WIND-DRIVEN CURRENTS
IN A LARGE LAKE OR SEA

G. E. Birchfield
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy Commission, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa
Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame
The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.95
WIND-DRIVEN CURRENTS IN A LARGE LAKE OR SEA

by

G. E. Birchfield*

Applied Mathematics Division

Work performed in part under the auspices of the
U.S. Atomic Energy Commission
and
National Science Foundation, Atmospheric Sciences Section,
Grant No. GA-1078

July 1971

*Departments of Engineering Sciences and Geological Sciences, Northwestern University, Evanston, Illinois
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>THE DYNAMICAL EQUATIONS.</td>
<td>6</td>
</tr>
<tr>
<td>THE SURFACE EKMAN LAYER</td>
<td>8</td>
</tr>
<tr>
<td>THE INTERIOR AND BOTTOM FLOW</td>
<td>9</td>
</tr>
<tr>
<td>THE COASTAL BOUNDARY LAYERS</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>14</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>17</td>
</tr>
</tbody>
</table>
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
WIND-DRIVEN CURRENTS IN A LARGE LAKE OR SEA

by

G. E. Birchfield

ABSTRACT

A linear model of the Ekman dynamics for a large shallow homogeneous lake or sea is constructed to examine the mass transport balance, in particular the vertical mass flux. The role of coastal upwelling is examined for steady uniform and nonuniform wind-stress forcing.

INTRODUCTION

The purpose of this report is to construct a greatly simplified model of the wind-driven currents in a large lake or sea in order to examine how the Ekman dynamics bring about horizontal and vertical mass balance. The model incorporates the earth's rotation, and the Rossby number is assumed small enough to neglect the convective terms in the equations of motion. Horizontal and vertical turbulent mixing is incorporated in the simplest way. Because the horizontal scale of wind systems is large relative to the lake size, the model wind stress is taken as either uniform or with uniform curl, and steady in time. The important feature of small mean-depth-to-width ratio of a large lake is imposed on the model. The geometry of the model has, however, been simplified to a rectangular basin of uniform depth.

Questions to be considered concern: (1) how horizontal mass transport is partitioned between the Ekman layer transports and the geostrophic transport; (2) how the surface drift transport normal to a coast is returned to the interior of the basin; (3) how mass flux balance is achieved for a divergent surface Ekman layer; and (4) whether coastal jets appear with a uniform depth and constant Coriolis parameter. These questions and the method used to pursue them are similar to those of Pedlosky* (henceforth referred to as P), who considered an ocean basin. The principal difference here is that the variation of the Coriolis parameter with latitude may be neglected. This significantly alters the dynamics and resulting circulation.

The model used here obviously lacks many important features of a real lake or sea. Because of the simplification of the turbulent effects, the

details of the coastal circulations must be regarded with caution. Sufficient elements of the geophysical situation are incorporated, however, to provide some insight into the necessary viscous constraints on the mass transport away from the coastal regions.

THE DYNAMICAL EQUATIONS

The model lake or sea is a rectangular basin of width \(L \), length \(ML \), and uniform depth \(D \); the lake is homogeneous with density \(\rho \). It will be assumed that the horizontal dimensions of the lake are large enough for the earth's rotation to be important, but small enough so that the variation of the vertical component of the angular velocity may be neglected. The explicit condition for the latter assumption is discussed below. The equations of motion for steady state are

\[
\begin{align*}
(uu_x + vu_y + wu_z - fv &= -\frac{px}{\rho} + A_H(u_{xx} + u_{yy}) + A_vu_{zz} , \\
(uv_x + vv_y + wv_z + fu &= -\frac{py}{\rho} + A_H(v_{xx} + v_{yy}) + A_vv_{zz} , \\
uw_x + vw_y + ww_z &= -\frac{pz}{\rho} + A_H(w_{xx} + w_{yy}) + Avw_{zz} ,
\end{align*}
\]

and

\[
u_x + v_y + w_z = 0,
\]

where

\[
f = 2\Omega_0 \left(1 + \frac{\beta_0}{2\Omega_0} y \right)
\]

is the Coriolis parameter, \(\Omega_0 \) and \(\beta_0 \) are constants, and the \(y \)-axis is directed north; \(z \) increases upward from the basin bottom; and \(u, v, \) and \(w \) are the velocity components. Eddy viscosity coefficients for the horizontal, \(A_H \), and vertical, \(A_v \), are assumed constant. Currents are generated by a surface wind stress

\[
\tau = \tau(x,y) \hat{j},
\]

where \(\hat{j} \) is a unit vector along the \(y \)-axis.

Dimensionless variables are introduced with primes:
\[
\begin{align*}
(u,v) &= U(u',v'), \quad w = \frac{D}{L} Uw', \\
(x,y) &= L(x',y'), \quad z = Dz', \\
p &= \rho U L \Omega_0 \tau', \quad \Omega' = 1 + \beta' y', \quad \Omega'' = 2 \Omega',
\end{align*}
\]
and
\[
U \equiv \sqrt{1/\Omega_0 A \tau_0 / \rho}, \quad \beta' = \beta_0 L / 2 \Omega_0,
\]
where \(\tau_0 \) is a characteristic wind stress. The dimensionless equations become (dropping primes)

\[
\begin{align*}
\epsilon \vec{v} \cdot \vec{\nabla} u - fv &= -p_x + E_H \nu_2^2 u + E_v u_{zz}, \\
\epsilon \vec{v} \cdot \vec{\nabla} v + fu &= -p_y + E_H \nu_2^2 v + E_v v_{zz}, \\
\delta^2 \epsilon \vec{v} \cdot \vec{\nabla} w &= -p_z + E_H \delta^2 \nu_2^2 w + E_v \delta^2 w_{zz},
\end{align*}
\]
and
\[
\begin{align*}
u_x + v_y + w_z &= 0,
\end{align*}
\]
where \(\nu_2^2 = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 \) and \(\vec{v} = u \hat{i} + v \hat{j} + w \hat{k} \). The boundary conditions are

\[
\begin{align*}
at x = 0, 1; \ y = 0, M; \ z = 0: \ u = v = w = 0; \\
at z = 1: \ u_z = 0; \ v_z = \mathcal{E}_v^{1/2} \tau(x,y); \ w = 0.
\end{align*}
\]

Five nondimensional numbers appear:
\[
\begin{align*}
\epsilon &= U/\Omega_0 L, \text{ the Rossby number,} \\
E_H &= A_H/\Omega_0 L^2, \text{ the horizontal Ekman number,} \\
E_v &= A_v/\Omega_0 D^2, \text{ the vertical Ekman number,} \\
\delta &= D/L, \text{ the aspect ratio,}
\end{align*}
\]
and
\[
\beta = \beta_0 L / 2 \Omega_0, \text{ nondimensional } df/dy.
\]

Only small amplitude motions will be considered; that is, terms multiplied by \(\epsilon \) will be neglected. As done in \(P \), \(E_v \) and \(E_H \) will be
replaced by E in view of the lack of reliable information as to their magnitudes. The qualitative character of the flow should not be altered. It is further assumed that L is sufficiently small that

$$\beta \ll E^{1/2} \ll 1$$

may be assumed; that is, to a first approximation, f may be replaced by 2, except possibly where differentiated.

THE SURFACE EKMAN LAYER

Away from the side walls of the basin, we assume the flow variables to be represented by the sum of three parts; letting $$\vec{v} = u\hat{\imath} + v\hat{j}$$, we obtain

$$\vec{v} = \vec{v}_1(x,y,z) + \vec{v}_2(x,y,\zeta) + \vec{v}_3(x,y,\zeta'),$$

$$w = w_1(x,y,z) + w_2(x,y,\zeta) + w_3(x,y,\zeta'),$$

and

$$p = p_1(x,y,z) + p_2(x,y,\zeta) + p_3(x,y,\zeta').$$

These represent the interior or inviscid part (subscript 1), the surface Ekman corrections (subscript 2), and the bottom Ekman corrections (subscript 3). The stretched variable in the surface layer is $$\zeta \equiv E^{-1/2}(z - 1)$$ and at the bottom $$\zeta' = E^{-1/2}z$$. Each component solution represents an asymptotic series in E, in particular:

$$\vec{v}_1(x,y,z) = \vec{v}_{11} + E^{1/4}\vec{v}_{12} + E^{1/2}\vec{v}_{13} + \ldots; \quad w_1(x,y,z) = E^{1/2}w_{13} + \ldots;$$

$$p_1(x,y,z) = p_{11} + E^{1/4}p_{12} + E^{1/2}p_{13} + \ldots;$$

$$\vec{v}_2(x,y,\zeta) = \vec{v}_{21} + O(E); \quad w_2(x,y,\zeta) = E^{1/2}w_{23} + \ldots; \quad p_2 = 0(E);$$

$$\vec{v}_3(x,y,\zeta') = \vec{v}_{31} + E^{1/4}\vec{v}_{32} + E^{1/2}\vec{v}_{33} + \ldots; \quad w_3 = E^{1/2}w_{33} + \ldots;$$

$$p_3 = 0(E).$$

The upper Ekman correction solutions are of the standard form and are simply stated:

$$u_{21}(x,y,\zeta) = \frac{1}{2}\tau(x,y)e^c(\cos \zeta - \sin \zeta);$$

$$v_{21}(x,y,\zeta) = \frac{1}{2}\tau(x,y)e^c(\cos \zeta + \sin \zeta);$$

$$w_{23}(x,y,0) = -\frac{1}{2}k \cdot \text{curl} \vec{\tau} = -\frac{1}{2} \frac{\partial \tau}{\partial x}.\tag{7}$$
THE INTERIOR AND BOTTOM FLOW

If we assume $\beta = bE^n$, where b and n are constants greater than or equal to zero, the vorticity equation for the uniform depth model is found to be, from Eq. 4,

$$-2(1 + bE^n)\frac{\partial w}{\partial z} + 2bE^nv = E\nabla^2w; \ w = v_x - u_y.$$ \hspace{1cm} (8)

To accept the vertical mass flux from the surface layer, $E^{1/2}w_{23}(x,y,0)$, an interior vertical velocity $O(E^{1/2})$ is required. For a large lake or sea, n is greater than $1/2$, and hence, for the interior flow, $\partial w/\partial z$ is zero. A horizontally nondivergent bottom Ekman layer with $O(E^{1/2})$ vertical velocities is required. This then requires $O(1)$ interior geostrophic velocities.

For the assumed solution (Eq. 6), it is found that at least up to $O(E^{1/2})$ the interior variables satisfy equations of the form

$$-2\nu_{11} = -\rho_{11x},$$ \hspace{1cm} (9a)

$$+2u_{11} = -\rho_{11y},$$

and

$$0 = -\rho_{11z},$$

and

$$u_{11x} + v_{11y} = 0; \ w_{13z} = 0.$$ \hspace{1cm} (9b)

The interior flow is hydrostatic, geostrophic, and nondivergent. The vertical velocity is determined from matching with the surface layer:

$$w_{13}(x,y) = -w_{23}(x,y,0) = \frac{1}{2} \hat{k} \cdot \text{curl} \ \vec{v}.$$ \hspace{1cm} (10)

The bottom boundary layer is a conventional Ekman layer. From Eq. 6, it is found that

$$u_{31}(x,y,\zeta^i) = -(u_{11} \cos \zeta^i + v_{11} \sin \zeta^i) e^{-\xi^i},$$ \hspace{1cm} (10)

$$v_{31}(x,y,\zeta^i) = -(v_{11} \cos \zeta^i - u_{11} \sin \zeta^i) e^{-\xi^i},$$

and

$$w_{33}(x,y,0) = -\frac{1}{2} \hat{k} \cdot \text{curl} \ \vec{v}_{11}.$$ \hspace{1cm} (10)
If the interior velocity is represented by a stream function,

\[u_{11} = -\frac{\partial \psi_{11}}{\partial y}, \quad v_{11} = \frac{\partial \psi_{11}}{\partial x}. \]

then using the bottom boundary condition to match the interior vertical velocity, we have

\[\nabla^2 \psi_{11} = \hat{k} \cdot \text{curl} \, \tau = \frac{\partial \tau}{\partial x}. \quad (11) \]

This is a statement that the generation of vorticity by the wind stress is balanced by the dissipation at the bottom. Since \(\psi_{11} = 0 \) on the coast, to bring the normal velocity to zero, the interior flow is determined to this order.

THE COASTAL BOUNDARY LAYERS

The interior horizontal mass transport is \((U_1, V_1) = (u_{11}, v_{11}) + O(E^{1/4})\). To the lowest order, the transport normal to the lateral boundaries vanishes, as in the usual small \(\beta \) transport theory. To discuss the mechanics of the \(O(E^{1/2}) \) Ekman transport, the surface drift transport and the vertical Ekman suction transport, however, we must extend the solution up to and including \(O(E^{1/2}) \). This requires analysis of coastal viscous layers, which for this model means the wall boundary layers.

The surface drift transport from Eq. 7 is

\[\begin{align*}
U_2(x, y) &= E^{1/2} \int_{-\infty}^{0} u_{21} \, d\zeta = \frac{1}{2} E^{1/2} \tau(x, y) + \ldots; \\
V_2(x, y) &= E^{1/2} \int_{-\infty}^{0} v_{21} \, d\zeta = 0 + \ldots.
\end{align*} \quad (12) \]

The mass flux associated with viscous flow at the bottom, from Eq. 10, is:

\[\begin{align*}
U_3(x, y) &= -\frac{1}{2} E^{1/2} (u_{11} + v_{11}) + \ldots; \\
V_3(x, y) &= \frac{1}{2} E^{1/2} (v_{11} - u_{11}) + \ldots.
\end{align*} \quad (13) \]

The total horizontal mass transport is then

\[U = \sum_{i=1}^{3} U_i, \quad V = \sum_{i=1}^{3} V_i. \]
Since $\beta \ll 1$, there will be no $E^{1/3}$ boundary layer on the western coast. In fact, with the absence of β, the structure will be essentially the same on all four coasts. There exists an outer layer of thickness $E^{1/4}L$, which is hydrostatic and geostrophic. It brings the interior longshore velocity to zero. It accepts the bottom Ekman flux $O(E^{1/2})$ and transports it up the wall. A thinner viscous region of thickness $E^{1/2}L$, identical to that occurring in P, is needed to connect the interior flow with the surface Ekman layer.

As in P, a much thinner layer of thickness δL is required to bring the vertical velocity to zero at the wall; this layer plays no role in the mass balance to lowest order.

The only difference between the viscous layers occurring at $x^* = 0, 1$ and those at $y = 0, M$ will arise from there being no normal surface-drift transport at the latter two coasts, since the surface stress is directed in the y direction. It is therefore sufficient to discuss in detail the viscous layers occurring only at $x = 0$. By a simple transformation, solutions at the remaining coasts may be obtained.

In the vicinity of $x = 0$, let $x = E^{1/4}\eta$; the dependent variables are

\[
\begin{align*}
 u &= u_1 + E^{1/4}\hat{u}(\eta, y) + \ldots, \\
 v &= v_1 + \hat{v}(\eta, y) + \ldots, \\
 w &= w_1 + E^{1/4}\hat{w}(\eta, y, z) + \ldots, \\
 p &= p_1 + E^{1/4}\hat{p}(\eta, y) + \ldots
\end{align*}
\]

and

\[
\begin{align*}
 0 &= -\hat{p}_\eta + 2\hat{v}, \\
 0 &= -\hat{p}_y - 2\hat{u} + E^{1/4}\hat{v}\eta, \\
 0 &= -\hat{p}_z,
\end{align*}
\]

and

\[
0 = \hat{u}_\eta + \hat{v}_y + E^{1/4}\hat{w}_z.
\]

The correction flow has a horizontal divergence $O(E^{1/4})$. The second momentum equation may be written

\[
\hat{u} = \hat{u}_a + E^{1/4}\hat{u}_b = -\frac{1}{2}\hat{p}_y + \frac{1}{2}E^{1/4}\hat{v}\eta\eta.
\]
That is, the normal correction velocity in the $E^{1/4}$ region has two parts: a geostrophic part $0(E^{1/4})$ and a divergent part $0(E^{1/2})$. Only the latter plays a role in the mass balance.

The vorticity equation is

$$0 = -2 \frac{\partial \mathbf{\hat{w}}}{\partial z} - \mathbf{\hat{v}} \eta \eta \eta.$$

Since $\mathbf{\hat{v}}$ is independent of z, $\mathbf{\hat{w}}$ is a linear function of z. For the bottom boundary condition to be satisfied, an Ekman layer is required in the independent variables $x = E^{1/4} \eta$, $z = E^{1/2} \xi$; again this is a standard divergent Ekman layer near $z = 0$. If $\mathbf{\hat{w}}(\eta, y, z) = (1 - z) \mathbf{\hat{w}}(\eta, y, 0)$, the Ekman suction at $z = 0$ requires

$$\mathbf{\hat{w}}(\eta, y, z) = \frac{1}{2} \mathbf{\hat{v}} \eta (1 - z).$$

The vorticity equation reduces to

$$\mathbf{\hat{v}} \eta \eta \eta - \mathbf{\hat{w}} \eta = 0;$$

at $x = 0$ we must have $\mathbf{v}_{11} + \mathbf{\hat{v}} = 0$. Hence,

$$\mathbf{\hat{v}}(\eta, y) = -\mathbf{v}_{11}(0, y) e^{-\eta},$$

$$\mathbf{\hat{w}}(\eta, y, z) = \frac{1}{2} (1 - z) \mathbf{v}_{11}(0, y) e^{-\eta},$$

and

$$\mathbf{\hat{v}}(\eta, y) = -\frac{\partial \mathbf{v}_{11}}{\partial y}(0, y) e^{-\eta} - \frac{1}{2} E^{1/4} \mathbf{v}_{11}(0, y) e^{-\eta}.$$

The vertical mass flux is

$$\mathbf{\hat{w}} = E^{1/2} \int_{0}^{\infty} \mathbf{\hat{w}} d\eta = \frac{1}{2} E^{1/2} (1 - z) \mathbf{v}_{11}(0, y).$$

This layer, having nonvanishing normal velocities at the coast, in turn forces higher-order interior velocities. To fully discuss the mass balance, we must consider these terms. The $0(E^{1/4})$ interior flow satisfies equations of the form of Eq. 9. Since there is no additional interior vertical velocity required, the matching bottom Ekman layer is nondivergent, and hence the second-order interior flow satisfies

$$\nabla_{z}^{2} \psi_{12} = 0,$$
where ψ_{12} is the stream function for the $O(E^{1/4})$ flow. Boundary conditions force the flow, e.g.,

$$x = 0: \quad u_{12}(0,y) = -\frac{\partial \psi_{12}}{\partial y} = -\hat{u}(0,y) = \frac{\partial v_{11}}{\partial y}(0,y).$$

(22)

The third-order interior flow $O(E^{1/2})$, is forced not only by the $E^{1/4}$ layer, but the thinner $E^{1/2}$ layer discussed next.

Since the $E^{1/2}$ layer is so similar to that in P (see P, Sec. 5 and appendix), only an abbreviated derivation will be given. If we let $x = E^{1/2}\xi$, the expansion for the flow variables (Eq. 14) will have the following added terms:

$$\begin{align*}
u &= \ldots + E^{1/2}\tilde{\nu}(\xi,y) + \ldots, \\
w &= \ldots + \tilde{w}(\xi,y,z) + \ldots, \\
p &= \ldots + O(E^{5/4}) + \ldots
\end{align*}$$

(23)

The tilda variables satisfy

$$\begin{align*}
0 &= 2\tilde{\nu} + \tilde{u}\xi, \\
0 &= -2\tilde{u} + \tilde{v}\xi, \\
0 &= \tilde{u}\xi + \tilde{w}z
\end{align*}$$

(24)

The flow is hydrostatic, but not geostrophic. If $\tilde{u} = \partial \tilde{\psi}/\partial \xi$, $\tilde{w} = -\partial \tilde{\psi}/\partial \xi$, these reduce to

$$\frac{\partial^2}{\partial \xi^2} (\tilde{\psi} \xi \xi + 4\tilde{\psi}) = 0.$$

The solution is found to be

$$\begin{align*}
E^{1/2}\tilde{\psi}(\xi,y,z) &= z e^{-\xi}[U_2(0,y) \cos \xi + V_2(0,y) \sin \xi] = z U_2(0,y) e^{-\xi} \cos \xi, \\
E^{1/2}\tilde{u}(\xi,y) &= U_2(0,y) e^{-\xi} \cos \xi,
\end{align*}$$
\[E^{1/2} \tilde{v}(\xi, y) = U_2(0, y)e^{-\xi} \sin \xi, \]

and

\[E^{1/2} \tilde{w}(\xi, y, z) = zU_2(0, y)e^{-\xi} (\cos \xi + \sin \xi), \]

where use has been made of the fact that \(V_2 = 0 \). The vertical mass flux is

\[\tilde{W}(y, z) = E^{1/2} \int_0^\infty \tilde{w}(\xi, y, z) \, d\xi = E^{1/2} \tilde{\psi}(0, y, z) = zU_2(0, y). \]

(25)

The forcing for the third-order interior flow \(0(E^{1/2}) \) now becomes apparent. Since the \(0(E^{1/2}) \) interior flow is also geostrophic and nondivergent, we have again

\[\nabla^2 \psi_{13} = 0, \]

(26)

where \(\psi_{13} \) is the stream function for \((u_{13}, v_{13}) \). The boundary forcing comes from imposing that the total normal \(0(E^{1/2}) \) velocity vanish at the coast; that is,

\[x = 0: \hat{u}_b(0, y) + \bar{u}(0, y) + u_{13}(0, y) = 0, \]

or

\[-\frac{1}{2} v_{11}(0, y) + E^{-1/2} U_2(0, y) - \frac{\partial \psi_{13}}{\partial y} = 0. \]

(27)

DISCUSSION

The case of vanishing curl \(\tau \) is simplest to discuss. If \(\tau = \tau(y) \), curl \(\gamma = 0 \). The Ekman suction vanishes from the surface layer; with no vertical flux of mass in the interior, no \(0(1) \) bottom Ekman layer is required, hence no interior velocity \(0(1) \). Further, with no \(0(1) \) interior velocities, no coastal layers of thickness \(0(E^{1/4}) \) are required. There remain: the uniform (in \(x \)) horizontal Ekman transport,

\[U_2(y) = \frac{1}{2} E^{1/2} \tau(y); \]

(28)

the \(0(E^{1/2}) \) geostrophic interior flow,

\[E^{1/2} u_{13}(y) = -U_2(y) \]

and

\[E^{1/2} v_{13} = 0, \]
and the viscous $E^{1/2}$ upwelling coastal layer at $x = 0, 1$. The surface current is essentially that of the Ekman layer, that is, 45° to the right of the wind stress. Lines of constant free surface height are perpendicular to the wind stress and with maximum setup downwind. The surface drift transport is returned via the interior at each value of y, with downwelling at $x = 1$, upwelling at $x = 0$ ($\tau > 0$).

In discussing the case of nonvanishing $\hat{k} \cdot \text{curl } \tau$, let

$$\tau(x) = \overline{\tau} + \Delta(x - \frac{1}{2}),$$

(29)

where $\overline{\tau} > 0$, $\Delta < 0$ are constants. Then the interior $0(1)$ flow is found from Eq. 11:

$$\nabla^2 \psi_{11} = \Delta,$$

(30)

where

$$\psi_{11} = 0 \text{ on all coasts;}$$

the interior flow is a single symmetric clockwise gyre. There is a uniform downward exit of mass from the surface Ekman layer to the bottom Ekman layer. The total flux is

$$W_I = E^{1/2} \int_S w_{11} \, dS = \frac{1}{2} E^{1/2} \int_S \hat{k} \cdot \text{curl } \overline{\tau} \, dS = \frac{1}{2} E^{1/2} M \Delta < 0,$$

(31)

where S is the area of the basin. This mass flux begins its return from the bottom to the surface Ekman layer at the coasts in the $E^{1/4}$ viscous layer. From Eq. 20, the total vertical flux in the $E^{1/4}$ layer is found by integrating around the four sides of the basin. It is found that

$$\hat{W}_T = -\frac{1}{2} E^{1/2} \langle 1 - z \rangle \oint_C \overline{\nabla}_{11} \cdot \overline{d\vec{s}} = -\frac{1}{2} E^{1/2} \langle 1 - z \rangle \Gamma$$

and

$$\Gamma = \oint_C \overline{\nabla}_{11} \cdot \overline{d\vec{s}}$$

(32)

where C is a horizontal contour encircling the basin, and Γ is the geostrophic circulation $0(1)$ at the coast. By application of Stokes' theorem to Eq. 32 and use of Eq. 11, Eq. 29 yields
\[\Gamma = \int_S \mathbf{k} \cdot \text{curl} \mathbf{\tau} \, dS = M \Delta \]

and

\[\hat{W}_T = -\frac{1}{2} \mathcal{E}^{1/2}(1-z) \int_S \mathbf{k} \cdot \text{curl} \mathbf{\tau} \, dS = -\frac{1}{2} \mathcal{E}^{1/2} M \Delta (1-z) \]

Note that this upwelling occurring on all coasts depends only on \(\text{curl} \mathbf{\tau} \) and not directly on the stress itself. The vertical flux decreases from a maximum at \(z = 0 \), to zero at \(z = 1 \).

The total vertical mass flux in the \(\mathcal{E}^{1/2} \) layer is found in a similar way by integrating around the basin; using Eq. 25, we have

\[\hat{W}_T = -z \oint_C \mathbf{V}_2 \cdot \mathbf{\hat{n}} \, dS = \frac{1}{2} \mathcal{E}^{1/2} z \oint_C \mathbf{k} \times \mathbf{\tau} \cdot d\mathbf{s} = -\frac{1}{2} \mathcal{E}^{1/2} z M \Delta > 0, \]

where \(\mathbf{V}_2 = U_2 \mathbf{k} + V_2 \mathbf{\hat{z}} \), and \(\mathbf{\hat{n}} \) is the outward normal to the coast. Since \(\mathbf{V}_2 \cdot \mathbf{\hat{n}} = 0 \) on \(y = 0, M \), the \(\mathcal{E}^{1/2} \) vertical flux occurs only on the coasts parallel to the wind stress: upwelling at \(x = 0 \), downwelling at \(x = 1 \); the flux depends directly on the wind stress. Since \(U_2(0) \), the normal surface drift transport at \(x = 0 \), is larger than \(U_2(1) \), \(\hat{W}_T \) is positive. For uniform stress, \(\hat{W}_T = 0 \); the upwelling exactly balances the downwelling, and the return flow was via the \(O(\mathcal{E}^{1/2}) \) interior flow. With nonvanishing \(\text{curl} \mathbf{\tau} \), the \(O(\mathcal{E}^{1/2}) \) geostrophic interior flow performs the same task; but an additional source of mass influx to the interior flow is needed to supply the extra mass at \(x = 0 \). This flux comes from the convergence of the vertical mass flux \(\hat{W}_T \) in the \(\mathcal{E}^{1/4} \) layer; the horizontal outflow into the \(\mathcal{E}^{1/2} \) interior field is brought about by the divergent part of the \(\mathcal{E}^{1/4} \) layer normal velocity. Extending Eq. 12 to all sides of the basin and integrating, we find that the flux entering the interior horizontal flow from the \(\mathcal{E}^{1/4} \) layer is

\[-\mathcal{E}^{1/2} \oint_C \mathbf{\hat{V}}_b \cdot \mathbf{\hat{n}} \, dS = -\frac{1}{2} \mathcal{E}^{1/4} \oint_C \mathbf{\hat{v}}_{11} \cdot d\mathbf{s} = -\frac{1}{2} \mathcal{E}^{1/2} \Gamma, \]

which is exactly the flux entering the \(\mathcal{E}^{1/4} \) layer at the bottom of the coastal walls. The horizontal \(O(\mathcal{E}^{1/2}) \) interior flow streamlines may be constructed schematically. Streamlines emanate from the three coasts at \(x = 1, y = 0, M \) and converge on the coast at \(x = 0 \), returning horizontally the downwelling flux at \(x = 1 \), and the upwelling flux from the bottom Ekman layer, which in turn originates from the Ekman suction flux from the surface layer. With the \(O(\mathcal{E}^{1/2}) \) horizontal flow constructed, the mass flux balance is complete.
SUMMARY

For the rectangular uniform-depth basin, with no gradient of earth's
vorticity present ($\beta = 0$), and for a simple wind stress $\mathbf{\tau} = \tau(x) \hat{z}$, there is
downwelling $\frac{1}{2} \mathcal{E}^{1/2} \tau(1)$ on the coast to the right of the wind stress and up-
welling $\frac{1}{2} \mathcal{E}^{1/2} \tau(0)$ on the left coast via an $\mathcal{E}^{1/2}$ wall layer. The downwelling
mass is returned horizontally across the basin to the upwelling coast by an
$O(\mathcal{E}^{1/2})$ geostrophic interior flow. The vertical flux of mass out of the di-
vergent surface Ekman layer (Ekman suction) is transported to the bottom
friction layer and thence horizontally to the coasts. Although this mass
begins its return to the surface by ascending the coastal walls (via the
$\mathcal{E}^{1/4}$ vertical layer), it does not continue directly to the free surface, in-
stead being forced again out into the interior. As part of the $O(\mathcal{E}^{1/2})$ hori-
zontal geostrophic return flow, it moves to the upwelling coast and thence
to the surface friction layer. Large $[O(1)]$ geostrophic interior flow is re-
quired to produce the necessary stress for the bottom friction layer.

The simple wind stress was chosen solely for its effectiveness in
permitting visualization of the circulation; a general steady stress can be
treated with no more mathematical complexity. The artificiality of the
rectangular geometry can also be easily removed to an arbitrary smooth
closed coastline, thereby eliminating the special corner regions. The con-
straint of depth uniformity cannot be removed as easily. Preliminary
analysis indicates, however, that much of the circulation mechanics is un-
changed for the basin containing closed depth contours; the most significant
alteration, arising from the Taylor-Proudman constraint, appears to be that
the horizontal $O(\mathcal{E}^{1/2})$ geostrophic return flow is pushed out of the interior
and instead occurs in viscous coastal layers of thickness $O(\mathcal{E}^{1/4})$.
Standard Distribution List
WASTE HEAT DISPOSAL

U. S. Atomic Energy Commission (25 copies)
Number
of Copies

U. S. Atomic Energy Commission
Assistant Director for Nuclear Safety
Division of Reactor Development and Technology
Washington, D. C. 20545

U.S. Atomic Energy Commission
Assistant Director for Program Analysis
Division of Reactor Development and Technology
Washington, D. C. 20545

U. S. Atomic Energy Commission
Assistant Director for Radiological Physics
Division of Biology and Medicine
Washington, D. C. 20545

U. S. Atomic Energy Commission
Chief, Environmental Sciences Branch
Division of Biology and Medicine
Washington, D. C. 20545

U. S. Atomic Energy Commission
Director, Division of Compliance, DR
Washington, D. C. 20545

U. S. Atomic Energy Commission
Director, Division of Radiation Protection Standards, DR
Washington, D. C. 20545

U. S. Atomic Energy Commission
Director, Division of Reactor Licensing, DR
Washington, D. C. 20545

U. S. Atomic Energy Commission
Director, Division of Reactor Standards, DR
Washington, D. C. 20545

U. S. Atomic Energy Commission
Director of Regulation
Washington, D. C. 20545

- 1 -
National Laboratories (16 copies)

Argonne National Laboratory
Associate Director, Radiological Physics Division
9700 South Cass Avenue
Argonne, Illinois 60439

Argonne National Laboratory
Center for Environmental Studies
9700 South Cass Avenue
Argonne, Illinois 60439

Battelle Memorial Institute
Pacific Northwest Laboratory
P.O. Box 999
Richland, Washington 99352

Oak Ridge National Laboratory
Associate Director for Biomedical and Environmental Sciences
Oak Ridge, Tennessee 37830

Oak Ridge National Laboratory
Associate Director for Reactor and Engineering Sciences
Oak Ridge, Tennessee 37830

Oak Ridge National Laboratory
Nuclear Safety Information Center
P.O. Box Y
Oak Ridge, Tennessee 37830

Federal Agencies (29 copies)

Bonneville Power Administration
1002 NE Halladay
Portland, Oregon 97208

Environmental Protection Agency
Chief, National Thermal Pollution Research Staff
Office of Water Quality
Pacific Northwest Water Laboratory
Corvallis, Oregon 97330

Environmental Protection Agency
Division of Water Quality Research
Office of Water Quality
Washington, D.C. 20242
<table>
<thead>
<tr>
<th>Address</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Protection Agency</td>
<td>1</td>
</tr>
<tr>
<td>Mid Atlantic Office of Water Quality</td>
<td></td>
</tr>
<tr>
<td>918 Emmet Street</td>
<td></td>
</tr>
<tr>
<td>Charlottesville, Virginia 22901</td>
<td></td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>1</td>
</tr>
<tr>
<td>Regional Director, Great Lakes Office of Water Quality</td>
<td></td>
</tr>
<tr>
<td>1 North Wacker Drive</td>
<td></td>
</tr>
<tr>
<td>Chicago, Illinois 60606</td>
<td></td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>1</td>
</tr>
<tr>
<td>Parklawn Building</td>
<td></td>
</tr>
<tr>
<td>5600 Fishers Lane</td>
<td></td>
</tr>
<tr>
<td>Rockville, Maryland 20852</td>
<td></td>
</tr>
<tr>
<td>Federal Power Commission</td>
<td>1</td>
</tr>
<tr>
<td>Advisor on Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>441 G Street, NW</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20426</td>
<td></td>
</tr>
<tr>
<td>National Marine Water Quality Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>P.O. Box 277</td>
<td></td>
</tr>
<tr>
<td>West Kingston, Rhode Island 02892</td>
<td></td>
</tr>
<tr>
<td>National Oceanographic Data Center</td>
<td>1</td>
</tr>
<tr>
<td>Building 160, Navy Yard Annex</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Director of Research for Oceanology</td>
<td></td>
</tr>
<tr>
<td>Code 8000</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
</tr>
<tr>
<td>Office, Chief of Army Engineers</td>
<td>3</td>
</tr>
<tr>
<td>U.S. Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20315</td>
<td></td>
</tr>
<tr>
<td>Office of Science & Technology</td>
<td>1</td>
</tr>
<tr>
<td>Assistant Director for Energy and Environment</td>
<td></td>
</tr>
<tr>
<td>Executive Office of the President</td>
<td></td>
</tr>
<tr>
<td>Room 207</td>
<td></td>
</tr>
<tr>
<td>Executive Office Building</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20506</td>
<td></td>
</tr>
<tr>
<td>Office of Science and Technology</td>
<td>1</td>
</tr>
<tr>
<td>Chairman, Interagency Committee on Water Resources Research</td>
<td></td>
</tr>
<tr>
<td>Executive Office Building</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20506</td>
<td></td>
</tr>
</tbody>
</table>
Tennessee Valley Authority
Assistant to the Director
Division of Environmental Research and Development
410 Edney Building
Chattanooga, Tennessee 37401

U.S. Department of the Interior
Fish and Wildlife Service
Bureau of Commercial Fisheries
Washington, D.C. 20240

U.S. Department of the Interior
Fish and Wildlife Service
Bureau of Sport Fisheries and Wildlife
Washington, D.C. 20240

U.S. Department of the Interior
Office of Saline Water
Washington, D.C. 20240

U.S. Department of the Interior
Office of Water Resources Research
Washington, D.C. 20242

U.S. Department of the Interior
Sandy Hook Marine Laboratory
Highlands, New Jersey 07732

U.S. Department of the Interior
U.S. Geological Survey
Water Resources Division
Washington, D.C. 20242

State Agencies (28 copies)

Alabama Water Improvement Commission
State Office Building
Montgomery, Alabama 36104

Arkansas Pollution Control Commission
1100 Harrington Avenue
Little Rock, Arkansas 72202

California Department of Fish and Game
1416 Ninth Street
Sacramento, California 95814

Connecticut State Water Resources Commission
Room 22, State Office Building
650 Main Street
Hartford, Connecticut 06115
Florida Department of Air and Water Pollution Control
315 South Calhoun Street
Tallahassee, Florida 32301

Illinois Environmental Protection Agency
State of Illinois
Springfield, Illinois 62706

Illinois Pollution Control Board
189 W. Madison Street
Chicago, Illinois 60602

Illinois State Water Survey
Champaign, Illinois 61820

Indiana State Board of Health
Department of Environmental Health
1330 W. Michigan Street
Indianapolis, Indiana 46206

Maine Department of Sea and Shore Fisheries
Director of Research
State of Maine
State House Annex
Augusta, Maine 04330

Maryland Department of Natural Resources
The State of Maryland
Annapolis, Maryland 21401

Massachusetts Department of Natural Resources
Division of Water Pollution Control
100 Cambridge Street
Boston, Massachusetts 02134

Michigan Department of Natural Resources
Chief, Water Quality Appraisal Section
Water Resources Commission
Stevens T. Mason Building
Lansing, Michigan 48925

Minnesota Pollution Control Agency
717 Delaware Street, S.E.
Minneapolis, Minnesota 55440

Nebraska Water Pollution Control Commission
State Department of Health
P.O. Box 94757, State House Station
Lincoln, Nebraska 68509
New Hampshire Office of the Governor
Special Assistant for Planning
Concord, New Hampshire 03301

New Hampshire State Technical Services
State of New Hampshire
Concord, New Hampshire 03301

New Jersey Division of Air and Clean Water
State Department of Health
P.O. Box 1540
Trenton, New Jersey 08625

New York State Atomic and Space Development Authority
Program Manager
230 Park Avenue
New York, New York 10017

New York State Department of Conservation
Assistant Director, Division of Water Resources
Albany, New York 12201

New York State Department of Health
Division of Pure Water
84 Holland Avenue
Albany, New York 12208

North Carolina Department of Water and Air Resources
P.O. Box 9392
Raleigh, North Carolina 27604

Pennsylvania Department of Public Health
Division of Water Quality
P.O. Box 90
Harrisburg, Pennsylvania 17108

Tennessee Stream Pollution Control Board
Cordell Hull Building
Sixth Avenue, North
Nashville, Tennessee 37219

Vermont Department of Water Resources
State Office Building
Montpelier, Vermont 05602

Virginia State Water Control Board
Executive Secretary
P.O. Box 11143
Richmond, Virginia 23230
Washington State Department of Water Resources
335 General Administration Building
Olympia, Washington 98502

Wisconsin State Department of Natural Resources
Division of Conservation
P.O. Box 4500
Madison, Wisconsin 53701

Universities (26 copies)

Indiana University
Department of Microbiology
Bloomington, Indiana 47401

Johns Hopkins University
Department of Geography and Environmental Engineering
Baltimore, Maryland 21218

Johns Hopkins University
Chesapeake Bay Institute
Baltimore, Maryland 21218

Lamont Geological Observatory
Columbia University
Palisades, New York 10964

Massachusetts Institute of Technology
Department of Earth and Planetary Sciences
Cambridge, Massachusetts 02138

Michigan State University
Institute of Water Resources
East Lansing, Michigan 48823

Michigan State University
Kellogg Biological Station
Hickory Corners, Michigan 49060

Old Dominion College
Institute of Oceanography
Norfolk, Virginia 23508

Oregon State University
Water Resources Research Institute
Corvallis, Oregon 97331

San Diego State College
Division of Life Sciences
San Diego State College Foundation
San Diego, California 92115
Scripps Institution of Oceanography
The University of California
P.O. Box 109
La Jolla, California 92037

Stanford University
Department of Civil Engineering
Stanford, California 94305

University of Maryland
Natural Resources Institute
College Park, Maryland 20740

University of Massachusetts Marine Laboratory
Box 128, Lanesville Station
Gloucester, Massachusetts 01930

University of Miami
Institute of Marine Sciences
Miami, Florida 33124

University of Michigan
Great Lakes Research Division
Institute of Science and Technology
Ann Arbor, Michigan 48105

University of Rhode Island
Narragansett Marine Laboratory
Kingston, Rhode Island 02881

University of Vermont
Department of Mechanical Engineering
Burlington, Vermont 05401

University of Washington
College of Fisheries
Fisheries Research Institute
Seattle, Washington 98105

University of Wisconsin - Milwaukee
Center for Great Lakes Studies
Milwaukee, Wisconsin 53201

Vanderbilt University
Associate Director
Department of Environmental and Water Resources Engineering
Nashville, Tennessee 37203

Virginia Institute of Marine Science
Gloucester Point, Virginia 23062
Woods Hole Oceanographic Institution
Senior Scientist
Department of Physical Oceanography
Woods Hole, Massachusetts 02543

Yale University
Bingham Oceanographic Laboratory
P.O. Box 2025, Yale Station
New Haven, Connecticut 06520

Utilities (48 copies)

Alabama Power Company
500 North 18th Street
Birmingham, Alabama 35202

Arkansas Power and Light
Vice President and Chief Engineer
9th and Louisiana
Little Rock, Arkansas 72203

Baltimore Gas and Electric Co.
Principal Engineer
531 East Madison Street
Baltimore, Maryland 21203

Boston Edison Co.
Assistant Vice President,
Operations and Engineering
800 Boylston Street
Boston, Massachusetts 02199

Carolina Power and Light Co.
Chief Environmental Engineer
336 Fayetteville Street
Raleigh, North Carolina 27602

Cincinnati Gas and Electric Co.
139 East Fourth Street
Cincinnati, Ohio 45202

Commonwealth Edison Co.
Vice President
72 West Adams Street
Chicago, Illinois 60690

Connecticut Yankee Atomic Power Company
P.O. Box 270
Hartford, Connecticut 06101
Consolidated Edison Co. of New York, Inc.
Senior Vice President
4 Irving Place
New York, New York 10003

Consumers Power Co.
Director, Air and Water Quality Control
212 West Michigan Avenue
Jackson, Michigan 49201

Detroit Edison Company
2000 Second Avenue
Detroit, Michigan 48226

Duke Power Company
Vice President, Engineering
422 South Church Street
Charlotte, North Carolina 28201

Duquesne Light Co.
435 Sixth Avenue
Pittsburgh, Pa. 15219

Florida Power and Light Co.
Senior Vice President
4200 Flagler Street
Miami, Florida 33101

Florida Power Corporation
101 Fifth Street S.
St. Petersburg, Florida 33701

Georgia Power Company
270 Peachtree Building
Atlanta, Georgia 30303

Indiana and Michigan Electric Co.
2101 Spy Run Avenue
Fort Wayne, Indiana 46801

Iowa Electric Light and Power Company
Security Building
Cedar Rapids, Iowa 52401

Jersey Central Power and Light Co.
Madison Avenue at Punch Bowl Road
Morristown, New Jersey 07960

Long Island Lighting Company
250 Old Country Road
Mineola, New York 11501
Louisiana Power and Light Co.
142 Dolavonde Street
New Orleans, Louisiana 70114

Maine Central Power Company
Director of Environmental Studies
9 Green Street
Augusta, Maine 04330

Metropolitan Edison Company
P.O. Box 542
Reading, Pennsylvania 19603

Middlesex Essex Power Pool
Public Affairs Officer
P.O. Box 127
Peabody, Massachusetts 01960

New England Electric System
Manager of Environmental Research
20 Turnpike Road
Westboro, Massachusetts 01581

Niagara Mohawk Power Corporation
Nine Mile Point Nuclear Station
P.O. Box 32
Lycoming, New York 13093
Attn: Mr. M. A. Silliman

Northeast Utilities Service Co.
Chief, Environmental Sciences and Services
P.O. Box 270
Hartford, Connecticut 06101

Northern Indiana Public Service Company
5265 Hohman Avenue
Hammond, Indiana 46325

Northern States Power Co.
414 Nicollet Avenue
Minneapolis, Minnesota 55401
Attn: A. V. Dienhardt

Pacific Gas and Electric
Department of Engineering Research
245 Market Street
San Francisco, California 94106

Pennsylvania Power and Light Co.
901 Hamilton Street
Allentown, Pennsylvania 18101

- 11 -
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philadelphia Electric Company</td>
<td>1000 Chestnut Street</td>
<td>Philadelphia, PA 19105</td>
</tr>
<tr>
<td>Potomac Electric Power Company</td>
<td>829 E. Street, NW</td>
<td>Washington, DC 20004</td>
</tr>
<tr>
<td>Public Service Co. of Colorado</td>
<td>550 Fifteenth Street</td>
<td>Denver, CO 80202</td>
</tr>
<tr>
<td>Public Service Co. of New Hampshire</td>
<td>1087 Elm Street</td>
<td>Manchester, NH 03105</td>
</tr>
<tr>
<td>Public Service Electric and Gas</td>
<td>80 Park Place</td>
<td>Newark, NJ 07101</td>
</tr>
<tr>
<td>Puget Sound Power and Light Co.</td>
<td>Bellevue Power Building</td>
<td>Bellevue, WA 98104</td>
</tr>
<tr>
<td>Rochester Gas and Electric Corp.</td>
<td>99 East Avenue</td>
<td>Rochester, NY 14604</td>
</tr>
<tr>
<td>San Diego Gas and Electric Company</td>
<td>101 Ash Street</td>
<td>San Diego, CA 92101</td>
</tr>
<tr>
<td>South Carolina Electric and Gas Co.</td>
<td>322 Main Street</td>
<td>Columbia, SC 29201</td>
</tr>
<tr>
<td>Southern California Edison Co.</td>
<td>601 W. Fifth Street</td>
<td>Los Angeles, CA 90053</td>
</tr>
<tr>
<td>Toledo Edison Company</td>
<td>420 Madison Avenue</td>
<td>Toledo, OH 43601</td>
</tr>
<tr>
<td>Vermont Yankee Nuclear Power Corporation</td>
<td>77 Grove Street</td>
<td>Rutland, VT 05701</td>
</tr>
</tbody>
</table>
Virginia Electric Power Co.
Director, Environmental Control
Box 1194
Richmond, Virginia 23209

Wisconsin Electric Power Co.
Manager, Cost and Control Div.
Power Plant Department
231 West Michigan St.
Milwaukee, Wisconsin 53201

Wisconsin Michigan Power Company
807 South Oneida Street
Appleton, Wisconsin 54911

Wisconsin Public Service Corp.
Vice President, Power Generation and Engineering
1029 North Marshall Street
Milwaukee, Wisconsin 53201

Yankee Atomic Electric Co.
441 Stuart St.
Boston, Massachusetts 02116

Other

Academy of Natural Sciences of Philadelphia
Department of Limnology
Nineteenth and Parkway
Philadelphia, Pennsylvania 19105

American Public Power Association
2600 Virginia Avenue, N.W.
Washington, D.C. 20037

Atomic Industrial Forum, Inc.
Legal Projects Manager
650 Third Avenue
New York, New York 10022

Battelle Memorial Institute
Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Cornell Aeronautical Laboratory, Inc.
Principal Aeronautical Engineer
P.O. Box 235
Buffalo, New York 14221
Delaware River Basin Commission
Executive Director
25 Scotch Road
Trenton, New Jersey 08603

Edison Electric Institute
750 Third Avenue
New York, New York 10017

EGGC, Inc.
Staff Oceanographer, Environmental Equipment Division
10 Water Street
Woods Hole, Massachusetts 02543

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, South Carolina 29801

Hanford Engineering Laboratory
Systems Analysis Department
P.O. Box 1970
Richland, Washington 99352

National Academy of Science
National Research Council
Division of Earth Sciences
2101 Constitution Avenue, NW
Washington, D.C. 20418

National Rural Electric Cooperative Association
2000 Florida Avenue, NW
Washington, D.C. 20009

New England River Basin Commission, Chairman
55 Court Street
Boston, Massachusetts 02108

Southern Nuclear Engineering, Inc.
P.O. Box 10
Dunedin, Florida 33528

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22151

U. S. Atomic Energy Commission
Division of Technical Information Extension
P.O. Box 62
Oak Ridge, Tennessee 37820

Total Distribution

-238-

14