consistent with the smaller yield in the small sphere. However, the authors intend to check into the dosimetry more carefully before reporting \(G \) values for the large spheres.

The liquid polymer from these alpha radiolyses of ethylene is a mixture of hydrocarbons. From the molecular weight that was determined cryoscopically, 222 (in benzene) and 231 (in dicyclopentadiene), the average size is 16 carbons. The iodine number (Hanus iodine monobromide) corresponds, on the average, to one double bond for each 10 carbon atoms.

The infrared spectrum contains strong absorption bands at 3.4 to 3.6, 6.85, and 7.30 \(\mu \) that are assigned to carbon-hydrogen vibrations and one at 13.9 \(\mu \) that is assigned to an uninterrupted chain of methylene groups at least four carbons long. Unsaturation is confirmed by a band at 10.2 \(\mu \) (trans-vinylene, \(\text{RCH}=	ext{CHR'} \)) that accounts for over half of the unsaturation. Smaller contributions to the unsaturation are due to vinyl (\(\text{RCH}=	ext{CH}_2 \), 11.0 \(\mu \)) and to vinylidene groups (\(\text{R'R'=CH}_2 \), 11.2 \(\mu \)). The distribution of unsaturation is in reasonable agreement with the findings of Chang, Yang, and Wagner14 that the dimer from electron or gamma radiolysis of hexene-1 consisted of olefins that were 57% trans-vinylene, 27% vinyl, and 3% vinylidene groups. These results are in contrast with the distribution of the olefins in high-molecular-weight polyethylene polymerized catalytically (60% vinylidene, 20% trans-vinylene, and 20% vinyl), reported by Rugg, Smith, Wartman, and Bacon.15

Air oxidation of the liquid polymer (11 days at room temperature) was accompanied by a change in odor and changes in the infrared absorption spectrum. A new band appeared at 2.9 \(\mu \), due to the presence of hydrogen-bonded hydroxyl

9F. W. Lampe, Radiation Res. 10, 691 (1959).
12Gas analyses made by A. D. Horton of the Analytical Chemistry Division.
Table 4.1. Analyses of Gaseous Products of the Alpha Radiolysis of \(\text{C}_2\text{H}_4 \)

<table>
<thead>
<tr>
<th>Product</th>
<th>Run II</th>
<th>Run III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>(vol %)</td>
<td>(mg)</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>1.3</td>
<td>3.0</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>0.10</td>
<td>2.0</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_2)</td>
<td>95.5(^{b})</td>
<td>2860</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{C}_3\text{H}_6)</td>
<td>0.26</td>
<td>8.0</td>
</tr>
<tr>
<td>(\text{C}_3\text{H}_8)</td>
<td>0.09(^{c})</td>
<td>4.0</td>
</tr>
<tr>
<td>(i\text{-C}4\text{H}{10})</td>
<td>0.05</td>
<td>3.0</td>
</tr>
<tr>
<td>(n\text{-C}4\text{H}{10})</td>
<td>0.44</td>
<td>27</td>
</tr>
<tr>
<td>(cis\text{-Butene-2})</td>
<td>0.04</td>
<td>2.0</td>
</tr>
<tr>
<td>(trans\text{-Butene-2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown (C_5) hydrocarbon</td>
<td><0.01</td>
<td>~<0.8</td>
</tr>
<tr>
<td>(i\text{-C}5\text{H}{12})</td>
<td>0.01</td>
<td>0.8</td>
</tr>
<tr>
<td>(n\text{-C}5\text{H}{12})</td>
<td>0.04</td>
<td>3.1</td>
</tr>
<tr>
<td>(2,2\text{-Dimethyl-butane})</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown (C_6) hydrocarbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2,3\text{-Dimethyl-butane,})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2\text{-methyl-pentane})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3\text{-Methyl-pentane})</td>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>(n\text{-C}6\text{H}{14})</td>
<td>0.21</td>
<td>19</td>
</tr>
<tr>
<td>Unknown (C_7) hydrocarbon</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>(n\text{-C}7\text{H}{16})</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown (C_8) hydrocarbon</td>
<td>0.03</td>
<td>4.0</td>
</tr>
<tr>
<td>(n\text{-C}8\text{H}{18})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown (C_9) hydrocarbon</td>
<td>0.04</td>
<td>5.0</td>
</tr>
<tr>
<td>Liquid</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98.1</td>
<td>3440</td>
</tr>
</tbody>
</table>

\(^{a}\text{See ref 12.}\)

\(^{b}\text{With columns used for this analysis, } \text{C}_2\text{H}_2 \text{ and } \text{C}_2\text{H}_4 \text{ would not be separated.}\)

\(^{c}\text{With columns used for this analysis, } \text{C}_3\text{H}_6 \text{ and } \text{C}_3\text{H}_8 \text{ would not be separated.}\)
groups (alcohols or carboxylic acids), and a strong absorption band appeared at 6 μ, due to the presence of carbonyl groups (in the form of aldehydes, ketones, or acids). The relative intensities of the absorption bands due to olefins were little changed. The results are in agreement with the products that have been reported for the auto-oxidation of olefins. 16

The composition of the liquid polymer was investigated by gas chromatography, with and without n-heptane added as an internal standard. The operating conditions of the chromatograph (150°C) limited the analysis; hydrocarbons above n-decane were not detectable, and the column did not separate olefins from saturated hydrocarbons of the same carbon chain. The results are shown in Table 4.2.

<table>
<thead>
<tr>
<th>Product</th>
<th>Percent by Weight of Product</th>
<th>Weight of Product (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane, n-hexene</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>n-Heptane, n-heptene</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown C₈ hydrocarbon</td>
<td>1.3</td>
<td>6.5</td>
</tr>
<tr>
<td>n-Octane, n-octene</td>
<td>3.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Unknown C₉/C₁₀ hydrocarbon</td>
<td><0.1</td>
<td><0.5</td>
</tr>
<tr>
<td>Unknown C₉/C₁₀ hydrocarbon</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown C₉/C₁₀ hydrocarbon</td>
<td>1.2</td>
<td>6.0</td>
</tr>
<tr>
<td>Unknown C₉/C₁₀ hydrocarbon</td>
<td>1.6</td>
<td>8.0</td>
</tr>
<tr>
<td>n-Decane, n-decene</td>
<td>3.9</td>
<td>19.5</td>
</tr>
<tr>
<td>Greater than C₁₀ hydrocarbon</td>
<td>87.6</td>
<td>438</td>
</tr>
</tbody>
</table>

Not detected by the gas chromatograph at 150°C.

A study of the gaseous and liquid products reported in Tables 4.1 and 4.2, respectively, shows (1) that the even-numbered (carbon atoms) compounds predominate over the odd-numbered compounds and (2) that the straight-chain hydrocarbons predominate over the branched-chain products. The infrared spectrum is not in disagreement with this observation, as the RCH=CHR' structure is far more abundant than the RR'C=CH₂ structure. Since the structure of R and R' is not known, further inferences cannot be made at this time.

Yang 8 found that of the four hydrocarbon products observed, only C₂H₆ was formed by a free-radical mechanism. Lampe 9 found that the G of C₃H₈ and n-C₅H₁₂ decreased by factors of 3 and 2, respectively, as the C₂H₄ pressure was increased from 75 to 150 mm.

The above observations and our results would indicate (1) that the majority of the products result from consecutive ion-molecule reactions, (2) that the ion-complexes formed are stabilized by collisions so that bond rupture is minimized, and (3) that wall effect may be important in the alpha radiolysis of C₂H₄.

Catalytic Reactions on Semiconductors

G. E. Moore E. H. Taylor H. A. Smith 18

Hydrogen-deuterium exchange and the decomposition of formic acid were studied from 100 to 400°C over samples of germanium doped with 10¹⁶ to 10²⁰ atoms of n- and p-type impurities per cubic centimeter. Over these wide ranges of electronic chemical potential (Fermi level) and temperature, the rate and activation energy of the exchange reaction vary definitely with the Fermi level. A minimum in the activation-energy–Fermi-level curve suggests a mechanism in which one step is rate limiting on the n-type and a different step on the p-type side of the intrinsic composition. Of the two paths for formic acid decomposition, only dehydrogenation seems to be markedly affected by doping.

17 Abstract of paper accepted by the *Journal of Physical Chemistry*.
18 Consultant from the University of Tennessee, Knoxville.
Radiation Effects on Surface Reactivity of Silica Gel

H. W. Kohn

The transfer of gamma-ray energy from high-surface-area materials such as silica gel to materials adsorbed on their surfaces has been studied by reactions such as pentane radiolysis,19 cumene decomposition,20 and deuterium exchange with methane and with hydrogen.21 The study of intermediates involved in such reactions is being continued here by examining the reactions of several polynuclear aromatic compounds adsorbed on silica gel and then irradiated. The colored products were compared with the colored products produced by adsorption of the same compounds on silica-alumina but without irradiation.

The color reactions of these compounds were studied by the following procedure. First, samples were prepared in pairs by vaporizing 100 to 200 mg of organic adsorbate onto 10 g of silica gel or silica-alumina previously degassed at 320°C. In all cases, the compound adsorbed on the silica-alumina became colored, the colors varying from pale yellow for benzene to dark blue-gray for triphenylene, whereas the silica-gel-adsorbed compounds remained nearly colorless. Then, the silica-gel-plus-organic-adsorbate samples were irradiated for 1 hr in a 600-curie Co60 gamma source (about 2 × 105 r). The irradiations were carried out at −78°C in order to increase the stability of the colored intermediates. Of the 17 compounds so examined, 10 showed good color correlations; that is, the color of the organic compound irradiated on silica gel was similar to that obtained by simply adsorbing the same compound on silica-alumina. Since silica-alumina is known to produce predominantly carbonium ions,22 the color comparisons indicate that most of the radiation-produced intermediates are ionic.

Five of these colored compounds were sufficiently stable that their reflection spectra could be obtained. The general shape of each reflection-vs-wavelength curve depended only on the organic compound, whether adsorbed on silica-alumina or adsorbed on silica gel and then irradiated, although the actual positions of the reflectance maxima or minima shifted in some cases when the adsorbent was changed, sometimes by hundreds of angstroms. The intermediates are apparently identical on irradiated silica gel and unirradiated silica-alumina when anthracene and triphenyl methane are the adsorbates, but for diphenylethylene, naphtalene, and p-quaterphenyl there is only a qualitative similarity.

Experiments designed to determine the reactions of some of these intermediates with hydrogen or oxygen have been started. Reaction vessels containing 10 g of silica gel, previously degassed at 520°C, 1 millimole of organic adsorbate, and about 0.1 atm of O\textsubscript{2} or H\textsubscript{2}, and fitted with a small mercury manometer, were irradiated in a 2900-curie Co60 source. The reaction was followed between irradiations by measuring gas pressure. Within experimental uncertainty, no radiation-induced reaction of hydrogen with any of the organic compounds tested so far was observed, but considerable reaction with oxygen was noted. Results to date for adsorbates on silica gel are summarized below; the G values, G(−O\textsubscript{2}), are calculated on the basis of the number of oxygen molecules which disappear per 100 ev of radiation energy absorbed by the silica gel:

<table>
<thead>
<tr>
<th>Compound</th>
<th>G Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>3.3</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>1.6</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>1.8</td>
</tr>
<tr>
<td>Anthracene</td>
<td>28.4 (initial)</td>
</tr>
<tr>
<td></td>
<td>17.4 (final)</td>
</tr>
<tr>
<td>Toluene</td>
<td>3.6</td>
</tr>
</tbody>
</table>

The following observations show that we are actually studying a radiation-induced reaction of the organic material with oxygen, caused by the absorption and transfer of energy by the silica gel. Very little oxygen is adsorbed by the silica gel alone. [The most radiation-sensitive compound (anthracene), when dispersed on fine sand and irradiated in oxygen, does not form color or absorb oxygen.] The colors formed in the absence of oxygen are not observed when oxygen is present; instead, the organic compounds turn dark brown (except for those with toluene on them), probably

22 W. K. Hall, \textit{J. Catalysis} \textbf{1}, 53 (1962).
indicative of a mixture of organic oxidation products. Finally, the energy absorbed by the organic molecules is so small that, if decomposition were attributed to this energy, the G values would be much too high, in the hundreds.

There is some postirradiation reaction of anthracene and toluene with oxygen, which indicates that irradiation can produce active sites in the silica gel which can catalyze the reaction of these compounds with oxygen. The silica-alumina-catalyzed (unirradiated) reaction of anthracene with oxygen at room temperature has been previously reported, and this observation is consistent with the production of the oxidative catalytic properties in silica gel by irradiation. Such a postirradiation effect was not noted with the other compounds examined; it may be present but too slow to be noticeable within the usual time of the experiments.

We have completed experiments that relate hydrogen-deuterium exchange rates on irradiated and unirradiated silica gel to the aluminum impurity and the water content of the gel. After initial degassing at 500°C, the catalytic activity of the gel was proportional to its aluminum content, and the increase in catalytic activity produced by irradiation depended similarly upon aluminum content. Continued dehydration of the gel by heating under vacuum generally resulted in gels that were more active catalytically; however, the proportionality to aluminum content did not always persist through such treatment.

It had been supposed that the enhanced activity of silica gel was due to the removal of adsorbed water by the radiation. However, further evidence on poison removal by radiation makes this less likely as a mechanism for the radiation enhancement of its catalytic activity. On the one hand, the removal of small amounts of adsorbed hydrogen by a Tesla-coil discharge was accompanied by a decrease rather than an increase in catalytic activity. On the other hand, a high-temperature evacuation following a gamma irradiation resulted in a decrease in catalytic activity, although the evacuation should have removed some poison. Clearly, the decrease of catalytic activity caused by annealing of radiation-produced defects was more important than any enhancement by poison removal. Furthermore, the increased activity obtained by very-high-temperature evacuation could well result from crystallization, because quartz, cristobalite, and vitreous silica are all more active than the gel, even when degassed at 900°C (rate constants are 10^{-3} to 10^{-4} min$^{-1}$ m$^{-2}$ for these silicas compared with 1 to 6 \times 10$^{-6}$ for silica gel).

C. J. Hochanadel

Chemical measurements indicate radiation-induced decomposition of liquid water to OH radicals and H atoms or their chemical equivalents. Some studies suggest more than one form of each, but their actual identity and molecular constitution is not known. It is also not known whether only one form of each is produced in the initial processes of the radiation-induced decomposition of water. For example, very recent results of Czapski and Allen indicate that only one form of hydrogen atom is produced initially, while other results suggest that about 20% of a second form is produced initially. It is conceivable that hydroxyl radicals may react either as OH, H_2O^+, or O^-, and hydrogen atoms as H, H_2^+, or e^-_{aq}. The three species in each case could be regarded as neutral, acidic, and basic forms, respectively. They could be distinguished by the nature and rates of reaction with various solutes.

Evidence regarding a postulated intermediate can be obtained by comparing the chemical behavior of the species produced in radiolysis with the species produced by methods which allow more certain identification. Most evidence indicates that photolysis of hydrogen peroxide proceeds via initial dissociation to two OH radicals. This system, therefore, offers a simple means of studying reactions of OH radicals uncontaminated by other initially produced species.

The kinetics of the photolysis of hydrogen peroxide was studied in the presence of dissolved

hydrogen and oxygen. This allowed comparison of the properties of the hydroxyl radical produced by the photolysis of hydrogen peroxide, and of the hydrogen atom produced by the reaction of H₂ with this hydroxyl radical, with the corresponding properties, previously determined, of the species produced in the radiolysis of water. The comparison was made by accurate evaluation of relative rate constants for the reaction of H₂O₂ and H₂ with the hydroxyl radicals, and for the reaction of H₂O₂ and O₂ with the hydrogen atoms produced in the two systems. The effect of pH on these ratios was also investigated. This study has been completed and will be published in the Fricke Commemorative issue of Radiation Research (September 1962). A summary follows.

At sufficiently low concentration of hydrogen peroxide and/or sufficiently high light intensity, the photolysis of hydrogen peroxide is a non-chain reaction, with an overall limiting quantum yield for peroxide removal of unity. Added hydrogen increases the quantum yield, probably by competing with peroxide for hydroxyl radicals to form hydrogen atoms which react with peroxide to reform hydroxyl radicals, etc. The ratio of rate constants, \(k_{\text{H}_2\text{O}^-}/k_{\text{H}_2\text{O}_2^-\text{OH}} = 0.93 \), is the same as that reported previously for the radiolysis of water. This indicates that the hydroxyl radical produced in the radiolysis of water has the same chemical structure as OH produced by the photodecomposition of hydrogen peroxide. Even though \(\text{H}_2\text{O}^+ \) may be produced initially in the radiolysis of water, presumably it is rapidly (\(<10^{-13}\) sec) converted to OH (\(\text{H}_2\text{O}^+ + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}^- + \text{OH} \)) before appreciable reaction with solutes occurs. Studies in perchloric acid solution showed the above ratio of rate constants to be independent of hydrogen ion concentration, at least in the range up to 0.4 M. However, both sulfuric acid and hydroxide ion diminish the effect of hydrogen (and of hydrogen plus oxygen) on the decomposition of peroxide. This can be interpreted most simply as the reaction of HSO₄⁻ or of OH⁻ with OH to give species (presumably HSO₄ and O⁻) which do not react with H₂. On this assumption the relative rate constants were evaluated as:

\[
k_{\text{H}_2\text{O}^-}/k_{\text{HSO}_4^-\text{OH}}/k_{\text{OH}^-\text{OH}} = 1.0/0.005/8.0.
\]

The addition of oxygen along with hydrogen lowers the quantum yield, with \(\phi \) decreasing as the concentration ratios \((\text{H}_2)/(\text{H}_2\text{O}_2) \) and \((\text{O}_2)/(\text{H}_2\text{O}_2) \) increase. Oxygen competes with peroxide for the hydrogen atoms, thereby inhibiting the reaction. The ratio of rate constants in photolysis, \(k_{\text{H}^+\text{H}_2\text{O}_2^-}/k_{\text{H}_2\text{O}^-} = 2.2 \times 10^{-3} \), is much lower than that reported for radiolysis, 0.6. Therefore, the hydrogen atom produced by the reaction of H₂ with OH does not have the same chemical structure as the hydrogen atom produced directly in the radiolysis of water. The above ratio of rate constants was not influenced by hydrogen ion concentration, at least in the range up to 0.4 M. On the other hand, Czapski and Allen showed that \(\text{O}_2, \text{H}_2\text{O}_2, \) and \(\text{H}_2\text{O}_2^- \) compete for the hydrogen atom produced in the radiolysis of water in the ratio 1.0/0.54/1.0. This and other evidence indicates that the "hydrogen atom" produced in the radiolysis of water is some form of hydrated electron \(e^-_{\text{aq}} \). This is converted to a true hydrogen atom H by reaction with hydrogen ion. The hydrogen atom produced by the reaction of H₂ with OH is also a true hydrogen atom. Other evidence (see, for example, "Radiation Chemistry of Sulfuric Acid Solutions," this chapter) indicates that still a third form may be produced at very high acidity. The three forms and their relationships can be summarized as follows:

\[
e^-_{\text{aq}} \rightarrow \text{H}^+ \text{(or H}_2\text{O}^+) \rightarrow \text{H} \rightarrow \text{H}_2^+.
\]

Radiation Chemistry Studies of Water as Related to the Initial Linear Energy Transfer of 10–23 Mev Protons

G. L. Kochanny, Jr. 26 C. D. Goodman 28
Andrew Timnick 27 C. J. Hochanadel

The radiolysis of water is best interpreted on the basis of the expanding-spur (or expanding-

26 Ph.D. candidate at Michigan State University. Research carried out at ORNL under an ORINS Fellowship.

27 Department of Chemistry, Michigan State University.

28 Electronuclear Division, ORNL.
track) model developed by Magee and co-workers.29,30 Calculations of the spatial and temporal distribution of free-radical intermediates are based on an assumed distribution of primary species (i.e., distribution of initial spur sizes, concentration of species in a spur, spacing of spurs, etc.), diffusion coefficients of the radicals, and rate constants for all pertinent radical-radical and radical-solute reactions. Several measurable quantities which aid in formulating and testing the model are the yields of radical and "molecular" products as a function of LET (linear energy transfer or energy loss per unit track length) of the radiation, solute (scavenger) concentration, dose rate, isotopic content, and temperature.

The effect of LET (in the range 0.2 to 0.4 ev/A) on yields for several reactions was studied by using protons of various energies in the range 23 to 11 Mev. The solutes employed quantitatively scavenge the intermediates produced by the decomposition of the water and allow evaluation of the 100-ev yields G_H, G_{OH}, G_{H_2}, $G_{H_2O_2}$, and G_{H_2O}. The yield for the oxidation of ferrous sulfate decreased from 12.8 for 23-Mev protons to 11.3 for 11-Mev protons. The yield for the reduction of ceric sulfate remained constant at 0.38 and 0.93 respectively over this range of LET, while the yield for the reduction of ceric sulfate in the presence of thallous ion decreased from 6.78 to 2.66 and G_{OH} decreased from 3.00 to 2.66 and G_{OH} decreased from 1.50 to 1.52 as the LET increased from 0.2 to 0.4. The net yield of water decomposition, G_{H_2O}, decreased from 3.77 to 3.30 over this range of LET. Both the measured and derived yields extrapolate smoothly to the values reported for particles of LET > 0.4 ev/A.31,32 The results are in semiquantitative agreement with the diffusion-kinetics model.30,31

The study entailed accurate measurements of proton energy and proton beam current, for which methods were devised. The beam current was monitored by counting the protons scattered at 90° by a very thin nickel foil through which the beam passed. The proton beam transmitted by the foil entered either a Faraday cup for calibration or the sample to be irradiated. The primary energy of the protons was determined by adding a known amount of aluminum absorber to reduce the energy to approximately 6 Mev and then determining the residual energy from the amount of ferrous sulfate oxidized and the known yield vs energy in this range. The measured value of 23.0 ± 0.1 Mev agreed within 1% with that determined by the Nuclear Physics Group.33 In this method the energy is degraded by aluminum absorbers until the response of a silicon surface-barrier counter is the same as that produced by alpha particles of known energy.

\textbf{Radiation Chemistry of Sulfuric Acid Solutions}

J. W. Boyle

Ferrous ion dissolved in air-saturated 0.4 M H$_2$SO$_4$ has been used for years as a chemical dosimeter to determine the amount of energy deposited in solution by ionizing radiations. As the ferrous dosimeter has been extensively studied, the product yields (molecules oxidized or reduced per 100 ev of absorbed energy) and reaction mechanisms are well established for this system. With this knowledge as a foundation, a thorough Co60 radiation study was made on ferrous-sulfuric acid solutions as the acid concentration was increased from 0.4 M to 18 M.

One of the radiolysis products in the ferrous-sulfuric acid system is hydrogen, which appears to be produced by two processes. In one process hydrogen is formed in regions of high energy deposition (spurs) by the combination of two hydrogen atoms (molecular H$_2$ yield). In the second process, taking place in the bulk of the solution, competition for hydrogen atoms by dissolved oxygen and the hydronium ions is indicated. Hydrogen atoms presumably form the complexed HO$_2$ and H$_4$O$^+$, which react with ferrous ions.

33 Personal communication, J. B. Ball and C. B. Fulmer, Electronuclear Division (1962).
The hydrogen atom reaction with an oxygen molecule results in the reduction of the oxygen molecule and the oxidation of three ferrous ions. The reaction of the hydrogen atom with a hydronium ion causes the oxidation of one ferrous ion and the formation of one molecule of hydrogen.

The rates of production of \(\text{HO}_2 \) and \(\text{H}_4\text{O}^+ \) are given by

\[
d(\text{HO}_2)/d(\text{dose}) = G(\text{HO}_2) = k_{(\text{H} + \text{O}_2)}(\text{H})(\text{O}_2) \quad (1)
\]

and

\[
d(\text{H}_4\text{O}^+)/d(\text{dose}) = G(\text{H}_4\text{O}^+) = k_{(\text{H} + \text{H}_3\text{O}^+)}(\text{H})(\text{H}_3\text{O}^+) \quad (2)
\]

respectively. \(G(\text{HO}_2) \) and \(G(\text{H}_4\text{O}^+) \) are obtained respectively from the \(-\text{O}_2\) yield and the \(\text{H}_2\) yield. The \(\text{O}_2\) and \(\text{H}_3\text{O}^+\) concentrations are obtained by chemical analysis. If Eq. (1) is divided by Eq. (2), the ratio of rate constants \(k_{(\text{H} + \text{O}_2)}/k_{(\text{H} + \text{H}_3\text{O}^+)} \) can be evaluated. This ratio was found to be 700,000 (±6%) between 1 \(\text{M}\) and 17 \(\text{M}\) acid.

Other products besides hydrogen are ferric ion, sulfur dioxide, and reduced oxygen. Their yields were measured and are shown in Fig. 4.1. These results together with the results from the ceric-sulfuric acid system were used to calculate the radical and molecular product yields in aqueous sulfuric acid solutions as a function of sulfuric acid concentration. The radical intermediates believed to be present are \(\text{H}, \text{OH}, \text{HSO}_4^- \) (or \(\text{SO}_4^{2-}\)), and \(\text{HSO}_3^- \) (or \(\text{SO}_3^-\)). The molecular products, postulated to be formed from the combination of the above-mentioned radicals, are \(\text{H}_2, \text{H}_2\text{O}_2, \text{H}_2\text{S}_2\text{O}_8, \text{H}_2\text{SO}_5\), and \(\text{SO}_2\). Sulfur dioxide is produced from the decomposition of dithionic acid (\(\text{H}_2\text{S}_2\text{O}_6\)) and sulfuric acid. Yields of the radical and molecular products are given in Fig. 4.2.

Radiolysis of Aqueous Nitrate Solutions

H. A. Mahlman

Investigation of the Co\(^{60}\) gamma radiolysis of aqueous nitrate solutions, specifically concen-
products H₂ and H₂O₂, while the reaction of unlike radicals regenerates water.

When concentrated aqueous NaNO₃ solutions are irradiated, product yields in excess of those predicted from the radical yields are observed. These excess product yields have been descriptively termed "direct-action yields" and imply a direct interaction of the incident radiation with the dissolved solute.

\[\text{Ce}^{4+} - 0.8 \text{ N H}_2\text{SO}_4 - \text{NaNO}_3 \text{ System.} \] The radiation-induced reduction of Ce⁴⁺ in the Ce⁴⁺ - 0.8 N H₂SO₄ - NaNO₃ system offers a convenient method to demonstrate and investigate the direct-action effect. In the absence of NaNO₃ the ceric reduction has been shown to be

\[G(\text{Ce}^{3+}) = 2G_{\text{H}_2\text{O}_2} + G_{\text{H}} - G_{\text{OH}} + 2(0.45 - G_{\text{H}_2}) \]

(refs 36 and 37), where \(G \) represents the number of product molecules produced per 100 ev of absorbed energy. In Fig. 4.3, curve A represents the observed \(G(\text{Ce}^{3+}) \) as a function of the NaNO₃ concentration in the Ce⁴⁺ - 0.8 N H₂SO₄ - NaNO₃ system. There are several delineable contributions to the observed \(G(\text{Ce}^{3+}) \), such as (a) the ceric reduction by the radiolysis products from water as given by Eq. (1), (b) the suppression of the \(G(\text{H}_2) \) by nitrate ions and the subsequent reduction of Ce⁴⁺ ions, and (c) the direct-action effects. The \(G(\text{Ce}^{3+}) \) associated with the water radiolysis products are assumed to be constant over the same NaNO₃ concentration range over which the \(G_{\text{OH}} \) remains constant as illustrated by curve C in Fig. 4.3. The observed \(G(\text{H}_2) \) were determined in the Ce⁴⁺ - 0.8 N H₂SO₄ - NaNO₃ system and were found to agree with the decreased \(G(\text{H}_2) \) observed in aqueous NaNO₃ solutions, pH 4 - 5. The reduction of nitrate ions by hydrogen atoms that normally form molecular hydrogen caused a decrease in the observed \(G(\text{H}_2) \), and a stoichiometric increase in the \(G(\text{Ce}^{3+}) \).

The extent of this reaction is represented by the difference between curves B and C. Thus we have isolated the enhanced \(G(\text{Ce}^{3+}) \) as the difference between curves A and B in Fig. 4.3, more clearly presented as curve D of Fig. 4.4. Extrapolation of the linear portion of curve D (from 2.0 M and greater) to zero NaNO₃ concentration enables us to separate two contributions to the enhanced \(G(\text{Ce}^{3+}) \), one of which is directly proportional to NaNO₃ concentration.

\[\text{H}_2\text{O}^{18} - \text{NaNO}_3 \text{ System.} \] The use of \(^{18}\text{O}\)-labeled water enabled studies to be made of the origin of the molecular oxygen formed by the Co⁶⁰ gamma irradiation of aqueous NaNO₃ solutions, pH = 4 - 5. Mass spectographic analysis of the oxygen indicated that in NaNO₃ solutions less than 2.0 M the molecular oxygen was formed either by the decomposition of water or by some participation of water and nitrate ions. This process reached a maximum, while a second process, the formation

38 T. J. Sworski, Radiation Res. 4, 483 (1956).
action in concentrated aqueous NaNO₃ solutions that is directly proportional to concentration.

An additional process may involve the participation of water and nitrate ions in the formation of molecular oxygen. This process occurs at NaNO₃ concentrations less than 2.0 M and is the cause of the rapid initial increase in \(G(\text{Ce}^{3+}) \) in the Ce⁴⁺−0.8 N H₂SO₄−NaNO₃ system. This process is difficult to explain. We may, however, delineate criteria for the mechanism and then postulate a possible mechanism: The OH-radical yield must remain constant, and the increase in \(G(\text{Ce}^{3+}) \) must be essentially equal to the OH-radical yield as shown by the extrapolated intercept of curve D of Fig. 4.4. Moreover, the isotopic composition of the \(\text{O}_2 \) formed indicates some scrambling of oxygen atoms from the \(\text{H}_2\text{O} \) and \(\text{NO}_3^- \). A mechanism meeting these criteria may be merely scavenging of \(\text{H}_2\text{O}^- \) by nitrate ion prior to the formation of hydroxyl radicals.

Radiolysis by Transferred Energy of Nitrite Ion in a Potassium Bromide Matrix

A. R. Jones

The investigation of radiolysis by transferred energy was continued. The decomposition of nitrite ion dispersed in potassium bromide was studied as a function of the total energy absorbed by the dispersion for several initial concentrations of the reactant. It was found that the nitrite ion apparently disappears by two concurrent first-order processes. A typical plot of \(\log C \) vs the cumulative dose is presented in Fig. 4.5a. The early portion of the curve is shown in expanded scale in Fig. 4.5b. Table 4.3 contains the first-order constants for the faster and slower reactions for each initial concentration, \(C_0 \) of \(\text{NO}_2^- \) investigated. Also shown in this table are the initial \(G \) values \((G_0) \) for these reactions and their sums; each sum represents the total initial rate of disappearance of \(\text{NO}_2^- \) for each 100 ev of energy absorbed by that whole system. The number of ions decomposed by the faster reaction for each \(C_0 \) is included.

\[\text{NO}_3^- \rightarrow \text{NO}_2^- + \frac{1}{2} \text{O}_2. \] (2)

A comparison between the molecular oxygen formed from the nitrate ions and the linearly dependent portion of the enhanced \(G(\text{Ce}^{3+}) \) observed in the Ce⁴⁺−0.8 N H₂SO₄−NaNO₃ system is also presented in Fig. 4.4. A direct comparison was accomplished by using the stoichiometric cerous ion equivalent of the oxygen yield according to Eq. (2), where each molecule of oxygen that is formed produces two nitrite ions, each of which reduces two ceric ions. The quantitative agreement of the cerous spectrophotometric data (curve E) with the mass spectrographic oxygen data (solid circles) supports the hypothesis of direct action in the Ce⁴⁺−0.8 N H₂SO₄−NaNO₃ system.
The initial yields of both the faster and the slower reactions vary with the initial concentration of nitrate ion. The variation is a regular one, although no simple relation is yet evident (Fig. 4.6). It may be qualitatively explained by considering each unirradiated mixture of potassium nitrite and potassium bromide as a structurally different system. That is, although the faster reaction in each case probably represents the decomposition of isolated nitrite ions — those which have replaced bromide ions in the KBr lattice — there is present in each mixture a different concentration of some other active species which can compete with the NO_2^- for the available energy. Such species could be the dislocations, vacancies, etc., the concentrations of which are characteristic of the perfection of the lattice, and would depend on the strains inherent in incorporating the foreign nitrite ion.

Apparent Solubility of Some Substances in Potassium Bromide

A. R. Jones

Plots of the turbidity at 4000 A vs the concentrations of KNO₃ and KNO₂ dispersed in pressed KBr disks showed discontinuities which appeared to correspond to the respective solubilities of

<table>
<thead>
<tr>
<th>System</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial concentration (C_0), ions $\times 10^{-17}$ per g of KBr</td>
<td>1.06</td>
<td>2.63</td>
<td>5.57</td>
<td>8.61</td>
<td>13.16</td>
<td>26.32</td>
</tr>
<tr>
<td>First-order constant for faster reaction, eV$^{-1} \times 10^{-21}$</td>
<td>2.32</td>
<td>2.21</td>
<td>1.98</td>
<td>1.61</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>First-order constant for slower reaction, eV$^{-1} \times 10^{-21}$</td>
<td>2.58</td>
<td>2.98</td>
<td>1.74</td>
<td>1.59</td>
<td>1.27</td>
<td>0.81</td>
</tr>
<tr>
<td>G_0 for disappearance of NO_2^- by faster reaction</td>
<td>0.061</td>
<td>0.123</td>
<td>0.170</td>
<td>0.212</td>
<td>0.330</td>
<td></td>
</tr>
<tr>
<td>G_0 for disappearance of NO_2^- by slower reaction</td>
<td>0.027</td>
<td>0.078</td>
<td>0.097</td>
<td>0.137</td>
<td>0.167</td>
<td>0.212</td>
</tr>
<tr>
<td>Total G_0 for disappearance</td>
<td>0.14</td>
<td>0.22</td>
<td>0.31</td>
<td>0.38</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Total ions decomposed by faster reaction $\times 10^{-17}$ per g of KBr</td>
<td>0.42</td>
<td>0.65</td>
<td>0.81</td>
<td>1.00</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>
NO$_3^-$ and NO$_2^-$ in KBr. In order to determine whether such discontinuities would appear when the dispersed ion became too large to be incorporated into the KBr lattice, and thus to confirm or deny the correspondence of the discontinuity with the solubility, a series of similar experiments was made for ions of increasing volume. The concentrations at the points of discontinuity (for two wavelengths) are listed in Table 4.4.

Listed also in the table are similar results for the neutral molecules hydroquinone and anthracene. The former was deposited from aqueous solution in the same fashion as the ions; the latter was deposited from acetone solution, in which KBr has more limited solubility.

Below a certain characteristic concentration, all these substances gave suspensions showing no greater turbidity than that shown by disks pressed from pure KBr. The concentration at which turbidity appears decreases as the volume of the dispersed substance increases.

It seems unlikely that the bulky, and even non-ionic, substances are incorporated into the lattice, replacing bromide ions, as was proposed for the NO$_3^-$ and NO$_2^-$ cases. Instead, it is now believed that the behavior may be compared to that of "colloidal electrolytes" in liquid solutions. Such solutions show similar turbidity behavior at a concentration which coincides with that at which the thermodynamic properties of the solutions become nonideal.

This is interpreted to mean that, although there is undoubtedly some solubility of small ions such as NO$_3^-$ and NO$_2^-$ in the lattice itself, the remainder of the KNO$_3$ and KNO$_2$ and all the bulkier ions and neutral molecules exist in these mixtures as adsorbed or occluded aggregates ranging upward in size from individual ions or molecules. In a liquid system an equilibrium is attained for which the concentration of aggregates is low until the critical micelle concentration is reached. In the present system, however, the solid mixture is formed at continually changing concentration, and there may be larger numbers of 2, 3, 4, ...-unit aggregates than would be present at equilibrium in a liquid solution.

Table 4.4. Concentration Required for the Appearance of Turbidity

<table>
<thead>
<tr>
<th>Substance</th>
<th>No. of Ions or Molecules per gram of KBr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000 A</td>
</tr>
<tr>
<td>BrO$_3^-$</td>
<td>$\times 10^{17}$</td>
</tr>
<tr>
<td>CH$_3$COO$^-$</td>
<td>47</td>
</tr>
<tr>
<td>C$_6$H$_5$O$_2$ (hydroquinone)</td>
<td>21</td>
</tr>
<tr>
<td>C${14}$H${10}$ (anthracene)</td>
<td>17</td>
</tr>
<tr>
<td>(C$_6$H$_5$)$_3$C$^+$</td>
<td>9</td>
</tr>
<tr>
<td>C${2n}$H${10}$O$_2$$^2-$ (fluorescein)</td>
<td>3</td>
</tr>
</tbody>
</table>

[^43]: Chem. Div. Ann. Progr. Rept. June 20, 1961, ORNL-3176, p 31 (Fig. 4.3 and the preceding paragraph).
Radiolysis of Liquid Oxygen and Oxygen-Nitrogen Mixtures

J. F. Riley

As previously indicated, there has been very little study of the radiolysis of liquid oxygen, despite a basic interest in the electron affinity of oxygen and its possible consequences. Further, Pshezhetsky’s limited report of an ozone yield, \(G(O_2) = 15 \text{ molecules per 100 ev} \), representing an extremely efficient (22%) energy conversion, was not confirmed by subsequent workers.

Our experimental method of alternate gamma irradiation and ultraviolet absorption measurement allows the in situ observation of ozone formation. Because ozone is a much stronger ultraviolet absorber than oxygen, we are able to determine ozone concentrations by measurement of the absorption in the region from 2500 to 3000 Å. Ozone concentrations as low as 0.4 ppm are readily determined with a precision of ±5%.

At any particular wavelength in the above spectral region, the change in absorbance with dose was a linear function for doses as high as \(2 \times 10^{18} \text{ ev/g} \). Incremental changes in absorbance were measured for dose increments of \(2.2 \times 10^{17} \text{ ev/g} \). The ratio of ozone yield from each \(O_2-N_2 \) mixture to that from pure oxygen was determined from the ratio of the slopes of the straight lines, absorbance vs dose, with allowance for the density differences.

From the change in absorbance with dose and a knowledge of the absorption coefficients for ozone, the ozone yield \(G(O_2) \) was calculated. The absorption coefficients are known for gaseous ozone, but several tests of internal consistency support their application to ozone in liquid oxygen and oxygen-nitrogen mixtures.

Ozone yields in the gamma radiolysis of liquid oxygen and oxygen-nitrogen mixtures are presented in Table 4.5. The values in the column labeled "\(G(O_2) \), Mixture/\(G(O_2) \), Pure O_2" show the extensive energy transfer occurring in the system. When the electron fraction of oxygen is 0.115 (mole fraction = 0.102), the yield of ozone is still 65% of that from pure oxygen. Even more striking is the behavior of the solution which is only 0.050% \(O_2 \) (mole fraction = 0.00050); the yield of ozone is equal to 32% of that from pure oxygen.

In our first design of low-temperature cells, liquid-nitrogen coolant was present in the optical path. Even when the liquid nitrogen contained only small amounts of oxygen (<500 ppm), energy transfer resulted in ozone formation, which would be included in the spectrophotometric assay. The results shown in Table 4.5 were obtained in our latest-design cell, which excludes all coolant from the optical path.

Table 4.5. Summary of Ozone Yields in the Radiolysis of Liquid Oxygen and Oxygen-Nitrogen Mixtures at 77°C

<table>
<thead>
<tr>
<th>Mole Fraction (O_2)</th>
<th>(G(O_2)), Mixture/(G(O_2)), Pure (O_2)</th>
<th>(G(O_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>0.102</td>
<td>0.657 ± 0.006</td>
<td>8.2</td>
</tr>
<tr>
<td>0.0124</td>
<td>0.461 ± 0.007</td>
<td>5.8</td>
</tr>
<tr>
<td>0.0011</td>
<td>0.356 ± 0.005</td>
<td>4.5</td>
</tr>
<tr>
<td>0.00050</td>
<td>0.317 ± 0.003</td>
<td>4.0</td>
</tr>
<tr>
<td>0.102(^b)</td>
<td>0.650 ± 0.007</td>
<td>8.1</td>
</tr>
<tr>
<td>1(^c)</td>
<td>1.037 ± 0.003</td>
<td>13.0</td>
</tr>
</tbody>
</table>

\(^{a}\) \(G(O_2) \) is the number of molecules of ozone produced per 100 ev of energy absorbed by the solution.

\(^{b}\) Repetition of an experiment to illustrate the precision.

\(^{c}\) Radiolysis of liquid oxygen at its boiling point (90°C), for comparison with results for oxygen at 77°C.
Figure 4.7 shows the ratios of ozone yields from oxygen-nitrogen mixtures to that from pure oxygen. The abscissa is the logarithm of the mole fraction of oxygen. The lower curve is the ratio of yields expected on the basis of electron fractions and no energy transfer. The upper curve passes through the experimental points.

To illustrate how the enhancement of ozone yield is changing with composition, Fig. 4.7b presents the difference between the curves of

Fig. 4.7, that is, the difference between the experimental ratio of yields and the ratio predicted on the assumption of no energy transfer. The maximum enhancement in the ratio of ozone yields occurs for a solution with a mole fraction of oxygen of about 0.1. It may be noteworthy that at this composition each nitrogen molecule has, on the average, one oxygen molecule in its nearest neighbor shell.52

The G value for ozone formation in liquid oxygen at 77°K, as shown in the table, is twice as large as that reported by Brown or Kircher. Brown's yields were determined by titration and dilatometry after irradiation to 10^{24} ev/g, which is 10^4 times our first dose increment. Brown's results for oxygen mixtures indicate extensive energy transfer but do not extend below a mole fraction of oxygen of 0.25.

A mechanism to account for the observed yields is under consideration. Charge transfer from N$_2$ to O$_2$ is known to occur in gas-phase systems and should play a principal role in the mechanism. A coupling of charge transfer, electron capture by oxygen, and ionic recombination may describe what we have called "energy transfer."

The formation of ozone is an endothermic process, and in oxygen radiolysis it represents an efficient conversion of energy (radiation to chemical). In pure oxygen, $G(O_3) = 12.5$ shows an energy conversion efficiency of 19%; in 0.05% O$_2$, the energy conversion efficiency is 6%.

Reloading of Cobalt Sources

J. F. Riley C. J. Hochanadel

The Radiation Chemistry Group has two cobalt sources, both of which were reloaded to provide higher dose rates. The sources are housed in lead shields, the design of which was described previously.53 One source was reloaded with 2900 curies of Co60, and the other with 280 curies. The capsules containing the cobalt are of a new design. They consist of six stainless steel tubes which contain the cobalt, and they stand in a stainless steel rack in the form of a hollow cylinder with an external diameter of 2.375 in. and

The capsule for the larger source is 11 in. tall, with the cobalt occupying the bottom 4.1 in. of the tubes. The cobalt was distributed to provide a uniform dose rate (within ±2%) over a 3-in. length along the vertical axis. The maximum dose rate in the center of the large source, as established by ferrous sulfate dosimetry, was \(2.05 \times 10^{18}\) ev g\(^{-1}\) min\(^{-1}\) on June 5, 1962.

The capsule for the smaller source is 7 in. tall, with the cobalt occupying the bottom 4.2 in. Again, the cobalt is distributed in such a way as to provide a uniform dose rate over a 3-in. length along the vertical axis. The maximum dose rate in the center of this source was \(2.08 \times 10^{17}\) ev g\(^{-1}\) min\(^{-1}\) on August 10, 1962.

Radiolysis of Crystalline Alkali-Metal Bromates by Neutron Reactor Radiations

G. E. Boyd Q. V. Larson

Nuclear reactor radiations were employed to effect the radiolysis of the alkali-metal bromates to decompositions of approximately 3 mole % (Fig. 4.8). The sequence of increasing radiolytic stability for the salts was the same as that observed previously with Co\(^{60}\) gamma rays, although in some instances their relative stabilities differed significantly. These differences could be attributed to the production of internal radiation sources by thermal-neutron capture in the cations and to the presence of low-energy components in the gamma-ray spectrum of the reactor. Irradiations...
in pure, gamma-ray-free thermal-neutron fluxes, behind thick lithium metal shielding, and behind thick bismuth metal shielding were employed to estimate the specific decompositions caused by thermal neutrons, fast neutrons, and gamma rays, respectively.

The formation of bromine oxidation states intermediate between bromate and bromide was observed. The radiolytic production of oxidizing fragments was dependent on the cation and became nonlinear with increasing exposure (Fig. 4.9); their "average oxidation number" appeared to decrease with the time of bombardment.
5. Organic Chemistry

Determination of Carbon-14 and Deuterium Isotope Effects by the Differential Method

V. F. Raaen T. K. Dunham
C. J. Collins

The differential method developed at this Laboratory for studying small isotope effects—particularly secondary effects of C\(^14\) and deuterium—was extended to include several isotope-position isomers of acetophenone, phenyl t-butyl ketone and propiophenone. The techniques employed were similar to those previously described.

In determining the rate acceleration or deceleration caused by the substitution of deuterium for hydrogen, known mixtures of deuterated and undeuterated species were prepared, one of which was always labeled with C\(^14\), and the rate of change of C\(^14\) content as a function of fraction of reaction was determined. The method requires that the isotope effects caused by the C\(^14\) itself be known, and these were determined in separate experiments. All reactants for study were purified on a preparative vapor-phase chromatograph. The C\(^14\)-labeled materials were synthesized by standard methods.

The data for each run were fitted to Eq. (1) below by means of a nonlinear least-squares code.

\[
A = A_0 \frac{k^*}{k} (1 - f)[(k^* / k) - 1],
\]

where

\[
A = \text{molar radioactivity of each small sample at fraction } f \text{ of reaction},
\]

\[
A_0 = \text{molar radioactivity of reactant at } f = 0,
\]

\[
k^* / k = \text{ratio of specific rate constants for reaction of labeled and unlabeled molecules, respectively.}
\]

All experimental results, including those reported before, are given in Table 5.1. In order to obtain the isotope effect values \((k_D / k_H)\) due only to the substitution of deuterium for hydrogen, appropriate ratios from the third column of Table 5.1 were used. Thus, the isotope effect in the derivatization of trideuteroacetophenone can be calculated by two completely separate and independent methods, the results being identical within \(\pm 2\) times the estimated error:

\[
\frac{k_D}{k_H} = \frac{0.949 \pm 0.002}{0.847 \pm 0.003} = 1.119 \pm 0.005
\]

(from runs 1 and 5, Table 5.1)

\[
1.0085 \pm 0.0004 = 1.104 \pm 0.002
\]

(from runs 2 and 6, Table 5.1).

\(^4\) We are indebted to M. H. Lietzke of this Laboratory for writing the code for use with the IBM 7090 computer. Equation (1) is the exponential form of the equation derived by A. M. Downes, Australian J. Sci. Research SA, 521 (1952). See also C. J. Collins and M. H. Lietzke, J. Am. Chem. Soc. 81, 5379 (1959). A least-squares fit to Downes' linear equation gave identical results with those reported in Table 4.1. The error \(C\) in \(k^* / k\) was obtained as follows:

\[
\sigma = \frac{\sum \tau^2}{\sqrt{n - 2} - b_{11}}
\]

where \(\sum \tau^2\) = sum of squares of the residuals of fit; \(n = \) number of data points; \(b_{11} = \) 1,1-element of the matrix \((X^T X)^{-1}\), where \(X = \) the matrix of the partial derivatives with respect to the parameters.

\(^1\) Undergraduate trainee from Austin College, summer 1961.

\(^3\) A Burrell Kromo-Tog model K-1, fitted with a \(\frac{1}{2}\) -in. column packed with Apiezon-L supported on Kromat F-13, was used.
Table 5.1. Exponentially Determined Values of the Isotope Effect in Conversion of Ketones to Their 2,4-Dinitrophenylhydrazones

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Mixture</th>
<th>k^*/k (ref a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{Ph}^\circ\text{COCH}_3$</td>
<td>0.949 ± 0.002</td>
</tr>
<tr>
<td>2</td>
<td>PhCOCH_3, PhCOCD_3</td>
<td>1.008 ± 0.0004</td>
</tr>
<tr>
<td>3</td>
<td>PhCOCH_3</td>
<td>1.0038 ± 0.0003</td>
</tr>
<tr>
<td>4</td>
<td>PhCOCD_3</td>
<td>0.941 ± 0.001</td>
</tr>
<tr>
<td>5</td>
<td>$\text{PhCOCH}_3:\text{PhCOCD}_3$</td>
<td>0.847 ± 0.003</td>
</tr>
<tr>
<td>6</td>
<td>$\text{PhCOCH}_3:\text{PhCOCD}_3$</td>
<td>0.915 ± 0.002</td>
</tr>
<tr>
<td>7</td>
<td>PhCOC-CH_3</td>
<td>0.951 ± 0.001</td>
</tr>
<tr>
<td>8</td>
<td>$\text{PhCO}\cdot\text{C-CH}_3$</td>
<td>1.0041 ± 0.0007</td>
</tr>
<tr>
<td></td>
<td>CH_3</td>
<td>1.0040 ± 0.0009</td>
</tr>
<tr>
<td></td>
<td>CH_3</td>
<td>1.0027 ± 0.0005</td>
</tr>
<tr>
<td>9</td>
<td>$\text{PhCOC-CD}_3:\text{PhCOC-CH}_3$</td>
<td>1.046 ± 0.0015</td>
</tr>
<tr>
<td>10</td>
<td>$\text{PhCOCH}_2\text{CH}_3$</td>
<td>0.943 ± 0.002</td>
</tr>
<tr>
<td>11</td>
<td>$\text{PhCOCD}_2\text{CH}_3$</td>
<td>0.943 ± 0.004</td>
</tr>
<tr>
<td>12</td>
<td>$\text{PhCOCD}_2\text{CH}_3:\text{PhCOCH}_2\text{CH}_3$</td>
<td>1.060 ± 0.001</td>
</tr>
<tr>
<td>13</td>
<td>$\text{PhCOCH}_2\text{CD}_3$</td>
<td>0.9952 ± 0.0006</td>
</tr>
</tbody>
</table>

aRatio of specific rate constants for C14-labeled (k^*) and unlabeled (k) species. These values are corrected for the mole fraction of each species present. All reactions were carried out under conditions of proven irreversibility.

bOnly C14-labeled and unlabeled species present.

cData of ref 2c.

dSignificance doubtful.

eThe insignificant contribution of the terminal C14 has been neglected.
The deuterium isotope effects \(\frac{k_D}{k_H} \) calculated from Table 5.1 are listed in Table 5.2. The data for runs 1, 5, 6, and 9 are plotted in Fig. 5.1, and the data for runs 3 and 13 are given in Fig. 5.2. These plots are typical and demonstrate the value of the differential method. Figure 5.2 illustrates that even the very small isotope effects reported in Table 5.1 can be significant and meaningful.

None of the conventional explanations for previously observed secondary isotope effects will uniquely explain all the data. Therefore, further experiments are under way which, it is hoped, will help clarify the nature and origin of these small rate differences.

Nuclear Magnetic Resonance Studies: Conformation and the Depamination Reaction of erythbro-2-Amino-1-phenylpropanol

B. M. Benjamin

It has been shown, through a series of investigations involving \(^1\)C labeling, resolutions, and isotope dilution experiments, that the distribution of products of deamination of substituted ethanolamines is controlled by the conformations of the reacting molecules. For example, the model compound, (\(+\))-erythbro-1-amino-2,6-Dinitrophenylhydrazone

\[
\frac{k}{k^*} = 0.847 \pm 0.003 \\
(\text{Run No. 5})
\]

Table 5.2 Summary of \(\frac{k_D}{k_H} \) Isotope Effects in the Conversion of Ketones I-IV to Their 2,4-Dinitrophenylhydrazones

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>(\frac{k_D}{k_H})</th>
<th>Run No. from Table 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCOCD (_3)</td>
<td>1.119 ± 0.005</td>
<td>1, 5</td>
</tr>
<tr>
<td>2</td>
<td>PhCOCD (_3)</td>
<td>1.104 ± 0.002</td>
<td>2, 6</td>
</tr>
<tr>
<td>3</td>
<td>PhCOC-CD (_3)</td>
<td>1.046 ± 0.0015</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>PhCOCD (_2)CH(_3)</td>
<td>1.124 ± 0.005</td>
<td>10, 11, 12</td>
</tr>
<tr>
<td>5</td>
<td>PhCOCH(_2)CD(_3)</td>
<td>0.9952 ± 0.0006</td>
<td>13</td>
</tr>
</tbody>
</table>

Fig. 5.1. Deuterium Isotope Effects for Runs 1, 5, 6, and 9.
It is possible with certain compounds of the series to obtain an estimate of the conformational variety by analysis of their nuclear magnetic resonance (NMR) spectra.

The NMR spectrum10 of \textit{erythro}-2-amino-1-phenylpropanol hydrochloride (II) in deuterium oxide solution gave the following data: CH\textsubscript{3}, doublet at 8.34 τ; J = 6.70 cps; N–C–H, eight components centered at 5.9 τ; O–C–H, doublet at 4.6 τ; J = 4.47 cps; rapidly exchanging –NH\textsubscript{3}+ and –OH at 4.9 τ; phenyl protons, one peak at 2.1 τ. The magnitude of the spin-spin coupling constant \(J \) between protons in H–C\textsubscript{1}–C\textsubscript{2}–H systems is a function of the dihedral angle between the two C–H bonds, as shown theoretically and experimentally11–13 for rigid cyclic molecules. The coupling constants for systems undergoing rotation is averaged over all conformations, and for systems in which rotation is restricted, \(J \) is a key to the equilibrium population of the rotational conformations14. The value of \(J \) for the two protons, of II is 4.47 cps. Assuming from the data of Sheppard12,15 for the gauche conformations II\textsubscript{a} and II\textsubscript{b} the coupling constant \(J = 1 \) to 3 cps, and for the trans conformation II, \(J_T = 11 \) to 13 cps, and, using the equation of Bothner-By14, \(P_{IIc} = (J_{obs} - J_R)/(J_T - J_R) \), it was calculated that the population of conformation II\textsubscript{c} was (25 ± 10)%.
Since the large, medium, and small interactions are probably about the same for IIa and IIb, they should be present in equal quantities and should make equal contributions to the observed coupling constant.

Interpreting these results in terms of chemical behavior during the deamination reaction, the following results would be expected: the breaking of the carbon-nitrogen bond through nitrous acid deamination of molecules of II residing in conformation IIa would result in hydrogen migration, and propiophenone would be formed. Conformation IIa would afford hydratropic aldehyde through phenyl migration, whereas IIc would give the ionic intermediate III, which would either undergo rotation through a 30° angle about the central carbon-carbon bond before phenyl migration or could give some glycolic material by interaction with solvent:

\[
\begin{align*}
\text{Ph} & \quad \text{H} \\
\text{H} & \quad \text{Ph} \\
\text{OH} & \quad \text{CH}_3 \\
\text{III} & \quad \text{IV}
\end{align*}
\]

Thus, hydratropic aldehyde would be expected to be formed to the extent of about 62%, and if the starting amine II were resolved, the upper limit of aldehyde of inverted configuration would be about 74%.

Infrared analysis of the deamination product of II showed that the carbonyl fraction contained 56% of hydratropic aldehyde and that some glycolic material was present, thus confirming predictions from the NMR spectrum. The resolution of II has not yet been accomplished.

The Deamination Reaction: Rearrangement of (−)-exo-Norbornyl Amine

B. M. Benjamin
C. J. Collins

In previous work on the deamination rearrangement\(^{16}\) we demonstrated that no driving force for participation of the migrating group, bridging, occurred in 1,2-disubstituted ethanol amine systems. We have now used similar methods to investigate the deamination of a system, norbornyl amine, which has been reported\(^{17}\) to rearrange through bridged ion intermediates and subsequently was used as the classic example of that mechanism. Accordingly, **endo-5**-norbornene-2-carboxylic acid was prepared by fractional crystallization of its cinchonidine salt, and it was resolved into the optically pure enantiomer, \([\alpha]_D^{25} = -144.5.\)^\(^{18}\) This acid was converted to the methyl ester, which was then isomerized to a mixture of **exo-** and **endo-** stereoisomers by treating it with sodium methoxide in methanol. The resolved free exo-acid was recovered by separating a mixture of **endo-** and **exo-** iodolactone.\(^{19}\) It was then catalytically reduced to **exo-2**-norbornene-2-carboxylic acid, \([\alpha]_D^{25} = -26.8.\) Optically active **exo-norbornyl** amine (I) was obtained from the above saturated exo-acid by an adaptation of the Schmidt reaction. The rotation \([\alpha]_C^{25} = -18.1\) was the same in two separate preparations. Optical and chemical purities of the amine were demonstrated by the fact that it formed only one acetyl derivative, \([\alpha]_D^{15} = +12.3.\)

Treatment of the optically pure amine in glacial acetic acid solution with sodium nitrite afforded, after appropriate workup of the reaction product, optically active **exo-norbornyl** acetate, \([\alpha]_D^{25} = 1.6210 \pm 0.0030 \text{ (neat, 1 dm).}\) Chemical purity of the acetate was established by its refractive index\(^{20}\) \((N_D^{24} = 1.4562)\) and infrared spectrum and by the fact that it gave only one peak upon vapor-phase chromatography.

Since the maximum rotation of **exo**-norbornyl acetate is 12.65,\(^{21}\) it follows that the deamination of (−)-exo-norbornyl amine produced **exo-norbornyl** acetate, which had retained 12.8% of its optical activity. Therefore the reaction took place with

43.6% inversion of configuration and 56.4% retention of configuration. This result is not compatible with the current hypothesis that the important intermediates in the rearrangement process are the norbornonium cation (II) and the nortricyclonium (III) cation because, when correctly drawn, these ions are seen to possess a plane of symmetry and thus would be expected to react equally at positions 1 and 2 in ion II or at positions 1 and 6 in ion III, thus producing a racemic product:

![Chemical diagram](image)

A more satisfactory interpretation of the mechanism is that deamination of I initially produces the classical carbonium ion IV, which reacts with solvent to give a product of retained configuration faster than it rearranges to ion V. Once formed, ion V can react with solvent to give inverted product or can be converted back to ion IV:

![Chemical diagram](image)

The syn- and anti-Isomers of iso-Butyrophenone-2,4-Dinitrophenylhydrazone

B. M. Benjamin A. C. Rutenberg

The problem of stereoisomerism about the C=N bond of ketone 2,4-dinitrophenylhydrazones was studied\(^{22}\) by means of their proton nuclear magnetic resonance (NMR) spectra. The resulting data were interpreted in terms of restricted rotation about the C=N bond. Although individual syn- and anti-isomers were not available, assignments of nuclear magnetic resonance (NMR) signals to protons of a single isomer were made, based on certain assumptions. The 2,4-dinitrophenylhydrazone of methyl ethyl ketone is used as an example. This compound gives two resonance signals for each of the two different methyl groups and the methylene group, the larger signal of each pair being assigned to the syn-methyl isomer, which from steric considerations would be the favored configuration. Thus, the more intense α-methyl and β-methyl signals were shifted upfield, and the more intense α-methylene signal was shifted downfield. Therefore, it was reasoned that α-hydrogens syn to the anisotropic 2,4-dinitrophenyl group are shielded and that syn β-hydrogens are deshielded. Data obtained in this Laboratory does not confirm the generality of the above conclusions. During work on the deuterium isotope effect problem,\(^{23}\) it was found that between 0°C and room temperature iso-butyrophenone reacted with 2,4-dinitrophenylhydrazine reagent\(^{24}\) to give a yellow derivative, mp 162°C, and that at -5°C the same reactants gave an orange derivative, mp 152°C. Three crystallizations from a chloroform-ethanol mixture did not change the melting points. An NMR study at 56.4 Mc of the two compounds dissolved in deuterochloroform revealed the following information. The yellow compound gave the expected spectrum for a pure individual stereoisomer of iso-butyrophenone-2,4-dinitrophenylhydrazone, whereas the spectrum of the orange compound was more striking. Pertinent signals

\(^{22}\) G. J. Karabatsos, J. D. Graham, and F. M. Vane, J. Am. Chem. Soc. 84, 753 (1962).

\(^{23}\) V. F. Raasen, T. K. Dunham, and C. J. Collins, previous section of this report.

for the yellow compound are the spin-coupled methyl doublet at 8.74 \(\tau \) and the methene septet centered at 6.99 \(\tau \), the aromatic proton between the two nitro groups at 0.97 \(\tau \) and the N-H proton at -0.97 \(\tau \). The orange compound gave two absorption regions with an intensity ratio of 2 to 1 for each of the above groups. The more intense signal of the pair had the same chemical shift as for the yellow compound, and each of the less intense signals was shifted downfield. The absorption spectrum of the other two protons on the nitro-substituted ring and the protons on the unsubstituted phenyl appeared unaffected under the available resolution. Therefore it seemed that the orange compound was actually a mixture of syn- and anti-isomers. Careful crystallization of the low-melting-point orange form afforded two kinds of crystals: yellow plates melting at 162°C and red prisms melting at 186-187.5°C. Furthermore, upon standing a month the chloroform solution of the orange compound turned yellow, and the downfield-shifted low-intensity signals disappeared. Chemical shifts (\(\tau \)) and chemical-shift differences (\(\delta \)) for the two stereoisomers are recorded in Table 5.3.

Table 5.3: Chemical Shifts of the syn- and anti-Isomers of Isobutyrophenone-2,4-dinitrophenyl Hydrazone in Deutero-Chloroform at 56.4 Mc

<table>
<thead>
<tr>
<th>Group (1)</th>
<th>Yellow Form (ppm)</th>
<th>Red Form (ppm)</th>
<th>(\delta) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)</td>
<td>8.74</td>
<td>8.56</td>
<td>0.18</td>
</tr>
<tr>
<td>CH</td>
<td>6.99</td>
<td>6.58</td>
<td>0.41</td>
</tr>
<tr>
<td>Ph-H</td>
<td>2.52</td>
<td>2.52</td>
<td>0</td>
</tr>
<tr>
<td>o-H</td>
<td>1.97</td>
<td>1.97</td>
<td>0</td>
</tr>
<tr>
<td>(m_1)-H</td>
<td>1.66</td>
<td>1.66</td>
<td>0</td>
</tr>
<tr>
<td>(m_2)-H</td>
<td>0.97</td>
<td>0.86</td>
<td>0.11</td>
</tr>
<tr>
<td>N-H</td>
<td>-0.97</td>
<td>-1.62</td>
<td>0.65</td>
</tr>
</tbody>
</table>

The present data do not allow assignment of configuration to either form. However, the chemical-shift difference for \(\alpha \) and \(\beta \) hydrogens between the two different isomers is in the same direction. Equilibrium between the two isomeric forms due to restricted rotation about the C=N bond does not exist because one form is unstable and slowly isomerizes to the other. More data are presently being obtained from the pure, red stereoisomer and from other model compounds. The protons are defined by the following structural formula:

\[
\text{Ph-H} \quad \begin{array}{c}
\text{\(\text{CH}_3\text{CH-C-} \)} \\
\text{N} \\
\text{\(\sigma-H \)} \\
\text{\(m_1-H \)} \\
\text{\(m_2-H \)}
\end{array} \quad \text{NO}_2
\]

Thermally Induced Reactions of Tributyl Phosphate with Sodium Nitrate

W. H. Baldwin

Differential thermal analysis (DTA) techniques were used earlier for the qualitative study of the reaction between nitrates and tributyl phosphates.\(^{25}\) Since that time it has been possible to study quantitative aspects of the reaction between tributyl phosphate (TBP) and solid sodium nitrate. The apparatus was calibrated by using the reported heats of fusion of lithium nitrate, sodium nitrate, and potassium nitrate. A significant advantage of the DTA method was found in the small quantity of reagents that are required, 50 to 100 mg of ester covered with 500 mg of (200-mesh) sodium nitrate. The temperature was raised uniformly (5°C/min) during the analysis.

The first observed reaction is an exothermic one that commences in the range of 210 to 230°C and reaches a maximum at 260°C. The heat of reaction was found to be 79 ± 5 cal per g of TBP (average of five runs).

The above reaction was quenched by the first endothermic reaction of sodium nitrate (maximum, 290°C), probably a phase change. After this the net effect was exothermic for a short time until it was quenched by the endothermic fusion of sodium nitrate.

This complicated series of reactions may well be encountered in the process of waste calcination; however, significant differences exist between the above test and the conditions that obtain in the evaporation and calcination pot. Some of these differences are the escape of volatile reaction products under the above conditions of testing, visible amounts of charring that were not quantitatively estimated, and the flotation of the residue on the molten sodium nitrate that was thus carried outside the area of detection by the thermocouple.

Organic Thiophosphorus Compounds as Ligands

W. H. Baldwin C. E. Higgins

Handley and Dean showed recently that neutral thiono phosphate esters are useful solvents for the extraction of silver and mercuric salts from aqueous solution. Subsequently, we prepared analogs of these thiono phosphate esters and tested certain relationships between structure and distribution coefficients. In the series of thiono phosphorus compounds, as in the series of analogous phosphoryl compounds (see Higgins, Baldwin, and Ruth and Burger), higher distribution coefficients were observed with electron-releasing groups attached to the phosphorus atom (see Tables 5.4 and 5.5).

Several solid adducts were isolated in pure form (see Table 5.6). The 1:1 adduct between tributyl phosphine sulfide and silver nitrate is associated in benzene solution, while the corresponding adduct with mercurotic iodide is not associated. When tributyl phosphine sulfide (2 moles) was added to silver nitrate (1 mole) and when triphenyl phosphine sulfide was mixed with silver nitrate in a 1:1 ratio, viscous liquids were obtained that did not crystallize.

The strong interaction between neutral organic thiophosphorus compounds and salts of such metals as Ag(I) and Hg(II) permit the isolation of solid adducts and their use in solvent extraction. We have now extended this investigation to include the sulfur analogs of dibutyl phosphoric acid: dibutyl dithio phosphoric acid, \((BuO)_{2}PSSH\), and dibutyl thiophosphoric acid, \((BuO)_{2}PHOS\). Handley surveyed the distribution of many elements between water and dialkyl dithiophosphoric acid. We are reporting a comparison of the properties of the three acids in the extraction of silver from aqueous silver nitrate, and the melting points and molecular weights of the complexes.

The selective action of the sulfur-containing acids on silver is evident from the data in Table 5.4. The oxygen acid \(((BuO)_{2}P00H)\) extracts very little silver from water; the distribution coefficient \(E_a^0 = 0.02\). However, with dibutyl thiophosphoric

<table>
<thead>
<tr>
<th>Extractant</th>
<th>Ag⁺ in Organic Phase</th>
<th>Distribution Coefficient, (E_a^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((C_4H_9),PS)</td>
<td>10 (\times 10^{-3})</td>
<td>190</td>
</tr>
<tr>
<td>((C_6H_5),PS)</td>
<td>2.6 (\times 10^{-3})</td>
<td>0.35</td>
</tr>
<tr>
<td>((C_4H_9O),PS)</td>
<td>0.14 (\times 10^{-3})</td>
<td>0.014</td>
</tr>
<tr>
<td>((C_6H_5O),PS)</td>
<td>0.01 (\times 10^{-3})</td>
<td>0.001</td>
</tr>
<tr>
<td>((C_4H_9),PO)</td>
<td>0.01 (\times 10^{-3})</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5.5. Distribution of Hg(NO₃)₂ Between Aqueous and Organic Layers

<table>
<thead>
<tr>
<th>Compound</th>
<th>Hg²⁺ in Organic Phase</th>
<th>Distribution Coefficient, (E_a^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((C_4H_9),PS)</td>
<td>3.8</td>
<td>Precipitation</td>
</tr>
<tr>
<td>((C_4H_9O),PS)</td>
<td>4.7</td>
<td>0.9</td>
</tr>
<tr>
<td>((C_6H_5O),PS)</td>
<td>0.02</td>
<td>0.002</td>
</tr>
</tbody>
</table>

\(29\) T. H. Handley, private communication.
Table 5.6. Analytical Data for Adducts Prepared

<table>
<thead>
<tr>
<th>Adduct</th>
<th>Melting Point (^\circ\text{C})</th>
<th>Analytical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Percentage of Silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Found</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molecular Weight of Adduct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Found</td>
</tr>
<tr>
<td>(\text{Bu}_3\text{PS}^-\text{AgNO}_3)</td>
<td>138–138.5</td>
<td>27.0(^a)</td>
</tr>
<tr>
<td>(\text{Bu}_3\text{PS}^-\text{HgI}_2)</td>
<td>75–75.5</td>
<td>26.9(^c)</td>
</tr>
<tr>
<td>(2\phi\text{PS}^-\text{AgNO}_3)</td>
<td>157</td>
<td>14.7(^c)</td>
</tr>
</tbody>
</table>

\(^a\)Ionic analysis.
\(^b\)Cryoscopically in benzene, 3% solution.
\(^c\)Radiometric analysis.

Acid a high distribution coefficient (1000) was observed. Dibutyl dithiophosphoric acid forms a benzene-soluble silver complex, but in the test reported in Table 5.7 with no supporting electrolyte in the aqueous phase, the separation of an insoluble phase limited the amount of silver in the benzene to 24% of the total.

The complex nature of the systems is reflected in the molecular weights recorded in Table 5.8. The acids \((\text{BuO})_2\text{POOH}\) and \((\text{BuO})_2\text{PSOH}\) are associated in benzene, presumably by hydrogen bonding through the oxygen atoms. The silver complex of \((\text{BuO})_2\text{PSSH}\) was more highly associated than the complex of \((\text{BuO})_2\text{PSOH}\). Here, the coordination bonding may be between silver and the sulfur atoms on the phosphorus.

Table 5.7. Distribution of Silver Between Water and Benzene Solutions of Organic Phosphorus Acids

<table>
<thead>
<tr>
<th>Acid</th>
<th>Distribution Coefficient, (E_\alpha^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{BuO})_2\text{POOH})</td>
<td>0.02</td>
</tr>
<tr>
<td>((\text{BuO})_2\text{PSOH})</td>
<td>1000</td>
</tr>
<tr>
<td>((\text{BuO})_2\text{PSSH})</td>
<td>Precipitation (24% Ag(^{110}) in benzene phase)</td>
</tr>
</tbody>
</table>

Table 5.8. Analytical Results for Acids and Their Silver Complexes

<table>
<thead>
<tr>
<th>Acid</th>
<th>((\text{BuO})_2\text{POOH})</th>
<th>((\text{BuO})_2\text{PSOH})</th>
<th>((\text{BuO})_2\text{PSSH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found</td>
<td>421</td>
<td>382</td>
<td>224</td>
</tr>
<tr>
<td>Calculated</td>
<td>210</td>
<td>226</td>
<td>242</td>
</tr>
</tbody>
</table>

Silver Complex			
Melting Point, \(^\circ\text{C}\)	196–207	119–124	167–168
Molecular Weight\(^a\)			
Found	701	1360	
Calculated	333	349	

\(^a\)Cryoscopically in benzene, 3% solution.
The Solubility of Silver Sulfate in KNO₃-K₂SO₄, K₂SO₄-MgSO₄, and K₂SO₄-H₂SO₄ Mixtures

M. H. Lietzke R. W. Stoughton

In a series of papers the solubility of Ag₂SO₄ in a variety of electrolyte solutions was investigated. It was shown that single-parameter semi-empirical expressions of the type

\[\ln s = \ln s_0 + \frac{T}{T_0} \left[\frac{\sqrt{T}}{1 + A \sqrt{T}} - \frac{\sqrt{T_0}}{1 + A \sqrt{T_0}} \right] \]

(1)
could be used to describe the variation of the solubility product of Ag₂SO₄ over a wide range of temperature and ionic strength. In Eq. (1) \(s_0 \) is the solubility of Ag₂SO₄ in pure water, \(\delta_T \) is the appropriate Debye-Hückel slope, \(I \) the ionic strength of the solution, and \(A \) the adjustable parameter. In all cases best agreement between calculated and observed solubilities was obtained when each single parameter \(A \) was assumed to be temperature independent and to be either ionic-strength independent or to decrease slowly with increasing ionic strength. The justification for using Eq. (1) without a linear term has been discussed previously.

In the present work the treatment of the solubility of Ag₂SO₄ in single electrolyte systems was extended to the solubility in three electrolyte mixtures: (1) KNO₃-K₂SO₄, (2) K₂SO₄-MgSO₄, and (3) K₂SO₄-H₂SO₄. In each of the three systems the total ionic strength of the solubility medium was held constant at two different values, while the ratio of the two components was varied. Weight concentrations were used in reporting the data, and the Debye-Hückel limiting slope at any temperature was made density dependent by multiplying its value on the molal scale by the square root of the density of water at that temperature.

Experimental. — All solubility measurements were performed with the same techniques described previously and were carried out in the temperature range 90 to 175°C.

Results and Discussion. — The values for the solubility of Ag₂SO₄ in each system as a function of temperature were fitted by the method of least squares to an equation

\[s = s_0 + a_1 I + a_2 I^2 \]

(2)
The resulting equations were solved at 25°C intervals from 25 to 200 in the case of the KNO₃-K₂SO₄ system (\(I_{\text{KNO}_3} + I_{\text{K}_2\text{SO}_4} = 1.0 \)), where data were obtained over the entire temperature range, and from 100 to 175°C in the other systems. The coefficients and the standard error of fit for Eq. (2) describing the solubility of Ag₂SO₄ in each system as a function of temperature are given in Table 6.1, while a typical set of solubility curves for one of the systems (\(I_{\text{KNO}_3} + I_{\text{K}_2\text{SO}_4} = 1.0 \)) is shown in Fig. 6.1. The other families of curves were similar.

Since in previous work it was demonstrated that temperature-independent values of the parameter \(A \) in Eq. (1) could be calculated such that the difference between observed and calculated solubilities be minimized for systems in which Ag₂SO₄ was dissolved in solutions of a simple electrolyte, it seemed of interest in the present work to calculate values of \(A \) for the mixtures studied to determine whether a simple combining relationship existed between the values of \(A \) in the simple systems and in the mixtures. In

Table 6.1. Coefficients of Equation (2) for the Solubility of Ag₂SO₄ in the Electrolyte Mixtures Studied

<table>
<thead>
<tr>
<th>L of the mixture</th>
<th>mₖNO₃</th>
<th>mₖ₂SO₄</th>
<th>a₀ x 10⁻²</th>
<th>a₁ x 10⁴</th>
<th>a₂ x 10⁶</th>
<th>σ⁻[][fit] x 10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>4.31016</td>
<td>6.41420</td>
<td>-1.57687</td>
<td>2.12</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1</td>
<td>1.3</td>
<td>3.47859</td>
<td>3.57152</td>
<td>-0.532662</td>
<td>1.37</td>
</tr>
<tr>
<td>0.5</td>
<td>0.16</td>
<td>2.24</td>
<td>2.88124</td>
<td>3.12836</td>
<td>-0.284457</td>
<td>2.57</td>
</tr>
<tr>
<td>0.28</td>
<td>0.24</td>
<td>1.90299</td>
<td>4.43650</td>
<td>5.47167</td>
<td>-0.701309</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>0.333</td>
<td>1.41304</td>
<td>5.67500</td>
<td>-0.473332</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>1.416</td>
<td>1.416</td>
<td>0</td>
<td>5.84143</td>
<td>4.86857</td>
<td>-0.697144</td>
<td>0.48</td>
</tr>
<tr>
<td>0.3484</td>
<td>0.3564</td>
<td>-0.202929</td>
<td>7.32640</td>
<td>-1.45714</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.472</td>
<td>1.59375</td>
<td>5.67500</td>
<td>-0.473332</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>1.437</td>
<td>0.333</td>
<td>0</td>
<td>1.41304</td>
<td>5.47167</td>
<td>-0.875239</td>
<td>0.16</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0625</td>
<td>0.642984</td>
<td>5.86084</td>
<td>-1.32865</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>0.167</td>
<td>0.125</td>
<td>0.00169903</td>
<td>6.99906</td>
<td>-1.86183</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>0.0833</td>
<td>0.1875</td>
<td>1.42525</td>
<td>4.68734</td>
<td>-1.06849</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td>1.27142</td>
<td>5.00573</td>
<td>-1.24572</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>1.437</td>
<td>0.479</td>
<td>0</td>
<td>1.58357</td>
<td>5.71667</td>
<td>-0.470478</td>
<td>0.15</td>
</tr>
<tr>
<td>0.2395</td>
<td>0.1796</td>
<td>-1.26804</td>
<td>7.94620</td>
<td>-1.49270</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.3592</td>
<td>1.22750</td>
<td>5.38381</td>
<td>-1.16191</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1.007</td>
<td>0.2507</td>
<td>0.2500</td>
<td>-0.883321</td>
<td>9.58466</td>
<td>-2.63613</td>
<td>1.39</td>
</tr>
<tr>
<td>2.000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>-3.26708</td>
<td>13.0980</td>
<td>-3.06707</td>
<td>0.68</td>
</tr>
</tbody>
</table>

"Standard error of fit.
"Formal molality based on considering H₂SO₄ as a 1:1 electrolyte.

carrying out the calculations for the KNO₃-K₂SO₄ and K₂SO₄-MgSO₄ mixtures, values of ln S and \sqrt{T} in Eq. (1) were computed at 25°C intervals for each system, using the smoothed values of the solubility of Ag₂SO₄ as obtained from Eq. (2) and the appropriate molalities of the components of the mixture. Then the value of \(A \) was determined in each case between 100 and 175°C by selecting the value which equated the right and left sides of Eq. (1). The \(A \) parameters so obtained for each system are given in Table 6.2. The values shown are the mean values calculated between 100 and 175°C.

Additional calculations were performed in which a linear term was added to Eq. (1), namely, \(B \). In these calculations \(A \) was set equal either to 1.0 or 1.5 and the value of \(B \) determined such that the right side of Eq. (1) augmented by the linear term was equal to the left side. The values of \(B \) so obtained showed a much greater dependence on temperature than did the values of \(A \) obtained without the linear term. Since the latter calculation (involving the \(BI \) term) offered no advantage over the former, no attempt was made to correlate the \(B \) values with temperature and ionic strength fractions.

The observed solubility of Ag₂SO₄ in each system as a function of temperature was compared with values calculated using the average \(A \) values given in Table 6.2. In all cases the agreement
for a mixture with the A values calculated for the corresponding pure systems by taking a linear combination of the latter values weighted according to the ionic strength fractions \(f_i \) of the appropriate electrolytes; that is,

\[
A_{\text{mixture}} = A_1 f_1 + A_2 f_2
\]

did not hold. However, in the \(\text{KNO}_3-\text{K}_2\text{SO}_4 \) systems \((l = 1.0)\) the relationship

\[
A_{\text{mixture}} = A_1 f_1 + A_2 f_2 + A_3^1 A_4^2 f_1^2 f_2
\]

held very well. In the remaining systems the A value for the mixture lay between values computed from the A values of the simple systems by Eqs. (3) and (4).

Since a simple general combining relationship based on the A values could not be found, it seemed of interest to try a direct correlation of the solubility of \(\text{Ag}_2\text{SO}_4 \) in the electrolyte mixtures with the solubilities in the pure component solutions using Eq. (5):

\[
\mathcal{M} = s_{1/2} f_1 + s_{2/2} f_2 + s_{1/2} f_1 f_2
\]

However, the coefficient \(s_{1/2} \) was not constant but varied quadratically with either \(f_1 \) or \(f_2 \) and quadratically with temperature. Thus a direct correlation of the solubilities is neither simpler nor more complicated than a correlation through an activity coefficient function.

A Mathematical Model for the Solvent Extraction of Uranyl Nitrate and Nitric Acid

M. H. Lietzke R. W. Stoughton

A series of computer programs is being written in an attempt to calculate distribution ratios in successively more complicated solvent extraction equilibria. The general procedure involves setting up equilibrium expressions and determining the parameters by a generalized least-squares technique. The present report describes calculations on the distribution of \(\text{UO}_2(\text{NO}_3)_2 \) and \(\text{HNO}_3 \) between an aqueous phase and an organic phase consisting of tributyl phosphate (TBP) dissolved in an inert diluent (Amsco 125-90W). Since it is desired to keep the model simple, the assumed equilibria do not necessarily involve all species which may have been shown to exist in the solutions in question.
Table 6.2. Parameters for Equation (1)

<table>
<thead>
<tr>
<th>Total I</th>
<th>m_{KNO_3}</th>
<th>$m_{\text{K}_2\text{SO}_4}$</th>
<th>A</th>
<th>Standard Deviation from the Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>0.991</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.1</td>
<td>0.994</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.16</td>
<td>0.956</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>0.24</td>
<td>0.815</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.333</td>
<td>0.656</td>
<td>0.002</td>
</tr>
<tr>
<td>1.416</td>
<td>1.416</td>
<td>0</td>
<td>0.997</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>0.3484</td>
<td>0.3564</td>
<td>0.811</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.472</td>
<td>0.630</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.333</td>
<td>0</td>
<td>0.656</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.0625</td>
<td>0.794</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.167</td>
<td>0.125</td>
<td>0.834</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.0833</td>
<td>0.1875</td>
<td>0.892</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.25</td>
<td>0.940</td>
<td>0.006</td>
</tr>
<tr>
<td>1.437</td>
<td>0.479</td>
<td>0</td>
<td>0.634</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.2395</td>
<td>0.1796</td>
<td>0.815</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.3592</td>
<td>0.885</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.007</td>
<td>0.2500</td>
<td>0.2507</td>
<td>0.922</td>
<td>0.036</td>
</tr>
<tr>
<td>2.000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>0.832</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Formal molality based on considering H_2SO_4 as a 1:1 electrolyte.

The $\text{UO}_2(\text{NO}_3)_2$-$\text{NH}_4\text{NO}_3$ System.

In considering the equilibration of the aqueous $\text{UO}_2(\text{NO}_3)_2^-$-$\text{NH}_4\text{NO}_3$ system with TBP-diluent, the following equilibrium was assumed:

$$
\text{UO}_2(\text{NO}_3)_2^+ + 2\text{NO}_3^- + 2\text{TBP}_{\text{org}} \rightleftharpoons \text{UO}_2(\text{NO}_3)_2\cdot 2\text{TBP}_{\text{org}} Q_D \ ; \ (1)
$$

in this equation,

$$
Q_D = \frac{[\text{UO}_2(\text{NO}_3)_2\cdot 2\text{TBP}]_{\text{org}}}{[\text{UO}_2^{2+}]_{\text{aq}} [\text{NO}_3^-]_{\text{aq}}^2 [\text{TBP}]_{\text{org}}^2} \ ; \ (2)
$$

where

$$
[\text{NO}_3^-] = 2[\text{UO}_2^{2+}] + m_s \ ,
$$

$$
m_s = \text{molarity of } \text{NH}_4\text{NO}_3 \ ,
$$

$$
[\text{TBP}] = T_0 - 2[\text{UO}_2(\text{NO}_3)_2\cdot 2\text{TBP}] \ ,
$$

$$
T_0 = \text{initial molarity of TBP} \ .
$$

The equation for conservation of total uranium with equal volumes in the two phases is

$$
[[\text{UO}_2^{2+}]_{\text{aq}} + \text{[UO}_2(\text{NO}_3)_2\cdot 2\text{TBP}]_{\text{org}} = \text{UTOT} \ , \ (3)
$$

where UTOT is the sum of the initial concentrations in both phases. Hence Eqs. (2) and (3)
represent two equations in the two unknowns
\[[\text{UO}_2^{2+}] \text{ and } [\text{UO}_2(\text{NO}_3)_2] \cdot 2\text{TBP} \] which may be solved for any particular value of \(Q_D \). It was assumed that the ionic strength dependence of the logarithm of the distribution quotient can be expressed by

\[\ln Q_D = \ln K_D - \frac{6\varepsilon \sqrt{T}}{1 + A \sqrt{T}} + B l, \tag{4} \]

where \(K_D \) is the distribution constant, \(\varepsilon \) is the Debye-Hückel limiting slope for a singly charged ion, \(A \) and \(B \) are adjustable parameters, and \(l \) is the ionic strength of the solution, given by

\[l = m_s + 3[\text{UO}_2^{2+}]. \tag{5} \]

Equation (4) was used without the Debye-Hückel term in all cases where a salting agent was present and the ionic strength was fairly high, and without the linear term in the absence of a salting agent. This procedure is consistent with theory since the Debye-Hückel (DH) term varies considerably with ionic strength at low electrolyte concentrations, where the linear term is relatively unimportant; at high values of ionic strength the linear term becomes much more important, while the DH term approaches a limiting value of \(-6\varepsilon/A\). Since it was desired to use a minimum number of parameters, only one of the two terms mentioned was allowed to have an adjustable value; hence Eq. (4) will be written in two alternative forms:

\[\ln Q_D = \ln K_D - \frac{6\varepsilon \sqrt{T}}{1 + A \sqrt{T}}, \tag{4a} \]
\[\ln Q_D = \ln K'_D + B l, \tag{4b} \]

where \(K'_D \) may be considered to be approximately equal to the high concentration limit of Eq. (4a), that is, \(\ln K'_D = \ln K_D - 6\varepsilon/A \). Thus the overall problem involved the evaluation of \(\ln K_D \) and \(A \) or \(\ln K'_D \) and \(B \) by a nonlinear least-squares procedure, subject to the restrictions represented by Eqs. (2), (3), and (5).

The criterion adopted in solving the above set of equations was that

\[\sum_i (D_{\text{obs}} - D_{\text{calc}})^2 \]

be a minimum, where the distribution coefficient \(D \) is defined as the ratio

\[[\text{UO}_2(\text{NO}_3)_2] \cdot 2\text{TBP}]_{\text{org}} / [\text{UO}_2^{2+}]_{\text{aq}} \]

and the summation is taken over all the data points. Accordingly a series expansion of \(D \) was made in terms of the partial derivatives with respect to the adjustable parameters, either \(K_D \) and \(A \) or \(K'_D \) and \(B \), as

\[D_{\text{obs}} = D_{\text{calc}} + \frac{\partial D}{\partial \ln K_D} \Delta \ln K_D + \frac{\partial D}{\partial A} \Delta A, \tag{6a} \]
\[D_{\text{obs}} = D_{\text{calc}} + \frac{\partial D}{\partial \ln K'_D} \Delta \ln K'_D + \frac{\partial D}{\partial B} \Delta B, \tag{6b} \]

in which \(D_{\text{calc}} \) and the partial derivatives are computed for approximate values of the parameters. The increments \(\Delta \ln K_D \) and \(\Delta A \) or \(\Delta \ln K'_D \) and \(\Delta B \) then give approximate corrections to these parameters.

Calculations were performed on two different sets of data; the first set was taken from IDO-14501. In Table 6.3 are shown the observed and calculated distribution ratios for \(\text{UO}_2(\text{NO}_3)_2 \) between aqueous \(\text{NH}_4\text{NO}_3 \) and TBP-diluent phases as well as the \(\ln K'_D \) and linear term \(B \) as a function of TBP concentration.

Calculations were also performed on a set of data that included much higher concentrations of \(\text{UO}_2(\text{NO}_3)_2 \). In Fig. 6.2 are shown the observed and calculated concentrations of uranium in the organic and aqueous phases for the extraction of \(\text{UO}_2(\text{NO}_3)_2 \) with 5.39% TBP in Amsco as a function of \(\text{NH}_4\text{NO}_3 \) concentration. The results for 10.3 and 20.1% TBP were equally good.

The values of \(\ln K'_D \) computed by the method outlined above varied slightly with the concentration of salting agent, the concentration of uranium, and the concentration of TBP used; hence all the individual values were grouped together and used to determine the coefficients of Eq. (7) by the method of least squares:

\[\ln K'_D = \ln K^0 + B_1 l_{\text{NH}_4\text{NO}_3} + B_2 l_{\text{UO}_2(\text{NO}_3)_2} \cdot 2\text{TBP} \cdot (\text{vol} \% \text{TBP}) \tag{7} \]

The coefficients of Eq. (7) describing the two sets of data are given in Table 6.4.

\[^3\text{R. A. Kent and K. L. Rohde, IDO-14501, Table 3 (July 1960).}\]
Table 6.3. Observed and Calculated Distribution Ratios D (Organic/Aqueous) for $\text{UO}_2(\text{NO}_3)_2$ Between Aqueous NH_4NO_3 and TBP-Diluent Phases

<table>
<thead>
<tr>
<th>Vol % TBP</th>
<th>$M\text{ NH}_4\text{NO}_3$</th>
<th>$M\text{ UO}_2(\text{NO}_3)_2$</th>
<th>$D(o/a)_{\text{obs}}$</th>
<th>$D(o/a)_{\text{calc}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.68</td>
<td>0.0098</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1.37</td>
<td>0.0102</td>
<td>0.68</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>0.0112</td>
<td>1.22</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>2.74</td>
<td>0.0109</td>
<td>2.17</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>3.42</td>
<td>0.0111</td>
<td>3.50</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td>4.70</td>
<td>0.0158</td>
<td>6.83</td>
<td>6.80</td>
</tr>
</tbody>
</table>

$\ln K^*_D = 2.17 \quad B = 0.111$

10	0.68	0.0107	0.68	0.54
	1.37	0.0102	1.98	2.21
	1.97	0.0270	4.85	4.08
	2.00	0.0099	4.88	4.97
	2.74	0.0106	9.54	9.96
	3.42	0.0108	16.2	16.6
	3.42	0.0114	17.1	16.5

$\ln K^*_D = 2.22 \quad B = 0.115$

20	0.68	0.0101	2.38	2.27
	1.37	0.0141	12.95	9.38
	2.00	0.0134	28.1	21.2
	2.74	0.0105	44.7	43.3
	3.42	0.0094	60.8	72.5
	3.94	0.0273	97.4	90.7

$\ln K^*_D = 2.30 \quad B = 0.0964$

Fig. 6.2. Observed and Calculated Concentrations of Uranium in the Organic and Aqueous Phases for the Extraction of $\text{UO}_2(\text{NO}_3)_2$ with 5.39% TBP in Amsco.

Table 6.4. Coefficients of Equation (7)

<table>
<thead>
<tr>
<th></th>
<th>IDO Dataa</th>
<th>ORNL Datab</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln K^0$</td>
<td>2.14</td>
<td>2.57</td>
</tr>
<tr>
<td>B_1</td>
<td>0.110</td>
<td>-0.116</td>
</tr>
<tr>
<td>B_2</td>
<td>-0.174</td>
<td>0.468</td>
</tr>
<tr>
<td>B_3</td>
<td>0.0083</td>
<td>-0.0440</td>
</tr>
</tbody>
</table>

aSee ref 3.
bSee ref 4.
The calculations so far described involved the use of a salting agent. In all cases the ionic strength of the aqueous phase was high, and no DH activity-coefficient term was used. However, the calculations converged equally well at lower concentrations of uranium in the absence of a salting agent and with a DH activity-coefficient term. In this case the parameters of the fit were in K_D and A (as defined above), and the linear term was not used. In Table 6.5 is shown a comparison of D_{obs} (ref 5) and D_{calc} for the distribution of uranium between TBP-Amsco in the absence of a salting agent. The best agreement between observed and calculated distribution coefficients was obtained with A taken as 2.0 at both 5 and 10% TBP in Amsco. Also, if the limiting value for the DH term (-3.5) is added to $\ln K_D$ (about 5.55), a value of about 2.05 is obtained for $\ln K_D$, which compares favorably with the values shown in Table 6.3.

The HNO$_3$ System. — In considering the equilibration of aqueous HNO$_3$ with TBP diluent the following equilibrium was assumed:

$$\text{H}^+_\text{aq} + \text{NO}_3^- + \text{TBP}_{\text{org}} = \text{HNO}_3 \cdot \text{TBP}_{\text{org}} Q_{DN} \quad (8)$$

in this equation,

$$Q_{DN} = \frac{[\text{HNO}_3 \cdot \text{TBP}]_{\text{org}}}{[\text{H}^+]_{\text{aq}} [\text{NO}_3^-]_{\text{aq}} [\text{TBP}]_{\text{org}}} \quad (9)$$

where

$$[\text{H}^+] = [\text{NO}_3^-],$$

$$[\text{TBP}] = T_0 - [\text{HNO}_3 \cdot \text{TBP}],$$

$$T_0 = \text{initial molarity of TBP}.$$

The equation for conservation of HNO$_3$ (on the assumption of equal volumes in the two phases) is

$$[\text{H}^+] + [\text{HNO}_3 \cdot \text{TBP}] = \text{HNO}_3 \quad (10)$$

where HNO_3 is the sum of the original concentrations in both phases. Thus Eqs. (9) and (10) represent two equations in the two unknowns $[\text{H}^+]$ and $[\text{HNO}_3 \cdot \text{TBP}]$, which may be solved for any particular value of Q_{DN}. Again it was assumed that the ionic strength dependence of the logarithm of the distribution quotient can be expressed by

$$\ln Q_{DN} = \ln K_{DN} - \frac{2\delta \sqrt{T}}{1 + A \sqrt{T}} \quad (11)$$

where K_{DN} is the distribution constant, δ and A have the same significance as before, and the

Table 6.5. Distribution of Uranium between TBP-Amsco and Water in the Absence of a Salting Agent

<table>
<thead>
<tr>
<th>Vol % TBP</th>
<th>Concentration of Uranium feed (M)</th>
<th>A</th>
<th>D_{obs}</th>
<th>D_{calc}</th>
<th>$\ln K_D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0417</td>
<td>2.0</td>
<td>0.012</td>
<td>0.012</td>
<td>5.5731</td>
</tr>
<tr>
<td></td>
<td>0.0837</td>
<td></td>
<td>0.029</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2058</td>
<td></td>
<td>0.089</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2376</td>
<td></td>
<td>0.10</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0412</td>
<td>2.0</td>
<td>0.033</td>
<td>0.043</td>
<td>5.5292</td>
</tr>
<tr>
<td></td>
<td>0.0824</td>
<td></td>
<td>0.091</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1172</td>
<td></td>
<td>0.15</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1566</td>
<td></td>
<td>0.20</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2021</td>
<td></td>
<td>0.24</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2381</td>
<td></td>
<td>0.26</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2978</td>
<td></td>
<td>0.29</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3475</td>
<td></td>
<td>0.31</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>

aSee ref 5.
The ionic strength of the aqueous solution is given by $[H+]$. The DH term should correct for the variation in activity coefficient of the HNO$_3$ in the aqueous phase.

The calculation itself was carried out as described previously for the UO$_2$(NO$_3$)$_2$ system, and the results are summarized in Table 6.6. The value of 2.0 for the A parameter at the lower TBP concentrations does indeed correct (to a reasonably good approximation) for the variation in activity coefficient of the aqueous HNO$_3$ to nearly 1.0 M, as can be verified by comparing values of

<table>
<thead>
<tr>
<th>Vol % TBP</th>
<th>HNO$_3$ Concentration (M)</th>
<th>A</th>
<th>D_{obs}</th>
<th>D_{calc}</th>
<th>ln K_{DN}</th>
<th>ln K_{DN} (ref a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.1991</td>
<td>2.0</td>
<td>0.0054</td>
<td>0.0055</td>
<td>-1.2682</td>
<td>-1.330</td>
</tr>
<tr>
<td></td>
<td>0.4084</td>
<td></td>
<td>0.0085</td>
<td>0.0099</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5989</td>
<td></td>
<td>0.0134</td>
<td>0.0134</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8063</td>
<td></td>
<td>0.0167</td>
<td>0.0167</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0035</td>
<td></td>
<td>0.0209</td>
<td>0.0194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1990</td>
<td>2.0</td>
<td>0.0152</td>
<td>0.0151</td>
<td>-0.9322</td>
<td>-1.023</td>
</tr>
<tr>
<td></td>
<td>0.4088</td>
<td></td>
<td>0.0271</td>
<td>0.0271</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6004</td>
<td></td>
<td>0.0352</td>
<td>0.0362</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8070</td>
<td></td>
<td>0.0426</td>
<td>0.0445</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0042</td>
<td></td>
<td>0.0482</td>
<td>0.0510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.1001</td>
<td>1.0</td>
<td>0.0214</td>
<td>0.0184</td>
<td>-0.4464</td>
<td>-0.646</td>
</tr>
<tr>
<td></td>
<td>0.1997</td>
<td></td>
<td>0.0291</td>
<td>0.0308</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4090</td>
<td></td>
<td>0.0486</td>
<td>0.0502</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6073</td>
<td></td>
<td>0.0654</td>
<td>0.0638</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8216</td>
<td></td>
<td>0.0754</td>
<td>0.0750</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0163</td>
<td></td>
<td>0.0812</td>
<td>0.0829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.4041</td>
<td>1.0</td>
<td>0.126</td>
<td>0.128</td>
<td>-0.1344</td>
<td>-0.342</td>
</tr>
<tr>
<td></td>
<td>0.6042</td>
<td></td>
<td>0.160</td>
<td>0.161</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8110</td>
<td></td>
<td>0.184</td>
<td>0.187</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0140</td>
<td></td>
<td>0.203</td>
<td>0.205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0.1004</td>
<td>0.8</td>
<td>0.131</td>
<td>0.133</td>
<td>0.1715</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>0.2071</td>
<td></td>
<td>0.206</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4135</td>
<td></td>
<td>0.332</td>
<td>0.320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5670</td>
<td></td>
<td>0.414</td>
<td>0.376</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8005</td>
<td></td>
<td>0.459</td>
<td>0.439</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9845</td>
<td></td>
<td>0.459</td>
<td>0.476</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5305</td>
<td></td>
<td>0.502</td>
<td>0.543</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.1002</td>
<td>0.5</td>
<td>0.253</td>
<td>0.261</td>
<td>0.5396</td>
<td>0.405</td>
</tr>
<tr>
<td></td>
<td>0.2045</td>
<td></td>
<td>0.401</td>
<td>0.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4080</td>
<td></td>
<td>0.588</td>
<td>0.566</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6050</td>
<td></td>
<td>0.681</td>
<td>0.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8160</td>
<td></td>
<td>0.786</td>
<td>0.748</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0180</td>
<td></td>
<td>0.824</td>
<td>0.802</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5480</td>
<td></td>
<td>0.850</td>
<td>0.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9840</td>
<td></td>
<td>0.854</td>
<td>0.910</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aW. Davis, Jr., private communication.
the above term with those of known activity coefficients. At higher concentrations of TBP, however, the best agreement between observed and calculated distribution coefficients was obtained with smaller values of the A parameter. Since the A parameter as used should correct for ionic strength effects in the aqueous phase only, there is no obvious reason why it should vary with the percentage of TBP. If one considers the DH term merely as an empirical expression, it evidently does correct for effects in the nonaqueous phase as well. The values of In K_{DH} do not vary linearly with TBP concentration throughout the entire range, but appear to be quadratic, at least at the higher percentages of TBP. However, if only the three lowest TBP concentrations are considered, then one can compute a linear coefficient, such as B₃ in Eq. (7), with a value of about 0.08.

Davis⁶ treated the same HNO₃ data by correcting with literature values for the aqueous HNO₃ activity coefficients, assuming that the logarithm of the ratio of the activity coefficients of HNO₃-TBP_{org} to TBP_{org} was a linear function of the concentration of HNO₃ in the organic phase and evaluating In K_{DN} by extrapolating to zero HNO₃ concentration in that phase. His values are given in the last column of Table 6.6.

Distribution of Uranium Between HNO₃ Solutions and TBP-Amsco. In describing the solvent extraction of uranium from HNO₃ solutions, it is necessary to consider simultaneously the equilibrium quotients given by Eqs. (2) and (9) and observe that

\[[\text{NO}_3^-] = m_s + 2[\text{UO}_2^{2+}] + [H^+] \]

and

\[[\text{TBP}] = T_0 - 2[U\emptyset] - [\text{HN\emptyset}] \]

where

\[U\emptyset = \text{molarity of uranium in the organic phase} \]
\[\text{HN\emptyset} = \text{molarity of HNO}_3 \text{ in the organic phase} \]

In these equations m_s and T₀ have the same significance as before. In addition to the two equilibrium quotients, Eq. (3) for conservation of total uranium and Eq. (10) for the conservation of HNO₃ are needed to permit the evaluation of the unkowns [H⁺], [UO₂²⁺], [U\emptyset], and [HN\emptyset]. In practice the conservation equations were used to express [U\emptyset] and [HN\emptyset] in terms of [H⁺] and [UO₂²⁺]; hence, it was necessary to solve only Eqs. (2) and (9) by the Newton-Raphson method.

In carrying out the calculation an attempt was first made to determine the four parameters In K_{DH}, In K_{DU}, B₁, and B₂ as defined in Eqs. (12a) and (12b):

\[\ln Q_{DU} = \ln K_{DU} + B_1 I, \quad (12a) \]
\[\ln Q_{DH} = \ln K_{DH} + B_2 I, \quad (12b) \]

where the K values represent distribution constants and

\[I = m_s + [H^+] + 3[UO_2^{2+}] \quad (13) \]

However, mathematical difficulties were encountered in the evaluation of \(\partial Q_{DU}/\partial B_1 \) and \(\partial Q_{DH}/\partial B_2 \) (undoubtedly because the data were not sufficiently precise to determine unique values of the B parameters) and hence only two parameters of the K values in Eqs. (12a) and (12b), were used.

In Table 6.7 is shown a comparison of observed³ and calculated distribution coefficients for the UO₂(NO₃)₂-HNO₃ system at two different NH₄N₃ and two different TBP concentrations. It is interesting to compare the values of ln K_D and ln K_{DN} (really ln Q_D and ln Q_{DN}, since no linear term was used) shown in Table 6.7 with the corresponding values given in Tables 6.3 and 6.6, where each was determined separately. In the case of 5% TBP, ln K_D = 2.17, and B = 0.111 (Table 6.3). Hence ln Q_D = 2.61 in 3.94 M NH₄N₃ and 2.95 in 6.89 M NH₄N₃. These values are to be compared with 3.09 in Table 6.7. In the case of 10% TBP, values of 2.68 for ln Q_D in 3.94 M NH₄N₃ and 3.02 for ln Q_D in 6.89 M NH₄N₃ are to be compared with 2.98 as shown in Table 6.6. Similarly, average ln Q_{DN} values of -2.24 and -1.90 computed for 5 and 10% TBP from the parameters given in Table 6.6 are to be compared with the corresponding values of -2.16 and -2.24 in Table 6.7. Hence the parameters calculated for the combined UO₂(NO₃)₂-HNO₃ system are consistent with those obtained in each system separately.

Calculations were also performed on the UO₂(NO₃)₂-TBP-Amsco system in the absence of a salting agent; the values of the parameters ln K_D (for uranium) and ln K_{DN} (for nitric acid)

⁶ Wallace Davis, Jr., private communication (June 1962).
Table 6.7. Observed and Calculated Distribution Ratios D (Organic/Aqueous) for $UO_2(NO_3)_2$ Between Aqueous NH_4NO_3-HN_2O_3 and TBP-Diluent Phases

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>D_{obs}</th>
<th>D_{calc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH_4NO_3</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>HNO_3</td>
<td>1.04</td>
<td>1.55</td>
</tr>
<tr>
<td>H^+</td>
<td>0.98</td>
<td>1.48</td>
</tr>
<tr>
<td>UO_2^{2+}</td>
<td>3.02</td>
<td>3.49</td>
</tr>
<tr>
<td>5 vol % TBP,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ln K_D$ (uranium) = 3.09,</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>$ln K_{DN}$ (nitric acid) = -2.16</td>
<td>0.52</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>1.44</td>
<td>2.41</td>
</tr>
<tr>
<td></td>
<td>3.32</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>10 vol % TBP,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ln K_D$ (uranium) = 2.98,</td>
<td>3.94</td>
<td>3.94</td>
</tr>
<tr>
<td>$ln K_{DN}$ (nitric acid) = -2.24</td>
<td>0.517</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>0.93</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>7.35</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>9.14</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>4.85</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>8.90</td>
<td>5.92</td>
</tr>
</tbody>
</table>

are given in Table 6.8. In carrying out the calculations an attempt was first made to consider each acid concentration separately. However, except in the case of 0.5 M HNO$_3$ and 10% TBP, convergence difficulties were experienced unless all the data were considered simultaneously. Hence it was necessary with the 15% TBP system to calculate single values of $ln K_D$ and $ln K_{DN}$ determined by all the data; as expected, the values of D_{obs} and D_{calc} showed much greater discrepancies at 0.5 M HNO$_3$ than the values calculated separately for the 10% TBP system at the same acid concentration.

The values of $ln Q_D$ for this system can also be calculated in two different ways: either by using the parameters in Table 6.3 or those in Table 6.4 along with an average ionic strength value (and the assumption that the Q values vary with ionic strength alone, i.e., are independent of the medium). A comparison of the values calculated in these two ways with those shown in Table 6.8 is given in Table 6.9.

Since the values calculated using the Table 6.5 parameters agree more closely with the observed values than do those calculated using the Table 6.3 parameters, it seems that the activity coefficients of $UO_2(NO_3)_2$ in HNO$_3$ media more closely resemble those in pure aqueous $UO_2(NO_3)_2$ solution than those in the presence of NH_4NO_3.

A comparison of the $ln Q_{DN}$ values shows reasonably good agreement at 0.5 M HNO$_3$. In the higher-concentration regions all that can be
said is that the calculated values are qualitatively in the right direction. The parameters given in Table 6.6 were obtained in the concentration range 0 to 1 M; the poor agreement in the 2 to 4 M range in the mixed system indicates that a DH activity coefficient term is not sufficient and that a linear term is needed. Actually this is known to be the case; the activity coefficient of HNO$_3$ increases with ionic strength above about 1 M.

Hence a relatively simple mathematical model may be used to describe solvent extraction equilibria over wide ranges of concentration of material being extracted, of salting agent, and of extractant. In principle there is no reason why the model cannot be extended to much more elaborate systems. However, more precise data will be needed in order that the dependence of linear-activity-coefficient terms on the medium may be elucidated.

Table 6.8. Values of the Distribution Constants for the System UO$_2$(NO$_3$)$_2$-HNO$_3$-TBP-Diluent in the Absence of a Salting Agent

<table>
<thead>
<tr>
<th>TBP (%)</th>
<th>M_{HNO_3}</th>
<th>$\ln K_D$ (uranium)</th>
<th>$\ln K_{DN}$ (nitric acid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.5</td>
<td>3.27</td>
<td>-1.94</td>
</tr>
<tr>
<td></td>
<td>2.0-4.0</td>
<td>2.72</td>
<td>-3.48</td>
</tr>
<tr>
<td>15</td>
<td>0.5-4.0</td>
<td>2.47</td>
<td>-3.47</td>
</tr>
</tbody>
</table>

Table 6.9. Comparison of Observed and Calculated Equilibrium Quotients (10% TBP)

<table>
<thead>
<tr>
<th>M_{HNO_3}</th>
<th>$\ln Q_D$ (calculated)</th>
<th>$\ln Q_D$ (observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Using Table 6.3</td>
<td>Using Table 6.5</td>
</tr>
<tr>
<td>0.5</td>
<td>2.28</td>
<td>3.43</td>
</tr>
<tr>
<td>2.0-4.0</td>
<td>2.57</td>
<td>2.80</td>
</tr>
</tbody>
</table>

$\ln Q_{DN}$ (calculated)

Using Table 6.6 Parameters

<table>
<thead>
<tr>
<th></th>
<th>$\ln Q_{DN}$ (calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-1.63</td>
</tr>
<tr>
<td>2.0-4.0</td>
<td>-1.8</td>
</tr>
<tr>
<td>0.5-4.0</td>
<td>-1.9</td>
</tr>
</tbody>
</table>

a15% TBP.
Hydrolysis of U(VI): Spectrophotometric Studies.

Absorption spectra of hydrolyzed uranyl chloride solutions (0.001 to 0.1 M) and of a few uranyl perchlorate solutions have been measured in the range 3600 to 5100 Å. Typical extinction curves are shown in Fig. 6.3. It can be seen that optical absorption increases rapidly with hydroxyl number (average number of moles of hydroxide bound per mole of U(VI)) and that the peak shifts somewhat toward longer wavelengths. Chloride complexing of the unhydrolyzed uranyl and of at least one of the hydrolyzed species is suggested by the greater light absorption in chloride media than in perchlorate.

We correlated the spectra of the chloride solutions with the emf hydrolysis scheme involving \((\text{UO}_2\text{)}_2(\text{OH})_2^{2+}\), \((\text{UO}_2\text{)}_2(\text{OH})_4^{2+}\), and \((\text{UO}_2\text{)}_3(\text{OH})_5^+\) by finding the values of the molar absorptivities of these species at each wavelength which give the best least-squares fit to the total absorption for all solutions (the molar absorptivity for the unhydrolyzed species was directly measured). Figure 6.4 shows the values thus obtained. With these absorptivities and the fractions of the various species computed from the formation quotients of the above hydrolysis scheme, satisfactory agreement between observed and computed optical absorption was attained for all concentrations and hydroxyl numbers investigated.

Evaluation of Hydrolysis Constants with the Ultracentrifuge: Temperature Coefficients of Bi(III) Polymerization. — Normally in ultracentrifugation one interprets the equilibrium refractive index pattern in terms of molecular weights of the solute in question. The approximations in doing so can become serious with polydisperse inorganic polymeric systems. The equations customarily used for interpretation are strictly correct only for a constant charge/mass ratio and refractive index increment for all species; this condition is normally not fulfilled in polydisperse hydrolytic solutions. Consequently, although valuable information can frequently be obtained, it is difficult to interpret the apparent molecular weights in

Fig. 6.3. Absorption Spectra of 0.010 M U(VI) Solutions in 1 M Total Chloride (Solid Curves) and 1 M Total Perchlorate (Broken Curves) at 25°C.

Fig. 6.4. Species Molar Absorptivities for U(VI) Species in 1 M Total Chloride. Equilibrium quotients used are \(k_{2,2} = 6.7 \times 10^{-7}\), \(k_{3,4} = 4.7 \times 10^{-13}\), and \(k_{3,5} = 1.0 \times 10^{-17}\). Vertical lines indicate one standard error on each side of the value.
terms of concentration quotients for the equilibria involved.

An alternative possibility is to adopt the approach used in structural studies: attempt to reproduce the observed equilibrium interference pattern by an assumed model. This is especially attractive when something is known concerning the major species present. Such a case is Bi(III) in perchlorate media, which is known from work here and elsewhere to form hexamers of hydroxyl number 2; that is, \([\text{Bi(OH)}_2]_6(\text{ClO}_4)_{(6-l)}^+,\) where \(l\), the number of perchlorates complexed by the species, apparently is about 2. A \(\text{BiOH}^{2+}\) species has also been suggested from emf measurements, although in a similar study it was not found necessary for explanation of results. 11

We attempted to test ultracentrifugation for evaluation of equilibrium quotients by centrifuging a number of solutions of different Bi(III) concentration and hydroxyl number; in addition, equilibrium was attained at three different temperatures for each solution, so that a temperature coefficient could be estimated. The method of estimating an equilibrium quotient is illustrated in Fig. 6.5, which is essentially an IBM 7090 plot of deviations between observed interference-fringe patterns as a function of radius and the pattern computed for different values of the formation quotient for the hexamer \(K_{6,12}\). It was necessary to include a \(\text{BiOH}^+\) species (formation quotient, \(K_{1,1}\)) in order to obtain reasonably consistent values of \(K_{6,12}\) for the range of Bi(III) concentrations and hydroxyl numbers covered in the study. The present, quite preliminary, status is illustrated in Fig. 6.6, which gives the estimates of \(K_{6,12}\) for all centrifugations, except for those in which less than 1% of total bismuth was present as hexamer; the values of \(K_{1,1}\) listed in the figure must be considered only very rough estimates.

The value of \(K_{6,12}\) at 25°C is about 8 times less than that given by Olin; 10 this is in the direction and of the approximate magnitude to be expected if the hexamer complexes two perchlorate ions, since Olin's measurements were in 3 M total perchlorate, and these were at approximately 1 M. The value also is not very different from that given by Tobias, 11 who worked in 1 M perchlorate, but exact comparison is not possible, since he did not include \(\text{BiOH}^{2+}\). The room-temperature \(\Delta H\) for hexamer formation (from \(6\text{Bi}^{3+}\) and 12 waters) implied by these results is about 40 kcal/mole.

Hydrolysis of \(\text{Pb(II)}\). — A preliminary ultracentrifugation study of the hydrolytic polymerization of \(\text{Pb(II)}\) in perchlorate was carried out here several years ago. Since then, on the basis of an emf study, Olin 12 postulated that the major species were \(\text{Pb}_4(\text{OH})_{4}^{4+}\) and \(\text{Pb}_8(\text{OH})_{8}^{4+}\); he also listed as present in relatively minor amounts under his conditions, \(\text{PbOH}^+\) and \(\text{Pb}_3(\text{OH})_{4}^{2+}\). Recently we completed a more extensive ultracentrifugation study. These results confirm in general our earlier study and are also consistent with Olin's conclusions. We also reexamined Olin's data by subjecting it to a least-squares analysis. The scheme he proposes gives a good fit to his results; the constants were refined only slightly. A poorer fit was obtained if either of the minor species were dropped.

Identification of Niobium Double Fluoride Species in HF Solutions by Raman Spectroscopy

O. L. Keller, Jr.

The identification of ionic species in concentrated electrolytes presents a difficult problem. Thermodynamic methods cannot be used in many cases because applicable activity coefficients are not available. Kinetic methods, such as conductance, are less widely applicable than thermodynamic methods. Direct identification of complex ions by molecular spectroscopy often requires a detailed theoretical treatment. If some of the characteristic frequencies of the ion are too weak to be seen, or if there is a mixture of complex ions, such a treatment is difficult. Identification of species in solution can be accomplished simply, however, if direct comparison can be made between spectra of the solutions and spectra of crystals of known composition and structure.

Niobium double-fluoride complexes found in 0% to 50% HF are identified in this investigation by comparing the Raman spectra of the solutions with Raman spectra of crystals of \(\text{CsNbF}_6^+\), \(\text{K}_2\text{NbF}_7\), and \(\text{K}_2\text{NbOF}_5\cdot\text{H}_2\text{O}\).

Fig. 6.5. Evaluation of Equilibrium Constant, $K_{6,12} = \frac{[\text{Bi(OH)}_{2}^{4+}]^{12}}{[\text{Bi}^{3+}]^{6}}$, by Ultracentrifugation. 0.1 M Bi(III), 1 M (HClO₄ + NaClO₄); hydroxyl number, about 0.78; rpm, 17,980; $K_{1,1} = \frac{[\text{BiOH}^{2+}]^{2} [\text{H}^{+}]}{[\text{Bi}^{3+}]} = 0.07$.

dimensions of the cell are those of the Cary 19-mm cell.

The cells used for the Raman crystal spectra of \(\text{K}_2\text{NbF}_5 \) and \(\text{CsNbF}_6 \) are glass and have conical windows. These windows are better than flat ones for many crystals because more of the Raman scattered light leaves the cell to enter the monochromator and be detected.

The results of the Raman studies are given in Tables 6.10 and 6.11. Figures 6.7a and b and 6.8a and b allow direct comparison of the spectra of crystalline \(\text{CsNbF}_6 \) and \(\text{K}_2\text{NbOF}_5\cdot\text{H}_2\text{O} \) with typical solution spectra.

We assume for the moment that crystalline \(\text{CsNbF}_6 \) and \(\text{K}_2\text{NbOF}_5\cdot\text{H}_2\text{O} \) contain the \(\text{N}_2\text{F}_7^- \) and \(\text{NbOF}_5^{2-} \) ions respectively (see below). A comparison of the Raman lines characteristic of the crystals with the lines found for the solutions then shows that the \(\text{NbOF}_5^{2-} \) ion is present in solutions containing up to about 35% HF and that \(\text{NbF}_6^- \) ion is present in solutions containing at least about 25% HF.

No lines characteristic of \(\text{K}_2\text{NbF}_5 \) (Table 6.10) appear in the solutions.

Table 6.10. Raman Spectra of Crystals

<table>
<thead>
<tr>
<th>Compound</th>
<th>Raman Frequencies ((\Delta \text{cm}^{-1}) from 4358 (\text{A}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CsNbF}_6)</td>
<td>280 (m)(^a) ([\nu_3])</td>
</tr>
<tr>
<td></td>
<td>562 (w) ([\nu_2])</td>
</tr>
<tr>
<td></td>
<td>683 (s) ([\nu_1]) (sharp)</td>
</tr>
<tr>
<td>(\text{K}_2\text{NbF}_7)</td>
<td>388 (m)</td>
</tr>
<tr>
<td></td>
<td>630 (vs) (sharp)</td>
</tr>
<tr>
<td></td>
<td>785 (w)</td>
</tr>
<tr>
<td>(\text{K}_2\text{NbOF}_5\cdot\text{H}_2\text{O})</td>
<td>295 (m)</td>
</tr>
<tr>
<td></td>
<td>600 (vw)</td>
</tr>
<tr>
<td></td>
<td>935 (m)</td>
</tr>
</tbody>
</table>

\(^a\) m = medium; vw = very weak; w = weak; s = strong; vs = very strong.
Table 6.11. Raman Spectra of K$_2$NbF$_7$ in HF Solutions

First line of frequencies at each concentration due to NbOF$_5^{2-}$; second line due to NbF$_6^{2-}$

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Raman Frequencies (Δ cm$^{-1}$ from 4538 Å Hg)</th>
<th>mg Nb/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$Oa</td>
<td>290(m), 595(w), 920(s)</td>
<td>31.3</td>
</tr>
<tr>
<td>1% HF</td>
<td>290(s), 595(w), 920(s)</td>
<td>37.4</td>
</tr>
<tr>
<td>10% HF</td>
<td>285(m), 596(w), 920(s)</td>
<td>45.6</td>
</tr>
<tr>
<td>20% HF</td>
<td>280(m), 939(m)</td>
<td>20.8</td>
</tr>
<tr>
<td>25% HF</td>
<td>275(m), 600(vw), 935(m)</td>
<td>20.3</td>
</tr>
<tr>
<td>30% HF</td>
<td>280(m), 685(m)</td>
<td>21.6</td>
</tr>
<tr>
<td>35% HF</td>
<td>275(m), 935(vvw)</td>
<td>20.4</td>
</tr>
<tr>
<td>40% HF</td>
<td>275(m), 685(vs)</td>
<td>36.1</td>
</tr>
<tr>
<td>50% HF</td>
<td>280(s), 685(vs)</td>
<td>56.9</td>
</tr>
</tbody>
</table>

aK$_2$NbOF$_5$·H$_2$O was dissolved in H$_2$O.

b(m) = medium; (vw) = very very weak; (wv) = very weak; (w) = weak; (s) = strong; (vs) = very strong.

The spectrum of crystalline CsNbF$_6$ fits the theoretical relationship given by Yost, Steffens, and Gross13 for a regular octahedral structure such as that expected for NbF$_6^{2-}$. The composition of the crystals (which was established by analysis), and the agreement of their Raman lines with what is theoretically expected for symmetry O_h, demonstrate that the NbF$_6^{2-}$ ion exists as such in the crystals and, by inference, in the solutions.

K$_2$NbOF$_5$·H$_2$O could also be K$_2$Nb(OH)$_3$F$_5$. It is believed14 that the octahedral NbOF$_5^{2-}$ ion is present because K$_2$NbOF$_5$·H$_2$O is isomorphous with K$_2$TiF$_6$·H$_2$O.

The infrared spectrum was recorded for crystalline K$_2$NbOF$_5$·H$_2$O (see below and Fig. 6.9). The Raman and the infrared spectrum, which both show a line at 935 cm$^{-1}$, are consistent with an octahedral NbOF$_5^{2-}$ ion but not with a pentagonal bipyramidal Nb(OH)$_2$F$_3^{2-}$ ion. This follows from group theory because point group C_4v allows coincidences between the infrared and Raman, whereas D_{5h} does not.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Infrared Absorption Frequency, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K$_2$NbOF$_5$·H$_2$O</td>
<td>738, 932, 1083 (NbOF$_5^{2-}$)</td>
</tr>
<tr>
<td></td>
<td>1626, 3572, 3643 (H$_2$O)</td>
</tr>
</tbody>
</table>

If NbOF$_5^{2-}$ ion is present, water of hydration must be present also. The line at 1626 cm$^{-1}$ found in the infrared spectrum of K$_2$NbOF$_5$·H$_2$O is in the region (1590 to 1630 cm$^{-1}$)15,16 expected for the H$_2$O bend, but it is at least 450 cm$^{-1}$ too high for a heavy atom–OH bend.17,18 Water of hydration is therefore present.

18O. Glemsen and E. Hartt, Naturwissenschaften 40, 552 (1953).
Fig. 6.7. (a) Raman Spectrum of Crystalline CsNbF$_6$; (b) Raman Spectrum of K$_2$NbF$_7$ in 40% HF Solution.

Fig. 6.8. (a) Raman Spectrum of Crystalline K$_2$NbOF$_5$.H$_2$O; (b) Raman Spectrum of K$_2$NbF$_7$ in 1% HF Solution.
Analyses of all crystals and solutions were carried out by L. J. Brady and W. R. Laing of the ORNL Analytical Division.

CHEMISTRY OF HEAVY ELEMENTS: AQUEOUS SPECTROPHOTOMETRY AT ELEVATED TEMPERATURES AND PRESSURES

An Improved High-Temperature Aqueous Spectrophotometer Cell Assembly

W. C. Waggener A. J. Weinberger R. W. Stoughton

A new spectrophotometer cell assembly, designed and constructed during the past 24 months, is being tested. Both the sample cell and the reference cell are designed to permit gas-liquid equilibration and have identical control systems for temperature and pressure over the ranges 0 to 280°C and 0 to -1000 psia respectively. Maintaining both sample and reference cells at the same temperature cancels the effect of the large variations of the spectra of H₂O and D₂O with temperature which would otherwise obscure the spectral changes of the solute. This assembly, used with the standard Cary model 14 monochromator and detector, should make the spectral ranges, 0.7 to 1.2 μ for H₂O and 1.2 to 1.8 μ for D₂O solutions, accessible to the study of absorbing ions at elevated temperatures for the first time. The new equipment incorporates a number of features and improvements, some of which are intended to offset the added complexity of simultaneous operation and control of two high-temperature-pressure cells.

The titanium absorption cells are practically identical with the revised cell described previously. However, the heater-cooler in the form of a cylindrical annulus which surrounds each cell body is designed to (1) fit the limited space available in the reference cell compartment, (2) allow for simple removal and replacement of cells, and (3) provide rapid and uniform cell heating and cooling, primarily through radiative transfer. It is made with a cooling channel and a resistance-heater winding both embedded in pure copper. Several narrow embossed rings machined on the inner circumference of this heater-cooler annulus support the titanium cell body out of contact with the wall of the annulus. The facing surfaces are coated with a film of graphite for good radiative heat transfer. The above assembly in turn is "canned" in a gold-plated thermal radiation sheath and is cradle-mounted as in the previous assembly.

Each of the two heater-cooler assemblies was test operated satisfactorily in vacuum from -70°C.

to 300°C, with cell heating and cooling rates of 5–10°C/min. Liquid-nitrogen-cooled helium was used as the coolant.

The temperatures of the sample and reference cells are controlled above and below room temperature by modulation of heating and cooling supplies respectively. A Leeds and Northrup millivolt recorder with a stable millivolt suppression supply and a Leeds and Northrup duration-adjust type of controller is used for each cell. Experiments indicate that adequate (±0.1°C) control of cell temperature can be achieved by a thermocouple located in either cell or heater-cooler body.

An integrated piping arrangement involving sample and reference cells was worked out to allow necessary operations to be performed without disconnecting piping: (1) addition and withdrawal of samples; (2) metered additions of gases to cells at operating temperature; (3) cell washing and backwashing, using alternate additions of wash liquid and purge gas; and (4) drying by alternate gas purge and evacuation.

The cell windows and contents of either absorption cell may be examined visually for bubbles and turbidity by inserting a special borescope into one of the alignment sleeves installed in the phototube compartment. The visible beam of the spectrophotometer provides illumination of various colors and intensities.

Spectrophotometric Studies of the DCIO₄⁻D₂O-H₂O System at Elevated Temperatures

W. C. Waggener A. J. Weinberger R. W. Stoughton

The DCIO₄⁻D₂O-H₂O system is a desirable solvent for high-temperature aqueous spectrophotometry of inorganic ions. The transparency of the ClO₄⁻ anion throughout the wavelength range of interest (0.2 to 1.8 µ) suggests it as an ideal reference medium. However, at elevated temperatures it is a powerful oxidizing agent, and the reduction products (HOCl, Cl₂, Cl₃⁻) absorb in the spectral region below 0.5 µ.

Initially, samples of 0.01 / and 0.1 / (25°C) DCIO₄ were examined by using a high-temperature-pressure absorption cell in which the solutions were in contact with titanium, sapphire, gold, and Teflon. Reaction with the gold was indicated by the growth of a spectrum characteristic of the chloroaurate(III) species. Decomposition rates of perchloric acid at 250°C estimated from the 0.31-µ band (ε₉₅₀ ~ 4200) were <20 ppm/hr and 25 ppm/hr for 0.01 and 0.1 / DCIO₄ respectively.

After removal of the gold washers from the interior side of the window mounts, solutions of 0.01, 0.1, 0.5, and 1.0 / DCIO₄ were examined for periods up to several days at temperatures up to 250°C. At these concentrations and in this environment, aqueous DCIO₄ remained nonabsorbing in the wavelength range 0.33 to 1.8 µ. However, neither the titanium nor the sapphire is inert in this system. The 250°C studies were complicated by pitting of the synthetic sapphire windows. The onset and progress of pitting were manifested by a steadily rising baseline absorbance (0.001–0.002/hr) throughout the visible and near-infrared region while the cell was held at 250°C. Examination of the windows revealed hexagonal pyramidal pits (6 to 10 µ across and 0.8 to 1.1 µ deep, covering 15 to 40% of the surface). The amount of titanium and aluminum appearing in cell samples (determined by spectrographic analysis) increased with the time and temperature of exposure and was roughly proportional to the acid concentration. Estimated corrosion expressed in terms of mils year⁻¹ (unit formality)⁻¹ DCIO₄ is given below.

<table>
<thead>
<tr>
<th></th>
<th>25°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium</td>
<td>0.005</td>
<td>0.08</td>
</tr>
<tr>
<td>Sapphire</td>
<td>0.001</td>
<td>340</td>
</tr>
</tbody>
</table>

Perhaps it is worth pointing out that these rates are certainly tolerable for experiments of a few hours duration.

In numerous previous experiments involving nitrate and sulfate media no pitting occurred, but the sapphire window surfaces were smoothly eroded.

The absorption of microquantities of bromide ion from aqueous solutions of hydrochloric acid, lithium, sodium, potassium, and cesium chloride by tri-n-octyl amine solutions in toluene, and from hydrochloric acid by a strong-base anion exchanger was measured. The departure of the equilibrium distribution coefficients for the liquid ion exchanger from a "mass law" dependence on electrolyte concentration could be explained quantitatively by the nonideality of the aqueous phase. With the anion exchange resin, however, corrections for aqueous-phase nonideality and for deswelling were not sufficient to give conformity with the mass law; in addition, an important correction for the organic-phase nonideality was required. The magnitude of the organic-phase nonideality could be correlated with the invasion of this phase by electrolyte. When the invasion was small, or absent, as with the liquid exchanger, the nonideality was small and could be neglected.

An attractive explanation for the large nonideality associated with the invasion of anion exchangers, liquid and resinous, by hydrochloric acid would be the strong binding of HCl to the exchange site to form hydrogen dichloride ion, HCl₂⁻. This species was observed recently, and its infrared spectrum was identified in crystalline tetramethyl ammonium hydrogen dichloride. Strong absorption by the hydrogen dichloride ion was found at 1180 and 1565 cm⁻¹. To determine whether this ion was present in the liquid anion exchange system, infrared spectra were measured on solutions of tri-n-octyl amine hydrochloride in carbon tetrachloride or toluene that had been equilibrated with concentrated aqueous hydrochloric acid. Prominent absorption bands were observed in the 1180 cm⁻¹ and 1565 cm⁻¹ regions of the spectrum, supporting the view that the dichloride ion is found in these solutions.

The decomposition pressure of tetramethyl ammonium hydrogen dichloride was reported recently by Chang and Westrum. The vapor pressure was independent of composition for the system tetramethyl ammonium chloride—tetramethyl ammonium hydrogen dichloride, indicating that a second phase formed as HCl was added to the tetramethyl ammonium chloride. Our measurements of the vapor pressure of HCl gas over a dry sample of Dowex 1 in the chloride form showed that HCl was strongly absorbed; however, the vapor pressure varied with the composition of the exchanger, indicating that the latter must be regarded as a single phase containing HCl₂⁻ ions.

Osmotic Coefficients of Quaternary Ammonium Halides

S. Lindenbaum

Osmotic coefficients of tetramethyl ammonium chloride and bromide, trimethyl benzyl ammonium chloride and bromide, and β-hydroxyethyl-dimethyl-benzyl ammonium chloride and bromide were measured by the isopiestic method. The trimethyl benzyl ammonium compounds are structurally analogous to Dowex 1, and the β-hydroxyethyl-dimethyl benzyl ammonium compounds are analogous to Dowex 2; hence, both serve as "model compounds" for these ion exchange resins. Osmotic coefficients for the pure salts and several mixtures are shown in Fig. 6.10. In each case the curve for the bromide salt lies lower than that for the corresponding chloride, indicating that the bromide ion is bound more tightly to the quaternary nitrogen. Strong-base anion exchange resins also exhibit a strong preference for bromide over chloride ions. The curves for the trimethyl benzyl ammonium salts and those for the β-hydroxy-ethyl-dimethyl-benzyl ammonium salts were found to lie much lower than those for the tetramethyl ammonium salts. Evidently, the presence of a benzyl group in a quaternary ammonium ion greatly enhances its anion binding ability.

The authors gratefully acknowledge the advice and help of R. H. Busey in making these measurements.

25 The authors gratefully acknowledge the advice and help of R. H. Busey in making these measurements.
Fig. 6.10. Osmotic Coefficients of Some Quaternary Ammonium Halides. The curves for the mixtures are labeled with the fraction of bromide in each mixture.
Heat-of-Exchange Measurements with Linear Anion Exchangers

Fred Vaslow

An apparent Br/Cl selectivity coefficient and a standard heat of exchange were determined calorimetrically for Dowex 1 linear polymer at 8 \times 10^{-4} weight normality. These results were obtained by measuring the heat effects on adding equivalent amounts of Cl⁻ ion to the Br⁻ polymer solution and the converse reaction of Br⁻ ion to the Cl⁻ polymer so that the final states are identical. The heat is the algebraic sum of the two reaction heats, and the apparent selectivity

\[K = \frac{\Delta H_{\text{sol}}^{\text{Br}}} {\Delta H_{\text{pol}}^{\text{Cl}}} \]

is given by \((\Delta H_{\text{pol}}^{\text{Br}}/\Delta H_{\text{pol}}^{\text{Cl}})^2\). The values are \(K = 1.9 \pm 0.6\) and \(\Delta H^0 = -630 \pm 50\) cal/equiv. It is clear that the polyelectrolyte does not approach ideality even at this low concentration. The differences in heats of dilution of the Cl⁻ and Br⁻ linear polymers for concentrations corresponding to Dowex 2 resins of 2 to 24% cross-linking ranged from -455 to -550 cal/equiv as compared with -1300 to -1730 cal/equiv for the heat of anion exchange with cross-linked anion exchangers. Addition of the linear polymer exchange heat to the dilution heats gives a reasonable agreement with the resin exchange heat. Some of the difference may be due to the fact that data for the Dowex 1 linear polymer only was available for comparison with results on Dowex 2.

Heat effects on adding low concentrations of like ions to the linear polymers were endothermal and very small, although on adding the like-ion polymer to a 1 N solution of NaCl or NaBr a net heat effect of \(\Delta H = -440\) and -1000 cal/equiv resin was observed.

Heat of Solution and Dilution Measurements with the p-Ethylbenzene Sulfonates

Fred Vaslow G. E. Boyd

Apparent molal heat contents and heats of solution relative to about 0.001 m final solutions were measured for p-ethylbenzene sulfonic acid and its alkali-metal salts. The concentration dependence of the apparent molal heat contents (i.e., "integral heat of dilution") for these compounds is shown in Fig. 6.11. The integral heats of solution for the monohydrate of the sulfonic acid and for the lithium, sodium, potassium, and cesium salts were -4250, -1660, +1780, +3305, and +5410 cal/mole, respectively. The heat content curves are notable in that their initial slopes are larger than for any other common, 1:1, alkali-metal salt.

Fig. 6.11. Relative Apparent Molal Heat Contents of p-Ethylbenzene Sulfonate Solutions.

Comparisons of the apparent molal heat content differences, \(\Delta \phi_L\), for four cationic salts of the p-ethylbenzene sulfonate with the calorimetrically estimated standard heats of ion exchange, \(\Delta H_{\text{ex}}^0\), for several Dowex 50 cation exchangers are given in Table 6.12. The agreement of the heats for the exchange of Na⁺ ion with Li⁺, H⁺, and Cs⁺ ions is satisfactory. There is a significant discrepancy for the exchange of K⁺ ion with sodium ion, however, and it is expected that a departure will be found even in the Na⁺/Li⁺, Na⁺/H⁺, and Cs⁺/Na⁺ exchanges when the heats of exchange for copolymers of less than 2% nominal DVB cross-linking are measured.

Extraction of Fe(III) from Aqueous Hydrochloric and Perchloric Acid Solutions by Liquid and Resinous Cation Exchangers

S. Lindenbaum G. E. Boyd

The phenomenon of ion exchange selectivity from concentrated aqueous electrolyte solutions
Table 6.12. Comparison of Heats of Exchange and Heats of Dilution Differences

<table>
<thead>
<tr>
<th>Percentage of Cross-Linking of Resin</th>
<th>Na/H</th>
<th>Na/Li</th>
<th>K/Na</th>
<th>Cs/Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\Delta \phi_L$</td>
<td>ΔH^o_{ex}</td>
<td>$\Delta \phi_L$</td>
<td>ΔH^o_{ex}</td>
</tr>
<tr>
<td>2</td>
<td>-380</td>
<td>-660</td>
<td>-550</td>
<td>-650</td>
</tr>
<tr>
<td>4</td>
<td>-720</td>
<td>-860</td>
<td>-1070</td>
<td>-1080</td>
</tr>
<tr>
<td>8</td>
<td>-1030</td>
<td>-1180</td>
<td>-1520</td>
<td>-1460</td>
</tr>
</tbody>
</table>

Fig. 6.12. Extraction of Fe59(III) by 0.1 N DNNS in Benzene and Dowex 50 from Hydrochloric and Perchloric Acid Solutions.
has attracted an increased interest recently, although observations on the increased uptake of cations by strong acid cation exchangers from acid solutions were reported as early as 1950. In Fig. 6.12 are reported observations made some time ago on the anomalous absorption of microquantities of Fe(III) ion from concentrated HCl and HClO₄ solutions by a liquid cation exchanger (dionyl naphthalene sulfonic acid, DNNS, dissolved in benzene) and by a lightly cross-linked polystyrene sulfonate cation exchanger (Dowex 50-X4). The unusual behavior found with the liquid and resinous exchanger was the marked increase in the extraction of Fe(III) above acid concentrations of 3 M. At lower concentrations the distribution coefficient decreased with increasing acid activity at a rate consistent with the hypothesis that an ion exchange reaction between H⁺ and Fe³⁺ ions occurred. The effect with Dowex 50 shown in Fig. 6.12 was observed previously with Fe(III) in hydrochloric acid solutions, using a methylene sulfonic acid cation exchanger. The phenomenon of increased uptake of cations by Dowex 50 from concentrated hydrochloric acid has been shown to be a general one.

The data of Fig. 6.12 reveal that the effect with Fe(III) occurs from HClO₄ as well as from HCl solutions and with both a liquid and a resinous strong acid cation exchanger. The result with perchloric acid suggests that a change in the Fe(III) ionic species in the aqueous phase must occur, leading to an increased distribution coefficient at high concentrations. It is also possible with both acids that anion exchange groups were formed in the organic phase (RSO₃H₂⁺), resulting in the larger uptake of iron (presumably as FeCl₄⁻) from concentrated hydrochloric than from perchloric acid.

ION EXCHANGE STUDIES

Development of an Ion Exchange Separations Scheme

F. Nelson
J. H. Holloway
J. A. Hauschild
K. A. Kraus
D. C. Michelson

Systematic investigation of ion exchange properties of essentially all the metallic elements has continued with the objective of developing a general ion exchange separations scheme. Both anion and cation exchange methods have been explored. The media were mixtures of HCl, HNO₃, HF, HClO₄, and, in a few cases, H₂SO₄.

It is intended, on the basis of these studies, to divide the elements into logical ion exchange groups which can be separated from each other reasonably rapidly and with minimum overlap. Simultaneously, the studies are intended to supply the fundamental information for division of the groups into subgroups and for isolation of individual elements.

Most existing methods, for example, anion exchange techniques or low- and medium-ionic-strength cation exchange techniques, did not seem adequate for the main group development, particularly in the initial stages of the analysis where the number of elements could be exceedingly large. Use of concentrated perchloric acid with admixture of complexing acids appeared to offer, as mentioned in the previous annual report, an important new set of conditions for the isolation of an initial group of elements. Accordingly, the cation exchange studies in concentrated HClO₄-HCl and HClO₄-HCl-HF solutions were extended to some 80 elements. About 25 were studied in HClO₄-HNO₃ and HClO₄-HNO₃-HF solutions. In addition, about 20 elements were studied with cation exchangers in HCl-HNO₃ solutions with and without added HF. The effect of temperature on adsorbability was investigated in the range 25 to 75°C for approximately 40 elements in a variety of media.

The elements adsorbed from concentrated HClO₄ containing moderate amounts of HCl and small amounts of HF, constitute one of the first groups which may be isolated in a general separations scheme. HF is added to ensure dissolution of the hydrolyzable elements principally of the 4th, 5th, and 6th groups. Even small amounts of HF,

29 Present address, McClellan Air Force Base, California.
in certain instances, drastically lowered adsorbabilities from concentrated HCIO₄ and systematic investigations of a number of elements in HCIO₄ solutions as a function of HF concentrations have been initiated.

The presence of HF in the initial medium limits the solubility of a number of elements, particularly alkaline earths and rare earths. Earlier studies of the solubility of lanthanum fluoride in HF-HCl solutions at high HCl concentrations implied that the solubility limitations would not be very serious. However, additional studies in concentrated HCIO₄ solutions showed that in this medium lanthanum fluoride is several orders of magnitude less soluble and that, therefore, solubility might cause much more serious limitations than originally assumed.

In trying to establish a hypothetical set of conditions for the initial sample to which the group separations scheme is to apply, it was recognized that certain elements could be lost because of volatility. Further, other elements might be lost through volatilization during the repeated evaporations now deemed necessary during the prosecution of the scheme. Work has been initiated to establish which elements might be quantitatively removed by distillation and to determine how they might be collected. It is anticipated that certain volatilization techniques could be used to advantage to simplify the overall separations scheme.

The current status of the scheme itself may be summarized as follows: Six major ion exchange adsorption groups have been established in a preliminary manner. These groups involve anion and cation exchangers at high, medium, and low ionic strength. For several of these groups, detailed breakdown into subgroups and individual elements has been possible. Approximately a dozen ion exchange separations schemes, which are anticipated to play an important role in the overall scheme, have been established in detail and most of these have been written up. The group scheme has been applied successfully to fission product samples.

Cation Exchange Studies of Uranium at High Ionic Strength

T. Murase, F. Nelson, K. A. Kraus

Detailed investigations have been carried out on adsorption of U(VI) (as tracer U²³⁷) by cation exchangers from HCIO₄, HNO₃, HCl, and H₂SO₄ solutions and high ionic strength mixtures.

Adsorbatibilities at 25°C by Dowex 50-X4 from the various acids over a wide ionic strength range are given in Fig. 6.13. In perchloric acid, adsorbatibility decreases with increasing M HCIO₄ at low ionic strength in the usual manner. However, at high ionic strength, D passes through a minimum and then increases rapidly, reaching values larger than 10⁴ for M HCIO₄ > 10. In the other media, the rise of D at high ionic strength is small or nonexistent. The divergence in adsorbatibilities at high ionic strength between perchloric acid solutions and the other acids results, at least in part, from complexing of U(VI) by the other anions, the complexes apparently having relatively low adsorbatibility at high ionic strength.

Adsorbatibilities of U(VI) in various acid mixtures (HCIO₄-HCl, HCIO₄-H₂SO₄, HCIO₄-HNO₃) at constant 9 M acidity are shown in Fig. 6.14. While

31 Guest scientist from Atomic Fuel Corporation, Tokyo, Japan.
in all cases the distribution coefficients decrease with decreasing fraction F of HClO$_4$

$$F_{\text{HClO}_4} = 0.95 (F_{\text{HCl}} = 0.05)$$

is almost two orders of magnitude lower than at $F_{\text{HClO}_4} = 1$. At this high ionic strength U(VI) thus appears to be strongly complexed by chloride ions in contrast to its behavior at low ionic strength where U(VI) is only slightly complexed by chloride ions.

The rapid variation of D of U(VI) with F_{HClO_4} in acid mixtures of high concentration can form the basis of a large number of separations. An interesting example of the use of high-ionic-strength electrolyte mixtures for cation exchange separations is shown in Fig. 6.15. This separation of Cs$^+$, Ba$^{2+}$, Sr$^{2+}$, U(VI), and rare earths is based on the strong adsorption of Sr$^{2+}$, rare earths, and U(VI) from concentrated HClO$_4$-HNO$_3$ mixtures, the sensitivity of U(VI) to HCl in HClO$_4$-HCl mixtures, and the relatively low sensitivity of the rare earths to admixtures of either HNO$_3$ or HCl. Elution of the rare earths is achieved in the absence of perchloric acid at moderate ionic strength, where their adsorbat-

Adsorption on Inorganic Materials

H. O. Phillips
K. A. Kraus

Study of the methods of preparation and of the ion exchange behavior of various inorganic materials was continued. These studies included evaluation of rates of exchange, uptakes as a function of acidity, and selectivity. Special emphasis was placed on a search for new combinations which might show unusual properties.

A large number of vanadates were prepared in which an excess of vanadate was coprecipitated with Bi, Nb, Sn, Ta, Ti, and Th. All these materials showed cation exchange properties in acid solutions, with capacities for cesium of the order of 0.5 to 2 moles/kg. They showed moderate selectivity for cesium vs rubidium, with separation factors varying between 3 and 5. Distribution coefficients of the rare earths in 0.1 M HNO$_3$ varied considerably from compound to compound. Thus, the distribution coefficients for Ce$^{3+}$ and Eu$^{3+}$ were less than 1 for niobium vanadate and larger than 1000 for zirconium vanadate.
By far the most interesting compound investigated was, however, zirconium antimonate. This material was prepared by adding excess SbCl₅ in HCl solution to zirconium oxychloride solution and then adding ammonia to the mixture. After filtration, the material was washed and dried at 25°C. It had an Sb(V):Zr(IV) ratio of approximately 2 to 1 and a water content of approximately 27%. By using an antimonate containing Sb¹²⁴ tracer, the material was found to be reasonably stable in ammonia, NaOH, HNO₃, HCl, and H₂SO₄, provided that the concentration of these reagents was less than 2 M. Uptake of Cs⁺ near pH 3 was about 0.5 mole/kg, and uptake of Na⁺ from 0.9 M NaOH was about 5 moles/kg.

In acid solutions, the antimonate showed high distribution coefficients for alkaline earths and rare earths. Thus the distribution coefficient for Sr²⁺ (Sr⁸⁵) in 1 M HNO₃ was larger than 10⁴ and for Ce³⁺ larger than 10³. These distribution coefficients from acid solutions for polyvalent ions are very much larger than those normally exhibited by hydrous oxide exchangers.

The selectivity of zirconium antimonate for the alkali metals in acid solutions, and particularly for Na⁺, is unique and can lead to interesting separations, as shown in Fig. 6.16, a separation of K⁺, Rb⁺, and Na⁺. Potassium can be removed with 2 M HNO₃; it is well separated from Rb⁺ which can be removed with about 6 M HNO₃. The separation factor for these two elements is thus unusually large. Cesium ion, had it been present, would have eluted together with Rb⁺ with little separation. Lithium ion, had it been present, would have eluted ahead of, and well separated from, K⁺. Sodium is exceedingly strongly adsorbed from acid solutions and cannot be removed even with concentrated nitric acid. It may, however, readily be removed at lower acidity, for example, with 2 M NH₄NO₃.

![Fig. 6.16. Separation of Alkali Metals with Hydrous Zirconium Antimonate.](image) Column, 2.6 cm x 0.19 cm²; 80–170 mesh; drying temperature, 25°C.
Ion Exchange at the Passive Film on Iron and Steel

G. H. Cartledge D. H. Spahrbier

As reported previously, the passive film on iron and steel was shown to possess the property of ion exchange. Specimens passivated in a dichromate solution and thoroughly rinsed retained a Cr(VI) species which was removable by exchange with sulfate or hydroxide ions, for example. By use of Cr51, the kinetics of the exchange process is being investigated. The procedure involves immersion of a passivated and rinsed specimen in successive portions of the solution containing the ion to be exchanged. The activity extracted at the measured times is determined in a multichannel analyzer. In order to follow changes in the potential of the specimen during extraction and to control this potential at a fixed value, when desired, the apparatus shown in Fig. 7.1 was used in certain experiments.

The reliability of the procedure adopted and the freedom of the exchange process from complications due to diffusion were demonstrated by measuring the rate of exchange of aqueous Cr2O72− ions with Cr3+O72− (or Cr5+O42−) on the film. As seen in Fig. 7.2, the process followed accurately a first-order course with respect to the residual chromate on the surface, as would be expected. That the exchange involves essentially

1Present address: Frankfurt, Germany.

Numerous measurements of the rate of exchange by \((\text{NH}_4)_2\text{SO}_4\) were made in both ammoniacal and weakly acidic solutions, extraction times being from 1 min to more than a week. Figure 7.3 shows the type of result uniformly obtained: the cumulative amount of chromate displaced per square centimeter quickly became almost linearly proportional to \(\log t\); this continued until the rate fell off as exhaustion of the film was approached. The initial decrease in rate was much greater than that for a first-order dependence on residual chromium on the surface.

![Fig. 7.3. Typical Exchange-Time Curve.](image)

The log \(t\) relationship suggests an analogy to the Elovich equation for the rate of adsorption or desorption at a metallic surface, which is associated with a dependence of the heat of activation upon the coverage, \(\theta\). A rate equation was therefore developed from the Eyring absolute rate theory, under the assumption that the heat of activation increases linearly with the extent of exchange, \(q\):

\[
\Delta H_q^\pm = \Delta H_0^\pm + \frac{rq}{f}.
\]

(1)

In order that \(r\) may be referred to the surface area available for ion exchange, the factor \(f\) is introduced to represent the ratio of this area to the projected area. The factor \(r\) thus has the dimensions cal mole\(^{-1}\) cm\(^2\) g\(^{-1}\) based on the available area, when \(q\) is in g of Cr per cm\(^2\) (projected).

only surface ions, as distinguished from chromium within the film, was shown in two parallel experiments. In one, the specimen was exposed to \(\text{Cr}_2\text{O}_7^{2-}\) only after initial passivation in \(\text{Cr}_2\text{O}_7^{2-}\) and removal of the surface ions by the usual exchange procedure. The other specimen was passivated in \(\text{Cr}_2\text{O}_7^{2-}\), extracted with sulfate, and again exposed to \(\text{Cr}_2\text{O}_7^{2-}\). There was no significant difference in the rates of exchange at 40°C during the first 5 hr, at the end of which time the exchange from each specimen was roughly 80% complete, although \(\text{Cr}^{51}\) was present in the entire film in the second case.

Fig. 7.2. First-Order Exchange of \(\text{Cr}^{51}\) on Surface by Aqueous \(\text{Cr}_2\text{O}_7^{2-}\); \(w_0\) is the Initial Exchangeable Chromate and \(q\) is the Amount Exchanged at Time \(t\).
The rate equation then contains a linear deple-
tion term, \(w_0 - q \), where \(w_0 \) is the total exchange-
able chromium, and an exponential term in \(q \):

\[
\frac{dq}{dt} = S'_0 (w_0 - q) \exp \left(-\frac{rq}{fRT}\right),
\]

in which \(S'_0 \) includes the usual kinetic factors, besides the constant concentration of the extracting ion (e.g., \(\text{SO}_4^{2-} \), \(\Delta H^\pm \), and \(\Delta S^\pm \), variation of which is assumed to be of minor importance. So long as the exponential term is dominant, Eq. (2) can be integrated to give

\[
q = \frac{2.3}{RT} \log \left(\frac{S_0}{fRT} t + 1 \right) = 2.3m \log \left(\frac{S_0}{m} t + 1 \right),
\]

where \(S_0 \) is the initial rate, \(S_0 w_0 \) \(q = 0 \). The curve in Fig. 7.3 is a least-squares fit of one set of data to Eq. (3) up to the point at which depletion is clearly being approached. All experiments conformed closely to this relationship.

A test of the complete Eq. (2) may be made by taking its logarithm after multiplication and division by \(w_0 \) and then plotting the logarithm of the rate vs \(q \):

\[
\log \frac{dq}{dt} = \log S_0 + \log \frac{w_0 - q}{w_0} - \frac{rq}{2.3 RT}.
\]

The rates are obtained as tangents to linear plots of \(q \) vs \(t \). Curve III in Fig. 7.4 is such an experimental result. Since the rate measurements become less accurate as the process approaches completion, the extractions were never carried quite that far, but a value of \(w_0 \) was sought such that the combination of linear and exponential terms correctly represented the experimental curve. In Fig. 7.4, such an analysis of one experiment is shown. Curve I would be the rate if only the first-order term were involved; Curve II represents the exponential term alone, and the product of the two (divided by \(S_0 \), which appears in each of them) gives Curve III. It is clear that the initial predominance of the exponential curve over the linear one accounts for the applicability of the simplified

\[
\text{Fig. 7.4. Analysis of Experimental Rate-q Curve (III) into a First-Order Term (I) and a Term Exponential in q (II). The circles on III are taken from tangents to a linear plot of q vs t.}
\]

Eq. (3) over so extensive a range. From the slope of Curve II, the value of \(r/f \) for a particular specimen is obtainable.

From the analysis of 13 experiments at 40°C, in which the surface treatments were varied radially, the variation of \(r/f \) with surface treatment makes it possible to conclude that maximum initial coverage in the passivated specimens is about 2.26 \(\times 10^{-8} \) g of Cr per cm\(^2\) (true), or 65% of the value for close-packed tetrahedral chromate ions. The corresponding value of \(r \) indicates that the activation energy increases by 4300 cal mole\(^{-1}\) during replacement of this monolayer. The results show a striking similarity to those for adsorption of gases on metals, where the effects can be understood in terms of changes in the energy levels of the substrate resulting from adsorption. It is believed that they are further evidence for similar electrical effects at the interface between film and solution. The significance of the results for passivation theory will be discussed in a
forthcoming paper. The experiments are being continued with other ions and with potentiostatic control of the potential at which exchange occurs.

The Role of Hydrogen Penetration into the Metal in the Electrochemistry of Iron

E. J. Kelly

In an earlier report, it was shown that the electrochemical polarization characteristics of iron, undergoing active corrosion in acid media, are strongly time dependent. The rates of both the hydrogen-evolution reaction and the iron-dissolution reaction slowly increase or decrease with time to their new steady-state rates following a potentiostatic shift to more positive or more negative potentials, respectively. These findings made it possible to account for many of the apparent contradictions in the literature regarding the corrosion potential – pH relationship, Tafel slopes, [OH\(^-\)] orders, and other diagnostic criteria in the reaction mechanisms of the iron-acid system – and afforded an explanation for the frequently cited phenomenon of electrochemical polarization hysteresis. On the basis of the evidence available at the time, it was suggested that the slow transient behavior might be attributed to hydrogen penetration into the iron. During the past year studies have been directed at verifying this conclusion. Two approaches to the problem have been followed, the first involving the analyses of numerous cathodic transient curves, and the second involving the effects produced on the electrode reaction rates when atomic hydrogen, generated on the opposite side of the iron membrane electrode, diffuses through the metal to the surface under observation.

Analysis of Cathodic Transients. – The hydrogen evolution reaction on any metal in deoxygenated acid media may be described by the following set of partial reactions,

\[
\begin{align*}
H^+ + e^- & = H^+_s, \\
H^+ + H^+_s + e^- & = H_2, \\
2H^+_s & = H_2, \\
H^+_s & = H^+_0, \\
H^+_0 & = H^+_x, \\
\end{align*}
\]

where \(H^+_s\), \(H^+_0\), and \(H^+_x\) represent atomic hydrogen on the electrode surface, at a point just within the metal, and at any point in the metal at a distance \(x\) (cm) from the electrode surface, respectively. Electrochemists have tended to ignore reactions (4) and (5), which are those involved in the hydrogen penetration into the metal. While this may be justified in the case of a metal like mercury, such an a priori assumption cannot be made when dealing with metals in which hydrogen is known to be appreciably soluble, like iron, nickel, and platinum. On the other hand, the experimental data, as well as theoretical considerations, indicate that, under the conditions prevailing in this study, the recombination reaction (3) on iron can be ignored.

For the system of reactions given above, the net current density, \(i\) (amp/cm\(^2\)), is given by

\[
\frac{d}{dt} \frac{-i}{F} = k_1[H^+](\psi - \theta) - k_{-1} \theta + k_2[H^+][\theta] - k_{-2}p_{H_2}(\psi - \theta),
\]

where the negative sign in front of \(i\) arises from a convention whereby a net cathodic current corresponds to a negative current. A line over a rate constant symbolizes its potential dependency. The fraction of the electrode surface available to the reaction system is represented by \(\psi\), and the fraction of the surface covered by adsorbed atomic hydrogen is represented by \(\theta\). The other symbols in Eq. (6) have their customary significance, with \(F\) being the Faraday constant. The rate of change of \(\theta\) with time is given by

\[
\beta \frac{d\theta}{dt} = k_1[H^+](\psi - \theta) - k_{-1} \theta - k_2[H^+][\theta] \\
+ k_{-2}p_{H_2}(\psi - \theta) - k_4 \theta + k_{-4}[H^+_0](\psi - \theta),
\]

in which \(\beta \) is a constant relating the coverage \(\theta \) to the concentration of atomic hydrogen on the surface. The rate at which hydrogen penetrates into the metal may be either surface controlled, reaction (4), or controlled by diffusion within the bulk of the metal, reaction (5). In what follows, it will be assumed that the hydrogen penetration rate is surface controlled. This implies that the ratio of the diffusion coefficient of atomic hydrogen in iron to the length of the diffusion path is large compared to \(k_{-4} \). In this case, \([H_m^+]\) in Eq. (7) becomes \([H_m] \), the concentration of atomic hydrogen in the interior of the metal.

Furthermore, one can then write

\[
\frac{V}{A} \frac{d[H_m^+]}{dt} = k_4 \theta - k_{-4}[H_m^+](\psi - \theta),
\]

where \(V (cm^3) \) and \(A (cm^2) \) represent the volume and the surface area, respectively, of the electrode.

In Fig. 7.5, the absolute value of the cathodic current is shown as a function of time for a typical cathodic transient. At time zero, the electrode potential was shifted potentiostatically to \(-0.850 \text{v vs S.C.E.} \), that is, to a new cathodic overvoltage of about \(-200 \text{mv} \) as compared with the original steady-state cathodic overvoltage of \(-100 \text{mv} \). Accompanying the shift in potential, the cathodic current rises instantly to \(|i_0| = 9.41 \times 10^{-5} \text{amp} \) as shown, and then slowly diminishes over the next 1800 min to the indicated steady-state current, \(|i_{ss}| = 1.83 \times 10^{-5} \text{amp} \). During this transient, the rate constants are independent of time, since the potential is fixed. If it is assumed that \(\psi \) is also independent of time during the slow transient, then it is evident from Eq. (6) that the change in the current with time must be ascribed to the time dependency of \(\theta \). In shifting the electrode potential to a more negative value, \(\theta \) increases. However, due to the transfer of hydrogen into the metal, \(\theta \) at any time \(t \) is less than in the steady state, and as \(\theta \) slowly increases to its steady-state value the cathodic current simultaneously drops. If it is assumed that during the slow transient \(d\theta/dt \sim 0 \), but \(d[H_m^+]/dt \neq 0 \), one can obtain \(\theta \) as a function of \([H_m^+] \) from Eq. (7) and thereby obtain a solution of Eq. (8) for \([H_m^+] \) as a function of time. Relating \([H_m^+] \) to the current through \(\theta \), one then obtains Eq. (9) for the current as a function of time:

\[
\log (i_{ss} - i_t) = Gt + H(i_t - i_0) + \log (i_{ss} - i_0).
\]

In Eq. (9), \(i_0 \), \(i_t \), and \(i_{ss} \) represent the currents at time zero, at any time \(t \), and in the steady state, respectively, and \(G \) and \(H \) are constants for a given electrode potential. The variation with time of the second term on the right side of Eq. (9) becomes insignificant at long time and, as a result, Eq. (9) reduces to

\[
\log (i_{ss} - i_t) = Gt + C' \quad (10)
\]

for long time. In Fig. 7.6, \(\log (i_{ss} - i_t) \) is plotted against time and, as anticipated, the resulting curve becomes linear only after approximately 200 min. The constant \(G \) can be determined from the slope of the linear section of the curve. Equation (9) can be rearranged to give

\[
\log (i_{ss} - i_t) - Gt = Hi_t + C'' \quad (11)
\]

In Fig. 7.7, the left side of Eq. (11), evaluated by using the value of \(G \) obtained from Fig. 7.6, is plotted against the current over the initial portion of the transient — that portion where Eq. (10) is inadequate (Fig. 7.6). From the slope of

![Fig. 7.5. Cathodic Current as a Function of Time for a Cathodic Transient on Iron in Benzoic Acid.](image)
CATHODIC TRANSIENT ON Fe IN HBz

C = 0.10 f HBz
pH = 4.94
T = 25°C
E = -0.850 vs S.C.E.

$\Delta I_{d0} = 9.41 \times 10^{-5}$ amp
$\Delta I_{d0} = 1.83 \times 10^{-5}$ amp
Slope = -0.091 hrs

Fig. 7.6. Log $(I_{ss} - I_t)$ as a Function of Time for a Cathodic Transient on Iron in Benzoic Acid.

With C and H determined, the entire current-time curve can be calculated by means of Eq. (9). The results for the first 100 min are given by the circles in Fig. 7.8. The experimental data are given by the curve which is essentially coincident with the circles. For comparison, the results calculated by means of Eq. (10) are shown by the lower curve. In summary, it has been shown that the experimental results can be interpreted [cf. Eq. (9)] on the basis of hydrogen penetration into the metal.

Diffusion of Hydrogen Through an Iron Membrane. — On the basis of the model presented above, it can be shown that, at a fixed cathodic potential, the cathodic current density should decrease if θ increases. This hypothesis was tested directly by using an iron membrane electrode, rather than a cylindrical electrode as used in the previous studies. The iron membrane separated two complete electrochemical cells, the only contact between the two cells being via diffusion of atomic hydrogen through the membrane. One side of the membrane was set at a fixed cathodic potential until a steady state was attained. Then, hydrogen was cathodically generated on the opposite side of the membrane. The diffusion of the hydrogen to the side of the membrane under observation resulted in a decrease in the cathodic current at the fixed potential,
in accordance with the model. These preliminary observations suggest that a quantitative study of the behavior of an iron membrane electrode would add considerably to our knowledge of hydrogen penetration into iron, and its effects on the hydrogen-evolution and iron-dissolution reactions.

Electrochemistry of Zirconium

R. E. Meyer

Dissolution of Zirconium in HF. – Although it is well known that aqueous solutions of HF will dissolve zirconium at significant rates, the mechanism of this reaction is not clear. Using a tracer method of measuring dissolution rates, Smith and Hill\(^8\) showed that the rate of dissolution of zirconium in various solutions containing HF was directly proportional to the concentration of undissociated HF and to no other species which contained fluorine, such as \(F^-\) or \(HF_2^-\). Because they also found that the rate of dissolution depended on the stirring rate, they postulated that the reaction was limited by the rate of diffusion of undissociated HF to the metal surface. Since it is surprising that fluoride ion itself does not participate in the reaction, an investigation was undertaken to confirm this effect and to try to determine the electrochemical mechanism of dissolution.

Preliminary experiments showed that this reaction was at least partially under diffusion control as Smith and Hill had postulated, and that therefore the usual steady-state polarization methods of obtaining the dissolution rates and other kinetic constants could not be applied. Polarization measurements were therefore obtained by applying constant current pulses 50 to 100 msec in duration and recording the resulting potential variations with an oscilloscope. Potential traces were then extrapolated to zero time in order to obtain polarization data corresponding to the concentration gradients existing before the onset of polarization. Dissolution rates were then obtained either by extrapolation of the anodic or cathodic Tafel lines to the dissolution potential or by calculation from Eq. (1):

\[
i = \frac{\beta_a \beta_c (di'_c/d\eta)_{\eta=0}}{(\beta_a + \beta_c)2.303}.
\]

Here, \(i\) is the dissolution rate, \(\beta_a\) and \(\beta_c\) are the anodic and cathodic Tafel slopes, respectively, \(i'_c\) is the applied polarization current, and \(\eta\) is the overpotential. In comparison with tracer methods of measuring the rate, these electrochemical methods have the advantages of giving the instantaneous rate directly and of yielding additional kinetic data.

In order to compare rates of dissolution in different solutions, a cell was designed in which any of six Teflon cups could be quickly placed in position around the electrode assembly. Rates of dissolution in different solutions could therefore be compared before the electrode surface changed appreciably.

A typical determination of the dissolution rate and the Tafel slopes is shown in Fig. 7.9. The circled points represent external applied current. The true Tafel lines were calculated in the usual way from the relation that the external applied current at any one potential must equal the difference between the absolute values of the anodic and the cathodic current. The dissolution rate is determined by extrapolation of the linear sections of the plots of log current vs overpotential to zero overpotential.

Figure 7.10, a plot of log rate vs log concentration of undissociated HF, shows that the rates of dissolution are directly proportional to the HF concentration. By varying the pH, it was possible to vary the concentration of the fluoride ion. No relation was found between the rate of dissolution and the fluoride-ion concentration.

Weight-loss experiments, in which zirconium specimens were weighed before and after extended periods of dissolution, were also performed. During the dissolution period a large number of rate measurements were made using the method of Eq. (1), and the average rate was calculated. This average rate was then compared with the average rate determined by weight loss. Table 7.1 shows the results of these measurements. The table shows that the actual weight loss is greater than the weight loss calculated on the assumption that there are four equivalents per mole of zir-

Fig. 7.9. Transient Current-Potential Relations on Zirconium Dissolving in Aqueous Solution Containing 0.02 N HF and 1 N \(\text{H}_2\text{SO}_4 \).

Fig. 7.10. Relation Between Dissolution Rate and Concentration of Undissociated HF in Aqueous HF-\(\text{H}_2\text{SO}_4 \) Solutions.

Table 7.1. Comparison of Weight-Loss and Electrochemical Methods of Measuring Dissolution Rates in Aqueous Solutions of HF and \(\text{H}_2\text{SO}_4 \)

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Weight Loss (mg)</th>
<th>Average Rate of Dissolution (amp)</th>
<th>Duration of Run (sec)</th>
<th>Calculated Weight Loss (mg)</th>
<th>Effective Valence(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.0</td>
<td>(\times 10^{-4})</td>
<td>2.52</td>
<td>5.0</td>
<td>2.86</td>
</tr>
<tr>
<td>2</td>
<td>5.9</td>
<td>7.43</td>
<td>2.61</td>
<td>4.6</td>
<td>3.12</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>10.2</td>
<td>2.52</td>
<td>6.1</td>
<td>3.42</td>
</tr>
<tr>
<td>4</td>
<td>7.6</td>
<td>9.0</td>
<td>2.52</td>
<td>5.4</td>
<td>2.83</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
<td>3.3</td>
<td>2.52</td>
<td>2.0</td>
<td>2.32</td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>8.1</td>
<td>2.59</td>
<td>5.0</td>
<td>2.65</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>8.45</td>
<td>2.70</td>
<td>5.4</td>
<td>2.88</td>
</tr>
</tbody>
</table>

\(^a\)Average deviation from 3.0: 0.28.

Zirconium, as one would expect from the normal valence of four. Agreement is obtained, as shown by the last column, if it is assumed that there are three equivalents per mole in the dissolving species. It should be noted that it is not uncommon for a metal to dissolve with an effective charge number less than the normal one. There are generally two ways in which this effect may be explained. Either the mechanism actually involves transfer of an ion of lower valence, with
immediate further oxidation in the solution, or the solvent tends to undercut the metal, removing "chunks" of metal which later dissolve without electrical contact with the bulk of the metal. The effective valence obtained if the latter effect ("chunk" effect) operates should vary with changing surface conditions, and experiments are being conducted to test this possibility.

Anodic Tafel slopes tended to increase with lower rates of dissolution. Further, oscillatory phenomena were noted during long-term anodic polarization. Both of these phenomena are characteristic of film-covered surfaces; therefore the possibility exists that the dissolution of zirconium proceeds through the continuous formation and dissolution of an oxide film. Further experimentation is planned to test this postulate.

The cathodic reaction during dissolution is the reduction of hydrogen ions. Measurements of the cathodic Tafel lines as a function of pH showed that the reaction is first-order with respect to hydrogen ion and that the Tafel slopes varied from 80 to 130 mv per decade; both observations are normal for hydrogen overvoltage on metals.

Studies on Passive Zirconium. – The investigation of the effects of films on reduction processes on film-covered electrodes is made difficult by the absence of reliable methods of measuring the thickness of thin films in the experimental cell. For this reason, the capacity of passive zirconium was investigated as a possible means of determining at least relative film thickness. Since there is no absolute way of determining film thickness under the desired conditions, it is possible only to compare various indirect methods. A series of experiments was therefore conducted to compare the thickness calculated from a fast-pulse method of measuring the capacity with the thickness calculated from the total charge passed in galvanostatic or potentiostatic experiments. Experiments performed so far indicate that, in the early stages of the formation of the film, there is good correspondence between thicknesses calculated by the two methods. In the later stages of film formation this relation is not valid. These experiments appear promising, and further work is planned.

Passivity and Transpassivity in Iron and Ferrous Alloys
F. A. Posey

The existence of a passive state on iron and ferrous alloys in contact with a solution is one of the most important characteristics of this metal and its alloys. On the other hand, no comprehensive treatment of kinetics of the passive state has been available to assist in understanding the diverse phenomena which have been observed on passive electrodes. In an effort to contribute to the solution of this classical problem in electrochemical kinetics, a model was developed on the bases of well-known laws of electrode processes and of certain concepts of semiconductor theory. Some aspects of the model are presented below and discussed in relation to experimental observations.

Comprehensive reviews are available which discuss recent experimental findings on passive iron. According to the consensus of opinion, the passivity of iron in contact with an acid solution is due to the presence of a thin, pore-free oxide layer which forms at a definite electrode potential, known as the Flade potential. Over a potential range of approximately 1 v positive to the Flade potential, the corrosion rate of iron is independent of the electrode potential, ferric ions are produced in solution, and the logarithm of the corrosion rate varies directly with pH. The passive layer is a good electronic but a poor ionic conductor. At sufficiently
high electrode potentials, corrosion current is no longer independent of, but increases exponentially with, potential; this is the region of transpassivity. At constant potential in the transpassive region, the logarithm of corrosion current varies linearly with pH, but in a direction opposite to the variation in the passive region.\(^2\) The thickness of the oxide layer increases linearly with potential above the Flade potential, at least up to the transpassive region.\(^2\) All applied anodic current in excess of the corrosion current in the passive region forms an equivalent amount of oxide; growth of the oxide is responsible for characteristic current-time transients observed when electrode potential is suddenly changed in potentiostatic experiments and for anodization under galvanostatic conditions.

The semiconducting nature of the transition-metal oxides is well established, and recent reviews\(^2\) on semiconductor electrode kinetics suggest the need for application of semiconductor theory to the passive state on metals. The present treatment assumes the validity of certain kinetic laws for the transport of particles in a semiconducting lattice under the influence of an electric field. The transport equations and Poisson's equation are solved for a particular quasi-equilibrium situation to give the distributions of potential and concentration in the passive layer. Finally, with the aid of boundary conditions derived from assumed mechanisms and the formalism of electrochemical kinetics, expressions are developed for several properties of the passive and transpassive states.

Examination of transport equations\(^2\) for the net flux of ions across a series of potential-energy barriers in the presence of an electric field shows that, for high fields, the flux of positive particles may be expressed by

\[
\nu^+(x) = k^+ C^+(x) \exp \left[\frac{\alpha^+ z^+ e^3}{RT} (\delta x) \cdot E(x) \right],
\]

where \(\nu^+(x)\) and \(C^+(x)\) are the flux and (volume) concentration of positive ions, \(k^+\) is a rate constant, \(z^+\) is the particle charge, \(E(x)\) is the thickness of the barrier of symmetry factor \(\alpha^+\), \(E(x)\) is the electric field, and \(RT/3 = kT/e_0\) is the thermal volt equivalent. An analogous equation holds for the flux of negative ions. For the high-field case, there is no significant back reaction and, therefore, no important concentration gradient of positive ions (or, similarly, of negative ions). In order to obtain results consistent with experiment, the quasi-equilibrium assumption must be made that the distribution of electrons in the passive oxide lattice is essentially undisturbed by the electron flux due to reactions occurring at the oxide-solution interface. This approximation leads to the classical nondegenerate Boltzmann distribution

\[
n(x) = n(0) \exp \left[- \frac{F}{RT} \Delta \phi(x) \right],
\]

where \(\Delta \phi(x) = \phi(0) - \phi(x)\) is the difference between the Galvani potential at the inner surface of the passive layer and the potential at the point \(x\), and \(n(x)\) is electron concentration.

The distribution of potential in the passive layer is calculated from Poisson's equation,

\[
\nabla^2 \phi(x) = - \frac{\varepsilon_0}{\varepsilon \varepsilon_0} \left[C^+(x) - C^-(x) \right] + \rho(x) - n(x),
\]

together with Eq. (2) and certain assumptions. In Eq. (3), \(\varepsilon\) is the relative dielectric constant, \(\varepsilon_0\) is the permittivity of free space in the rationalized MKSA system, and \(C^+(x), C^-(x), \rho(x)\), and

\[\text{References}\]

\(^{26}\)A. Guntherschulze and H. Betz, Z. Physik. 91, 70 (1934); 92, 367 (1934).

\(^{28}\)N. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163 (1949).
$n(x)$ are concentrations of positive ions, negative ions, holes, and electrons, respectively. On the assumption of essentially complete electroneutrality with respect to lattice ions, so that $c^+(x) = c^-(x)$, and on restriction of the calculation to the region where $n(x) \gg p(x)$, Eqs. (2) and (3) may be solved for the potential distribution of

$$\Delta \phi(x) = \frac{2RT}{F} \ln \left[\cosh (\xi x) + \sqrt{Q} \cdot \sinh (\xi x) \right]. \quad (4)$$

In Eq. (4), $\xi = (B/2) \sqrt{C}$, and $Q = (1 + C)/C$, where

$$\beta = \sqrt{\frac{n(0)e_0 F}{\varepsilon \varepsilon_0 RT}}$$

and

$$C = \left(\frac{E(0) F}{\beta RT} \right)^2 - 1,$$

while $E(0)$, the field at $x = 0$, follows from Gauss's law as $E(0) = \sigma_M/\varepsilon \varepsilon_0$, where σ_M is the surface charge density on the metal side of the metal-oxide interface. For the high-field approximation of interest here, and in particular for the case of large $E(0)/n(0)$, Eq. (4) reduces to the simple form

$$\Delta \phi(x) = E(0) \cdot x. \quad (5)$$

The potential changes linearly with distance in the passive layer, and electrons are distributed exponentially with distance in a field determined largely by the excess charges on the metal and solution sides of the interface.

In order to approximate the experimental behavior of the passive iron system, several additional relations must be postulated. It may be assumed that electron transfer between the metal and the oxide layer is fast, and that this electronic equilibrium poises the potential difference, $\Delta \phi_M$, of the interface between metal and oxide. The equilibrium condition is given by

$$n(0) = n(M) \exp \left(\frac{\Delta \mu^0}{RT} - \frac{F}{RT} \Delta \phi_M \right), \quad (6)$$

where $n(M)$ is the electron concentration in the metal and $\Delta \mu^0$ is the difference in the standard chemical potential of electrons in the two phases.

In addition, a rapid exchange of oxygen species between oxide layer and solution poises the potential difference, $\Delta \phi_s$, between the passive film and the solution. The overall stoichiometry of this process is expressed by $\text{OH}^-(aq) = \text{O}_2^-(\text{lattice}) + \text{H}^+(aq)$, and the equilibrium condition is given by

$$\exp \left(\frac{F}{RT} \Delta \phi_s \right) = \left(\frac{k_0^- C^-}{k_s^+ C_{OH}^-} \right), \quad (7)$$

where k_0^- and k_s^+ are rate constants for the forward and reverse steps of the process, $C^-(l)$ is the concentration of negative lattice ions at the outer interface (at $x = l$, where l is oxide-layer thickness), and $C_{OH}^- = [\text{OH}^-]$ is hydroxide-ion concentration in solution. To account for the existence of the transpassive region, two parallel reaction paths for dissolution of metallic ions at the oxide-solution interface may be assumed; both depend on the potential difference $\Delta \phi_s$ (which is constant because it is poised by the oxygen-exchange equilibrium), but one depends on the concentration of holes, $p(l)$, at the surface of the layer. The overall flux of the dissolution process is given by

$$\nu_+ = k_s^+ C^+(l) \exp \left(\frac{F}{RT} \Delta \phi_s \right) + k_p^+ C^+(l) \rho(l) \exp \left(\frac{F}{RT} \Delta \phi_s \right), \quad (8)$$

where k_s^+ and k_p^+ are rate constants, and $C^+(l)$ is the concentration of lattice cations at $x = l$. The presence of a hole means that one of the chemical bonds in the lattice is weakened, and this increases the probability of the associated anodic reaction. In the event that a significant concentration, C_s^+, of reducible species is present in solution, the flux of electrons across the oxide-solution interface because of the cathodic reaction is given by

$$\nu_e = k_c C_s^+ n(l) \exp \left(\frac{F}{RT} \Delta \phi_s \right), \quad (9)$$

where k_c is the rate constant of the cathodic process.

The net flux across the entire interface is given by $\nu_N = \nu_+ - \nu_e$ (the difference in the fluxes of
anodic and cathodic processes), the overall interfacial potential difference, $\Delta \phi_T$, is given by $\Delta \phi_T = \Delta \phi_M + \Delta \phi(l) + \Delta \phi_z$, and $C^-(0) = C^-(l) = C^-$ and $C^+(0) = C^+(l) = C^+$ because of the absence of a concentration gradient of lattice ions in the high field. The preceding equations may be combined, using the well-known relation $n(x) \cdot \rho(x) = n_i^2$ for the product of hole and electron concentrations, to give

$$
u_N = k^+_s C^+ \left(\frac{k^-_0 C^-}{k^-_s C_{OH^-}} \right)^{1/2} \left[\frac{k^+_p C^+ n_i^2}{n(M) \exp \left(\frac{\Delta \mu_0^-}{RT} \right)} \right] \exp \left(\frac{F}{RT} \Delta \phi_T \right) - k^-_c C^- \left(\frac{k^-_0 C^-}{k^-_s C_{OH^-}} \right)^{1/2} \left[\frac{n(M) \exp \left(\frac{\Delta \mu_0^+}{RT} \right)}{RT} \exp \left(- \frac{F}{RT} \Delta \phi_T \right) \right].$$

(10)

The predictions of this expression coincide closely with experimental observations on passive iron. In the absence of a significant cathodic process, the net flux of current is essentially equal to the corrosion rate, which is given by the first two terms in Eq. (10). At low potentials, the second term is unimportant, and the corrosion rate is given by the potential-independent first term in the equation; this term corresponds to the corrosion rate in the passive region. The corrosion rate in the passive region increases with acidity according to the proper functional relationship, and the exponent $\alpha_p^+ z^-^+$ has a theoretical value which is close to that found experimentally. At higher potentials, the second term in Eq. (10) begins to contribute significantly to the corrosion rate; this term represents the hole-catalyzed corrosion rate in the transpassive state. The exponent $\alpha_p^+ z^-^+ - 1$, for the reasonable assumption that $\alpha_p^+ z^-^+ = \alpha_s^+ z^-^+$, is a negative quantity such that the corrosion rate decreases with acidity at constant potential in the transpassive region, as found experimentally. Oxygen evolution also occurs on passive iron in the transpassive region, and probably proceeds by a hole mechanism. In this case, Eq. (10) would contain an additional potential-dependent term corresponding to the anodic reaction of oxygen evolution.

The course of potentiostatic and galvanostatic transients on passive iron may be calculated from Eqs. (1) and (8) together with certain differential relations and conversion factors relating excess anodic current to the change in the oxide-layer thickness. The forms of calculated and experimental transients agree well. Eqs. (4) and (5) show that $\Delta \phi(l)$ approaches zero as the thickness of the passive layer approaches zero. If the Flade potential, $\Delta \phi_F$, represents the lower limit of existence of the oxide layer, the present quasi-equilibrium model predicts, on the basis of Eqs. (6) and (7), that the overall interfacial potential difference in this limit is given by Eq. (11).

$$
\Delta \phi_F \equiv \Delta \phi_T (l \to 0) = \frac{\Delta \mu_0^+}{F} + \frac{RT \ln n(M) k^-_0 C^-}{F n(0) k^-_s C_{OH^-}},
$$

(11)

still proceeds with the finite rate given by the first term of Eq. (10) even in the limit, this potential does not have thermodynamic significance with respect to stoichiometric reactions of iron and its oxides. Since $C_{OH^-} = [OH^-] = K_w/[H^+], where K_w is the ionization constant of water, Eq. (11) predicts an RT/F dependence of the Flade potential on pH, as found experimentally. Because of the assumptions necessary to obtain expressions which reproduce the behavior of passive iron, the model presented above is restricted in applicability to passive systems generally. However, the method of approach is capable of extension to more sophisticated situations. Specific adsorption of anions and inhibitors undoubtedly changes energy levels of surface states at the oxide-solution interface, and these changes exert important effects on the distributions of particles and on reaction kinetics. Such effects are not included in the present model, and further studies will explore the consequences of including these and other factors in the theory.
The Differential Capacity of the Electrical Double Layer on Electrolytic Iron in Neutral and Acid Solutions

D. H. Spahrpller29 F. A. Posey

The corrosion of iron in sulfuric acid solution is inhibited by the addition of halide ions.30-33 The effectiveness of the inhibition increases in the sequence, \textit{Cl}^- < \textit{Br}^- < \textit{I}^- . Studies on transient and steady-state polarization characteristics of iron in the presence of iodide ions, as well as direct measurements using radioactive tracers, have suggested that specific adsorption of the halide ion is involved in the mechanism of inhibition.34-36 Since the structure of the electrical double layer is sensitive to specific adsorption of anions, measurements of the differential capacity of iron were made in order to provide additional information on the nature of the inhibition.

Electrolytic iron, deposited on platinum wires from concentrated \(\text{FeCl}_2 \) solution by a modification of the method of Brauer,37 was used as the electrode material. Studies were carried out in solutions of the anions, \(\text{Cl}^- , \text{Br}^- , \text{I}^- , \text{and} \text{SO}_4^{2-} \). Differential capacities were measured by use of a pulse technique. Rectangular current pulses 100 \(\mu \text{sec} \) in duration were obtained by use of a special circuit employing a fast potentiostat ("\textit{Wenking elektronischerpotentiostat}"") and a Tektronix pulse generator. The potential-time transient obtained on application of the current pulse was observed on a Tektronix type 536 oscilloscope and recorded photographically. Differential capacities were calculated from the experimental observations by use of

\[
C_{\text{diff}} = \frac{i_{\text{pulse}}}{(dV/dt)_{t=0}},
\]

where \(C_{\text{diff}} \) is differential capacity, \(i_{\text{pulse}} \) is the current density of the pulse, and \((dV/dt)_{t=0} \) is the initial slope of the potential-time transient.

Figure 7.11 shows the variation of electrode potential and differential capacity with time for unpolarized iron electrodes in acid solutions of the anions of interest. In part, increases of capacity with time are associated with increases in surface area because of corrosion, as shown by electron microscopic examination. In general, values of differential capacity decrease in the sequence, \(\text{H}_2\text{SO}_4 > \text{HCl} > \text{HBr} > \text{HI} \); the inhibiting effect of the anions increases in the same sequence. Many hours, or even days, are required for the attainment of steady states.

The results in Fig. 7.12 show that the electrode potential and differential capacity of unpolarized iron are nearly independent of the identity of the anion in neutral solutions. Specific differences

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig7_11.png}
\caption{Time Variation of Differential Capacity and Electrode Potential of Electrolytic Iron in Acidic Solutions; \(T = 25^\circ \text{C} \); Helium Atmosphere.}
\end{figure}

29Present address: Frankfurt, Germany.
arise, however, when the solution is made more acidic. The variation of electrode potential with pH is similar for all the anions, while unique differences exist in the behavior of the capacity. At constant acidity (1 N H₂SO₄), the electrode potential and differential capacity of unpolarized iron change in characteristic fashion with halide ion concentration, as shown by the experimental results in Fig. 7.13. The electrode potential curves are quite similar for all three anions, but the behavior of the capacity depends markedly on the nature of the anion.

The effect of additions of iodide ion on the differential capacity of electrolytic iron in 1 N H₂SO₄ is shown in Fig. 7.14 as a function of electrode potential. In the absence of iodide ions, the corrosion rate is large, and the potential region accessible for measurements of capacity is limited by the current capacity of the apparatus; this
region increases considerably in the presence of iodide ions. At low iodide-ion concentrations, a sharp minimum of capacity is observed in the vicinity of $-320 \text{ mv vs N. H. E.}$. This potential is approximately 50 mv positive to the potential of the electrocapillary maximum on iron in H_2SO_4.\(^{38}\) For higher iodide concentrations, the width of the minimum increases, and the minimum capacity becomes lower. Low capacities of the order of magnitude observed here are associated with specific adsorption of anions, in this case I\(^-\), as observed frequently in other systems.\(^{39-41}\) Corresponding to each iodide-ion concentration, the capacity increases sharply on the anodic side of the minimum; this rise marks the beginning of a peak in capacity due to the desorption of iodide ions from the electrode surface. The vertical arrows in Fig. 7.14 show the positions of the "potential of unpolarizability" (E_α) observed by Heusler and Cartledge\(^{36}\) in the anodic polarization curve of iron inhibited by iodide ions. These authors postulated that iodide ions, which are responsible for inhibition at potentials below E_α, are desorbed by an electrochemical corrosion mechanism at E_α. The present measurements confirm this interpretation; values of E_α correspond closely to the beginning of the desorption peaks.

8. Nonaqueous Systems at High Temperature

Electrical Conductivity of Solutions of Metals in Their Molten Halides

H. R. Bronstein A. S. Dworkin M. A. Bredig

The study of the electrical conductivity of metal solutions in molten salts continued to yield results that can be interpreted in terms of a variety of electronic and molecular structures.

Praseodymium in Praseodymium Trichloride. Figure 8.1 shows the behavior of Pr solutions to be, as expected from the phase diagram, intermediate between that of La (or Ce) and Nd solutions, discussed previously. The dissolution of La (or Ce) and of Nd in their trihalides may be represented by the two very different mechanisms, La → La\(^{3+}\) + 3e\(^-\) and Nd + 2Nd\(^{3+}\) → 3Nd\(^{2+}\), respectively. The mechanism in the case of Pr is likely to be a mixed one — in other words, to correspond to an equilibrium Pr\(^{2+}\) ⇌ Pr\(^{3+}\) + e\(^-\) or to a stability of the Pr\(^{2+}\) ion intermediate between the unstable La\(^{2+}\) and the stable Nd\(^{2+}\).

The specific conductivity of molten PrCl\(_3\) between 800 and 860°C is given by the equation \(\kappa = -1.189 + 0.75 \times 10^{-2}t\).

Rare-Earth Metals in Rare-Earth Triiodides. Figure 8.2 shows the specific conductivity in the systems La-LaI\(_3\), Ce-CeI\(_3\), Pr-PrI\(_3\), and Nd-NdI\(_3\). As in the chloride systems, Pr occupies an intermediate position but resembles somewhat more

La and Ce than Nd. This is in agreement with the results of a study of the phase diagrams, in which the formation of a metallic solid PrI\(_2\).
similar to metallic LaI₂ and CeI₂, and distinct from nonmetallic NdI₂, has been established. If one considers that the equivalent volumes of the rare-earth metal solutions are not very different from that of K-KI, then Fig. 8.2 also implies that the equivalent conductance of the metal in the rare-earth systems is much smaller than in the K-KI system. This difference can be interpreted semiquantitatively if it is assumed that electronic conductance in metal–molten salts solutions is proportional not only to the concentration of mobile electrons but also to the concentration of the cations between which the electrons are being exchanged. One equivalent of rare-earth metal–salt solution contains only one-third the number of cations that one equivalent of a solution of K in KI of equal metal concentration contains.

With the entropies of fusion discussed in another section of this chapter (see "The Heat of Fusion of Alkaline-Earth and Rare-Earth Metal Halides"), the melting-point depressions produced by small additions of rare-earth metals to the corresponding trihalides (taken from the M-MX₃ phase diagrams of Corbett and co-workers, Ames Laboratory) can be used to derive values of \(n \) in the formula

\[
n = \frac{\Delta S_m}{RT_m} \frac{T - T'}{N_{\text{solute}}},
\]

representing the number of moles of foreign particles produced in the solution (molten trihalide) by one mole of the solute (metal). This number \(n \) was found to have the values 2.45 and 2.65 for the LaCl₃-La and CeCl₃-Ce systems, and 3.1 and 3.0 for the PrCl₃-Pr and NdCl₃-Nd systems. In the latter, \(n \approx 3 \) results from the dissolution reaction \(1M + 2M^{3+} \rightarrow 3M^{2+} \). In the former two systems, the conductivity measurements indicate \(1M \rightarrow M^{3+} + 3e^- \), also requiring \(n = 3 \). The deviation in \(n \) from 3, conceivably due to the formation of solid solutions of La and Ce metals in their trichlorides, needs further examination. In the iodide systems, \(n \) also approximates 3 at infinite dilution of the metal.

Electron Exchange in Molten Mixtures of Divalent and Trivalent Rare-Earth Halides. — A positive deviation from additivity in the conductance of mixtures of NdCl₃ with NdCl₂ had been tentatively interpreted as reflecting an electronic contribution from an electron exchange between Nd³⁺ and Nd⁴⁺ ions (with a maximum in that contribution at 50 mole %) corresponding to proportionality of the deviation effect to the product of the concentrations of the two ions,

\[
N_{\text{Nd}^{2+}} \times (1 - N_{\text{Nd}^{3+}}).
\]

To further examine this effect and its interpretation, the system NdI₃-NdI₂ was studied, where greater polarizability of the iodide was expected to facilitate such an exchange. Indeed, the positive deviation was found to be enhanced to the extent of yielding a maximum in the curve of specific conductance vs composition. However,
a few cases of positive deviation in systems with assuredly merely ionic conductance are known (MgCl₂ with CaCl₂ or BaCl₂, and CdCl₂ with PbCl₂). Thus it seemed necessary to support the electronic explanation for NdX₃-NdX₂ by evidence showing that systems NdX₃-MX₂ containing an ion M in size similar to Nd²⁺, such as Sr²⁺, but incapable of supplying an electron to Nd³⁺ do not exhibit a positive deviation from additivity. Figure 8.3 demonstrates that this is indeed the case for the systems NdCl₃-SrCl₂ and NdI₃-SrI₂, and thus may be considered as at least indirect support for the assumption of a small electron-exchange contribution to the otherwise ionic conduction in the NdX₃-NdX₂ systems.

Fig. 8.3. Specific Conductivity in NdX₃-NdX₂ and NdX₃-SrX₂ Melts.

Alkaline-Earth Metals in Alkaline-Earth Dihalides. — The decreasing rate of increase in conductivity on addition of calcium metal to molten calcium chloride had been interpreted in terms of the increasing pairing of electrons with increasing metal concentration to form Ca₂⁺ ions, analogous to Na₂ molecules assumed previously in the Na-NaX systems. Similar observations are reported in Fig. 8.4 for the systems Ca-CaBr₂, Ca-CaI₂, and Sr-SrBr₂. The much stronger curvature for the latter solutions at 700° compared with that for Sr-SrCl₂ at 910° may be due to the greater stability of Sr₂⁺ ions at lower temperature. However, confirmation of these results may be required, because a slight instability that developed during the latest measurements needs further study.

The assumption of electron pairing with increasing metal concentration implies that at moderate concentrations the molecule ions do not contribute electronic conductance. It also implies that at infinite dilution or at low concentration the dissolved alkaline-earth metal is dissociated according to M → M²⁺ + 2e⁻, giving a cryoscopic n = 2. According to measurements, at both ORNL and the Imperial College, London, of the depression of the melting point of CaCl₂ by Ca, in

conjunction with the calorimetric entropy of fusion of CaCl$_2$, n is indeed near 2. It was thought3 to be also indicated by the liquidus data7 in the case of SrCl$_2$-Sr, but an erroneous entropy of fusion of 7 eu was used for SrCl$_2$. To again reconcile the theory that $n = 2$, for Sr$-\text{Sr}^{2+} + 2e^-$, with the new, calorimetrically measured, much lower entropy value of 3.39 eu, it seems necessary to connect the observed melting-point depression with the possible formation of solid solutions of Sr in SrCl$_2$. SrCl$_2$ possesses the CaF$_2$ type of crystal structure. Both CaF$_2$ and SrCl$_2$ have actually been reported8 to dissolve large amounts of metal in solid solution at high temperatures. If confirmed, this would permit interpretation of the melting-point depressions of CaF$_2$ and SrCl$_2$ by low concentrations of metal in terms, also, of the ionization of the dissolved metal according to $M - M^{2+} + 2e^-$, rather than in terms of M^{2+} molecule ions.9

Electrical Conductivity and Formation of Complex Ions in Cadmium-Potassium Chloride Melts

H. R. Bronstein M. A. Bredig

Electrical conductivity has been used among other properties as a criterion for the formation of complex ions in ionic melts. In CdCl$_2$-KCl mixtures, the formation of CdCl$_3^-$, CdCl$_4^{2-}$, and CdCl$_6^{4-}$ has been suggested. Tarasova,10 in the temperature range 440 to 500°C, found a surprisingly sharp minimum in the specific conductance of CdCl$_2$-KCl mixtures at a mole ratio of 1:1CdCl$_2$ (Fig. 8.5) and attributed it to the formation of CdCl$_3^-$ ions. Bloom and Heymann,11 on the other hand, observed, at temperatures of 570°C and above, the decrease in specific conductivity with KCl concentration in this concentration region to continue to more than 65 mole % KCl, with some indication that at lower temperature the decrease would continue to even slightly higher KCl concentration. These latter data, in conjunction with a new interpretation of Raman spectra, had been taken to suggest the formation of CdCl$_4^{2-}$ ions rather than CdCl$_3^-$ ions, which were thought to be unlikely also on theoretical grounds.12,13

In view of the discrepancy between the data of Bloom and Heymann and those of Tarasova—the latter being suspect for the very sharpness of the minimum—a series of measurements of the electrical conductivity of CdCl$_2$-KCl mixtures was carried out at 460, 500, and 570°C with an apparatus described elsewhere.14 Figure 8.5 shows good agreement of these measurements with those of Bloom and Heymann, and no trace of a minimum at the mole ratio 1KCl:1CdCl$_2$. Rather, the decline in specific conductivity continues to the vicinity of the KCl concentration at which solid KCl precipitates, near 70 mole % KCl. The minimum in equivalent conductance calculated with densities from the literature15 shifts with

the increasing temperature to mole ratios lower than 2KCl:1CdCl₂. This may be taken to reflect the increasing dissociation of the CdCl₄²⁻ complex.

An analysis of measurements by Russian investigators¹⁶,¹⁷ of the emf of the formation of CdX₂ in molten mixtures of CdCl₂ with KCl and of CdBr₂ with KBr showed the results of these measurements also to favor the assumption of CdX₄²⁻ complex ions.¹⁸

The Heat of Fusion of Alkaline-Earth and Rare-Earth Metal Halides

A. S. Dworkin M. A. Bredig

Heats of fusion of the alkaline-earth and rare-earth metal halides are of considerable interest in connection with the interpretation of the phase equilibria and electrical conductance measurements in metal-metal halide systems. Since very few calorimetrically measured values are available in the literature, the heats of fusion of some chlorides and iodides of lanthanum, cerium, praseodymium, and neodymium, as well as of all of the chlorides, bromides, and iodides of calcium, strontium, and barium, have been measured.

The copper-block drop calorimeter used for the measurements and the experimental procedure have been described in detail previously.¹⁹

The results are shown in Table 8.1. The entropy of fusion, ΔSₘ, for LaCl₃, PrCl₃, and NdCl₃ is essentially constant and very similar to the ΔSₘ for CeCl₃, 11.7 eu, reported by Walden and Smith.²⁰ The entropy of fusion of CeI₃ and PrI₃ is slightly higher than that of the chlorides, while NdI₃ distinguished above its transition temperature by a different crystal structure from CeI₃ and PrI₃, has an entropy lower than that for the other iodides by an amount approximately equal to the entropy of the transition taking place in the solid state approximately 200°C below the melting point.

Since the alkaline-earth metal halides possess a variety of crystal structures, they do not exhibit the simple regularities in ΔHₘ and ΔSₘ apparent in the alkali-metal halides.¹⁹ However, SrBr₂ and BaCl₂, with transitions just below their melting points, and SrCl₂, which has a CaF₂ type of structure, have unusually low entropies of fusion. (Calcium fluoride also has an unusually low ΔSₘ of 4.2 eu.²¹ High-temperature x-ray studies to confirm that SrBr₂ and BaCl₂ also have the CaF₂ type of structure at their melting points, as suggested by the low entropies of fusion, will be initiated.)

Table 8.1 also shows considerably larger heat capacities for solid SrCl₂ and the high-temperature modifications of SrBr₂ and BaCl₂, which are also formed with a rather large heat of transition. This may support the assumption that the low entropies of fusion of these compounds are connected with relatively high entropies of the solids, probably due to considerable disorder in connection with the special geometry of the fluorite type of structure, in which lattice vacancies equal in size and number to the sites occupied by the cations occur.

Calcium iodide, with its layer-type structure, has a ΔSₘ much higher than that of any of the other alkaline-earth halides reported here. It thus resembles the cadmium dihalides (excluding the fluoride) of similar layer-type crystal structure (ΔSₘ = 7.5 to 9.5 eu).

The heat of fusion of only one of the compounds in Table 8.1 had been measured calorimetrically by other investigators. Moore’s value of ΔHₘ for CaCl₂ of 6.78 kcal²² is in agreement with that reported here.

Table 8.1. Heat Capacity and Heat and Entropy of Fusion and Transition of Some Alkaline-Earth and Rare-Earth Metal Halides

<table>
<thead>
<tr>
<th>Metal Halide</th>
<th>T_m (°K)</th>
<th>C_p Solid (cal mole$^{-1}$ deg$^{-1}$)</th>
<th>C_p Liquid (cal mole$^{-1}$ deg$^{-1}$)</th>
<th>H_{T_m}(solid) (kcal mole$^{-1}$)</th>
<th>H_{298} (kcal mole$^{-1}$)</th>
<th>ΔH_m (eu mole$^{-1}$)</th>
<th>T_tr (°K)</th>
<th>ΔH_tr (kcal mole$^{-1}$)</th>
<th>ΔS_tr (eu mole$^{-1}$)</th>
<th>Structure Type, 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaCl$_3$</td>
<td>1131</td>
<td>34.7 ± 2</td>
<td>37.7 ± 2</td>
<td>22.8</td>
<td>13.0</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td>UCl$_3$</td>
</tr>
<tr>
<td>PrCl$_3$</td>
<td>1059</td>
<td>32.3 ± 2.5</td>
<td>32.0 ± 2.5</td>
<td>21.5</td>
<td>12.1</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td>UCl$_3$</td>
</tr>
<tr>
<td>NdCl$_3$</td>
<td>1032</td>
<td>35.4 ± 2.5</td>
<td>35.0 ± 2.5</td>
<td>20.3</td>
<td>12.0</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td>PuBr$_3$ (?)</td>
</tr>
<tr>
<td>CeCl$_3$</td>
<td>1033</td>
<td>36.5 ± 2</td>
<td>36.5 ± 2</td>
<td>20.8</td>
<td>12.4</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td>PuBr$_3$ (?)</td>
</tr>
<tr>
<td>PrI$_3$</td>
<td>1011</td>
<td>31.3 ± 2</td>
<td>34.2 ± 2</td>
<td>19.5</td>
<td>12.7</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td>PuBr$_3$ (?)</td>
</tr>
<tr>
<td>NdI$_3$</td>
<td>1060</td>
<td>α 27.6 ± 2</td>
<td>36.3 ± 2</td>
<td>24.3</td>
<td>9.7</td>
<td>9.2</td>
<td>847</td>
<td>3.4</td>
<td>4.0</td>
<td>PuBr$_3$ (?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β 30.4 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCl$_2$</td>
<td>1045</td>
<td>23.6 ± 1.5</td>
<td>23.6 ± 1.5</td>
<td>14.3</td>
<td>6.78</td>
<td>6.49</td>
<td></td>
<td></td>
<td></td>
<td>SnO$_2$</td>
</tr>
<tr>
<td>CaBr$_2$</td>
<td>1015</td>
<td>23.0 ± 1.5</td>
<td>27.0 ± 2</td>
<td>14.0</td>
<td>6.95</td>
<td>6.85</td>
<td></td>
<td></td>
<td></td>
<td>SnO$_2$</td>
</tr>
<tr>
<td>CaI$_2$</td>
<td>1052</td>
<td>23.2 ± 1.0</td>
<td>24.7 ± 1.0</td>
<td>15.1</td>
<td>10.0</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td>Cd(OH)$_2$</td>
</tr>
<tr>
<td>SrCl$_2$</td>
<td>1146</td>
<td>29.0 ± 2.5</td>
<td>28.6 ± 3</td>
<td>20.3</td>
<td>3.88</td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
<td>α-CaF$_2$</td>
</tr>
<tr>
<td>SrBr$_2$</td>
<td>930</td>
<td>α 20.9 ± 1</td>
<td>27.8 ± 1</td>
<td>15.6</td>
<td>2.50</td>
<td>2.70</td>
<td>918</td>
<td>2.90</td>
<td>3.16</td>
<td>SrBr$_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β 27.5 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SrI$_2$</td>
<td>811</td>
<td>22.9 ± 1.5</td>
<td>26.3 ± 1.5</td>
<td>10.4</td>
<td>4.70</td>
<td>5.80</td>
<td></td>
<td></td>
<td></td>
<td>SrI$_2$</td>
</tr>
<tr>
<td>BaCl$_2$</td>
<td>1233</td>
<td>α 23.1 ± 1.5</td>
<td>26.3 ± 2.5</td>
<td>23.5</td>
<td>3.90</td>
<td>3.17</td>
<td>1195</td>
<td>4.10</td>
<td>3.44</td>
<td>PbCl$_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β 25.5 ± 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaBr$_2$</td>
<td>1130</td>
<td>21.7 ± 1.5</td>
<td>25.6 ± 1.5</td>
<td>16.9</td>
<td>7.63</td>
<td>6.75</td>
<td></td>
<td></td>
<td></td>
<td>PbCl$_2$</td>
</tr>
<tr>
<td>BaI$_2$</td>
<td>984</td>
<td>21.8 ± 1.5</td>
<td>27.0 ± 2</td>
<td>13.9</td>
<td>6.34</td>
<td>6.44</td>
<td></td>
<td></td>
<td></td>
<td>PbCl$_2$</td>
</tr>
</tbody>
</table>
MICROWAVE AND RADIOFREQUENCY SPECTROSCOPY

Paramagnetic Resonance Equipment

Ralph Livingston R. W. Holmberg Henry Zeldes

Practically all our equipment was altered, new equipment was purchased, and additional laboratory space was obtained. An 8-in. electromagnet was modified by placing it on a rotating base so that it will be more suitable for studying anisotropy effects in single crystals. A new 12-in. magnet with power supply was purchased and put into operation.

A new 9000-Mc spectrometer using a microwave bridge was assembled. This spectrometer includes automatic frequency control. A cavity and conversion kit was purchased from Varian Associates, and this spectrometer may now be operated as a 100-kc field-modulated instrument with greatly enhanced sensitivity. Flexibility was retained so that the spectrometer may easily be converted to other types more suitable for certain studies.

A simple spectrometer using a transmission cavity and operating at 23,000 Mc was built. The cavity is located inside a dewar and may be cooled with liquid nitrogen, with provision for pumping on the nitrogen in order to obtain a lower temperature. A tube connects from the cavity to outside the dewar so that samples may be easily changed. This tube connects from the top of the cylindrical cavity operating in the \(\text{TE}_{011} \) mode. The coupling irises are located on the sides of the cavity and wave-guide feed is used. The \(Q \) is high, and good sensitivity is obtained for this simple type of spectrometer.

Considerable progress was made in designing and building equipment for working with liquid helium. The design centers about a new microwave cavity, which is a reflection type operating at 9000 Mc. There will be provision for introducing and withdrawing samples while the cavity is at the low temperature. This means that there will be a vertical tube connecting from the top of the cavity to the outside of the dewar containing the cavity. The tube leaves very little remaining space on top of the cavity for making a connection to the microwave transmission line. Although there is enough space for a coaxial cable, earlier work showed a cable to be unsatisfactory for a reflection cavity because of severe reflections from the cable itself. Also, a variable and externally adjustable coupling to the cavity is desirable. A new design was electrically tested at room temperature and found to work very well. The cavity is a rectangular type fed from a wave-guide transmission line. Coupling with the electric vector is made from the broad side of the cavity, and a post with variable insertion is located at the iris (\(\lambda/4 \) from the end of the cavity) so that the coupling may be varied. Both \(\text{TE}_{101} \) and \(\text{TE}_{102} \) cavities have been tested. The latter have far higher \(Q \)'s and are far superior even though the sample is located at the cavity wall, where maximum oscillating magnetic field is not found. The electrical tests were sufficiently gratifying to now warrant the construction of the final cavity.

This equipment was used to examine and reexamine a number of systems. For example, each of the three lines\(^1\) from \(\text{NO}_2 \) in irradiated \(\text{NaNO}_2 \) is now found to be slightly split into quadruplets when the magnetic field is parallel to the \(b \) crystallographic axis. This splitting is almost certainly due to a neighboring ion of sodium (\(l = 3/2 \)), which interacts most strongly with a \(p \) lobe from \(\text{NO}_2 \) just for this direction. Other studies are described in more detail in other sections of this report.

A Paramagnetic Resonance Study of Irradiated Potassium Nitrate

Henry Zeldes Ralph Livingston

In the last annual report2 the parameters of a spin Hamiltonian characterized by a g-tensor and a nitrogen hyperfine coupling tensor were reported for a paramagnetic species in gamma-irradiated KNO$_3$ at 77$^\circ$K. This species was identified as NO$_2^-$ since the traces of the tensors agreed well with those for NO$_2$ studied previously3 in gamma-irradiated NaNO$_2$. There were significant differences in the individual principal values for NO$_2^-$ in the two salts, which indicated that NO$_2$ in KNO$_3$ is experiencing motional effects at 77$^\circ$K4, and it was suggested that the motion is torsional oscillation of NO$_2$ with large amplitude. Since then, calculations were made for a model of torsional oscillation and for a model of rapid reorientation of NO$_2$ in a nitrate ion vacancy. The former model was rejected since the equilibrium position of NO$_2$ did not seem sensible. The model of rapid reorientation explains the findings very satisfactorily. It is assumed that NO$_2$ rapidly reorients between two mirror-related sites in an anion vacancy. Good agreement with the observed tensors was obtained by assuming that the principal values appropriate for stationary NO$_2$ are the values measured in irradiated NaNO$_2$ and that the atoms of NO$_2$ in KNO$_3$ occupy positions which are close to the corresponding atom positions for the nitrate ion. This interpretation has been prepared for publication.4

In previous work on KNO$_3$ it was found4 that a good yield of NO$_2^-$ was formed upon gamma irradiation at 77$^\circ$K if a small amount of KNO$_3$ was co-crystallized with the KNO$_3$. On the other hand, pure KNO$_3$ gave essentially no NO$_2^-$ upon irradiation at 77$^\circ$K. However, a good yield of NO$_2^-$ was obtained from pure KNO$_3$ if it was first irradiated at 77$^\circ$K and then warmed to room temperature and finally reirradiated at 77$^\circ$K. These results suggest that NO$_2^-$ is the precursor for NO$_2$ and are consistent with the well known fact that nitrite is a major product of the room-temperature irradiation of KNO$_3$. In order to explore this interpretation further, additional experiments were made.

A crystal of KNO$_3$ containing KN15O$_2$ (95% N15) was studied. An examination of the NO$_2^-$ spectrum formed after gamma irradiation at 77$^\circ$K clearly showed that there was no isotopic exchange between NO$_2^-$ and NO$_3^-$ and that all observed NO$_2$ must have come from NO$_2^-$. Additional experiments consisted of showing that NO$_2$ could also be prepared from pure KNO$_3$ by carrying out the first irradiation at room temperature (where NO$_2^-$ is known to be a product) followed by irradiation at 77$^\circ$K. With new, more sensitive equipment a search was also made for NO$_2^-$ in pure KNO$_3$ after a single irradiation at 77$^\circ$K. The amount of NO$_2^-$ formed was at least two orders of magnitude smaller than that produced in crystals containing KNO$_2$. These results are being submitted in greater detail for publication elsewhere.

A number of other features of the spectra formed in irradiated KNO$_3$ are being examined. In addition to NO$_2^-$ a variety of other species is present, and their relative abundances are found to vary with the nature of the sample, previous irradiation history, heat treatment, etc. A triplet of very sharp closely spaced lines has been observed which under some conditions may be made very intense. These lines might result from NO$_3^-$. Final measurements are being started.

A Paramagnetic Resonance Study of Irradiated Hydrogen Peroxide

Ralph Livingston R. W. Holmberg

Some years ago preliminary work was described5 on irradiated single crystals of essentially 100% H$_2$O$_2$. Gamma irradiation at 77$^\circ$K gave rise to a spectrum of very closely spaced lines, not completely resolved, which persisted even after warming to much above dry-ice temperature. A completely different spectrum was obtained by ultraviolet irradiation at low temperatures. This spectrum disappeared with first-order kinetics with a half-life of a little over an hour at 77$^\circ$K.

and with an activation energy of 5 kcal/mole. Both spectra were anisotropic, but that formed by ultraviolet irradiation had larger overall separations and offered the greater possibility of being unraveled. It was pointed out that the species formed by ultraviolet irradiation might also be formed by gamma rays and might be observable if a gamma irradiation at a lower temperature or higher gamma intensity were used.

In the preliminary study the great multiplicity of lines was troublesome. Hydrogen peroxide is tetragonal, with four molecules in the unit cell. In general a paramagnetic species will give rise to eight lines or groups of lines which simplify to fewer lines for special orientations of the crystal in the magnetic field. Even for these special orientations the number of components in the spectra seemed excessive, and it appeared that "forbidden" transitions (environmental proton flips) and perhaps resolved dipolar interactions were present which would account for a large number of lines. To aid in unraveling the spectra it was decided to make measurements at 23,000 Mc as well as at 9000. These measurements are under way, and the present account is still preliminary.

The familiar ultraviolet-produced spectra have now been seen in a 9000-Mc spectrometer using 100-kc field modulation. After storage of photolyzed samples at 77°K the ultraviolet-produced species disappears, in keeping with early observations, but an entirely new spectrum appears which is quite distinct from that produced by ultraviolet and from that produced in the earlier work by gamma rays. If the sample is next warmed to dry-ice temperature, the new spectrum changes and appears to become the same as that formed by gamma rays. Thus three distinct types of spectra have now been seen, which suggests that three different species are formed but does not prove it since the same species in different environments could give rise to different spectra.

For two orientations of the ultraviolet-irradiated crystal a correspondence of the 9000 and 23,000 Mc spectra has been noted. This should help sort out those line spacings arising from hyperfine interactions.

Paramagnetic Resonance of Irradiated Chlorates

R. W. Holmberg

The irradiation of potassium and barium chlorates with gamma rays produces a large number of paramagnetic centers, some of which show hyperfine structure characteristic of chlorine nuclei. Attention was focused on one species found in KClO$_3$ which was tentatively identified as ClO$_2$. Measurements of the hyperfine splittings in two of the crystallographic planes of KClO$_3$ were made, and some observations were made in a third. The line separations are strongly anisotropic. In the uv plane near the a axis, the four Cl35 hyperfine lines are about equally spaced and reach their maximum separation of about 225 Mc. At directions normal to the a axis, the lines are no longer equally spaced; the hyperfine multiplet shows an overall spacing of about 120 Mc. In this region "forbidden" lines are also seen, and line intensities show pronounced anisotropy. This indicates the presence of a rather strong quadrupole interaction in addition to the magnetic hyperfine interaction.

The observed splittings are in good agreement with the magnetic hyperfine parameters deduced from microwave rotational spectra of ClO$_2$ (ref 6). Further, from the direction at which the maximum separation of hyperfine lines occurs, one can, with some assurance, speculate that the ClO$_2$ radical is trapped in a ClO$_3^-$ vacancy in the crystal.

Because of the strong quadrupole interaction it is not possible to fit the data to explicit solutions of the spin Hamiltonian obtained from perturbation theory. A program was written for the IBM 7090 computer to solve the Hamiltonian numerically. Energy levels, transition energies, and relative transition probabilities are computed as a function of magnetic field strength and direction for assumed values of the magnetic and quadrupole hyperfine tensors. Transition energies are then compared with those obtained experimentally. Difficulties have arisen because of the large number of independent parameters that must be specified to...

define the system. Even if the tensor is assumed to be isotropic there are 11 independent parameters. If the simplifying assumption is made that the quadrupole and magnetic hyperfine tensors are parallel, this number is reduced to eight. Since these assumptions are in reasonable accord with the experimental data, they formed the basis of the initial computations. To date, however, a satisfactory fit to the data has not been obtained.

If Ba(ClO₃)₂·H₂O is irradiated with gamma rays at 77°K and then warmed to room temperature, most of the paramagnetic centers formed at the low temperature disappear. A species containing a single chlorine atom grows in. Detailed measurements of this spectrum were made at room temperature. The hyperfine splittings are of similar magnitude and anisotropy to those ascribed to ClO₂ above, and intensity anisotropies and forbidden lines are also seen. It would appear that this species is also ClO₂, but this characterization is by no means definite.

NEUTRON AND X-RAY DIFFRACTION

A Neutron Diffraction Study of Chloral Hydrate

G. M. Brown H. A. Levy

Chloral hydrate, CCl₃CH(OH)₂, is an interesting subject for crystal-structure analysis because of the rarity of stable compounds having two hydroxyl groups attached to a single carbon atom. Spectroscopic study has confirmed the conclusion from chemical evidence that the chloral hydrate molecule contains single carbon-oxygen bonds — that is, that chemical reaction does occur when the hydrate is formed from chloral and water — but it has not supplied any reliable information about the hydrogen bonding that is probably important in stabilizing the compound. A crystal-structure analysis by neutron diffraction was undertaken in this laboratory to determine the details of the molecular structure and hydrogen bonding. The only previously reported structure analysis, by x-ray methods, is clearly completely unreliable. Application of the neutron method is appropriate in this case because a major object is precise location of the hydrogen atoms, which cannot be done by x-ray methods.

Crystals of chloral hydrate are monoclinic, of space group $P2_1/c$, with $a = 11.464$, $b = 5.985$, $c = 9.687$ Å, $\beta = 120^\circ 43'$, and four molecules per unit cell. The parameters reported here were derived by the method of least squares from measurements of diffraction angles on the Oak Ridge three-dimensional automatic crystal orienter. They are believed to be reasonably accurate but are subject to check by x-ray methods.

Within the range of the neutron instrument (maximum $2\theta = 111^\circ$) for the wavelength now employed (about 1.08 Å) there are about 2150 nonequivalent reflections of chloral hydrate accessible to measurement. Each one of these was measured at least once; many were measured two or more times. Three crystal specimens of weight 29, 6, and 2 mg were used in an attempt to estimate and obviate the effects of extinction. The total number of reflections measured, including duplications, is about 4000. The number included in the structure-determining calculations so far is about 3600. The reflection intensities were corrected for absorption.

By the time our data had been obtained a set of approximate parameters for the carbon, oxygen, and chlorine atoms was made available to us from a new x-ray study in progress elsewhere. These parameters were used to calculate structure factors whose signs were used with the observed structure factors as coefficients for a three-dimensional Fourier map. Reasonable locations for each of the three hydrogen atoms of the molecule were evident from the Fourier map, and least-squares refinement was started at once.

Five cycles of least-squares refinement were carried out, the last two of which included adjustment of individual anisotropic thermal parameters. The usual reliability index R on F^2 fell to 0.066 from an initial value of 0.40 when hydrogen contributions were first included. The value of the function

$$\sigma_1 = \left(\frac{\sum_p (F_0^2 - F_p^2)^2}{n - p} \right)^{1/2},$$

where n is the number of observations, and p, the number of parameters, is 1.28, compared with the

8I. Nitta, private communication.
value unity that should be reached on convergence of least-squares refinement when the errors are truly random and correctly estimated. The weighted R factor,

$$\left(\frac{\Sigma w(F_0^2 - F_c^2)^2}{\Sigma wF_0^2} \right)^{1/2},$$

has the value of 0.083. The largest standard deviation of an atomic coordinate is 0.0011 Å for chlorine, 0.0015 Å for oxygen, 0.0011 Å for carbon, and 0.0031 Å for hydrogen. The precision of the structure determination is clearly quite high.

The $\text{Cl}_2\text{C-}$and--CH(OH)_2 groups are in a staggered orientation about the C-C axis. Figure 9.1 shows the dihedral angles which specify the orientation of the various atoms about the C-C axis.

Bond lengths and angles are shown in Fig. 9.2, as calculated from the parameters before the last cycle of least squares. Bond lengths and angles from the final parameters have not yet been calculated, but they can be only trivially different from those reported. For the bond lengths involving hydrogen atoms these standard deviations are about 0.004 Å; for the others, about 0.002 Å. The standard deviations of the angles are probably from 0.1° to 0.2°. The bond lengths all appear normal, and differences in length among chemically equivalent but crystallographically nonequivalent bonds do not appear significant, with the exception of the difference between the two O-H bonds. This difference is probably a real effect arising from the different strengths of the two hydrogen bonds in which the two OH groups are involved (see below). Some of the differences among chemically equivalent angles are clearly significant and must be real effects resulting from the packing of the molecules.

Each oxygen atom is involved in two hydrogen bonds. Two $\text{O}_2-\text{H}_2 \ldots \text{O}_1$ bonds link two molecules about each of the symmetry centers at $(0,0,0)$ and $(0,\frac{1}{2},\frac{1}{2})$. Each molecule is also linked by two $\text{O}_1-\text{H}_1 \ldots \text{O}_2$ bonds to two neighboring molecules in a helical chain about one of the other of the screw axes at $(0,y,\frac{1}{2})$ and $(0,y,\frac{3}{2})$ along the C-C axis.

From the interatomic distances within the two types of hydrogen bond it appears that neither type is very strong. That the O_2-H_2 bond is slightly longer than the O_1-H_1 bond is consistent with the shorter overall length of the $\text{O}_2-\text{H}_2 \ldots \text{O}_1$ bond relative to the $\text{O}_1-\text{H}_1 \ldots \text{O}_2$ bond, even though the latter is more nearly straight.

The present study is apparently the first structure determination by neutron diffraction in which three-dimensional data has been used on the same large scale as is commonly employed in x-ray analysis. The results clearly show the practicability of such large-scale neutron diffraction problems and that the precision attainable is as high as in the x-ray method.

Neutron Diffraction Measurements from Alkali Halide Crystals

H. A. Levy W. R. Dusing P. A. Agron

Neutron diffraction measurements from single crystal specimens of a series of alkali halide crystals were undertaken for three reasons: (1)
test the consistency and precision of intensity measurements with the Oak Ridge Automatic Neutron Diffractometer, (2) to obtain a consistent set of nuclear scattering amplitudes for the alkali metals and the halogens, and (3) to obtain precise values of the thermal-displacement parameters for these crystals. In this report, the results of measurements on KCl, NaCl, and RbCl are presented. Studies of other alkali halides are under way.

The measurements were all made with the Oak Ridge automatic instrument installed at the ORR. The sample crystals were at room temperature, $23 \pm 2^\circ$C. Intensities were corrected for absorption and converted to squared structure factors in the usual way and were then analyzed by least squares to determine the scale factor for intensity, the ratio of the metal nuclear scattering amplitude to that of chlorine, and the thermal parameters of both ions.

Table 9.1 lists various measures of agreement between observed and computed squared structure factors for the three crystals. Table 9.2 lists the parameters resulting from refinement, along with their precision measures (standard error) resulting from the least-squares procedure. For these refinements, the chlorine scattering amplitude was given its presently accepted value, 0.98 fermi units; this procedure was adopted to avoid the need for establishing independently the absolute intensity scale, for which the available

<table>
<thead>
<tr>
<th></th>
<th>NaCl</th>
<th>KCl</th>
<th>RbCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1^a</td>
<td>0.99</td>
<td>0.86</td>
<td>0.88</td>
</tr>
<tr>
<td>R_1</td>
<td>0.019</td>
<td>0.026</td>
<td>0.023</td>
</tr>
<tr>
<td>R_2</td>
<td>0.029</td>
<td>0.036</td>
<td>0.046</td>
</tr>
<tr>
<td>Number of measurements</td>
<td>49</td>
<td>117</td>
<td>91</td>
</tr>
<tr>
<td>Number of nonequivalent reflections</td>
<td>32</td>
<td>38</td>
<td>45</td>
</tr>
</tbody>
</table>

\[
\sigma_1^a = \left[\sum w(F_0^2 - F_c^2)^2/(N_0 - N_p) \right]^{1/2}
\]

\[
R_1 = \frac{\sum |F_0^2 - F_c^2|}{\sum F_0^2}
\]

\[
R_2 = \left[\sum w(F_0^2 - F_c^2)^2/\sum w F_0^2 \right]^{1/2}
\]
Table 9.2. Nuclear Scattering Amplitudes and Thermal Parameters for NaCl, KCl, and RbCl

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NaCl</th>
<th>KCl</th>
<th>RbCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_M (this study)</td>
<td>0.355 ± 0.004c</td>
<td>0.370 ± 0.003c</td>
<td>0.696 ± 0.002c</td>
</tr>
<tr>
<td>f_M (previous measurements)</td>
<td>0.351 ± 0.006d</td>
<td>0.35 ± 0.01d</td>
<td>0.71 ± 0.03e</td>
</tr>
<tr>
<td>B_M b</td>
<td>1.63 ± 0.04</td>
<td>1.86 ± 0.03</td>
<td>2.11 ± 0.03</td>
</tr>
<tr>
<td>B_{Cl} b</td>
<td>1.42 ± 0.01</td>
<td>1.90 ± 0.01</td>
<td>2.24 ± 0.02</td>
</tr>
</tbody>
</table>

a Metal scattering amplitude, relative to $f_{Cl} = 0.98$ (assumed).
b The isotropic temperature factor coefficient. The mean square thermal displacement is $B/8\pi^2$.
c The errors are least-squares standard errors and reflect precision of fit only.
d Reported in Neutron Cross Sections, BNL-325.
Fig. 9.4. Chloral Hydrate – View Perpendicular to (100), Showing Hydrogen Bonding in One Layer of the Crystal Structure.
accuracy is not as great as for relative measurements.

The resulting nuclear scattering amplitudes for Na, K, and Rb are of greater precision than were those previously available and are within the previous experimental uncertainties. The thermal parameters for a given crystal show the expected inverse variation with the mass of the atom, being greatest for sodium and least for rubidium. The near equality of the thermal parameters for K and Cl is in accord with their nearly equal masses. From one crystal to another, the thermal parameters increase directly as the unit cell dimension, probably reflecting the corresponding decrease in the binding energy of the crystal.

The agreement between observed and calculated squared structure factors is strikingly close, confirming the high consistency and precision of the measurements made by the automatic instrument.

X-Ray Diffraction Studies of Liquid Structure

M. D. Danford
H. A. Levy
O. E. Eskal

Introduction. — Research for the past year centered around the development of methods for data analysis, including a least-squares program for parameter refinement. The FORTRAN general least-squares program, developed by W. R. Busing of this Laboratory, was adapted to the liquid-structure problem and is now an integral part of the data analysis procedure.

Work on structure in molten alkali halides has continued, but has not progressed sufficiently to warrant a report at this time. Data were obtained for three aqueous hydrolyzed uranyl chloride solutions and two uranyl perchlorate solutions, with statistical precision sufficient to define intensity-curve features to the largest scattering angles. Analysis of these data is proceeding. Work on the structure of water at room temperature and on an aqueous solution of hydrolyzed lead perchlorate is nearing completion, and preliminary results for these two cases are presented.

The Structure of Water. — The great number of reports on theoretical and experimental studies of the water structure have made a considerable contribution to a greater understanding of the liquid state, although the basic conclusions, in many cases, have differed. This report presents preliminary results from an x-ray diffraction study of water at room temperature, undertaken in an attempt to consolidate results and remove conflicts from past studies.

The data were obtained using the x-ray diffractometer for liquids, described briefly in previous reports.

The observed diffracted intensity was interpreted in the usual way to yield the radial distribution function shown in Fig. 9.6. From this curve, the following conclusion may be drawn regarding the atomic arrangements in water.

The first peak at about 2.9 Å is assignable with confidence to the nearest neighbor O–O interaction and corresponds to an average number of neighbors of about 4.5. A broad, rising, incompletely resolved feature shows a concentration of distances between 3 and 4.5 Å, followed by a slightly more prominent maximum which indicates another group of neighbors at about 4.80 Å.

Comparison of this distance spectrum with that of ice (four neighbors at 2.76 Å and 12 at 4.50 Å) suggests a close relation between the ice and water atomic arrangements and indeed led to a plausible model for describing the water arrangement. In this model the basic network arrangement of ice is maintained in a somewhat expanded form, conforming to the first radial distribution peaks at 2.9 and 4.8 Å. The proper density then requires the addition of about one water molecule per four molecules in the network in a position to yield...
distances intermediate between the first and second neighbors of ice; this "interstitial" molecule can be placed, in conformity with the radial distribution curve, within the cavities of the ice-like network.

The model was sufficiently successful in accounting for the radial-distribution curve features to warrant an attempt at refinement. For this purpose, in the interest of simplicity, the basic hexagonal symmetry of the ice structure was assumed, and the dimensions of the network were permitted to be altered anisotropically; that is, in the network there are two nearest O–O distances, one corresponding to three neighbors and the other to one. The interstitial molecule was restricted to positions of threefold symmetry within the cavity. The basic distance parameters of this model are thus the two O–O distances in the network and the shortest distance from the interstitial molecule to the framework. The number of interstitial molecules was fixed to maintain proper density.

These basic parameters were refined by the method of least squares to give a fit to the observed reduced intensity function. All distances out to 10 Å were included, properly related to the three basic parameters.

The result of this refinement is shown in Figs. 9.5 and 9.6, which compare observed and calculated reduced intensity functions and radial-distribution functions. Significant features of the refined model are the following:

1. Each network oxygen atom has one network neighbor at 2.77 Å and three network neighbors at 2.95 Å.
2. Each interstitial oxygen atom has three network neighbors at 2.96, 3.29, 3.43, and 3.90 Å.
3. The ratio of network molecules to interstitial molecules is 3.88, corresponding to filling 51.6% of the "cavities."

The success in fitting this model to the observed data is great enough to lend the model considerable credence. It may be mentioned that various models proposed by others, including those of Pauling\(^\text{10}\) and Bernal,\(^\text{13}\) were examined and were judged to be inconsistent with the observed radial-distribution function.

Correlation of the present results with other studies, including thermodynamic properties, is under way.

Hydrolyzed Lead Perchlorate Solution. — Ultracentrifugation of lead perchlorate solutions, with varying pH, discussed in another section of this report, indicated that polymeric species exist in solution. Specifically, at a ratio (OH\(^-\)/Pb equal to 0.93, the degree of polymerization is approximately 4, suggesting a species [Pb(OH)]\(^4+\). To provide additional information concerning this species, an x-ray diffraction study of a solution approximately 5 M in Pb\(^{2+}\), with about the same ratio (OH\(^-\)/Pb, was undertaken.
The radial-distribution function, Fig. 9.7, shows a prominent peak at about 3.83 Å which is attributed to Pb–Pb interactions. The area of the peak, assuming that all other interactions in the neighborhood of this distance can be represented by a continuous distribution of distances, corresponds to about three lead neighbors per lead atom. The only other discernible feature of structural significance is the first peak at about 2.5 Å, attributed to close Pb–O interactions. The area of the peak corresponds to about four oxygen atom neighbors per lead atom.

The results are consistent with a model conforming to the symmetry of the point group T_{d} having four lead atoms in a tetrahedral arrangement. A hydroxyl ion is assumed to be above the centers of each of the planes containing three lead atoms, along a line perpendicular to the planes as shown in Fig. 9.8, giving three (OH)⁻ neighbors per lead atom.

A least-squares refinement of the parameters for this model, using the portion of the observed data with s > 7, gave a Pb–Pb distance of 3.828 ± 0.002 Å and a Pb–O distance of 2.52 ± 0.02 Å (the errors are the least squares standard deviations).

Fig. 9.7. Radial Distribution Function for Aqueous Pb(OH)ClO₄, Calculated from Observed Data.

Fig. 9.8. Model for Polymeric Unit [Pb(OH)]₄⁴⁺. Lead atoms are designated by small circles. Large circles represent assumed positions for oxygen atoms.

A Contour-Plotting Computer Program

H. A. Levy R. D. Ellison

A program has been prepared to plot contours of a two-dimensional density function using the California Computer Products model 570 magnetic-tape plotter. The code is written in FORTRAN, with all parts that apply specifically to this plotter contained in separate subroutines so as to facilitate conversion of the code for use with other plotters.

The function whose contours are to be plotted must have been previously evaluated at points on a grid. The user must supply this array and a subroutine to regulate its storage and conversion to proper form for use by this code. Other data to be supplied by the user are: (1) the direction of projection or, for a three-dimensional problem, the number of sections to be plotted; (2) the portions of the input array that are to be plotted; (3) the scale of the plot; (4) the angle between axes; (5) the unit of length as measured along each axis; and (6) the contour interval and the minimum and maximum contour levels to be plotted. The axes
may be interchanged to control the orientation of the plot on the page, and, if desired, a reference net may be plotted.

Contour points are located by inverse linear interpolation along the sides of triangles formed by passing three sets of parallel lines through the grid. The code finds all the contours passing through a pair of these triangles and scans the entire grid, using successive pairs of triangles rather than tracing a single contour its entire length before considering the next one.

Figure 3.9 shows one section of a Patterson (vector-density) function as plotted by this program. The data for this plot are the neutron diffraction intensities from a crystal of potassium hydrogen chloromaleate. The function was evaluated using the MIFR1 code written by W. G. Sly and D. P. Shoemaker (Accession No. 118, American Crystallographic Association Computer Program Listing); the array of values was put into form for use by the plotter program by the Patterson Superposition Program written by B. R. Penfold (Accession No. 167, American Crystallographic Association Computer Program Listing).

A Computer Program to Postulate Crystal Structures

W. R. Busing

An experimental computer program has been prepared which will postulate crystal structures when given the unit cell size, symmetry, and number of molecules per cell. The present program makes use of some chemical information by excluding structures with interatomic distances shorter than a specified radius sum. For ionic crystals it also calculates an approximate Coulomb energy for each structure. Future versions will make use of more detailed information on molecular geometry.

Two purposes are foreseen for a program of this type. One is to deduce new chemical knowledge by comparing crystal structures postulated on the
basis of preliminary information with those determined experimentally. The other is to serve as an aid to the solution of structures from x-ray or neutron diffraction data. For this purpose the program compares the structure factors calculated for each trial arrangement with those obtained from the observed diffraction intensities. The program has been used successfully in this way to obtain a trial structure for LiCsF$_2$ based on 13 observed x-ray intensities.

Structures are generated by advancing the atoms across a grid of points in the basic asymmetric unit until all acceptable combinations of positions have been obtained. As each type of atom is placed, the symmetry-related atoms are generated in all the asymmetric units adjacent to the basic one. A position is rejected if it is too close either to a previously accepted atom or to a symmetry-related atom of its own type. Special positions are recognized by the coincidence of two or more equivalent locations, and the number of atoms occupying the site are computed. Any atoms of a given kind which are not needed to fill the site are treated as a new type of atom to be placed. Positions which require more than the available number of atoms are rejected.

The interval of the grid over which the atomic positions are scanned must be chosen so that the special positions of the space group are included, and the limits of the scan are selected to avoid duplication of symmetry-related points. Computing time is conserved by restricting the scan to the special positions when the number of atoms available is less than the number of general positions. The range of scan for the first type of atom is further reduced to prevent the generation of equivalent structures.

The time required on the IBM 7090 computer will be less than 20 min for many types of problems. Further work is in progress to improve the program and to extend its applications.

\[19\] Mathematics Panel.

Computer Programs for Crystallography

D. J. Wehe19
W. R. Busing
H. A. Levy

In the field of x-ray and neutron diffraction crystallography there are certain computational procedures which are used so universally that it would be very desirable to avoid duplicating the effort of programming them for a high-speed computer. This goal has been difficult to attain, however, because of the differences from time to time and from place to place in the kind of machine available and in the standard operating procedures used. For example, certain programs which were originally written for the Oracle were later reprogrammed for the IBM 704 computer. These were then revised once when the Oak Ridge operating system was adopted and again for use with the IBM 7090 computer. Crystallographers at other locations have made still other revisions to adapt these programs to the systems available to them.

Now, with new computing machines proposed for the Laboratory, we have attempted to expedite future changes by rewriting several programs in the universal language of FORTRAN and providing detailed reports or program descriptions. These programs include the calculation of absorption corrections for single crystal diffraction measurements, a general least-squares program for fitting a set of observations with an arbitrary function, a crystallographic structure factor least-squares refinement program, and a program for evaluating interatomic distances, angles, and other functions of the least-squares parameters with their standard errors. Work is also in prog-
ress on revised programs to control the ORNL automatic three-dimensional neutron diffractometer and to process the data produced by this instrument.

CALORIMETRY
Low-Temperature Heat Capacity of Potassium Hexabromorhenenate(IV)
R. B. Bevan, Jr. R. A. Gilbert R. H. Busey

The need to confirm the anomalous heat capacity of $K_2\text{ReBr}_6$ observed25 above 200°K has prompted further measurements on this compound. Unusual thermal behavior was not unexpected, however, since the similar compound, $K_2\text{ReCl}_6$, has a very extraordinary low-temperature heat capacity.26 The procedure for verifying the results was the same as employed in the $K_2\text{ReCl}_6$ measurements, namely, measurement of the heat capacity of a sample of $K_2\text{ReBr}_6$ prepared by a different procedure. A bromide analysis is not a sensitive method for determining the purity with respect to a hydrolysis-product impurity. For example, the presence of 1 mole % K$_2$Re(OH)Br$_5$ would lower the bromide content only 0.1% of the theoretical value.

Preliminary measurements were made on a sample prepared by recrystallization of the original sample of $K_2\text{ReBr}_6$ from constant boiling aqueous HBr (48%). Results in the anomalous region (200 to 300°K) differed significantly from the results on the first sample. The measurements on this sample were discontinued.

A third sample was prepared27 by HBr reduction28 of KReO$_4$ in the presence of an equivalent amount of KBr. The solution was kept under 1 atm pressure of HBr during the reduction and crystallization of the product in order to minimize hydrolysis. The bromide analyses gave (64.33 ± 0.06)% vs 64.46% theoretical bromide content.

The heat capacity of this third sample is lower than the first by 0.5% at 40°K, 1.2% at 100°K, and 2.0% at 200°K. In the region of the antiferromagnetic transition (13 to 18°K), the temperature of the heat capacity maximum is approximately 14.8 vs 15.1°K for the first sample. In the anomalous region above 200°K, the heat capacity of the third sample has a single, broad maximum at 258°K instead of two maxima at 225 and 246°K observed on the first sample. The heat contents from 200 to 290°K of the two samples, however, agree to 0.1%.

The poor agreement between the two samples places a large uncertainty upon the entropy calculated from the data. With the data at present available, it is not possible to decide which sample most closely represents pure $K_2\text{ReBr}_6$, if it exists. The revised entropy of $K_2\text{ReBr}_6$ at 298.16°K is 108.0 ± 1.5 cal deg$^{-1}$ mole$^{-1}$.

Molar Enthalpies of Mixing in the Molten LiF-KF System
R. A. Gilbert

Preliminary data reported elsewhere29 showed that molar enthalpies of mixing in the liquid LiF-KF system are obtainable, as a function of the composition, by means of the Bunsen ice calorimeter. The study of this system at 875°C is now complete, and the results are given in Table 9.3 and shown graphically in Fig. 9.10.

The value reported for the 50-50 mixture (-1213 cal/mole) confirms the estimate by Aukrust et al.,30 that the maximum enthalpy of mixing in this system should be about 1.2 kcal.

The system exhibits energetic asymmetry as is shown by the following limiting heats of solution:

for KF in LiF, \(\left(\frac{\partial \Delta H^m}{\partial X}\right)_{X \to 1} = -4945\) cal/mole;

for LiF in KF, \(\left(\frac{\partial \Delta H^m}{\partial X}\right)_{X \to 0} = -3886\) cal/mole.

27By D. E. LaValle of the Analytical Chemistry Division.

28CrBr$_2$ was used as reducing agent for the first sample.

Table 9.3. Heat-of-Mixing Data for the System LiF-KF

<table>
<thead>
<tr>
<th>X_{LiF}</th>
<th>Total Moles</th>
<th>Calories Obtained</th>
<th>Calories Possible</th>
<th>Difference</th>
<th>(\Delta H^M) (cal/mole)</th>
<th>(\frac{\Delta H^M}{X(1-X)}) (cal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.101</td>
<td>0.1833</td>
<td>3331</td>
<td>3399</td>
<td>- 68</td>
<td>- 371</td>
<td>-4090</td>
</tr>
<tr>
<td>0.193</td>
<td>0.1921</td>
<td>3470</td>
<td>3551</td>
<td>-131</td>
<td>- 682</td>
<td>-4371</td>
</tr>
<tr>
<td>0.301</td>
<td>0.2077</td>
<td>3616</td>
<td>3813</td>
<td>-197</td>
<td>- 948</td>
<td>-4502</td>
</tr>
<tr>
<td>0.385</td>
<td>0.2280</td>
<td>3937</td>
<td>4187</td>
<td>-250</td>
<td>-1096</td>
<td>-4624</td>
</tr>
<tr>
<td>0.503</td>
<td>0.2407</td>
<td>4082</td>
<td>4374</td>
<td>-292</td>
<td>-1213</td>
<td>-4852</td>
</tr>
<tr>
<td>0.593</td>
<td>0.2600</td>
<td>4404</td>
<td>4705</td>
<td>-301</td>
<td>-1158</td>
<td>-4805</td>
</tr>
<tr>
<td>0.747</td>
<td>0.3340</td>
<td>5682</td>
<td>5993</td>
<td>-311</td>
<td>- 931</td>
<td>-4942</td>
</tr>
<tr>
<td>0.900</td>
<td>0.3441</td>
<td>5970</td>
<td>6125</td>
<td>-155</td>
<td>- 450</td>
<td>-4987</td>
</tr>
</tbody>
</table>

Fig. 9.10. Molar Integral Heats of Mixing (\(\Delta H^M \)) in Mixtures of LiF-KF at 875°C.

The relative partial molal heat contents of the components can be calculated from the equation shown in Fig. 9.10 and are

\[
\bar{L}_{\text{LiF}} = -X_{\text{LiF}}^2 (1358 + 7994X_{\text{LiF}} - 4407X_{\text{LiF}}^2),
\]

\[
\bar{L}_{\text{KF}} = -X_{\text{KF}}^2 (4535 + 3758X_{\text{KF}} - 4407X_{\text{KF}}^2).
\]

MASS SPECTROMETRY

A Mass Spectrometric Investigation of the Decomposition of Ammonia

C. E. Melton

The radiolytic and catalytic decomposition of ammonia were investigated with our high pressure (up to 1 mm in the ionization chamber) research mass spectrometer.

In the radiolytic study, \(\text{NH}_3 \) was irradiated with 90-ev electrons over the pressure range of 0.001 to 1 mm, and charged transient species, both positive and negative, were observed by employing the techniques previously developed at this Laboratory.\(^{31}\) The \(\text{NH}_4^+ \) was by far the most abundant species observed in the radiolysis at 0.1 mm pressure and accounted for over 80% of the total ionization (Table 9.4). The rate constant and cross section for \(\text{NH}_4^+ \) production by the reaction given in Table 9.4 were determined, using the estimates and approximations previously noted.\(^{32}\)

In the negative ion spectrum, transient species of mass greater than the parent (mass 17) are negligible, as shown by Table 9.5. It is also noted in Table 9.5 that the positive ions are about \(10^4 \) times more abundant than the negative ions.

Table 9.4. Transient Species Observed in the Radiolysis of Ammonia at 0.1 mm Pressure

<table>
<thead>
<tr>
<th>m/e</th>
<th>Positive Ion</th>
<th>Percent Abundance</th>
<th>Probable Reaction</th>
<th>k in 10^{-9} cc molecule$^{-1}$ sec$^{-1}$</th>
<th>$\sigma(10^{-16}$ cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>N</td>
<td>0.1</td>
<td>$N_2H \rightarrow N^+ + 3H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NH</td>
<td>0.4</td>
<td>$NH_2 \rightarrow NH^+ + 2H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NH$_2$</td>
<td>4.3</td>
<td>$NH_3 \rightarrow NH_2^+ + H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NH$_3$</td>
<td>12.7</td>
<td>$NH_3 \rightarrow NH_3^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NH$_4$</td>
<td>82.2</td>
<td>$NH_3^+ + NH_3 \rightarrow NH_4^+ + NH_2$</td>
<td>1.5</td>
<td>44</td>
</tr>
<tr>
<td>29</td>
<td>N$_2$H</td>
<td>0.03</td>
<td>$N^+ + NH_3 \rightarrow N_2H^+ + 2H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>N$_2$H$_2$</td>
<td>0.01</td>
<td>$NH^+ + NH_3 \rightarrow N_2H_2^+ + 2H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>N$_2$H$_3$</td>
<td>0.02</td>
<td>$NH^+ + NH_3 \rightarrow N_2H_3^+ + H$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>N$_2$H$_4$</td>
<td>0.08</td>
<td>$NH_2^+ + NH_3 \rightarrow N_2H_4^- + H$</td>
<td>0.004</td>
<td>0.1</td>
</tr>
<tr>
<td>33</td>
<td>N$_2$H$_5$</td>
<td>0.02</td>
<td>$NH_2^+ + NH_3 \rightarrow N_2H_5^- + N$</td>
<td>0.001</td>
<td>0.03</td>
</tr>
<tr>
<td>35</td>
<td>N$_2$H$_7$</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.5. Transient Species Observed in the Radiolysis of Ammonia at 1.2 mm Pressure

<table>
<thead>
<tr>
<th>m/e</th>
<th>Negative Ion</th>
<th>Percent Abundancea</th>
<th>Probable Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>NH</td>
<td>0.24</td>
<td>$NH_3 \rightarrow NH^- + 2H$</td>
</tr>
<tr>
<td>16</td>
<td>NH$_2$</td>
<td>45.90</td>
<td>$NH_3 \rightarrow NH_2^- + H$</td>
</tr>
<tr>
<td>17</td>
<td>NH$_3$</td>
<td>51.91</td>
<td>$NH_3 \rightarrow NH_3^-; NH_3^- + NH_3 \rightarrow NH_3^- + NH_3$</td>
</tr>
<tr>
<td>28</td>
<td>N$_2$</td>
<td>0.04</td>
<td>$NH_3^- + NH_3 \rightarrow N_2^- + 6H$</td>
</tr>
<tr>
<td>31</td>
<td>N$_2$H$_3$</td>
<td>0.51</td>
<td>$NH_3^- + NH_3 \rightarrow N_2H_3^- + 3H$</td>
</tr>
<tr>
<td>33</td>
<td>N$_2$H$_5$</td>
<td>0.21</td>
<td>$NH_2^- + NH_3 \rightarrow N_2H_5^-$</td>
</tr>
<tr>
<td>34</td>
<td>(NH$_3$)$_2$</td>
<td>0.90</td>
<td>$NH_3^- + NH_3 \rightarrow (NH_3)_2^-$</td>
</tr>
<tr>
<td>42</td>
<td>N$_3$</td>
<td>0.04</td>
<td>$N_2H_5^- + NH_3 \rightarrow N_3^- + 6H$</td>
</tr>
<tr>
<td>43</td>
<td>N$_3$H</td>
<td>0.06</td>
<td>$N_2H_3^- + NH_3 \rightarrow N_3H^- + 5H$</td>
</tr>
<tr>
<td>44</td>
<td>N$_3$H$_2$</td>
<td>0.12</td>
<td>$(NH_3)_2^- + NH_3 \rightarrow N_3H_2^- + 7H$</td>
</tr>
<tr>
<td>49</td>
<td>N$_3$H$_8$</td>
<td>0.01</td>
<td>$(NH_3)_2^- + NH_3 \rightarrow N_3H_8^- + 2H$</td>
</tr>
</tbody>
</table>
| 51 | (NH$_3$)$_3$ | 0.01 | $(NH_3)_2^- + NH_3 \rightarrow (NH_3)_3^-$ |}

aNH$_2^+ = \frac{1}{8000}$
ions, for the conditions utilized in this experiment. It is clear therefore, that the principal charged intermediate in the radiolytic decomposition of NH₃ is the NH₄⁺ ion.

In the catalytic decomposition of NH₃, the NH₄⁺ ion was also the most abundant transient species observed (Table 9.6). These results were obtained by using a platinum catalyst in the ionization chamber of the mass spectrometer. The transient radicals were ionized by electrons for detection in the mass spectrometer, but the ions evolving from the hot catalyst were observed directly. By utilizing mixtures of H₂:NH₃ and D₂:NH₃, we were able to ascertain that NH₄⁺ is produced by a reaction between NH₃ and H₂ which is formed from the decomposition of NH₃. The rate of NH₄⁺ formation is dependent upon the first power of the H₂ pressure rather than (H₂)₁/₄, which suggests that NH₃ reacts with H₂ molecules rather than H atoms adsorbed on the surface.

The production of NH₄⁺ by catalysis has an important bearing on our radiolytic study. We were unable to determine conclusively the fate of the NH₄⁺ in the radiolytic study because of possible interference from such things as products formed by ion-molecule reactions. However, in the catalytic study, NH₄⁺ was the only positive ion produced by the catalyst, thus giving us only a single ion beam to investigate. (We have already shown that the reactions of ions in ion-molecule reactions do not depend upon the source of the ion.) Therefore, by adding N₂, H₂, or NH₃ to the system, any other ions observed would have been produced by a reaction between NH₄⁺ and the neutral molecules added. Since no other positive ions were observed even at pressures in the ionization chamber as high as 1 mm of the reactant gases, we conclude that NH₄⁺ does not undergo subsequent ion-molecule reactions with N₂, H₂, or NH₃. This illustrates how catalytic investigations can be utilized to supplement radiolysis studies.

The activation energy for the catalyzed decomposition of NH₃ was also investigated. This was done by using two different methods. Method 1 consisted in determining the activation energy for several different temperature ranges (e.g., 300 to 310, 320 to 330°C, etc.). Ordinarily the observed activation energy is independent of temperature, but in our flow system the concentration of NH₃ remains essentially constant, whereas the concentration of the product H₂ is a function of temperature. Since the reaction is retarded by H₂ (see Fig. 9.11), the measured activation energy varies with the concentration of H₂ and therefore temperature. Ten different determinations, utilizing this method and taking the extrapolated value as the "true" activation energy, gave a value of 44 kcal in the pressure range of from 5 to 15 μ. The value estimated utilizing this method is known to be low by the amount of the heat of adsorption of NH₃ on platinum.

Method 2 consisted in determining the activation energy over a very small temperature range, utilizing a 20H₂:80NH₃ starting mixture in the reaction chamber. By starting with an excess of H₂ and producing less than 1% of NH₃ decomposition, the retarding by H₂ can be considered as constant. This method gives a value of 53 kcal for the activation energy, but the value is high by the amount of the heat of adsorption of H₂ on platinum. The true value of the activation energy therefore lies between 44 and 53 kcal. Literature data cover the broader interval from 40 to 140 kcal.

<table>
<thead>
<tr>
<th>Species</th>
<th>Concentration of N₂ᵇ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-N</td>
<td>1</td>
</tr>
<tr>
<td>-NH</td>
<td>6</td>
</tr>
<tr>
<td>-NH₂</td>
<td>130</td>
</tr>
<tr>
<td>NH₂⁻</td>
<td>0.01</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>140</td>
</tr>
</tbody>
</table>

Two-Stage Mass Spectrometer

Russell Baldock L. E. Idom

The two-stage mass spectrometer has been developed into a highly sensitive and reliable instrument for the accurate determination of isotopic abundance ratios and is being used continuously in support of the neutron cross-section measurement program of the Chemistry Division. Many measurements of an exploratory nature have been made in order to establish the quality and purity of the starting materials and to monitor chemical procedures for possible introduction of contaminants following irradiation. Considerable effort has been made to ensure that the microgram or less of material used for the mass spectrometer analysis is in no way contaminated by impurities in the components of the ion-source oven. Tantalum ribbon baked for approximately 8 hr at 2500°C in a high vacuum has been satisfactorily used as an oven material in order to compile a series of measurements of the isotopic abundance ratios which were required in the neutron cross section of Ce^{140}. Tantalum ribbon, pretreated in the same manner, was also satisfactorily used to complete a series of isotopic abundance measurements required for the measurement of the neutron cross section of Sm^{150}. Rhenium ribbon baked for approximately 8 hr at 2000°C in a high vacuum has been entirely satisfactory as oven material to vaporize bismuth for analysis in the mass spectrometer.

Electron Shake-Off and Molecular Fragmentation as the Result of Nuclear Decay37

T. A. Carlson

A specially designed mass spectrometer has been used to measure the relative abundances of the ions formed following the decay of a radioactive gas. Much of the work was recently presented in the Physics Division Annual Progress Report, ORNL-3268, under the following titles:

1. "Recoil Energy and Charge Spectra for the Na^{23} Ions Formed from the \(\beta^- \) Decay of Ne^{23}," T. A. Carlson.
2. "Electron Shake-Off Following the \(\beta^- \) Decay of A^{41}," T. A. Carlson.
3. "Fragment and Charge Spectra of the Ions Formed Following Radioactive Decay of C_{2}H_{4}I^{131} and CH_{3}I^{130}," T. A. Carlson and R. M. White.

Besides the above studies, a paper on the decomposition of (CH_{3}Xe^{131}) following the nuclear decay of CH_{3}I^{133} was published in the Journal of Chemical Physics. Completed, but not yet reported, is the investigation of CH_{3}I^{125} and C_{2}H_{5}I^{125}, in which the role of internal conversion was evaluated. Calculations were also made of the extent of electron shake-off due to recoil energy following

37 In collaboration with the Physics Division.
the decay of He\(^6\), by use of the sudden approximation; agreement with experimental results was found to be satisfactory.

MOLECULAR BEAM STUDIES

Reaction of D with H\(_2\)

S. Datz G. E. Moore E. H. Taylor

Crossed molecular beam techniques were used to study the reaction D + H\(_2\) = HD + H. A schematic diagram of the apparatus is shown in Fig. 9.12. The deuterium atomic beam was formed by thermal dissociation in a tungsten furnace heated to 2800°K. The beam was modulated by a 1080-cycle mechanical chopper and collimated. The molecular beam of H\(_2\) was formed by effusion through "crinkly foil" slits\(^{38}\) at 77°K. The collision region was surrounded by a pumped liquid-helium-cooled trap which acted as a pump for the hydrogen gas. The detector was a 135° magnetic sector mass spectrometer that could be rotated about the scattering center. The use of beam modulation and phase sensitive detection\(^{39}\)

![Fig. 9.12. Molecular Beam Apparatus.](image-url)
permitted the observation of signals in the presence of the very high background levels (signal/background ratio = 10^{-4}) from ambient gas of the same mass. In addition, the choice of 1080 cycles for the modulating frequency permitted the observation of phase shifts resulting from time-of-flight changes.

A calculation of the angular distribution of centroid density was carried out for the two Maxwellian beams40 for D at 2800 and H\textsubscript{2} at 100°K, with the assumption of an activation energy of 7.5 kcal (see Fig. 9.13). This distribution differs slightly from the centroid flux distribution calculation outlined in ref 40 and was used because the detection in this case (electron bombardment) is density sensitive rather than flux sensitive (as with surface ionization). The change in the calculation is accomplished by dividing the distribution functions [Eqs. (18) and (22) in ref 40] by the velocity of the center of mass in the laboratory system.

The angular distribution of reaction products in the laboratory system will depend upon the momentum imparted to the product fragment in the center-of-mass (c.m.) system upon breakup of the reaction complex. The magnitude of the momentum kick in the c.m. system is a function of the initial relative energy and the energy released in the reaction. The directions of the additional momentum vectors in the c.m. system will be anisotropic if the collision efficiency is different for different molecular orientations and if the lifetime of the complex is short compared to a rotation period.

The heat of reaction in this case is 0.8 kcal. Therefore, if it is assumed that the scattering in the c.m. system is isotropic and that there is no internal excitation of the HD product molecule, the maximum displacement of the product from its centroid vector will be about 60° [compare Eqs. (33–37) of ref 40].

The results of the experiment are shown in Fig. 9.13. Signals from HD were observed from about -20 to +35°. Unfortunately, in spite of all attempts of removal, an HD impurity of about 1% was present in the modulated D atom beam. The elastic scattering of this impurity in the main beam (width about 1°) prevented measurement of the HD reaction product in the angular region from -12 to +12°. However, it is believed that the HD signals outside of this region are sufficiently reliable (i.e., free of elastic scattering contribution) to be recorded here. One reason for this belief is the result of a

scattering experiment using helium in the cross beam, in which no HD signal was observable above 10° in scattering angle.

The observed distribution of product molecules is too narrow and displaced too little (10°) from that calculated for the centroids for the assumption of no internal excitation to be realistic. Excitation of vibration is certainly not to be expected for collision involving 6 to 8 kcal/mole (activation energy about 6 kcal/mole) since the first excited vibrational level is about 10 kcal/mole above the zero point level. This leaves an impasse, since the impact parameter necessary for the absorption of so much energy in rotation is preposterously large.

Interactions of Gases and Surfaces

S. Datz G. E. Moore E. H. Taylor

If a solid is placed at the scattering center of the system described above (and the cross beam eliminated), interactions between gases (as molecular or atomic beams) and surfaces can be studied. This technique has been used to study the interactions (adsorption and energy transfer) between polished polycrystalline platinum surfaces and helium, molecular and atomic deuterium, and argon. These experiments were preliminary to catalytic investigations now under way. A summary of the gas-surface interactions follows.

The angular distributions of He, D₂, and Ar scattered from platinum depend strongly upon the temperature of the platinum surface: The distributions from a high-temperature surface (greater than about 150 to 200°C) are surprisingly specular, whereas those from a surface at lower temperature are diffuse (illustrated for D₂ in Fig. 9.14). Specular reflection requires an atomically smooth reflecting surface as well as an absence of appreciable residence of the projectile on the surface. Microscopic and diffraction studies of the platinum foil after the experiments showed large, nearly parallel, single crystals, characterized by a surprising smoothness, which apparently met the first requirement for specular reflection. At the higher surface temperatures, then, the gas molecules in the beam must not have resided on the surface for appreciable times. The transition from specular reflection at high surface temperature to diffuse reflection at lower temperatures is probably associated with the adsorption of a gaseous contaminant (not hydrogen, but probably oxygen) at the lower temperature.

Variations in the displacement of the reflected distributions from high-temperature platinum with respect to the true specular angle, as the temperature of the beam, its composition, and the angle of incidence were varied, suggest some gas-surface interaction even under these conditions. This interaction seems most likely to be a partial exchange of energy without appreciable adsorption. Indeed, an appreciable increase in the velocity of argon atoms was detected when a room temperature beam was reflected (specularly) from a high-temperature platinum surface.

Reactions of Alkali Metals

R. E. Minturn S. Datz E. H. Taylor

A number of surface-ionization gauges of different configurations were tested for the detection of atomic and molecular beams. New filament materials were studied, including a filament made by depositing and decomposing tungsten carbonyl on a very thin platinum strip. A high-purity tungsten wire drawn from single crystal tungsten by the Linde Company was superior as a filament material to any previously encountered. The problem of devising a differential detector that does not give rise to spurious effects because of scattering of beam molecules from its own members was attacked and solved.

A fast-response, surface-ionization detector utilizing an electron multiplier in order to amplify very weak signals was devised and constructed. It is to be utilized with a phase-sensitive electronic network in the study of energy distributions of product molecules.

A multidisk mechanical velocity selector was completed and installed, and it and its associated electronics were given preliminary trial runs.

Preliminary scattering experiments with rubidium and hydrogen bromide were made, and the reaction between potassium and hydrogen bromide was re-examined more closely.

Fig. 9.14. Angular Distributions of Deuterium Reflected from Platinum.
Publications

NUCLEAR CHEMISTRY

CHEMICAL SEPARATION OF ISOTOPES

RADIATION CHEMISTRY

ORGANIC CHEMISTRY

CHEMISTRY OF AQUEOUS SYSTEMS

ELECTROCHEMICAL KINETICS AND ITS APPLICATION TO CORROSION

NONAQUEOUS SYSTEMS AT HIGH TEMPERATURE

CHEMICAL PHYSICS

Papers Presented at Scientific and Technical Meetings

NUCLEAR CHEMISTRY

P. M. Lantz, "Thermal Neutron Capture Cross Section and Resonance Capture Integral of Ce144," American Nuclear Society, Boston, Massachusetts, June 18–21, 1962.

RADIATION CHEMISTRY

*Speaker.

ORGANIC CHEMISTRY

C. J. Collins, "Recent Experiments in the Deamination Reaction," University of Delaware, Newark, Delaware, April 18, 1962.

CHEMISTRY OF AQUEOUS SYSTEMS

*Speaker.

ELECTROCHEMICAL KINETICS AND ITS APPLICATION TO CORROSION

*Speaker.

NONAQUEOUS SYSTEMS AT HIGH TEMPERATURE

M. A. Bredig, "Metal Solutions in Molten Salts," Seminar, Chemistry Department, University of Tennessee, Knoxville, April 26, 1962.

CHEMICAL PHYSICS

*Speaker.

*Speaker.
INTERNAL DISTRIBUTION

1. C. E. Larson
2. Biology Library
3–5. Central Research Library
6. Laboratory Shift Supervisor
7. Reactor Division Library
8–9. ORNL – Y-12 Technical Library
Document Reference Section
10–48. Laboratory Records Department
49. Laboratory Records, ORNL R.C.
50. A. M. Weinberg
51. J. P. Murray (K-25)
52. R. G. Jordan (Y-12)
53. J. A. Swartout
54–68. E. H. Taylor
69. E. D. Shipley
70. S. C. Lind
71. M. L. Nelson
72. W. H. Jordan
73. F. L. Culler
74. A. H. Snell
75. A. Hollaender
76. M. T. Kelley
77. W. D. Manly
78. K. Z. Morgan
79. T. A. Lincoln
80. A. S. Householder
81. M. H. Lietzke
82. F. A. Posey
83. H. E. Seagren
84. J. A. Lane
85. G. E. Boyd
86–93. M. A. Bredig
94. R. W. Stoughton
95. R. B. Briggs
96. G. W. Parker
97. C. J. Borkowski
98. G. H. Jenks
99. K. A. Kraus
100. H. A. Levy
101. R. S. Livingston
102. T. E. Willmarth

103. C. H. Secoy
104. C. J. Hochanadel
105. W. H. Baldwin
106. A. R. Brosi
107. R. N. Lyon
108. S. A. Reynolds
109. P. F. Thomason
110. E. G. Bohlmann
111. C. D. Susano
112. R. Livingston
113. G. H. Cartledge
114. B. H. Ketelle
115. E. Lamb
116. R. W. Johnson
117. J. R. McNally, Jr.
118. G. D. O'Kelley
119. M. J. Skinner
120. D. S. Billington
121. H. G. MacPherson
122. J. L. Gabbard
123. R. H. Busey
124. J. J. Pinajian
125. J. Halperin
126. C. R. Baldock
127. F. F. Blankenship
128. C. J. Collins
129. J. S. Drury
130. W. R. Grimes
131. J. S. Johnson
132. W. L. Marshall
133. H. F. McDuffie
134. S. Natz
135. G. M. Watson
136. R. E. Thoma
137. D. R. Cuneo
138. P. S. Rudolph
139. G. Scatchard (consultant)
140. D. F. Hornig (consultant)
141. Isadore Perlman (consultant)
142. T. H. Davies (consultant)
143. J. D. Roberts (consultant)
EXTERNAL DISTRIBUTION

144. H. Miller, Office of Isotope Development, AEC, Washington
145. R. W. McNamee, Union Carbide Corporation, New York
147. Division of Research and Development, AEC, Washington
148. Division of Research and Development, AEC, ORO
149. Boeing Airplane Company
150. Union Carbide and Carbon Chemicals Company (South Charleston)
152–743. Given distribution as shown in TID-4500 (17th ed., Rev.) under Chemistry category (75 copies — OTS)