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PREFACE 

A conference on the subject of neutron thermalization was held at 
the Brookhaven National Laboratory from April 30 to May 2, 1962, 
precisely four years after the close of the last thermalization conference, 
the Gatlinburg conference of April 28-30, 1958. The subject of thermal
ization, which concerns the approach to thermal equilibrium and the 
manner of the equilibrium distribution of neutrons in matter, has elicited 
a great deal of interest in the meantime. While the seventeen papers 
contributed at Gatlinburg could be assembled into a single, convenient 
volume, presenting the seventy Brookhaven papers has required four 
weighty books. 

The Brookhaven conference was conducted as a "reporter" confer
ence. The technical papers which were submitted were sorted into six 
categories, viz., the experimental and theoretical aspects of the "scat
tering law," of spectra in infinite media, and of transient phenomena. 
A reporter was chosen for each of the six topics, and was asked to pre
pare a talk which would contain an appreciation of the technical papers. 
The reporter talk, followed by a general discussion constituted each 
session. Thus, the individual papers were not presented, though copies 
were available to all who attended, and are presented in these proceed
ings. (While the papers from our Soviet colleagues were received too late 
for discussion at the conference, translated versions will also be found in 
these volumes.) 

The success of a technical conference is always due to the efforts 
of many people. We must first thank the reporters and authors for the 
fine quality of their contributions. Mr. Robert Brown of Brookhaven's 
Graphic Arts Division was responsible for the prompt publication of the 
proceedings and for having more than ten thousand copies of the tech
nical papers ready in time for the conference. Mrs. Mariette Kuper and 
Mr. Edward Bergin and their staffs directed the mechanics of the con
ference with skill and aplomb, while several members of the Theoretical 
Reactor Physics Group made important contributions to its planning 
and execution. In particular, we should thank Drs. Paul Michael and 
Henry Honeck, and for his kind encouragement throughout, Mr. Jack 
Chernick, the Group's Director. 

NOEL CORNGOLD 
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EXPERIMENTAL INFORMATION 

FOR THERMALIZATION PROBLEMS* 

Robert M. Brugger 

Phillips Petroleum Company, Atomic Energy Division 
Idaho Falls, Idaho 
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For neutron energies much above 1 ev the neutron scattering and 

thermalizations are well described by billiard ball collisions with atoms 

of the moderator. Therefore this discussion will only consider neutrons 

of 1 ev or less. Most reactors are not constructed of single crystal ma

terials or aligned materials. Thus this discussion will be limited to poly-

crystalline and amorphous solids, liquids, and gases. 

What neutron scattering information does the reactor physicist 

want for his calculations of neutron thermalization? 

Within these limits, the cross section a(EQ,E,0,S) completely des

cribes the scattering of neutrons from these samples. Here E is the 

energy of the initial neutrons, E is the energy of the neutrons after scat ter

ing, 6 is the angle of scattering with respect to the direction of the initial 

neutrons and S denotes the "physical s tate" of the sample. From a(E ,E,0,S) 

flux distributions can be calculated or all of the integral values now used 

in reactor calculations, like the transport cross section and the scattering 

kernels can be obtained. o{E ,E,6,S) contains the complete information 

about the neutron scattering. 

Over what range would the reactor physicist like these cross sections? 

I think it is safe to say the following ranges are adequate: 
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from 0 to 1 ev 

from 0 to 1 ev 

from 0 to 180° 

all "s ta tes" of the sample that a re encountered 
in reactors 

Further these cross sections are to be for all materials encountered in 

reactors. 

How does the experimenter attempt to measure these cross sections 

and how successful has he been? 

I would like to answer this question by describing some of the methods 

that are being used to obtain CT(E , E , 0 , S ) and by showing some of the data 

that has been obtained. To make these measurements, the experimenter 

must produce a beam of monoenergetic neutrons in the desired range for 

use as the initial neutrons. After scattering these from a sample, the 

energies of the scattered neutrons must be measured and the scattering 

angle must be measured. 

The two most successful instruments making these measurements are 

the phased chopper velocity selectors and the triple axis spectrometers. 

Figure 1 is a cut-away drawing of the Materials Testing Reactor phased 

chopper velocity selector. The first chopper chops the beam of neutrons 

I 
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from the reactor into bursts of polychromatic neutrons. The second chop

per which opens at a predetermined time after the first chopper opens 

passes only bursts of monochromatic neutrons. These monochromatic 

neutrons are scattered by the sample, and some change energy because of 

inelastic scattering. The energies of the scattered neutrons are deter

mined by measuring their time-of-flight from the sample to the detectors. 

The angle of scattering is measured by the detectors placed at different 

angles around the sample. By changing the phase or open times between 

the two choppers, E^ may be varied allowing a(E ,E,0,S) to be completely 

measured. Similar velocity selectors a re in operation at Chalk River 

and Harwell and another is being constructed at the University of Michigan. 

2 

The triple axis spectrometer produces a monoenergetic initial 

beam by Bragg reflecting one energy neutron from a reactor beam. These 

monoenergetic neutrons are scattered by a sample located at the second 

axis of the instrument. The scattered neutrons are energy analyzed at 

each scattering angle by a second crystal spectrometer located at the 

third axis. Instruments of this type are in operation at Chalk River, at 

Hanford, at Los Alamos, and a re being built for the Belgium reactors . 

Other types of instruments that show promise or have a limited 
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range are the polycrystalline filter plus chopper time-of-flight a r range

ment, the rotating crystal time-of-flight spectrometer, the linear electron 

accelerators with time-of-flight analyzers, and the filter counter method. 

To date, the phased chopper velocity selectors have produced the 

major share of the a(EQ,E,0,S) data. As an example of these measurements, 

I would like to discuss the data presented in the contributed paper by Hay

wood and Thorson of Chalk River. Figure 2 is an example of their data 

for scattering at 86.9° from a sample of 20°C HnO. The initial energy of 

the neutrons is 0.096 ev. The upper figure shows the counting rate as a 

function of time channels for both sample and open. The open distribution 

has structure due mainly to neutrons scattered by air near the sample and 

neutrons scattered by the empty sample container. 

By knowing the incident flux and the counter efficiencies, the data 

of the upper figure are converted to the cross section differential in both 

energy and angle as shown in the middle of Figure 2. Here the cross sec

tion is displayed as energy change, oj = (E-E )/KgT, instead of as E. The 

solid line represents the initial energy resolution of the instrument. The 

lower curve is the same data presented as Scattering Law. This presenta

tion will be discussed later. 
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Now that you have seen an example of the data, consider over what 

ranges these measurements are being made. The ranges to date are.-

EQ from 0.005 to 0.4 ev 

E somewhat less than EQ 

9 from 12 to 155° 

S several different "physical s ta tes" 

Accuracy <10% 

Having obtained the data, what is the best form of presentation? 

The data can be presented as d a/dfidw as in the middle figure of 

Figure 2. These are close in appearance to the actual measurements, but 

there are so many of them for each sample, that one tends to miss the 

3 
forest for the t rees . A presentation suggested by Egelstaff and Schofield 

introduces the important simplification of extracting detailed balance. This 

is not appropriate for single crystal samples but it is for all the states to 

which this discussion has been limited. Egelstaff calls his presentation 

Scattering Law, S{a,l3), where: 

'^ a B k dfidoj 
b 

and „ „ 

a = j3 = 
2MieT ^ K T 
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Here a is the bound atom cross section, IC is the Boltzmann constant, 

T is the absolute temperature of the sample, K is l/27r of Planck's con

stant, K is the momentum change, and M is the mass, usually of the principle 

scat terer . Figure 3 is the data of Haywood and Thorson presented in the 

Scattering Law. The advantages of this presentation a re 1) that it con

denses the data; only measurements at a few initial energies and angles 

2 

are needed to determine all of the curves, and 2) d a/dMco can be deter

mined from S{a,0) at values other than those that were originally measured. 

Figure 4 is a set of smoothed curves of the Haywood and Thorson data in 

S{a,0) presentation. 

The mass M and the cross section a are somewhat arbitrari ly 

selected in the Scattering Law presentation. Therefore there is a third 

presentation which keeps the detailed balance simplification but does not 

introduce M and a . I have called this presentation the reduced partial 

differential cross section S(K,RCO) where: 

S(K,!ico) = ^ - ^ S(a,i3) 
B 

_ K_ -f-Kw/KgT d^g 
dfidcxJ 
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Here K T is in units of ev and /c is in reciprocal angstroms. The ad-
B 

vantage of S(/c,Rco) over S{a,^) is that M and a have not been introduced. 

Figure 5 is an example of the Santowax data presented as a reduced pa r 

tial cross section. 

In plotting curves, one has the choice of showing S(o!,j3) as a function 

of a with contours of fixed j3 or S{a,0) as a function of j3 with contours of 

fixed a. The first tends to emphasize the coherent and diffraction effects 

while the last tends to emphasize the energy change effects. 

What consistency checks does the experimenter have available to 

test his data ? 

By presenting the data as S(Q!,J3) or S(K,RW) several points of con

sistency are introduced. First , points for +(3 and -/3 must fall on the 

same curve. This can be seen in Figure 3. Secondly, data at one /3 from 

measurements at different initial energies must fall on the same line. 

Thirdly, data at one ^ from different angles must fall on one curve. These 

are rather stringent internal consistency checks which are not evident 

2 
when the data is presented as d a/dfidco. 

One external consistency check is that the data integrated over 

energy and angle must equal the total cross section. Likewise the integral 
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over all energies must fit the angular distributions. Thus it is desirable 

to have separate total cross section and angular distribution measurements. 

These two checks are necessary but they are not sufficient. This last 

statement is also true for theories predicting d a/dftdco. Many theories 

2 

that do not completely explain d a/dfldco will fit the total cross sections. 

Springer, in a paper at this meeting, discusses the theoretical fitting of 

total cross sections and angular distributions. 

The third set of consistency checks is the moment conditions. In 

Scattering Law notation the zero'th moment <1> is 
oo 

<1> = / cosh /3/2 S^^(a,i3)d|3 = 1 
o 

and the first moment <j3> is 

oo 

</3> = / /3 sinh i3/2 S{a,0)d^ = a 
o 

These hold for all values of a. Since the zero'th moment weighs the values 

of S(Qf,iS) at small j3 more heavily, this condition is easily satisfied by the 

data if the total cross section condition is satisfied. The first moment is 

more difficult since the major contribution to it comes from large /3 values 

where the data is poor or nonexistent. To satisfy the first moment condi

tion, all of the "effects" of the sample must be detected. These "effects" 
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are sometimes small and outside the range of the experiment. All one 

can say is that <^> ̂  a. 

How may this data be used by reactor physicists in their calculations? 

As has been shown, the data are not as accurate or extensive as the 

reactor physicists desire. Thus the profitable approach is to fit theo

retical curves to the existing data and use these theories to make the 

extrapolations. This can be attempted in several ways. One way is that 

4 
suggested by Vineyard and by Rahman where a radius of the intermediate 

function xC/̂ ĵt) can be obtained by Fourier transformation. Here: 

R °° 
P^^^ " MK Ta "̂̂  ^ cos(a;,t) S(a,^)d|3 

B 

This requires that the intermediate function be Gaussian in a and the self 

correlation function Gg(r,t) be Gaussian in r. If this condition is sa t i s 

fied, a single p(t) for all values of a can be obtained. By Fourier inver

sion, S(Q!,/3) at all values of a and /3 could then be generated. This method 

was tried on the Santowax data and was not successful. The lack of suc

cess may be due to the experimental e r ror or it may be that G„(r,t) is 

not Gaussian. 

A second method is that proposed by Egelstaff and is presented in 

RA-15 



the paper by Haywood and Thorson, S. (a,/3) is divided by a and ex

trapolated to a = 0. These values of (S- (a,/3)/Qf) are plotted as a 
i n c 01—\j 

function of /3 giving a function called P(/S). Once a P(/3) has been obtained 

it can be used to regenerate S:^^^{a,0) at other values. Figure 6 shows 

the P(/3) functions they obtained for HgO and D„0. An assumption of this 

method is that the intermediate function is Gaussian in a and that the 

coherent effects can be extracted from S(a,j3). 

McMurry has contributed a paper to this meeting in which the r e 

sults of different theories are compared and their success analyzed. I 

am sure these will be discussed at a later session. Along this same line 

I would like to mention some experiments on methane and the theoretical 

fitting of the data. Figure 7 shows the methane data obtained at the MTR. 

Four theoretical fits a r e attempted. The first three are discussed by 

McMurry. I would like to call your attention to a theory developed by 
5 

George Griffing in which a complete quantum mechanical treatment of 

the roations including coherence was necessary to fit these data at low 

energy. To me this shows that to accurately fit the data that a re becomin 

available, more detailed theories are necessary. Figure 8 shows the r e 

sults of Griffing's theory at values outside the range of the data. 
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Figure 9 shows data for propane gas, again a relatively simple 

sample, but more complex than methane. Here a theory, including the 

quantum effects of vibrations, is necessary to more closely fit the data. 

Figure 10 is the data obtained at the MTR for the dispersion re la

tions for beryllium. I show this because, if one had a complete and a c 

curate set of these dispersion relations, and knew the structure factors, 

one could calculate the Scattering Law for beryllium. Since we did not 

measure a complete set of these dispersion relations, Figure 11 shows 

our attempts to theoretically fit the data. If a good fit is achieved, the 

theory can be used to generate a complete set and calculate the Scattering 

Law. There are several limited sets of dispersion relations now avail

able for different substances. 

What data is available to the reactor physicist for his calculations? 

In a paper that I have contributed to this meeting, I have given the 

reduced partial differential cross sections for eight materials. Besides 

these I understand that Leonard at Hanford has extensions of the HoO 

data, and that Egelstaff has measured uranium and uranium oxide. Brock-

house has presented data as G(r,t) for liquid lead and water. There are 

also dispersion relations for Ge, Si, Na, Al, graphite and several other 

materials. 
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COMPIIATION OF 
REDUCED SLOW NEUTRON PARTIAL DIFFERENTIAL 

SCATTERING CROSS SECTIONS 

By 

Robert M. Brugger 
Phillips Petroleum Company 

ABSTRACT 

In a previous compilation, the slow neutron scattering data were 

presented in the dimensionless form of the Egelstaff Scattering Law 
(2) 

S(a,p). This compilation has been criticized because the data are not 

as easily compeared with other sets of data or with theory as would be the 

case if the data were in the customary units. Also the cross section a, 

used in converting the partial differential cross section to S(a,g) and 

the mass M used in converting the momentum change to a are sometimes 

arbitrarily selected. In the present compilation, an attempt has been 

made to present the data in a form which satisfies the wishes of the 

critics while still preserving the valuable simplifications introduced by 

(2) (̂ ) 

Egelstaff ' ajid Schofield, ' In this compilation the magnitude of the 

scattering effect is presented as the reduced partial differential cross 

section S(|ic|,^) where 

k "̂  2K^T ^2 
S(|Kl,^«)= ^ — e -^^-^ 

and the variables are the magnitude of the momentum transfer (K| in 

reciprocal angstroms and energy change ^o in ev. The available experi

mental scattering data are presented as smoothed curves. 
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COMPILATION OF 
REDUCED SLOW NEUTRON PARTIAL DIFFERENTIAL 

SCATTERING CROSS SECTIONS 

By 

Robert M. Brugger 

I. INTRODUCTION 

Data covering a wide range of paurameters for the inelastic 

scattering of slow neutrons from elements and compounds are becoming 

available and it appears that a good form of presentation of these 

data is as a reduced partial differential cross section. This compila

tion presents smoothed curves of the available experimental reduced 

partial differential scattering cross sections. It is hoped that this 

compilation will be a convenience for reactor physicists when using 

the information in reactor calculations and for physicists when comparing 

experimental results to determine the basic physical phenomena. 

No attempt is made to evaluate the precision of the measurements; 

the reader should refer to the original publications and make his own 

evaluation. In most cases the smooth curves were drawn by the original 

experimenter. No attempt has been made to re-evaluate the many sets of 

inelastic scattering data that have not been converted to the reduced 

cross section by the experimenter and will yield only a few points of 

the reduced cross section at best. 
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II. THE REDUCED PARTIAL DIFFERENTIAL CROSS SECTION 

The usual experimentally measured values and the ones desired by 

reactor physicists for reactor calculations are the partial differential 

cross sections 

d r a ( ^ o ' ^ ' ^ ' ^ ' ^ ) 

where E is the incident neutron energy, E is the final neutron energy, 

0 is the scattering angle in the laboratory system, T is the temperature 

of the sample and P indicates the physical state of the sample. For gases, 

liquids or polycrystalline solids it has been shown that this function of 

five variables can be reduced to a four variable function by applying the 

(2 l) condition of detailed balance. ' Thus 

d"-G k 2 . ,_ 2KgT 

dE 6Q k 
o 

e " S(kI,KT,P) 

where k is the wave number before scattering, k is the wave number after o °' 
—» 

scattering, K is the Boltzman constant, IK I is the magnitude of the 

-» ~* "̂  ? p '2 
momentum transfer where )!1|K| = ^k - k| = )i(k + k - 2k k cos9) = (2[2E 

o /2 2 ? 2 

-2[E (E +^] COS0] , and jii'o = ̂  (k - k )/ftn. The neutron mass is m. 

In this form fm is positive for neutron energy gain. S(K,)4:U) is in units 

of barns per electron volt steradian molecule, while K is in units of 

reciprocal angstroms and fvo is in units of electron volts. 
2 

The advantages of using S(K,)4'U) rather than do/dli dE are that l) there 

is one fewer variable, 2) it guarantees a maxwellian distribution of flux 

in a large homogeneous medium because of the treatment of detailed balance 

and 3) d cr/dE dfi may be generated at energies and angles other than those 
actually measiired in the determination of S(K,1^O). 
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III. PRESENTATION 

The reduced partial differential cross section curves axe 

arranged in three sections; l) inorganic compoiinds, 2) organic com

pounds, and 3) theoretical curves. The arrangement of compounds 

within sections 1 and 2 are as in the "Handbook of Physics and 

Chemistry". Sets of curves for each compound are in increasing order 

of temperatiire. 

The reduced partial differential cross sections are presented 

as a set of smoothed curves for discrete values of ]^o as a function 

—> 
of IKI. Each curve is indexed by a value of e ; the magnitude in ev 

of the ^0 steps are obtained from the simple relation between e and Jficja 

in the title of each graph. The short reference notation corresponds 

to a complete reference at the end of the paper. 

IV. REFERENCES TO TEXT 

1. R. M. Brugger, U. S. Atomic Energy Commission Report 
IDO 16699 (1961). 

2. P. A. Egelstaff, AERE-R-3622, I961 and IAEA Symposium 
on "Inelastic Scattering of Neutrons in Solids and 
Liquids", Vienna, I96O, papers IS/PI7, IS/PIO, IS/P7. 

3. P. Schofield, Phys. Rev. Letters h 239 (19^)-
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Abstract 

The thermal neutron scattering law for both light and heavy 

water, at 20 C and 150 C have been measured using the phased-rotor 

neutron velocity selector and time of flight apparatus at the Chalk 

River NRU reactor. The experimental results are reported and an 

initial estimate of Egelstaffs p(p) function for use in the 

calculation of a complete scattering law for reactor physics 

purposes is derived. 

I 
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I. Introduction 

The differential neutron scattering cross section for any 

material is a function of the detailed arrangement and motions of 

its constituent a t o m s ' ^ ^ . Sufficient data have not been avail

able in the past to make adequate estimates of these cross sections 

for reactor physics purposes, but various crude models for the more 

important moderating materials have been devised and used v/ith some 

success. The success of these models can be attributed to the 

inherent averaging done in most reactor calculations, and the 

fundamental constraints applied to these averages often make the 

detailed shape of these cross sections unimportant. The adequacy 

of the models often breaks dovm however when the scattering of 

neutrons of thermal or near thermal energies are important. This 

is the region of momentum and energy transfer for vj'hich it is 

possible to measure these cross sections. 

In this paper recently measured partial differential scattering 

cross sections are presented for light and heavy water at 20 C and 

150°C for energy transfers up to 0,15 eV obtained using the Chalk 

River phased rotor time-of-flight spectrometer. The range of 

momentum transfer covered is approximately 2 to 50 per A and is 

much wider than that reported for any other experiments^"^ . For 

most reactor physics calculations these results must be extrapolated 

to larger momentum and energy transfer ranges and a smoothed function 

obtained. 

Egelstaff has suggested^^^^ ' basing a range of models on a 

generalized frequency distribution p(p) and first approximations 

to this function are derived from the experimental data. Using 

(7) this p{3) elaborate computer programmes are now available to 
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generate differential cross sections over the entire range of 

momentum and energy change. 

It is convenient to present results in a form which involves 

only the energy and momentum transferred during the interaction, 

and a function of these variables has been described by Van Hove^ 

In this formalism the scattering law 3^ {^^) is defined for a system 

made up of one type of atom by the relationship 

^ o 

where â . is the free atom cross section for the atoms of 

atomic weight A, 

E and E are the initial and final neutron energies, 

ri6J and h^ are the energy and momentum transfers in 

the interaction. 

The formalism used in this paper is slightly different from that 

used by Van Hove in that: 

(i) the detailed balance factor is removed so that S becomes 

independent of the sign of the energy transfer, 

(ii) the material is assumed to be isotropic and thus 3 is a 

function of scalar Q, 

(iii) two new temperature normalized variables are defined to 

replace the energy and momentum transfer 

R 2 Q 2 E ^ + E-2(E^E)-'-/2cose 
a == = ; 

2T4kgT AkgT 

P - kgT - ' ^^^ 
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where M is the mass of the scattering nucleus, 

A is the ratio of mass of the scattering nucleus to the 

mass of the neutron, 

kg is Boltzman's constant, 

T is the absolute temperature of the scatterer, 

Ej, and E are the initial and final neutron energies. 

The definition of the differential cross section then becomes 

k g T . - ^ = ^ ^ ^-p/2 s( p) ... (3) 
" dr)_dE 4TT E o 

In this representation the value of S for the perfect gas is inde

pendent of mass and temperature. In this paper the definition of 

S{a,p) as in (3) above is retained even when the system is composed 

of more than one type of atom; the convention used is that the Or. 

and A are those for the type of nuclei in the system having the 

largest product of Or. and abundance. 

S(a,p) is composed of two parts, one the "self" part S which 

describes scattering of the neutron by a single scattering nucleus, 

and a part Sj which involves the correlation in time and position 

of a pair of nuclei. The contribution from S^(a,p) is proportional 

to the coherent cross section and is zero for completely incoherent 

scattering materials. 

The generalised frequency distribution p(p) which can be used 

to derive a cross section model^ is given by 

P(P^ ^a'i'^O (^) P2 ... (4) 

The shape of this function for the perfect gas, diffusion and 

Debye models is shown in Fig. 1. The evaluation of this function 

- 30 -



depends on the separation of Sg(a,p) from the experimental S{a,p| 

over a wide range of p. 

For predominantly incoherent scatterers the value of 3 measured 

by experiment is nearly equal to S^ and extrapolation of S/a to a = 0 

is readily performed. Typical extrapolations of this type, s/a 

results for H^O are shown in Section III,, It has been found 

advantageous both in theory and practice to plot log (S/a) against 

a in order to perform these extrapolations. This arises because 

terms in 3 as a power series in a of higher order than a produce 

a function similar to log S/a = aa+b. 

Experimental curves of p(p) derived from these extrapolations 

for room temperature and 150 C water are given in Section III. For 

materials in which coherent scattering occurs S(a,p) contains 

contributions from S^(a,p) which are most significant as a -> 0, 

At large values of a and p hov/ever these contributions tend to zero 

and it is possible to extrapolate (S/a) to a = 0 using data at 

these values only. Extrapolations for D^O are given together with 

the corresponding p(p). 

II, Experimental Details 

The experiments described here were carried out using a neutron 

beam from the NRU reactor at Chalk River. Neutrons of a specified 

velocity are selected from the beam by a phased rotor monochromator 

apparatus. These neutrons are scattered by a thin sample of water 

and then detected by an array of scintillation counters. The 

velocity of the scattered neutrons is determined by time-of-flight 

methods. 
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Apparatus 

The neutron monochromator described by Egelstaff et al^ ̂ ^ 

consists basically of two curved slot choppers 2.74 metres apart 

running at high speed in synchronism. The relative phasing of these 

rotors is continuously adjustable and by choice of rotors of suitable 

slot curvature it is possible to select neutrons over a wide range of 

velocities. At an operating rotor speed of 24,000 rpm the neutron 

bursts have standard deviation of 5-9 jisec in time of arrival at the 

sample position and of 2.3 lisec/m in reciprocal velocity. A 

schematic diagram of the apparatus is shovm in Fig, 2. 

Neutrons are scattered from a plane sample held at 45° to the 

incident beam and are detected 1.29 m from the sample in two banks 

of scintillation detectors mounted in the first and third quadrants. 

Detectors at angles between 10.5° and 90° have scintillators 15.2 cm 

by 7.6 cm while those between 90° and 160*̂  are 12,1 cm squ£irê ^ , 

Provision is raade in the apparatus for 30 detectors but for these 

experiments between 11 and 22 were used. Pulses from these detectors 

are fed into the input circuits of a time analyser described by 

Alexander and Leng^ . In this analyser a series of 270 time 

channels each 6 iisec long is started by a pulse derived from rotor 

4 drive shaft and the neutron pulses are sorted according to the 

channel in v/hich they arrive. Data is read out of this time 

analyser in the form of punched paper tape for processing on the 

Burroughs "Datatron" at Chalk River or as punched binary cards for 

use with the IBM 704 at Argonne National Laboratory. 

A typical example of the data obtained from one detector in 

these experiments is shovm in Fig. 3a. 
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Samples 

V/ater samples were made by enclosing a plane slab of water 

between two flat aluminum foils. Two, as near as possible identical 

sample holders, one empty and one filled with water were alternated 

in the becmi every fifteen minutes. Information from the full and 

empty sample periods was accumulated separately and the results for 

the empty holder were subtracted from those of the full holder to 

obtain the net v/ater scattering. 

This method of background compensation was satisfactory for 

the room temperature samples v/hich had foil windov/s 0.025 cm thick. 

The 150 C samples however had much thicker windows to contain the 

70 psia vapour pressure of the water, and differences of crystal 

orientation of the microcrystals comprising the windows gave 

dissimilar intensities of Bragg scattering for the full and empty 

sample holders. Since this was a source of error for data involving 

only lov; values of energy transfer these points were generally 

discarded during analysis. 

The temperature of the samples was measured by means of cali

brated thermocouples. Hot samples were heated electrically and 

maintained at 150° - 5°C by adjustment of the power input to the 

heaters using a recorder-controller. 

The pulses from three fission chamber monitors in the beam were 

time-analysed simultaneously with the detector pulses throughout 

each run. Monitor No. 1 v/as placed in the short space between 

rotor No. 4 and the sample, and monitors Nos. 2a and 2b in the beam 

path behind the sample (see Fig. 2)» From the ratios of monitor 

counts with the full and empty samples in the beam, the net water 
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sample transmission was determined to - 1/25̂ 0 The time sorted out

put of these three monitors was also used to determine the resolution 

function of the apparatus and the time-of-flight of the incident 

neiitrons. The samples used had a transmission of .efi. 

Calibration and Data Processing 

Efficiencies of the scintillation counters relative to beam 

monitor Ml are found by auxiliary measurements using a vanadium 

scattering sample. For this purpose the differential ela.stic 

scattering cross section for neutrons v/ith energy less than 0,04 eV 

is assumed to be given by> the Debye-V/allcr factor. The total 

(elastic + inelastic) differential scattering cross section for 

neutrons v/ith energy above O.O3 eV is assumed to be that derived 

(?) 

by Placzek . In the overlapping energy region both methods gave 

the same values for the detector efficiencies within the statistical 

errors. 

The detector efficiencies as a function of neutron energy were 

determined by a series of vanadium scattering measurements at 

several different incident neutron energies. The efficiency of the 

monitor as a function of neutron energy is assumed to follow the 
235 fission cross section for U'^^. These results were interpolated 

and extrapolated by fitting a curve to the efficiency versus neutron 

energy plot v/hich v;as derived assuming an exponential decrease in 

light transmission v/ith scintillator thickness. A vanadiiira measure

ment was made before and after each series of experimental runs at 

the same incident neutron energy. The detector efficiencies at 

that neutron energy were thus set relative to monitor No, 1 by 

using the calculated angular distributions and the transmission 
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determination for the vanadium sample. This method gives detector 

efficiencies obtained under identical conditions to those prevailin 

during the experimental runs, thus allowing for any differences in 

geometry factors among the detectors. 

Sample runs are usually carried out for 4-6 days continuously, 

and the results from each 24-hour run are combined to give the 

total number of neutrons scattered into time channel i of detector 

j by use of the formula 

2 (F , - y E. .) 

•̂  ( . . 

v/here F. . and E. . are the events recorded in time channel i 

of detector j v;ith the full and empty sample holder 

in the scattering position respectively, 

f.• is the detection efficiency for neutrons arriving 

in time channel i of detector j derived from the 

vanadium measurements, 

y is the sample/background normalisation factor for 

run r deduced from the monitor Ml results. 

For the v/ater data two independent methods were used to 

determine the absolute cross section scale. The first depends on 

knowing the scintillation detector efficiencies relative to the 

monitor efficiency and so depends on the accuracy of the vanadium 

measurements. The second method relates the total number of counts 

observed to the total scattering cross section a^ for water. This 

method is independent of any transmission or monitor determinations 

and depends only on having correct detector efficiencies relative 

to each other. In this second method the integral 
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2rr 
( 270 

Z-N. . sin 8 . -^i^ de = OT, nm ..« (6) 
i=0 ^-^S 

J Q J 

is evaluated by summing the counts in all time channels of the 

detector j at a scattering angle 9 . v/hich subtends a solid angle 

AA-. and integrating over all angles numerically. This establishes 

the product nm, where m is the number of v/ater molecules per cm of 

beam, and n the number of neutrons falling on the sample corrected 

for transmission of the sample and this is used in evaluating 3. . 

in equation (9) below. 

A correction for the velocity resolution of the apparatus is 

made to the partial differential scattering cross section in the 

region of the quasi elastic peak. This correction is calculated by 

fitting a gaussian plus linear terms to the quasi elastic peakfrom 

each detector and unfolding from this a gaussian v/hose variance is 

calculated from the monitor distributions. The experimental points 

are then adjusted by the difference between the original and 

unfolded gaussians. 

This method is satisfactory where the correction to be applied 

is less than 20^ but the quality of the gaussian fit is inadequate 

to remove larger resolution effects. The angular resolution of the 

detectors is important only at low angles and no correction has 

been made. 

Data is converted to Egelstaff' ŝ"'"'̂^ S(a,p) by a computer 

progranmie which evaluates the expressions 

p. = 6.0^76 X lo'̂  ( l _ l \ ... (7) 

T U2 t̂  
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(̂ 0 

, T t^ eP/2 
S. .(ap) ̂  1.1957x10"^ i N. . ... (9) 
•' a^mn At t^ ^ 

v/here t and t. are the incident reciprocal velocity and the 

reciprocal velocity in time channel i in p-s/m 

At Is the channel width at the detectors in ]is/m/time 

channel 

T is the absolute temrtcrature of the sample 

M is the mrss in a.m.u. of r.he })rincipal scattering 

nucleus, i.e., mass of H for n„U, riass at D for D„0 

o, is the bound atom cross section for the principal 

scattering nucleus 

B • is the mean scattoring angle for neutrons detected 
"J 

in counter j 

m is the number of principal scattering nuclei per 

sq. cm of beaia derived from the transmission of 

•cho 3'inplo 

n is the total number of neutrons xi/hich passed through 

the full sample, corrected for sample transmission 

(mn -nay be calculated from equation (6) above) 

S is then plotted as a function of time channel for each detector 

and a best line is drav/n in by eye. From these graphs the values 

of S are read off at fixed p and plotted as a function of a. This 

procedure is desirable for tv/o reasons. The first is the need to 

compare directly values of S at a fixed jp| , say p = p-|_, measured 

under different experimental conditions, viz., energy gain or energy 
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loss or different incident neutron energ}'-. Since the same p = P-, 

value will not, in general, be found at integral time channel points 

the data must be interpolated to find the 3 at p = p-,. The other 

requirement is compression of the data into a reasonable number of 

graphs or* tables compatible with the variation of S as a function 

of p and the precision to v/hich it is measured. 

III. Results 

An example of the steps used in processing the information from 

a single detector is shown in Fig. 3 for H^O at 20°G. In Fig. 3a 

are shovm the curves of saraple-in counts and background for a -̂  24 

hour run. In curve Fig. 3b these raw data have been combined with 

data from three similar runs and converted into partial differential 

cross sections by correcting for counter efficiency, and normalising 

the result. The effects of energy resolution of the apparatus are 

then removed from the elastic scattering regions of this curve. 

S(a,p) is then plotted for each time channel in Fig. 3c. A smooth 

curve is drav/n by eye through the S vs. time channel results and 

values of S at given values of p are read off and plotted at the 

appropriate a. Also shovm in Fig. 3b are points which have been 

recalculated from the smoothed S(a,p) curves derived from tv/o 

separate sets of data taken v/ith different incident neutron energies. 

This demonstrates the accuracy v/ith v/hich the differential cross 

section can be obtained from the information in its final form and 

the adequacy of the representation of the scattering surface by a 

limited number of constant p curves. 

The graphs of 3(a,p) vs. a for v;atcr and heavy v/ater at 20 C 

and 150OQ ^^Q shov/n in Figs. 4 - S. In these curves the errors 
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indicated on the points are the statistical errors on the 3 vs. time 

channel plots only, and include no contribution from other sources. 

The positive and negative p points are plotted together on the same 

curves and as can be seen are self-consistent. Since the sets of 

results given in these graphs were obtained under different experi

mental conditions the spread on the points gives an indication of 

their reliability. 

The light water results are shov/n in Figs. 4 and 5. The 20°G 

results Fig. 4 consists of points from runs with incident neutron 

energy 0.095 and 0,25 eV. As can be seen, the two sets of points 

are in good agreement. Values above p = 4 are not well defined 

but allow an estimate of 3(a,p) up to p = 6 to be made. 

The 150°C results Fig. 5 were taken with neutrons of incident 

energies 0,13 eV and 0.036 eV and results are shown to p = 3 and 

a = 20, 

The heavy water results are shovm in Figs. 6 and 7, Since D^O 

has a substantial coherent scattering cross section, contributions 

for SJ are expected especially at lov/ values of a and p. The values 

of 3 vs. a at 20°C shown in Fig. 6 are rather limited in range since 

neutrons of only one energy, 0.15 eV, were used. The results of 3 

vs. a for 150°G shown in Fig, 7 were taken using two î icident neutron 

energies, 0.097 eV and 0,034 eV. 

The derivation of p(p) from these data is relatively straight-

forv/ard. An estimate of the values of a below which the S^ part of 

the scattering law will be important is first made from the angular 

distribution of the scattered neutrons. Experimental points with a 

below this value are discarded for the extrapolation procedure. The 

remaining points are then plotted as log S/a vs. a for each p, the 
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best line drawn in by eye, and extrapolated to a = 0. The values 

of s/a found at a = 0 multiplied by the appropriate p^ are then 

plotted as a function of p to give the p(p) curve. This curve 

together with rough estimates of the higher energy contributions to 

p(p) from the atomic vibrational motions in water, is fed into the 

(7) LEAP programme^^ and values of (S/a) as a function of a and p are 

obtained. From the slope of these lines improved extrapolations of 

the experimental data can be made. In Fig. 9 are shown some extra

polations made with the help of the predicted lines. The H^O 

results were ignored belov/ a = 1 and the D^O results below a = l/2 

on the basis of the published angular distributions'^' , As 

can be seen, belov/ these values the experimental points rise sharply. 

The experiniental values of p(p) derived from the extrapolations 

are shown in Fig, 10, Several features of these curves can be 

related to the different internal motions of the atoms of the sample, 

A portion of the curve due to diffusion can be seen as a small 

tail which falls from the intercept on the p = 0 axis. The value 

of this intercept is calculated from the diffusion coefficient (d in 

cm' ' /sec) for the sample material and is given by 

p(0) = ̂  ^ 
IT R 

Peaks can be seen in the region p = 0,2 to 3.0, which corres

pond in energy to levels found by infra-red measurements and 

have been assigned to hindered rotational states of the HgO molecule. 

The highest p part of this region v/ill be due to the hindered rota

tion of a single water molecule while the region at lower values of 

P are due to the rotation or vibration of several molecules. 
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It should be noted that in the case of 24°C water these data 

show that the hindered rotation states extend to p-•̂ ''5 (0,125 eV), 

This is in contrast to the conclusions which have been drawn from 

cold neutron scattering experiments in which a sharp peak is 

observed at p Cî: 2,3 (0.06 eV), That peak in the cold neutron data 

is magnified greatly by the Boltzmann factor and the energy to 

time-of-flight conversion factor. It seems to be rather difficult 

to obtain the true shape of this part of the distribution vrithout 

taking an extensive series of measurements as described here. 

One interesting conclusion from these results is that the 

hindered rotations (p = 2 to 5) of the single HpO molecules is more 

important (relative to the other rotational states) at 20°C than at 

150 C. Presumably this is because the intramolecular bonds can be 

broken more easily at the higher temperature and this causes the 

levels to shift to a lovrer energy. The area of the rotational part 

of p(p) is in agreement v/ith that predicted by Sachs and Teller^ -^' ^ 

It has been shown by Egelstaff and Schofield^ ' how the function 

p(p) may be used to calculate the whole S(a,p) surface. Using these 

methods the present data v/ill yield accurate input information for 

future neutron spectrum calculations. 
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V Figures 

Fig. 1. The p(p) function for the Debye, the perfect gas and the 

diffusion models. 

Fig, 2. Schematic diagram of the apparatus giving the principal 

dimensions. 

Fig. 3. Example of the steps used in data processing. (a) shows 

the counts with full and empty sample in the beam over a 

24 hour period. In (b) these counts have been combined 

d o with 3 other 24 hour runs and converted to iZ. ^r and in 

(c) converted to 3(a,p). In (b) the solid triangular 
.2 

points are obtained by calculating ••. -̂ ';̂  from the summary 

graph of S(a,p) in Fig, g. 

Fig. 4. S(a,p) for light water at 20°C. ' 

Fig, 5, S(a,p) for light water at 150°C. 

Fig, 6. S(a,p) for heavy water at 20°C, ^ due to counting 

Fig, 7, S(a,p) for heavy water at 150°C. j statistics only. 

Fig, 8, Summary curves of S(a,p) for water. These curves are 

the best line drav/n by eye through the individual points. 

Fig. 9, Examples of the extrapolation of S/a to a = 0, The 

dotted lines are derived by LEAP from a tentative p(p) 

and are then used as a guide in making an accurate 

extrapolation. 

Fig. 10, Experimental values of p(p) for water. 

Errors shown on the 

points are those 
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Conference on Neutron Thermalization, Brookhaven, April 30, 1962 

Some Remarks on the Experimental Information Necessary to Obtain Scattering 

Data for Diffusion Problems 

by T. Springer+ 

1. Introduction 

The moderation and diffusion properties of a material can be fully 

characterized by the double differential cross section o{ \^ / (J C" cfj^ 

For an isotropic medium it can be written as (e.g./I/) 

from which the more "integral" quantities ̂  (E->E') , d57dJ2., 

and others can be derived. 

is the momentum transfer, (yis the scattering angle, Tx^t = E-E' is the energy 

transfer, a-ĵ  and a^ are the incoherent and coherent scattering lengths; E 

and E' are the energies before and after scattering, respectively. 

For reactor calculations tabulations of d^^dE'dj2-are needed for a 

wide range of the relevant parameters: E, E', V , and T. The aim of neutron 

physics is to find methods by which these values can be made available with 

a minimum amount of experimental and computational effort and with a high 

degree of reliability. In section 2 of this paper a method is recommended 

which fits a simplified function S(K, 4)) directly to those experimental 

quantities which can be accurately determined by rather simple procedures. 

Until now the following procedures have been applied to obtain the 

function S(K., U) for the usual reactor moderators: Sĵ (K,M) is proportional 

Laboratorium fur Technische Physik der Technischen Hochschule Miinchen 
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to the double Fourier transform over space and time of the self correlation 

function G(r, t) which contains the whole information on the scattering 

system. By assuming that G(r, t) approximately is a Gaussian simple rela

tions can be established between the measured data and the width w(t) of 

this Gaussian. From the experimental knowledge of w(t) the scattering law 

S(K, W) can be computed for a wider range of the parameters K and tt. This 

method has been proposed and applied in the case of water by Egelstaff /2,3/. 

A more indirect concept is the complete quantum mechanical calculation 

of S(K, W) which implies a high amount of mathematical and numerical work. 

The only informations needed concern the lattice or molecule structure, and 

the lattice spectrum which is known indirectly in most cases. For beryllium 

earlier calculations have been performed by the incoherent approximation 

using a simple Debye spectrum /4,5/. Improvements have been achieved by 

regarding coherence effects /6,7/, or by using a Born-Karman spectrum (with 

two characteristic temperatures) in the incoherent approximation /8/. The 

Debye approach considering coherence effects has been applied to the case 

of BeO /9/. For graphite the Debye model is insufficient. The Krumhansl-

2 
Brooks spectrum (proportional to CJ at low and to CO for higher modes /14/) 

has been used in the incoherent /ll/ and later in the coherent approximation 

/12/. The more realistic spectrum by Baldock /15/ has been also applied /13/, 

A comparison of the cross section integrated over final energy and solid 

angle with transmission experiments in the sub-Bragg range showf rather 

good agreement for beryllium /5,7,6,8,9/ (better than 5 to 10 percent in 

most cases). One should keep in mind that in some cases a certain compensa

tion of errors can occur, resulting from the different approximations applied. 

In the case of graphite the comparison with experiments below the Bragg cut

off is rather unsuccessful because of small angle scattering effects /12/ 
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and, at higher energies, because of the influence of preferred microcrystal 

orientations /16/. In view of the complicated lattice spectrum a more 

direct experimental approach would be needed to obtain S(K, ̂  ) at least 

for graphite. 

In molecular moderators both the spectrum, and the amplitudes (or 

the "effective masses") for the different oscillation mod6s have to be 

known. Calculations by Nelkin 111 I in the case of water will be compared 

with calculations which have been performed recently at Karlsruhe (see 

section 3). 

2, Experimental determination of a Ansatz function S(K, tJ) with 
several free parameters 

The first calculations of S(K,£o) have been performed approximately 

by means of a free gas model. For energies below about 10 kT, there is a 

considerable amount of purely elastic scattering without quantum exchange, 

especially for graphite and beryllium because of their exceedingly high 

Debye temperatures. Therefore, the free gas model is a rather crude picture, 

A reasonable improvement of the scattering law could be achieved by the 

r If 
introduction of an elastic line (J (W ) and a semi-emirical inelastic con-

'̂ "/̂ .̂̂ c/̂ ,.,) (V 
tribution S , namely 

where S^ (K,-<0) = SQ(K,y ) ^ \ 

By this formulation the condition of detailed balance is fulfilled automati

cally. The intensity of the elastic line, F ({(), is proportional to the 

Debye-Waller factor. For energies above the Bragg cut-off F(/^) is further 

proportional to the intensity distribution of the Bragg reflections in a 

•*•) The distinction between coherent and incoherent scattering can be dropped 
by using only the first term of (1) with d ^ instead of C!i • 
kg is Boltzmann's constant. '" 
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polycrystal. Absolute values of the function F (^ ) can be measured by 

selecting neutrons which have been scattered without energy exchange. The 

experimental curve can be easily normalized by the condition that F(0)= 1. 

F(|^) could be also determined by x-ray reflections if the same momentum 

is transferred as in the case of neutron scattering. 

The inelastic part SQ can be represented by a reasonable chosen 

simple function with two free parameters which are allowed to depend on K: 

they can be determined by means of the sum rule /I,29/ 

which is valid for both coherent, and incoherent scattering} and by means 

of a second experimental function. For this function the simple differen

tial cross section should be chosen 

o 
This quantity can be accurately measured by a "black" neutron counter /18/. 

The normalization of the experiment can be performed by the well-known 

value of ^ = j (C/(5-/6/^2) c/S2 . 

The shortest possible "Ansatz" for S is 

(6) 

where H and ^ are even functions of K. (5) with (4,6) gives WiH\ FfvJfKiM^ic/oi /^ffr- \ 

where £ and Cj depend on E', F (^ ) = 0 and ^ ^ = Zi^^l<^k^T/M, 

gives the free gas limit. For low energies and temperatures where the 

single phonon processes are dominating ̂  tends to approach a constant value 
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2 +) 
and H becomes approximately proportional to /c 

Therefore, a reasonable approximation would be 

^ ' - ^(T) ^ bCrJK"^ (8) 

Now, (7) can be integrated explicitly and the constants a, and b can be 

determined by a least square fit. 

The method recommended takes into account rather exactly the trans

port properties of the moderator by using the experimental cross section 

d<S[v//uSl,» The moderation properties are included by taking into account the 

sum rule, the detailed balance condition, and by the introduction of the 

intensity of elastic scattering directly from experiment. It is reasonable 

to assume that the description of the inelastic scattering distribution by 

a simple function (6) with (8) is a rather good description for thermaliza

tion problems. 

3. The scattering cross section of water 

The scattering cross section d'^/dE'dSc of water has been calculated 

by Nelkin /17/ with the following approximations: (a) translational motion 

is treated like that of an ideal gas, (b) the hindered rotation is treated 

as a torsional oscillation with a single quantum energy of 0.06 eV, and (c) 

three molecular vibrations were regarded with quantum energies of 0.205, 

0.481 and 0.481 eV. The integral of d^(5^dE'trover dE' and djL gives the 

total scattering cross section ^Z(^Ji.x\ very good agreement with experiment 

between 0.01 and Q.SeVlnl. The calculations have been extended to lower 

energies by Goe^mann /19/ using a Debye model for the translational motion. 

The results are compared with experimental curves from /20/ in fig. 1. It 

+) The single phonon term in the Gaussian approximation of Sjolander /30/ 
is similar but not identical with (7) in this case. For the incoherent 
case, (7) with (8) is in accordance with the sum rule of the second 
moment of S(K,£i?) (cf, [1]) , 
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can be seen, however, that the Debye model with a constant Debye temperature 

fails completely as soon as the free gas concept begins to fail. The step 

at the melting point in fig. 1 results partly from the change of the hindered 

rotation energy and partly from the change of the Debye temperature. The 

comparatively small difference between the bound and the free molecule case 

can be understood by the opposite influence of the Doppler effect and the 

reduced mass factor. 

The differential cross section d6'(v)/iH^ has been calculated by 

Kiefhaber /21/ by integration of Nelkin's cross section over E'. The results 

are compared with experiments /18,22/ in fig. 2. There is rather good agree

ment at 0.04 eV. At 0.08 eV the agreement is less good. The calculated 

mean cosines of the scattering angle, ifc are compared with experiments in 

fig. 3. All experimental points are below the calculated curve. Similarly 

the transport mean free path (found by averaging 1/(1 ~/^) over a Maxwellian) 

is A tr ~ 0.^58 cm instead of ̂  ^j. = 0.427 + 0.008 cm from experiment /23/. 

We think that the discrepancy is due to the assumption of one single 

torsion energy instead of a rather broad band. This will induce some error 

mainly at higher neutron energies where torsional quanta can be transferred. 

Even in the case of ice there are two separated torsional lines in the Raman 

spectrum at 0.065 and at 0,10 eV. The first can be related to the oscilla

tion around the molecule dipole axes and the latter around the two other 

molecule axes, respectively /25/. 

In the case of water there are several coordination types /26/ with 

different torsion forces. This gives a further WSJcJadening of the spectrum. 

On account of Raman spectra in water at 28°C /27/ a rectangular distribution 

between O.Ô I- and 0.09 eV should be used. The higher molecule vibration 

should be changed from 0.48 eV (vapor) to'ŝ O.43 eV (water /26/28/) . 
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Calculations with this kind of spectrum are planned. 

The neglect of the translational hinderance in the theory will, on 

the other hand, introduce no appreciable error in the dominant range of 

the reactor spectrum. This can be clearly seen by comparing experimental 

angular distributions d6 /dii of ice and water at the same energy /22/: 

The difference in the curves is very small in spite of the large difference 

between the Debye temperature of ice and the (hypothetical) Debye tempera

ture of water. 

In this connection we may mention that neutron scattering spectra 

are not very useful to obtain the quantum energies of higher vibration 

modes (^^Sfie.a^lcu V\e^ molecular vibrations) : if the neutron gains energy 

from these states normally a rather large momentum is transferred to the 

vibrating molecule. By this recoil a large Doppler broadening / of an 

(initially sharp) line is induced with V ~ ^(^^^' '^//IJ iof S'- TT/Z. 
Vi. 

(M/m = molecular mass in units of neutron mass). In Raman scattering 

experiments, on the other hand, the recoil is smaller by a factor of 

9 9 1/2 9 

(EL/2mc E ) c^ 1/3000, (mc = rest energy of the neutron, E.̂  = quantum 

energy exchanged, e.g. 0.06 eV, ET^i ̂  eV = quantum energy of Hg-lamp). 

The author is very indebted to Prof. H. Maier-Leibnitz and Dr. K. 

Bockmann for valuable suggestions and discussions. Thanks are further due 

to Mr. E, Kiefhaber and Dr, W. Hafele for communicating results prior to 

publication. 
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LEGEND OF FIGURES 

Fig, 1, Total cross section of water and ice in barns per molecule, 
Jand solid curve: experimental (Heinloth et al. /20/). • and 
thin curve: calculated (Go^ann /19/). 9 =Debye temperature; 
torsion energy 0.06 eV for water^and 0.074 eV for ice. The 
liquid range cannot be described by a constant 9 at very low 
energies. At 2.7 x 10"^ eV, on the other hand, the results 
are rather insensitive against the translational mostions. 
9 = 0 and 9 = OO describe the case of completely free, and 
bound molecules, respectively. 

Fig, 2, Angular distribution d<5'(v')/dj^ from neutron scattering in 
water o = experimental (Reinsch et al. /18,22/). Solid 
curve: calculated with Nelkin's theory /17/ by Kiefhaber /21/, 

Fig. 3, Mean cosine of scattering angle cos O/' and transport mean 
free path ?\t:r* * ~ Whittemore et al,/24/, 
o = Reinsch et al. /18,22/, solid curve.'Kiefhaber /21/, 
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M. G. Zemlyanov, N. A. Chemoplekov 

INVESTIGATION OP INELASTIC SCATTERING OP COLD NEUTRONS 

BY CERTAIN HYDROGEN-CONTAINING SUBSTANCES 

ABSTRACT 

Using a beryllium filter to separate the spectral 

line of cold neutrons and the transit time method for 

an energy analysis, we investigated the spectra of neutrons 

inelastically scattered by benzene, diphenyl, and non-irra

diated and irradiated polyethylene. The measurements were 

carried out at sample temperatures of 20° C. The data ob

tained are compared with the results of optical investiga

tions of the spectra of the indicated substances. 

1. INTRODUCTION 

An investigation of the inelastic scattering of cold 

neutrons by hydrogen-containing substances such as benzene, 

diphenyl, and polyethylene is of interest for two reasons. 
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On the one hand, the polyphenyls and polyethylene are 

assuming an ever increasing significance as moderator mat-

eraisl in reactor building, and the solution of the prob

lem of thermalization of neutrons in these substances calls 

for a direct investigation of the inelastic interaction 

processes. On the other hand, a study of inelastic scatt

ering of cold neutrons by substances uncovers new possi

bilities of obtaining additional information concerning the 

excitation spectrum, i.e., on the dynamics of the substance, 

and the extraction of such information is for many hydrogen-

containing substances (saturated, unsaturated, and aromatic 

hydrocarbons) of great practical suid theoretical signifi

cance. Until recently the dynamics of these substsuices was 

investigated principally both by measuring the temperature 

dependence of their specific heat, and by measuring the 

infrared absorption spectra and the Raman spectra. However, 

as is well known, data on the temperature dependence of 

the specific heat do not make it possible to carry out 

unambiguous determination of the spectrum of oscillations 

of a Bose system, while in optical measurements one inves

tigates and interprets, principally the high-energy transi

tions, corresponding to the intramolecular motions. A 

study of low-energy transitions, corresponding to inter-

molecular motions, is difficult to carry out by optical 

means, this entailing both apparatus difficulties and 
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factors that are principally physical.Consequently an in

vestigation of the inelastic scattering of neutrons by 

hydrogen-containing substances is of great Interest, par

ticularly in the field of low energies. 

Notice must be taken here of the specific features 

of the information contained In the spectrum of neutrons 

inelastically scattered by hydrocarbon compounds. Inasmuch 

as these compounds contain hydrogen and carbon atoms, which 

differ greatly in mass and in neutron scattering amplitudes, 

one might think that the Information concerning the optical 

portion of the oscillation spectrum should be more reliable, 

since the cross section for Interaction with hydrogen is 

larger than that with carbon, and hydrogen participates 

essentially in the optical oscillations. A factor acting 

in the opposite direction is that of the level population 

(the Boltzmann factor), which causes greater excitations 

to occur, for example, in the acoustic oscillations, and 

consequently, the cross section for inelastic interaction 

between neutrons and these levels is higher. In addi

tion, one must note that the use of the experimental 

results for solving the inverse;problem, of determining 

the oscillation spectrum from the spectrum of the inelas

tically scattered neutrons is impossible for hydrocarbons. 

It is impossible because we do not know a priori the re

lationship between the polarization vectors eo^(f) for 
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different oscillations, which vectors are contained in the 

general expression for the inelastic scattering cross 

section [1]: 

Since the polarization vectors are subject to the single 

limitation ^\Q^if) \ = !• Consequently, in order to 

determine the oscillation spectrum by means of a neutron 

experiment we must make use of model representations for 

the dynamics of the hydrocarbons. Consequently an analy

sis of the experimental data on inelastic scattering of 

cold neutrons by benzene, diphenyl, and irradiated or non-

irradiated polyethylene will be limited to a qualitative 

comparison with the results of optical investigations and 

with the results of the theoretical work. 

2. EXPERIMENTAL PROCEDURE AND DETERMINATION OP ERRORS 

The inelastic scattering of cold neutrons by speci

mens of benzene, diphenyl, irradiated and non-irradiated 

polyethylene was measured in the I. V. Kurchatov Atomic 

Energy Institute using a setup mounted on the IRT-1000 

reactor [2], The primary line of the cold neutrons was 

separated with the aid of a filter made of polycrystalline 
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beryllium, while the analysis of the scattered neutrons 

was carried out at an angle of 90° to the incident beam 

using transit time, with the aid of a mechanical interrup

ter and a 128-channel time analyzer. Specimens 0.1 cm 

thick were mounted at 45° to the Incident beam, their 

temperature being 20° 0. To guarantee maximum resolution 

of the neutron spectrometer, A 6 f^ = 6 — "7%, the en

tire investigated energy interval of the scattered neu-

-•5 -2 trons, from 5 x 10 to 2 x 10 ev, was broken up into 

five sections, each of which was investigated at suitable 

speeds of rotation of the mechanical Interrupter, time 

delays in magnetostriction lines, time-analyzer channel 

widths, etc. After taking into account the distortion 

introduced by the transmission function of the mechanical 

interrupter, the data on the individual series of measure

ments were "Joined" to each other on the basis of rea-lings 

of the monitors. Corrections were then introduced into 

the results to allow for the deviation of the detector 

efficiency from the l/v law and for the attenuation of 

the scattered neutrons via the air between the interrup

ter and the detector. No correction for the deformation 

that the specimen introduces into the spectrum of the 

incoming and scattered neutrons were made, since this 

correction is small for hydrocarbons. In fact, the ex

pression for the measured spectrum has, after lnteR;ration 
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over the thickness of the specimen, the following form 

= LU) 

where IQ( ^ Q ) — spectral line of cold neutrons, 

d'6'{')K , ^ )/d/̂ d / — Inelastic scattering cross 

section. 

<5~. ( ̂ Q ) — total cross section for cold neutrons, 

<5~„ ( ̂  ) — absorption cross section for scattered a 

neutrons. 

d — thickness of specimen, 

N — density of the nuclei. 

Assuming that IQ^'^O^ ~ '̂  ̂  0 " '̂  av^ ^^^ ^ speci

men thickness of 0.1 cm, we can neglect the correction, 

since ^^^ '̂ Ô  ^^ ^ a ^ ^ ̂  ^^^ 

3. MEASUREMENT RESULTS Â ID DISCUSSION 

a) Benzene, The benzene molecule is one of the 

simplest among the polyatomic cyclic molecules, and its 
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spectrum has been investigated in detail theoretically and 

experimentally both in the condensed state and in vapor. 

In connection with the fact that the symmetry group of the 

benzene molecule is D^ and that the alternative forbiden-

ness holds for the optical spectra of this molecule (levels 

that are Inactive in the Raman spectrum are active in the 

infrared absorption spectrum and vice versa), one should 

not expect the neutronoscopic investigation of the 

benzene spectrum to yield additional information at ener

gies above the first vibrational level of the benzene mole

cule (E CI. 0.05 ev). If there are any differences, they 

should be sought at lower energies. 

Pig. 1 shows the spectrum of the neutrons scattered 

by a specimen of liquid benzol at 20° C, obtained after 

180 hours of operation of the apparatus. The intensity is 

plotted as a function of the wavelength of the scattered 

neutron, the resolution of the spectrometer during the 

transit time is Indicated by the triangles, while the 

arrows designate the positions of the lines obtained in 

the Raman spectra and in the infrared absorption spectra 

[3, 4, 5]. It must be noted first of all that the maximum 

at ^ 4 A ( ATT = 3.952 A), corresponding to elastic scatt

ering of the primary cold-neutron line, manifests itself 

weakly in the spectrum, and is comparable in intensity with 

the weak maximum in the primary line (Pig. 2), correspond-
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ing to the system of planes Be(l, 1, l). This change in 

the spectrum is obviously explained by the fact that there 

exist in liquid benzol, at low energies, a large level 

density, connected both with the quasi-phonon spectrum and 

with the rotational states of the molecules, and also with 

the presence of the strong BfUMxiH^ motion in liquid benzene 

at 200 C. Therefore the inelastic scattering cross section 

of cold neutrons turns out to be comparable with the elas

tic scattering cross section, and this causes the elastic 

scattering peak to become smeared. 

Further, as can be concluded from a comparison of the 

results of the optical investigations with the spectrum of 

inelastically scattered neutrons, it follows that all the 

levels that appear in the optical spectrum of benzene 

appeared also In the neutron spectrum. The difference lies 

only in the fact that the lines with frequencies 63 and 69 

cm" ( /\TT = ''.68 and 2,60 A), corresponding to the rotation

al oscillation about the planar axis and the sixfold axis, 

are not resolved, and the line at v^2r405 cm" ( / „ = 
o 

1,23 A) which usually appears weakly in optical observa

tions, was clearly pronounced in the neutron spectrum. 

However, along with the maxima of the inelastically scatt

ered neutron,spectrum, which coincide in position with the 

lines of the optical spectra, certain maximum not observed 

in optical spectra also appear. This is first of all the 
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maximum at /\g = 1.30A( '^ r^ 360 cm"!) and the very vjeak 

maximxjm at /« jj = 1.48 A( v ~ 262 cm" ), and also two 

maxima at )̂ g = 2,80 A and A^ =3A( y= 55 cm" and / = 

44 cm" ), situated between the levels of the rotational 

oscillations about the planar axffs and sixfold axis. 

b) Diphenyl. The experimental spectriim of inelas

tically scattered neutrons from a specimen of polycrystall

ine diphenyl is shown in Pig. 3. As in the case of benzene, 

the results of the optical Investigations of the diphenyl 

spectrum, obtained essentially from the depolarization of 

Raman scattering [3]> are Indicated in the figure by arr

ows. Unlike benzene, the neutron spectrum of diphenyl 

has a clearly pronounced region of elastic neutron scatt-

ering of the first line (/jj = 3.64 A and 4 A). The slope 

of the leading front of the main maximum of elastic scatt-

ering at /Ag ci '̂ A is determined only by the resolution 

of the neutron spectrometer, and consequently, at the 

temperature of the experiment, which was 50° lower than 

the melting point of diphenyl, the diffuse motion in 
rwrtTo 

diphenyl is practically nonexistent. Prom the re?_ation of 

the ordinates of the maxima of the elastic scattering at 

) \ - 3.64 A and }\ -1\. A, which does not differ strongly 

from the ratio of the ordinates in the primary line, one 

can conclude that the level density in solid diphenyl is 

insignificant in the low energy region near lO" ev. As in 
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the case of benzene, the spectrum of the neutrons inelas-

tically scattered by diphenyl contains along with the lines 

that appear in the optical spectra also lines missing from 

the optical spectra. These lines are situated in the di

phenyl spectrum near ^ -^ ~ 2.23 A( ̂  - 104 cm"-*-) and }\ jj 

= 3.25 A( V r 34 cm""^). In Pig. 3 these lines are indica

ted with arrows marked with a question mark. Although the 

nature of these maxima has not yet been established, it 

must be noted that both in the optical and in the neutron 

spectra of the benzene, maxima appear at these wavelengths. 

c) Non-irradiated and irradiated polyethylene. The 

specimens used were polyethylene low-pressure films with 

average molecular weight 5 x 10 and 6o% degree of crystall-

Inity. One of the polyethylene specimens was irradiated in 

a reactor with an integral dose of about 500 Mrad, corres

ponding to the formation of about 10^ of joinings between 

the polymer chains. The experimental results on the 

measurement of the spectra of inelastically scattered neu

trons from the polyethylene specimens are shown in Figs. 

4 and 5. For the sake of convenience in comparison, the 

spectra have been normalized to equal intensity at the 

elastic-scattering maximum at Au = ^ A,and the entire 

investigated wavelength interval of the scattered neutrons 

is broken up into two parts, the range from 0.7 to 1.2 A 

(Fig. 4), and the range from 1.2 to 4.5 A (Pig. 5). As 
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before, the arrows indicate the positions of the lines 

observed in the optical spectra of polyethylene [6, 7, 8]. 

From a comparison of the results of the optical investiga

tions with the spectrum of the inelastically scattered 

neutrons (Pig. 4) we can conclude that the spectrum of the 

inelastically scattered neutrons duplicates to a consider

able degree the optical spectrum, i.e. , the infrared ab

sorption lines and the Raman lines correspond within the 

limits of the resolution, to maxima of the neutron spec

trum. The neutron spectrum contains also lines which are 

classified as very weak in the optical spectrum, and for 

a series of very closely lying lines of the optical spec

trum ( /g = 0.7-̂ 5 — 0.780 A) the neutron spectrum yields 

an envelope, owing to the insufficient resolution. As can 

be seen from Pig. 4. in the wavelength Interval of the 

scattered neutrons from 0.7 to 1.2 A, no noticeable diff

erence is seen between the spectra of the non-irradiated 

and irradiated polyethylene and between the neutron and 

the optical spectra. The difference manifests itself at 

loner wavelengths of the scattered neutrons, with /^ TJ "^ 

1.2 A (Pig. 5). i/hat is striking in this region is the 

transition from elastic scattering (maxima at '̂  H ~ ̂  ̂ '̂̂  

3.64 A) to inelastic scattering. The ratio of intensities 

of elastic to inelastic scattering is 3:1. Such a ratio 

Indicates that in both the non-irradiated and irradiated 
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polyethylene there is a considerable level density in the 

region of low energies, connected possiblly with the ro

tation of the segments of the polymer chains. This re

sult agrees with results obtained by investigating the 

nuclear magnetic resonance lines in polyethylene, where 

it becomes necessary to assume that polyethylene contains 

a system of low-lying energy levels in order to explain 

the small width of the experimentally observed lines [9]. 

The cited references on the investigation of optical 

spectra of polyethylene contain indications that weak lines 

have been observed, with frequencies ^= 150 cm" and V* = 

200 cm~ (corresponding to /̂  „ = 1.9^ and 1.71 A). As can 

be seen from Pig. 5, two maxima appear in the neutron spec

trum of both non-irradiated and irradiated polyethylene. 

These can be regarded as coinciding, within the limits of 

resolution, with the results of the optical investigations. 

These are the lines at Ajj = 2.04 A and A jj = 1.78 A (op

tical frequencies V ^ 135 and V ':L 184 cm"-"-). How

ever, the structure of the neutron spectra is more com

plicated. In this connection it would be desirable to 

compare the results of the neutron research on the poly

ethylene spectrum in the considered region of wavelengths^ 

with the theoretical work on the dynamics highly-ftniso-

tropic chain materials, used to explain the temperature 

dependence of the specific heat [10, 11]. However, the 
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polyethylene model that was used as the basis of the theor

etical analysis of [10], in which the true structure of the 

crystalline regions of the polyethylene is approximated by 

a tetragonal lattice, and in which no account is taken of 

the presence of the amorphous phase and the solutions of 

the dynamic matrix are unstable with respect to the choice 

of the force constants, is far from reality. Consequently, 

a comparison of the data of the neutron experiment with 

this theory is not convincing. 

The spectrum of inelastically scattered neutrons at 

/A TT > 1.2 A contains along with the lines at A tj = 2.04 

and /u = 1.78 A a few other maxima, namely a clearly pro-

TT = 1.51 A( V ^ 264 cm ) in both 

the irradiated and non-irradiated polyethylene, and maxima 

at ATT = 2,20 and 2.94 A, which manifest themselves more 

pronouncedly in the spectrum of the non-irradiated poly

ethylene. The spectrum of the irradiated polyethylene 

displays also a weak maximum at Ajj = 2.63 A ( ^ — 

64 cm" ). The degree to which these maxima are connected 

with the singularities of the phonon spectrum of the poly

ethylene cannot be judged from the results of this experi

ment. As regards the difference in the spectrum of in

elastically scattered neutrons from non-irradiated and 

irradiated polyethylene, we can see from Pigs. 4 and 5 

that there is no appreciable difference between these spec-
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tra. All that is observed are weak discrepancies between 

the spectra, which manifest themselves only in the long

wave portion of the spectinim and apparently call for a 

more detailed investigation, 

CONCLUSIOJT 

By investigating the spectra of neutrons inelasti

cally scattered by samples of benzene, diphenyl, and non-

irradiated and irradiated polyethylene at 20° C, it was 

established that the neutron spectra of these substances 

have certain singularities that do not appear in their 

optical spectra. A more exact determination of the energy 

position of these singularities and a deteiTninatlon of their 

nature require, on the one hand, an increase in the resolu

tion of the neutron spectrometer with respect to the tran

sit time and a considerable narrowing down of the spectral 

line of the cold neutrons, and on the other hand measure

ments of the spectrum of the inelastically scattered 

neutrons at different temperature above and below the 

melting temperature and the temperatiire T , 

The authors are grateful to M, I. Pevzner for con

tinuous Interest in the work and for participating in 

the discussion of the results. 
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Figure Captions 

Pig. 1. Spectrum of neutrons scattered by liquid 

benzene. 

Fig. 2. Spectral line of neutrons filtered by poly-

crystalline beryllium. 

Pig. 3. Spectrum of neutrons scattered by poly-

crystalline diphenyl. 

Pig. 4, Spectrum of neutrons scattered by irradiated 

and non-irradiated polyethylene in the wavelength interval 

from 0.7 to 1.2 A. 

Pig. 5, Spectrum of neutrons scattered by irradiated 

and non-irradiated polyethylene in the wavelength interval 

from 1,2 to 4.5 A. 
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1. Introduction 

This report falls into two parts - a review of methods of calculation 

of the scattering law, illustrated by the examples given in papers presented 

to the conference (1-6), followed by a discussion of various integral proper

ties of the scattering law, and their sensitivity to its detailed nature. 

In the first part of the paper emphasis is placed on the mathematical 

nature of the approximation used rather than on detailed physical considera

tions. This is because the scattering law is subject to various constants (de

tailed balance, and the Placzek moment theorem) which from the point of view 

of thermalization theory are of greater significance than for example details 

of the energy level structure of the scattering system. 

A. Scattering Law Calculations 

2. General Formulation 

In the general discussion, I shall restrict attention to the contribu

tion to the total scattering due to the incoherent scattering from one species 

of atom, chemically bound in a particular way. For this the scattering cross 

section for neutrons from initial energy E to final energy E' through an angle 

9 is given by 
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rr 1 . 

a(E- . E',0) = - ^ ( E V E ) ^ r ^ / r(/c,t)e''^^ dt (1) 
47r 27rn -^ -

- o o 

where a is the bound atom cross section, KK the momentum transfer and o ' -

Kco the energy transfer between neutron and scattering system. y(/£,t) de

fined below is a correlation function for the motion of the type of atom under 

consideration. 

To obtain the macroscopic cross section which appears in the Boltzmann 

equation for thermal neutrons, we have to take a sum of terms of the form (1) 

for each possible type of binding of atoms in the system, weighted with the 

number density of such atoms, followed by a sum over the different atomic 

species in the system. In addition there may be terms due to interference 

in the scattering from different atoms. 

There a re thus two problems involved in constructing a theoretical 

scattering law. These are a) the physical problem of obtaining y(/c,t) and 

b) the mathematical problem of the evaluation of the Fourier transform inte

gral (1). However, whatever physical or mathematical approximations are 

made, it is essential that certain "rules" should be borne in mind in com

puting cross sections for the calculation of neutron spectra. These may be 

summarized under (A) through (D): 
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(A). y(/c,t) is analytic in t around t = 0 and is such that y(/£, t - ^ r ^ ) 

is real for real K,t, where T is the temperature of the moderator. 

This is the detailed balance condition. 

Rules (B), (C), and (D) relate to the short time behavior of 7(/£,t): 

(B). r{K,0) = 1 (2) 

h 2 
(C). y'{K,0) = i 5 ^ (M the mass of the atom) (3) 

(D). y"{K,0) = - ( R K V 2 M ) ^ - K^~- (4) 

where kT is two-thirds the mean kinetic energy of the atoms. (Primes de

note derivatives with respect to time.) 

These rules can also be expressed in terms of the scattering law, 

S(«,/3), of the dimensionless variables a and /3. S(a,/3) is defined by 

OO 

e""/̂  S(o.,p) = f i / y(«,t)e"''dt (5) 
- O C 

where 

^ = ! ^ = i^(^'-E) " ' 
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Rule (A) then states that S{a,0) is an even function of /3, while (B), (C), and 

(D) give respectively 

(B') 2/s(Q!,i3) cosh § d ^ = 1 (8) 

(C) 2/s(a,i3)i3sinh §d/3= a (9) 

(D') 2/s(Q!,i3)/3^ cosh § d^ = a^ + 2 ^ a (10) 

These are the moment theorems first obtained by Placzek (8). The significance 

of these rules in thermalization theory is as follows: if rule A is violated then 

the Maxwellian distribution of neutrons is no longer a solution of the infinite 

medium Boltzmann equation in the absence of absorbers. Thus this rule 

must not be relaxed in calculating cross sections for situations where a 

thermal spectrum is established. Rules B and C determine the high energy 

total cross section as the free atom cross section: if rule B is relaxed then 

in general the cross section will become zero or infinite at high energies. 

Rules C and D determine the rate of energy transfer between neutron and 

moderator at high energies, so these rules also should not be relaxed in cal

culating cross sections above thermal energies. 

Although the emphasis here is on the calculation of cross sections for 

reactor purposes, it is interesting to consider the formal properties of y(/c,t). 
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In particular in a recent memorandum, R. Aamodt et al. (9) have considered 

the relation between y(K,t) and its classical equivalent, and shown that formally 

S(a,i3) = S^(a,/3) e"^ /^ + 0 (H^ (11) 

where S {a,0) is computed from the classical y{K,t). In a paper at this con

ference Rosenbaum and Zweifel (10) show some numerical results indicating 

the magnitude of this correction in a number of cases. 

3. Scattering by Molecules 

In two papers to the conference McMurry et al. (1,2) have compared 

methods of calculation of the scattering from isolated molecules under the 

assumption that the Hamiltonian can be separated into non-interacting parts 

corresponding to translation rotation and vibration. In such a case y{K,t) 

separates into a product of two factors y for the translational motion, and 

y for the rotation and vibation.(lO) The vibrational part can be written in 

the form 

y^ = exp{-K <u(0)u(0)>^ K + ^<u(0)u(t)>^ K} (12) 

where u(t) is the displacement of an atom from its equilibrium position with 

respect to axes fixed in the molecule, y then contains this factor together 
RV 

with the rotational contribution averaged over orientation of the molecule. 
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w Of particular interest in these results is a comparison of the exact 

average over orientations compared to "Krieger-Nelkin" averaging where 

the average is performed in the exponent of (12). Figures 1, 9, and 10 of 

reference 2 show that for the highly symmetric molecule of methane the two 

agree quite well, while for the linear pseudo-molecule OH, there is a marked 

disagreement. 

Another point of interest is that a classical treatment of the vibrational 

mode^ leads to too great an energy loss for scattering of high energy neutrons 

(Figure 10) as would be expected since rule D is then violated. 

A method of calculation which is not given in McMurry's paper is to 

use the "Gaussian approximation" to calculate the scattering. This has been 

considered, from the point of view of computation, in a recent paper by Scho

field and Egelstaff (12),and has so far been the basis for computations using the 

experimentally measured S(a,/3). Here y(/c,t) is specified by a normalized 

frequency distribution p (ft): 

oo 

S(a,/3) = - ^ / I(Q',t)e''^ dt (13) 

I{a,t) = exp l - aWd)} (14) 
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[Note that "Krieger-Nelkin" averaging is implicit in this formalism; see, 

however, Appendix III of reference 12.] 

I quote here the form of p(/3) for the rotational motion of an atom in a 

diatomic molecule. This may be obtained by evaluating the velocity self-

correlation function for a particle moving in a sphere without using explicit 

forms of the rotational wave-functions: (13) 

^ . 2 . R V l k T .. -(h^/2IkT)l(l+l).,^ ih^. 
,,, 2P^___1^^^ '^^ - Ik^^ 

p (^) = (16) 
E (2..1)e-(^ /2^^)^(^-^^ 

p (/3) is normalized to 2/3 since the rotational motion accounts for this 
R 

fraction of the total degrees of freedom of the atom. In the limit of large 
^2 

moment of inertia (small energy level separation), r-r; « 1, p„(/3) may be 

IkT R 

replaced by a continuous pseudo-classical distribution: 

1 10)2 

J 

c , „ 2 kT 1 ,2 3 2 kT ,,„, 
PR''^' = 3 T 2 ' " <= ( " ' 

kT 
where co = -r—8 . 

n 

A comparison of this Gaussian approximation with the other methods 

of calculation would be of great interest, since the rotating system is the 

only definitely non-Gaussian system for which an exact calculation is possible. 
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In the paper by Yip and Osborn (3), a model for scattering from a 

hindered rotator is given, by considering the motion of a dipolar molecule 

in a strong electric field. An interesting feature of their result is the p r e 

diction that to a good first approximation, y has the form 

y(u,t) = f̂ (K) + f^(u)g(i/,t) (18) 

where f (K) and f.(/c) depend only on the structure of the molecule and are 

independent of the energy of the oscillator, u, corresponding to the hindered 

rotation. Thus even in a more realistic model of a liquid where instead of 

a single frequency there is a distribution of frequencies v, y still has the 

form (18). It should be possible to test experimentally from measurements 

of S{a,j3) in an appropriate liquid (ammonia ?) whether this is so in practice. 

The papers of Goldman and Federighi (4), and of Boffi et al. (5) treat 

the scattering from polyethylene and polyphenyls respectively. These cal

culations are both based on (12) for the vibrational y(K,t). The u(t) for each 

hydrogen atom are obtained in terms of normal coordinates, and frequencies 

obtained from infrared data in (4) and for a normal mode analysis of benzene 

in (5). 

The paper by Macdougall (6) describes the computer codes LEAP, 

which uses the methods of reference (12) to compute S{a,^) from a given 
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p(i3), in the Gaussian approximation, and in particular some calculations 

of cross section and spectra for graphite using experimental data of Egel

staff (unpublished). 

B. The Scattering Law and Neutron Thermalization 

4. General Discussion 

One of the main difficulties in making a direct assessment of the 

sensitivity of thermal neutron spectra to the form of S(Q!,JS) lies in the rather 

awkward relation between a and j3 for given initial and final neutron energy 

and angle. Although it has long been realized that spectra must be insensitive 

to fine details in the scattering [as an extreme case of insensitivity, see Table 

1 of Macdougall's paper (6)], it is only recently that quantitative estimates 

have been made of such sensitivity. 

In the epithermal range, the expansions of Placzek (8) and of Wick (14) 

combined with asymptotic solutions of the energy dependent equation for 

thermal neutrons (15,16) have indicated the importance of certain parameters , 

such as the mean kinetic energy of the moderating atom, and the curvature 

of the potential with which they interact. However, the range of validity of 

such expansions does not reach far into the thermal range. 

Recently quite a number of authors have shown, independently, how, 

within the framework of the Gaussian approximation, various averages over 
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I the scattering law can be evaluated directly in terms of the function W(t) 

or (equivalently) p(/3) (17-21). 

The general results of this work can be derived from a function which 

I call F(A,/i). It is defined by 

a F{X,ji) = / dE E e ' / dE'a(E-»E') exp{-AE - ^ E ' } (19) 
° 0 0 

that is, as the double Laplace transform of the symmetrical cross section 

-F 

Ee a(E—E')- (The energy is here measured in units of the moderator tem

perature.) 

Within the Gaussian approximation, F{X,ii) reduces to a single time 

integral: 
oo 

F{X,ix) = I / dtjt^ + \{UX+ii)^ + (l+\+^) ^ W(t + |(X-/i))}"^/2 (20) 
- o o 

Clearly by taking derivatives with respect to X and ji and setting X = ji - 0 

matrix elements of the scattering kernel between powers of E may be ob

tained, and hence between orthogonal polynomials: this is discussed with 

respect to the Laguerre polynomials by Purohit (19) and Takahashi (20). 

Corngold (17) obtains expressions for arbi trary powers of energy, in terms 

of integrals over hypergeometric functions. 

Purohit and Rajagopal (22) have performed extensive calculations 
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using various Doppler approximations. Here W(t) is expanded about some 

2 
point in the complex t-plane by a Taylor ser ies , terms through t being 

retained. With this approximation it is possible to obtain in fairly simple 

form the single integral over E' in (19), and hence evaluate moments of energ 

transfer between neutrons of incident energy E and the moderator. The diffi

culty here is that it is impossible to satisfy simultaneously all conditions (A) 

to (D) (except in the trivial case of the free gas), so that to obtain consistency 

with these conditions, the expansion should be performed about some point 

t + IT, where r depends on the initial neutron energy. 

In reference (21), I have considered the rate of energy exchange be

tween a Maxwellian distribution of neutrons at a temperature T and a mod

erator of temperature T . This has the advantage that while this function 

of T / T contains all the information for the rate of exchange of energy be

tween neutron and moderator, it is much simpler to assess the sensitivity 

to the form of W(t) in this way. 

A brief discussion of this method together with some preliminary r e 

sults is presented in the next section. 

5. Rate of Energy Exchange Between Neutrons and Moderator 

As an assessment of the sensitivity of thermalization phenomena to 
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# 

* (1) 

the form of p{oo), we consider the function M (i3,w) defined through the fol

lowing sequence of equations. We consider the rate of exchange of energy 

between a thermal distribution of neutrons of temperature T = T //3 and a 

moderator of temperature T , , . This should be a dominant factor in deter-
M 

mining the relation between the scattering law and neutron spectra. Let 
oo oo 

/ d E / dE' iS*̂  e"^^(E - E')a(E - E') = o \M (/3) (21) 
0 0 

Then it can be shown (21) 

oo 
r (1) 

M (/3) = j p(w)M ^^,co)da; + 0(1/A) (22) 
0 

where 

M^^\^,aj) = —^ sinh{ |(l-^)a;} k2( | ^oo) (23) 
2 sinh — 

_2 

(where x k (x) = K (x), the modified Bessel function). 

In thermalization theory we are mainly interested in the range 0 < j8 <1, 

at the ends of the interval, (i) )S small 

yr\^,u)) ~ 1 - j8 i CO coth I CO = 1 - ^K(co) (24) 

(ii) iS ~ 1 

M[^\^,OO) ~ (1-/3) —^ k.(ico) = (l-i3)(M/co) (25) 
4 smh — 

*Note the change in notation here.- I wish to retain j3 for its conventional 
use as an inverse temperature. 
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It turns out that for co < 6 (that is excitation energies less than 6kT), 

one can find functions x(/3) and y(|3) such that 

M[^\^ ,CO) = (1-^){1 - x(^)(K/co) -1) - y(^)(l - M(co))} (26) 

Hence again for co < 6, the rate of energy transfer for a moderator of mass A, 

should be well characterized by the parameters K and M, the average of 

K(co) and M(co) over the frequency distribution p(co). 

Some values are illustrated in Figure 1 where M is shown against K 

for various models. The lower curve is K(co) and M(co) for a single frequency 

while the higher shows K vs. M for a Debye frequency distribution. The open 

circles are given by the Yoshimori and Kitano frequency distribution for 

graphite as used in the calculations of Parks (23), and the full circle repre 

sents water at 293°K using the experimental data of Haywood and Thorson (24) 

for frequencies less than 6kT and the vibrational frequencies used by 

Nelkin (25) (with weight adjusted to give the correct normalization) for the 

higher frequencies. (The Nelkin model gives K = 3.37, M = 0.317 which is 

just outside the range of the figure.) 

In Table 1, a summary of results for the Parks model of graphite (23) 

is given. The third column gives calculations of the parameter M„ defined by 
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• WATER AT 293° K 
O GRAPHITE AT (a) 300°K 

(b)600°K 
(c)900°K 
(d)l200°K 

(c) 

FIGURE I 

Table 1 

Graphite (Parks, Yoshimori, and Kitano) 

T, °K 

300 

600 

900 

1200 

K 

2.35 

1.52 

1.26 

1.16 

M 

0.314 

0.614 

0.700 

0.851 

M2,b 

1.068 

1.863 

2.287 

2.467 

1.15* 

2.25 

2.79 

3.12 

(corrected) 

0.97 

1.77 

2.16 

2.38 

"D' 

K 

1980 

2040 

2120 

2220 

°K 

M 

1590 

1890 

1980 

2100 

*Krumhansl and Brooks gives 0.80 b. (Kothari) 
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oo oo M 

M = / d E / dE' Ee"^(E -E')^a(E - E ) (27) J 
^00 W 

from the full scattering kernel (26), the fourth column shows the value ob

tained by the 1/A approximation, while the fifth column shows the result 

including a Doppler type correction for higher powers of 1/A. Since the 

latter is less sensitive to p(co) than are K and M, the good agreement be

tween this corrected value and the exact value, indicates the adequacy of 

the 1/A approximation in assessing the sensitivity of this parameter to p(co). 

The final two columns of Table 1 give effective Debye temperatures 

for graphite based on a fit of K and M respectively. Where these agree, as 

at the higher temperatures, the analysis indicates that the Debye model 

should be adequate for calculating thermalization effects in graphite. 

The value of 0.80 b for M given in Table 1 is quoted from the paper by 

Kothari (27), and is based on calculations using the Krumhansl and Brooks 

frequency distribution. 
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i:iTRODUCTION 

In tills report we shall discuss the general features of the neutron 

scattering by heavy organic moleculec. Our object ic to bring into focus 

those aspects of the molecular motions which are signiricant for under

standing ill detail the thermalization of neutrons in such moderators. In 

addition, we sheill formulate the relation between the scattering and the 

molecular motions in such a way as to give this relation a form suitable 

for numerical calculations. 

In Section I we shall present the general basis and physical assump

tions v4ilch are appropriate for a realistic discussion of neutron thermali

zation by the heavy organic molecules. 

In Section II we reduce this general basis to a form which allows one 

to accomplish a direct evaluation of the neutron energy transfer cross sec

tion in terms of the state of the chemical binding of the hydrogen in the 

hydrocarbons. 

In Section III we shall be concerned with those aspects of the molecular 

motions of the organic comxKJunds which are significant for understanding the 

scattering of thermal neutrons. In particiilar, we shall give the noirmal mode 

frequencies of benzene, and present our results for the normal mode ampli

tudes. A calculatlcHi of the neutron spectrum in a benzene moderator is given, 

and the effects of chemical binding are displayed by comparing this spectrum 

with the ones obtained in the case of moderation by a free proton gas and by 

HpO. "nie spectrum in benzene is significantly harder than spectra In either 

free hydrogen or HpO. 
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I. THE THERMALIZATION OF NEUTRONS BY ORGANIC COMPOUNDS 

The point of view which we adopt consists In proceeding as far as pos

sible from first principles. In our initial considerations we make approxi

mations only when they are physically reasonable. As a consequence of the 

physical approximations, we arrive at an equation for the energy transfer 

cross sections which we expect to constitute a good basis for making mathe

matical and numerical approximations vtolch express the cross sections in a 

form suitable for computation on a high-si)eed digital computer. 

SCATTERING OF NEUTRONS BY ORGANIC COMPOUNDS 

The scattering of neutrons by hydrogen is the dominating mechanism for 

the moderation and thermalization of fast neutrons by the hydrocarbons. A 

measure of the relative rates at \rtiich neutrons are slowed down by carbon 

and hydrogen atoms can be obtained by comparing the slowing down power ̂ v , 

\i4iere ̂  is the average logarithm energy loss per collision and i! the free 

atoD value of the macroscopic scattering cross section. In the hydrocarbons 

the numbers of hydrogen and carbon atoms are roughly equal, so that the ratio 

of the slowing down power in hydrogen to that in carbon is (̂ 2 )^/i^'S.)^ = 29. 

Consequently, it is a very good approximation to neglect the effects of scat

tering by carbon. In any event, the small corrections for the effects of car

bon scattering can be accounted for by assuming that the scattei*lng from carbon 

bound in the hydrocarbons is like that frcan a free gas of carbon atcms. 

Thus, the problem of a detailed understanding of the thermalization of 

neutrons by organic moderators reduces to that of understanding the scatter

ing of neutrons by the protons bound in them. 
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We now give the general formulation expressing the relation between the 

cross section for momentum transfer of slow neutrons and the dynamics of the 

hydrogen atoms bound in a molecule. Later we shall discuss the relevant hydro

gen atom dynamics. 

We neglect spin correlation effects, which are not important at tempera

tures > 300°K. Then because of the approximate cancellation of the neutron 

scattering amplitudes in the triplet and singlet states of the n-p system, the 

scattering is nearly completely Incoherent. For a molecule consisting of n^ 

hydrogen atoms, the general expression for the cross section per hydrogen atom 

for transfer to final momentum i? of a neutron with initial momentum I? is given 

by*' (-h = Planck' e constant «= l) 

"H 

^ a{^-.t) = -^— r dt ê *̂ y \(^,t), (1) 
^°H 

,.2 -2 

where a. i s the bound atom n-p cross section, € = — 5 — i s the energy t ransfer 

and ;t = 1v - 1c i s the momenturo t ransfer . The function X, (x, t ) , which ca i ta lns 
O K 

the dependence of the scattering on the dynamics of the atoms in the molecule 

is given by 

/ i5€rAt) -i^?^(0)\ 
Xĵ (̂ ,t) =/e ^ e ^ y , (2) 

where rAt), the time dependent position operator of the kth nucleus In the 

molecule at time t, satisfies the Heisenberg equation of motion 

^^^k(^)=^k(^)«-^L(^)> 3̂) 

in which H is the molecular Hamiltoolan. Ilie symbol <( y means that 

an average is to be taken over the equilibrium distribution of initial states 

of the molecule and over molecular orientations. 
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From Eq. (2) the relevance of the molecviler dynamics for the neutron 

scattering becomes clear. The precise calculation of the momentum transfer 

cross section requires a detailed knowledge of the molecular dynamics. In 

general, it is at best extremely difficult to describe the motion of a hydro

gen atom moving in the actual force field of all its neighbors. In particular, 

effects >*iich are specific to the liquid state, interaction between vibration 

and rotation, and anharmonic motions of the hydrogen atoms, are extremely dif

ficult to include in theories of neutron scattering. 

For our purposes, however, most of the important features are preserved 

if we ignore interactions between molecules, between vibration and rotation, 

and use the harmonic approximation for internal molecular vibrations. Under 

these conditionB the dynamical problem is well defined and the methods for 

determining its solution are well known in principle. 

Ttie calculation of the neutron scattering is still a very complex piroblem, 

even in terms of our simplified model for the molecular dynamics. This com

plexity Is in the dependence of the scattering on the time dependent nuclear 

displacements rather than on the dependence of the displacements on time. 

However, the large mass and moments of inertia of the organic compouiids 

in vtolch we are interested allow us to make approximations which considerably 

simplify the problem of calculating -1:5. This approximation consists in neglect

ing the contributions to i'v(*) from translations and rotations during the time 

of interaction between the neutron and the molecule. 

This is equivalent to neglecting the contribution to the inelastic scat

tering which results from excitation of translatlonal and rotational degrees 

of freedom by the neutron. The approximation will be a good one except for 

energy transfers which are comparable to or less than T/M or to the rotational 

level spacing. Here T is the temperature and M is the molecular mass. For 
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the molecules of interest both of these quantities are very much less them 

0.01 ev. On the other hand, except for extremely low neutron energies, the 

average energy transfer which a neutron experiences in a collision is con

siderably greater than or comparable to 0.01 ev. Therefore, we may neglect 

the contributions of translations and rotations to the nuclear displacements 

for all values of energy transfer -vAiich are of importance for thermalization 

stxidies. For purposes of neutron thermalization we have established that it 

is sufficient to view the heavy organic molecules as a system of nuclei vibrat

ing about positions of eqviilibrivon which are fixed in a laboratory system of 

coordinates. Thus, the problem that we must consider is that of the harmonic 

vibrations of the atomic constituents of the heavy organic molecviles and their 

interaction with slow neutrons. A moj?e quantitative discussion of the validity 

of this approximation will be presented in a later section of this paper. 

A detailed account of the dynamics of harmonic molecular vibrations has 

(2) 
been given by a nimber of authors. Here we extract only the information 

which is relevant for us and explain the notation to be used. We consider a 

molecule composed of N atoms, and denote by u,. (t) the displacement of the kth 

atom frcan its equilibrium position at time t. For small vibrations we may sep

arate the displacements into normal modes and write (-ft = Planck's constant = l) 

3N-6 

^'^'^Efer^'i^.e-^^-^^e^-^^l- <M 
Here M, is the mass of the kth particle in the molecule, N is the number of 

•^k) 
atoms in the molecule, CD. and C^ are the frequency and the amplitude vector, 

respectively, of the kth particle in the jth normal mode of vibration, a and 
J 

its Hermitian conjugate a. are the annihilation and creation operators, respec-

tively, associated with the normal mode identified by the index j. The amplitude 
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_^k) 

vectors C; are real, and to the extent that the translatlonal and rotational 

inertias of the entire molecule are infinite, they satisfy the orthonormallty 

relations 

3N-6 
^p (k) (k')_ 
J=i 

where the subscripts a, p identify the rectangular components of ̂  . 

(3) 

By using a well-known theorem due to Bloch, the thennal average indi

cated in Eq. (2) can be carried out, after the introduction of Eq. (U) into 

Eq. (2). The result is 

x,Kt) = <̂  e.̂  { i j ?̂  [r,,(t) - r,,(o)j tf\)>. «5) 

where e* = 5tL and the symbol / \ means that an average over molec-

ular orientations is to be performed. The tensors Î v('t) a-i*e related to the 

normal modes of vibration by 

3N-6 2 

j=l 

where 
ioj t _ -ioj t 

(n, + l)e *̂  + n e *̂  
g (t) . - J i (8) 

and (k = Boltzmann's cons tan t = l ) 

o) / T 
n = (e -̂  > i ) - l (9) 

is the background of thermally excited oscillators of frequency CD 
'J-
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Eqs. (l) and (6), together with the definitions (7), (8) and (9), form 

the working basis for all subsequent discussions of the neutron scattering 

by the protons bound in the heavy organic moderators. 

In principle, the frequencies cu. and amplitudes C; may be computed pro-

vided that the Interatomic force constants are known. In practice, however, 

one does not know the force constants. Even if they are known, the calculation 

of the C\ and o) in terms of them would be a problem of considerable prac-
J J 

tical complexity. In many cases, however, it is possible to determine all of 

the frequencies and amplitxjdes by a suitable canbination of experimental and 

theoretical efforts. We shall return to the problem of determining these quan

tities later in this report. 

II. MATHEMATICAL APPROXIMATIONS AND METHODS FOR 

EVALUATING THE FOURIER TRANSFORt̂  IN EQ. (l) 

DEFINITION OF THE PROBLEM 

Now we undertake the problem of bringing Eq. (6) into a form which will 

allow us to give an analytical evaluation of the Fourier transform appearing 

in Eq. (l). 

We first consider the average over molecular orientations indicated in 

Eq. (6). The approximation which we make consists in setting 

x,s?,t) . e^ < ^ | ! ?^ [r,,(t) - r^(o)] ?., y . (10) 

This amounts to averaging the molecular motions over molecular orientation 

before computing the cross section instead of averaging the cross section 

after having computed it for a particular orientation. 
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Using Eq. (7) and carrying out the average reqioired for use in Eq. (lO) 

gives the result 

3N-6 

At this point the approximation, Eq. (lO), is not necessary but since it will 

be made in the final analysis, nothing essential is lost in making this approxi

mation now. 

For reasons which we indicate below, we introduce the notations 

3N-6 
,(k)' 

Pĵ (a)) = ^ ^ 5('" - '^^)Cy^ (12) 

j=l 

and write Eq. ( l l ) in the following fonii 

i L r ^ ( t ) t-,y> = j g(fD,t)pĵ (cD)dcu . (13) 
X % 

Using Eq. (5) we observe that p, (co) satisfies the normalization condition 

/ ' 
Pĵ (a))dcc = 1 , (14) 

0 

By putting Eq. (13) into Eq. (lO), we obtain 

2 
X^e^,t) = exp I 1 ^ I Pj^(^) [g(a),t) - g(a:,0) J dm i . ^^^^ 

Finally, for the case where M, is independent of k, vre ir.ake the approxi

mation that 

k^l 
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with X(}?,t) obtained from Eq. (15) by replacing Pĵ (̂ ) "by 

^H 

"̂̂  = ̂  Z pk(-) • (^7) 
« k=l 

Now the equation for the scattering of neutrons by organic molecules is formally 

equivalent to the eqiiation for the incoherent scattering of neutrons by atoms 

bound in an isotropic cubic crystal having one atorj per unit cell. 

The advantage of having Eq. (7) cast into the form of Eq. (13) is that in 

this case there exist extensively developed methods for carrying out the Fourier 

transform Indicated in Eq. (l). ' ' The fact that PA^) is nonvanishing only 

at discrete points, whereas in a crystal p(a)) conoists in general of continuous 

branches, need not concern us at the moment. In fact, it will be adequate to 

view p, (m) as consisting of continuous branches. We shall consider the impli-
it 

cations of the discreteness of P, ('o) in a later paragraph. 
K 

III. THE POLYPHENYLS 

THE MOLECULAR DYNAMICS OF THE POLYPHEl̂ IYLS 

We now consider the structure and some aspects of the molecular vibrations 

of the polyphenyls. We shall also present the body of experimental evidence 

•which is relevant for understanding the scattering of neutrons in the polyphenyls 

The simplest of the polyphenyls is benzene, whose structure we Indicate schem

atically in Fig. 1. Following benzene in the order of their structural complex

ity are diphenyl and the terphenyls, which we indicate schematically in Figs. 2 

and 3* respectively. In these figures the large and small circles represent the 

equilibrium positions of the carbon and hydrogen atoms. The reader should have 
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no difficulty in visualizing the structures of the higher order polyphenyls. 

The drawings should be considered to be only schematic and, e.g., should not 

be interpreted as suggesting that diphenyl and terphenyl are planar molecules. 

Although benzene is a planar molecule, electron diffraction studies Indicate 

that the two basic hexagonal units of diphenyl are not co-planar in the equi

librium configuration of the molecule. However, questions of this nature will 

be of little concern to us. Our only objective has been to use a graphical 

means to focus attention in some of the simplest structural similarities of the 

different polyphenyls. The recognition of these similarities, together with 

the experimental and theoretical information that has been made available by 

extensive studies of the vibration of benzene, provides a basis for at least 

a qualitative discussion of the vibrations of the polyphenyls. The object of 

the considerations which immediately follow is to illuminate those aspects of 

the molecular dynamics which are significant from the viewpoint of the scatter

ing of thermal neutrons. 

The normal vibrations of benzene separate into two kinds.^ ' ' There 

are sets of normal vibrations for \Aiich the amplitude vectors are parallel to 

the plane of the molecule, and there ajre other sets for which the amplitude 

vectors are perpendicular to the plane of the molecvile. Altogether there are 

3N-6 = 30 normal modes of vibration. Of these 2N-3 = 21 are of the parallel 

type. In the remaining 9 modes, the amplitude vectors are of the perpendicular 

kind. Because of the high degree of symmetry of the benzene molecule, not all 

of the 30 modes of vibration have different frequencies. Indeed, symmetry con-

sideraticms show that 7 of the parallel and 3 of the perpendicular vibration 

frequencies are doubly degenerate. 

In Fig. k we indicate the fundamental frequencies of vibration for benzene. 

The frequencies associated with the planar and perpendicular modes are separately 
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indicated. We also indicate the degree of degeneracy associated with each 

frequency. The height of a line in Fig. k indicates the average of the squared 

amplitude of the hydrogen atoms in each normal mode. The evaluation of the amp

litude vectors will be discussed in the next paragraph. 

For our piirposes the significant features of the vibration spectra of ben

zene are the following: 

1. There exist a relatively small numbers of modes of vibrations, all of 

whose frequencies ai^ very closely spaced aroiond 308O cm" (~0.38 ev); 

2. The frequencies of these most energetic modes are well separated from 

the next highest frequency of vibration, which occurs at about 17OO cm" 

(~0.20 ev); 

3. There are a large number of closely spaced fundamental frequencies 

extending up to I7OO cm" . (Taking the degeneracy into accoiuit, the 

average spacing of these frequencies is small and in fact approxi

mately equal to 0.0073 ev. The largest spacing between successive 

frequencies is 0.025 ev.) 

We expect these three general features to be common to all of the poly

phenyls. The differences in the vibration spectra of the various polyphenyls 

should only be reflected in differences of the fine stmicture in the frequency 

range below I7OO cm' . 

THE NORMAL MODES OF VIBRATIONS IN BENZENE 

Now we sheQ.1 discuss the problem of obtaining the physical information 

that we require in order to perform the calculation of the neutron energy trans

fer cross section by the methods discussed in Section II. From Eq. (k) it is 

clear that we reqxAlre the normal modes frequencies and the amplitude vectors. 
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For molecules which contain many atoms, the deternjination of the desired 

quantities presents a problem of great practical complexity. However, the 

results of extensive theoretical and experiiuental studies of the vibrations of 

benzene provide an excellent basis from which to begin our considerations. To 

do this we recall the general features of the molecular structure of benzene. 

The symmetry of benzene is that of the group D^. \Aiich consists of the 

(2) following operations: 

E, 2Cg, 20^, Cg, SCg, 3C2, 1, 2S2, 2Sg, a^, 3a^, 30^. 

As indicated in Fig. 1, it is assimaed that the Cartesian y-axis is coin-

cldent with one of the symmetry axes, C , and the x-axls with C_. The z-axis 

is instead perpendicular to the plane of the figure, which is the a symmetry 

plane. Since benzene is a planar moleciile, the normal modes of vibrations are 

motions either in the plane or perpendicular to it. 

Thus the structure of the representation formed by the Cartesian coordi-

(2) nates of benzene is; ̂  ' 

r. = 2A- + A_ + UE_ + 2BT + 2B„ + 3E^ ,,o\ 

1 Ig 2g 2g lu 2u -̂  lu (18) 

for the 21 in-plane modes, and 

r = 2B^ + E-, + A^ + 2E^ (19) 

o 2g Ig 2u 2u ^ ̂ ^ 

for the 9 out-of-plane modes. 

It follows that there are 7 double degenerate in-plane normal modes and 

3 double degenerate out-of-plane normal modes. 

The symmetiy properties have been extensively studied and utilized in the 

assignment of the fundamental frequencies of vibration, which have been found 

experimentally from the infrared and Raman techniques.^ ' ' In this way the 

force constants of the harmonic potential function or, in the condensed form, 

the {F} matrix for the valence force symmetry coordinates have been evaluated. 
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The secular equf.tion for benzene i s then obtained. In terms of symmetry 

coordinates, i t i s factorlzed and reads as 

| G ^ - E \ } - 0, (20) 

where | G | i s a matrix vihich contains the atomic masses and the intemuclear 

distances and i t i s related to the kinetic energy of the benzene ring. E i s 

the unit matrix. The roots of the secular equations are 

Xj = ODj , (J = 1, 2, . . . , 3N-6) (21) 

where co Is the frequency of the jth mode of vibration appearing in Eq. (k). 

From the knowledge of the internal symmetry coordinates and of the fre

quencies, CJD , we are now able to evaluate the normal mode amplitudes of the 

J 

benzene molecule. The following procedure is then in order. 

The molecular vibrations may be resolved into normal modes by introducing 

the set of normal coordinates, Q., in terms of which the mass-weighted Cartesian 
J 

displacement coordinates 

•^(t) = \ ^ \ (22) 

read as 

3N-6 

\(t) = ̂  T̂ )̂ Q (t) . (23) 

j=l ' ' 

In Eq. (22) M, is the mass of the kth atom and the u, ' s, as in Eq. (k), 

are the Cartesian physical displacements. In Eq. (23) ̂ . ' is the amplitude 

vector, associated with the jth mode, of the kth atom. 

The jth normal coordinate, Q , is known to be expressed as a linear combl-
J 

nation of the internal symmetry coordinates, S-, that is 

3N-6 

i=l 
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where the L.-'s are the elements of the matrix |l?[ which satisfy the set of 

simultaneous equations 

{t\ . I^f ( = \7^] • {t\ , (25) 

where JAJ- is the diagonal matrix whose elements are the X 's given by Eq. (21). 

The internal symmetry coordinates eire constructed on the basis of the sym

metry properties above mentioned and they are related to the internal cooî iinates. 

S., by the linear combination 

3N 

^i=Z "̂1 <' (2^) 
1=1 

where the U-. are the elements of the transformation matrix given in References 

(7,8). 

The Internal coordinates for the in-plane modes are: (i) the C-H and the 

C-C bond stretchings; (ii) an appropriate linear combination of the H-C-C bend

ing. The advantage of this combination is that it breaks the set of the H-C-C 

bending into two sets, each of which is such that no more than one degenerate 

set occurs in any one species. 

For the out-of-plane modes the internal coordinates are: (i) the bendings 

of a C-H bond out of the plane of the three nearest carbons; (ll) the torsion 

of the type C-C-C-C. 

In turn, the internal coordinates, S , are related to the physical dis

placements, u, (t), by the linear combination 

N 

< = E 1̂̂  • ̂ ' ^^'^^ 
k=l 

•vrtiere the dot , as in Eq. (25) , symbolizes a s c a l a r product . The s ' s can be 
Ik 

deduced by means of the method described in Reference (2). 
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Finally, one may express Q. as 
J 

by utilizing the orthogonality condition 

N 

Qj(t) -J2 A^^ V^^ (28) 

EZee^^^j." ^̂̂^ 
k=l a=i 

(1) ^ 0 

where C/. ' is the ath Cartesian component of the amplitude vector, C?"̂  . 

Thus, Eqs. (28) and (29) fiu-nish the sought values of the amplitude vectors. 

In Tables 1, 2 and 3 we list the values of the x, y and z components, respectively, 

of the vectors C^. ' . Figs. 5, 6 and 7 show instead the normal modes of vibrations 

associated with fundamental frequencies around 3080 cm" . 

For diphenyl and the higher order polyphenyls, there does not exist a back

ground of abundant experiments and theoz-etical datti. However, as previously dis

cussed, one may expect those features of the molecular vibrations which are most 

significant for the scattering of neutrons to be insensitive to the differences 

between the different polyphenyls. The valioity of this expectation may, of 

coiarse, be checked by means of neutron scattering experiments. The posbibility 

of checking the validity of this expectation theoretically is under considera

tion. 

NEUTRON SPECTRA AND TOTAL SCA'PTFRING CROSS SECTION IN BENZEl̂ IE 

The frequencies and amplitude vectors which we have presented in Fig. k 

have been used with Eq, (l) to obtain a scattering kernel for the benzene mole

cule. The numerical calculatians of the benzene kernel were carried out using 

IBM 7090 code SUMMIT.^^^ As the code SUMMIT was designed for calculating 
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scattering kernel for crystals with a continuous vibration spectrum, it was 

necessary to artificially broaden the discrete lines of the benzene vibiration 

spectrum. 

In turn, the scattering kernel has been used in the calculation of the neu

tron spectrxim in an infinite benzene medium uniformly poisoned with l/v-material 

to give a 2200 m/sec. cross section of 6.0U bams per hydrogen atom. Figs. 8, 9 

and 10 show the neutron spectrum in benzene at a temperature of 3OO K, 600 K and 

900 K, respectively. In Fig. 8 we compare the results of our calculation with a 

similar calculation using a free gas model and with the Nelkin's water model. 

In the calculation of these specti'a, we included the effects of translations and 

rotations in an approximate manner. 

This approximation consists in adding to the benzene vibrations spectrum a 

Debye si)ectrum of low frequency vibrations. For this to be a reasonable approxi

mation, the Debye temperature, 6, associated with these vibrations must be less 

than the temperature of the moderator. We have chosen 6 = 0.02 ev. In addition 

to the Debye temperature, one must know an effective mass to associate with the 

Debye spectrxm. The effective mass, M , associated with the acoustical branch 

is given by 

M* - ^ = 15.0lv , (30) 
3N-6 "H n 

"• j»l k=l 

We evaluated also the total scattering cross section per hydrogen atom 

bound in benzene in two cases, l) the effects of translations and rotations 

were neglected, 2) these effects were taken into account in the approximate 

manner indicated above. The corresponding results are plotted in Fig. 11. 

Currently we are attempting a more careful calculation of the cj?oss section 

for neutron energy less than 0.02 ev. 
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0 , 0 7 2 

- 0 . 0 1 2 

0 

0 

0 

0 

- 0 . 0 1 

- 0 . 1 0 1 2 

- 0 . 5̂ +81+ 

0 

0 

0 

2 

O.07I+ 

0 . 1 9 2 2 

- 0 . 3 1 ^ 3 

-0.071+3 

- 0 . 1 9 2 2 

- 0 . 1 7 8 

- 0 . 3 0 8 

0 . 0 8 0 

- 0 , 1 3 5 

0 . 0 9 8 

0 , 3 9 9 5 

0 , 0 5 3 6 

0 , 2 3 9 6 

0 . 0 9 8 3 

0.221+ 

-0.31+1 

0 . 2 3 1 

-0.11+71+ 

0 . 1 3 9 1 

- 0 . 1 9 1 6 

- 0 . 2 3 1 5 

3 

- 0 . 0 7 1 * 

- 0 . 1 9 2 2 

-0.311+3 

-0.071+3 

- 0 . 1 9 2 2 

0 . 1 7 8 

0 . 3 0 8 

- 0 . 0 8 0 

0 . 1 3 5 

- 0 . 0 9 8 

- 0 , 3 9 9 5 

0 . 0 5 3 6 

0 . 2 3 9 6 

0 , 0 9 8 3 

0,22l+ 

- 0 . 3 ^ 1 

0 . 2 3 1 

-0.11+71+ 

- 0 . 1 3 9 1 

0 . 1 9 1 6 

0 . 2 3 1 5 

1+ 

-0 .1I+76 

-0 .38I+3 

0 

0.1I+85 

0.38I+1+ 

0 

0 

- 0 . 0 1 2 8 

- 0 . 5 5 0 3 

- 0 . 0 7 2 

0 . 0 1 2 

0 

0 

0 

0 

- 0 . 0 1 

- 0 . 1 0 1 2 

- 0 . 5̂ *81+ 

0 

0 

0 

5 

-0.07I+ 

- 0 . 1 9 2 2 

0 . 3 1 ^ 3 

-0.071+3 

- 0 . 1 9 2 2 

- 0 . 1 7 8 

- 0 . 3 0 8 

- 0 . 0 8 0 

0 . 1 3 5 

- 0 . 0 9 8 

- 0 . 3 9 9 5 

- 0 . 0 5 3 6 

- 0 . 2 3 9 6 

- 0 . 0 9 8 3 

-0.221+ 

-0.31+1 

0 . 2 3 1 

-0.11+71+ 

0 . 1 3 9 1 

- 0 . 1 9 1 6 

- 0 , 2 3 1 5 

6 

0.071+ 

0 . 1 9 2 2 

0 .3 l i+3 

-0.07I+3 

- 0 . 1 9 2 2 

0 . 1 7 8 

0 , 3 0 8 

0 . 0 8 0 

- 0 . 1 3 5 

0 . 0 9 8 

0 . 3 9 9 5 

- 0 . 0 5 3 6 

- 0 . 2 3 9 6 

- 0 . 0 9 8 3 

- 0 . 221+ 

-O.3I+I 

0 . 2 3 1 

- 0 . l i + 7 ^ 

- 0 . 1 3 9 1 

0 . 1 9 1 6 

0 . 2 3 1 5 

7 

0.3821+ 

- 0 . 1 3 7 

0 

0 , 3 8 3 

- 0 , 1 3 6 2 

0 

0 

0 . 5 0 5 

- 0 . 1 8 1 9 

0 . 2 3 9 

- 0 . 1 8 7 5 

0 

0 

0 

0 

- 0 . 1 8 7 3 

- 0 . 3 5 0 7 

0 . 1 8 1 9 

0 

0 

0 

8 

0 . 1 9 1 2 

-0.0681+ 

0 , 1 6 2 

-0,1911+ 

0 , 0 6 8 

- 0 . 3 0 5 

0 . 1 7 5 3 

0 . 0 8 8 1 

0 . 0 6 3 1 

0.1+326 

0 . 0 9 6 2 

0 . 3 ^ 2 3 

- 0 . 0 6 8 6 

- 0 . 1 1 1 6 

- 0 . 0 5 2 7 

0 . 2 0 7 

0 . 1 2 3 2 

^ . 0 3 1 2 

- 0 . 2 2 7 6 

-0 .273t^ 

0 . 0 8 7 

9 

- 0 . 1 9 1 2 

0.0681+ 

0 , 1 6 2 

-0.1911+ 

0 . 0 6 8 

0 . 3 0 5 

- 0 . 1 7 5 3 

- 0 . 0 8 8 1 

- 0 . 0 6 3 1 

0.1+326 

- 0 . 0 9 6 2 

0.3^+23 

- 0 . 0 6 8 6 

- 0 . 1 1 1 6 

- 0 . 0 5 2 7 

0 . 2 0 7 

0 . 1 2 3 2 

0 . 0 3 1 2 

0 . 2 2 7 6 

0 . 2 7 3 6 

- 0 . 0 8 7 

10 

-0.3821+ 

0 . 1 3 7 

0 

0 . 3 8 3 

- 0 . 1 3 6 2 

0 

0 

- 0 . 5 0 5 

0 . 1 8 1 9 

- 0 . 2 3 9 

c . 1 8 7 5 

0 

0 

0 

0 

- 0 . 1 8 7 3 

- 0 . 3 5 0 7 

0 . 1 8 1 9 

0 

0 

0 

1 1 

- 0 . 1 9 1 2 

0.0681+ 

- 0 . 1 0 2 

-0.1911+ 

0 . 0 6 8 

- 0 . 3 0 5 

0 . 1 7 5 3 

- 0 . 0 8 8 1 

- 0 . 0 6 3 1 

0.1+326 

- 0 . 0 9 6 2 

- 0 , 3 ^ 2 3 

0 , 0 6 8 6 

0 . 1 1 1 6 

0 , 0 5 2 7 

0 , 2 0 7 

0 . 1 2 3 2 

0 , 0 3 1 2 

- 0 . 2 2 7 6 

- 0 . 2 7 3 6 

0 , 0 8 7 

12 

0 . 1 9 1 2 

-0.0681+ 

- 0 . 1 6 2 

-0.1911+ 

0 . 0 6 8 

0 . 3 0 5 

- 0 . 1 7 5 3 

0 . 0 8 8 1 

0 . 0 6 3 1 

-0.1+326 

0 . 0 9 6 2 

-0.31+23 

0 . 0 6 8 6 

0 . 1 1 1 : 

0 . 0 5 2 7 

0 . 2 0 7 

0 . 1 2 3 2 

0 . 0 3 1 2 

0 . 2 2 7 6 

0 . 2 7 3 6 

- 0 . 0 8 7 

Table 2, The y-ccanponents of the amplitude vectors ^.k) 



r̂  
1 

c 

3 

1+ 

5 

6 

7 

8 

9 

10 

1 1 

12 

1 

0.392 

0.392 

0,392 

0,392 

0.392 

0.392 

-0,111+ 

-0.111+ 

- 0 . lll+ 

- 0 . lll+ 

-0.111+ 

-0.111+ 

2 

1 

0.176 

-0 .176 

0.176 

-0 .176 

0.176 

-0 .176 

0.374 

-0 ,374 

0,374 

-0 .374 

0.374 

-0 .374 

3 

-0 .367 

0.367 

-0 .367 

0.367 

-0 .367 

0 .367 

0.176 

-0 .176 

0.176 

-0 .176 

0.176 

-0 .176 

4 

0 

0.2904 

-0.2904 

0 

0.2904 

-0,2904 

0 

0 .411 

- 0 . 4 1 1 

0 

0.411 

-0 .411 

5 

0 

-0 .4124 

0.4124 

0 

-0 .4124 

0.4124 

0 

0.2834 

-0 .2834 

0 

0.2834 

-0 .2834 

6 

0.335 

-0 .168 

-0 .168 

0.335 

-0 .168 

-0 .168 

0.475 

-0 .2374 

-0 .2374 

0.475 

-0 .2374 

-0 .2374 

V 

-0 .476 

0.238 

0.238 

-0 .476 

0.238 

0.238 

0.327 

-0 .164 

-0 .164 

0.327 

-0 .164 

-0 .164 

8 

0 

0.4445 

0.4445 

0 

-0.4445 

-0.4445 

0 

-0 .229 

-0 .229 

0 

0.229 

0.229 

9 

-0 .^ . .3 

-Q.2V, 

0.257 

0.513 

0.257 

-0 .257 

0.264 

0.132 

-0 .132 

-0 .264 

-0 .132 

0.132 

Table 3. llie z-cociponents of the amplitude vectors ^ 
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J. R. Beycter, J. L. Wood, V. M. Txjpez and R. B. Walton, Nuclear Scl. and 

Eng. 2> 1̂ 8 (1961). 

- 99 -
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Brookhaven National Laboratory 

Calculation Of Thermal Neutron Flux Spectra In an Infinite Polyethylene 
Moderated Medium With Varying Amounts of Absorption 

Do To Goldman 
Introduction Yo -Do Federighi 

The measurement of thermal neutron flux spectra in water moderated configu

rations is of considerable importance for providing data of interest in reactor 

analysis and synthesis, A fairly common experimental technique has been to 

substitute for water moderated media those containing polyethylene which are some

what more convenient for experimentation. Recently it has been observed that 

although the thermalization processes are indeed quite similar in water and 

polyethylene, the details of the experimental information indicate that it is 

not sufficient to extend the water results directly without modifications to 

polyethylene moderated media. 

It has been foiond appropriate to calculate the scattering of thermal energy 

neutrons by polyethylene. The scattering from the -oolyethylene system is treated 

as that from a group of harmonically bound oscillators whose normal mode frequencies 

have been determined by an analysis of spectroscopic data» Thus5, it is possible 

to compare the total scattering cross section with measured results^ so as to 

arrive at some basis for empirically determining the validity of the model. 

The differential scattering cross sectinr-was used in a program which cal

culates infinite media spectra. The results of the calculations were compared 

with experimental data for various amounts of poison material. The agreement 

between theory and experimental results is -sufficiently satisfactory to enable 

one in the future to use the polyethylene scattering cross section in the analysis 

of reactor experiments, with reasonable confidence, 
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Scattering Model 

The differential cross section for the incoherent scattering of thennal 

neutrons by a chemical system (except for the ratio of outgoing to incident 

velocity) is a function of the dynamics of the latter system alone. With this 
(1) 

knowledge, Nelkin proposed treating the scattering of slow neutrons by water 

with a model for the chemical motion associated with the water molecule, Nelkin 
- (2) 

examined the intermediate scattering function, 'JQ (K, t), which is the spatial 

Fourier transfona of the scattering kernel, and treated the Hamiltonian 

corresponding to the molecular motion as separable into motions corresponding 

to free translation, a hindered rotation of the water molecule in the presence 

of its neighbors, and three oscillations of the hydrogen atom inside the molecule, 

Nelkin then replaced the hindered rotational motion by a torsional oscillation of 

a single frequency with a torsional mass determined by the mass-tensor approxi-
(3) 

mation for water vapor of Krieger & Nelkin. 

The energies of phonon excitation associated with each t3rpe of miction are 

given in Table 1. 

Table 1 

Phonon Excitation Energy For Water & Polyethylene 

Nature of Level H2O Ĉ ^ H2n 

rotational 0O6 ev ,089 ev 

vibrational ,205 ev »187 ev 

vibrational ,U7U ev ,35U ev 

vibrational ,U88 ev ,533 ev 

Nelkin further treated the two highest energy levels as a single double degenerate 

level at ,14.81 ev. 
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In Nelkin's published calculation, the scattering from only one of the quantum 

oscillations was treated exactly. For an incoming neutron loith sufficiently high 

energy toexcite more than one mode, all but the motion requiring the largest 

energy transfer are treated in the high energy limit. Since throughout one is 

concerned with energies considerably above the Debye frequency of the lattice, 

the translational motion is treated in the high energy limit throughout the calcu

lations. The appropriate Fourier inversion of the intermediate scattering function 

then results in the following formula for the differential cross section for the 

scattering of neutrons from a system of translational plus vibrational degrees 

of freedom? r — - r Tj _ W /;i^ 

'h ^ - ( ^ ) ' - • 0) 
The parameters appearing in Equation (l) are different depending upon which oscillatory 

motion is being treated exactly, ioe», depending upon the amount of energy being 

transferred throu^ the scattering process. These parameters are defined by 

Nelkin (Reference 1), An examination of equation (1) shows that C. 

corresponds to the Debye-Waller factor ff' i effective temperature, II, where E^T 

is introduced to account for the fact that energy is not exchanged in a continuous 

process to a system of free particles at temperature T, For the case of translation 

only, E » T, n «• 0 and the differential cross section reduces to the formula for the 

scattering of neutrons by a system of perfect gas particles of mass Mo Both to 

simplify the calculation and to guarantee that the principle of detailed balance is 

fulfilled, only the down scattering portion of the scattering matrix is calculated 
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(for each angle) and the upscattering is computed from the detailed balance 

conditionr ^ ._ r-

The success of the Nelkin model 'n predicting the total scattering cross 

section has appeared in the literature; ' We have extended the calculations to 

determine additional quantities both of a fundamental nature such as the 

(U) 

"scattering law" of Egelstaff and more integral quantities of interest in 

reactor computations. These results will be discussed in a subsequent publication. 

It is sufficient to report that the success of the model indicated that it 

might be appropriate to extend it to determine the scattering from another chemically 

bound system which could be represented as a system of harmonic oscillators, 

specifically polyethylene. 

The basic structure of polyethylene is that of a long chain molecule vrith 

generic formula representation Gj.̂  ^2^* Whereas it might appear foolhardy to treat 

solid poljretlxjrlene in a manner analogous to liquid water, the fact that polyethylene 

does not have definite crystalline structure and the success of the model that 

xd.ll be apparent seem to justify this attempt. The frequency spectrum for poly

ethylene is necessaryfbr the calculation of the scattering cross section. We 

(5) 

have used the data of Nielsen and Woolett on the infra-red absorption spectrum 

of solid polyethylene to infer the energies of the phonon excitation* On the 

basis of these data, there appear to be reasonably well separated energy levels 

of polyethylene at energies given in Table 1, The cross section was then calcu

lated according to the follomng model: 

Assume that each of the -four levels corresponds to a normal mode of oscillation 

of the polyethylene molecule. This model is especially simple and involves 
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the s e l e c t i o n of only one a r b i t r a r y paramete r , chosen so t h a t a t h igh neutron 

e n e r g i e s , E ^ 1 ev , the t o t a l ci-oss s e c t i o n would be t h e s arae as t h a t f o r t h e 

s c a t t e r i n g from f r e e protons (20 b a r n s ) . 

The equa t ion f o r the s c a t t e r i n g c ross s e c t i o n i s t h e same a s t h a t f o r the 

s c a t t e r i n g by w a t e r . Equation ( 1 ) , ...The .v ib ia , t iona l mass, m^ i s determined by 

1 1 + 1 
M m^ 

where M is the mass of the polyethylene molecule, ih, so that at high energies 

the scattering duplicates that form a free proton gas at temperature E » ,1365 ev. 

The other parameters are determined by the requirements of the model and are 

given in Table 2, The choice of each set of parameters depends upon the energy 

transferred in the inelastic collision, as indicated in the Table, 

The differential cross section, Equatioh (1), for the scattering of neutrons 

by polyethylene was calculated for various scattering angles, 0 using the 

parameters of Table 2, The total cross section was computed from the differential 

cross section by integrating the result of the numerical evaluation of Equation (l) 

over angle and final energy. Care must be taken in the numerical integration of 

the differential cross section to ensure that the integration scheme not introduce 

spurious results due to the replacing of an analytical continuous integration by 

a numerical finite size integration mesh. To see where this might arise, we note 

that for energy transfers less than the lowest phonon excitation of the scattering 

system, the scattering is similar to that by a free gas. The differential cross 

(2) 
section for the scattering of a neutron by a gas of mass M is ». î'̂- v 3t-

where ^ r ^ " , the energy transfer 

and L̂  — R* — V ,the momentum transfer 
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Table 2 

Parameters Entering Into the Equation for the Scattering of Neutrons by Polyethylene 

Region I A E <0.l87 ev 

m = M = l4 

E = T = 0.0255 ev 

= ̂  " + (4 m w tanh w /2T)' A = '^ + (4 in w tanh w / 
V V V o 

0/ -1 ,, ,-1 - -1 -1 -1 

^ V = (̂  V ^\ ^^2 ^ ""3 ) 

A = .195 ev 

B = 

= 

m 
V 

w = 

4 m w /2T 
V 0' 

1.06 ev 

= 1.08 

w = 0.069 
0 

Region II O.I87 < 

1 _ 
m 

M = 

E = 

-

1 1 
- + -
M 4m 

V 

3.294 

4 m T + M E 
V 0 

M + 4m 
V 

0.0422 ev 

E. = ( ^ 7 - — + 1/2) w 

A = (4 m ) [w ' + w + (4w tanh w /2r) 1 

A = 0.422 ev 

B = 4m w sinh w /2T 
V 1 1 

= 13.89 ev 

w = w = 0.182 
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Table 2 (cont'd) 

Region m 0.354 ev ̂  E<0,.533 ev 

1 ^ 1 1 
m ~ M 2 m 

V 

m = 1.868 

E + E 

M 4 m 
V 

= 0.0603 ev 

A" = (4 m^)' [v ' + (w^ tanh M^2I!)'^] 

A = 0.916 ev 

B = 4 m w sinh w /2T = 787.6 ev 

w = w = 0,354 ev 

Region IV O.534 ev £ E<,1 ev 

m M ^ 
V 

m = 1.302 

E = - + 1 (E + E + E^) m 
M 4m ^ o 1 2 

V 

e = 0.0977 ev 

A = 4m w^ tanh w /2T 
V 3 3 

= 2.296 ev 

B = 4m w^ sinh w /2!r 
V 3 3 

4 
= 3.967 X 10 ev 

w = 0.533 ev 
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In the limit of zero energy Iransfer, e = 0 and if we also force our attention 

on forward scattering K^/2M —>0 and Equation (3) becomes 

This square root singularity does not occur for e / 0 because for this case 

the differential cross section aymptotically approaches 
— ^y^ 

This statement emphasizes the fact that for scattering from a scatterer from a 

finite mass, there cannot be aierpj'- change without a change in momentum. 

To account numerically for the square-root singularity of the diagonal 

term, (K^/SM) was subtracted from the calculated value of the differential cross 

section before the numerical integration over angle is undertaken. The 

analytical value of the integral of this quantity was then added to the result. 

It is apparent that the presence of this integrable singularity must be 

handled properly when computing the total and energy exchange cross section. 

It is interesting to note, however, that this divergence has no effect on the 

calculation of infinite medium spectra. The possible source of error arises 

from the contribution of the term corresponding to fonrard scattering with no 

energy loss. This contribution cannot be separated from the unscattered flux and 

hence no error is introduced in the spectrum determination. 

The calculated total cross section for the scattering of neutrons by poly-
(6) 

ethylene was compared with the experimental data of Bach et. al. The 

comparison is shown in Figure 1 where we have also included the total cross 

section for the scattering of neutrons by water to indicate the experimental and 

theoretical difference between water and polyethylene. The theoretical cross 

section was then used to calculate flux spectra as described in the next section. 
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III. Calculation of Flux Spectra 

In order to determine the usefulness of the scattering model, it is necessary 

to con̂ jare the results calculated using the various models with available experi

mental data. Beyster and his co-workers have recently measured infinite media 

spectra for both homogeneous water and polyethylene moderators with varying 
(7) 

amounts of absorption. This presented a reasonable test of the importance 

of the scattering kernel in the calculation of a Quantity of use in reactor 

analysis. 

The neutron balance equation for an infinite medium has a particularly 

simple form -oO . . i C~ / "N 

where 9 is the flux 

XlS'^O is the scattering kernel 

S^IE") is the slowing down source 

and 2: Ce") = C^iE^^')-^^' ^ i l j e ) 
T -̂o 

Three different choices of the s cattering kernel were employed in the 

solution of Equation (4), They are: 

1) Perfect gas. The differential cross section for the scattering of 

neutrons by a perfect gas is given in Equation (3). This has the especially 

siir̂ l̂e property that its integral over angle and energy can be performed analytically. 

In the past for this reason a great deal of calculational endeaver had been 

performed using this choice for the scattering kernels 

2) Water. Nelkin's model for the scattering of neutrons by water has been 

described in J?ection 2. This model was available to Beyster in his analysis of 

his experiment. 
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3) Polyethylene. A model for calculating the cross section of the scattering 

of neutrons by polyethylene has been proposed in Section 2. The scattering 

function was computed by a machine program and the cross section information 

necessary for the flux calculation of Equation ()|) presented. 

The slowing down equation was solved by replacing the integral in (4) tor 

a sTimmation over discrete energy values. Equation (4) then becomes a matrix 

equation for the values of </> at these energy points. 

The flux spectrum is obtained by direct inversion of the scattering and 

absorption matrix, using the SWAK code. 

Infinite medium spectra using the method described above were calculated. 

Various amounts of poisons were used in the calculations corresponding to the 

actual absorptions in the infinite medium spectrum measured by Beyster. All 

spectra are normalized to the same l/E dependence at high energies. Figure 2 

is a graph of the spectrum for a supposedly infinite medium of polyethylene with 

no added poison absorption. However, as Beyster pointed out, it is not possible 

experimentally to approach the condition of an infinite medium without any 

poisoning: inclusion of a DB term, with B^ arbitrarilydetermined, would cause 

the experiment and theory to come into agreement. It is significant to note 

that even for the very low absorption inherent in the pure moderator, there is 

a difference in the calculated spectra for the various moderators.. This inherent 

absorption to be sure produces the deviation of the calculated spectrum from a 

pure Maxwellian for this case. 

In Figure 3 the calculated and experimental spectra for two different amounts 

of poison in water are plotted. These are s imilar to the curves of Beyster and 
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indicate the hardening of the spectrum produced by including chemical binding 

effects in the scattering kernel. A further hardening is seen in Figures 

k and 5 where the calculated and experimental spectra for two different amounts 

of poison in polyethylene are plotted. The difference in the calculated results 

are apparent, as is the agreement between experiment and calculations with the 

appropriate theoretical scattering kernel. 

C onclusio n 

A model has been presented for the calculation of the inelastic scattering 

of thermal energy neutrons by polyethylene. This model was seen to calculate 

the total cross section correctly. The scattering matrix predicted by this 

theory was then used in the calculation of infinite medium spectra. These 

theoretical results were compared with experimental measurements and the agree

ment was seen to be extremely good. Thus there is presently available a model 

for polyethylene which s eems able to predict at least some important quantities. 

There remains, to be sure, many questions yet to be answered. From the 

point of view of understanding the dynamical behavior of polyethylene, tho 

details of the scattering calculated with the rather inexact treatment must be 

compared with as yet unavailable differential cross section measurements. Of 

interest for reactor applications, the flux spectra in finite media are to be 

calculated and comparisons with experiments made. Such work has progressed and 

these results will be presented in a subsequent paper. The behavior of the 

scattering as a function of temperature is still to be investigated. It is 

reasonable to expect that a more sophisticated theory be needed to account for 

a larger body of experimental information. 

Of broader significance is the fact that it appears possible for one to 

utilize i rather sin̂ ile model to calculate scattering behavior. This approach should 
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be able to be extended from water and polyethylene to other scatterers with similar 

chemical properties thus perhaps lending a large amount of experimental data to 

theoretical analysis. 
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THiUiivkiL ̂ ,i:UTKÔ  SCarrhKUsG IN GKAl-HITJi 

L.S.Kothari 

Physics Department, Delhi University, Delhi 6, India, 

The scattering of thermal and cold neutrons from graphite has recently 
1-4 ^ 5 

been extensively studied both theoretically and experimentl|;y , Using the method 
6 '̂  3 

suggested by Sjolander and independently by Schofield and Hassitt ,one can take 

account of multy-phonon contributions to neutron scattering. However, it is 

important to note that the aproximations used in their method break down for one 

phonon scattering process and this one must calculate seperately. If one is 

interested in the slowing down of neutrons near thermal equilibriuniin room 

temperature graphite, then the effect of two and higher phonon processes is small 

As such the problem can be worked out by considering just the one-phonon process. 

Thex same is also true for the scjfattering of cold neutrons from graphite. 
7 

Assuming the Krumhansl Brooks frequency distribution for lattice 

vibrations in graphite we have calculated the one-phonon contribution to the 

scattering cross section for a neutron of initial energy E being scattered into 

a final energy E*, (7"(E-^E*). Using these values and assuming that the neutron 

energy distribution remains Maxwellian at some temperature TQ which is greater 

than the tenperature of the moderator T, one can calculate the relaxation time "^ 

I ^ 
for theblowing down of neutrons near thermal equilibrium , 

where m^ is the neutron raass,k is the Boltzmann constant,and 

"TCE-^E') is the macroscopic scattering cross section for neutrons of energy E 

being scattered into energy E*. For graphite of density 1.60 gm/cm at T=300°K 
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, 9 
we get M2=0.n64 cm~^, which gives "CT =185u.sec,The experimentallyh observed value 

is 185+ 45 i>.sec. 
~ f 10 

One can also consider this problem in an alternate way . Having calculated 

<3~(E->E') we evaluate mean energy loss per collision for different initial neutron 

energies E. Again assuming the neutron energy distribution to be Maxwellian one can 

calculate the rate of decrease of T^ and hence the relaxation time. The average 

relaxation time in the temperature rangeS 35n°K to 300 K is nearly 170^sec, vAereas 

between 5^0 K to 40f̂ °K it is only 110 ̂ e c . 

\t a few energies we have calculated the mean energy loss per collision 

on Baldock model^^ of lattice vibrations. Though the values of CJ~ (E->E') on the 

two models are quite different, it is found that mean energy loss per collision is 
10 

the same to within 5 per cent . 

Another point to note here is that mean energy loss per collision in graphite 

as one calculates here is much smaller than vfliat a gas model or a Debye model would 

give. As a matter of fact on a gas model the effective mass number of graphite would 

be around 5*̂ . (To interjkret their experiment on rethermalization of neutrons in 
12 

graphite ̂ ennett and Heineman require an effective mass of 200m for graphite, but 

this is due to errors in their interpretation.) This large difference between the 

actual and the effective mass arises because for a layer lattice the number of low 

frequency modes is much larger than for a three dimensional solid, and hence in the 

former case scattering is predominantly due to these modes. 

!ife will now discuss the evaluation of the average diffusion constant DQ and 

the diffusion cooling constant C. For this one must know the transport cross section, 

<y^ as a function of energy. For room temperature graphite this had been calculated 

13 
and reported earlier . Using those values we get, 

D̂ = 2.30X 10 cm^ sec"^, 

C = 1.64X 10^ cm'* sec-1. 
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These may be compared with the following experimental values (reduced to P =1.60 gm/cm ) 
9 

and 

3). -

C -

2.15 
5 2 1 

X 10 cm sec"-̂  

2.07 + 0.03X 10 

2.08 X 10" 

6 4 1 
1.63 + 0.25x 10 cm sec"-̂  

1.37 + 0.25X 10^ 

1.27 X 10 

14 

15 

9 

14 

15 

A better method for calculating C would be the one in vAich for the neutron 

energy distribution a Maxwellian is not assumed. By successive iterations one can 

calculate the neutron energy spectrum as well as the decay constant 7\ ^^ assemblies 

of different sizesand plotting 7\ as a function of buckling, determine both D^ and C. 

^ 1 6 17 
Such calculations have been done for beryllium and beryllium oxide and are now 

.18 

being performed for graphite. 

At the end one can add a few remarks about G~(E-^B'). Egelstaff has 

presented his detailed experimental data on graphite in terms of the scattering law 

S(o<,ft) where ô  - * ^ _ ! l — a n d P - ^ — , K being the momentum change of the neutron 

•|̂(0 the energy change and M the mass of the scatterer atom. Unfortunately this 

interpretation is valid only in the incoherent approximation, and would hold if the 

incident neutron energy is reasonably high. For cold neutrons, where the number of 

"C" vectors contributing to the scatteribg is very small, the scattering cross section, 

even for a polycrystalline sample will depend not only on o( and A but also on E. 

Thus to be able to compare theory with experiment, it would be valuable if instead 

of giving S(o< ,[)> ) as function of oi. and A only one also indicated the energy of the 

incident neutrons, particularly if one was working in the cold region. 
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INTRODUCTION 

We discuss in this paper the method of using the data from the scattering 

law experiments at Chalk River in calculations of reactor thermal neutron 

spectra, and present some comparisons of calculated and measured spectra 

for a Calder Hall lattice. 

(^) 

In the experiments at Chalk River the differential scattering cross-

section cr(E—>E', 6) for scattering from energy E to energy E' through 

angle 6 is measured; this data may be reduced to a scattering law S(a , p ) 

which is a function of two variables only, basically the momentum and energy 

transfers. The range of the scattering law which is measured does not 

however include all the energy and momentum transfers required for spectrum 

calculations, and some method of extrapolating and interpolating the data is 

required; the extra,polation being particularly difficult. A suitable 
(2) 

theoretical method has been developed by Egelstaff and Schofield^ ', which 

involves deducing a generalized frequency spectrum from the experimental 

results, and then calculating a complete scattering law from this frequency 

spectrum. The available experimental data and the method of extending this 

to all required energy and momentum transfers is discussed in Section 2, 

In Section 3 the Fortran program LEAP for calculating the scattering 

law from the generalized frequency spectrum is discussed. 

Section 4 discusses the nuclear data required for multigroup spectrum 

calculations; in particular, methods of group-averaging are discussed and 

the program PIXSE which produces multigroup cross-sections from the scattering 

lav/, primarily for use with the Winfrith DSN programme, is described. 

In section 5 is given a brief description of the Winfrith DSN programme. 

This is a Fortran programme solving the one-dimensional multigroup transport 

equation in Carlson's discrete S^ approximation, and is at present working 

in cylindrical geometry. The programme incorporates several improvements 

on Carlson's DSN code, in particular acceleration of convergence by a group 

selection technique and a different method of solving the reflected boundary 

condition. 

In Section 6 the results of applying the above techniques to a 

particular reactor system are given; the thermal neutron spectrum in a 

- 122 -



Calder Hall lattice cell is calculated, and a comparison made with some 

experimental spectra obtained using a neutron chopper^ '̂. 

Finally in Section 7 accuracy is discussed. Topics covered are accuracies 

required in scattering, absorption and fission cross-sections, in group-

averaging procedures and in numerical techniques; these topics are considered 

in relation to both criticality and temperature coefficient determinations. 

EXPERIMENTAL SCATTERING LAW MEi\SURBMENTS AÎID THEORETICAL EXTENSION 

The scattering law experiment at Chalk River measures the differential 

scattering cross-section o" (E—>£', 6 ) from energy E to energy E' through 

angle 6 . This cross-section is assumed to be independent of the orientation 

of the scattering material; this means that crystalline materials are 

assumed to consist of randomly oriented microcrystals, and this has been 

found to be a good approxim.ation for the graphite used in the experiments. 

The differential scattering cross-section is a function of 3 variables, 

and thus an enormous quantity of data is required to describe it; hov/ever, 

making only the assumption of the first Born approximation, this data may be 

reduced to a function S of tvro variables a and (3 ̂  '(basically the momentum 

and energy transfers in the scattering reaction) by the relation 

cr ^ 
cr(E->E',e) = - ^ (f-)' e-P/2 S(a,p) {^) 

Here 

4 7r kT '-̂  

a = (E + E' - 2(EE«)2 cos 6 )/AkT 

P = (E» - E)/kT, 

cr A and T are the bound atom cross-section, atomic mass and temperature 

of the scatterer; S(a , p) which is an even function of p , is called the 

scattering law. Equation (l) applies to both monatomic and polyatomic 

sca.ttering lav;. Equation (l) applies to both monatomic and polyatomic 

scattering systems; for polyo-tomic systems care must be tvJken in the choice 

of cr, and A. In this pa,per v/e discuss only monatomic systems, the extension 

of the theory to diatomic systems is considered in Ref. (5); vv'e note here 

that the generalized frequency spectrum (p(P )) formalism described bolov; has 

been used with some success for H_0, D_0 and BeO where one species of 
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scattering rtom is much more important than the other, but it should be 

observed that the physical significance of p(p ) has been largely lost in 

this application. 

d) 
The experiment at Chalk River^ ' gives scattering lav/ data for energy 

transfers up to several kT, with a, corresponding range of a about 4/A times 

that of p . These data available from the Chalk River experiments are 

inadequate for reactor thermal spectrum calculations, since if the energy 

region less than 1 eV only is considered energy transfers up to somewhere 

between 10 and 40 kT are likely to be important; thus some method of extendin 

the data to higher a and p , and also of interpolating the experimental 

results is reqr.ired. 

Egelstaff and Schofield^ ' have developed a method of extending this 

scattering law data to the entire a , p plane; we only outline the method 

here. By means of the relation 

p(p )/p2 = lim S ( a,p )/a (2) 

a—>o 

a generalized frequency spectrum p(p ) may be obtained from the experimental 

scattering law data. In equation 2, S (a , p ) is the 'self part of the 
s 

scattering law which results from the motion of individual atoms; the 
rer.iainder of S, S,, v;hich results from interference effects, modulates S ' d' ' s 

and is important only at lov; a which are unimporta.nt for reactor calculations 

(for further details see Ref.(7)). In practise the experimental S/a is 

extrapolated to a= 0, ignoring the fairly clearly distinguishable region 

near a = 0 where interference effect becomes important. 

From p(|5), S ( Q : , P ) may be reconstructed (neglecting anharmonic 

effects - see Ref. (2)) using the relation 

S(a,P) =J. f\-«w(t).ipt 
— 00 

where / 
w(t) =Ĵ  (p( P)/P ) [coshp/2 - cos pt] dp (3h) 

Direct numerical integration of equations (3) does not appear feasible, 

and methods used to calculate S (a , p) from these equ.-tions are described 

in the noxt section. 
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The procedure used for obtaining S (a , p ) is to deduce a p(P ) from 

relation (2) using the experimental data; because of experimental errors, 

interference effects, etc., this p(p ) will not be very accurate. This p(P ) 

is then used as the starting point for an iterative scheme in v/hich S (a , p) 
s 

is calculated from p(P ) for the experimental (a , p) region, and from the 

discrepancies between the experimental and calculated scattering laws 

corrections to p(P ) are deduced, giving a- more accurate frequency spectrum; 

this procedure is repeated until satisfactory agreement vdth the oxp̂ -ri nental 

scattering law is obtained. 

Satisfactory frequency spectra p(p ) have to date been obtained for 

light water at room temperature ar̂ d I50 C, graphite ft room temperature, 380 C 

and 610 C and for bcrj'-llium at room temperature^ '; although work is 

continuing in order to improve the fit betv/een theory and experiment, including 

the calculation of interference effects (i.e. Sa( a , p )). Results for 

beryllia. and heavy vrater are expected shortly. 

EVALUATION OF THE SCATTERING LAW 

The Fortran programme LEAP has been written by McLatchie to evaluate 

the self part of the scattering lav/ from the frequency spectrum; the relption 

betv/cen S ( a , P ) and p( P ) being as given by equations (3). In this s 

section we briefly review the methods used in LEAP; in particular the numerical 

devices and expansions used in evaluating (3). Further details may bo found 

in Ref. (2). 

In order to evaluate (3), p( P ) is split, somev/hat arbitrarily, into 

a 'diffusive' term P-j( P ) v/hich is finite at the origin, pnd a 'bounded' 
2 

term p, vjhich increases at least as faat as p in the neighbourhood of the 

origin. The diffusive term only exists where an ftom can slov/ly diffuse 

away from its initial position (thus this term exists in liquids, but not 

in crystals). When v/e have put p( p ) » p, ( P ) + P̂ ( p ), '̂̂e niay evaluate 

the scattering lav? from 

S(«, P) = j S^(a , p') S^(a ,p-p') dp' (A) 
— QO 

where S, and S, are to be calculated from p and p, using equrtion (3). 

By a suitable choice of w,(t) it is possible to obtain a reasonably simple 
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form for S,(a , P ) and the convolution integral (4) cajn then be evaluated 

directly once ^{a , P ) has been determined. In LEAP the form 

w^(t) = 2d f (t^ + c^ + i)^ - C I 

is used (this is the simplest possible form satisfying the required 

rt;3tra.ints); Pa( P ) and S, (a , p) then appear as simple expressions involving 

the Bessel function K.. 

The evaluation of S, ( a, P) is more troublesome. It has been found 

that for small a , a 'quasi-phonon' expansion is satisfactory. The expansion 

used is 

St(«,P) = e-«^ I i - ( B a ) ^ T j P ) 

n=o 

where B = / [ p ( p ) / p ^ ] d p , X= 2 / [p( p ) / p ^ ] c o s h p / 2 dp 
^^ •In . CO 

.(5) 

T„( P) = 6 ( p ) , T^(p) = p(p)/Bp , T^(p) =i3_^(P'; . 

T̂  (P-P')dp' 

In the programme LEAP, the T ( P ) may be evaluated by num.erical integration 

(using Simpson's rule) for 1 < n ̂  6. The range of T (P ) is n times the 

range of p( p), and p( p) may be specified at up to 2000 equally spaced 

values of p . (Since p(p ) is symmetric, only positive p are considered; 

p(P ) is assumed zero beyond the greatest p at which it is specified; 

discontinuities in p(p ) are allowed,) The T (p ) which are not calculated 

numerically are evaluated using an Edgeworth series approximation^ '; viz: 

E, n2 

"n '" "" "2' ^ ' " „, ^^2 
T^ = (2 nn E j ^ [1 ̂  -J (-| - 3) f (^ - if - 6 ]] e'^ /^nE. 

24 n E^ nEg 
p 00 

where E = | j [p(p )/p^ ] p^ cosh p /2 dp (i = 2, 4). 

For large a this quasiphonon expansion is unsatisfactory (a very large 
(2) 

number of terms are required), and a steepest descents method^ , which is 

rji extension of the 'short collision time' approach of ''ick̂  , is used. 

This gives rise to an asymptotic expansion in inverse powers of a , in contra 

to (5) which is an expansion in ascending powers of a • 
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The resulting expression is 

S^{a,p) = {2ir at^{'z))i exp i - (T f ̂ ( T ) - f̂ ( T )) ] . 

p + (a f^(^))~^ C / T ) + (a f^ir))-^ C^ix) +....] 

whore f̂ ( -̂  ) = i [p( p )/p ^ ] p " [e*̂ +(-1 f e'^Z 2 6 (n) cosh p /2 ] dp, 

T is defined by f^(T) =P /a , and the C are simple functions of tne f /f^ 

(n»3). 

LEAP calculates S (a ,P ) for any set of values of a , where for each a 

there is an arbitrary set of p . For each value of a , it starts vith the 

highest 3 requested and evaluates the scattering law using the ste-pest 

descents method; it carries on with successive P until it finds that the 

S(a , p) calculated using the steepest descents method does not satisfy 

an accuracy criterion. For this and for all other smaller p values the 

quasiphonon expansion is used. The t'-'o expajr.sions will agree at the change

over point provided that the Edgeworth approximation is a good one a.t the 

lowest convolution at which it is used; the goodness of fit is indicrted 

on the output from the programme. The progrcuiime also prints usê '̂ ul 

quantities such as the Dobye/BTaller factor constantly., the mean kinetic 

entjrgy of the moderator atoms K and the related quantities B, C. 

The time taken to calculate S( a , p) is strongly dependent upon the 

number of points m used to specify the frequency spectrum p(p ), the number 

of T (p ) evaluated numerically, and whether the diffusion convolution '^ 

is required. The evaluation of each T ( p ) takes about 3-5 m |-imin; and 

some tj'-pical tines for rans using an IBLf7090 are:-

ra = 70, 4 T ( p) evalu-'.ted numerically, 10 values each with 35 P values 

2 mins. 

a similar run with diffusion - 3 mins. 

ni = 35, 6 T (p ) evaluated numerically, 24a values each with 57 pvalues -

9 mins, 

a sirdlar run with m = 175 - 20 mins. 

d = 350, 6 T (p ) evaluated numerically, 2 a values each with 57 Pvalues 

12 mins. 
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DETERi/I N.'TION OF GROUP CROSS-SECTIONS FOR REACTOR CALCULATIONS 

The treatment of spatial variation in thermal spectrum calculations in 

general falls into 3 categories: calculation of spectra in infinita homogeneous 

media, calculation of spectra using diffusion theory for spatial variation, 

and calculation of spectra using a transport approximn.tion such as S or P 

for spatial varirtion. The energy dependence may be specified either by a 

finite difference mesh('point representation') or by a group representation. 

In the point representation the cross-sections to be used in the equations 

are clearly just point cross-sections, and there is no difficulty in defining 

them; however in many coses the group representation is more convenient as 

in general a smaller energy mesh is required, and in this case care must be 

taken in defining the group cross-sections. 

In this section we discuss the method of averaging necessary to obtain 

group cross-sections; v/e confine the discussion to isotropic scattering in 

the laboratory system, but the arguments are easily extended to anisotropic 

scattering in the P approximation. 

Consider first homogeneous calculations; in those the basic equation 

to be solved is 

S^ (E) jZl (E) = / E (E'~>E) 0 (E') dE' + S(E) (6) 

o 

and this is represented by thu sot of G group equations 

T, , j6 = Z 2 , 0 . + S (7) 

where 0^ = / jZf(E)dE ( j i n d i c a t e s i n t e g r a t i o n over the g energy g roup) . 

By i n t e g r a t i n g (6) over the g group v/e f i nd thf t 

Z =j l^iZ) 0{E) dS/ j 0{E) dE ( 8 .1 ) 
g S 

E , = / J2((E') /2(Ei—>E) dE d E ' / / ^ ( E ' ) d E ' . ( 8 . 2 ) 
^ ^ g' g ^ ^g' 

S =/ S(E) dE + / jZf(E') / 2 (E ' ->E) dE dE' ( 8 . 3 ) 

m 
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where E is the highest energy considered in the group scheme (for multi-group 

thermal spectrum calculations E is usually of the order of 1 eV). Thus v/e 

see that the total rnd scattering group cross-sections should be weighted 

with the flux. 

In diffusion theory calcula.tions the basic equation differs from (6) 

.inly in the addition of a term D(E) V 0{^) on the left hrnd side; rnd the 

group equ ̂tions differ from (7) only in the addition of a term \j I) 0 on 

the left hand side, where 

D = j D(E) 0 (E) dE/ J 0{E) dS (8,4) 
g g 

Yfe observe thrt D(E) = l/3 E, (E); so that although D is to be calculated 

as a flux weighted average, the effective average of E, , the transport 

cross-section, is the reciprocal of the flux weighted average of the reciprocp 

Let us now consider the transport equation, 

n , V0 (E, n) + E^(E) 0(E, 0) =/E (E'—>E) 0(E') dE' + S(E) (9) 

0 

In '• transport approximation the j?S(E, f̂ ) at any energy is represented by 

a set 0 (E). Examination of equation (9) shov/s that E , should be averaged 

by the aifferent 0 (E) spectra for each \i considered. This is impracticable, 

r'nd Askew rnd Brissenden have shown that the best definition of E . for 
tg 

a DSN problem when only the scalar flux is available for averaging is 

E =j 0{E)d3/ [ 0iE)/ Z(E) ] dE (10.1) 
g g 

and that in this case S should be defined by 
gg "̂  

Sgg = E ^ g + j (j E(E-^E') dS' -Ŝ (E))j2̂ (E)dE// 0{l.)dE (10.2) 

In an extreme case the use of 10.2 instead of 8.2 for a one-group problem 

(fission and thermal) resulted in a 10^ change in reactivity, but the effect 

in a multigroup problem in the thermal region is normally small. 

The FORTRi'N programme PIXSE has been written to calculate 2 , and S 
oo o 
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as defined by (8.2) and (8.3) from scattering laws calculated by LE/iP, or 

for a monatomic gas scattering law; the function 0 is calculated by a 

subroutine and may thus be chosen arbitrarily. The output is designed for 

use with the Winfrith DSN, and thus there is a facility which enR,bles 2 
go 

to be calculated from 10.2. Scattering matrices for Carlson's SNG code can 

be produced by using PIXSE in conjunction with the program PIXiMIX written 

by li. J. Terry. In addition PIXSE can be used to produce point cross-

sections and to calculate quantities such as 

j ^^i^) cr(E->E', |i ) d(i( n = cos e ) and I (E' - E)" O-(E—>E') dE'. 

-1 " 0 

Typically the programme takes 2 or 3 minutes on an IBM7090 to calculate a 

40 X 40 group cross-section mrtrix. 

THE Y.a:i'iFRITH DSN PROGR/JiME 

The ffl.nfrith DSN programme conceived by Askew and Brissenden and written 

by Francescon is a one-dimensional Carlson discrete ordinates programme 

written in Fortran. At present it is only available in cylindrical geometry. 

The choice to wxite the programme in Fortran was made in order that its use 

v/ould not be restricted to one particula,r computer. The programme is 

conceived as an improvement on Carlson's DSN programme for the IBM704; in 

particular the treatment of reflected boundary conditions and the iteration 

technique have been radically changed. The facilities in Carlson's DSN 

for forming mixtures of materials within the programme have been excluded as 

it is anticipated that the "'/,'infrith DSN vri.ll be used with a data-editing 

programme (see §4), The variable length storage arrays used in Carlson's 

programme have been retained so that full use is made of machine storage; 

in addition the cross-section data has been compressed so that only non

zero inter-group scattering cross-sections need be stored. "'e consider 

here briefly the methods used for dealing vfith reflected boundary conditions 

and in the iteration technique. 

In the DSN method, in any energy group, the procedure is to solve the 

transport equation for each discrete ordinate direction starting from the 

outside of the system for the inward directions, and from the inside of 
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the system for the outward directions. For a reflected system, the problem 

is specifying the imvard fluxes to start the calculation; if a naive view 

is taken and the inward fluxes are taken as, say, the mean of the inward 

and outward fluxes from the previous iteration, convergence may not be 

jbtained. In the Mnfrith DSN, the boundary inward fluxes at the start of 
4-Vi 

the n i t e r a t i o n , (the vector ^ ) , are obtained from a re la t ion of thu form 

0~ = 0~ , +(1 - kY^{f , - 0' .) 

u. th 

where Jo is the outward flux at the end of the n iteration, and A is a 

(matrix) function of the geometry of the system only. This form is based on 

the relation 

0^ = P.0~ + S 

between the ingoing end outgoing fluxes; the first term on the right 

represents the contribution to the outgoing flux from neutrons which pass 

through the cylinder without collisio.-j, the second term the remainder of 
—1 

the outgoing flux. The matrices (l - A ) need only to be ca.lculated at 

the beginning of the computation. The method of treatment of a reflected 

boundary above is described for specular reflection; the programme will also 

allow tota-1 reflection at the outer boundary which is any combination of 

white (i.e. isotropic) and specular reflection. This facility is useful 

for cell calculations in which a very small cell has been cylindricalized. 

The iteration technique used in Winfrith DSN in multigroup problem.s is 

quite novel. Instead of the usual procedure of solving all groups consecutively 

a group selection procedure is employed whereby the next group to be solved 

is chosen as tha,t which has had the greatest proportional change in the 

source term (i.e. scatterings into the group) since it was last solved. 

This technique has proved very powerful in many cases, but for certain fixed 

source problems with no fission it was found only to be equal in power to the 

scaling method used by Carlson, A combination of scaling and group selection 

has been found to be very powerful in some of these cases, convergence to 
-6 

an accuracy of about 10 in about 2000 group pa.sses being obtained in 40-group 

thermal calculations. The progrrjome has been used v/ith success to solve few 

group eigenvalue problems for thermal systems (e,g. mixed light and heavy water 

systems.) 
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The output from the Winfrith DSN consists essentially of the eigenvalue, 

and the enerĝ '̂ -space flux solution of the problem, together with quantities 

such as total leakage, total absorpcion etc. In addition there is a binary 

dump of useful information which may be edited by the programme ''.HD to give 

reaction rates of any required substance over any portion of the space 

energy mesh. 

Typical running times using an IBM709O are:-

Fixed source, 40 group reflected boundary, 25 space points - 15 rains. 

Eigenvalue 
problem, 5 group reflected boundp.ry, 50 space points - 5 niins. 

It should be noted that it is believed that there is an inefficiency of a 

factor of about 1.5 in time due to the use of Fortran rather than ma,chine 

language. 

CALDER HALL RESLT.TS 

The thermal neutron spectrum in a Calder Hall lattice cell has been 

measured at several temperatures using time of flight techniques These 

experiments measure the neutron spectrum parallel to the fuel rods at a 

position midway betv/een two fuel elements. Spectrum calculations have been 

made (using LEAP, PIXSE and Winfrith DSN) for comparison with experiments 

for moderator temperatures of 293 K and 594 K; at both temperatures calcula

tions have been made using both the monatomic gas model and a scattering 

law derived as described above (§2), (in addition a calculation at 293 K has 

been made assuming graphite to be a Debye crystal with Debye temperature 

1172°K). 

The frequency spectrum p(p ) used to represent graphite in these 

calculations was chosen so that 2 p(p ) sinh (p/2)/p was constant for 

300°K < pkT < 2100^K, and proportional top for p kT < 300°K except for a 

small range of p near p = 0 where p(p ) was taken parabolic in order to 

obta,in convergence of the phonon series (see S3). 

The S(a , P ) calculated from LEAP for the 293°K case are shown for 

several values of p in Figure 2. 
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Using both the S(« , P) calculated from LE/P and the grs law, 40 group 

cross-sections were calculated using PIXSE; these cross-sections covered 

the energy range from 0 to 1.5 eV with about 20 groups in the range 0 to 

0.2 eV, 

Thcise cross-sections and up-scatter and source term d-ata were then usod 

as input for DSN calculations which represented the Calder cell in a 

cylindrical approximation, (The volume of moderator in the Calder cell is 

sufficient for cylindricalization to be a good a.pproximation, the cell 

consists of a Magnox canned natural uranium bar 1 .15" in diameter in a 

3.75" channel, the channels being set on an 8" square pitch). DSN calculated 

the energy'- space distribution of the flux, and the experimentally measured 

flux is compared with the calculated scalar flux at the outside edge of 

the cell in Figs 3 - 6 . The compa,rison of the directed experimental 

flux v;ith the theoretical scalar flux v/as justified by examination of one of 

the DSN calculations v/hich shov/ed that the directed flux differed from the 

mean flux at this point by less then 1% even in the bottom group where the 

apsorption was highest and the anisotropy would be greatest. The theoretical 

fluxes in Figs. 3 - 6 are normalised to unit total absorption in the cell. 

The normalisation of the experimental spectra is rather arbitrary. In 

the room, temperature case it is seen that the agreement of the observed 

spectrum with the spectrum co-lculated using the frequency distribution above 

(E&3A) is much better than the agreement with the gas spectrum particularly 

belov; about .2kT. The departure of the EG3A spectrum from 1/E in the 1 eV 

region is rather peculiar and is thought to be due to numerical error; 

this point is being investigated. In the 594 K case the difference betv/een 

the gas and EG6A (calculated using the frequency distribution above) is 

much less than in the room temperature case (as would be expected), but 

it is seen that the E&6A spectrum, is still closer to the experiment than 

the gas spectrum. 

In Ta.ble I is shown the effect of the scattering model on thermal 

component of reactivity, T)f, on the fission rate ratios in the spectra, and 

on temperature coefficient. The effect on T]f is very small, one sixth 

of ^% bet-'een the gas and 'best' models for graphite at 293 K, and rather 

less thon half this amount at 594°K. The effect on the 239/235 fission rate 

ratio is more marked and a comparison with experimental fission chamber 
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measurements is planned. 

The effect on temperature coefficient, a change of 10^, is probably 

marginally important for control problems, 

DISCUSSION OF ACCURi'.CY 

In this section some remaxks are made on the effect of accuracy of 

data and num.erical approximations on the type of calculation described in 

this paper, Ve will consider inaccuracies in scattering law data rnd 

scattering cross-sections, inaccuracies in absorption and fission cross-

section data, inaccuracies in v/eighting cross-sections and source terms, 

and the effect of different orders of Ŝj approximations. 

Little work has been done on the accuracy required in scattering data 

and v?e must restrict ourselves to general comment. In the v/ell therma.lised 

system described in this paper, it has been shown that the choice of 

scattering model makes a small difference to quantities of importance in 

reactor calculations; the differences between the crystal model of graphite 

and the gas model being of marginal importance in quantities such as reactivity 

and temperature coefficient. In less well moderated systems the available 

evidence (see (9)) suggests that the moderator model is more importa,nt 

(giving effects of up to about ^ in reactivity), and the same is likely 

to be true in mixed PJ/U systems. If the difference between models was 10 

times as important as in the system considered here, we would require to 

know the scattering law to about 1/10 of the difference between the gas and 

crystal models of graphite, that is an error of some 10 or 20^ on S(a ,p ) 

(see Fig. 2). The calculr.tion of the scattering cross-sections should be 
Too 

such that the accuracy on / cr(E—•>S') . (E - E') dE' (i.e. total scattering 
Jo 

cross-section times mean energy transfer) at ony energy E is consistent 

with the permissible errors in S(o; ,P ). T.'e stress here that the figure 

of 10 above is at this stage merely a guess; further we point out that the 

scattering law requires to be known most accurately in order to calculate 

the moderator temperature coefficients of small components close to the 

fuel, such as moderating sleeves, cans and coolant. Work is in progress on 

this topic. 

/ji invest igat ion of the accuracy required on absorption and f i ss ion 

cross-section data has been madeby Grdggs and Sumner with pa r t i cu la r emphasis 
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on the energy variation of the fissile isotope cross-sections. 'Te mry 

describe all errors in terms of errors in T](E), the number of fission 

neutrons produced per absorption, and a (E) the absorption cross-section. 

It is quite obvious that an x^ error in T) (E) at all energies gives en y^ 

error in reactivity, but less clear what errors are introduced by variations 

in a (E) and energy dependent variations of r) . The result of the investi-
CI 

gation a.bove suggested that in order to obtain reactivity correct to ^ 

for low enrichment reo.ctor systems it is necessary to know the 2200 m/sec 

cross-sections for the fissile isotopes to ̂  at worst, --nd that the error 
in r)(E) cr (E) and cr (E) should be less than 2fc relative to the 2200 m/sec 

a a 
values in the range from about 0.02 to 0.4 eV; for temperature coefficient 

calculations the accuracy requirement on 'n(E) cr (E) relative to the 2200 
a 

m/sec value needs to be 1% in order to obtain temperature coefficients 

to 0,5 mn/ C. For reactors v/ith a lov/er moderator to fissile ratio (say 

approaching 1000:1) the requirements are similar, but extend to rather 

higher energies. 

In early calculations of cell thermal spectra up to 1 .5 eV it was 

assumed in the colculation of the source term for neutrons slowing down past 

1.5 eV that above 1.5 eV neutrons were slov/ed down by stationary moderator 

atoms and that the spectrum was 1/E. For graphite it was soon observed 

that this technique gave rise to Placzek wiggles of about 10^ of the flux 

and extending to an energy of about 1 eV; this, while only slightly affecting 

the reactivity of the system then under consideration, would introduce 

important errors in o system containing a fair amount of Pu240; it could 

also introduce significant errors in a water system where the Placzek 

wiggles v/ould be expected to be smaller but extend over a greater energy 

range. In Fig. 1 is shown (for grr.phitc -̂t 293 K) the effect of using a 

slowing down source compared with using the source calculated from PIXSE 

which uses the correct scattering datr abjve 1.5 eV, but still assumes a 

1/E spectrum above 1.5 eV(the use of a 1/E spectrum above 1,5 eV was found 

to be a sufficient approximation by comparison with an exact calculation up 

to 3 eV). Also shown in Pig. 1 is the effect of weighting the group 

scattering cross-sections vdth a Maxvrellian compared with an unweighted 

average; the group width v/as about 0.1 eV. The Majcvvellian v/eighting is 

clca.rly silly in this 1 eV region as it assumes that the average energy 
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of the neutrons in a group is practically equrl to the lowest enei'gy in 

the group; in fact the difference in effect between a 1/E weighting and a 

unit weighting is only about Jlfo of the difference between a unit weighting 

end :\ Ma.xwellian weighting. In present calculations a Maxwellian v/eight 

is used up to energies of a few kT (where T is the physical temperature), 

and a 1/E weight above this point; this representation is believed to be 

adequate for 40-group problems such as considered in §6, For few-group 

problems, care must be taken to use the correct weighting method as discussed 

in §4, where the extreme case of 10^ difference in reactivity was obtained 

between flux weighting and the weighting described in 54 for a 1-group 

problem from fission to thermal energies. 

Comparison of S, and Sn approximations using Ca.rlson's SNG programme, 

for a Calder Hall lattice showed a difference of .01^ in reactivity and about 

^0 change in shape of the moderator spectrum in the range up to 1.5 eV. 

The difference between Ŝ'G and V/infrith DSN in S, approximation is about 

l|^ in spectrum shape using Carlson's DSN constant, end about 2 ^ using 

improved DSN constants. The effect on rif has not been ascertained but is 

expected to be less than O.ljS, which is just acceptable. Yfe thus conclude 

that Sh is a satisfactory approximation in the cell calculations considered 

in this paper; higher S approximations v/ill only be required in calculations 

involving very black rods. 

CONCLUSIONS 

In this paper v/e have shown how scattering law data may be used in 

thermal neutron spectrum calculations. The methods and programmes used are 

satisfactory; but a rather large amount of computer time is required. The 

graphite scattering law has been found to give quite good agreement with 

experiment, although there is still room for improvement; v/ork on resolving 

the remaining discrepancies is continuing. Comparison of experimental spectrum 

raeasurem.cnts with scattering law calculations for v;ater moderated systems is 

under vay. 
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TABLE 1 

^ • " " • • • " 

; ;oderator 
i.odel 

G-as 

Gas 

;̂ G3A 

.']&6A 

Debye 

1 
Temperature 

293°K 

594°K 

293°K 

594°K 

293°K 

1.1856 

1.1728 

1.1836 

1.1720 ' 

i 1.1844 

239/235 
P i s s i o n 

r a t i o 

1.567 

2.273 

1 .632 

2.309 

1 .617 

R:P:PJ;NCJ:S 

241/235 
F i s s i o n 

r a t i o 

1.968 

2.528 

2.014 

2.552 

2.004 

Temperature 
Coef f i c i en t 

ran/°C 

) - 3.61 

) - 3.29 

1. p. A. ]̂ gelstaff, S. J. Cocking A four rotor thertiial neutron analyser. 
cjid T. K, Alexander 

2. P. A. Egelstoff, P. Schofield 

3. M. S. Coates, D. B. Gayther. 

4. P. A. Egelstaff 

5. p. A. Egelstaff 

6. P. A. Egelstaff, C. Heai-d 

7. A. Sjolrnder 

8. G. E. C. 7'ick 

9. H. J. Poole and F.H.W.Pitcher 

Proc. Synposiura on Slo\; I'eutron ScL.tteriig, 
IAEA, Vienna, IS/P/9 (1960) 

On the evaluation of the thermal 
neutron scattering law. ' ^VHi - E..3&03 

Time of flight measurements of neutron 
spectra in a graijhite uranium lattice 
at different temperatures. AERE-R.3829. 

The treatment of thermal neutron 
scattering law data. AEIl;5.-R.3622 
(ls/P/7). 

The scatteriiig of thermal neutrons 
by moderators. 
American Nuclear Soc. June I96I meeting. 

Private comTunication. 

llultiohonon processes in slow neutron 
scattering by crystals. 
irlriv for Fysik 14, 315 (1958) 

The scattering of neutrons by systems 
containing light nuclei. 
Phys. Rev. 94, 1228 (l954). 

Measurement and anaJysis of thermal 
neutron spectra on Zenith. This Conference. 
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CALCULATION OF DIFFERENTIAL SCATTERING 
CPOSS SECTIONS FOR SLOW NEUTRONS* 

H. L. McMURRY 
Phillips Petroleum Company, Atomic Energy Division, Idaho Falls, Idaho 

A B S T R A C T 

As an approach to developing methods for calculating differential 

scattering cross sections of materials for neutrons vith energy belov 1 ev 

five approximations to the exact formalism of Zemach and Glauber have been 

applied to treat the scattering by gases composed of semi-rigid molecules. 

This paper outlines the theory for the methods vhich are the folloving. 

(1) A quite rigorous method valid vhen the neutron energy and kgT are 

both much less than the characteristic vibrational energies of the 

molecxoles. (2) A method vhich treats vibrations hannonically, rotations 

classically, and neglects rotation-vibration coupling. Within these limi

tations the method is valid at all neutron energies. (3) A method like 

(2) except that averages over orientation are approximated by the Krieger-

Nelkin method of introducing average values of f-unctions of the Eulerian 

angles vherever they appear. (4) A method vhich treats vibrations vith 

characteristic energies much less than the neutron energy by a short 

collision time approximation. (5) A method vhich treats such lov 

energy vibrations classically. 

Work performed under the auspices of the U. S. Atomic Energy Commission. 
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Method (5) has the feature that vhen all normal modes are treated 

classically t,he equation for the differential scattering cross section 

v^dur-R^ to t.hat for scattering by unbound particles. If some, but not 

all, vibrations are treated classically and averages over orientation 

are approximated as in method (3) the effective mass for a scattering 

atom attached to the molecule is intermediate betveen the mass of the atom 

and the Sachs-Teller mass vhich applies vhen all vibrations are treated 

exactly by quantom mechanics. Method (5) has the advantage of being 

easily adapted to treating simple models for liquids and amorphous solids. 

These methods are evaluated in the accompanying paper. 
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INTRODUCTION 

Refinements in reactor physics calculations have focused attention 

on the need for reliable cross section information. For thermal neutrons 

it is necessary to knov, among other things, the differential scattering 

cross sections vith respect to energy and angle of the reactor materials. 

With such data it becomes possible to attempt detailed calc\iLatlons of 

the dependence of thermal neutron fl\ax on neutron energy, position in the 

reactor and direction of neutron flov. Moreover, less detailed computational 

techniques can be improved because group constants can be calculated more 

reliably. 

Although studies of inelastic scattering of slov neutrons have em

phasized applications to the study of atomic motions in liquids and solids, 

data more suited to the needs of the reactor physicist are nov becoming 

available''— 5./. They cover scattering of neutrons vith energies up to 

0,2 ev. Hovever, some time vill elapse before all materials of interest 

have been studied. Moreover, it vill never be true that experimental 

data vill cover exactly the materials and physical conditions in every 

practical problem. In addition to these limitations vhich apply to data 

obtainable vith present experimental techniques, there is the fact that 

little vork is being done vith neutrons above 0.2 ev because of experi

mental difficulties. For these reasons the development of computational 

techniques capable of yielding differential scattering cross sections 

satisfactory for reactor physics calculations is Imperative. 
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The program undervay in this laboratory is a study of approximations 

to the rigorous formalism of Zemach and Glauber (6, hereafter referred to 

as Z. G.) vhich takes account of the quantum nature of the scattering 

system, and the distribution of its energy states due to thermal agitation. 

The methods described in this paper apply to gases composed of semi-rigid 

molecules. These are amenable to rather exact treatment and data exist 

for direct comparison of theory vith experiment for neutrons vith energy 

belov 0.2 ev̂ -̂'_''<. Computational techniques vhich give agreement vith 

experiments in this energy range can be used to evaluate approximate 

methods vhich are applicable at neutron energies above 0.2 ev. For neutrons 

in this energy range approximations are developed vhich make use of the 

fact that the neutron energy is much higher than kgT and higher than some 

or all of the characteristic vibrational energies of the scattering 

moleculeso The insights gained by studying these simple systems should 

be a guide to finding methods applicable to liquids and solids, at least 

for scattering of higher energy neutrons. 

This paper outlines the theoretical bases for five computational 

techniques. The accompanying paper evaluates them by comparisons vith 

experimental data from the MTR slov neutron velocity selector, and com

parisons of less rigorous vith more rigorous methods. The methods dis

cussed are: 

(l) A rigorous quantum treatment valid vhen kgT and the neutron 

energy EQ are both much less than any characteristic vibrational energies 

in the scattering molecule. 
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(2) A method vhich treats rotations classically and includes effects 

due to transfers of vibrational energy to and from the molecule. Vibrations 

are assumed to be harmonic and vibration-rotation coupling is neglected. 

Averages over orientation are obtained exactly by numerical integration. 

Within these limitations the method is valid at all neutron energies. 

(3) The same as (2) except that averages over orientation are ap

proximated by replacing functions of the Eulerian angle variables by their 

average values. This is essentially the Krieger-Nelkin methodW/ differing 

only in that quantities appearing in matrix elements associated vith 

vibrational transitions are also included and averaged in this vay. 

(4) A short collision time method in vhich matrix elements associated 

vith vibrations having characteristic energies much lover than the neutron 

energy are obtained by a Wick type expansion(£) of the operators involved. 

(5) A treatment in vhich vibrations vith characteristic energies 

much lover than EQ are treated classically. A feature of this method 

is that vhen all modes are treated classically the equation for the 

scattering reduces to that for scattering by unbound atoms. Moreover, 

vhen some but not all modes are treated classically the Krieger-Nelkin 

averaging leads to an effective mass for a scattering atom intermediate 

betveen the Sachs-Teller mass vhich holds vhen all vibrations are treated 

quantum mechanically, and the mass of the atom itself vhich applies vhen 

all vibrations are treated classically. 
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THEORETICAL 

A. General Approach 

When neutron-, are scattered by a moderator or any system of chemically 

bound atoms impiHsive interactions vith individual atoms, or atom pairs, 

are involved. Hovever, the recoiling atoms are part of the larger system 

and any transfers of energy and momentum from the neutron to the system 

must be consistent vith its quantum nature. Zemach and Glauber(£) have 

given an exact quantum mechanical formalism for calculating the scattering 

from any system composed of chemically bound atoms. The quantities cal

culated are a-v)(EQ,€,|j.) and OVV'(EO.>^.»|I) • The first is the differential 

scattering cross section for direct scattering by atom V and the second 

for scattering by the pair of atoms V and v'. The units are conveniently 

expressed as barns/(atom x ev x steradian). For isotropic systems these 

differential cross sections depend on the incident neutron energy EQ, its 

energy change e = E - EQ and the cosine of the scattering angle \i. 

This paper vill deal vith systems vhere proton scattering is dominant 

and the pair scattering oyv' can be neglectedvS;. Hovever, cry still 

depends on hov the proton is bo'und. For example, vhen neutrons are 

scattered by the protons in propane gas (CH-3CH2CH0) the H atoms on the 

CH2 group scatter differently from those on the CH^ groups and, in fact, 

the protons in the CHo groups do not all scatter identically''ii' . 

The measured differential scattering cross section c(EQ,e,(i) for 

an entire system is 
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In this equation N-y is the number of atoms of type V (meaning the same 

species of nuclide in the same environment), N is the total number of 

atomo in the scattering system and f^ = N^/N is the fraction for atoms 

of type V. 

In semi-rigid molecules the interparticle distances never depart 

far from equilibrium values. Rotation-vibration coupling can be neglected 

and for molecules in the gas phase the molecular vave function can be vritten 

as a product of factors for the translational, rotational, and vibrational 

degrees of freedom. Eq. (2„ll) of Z. G. can then be put in the form'.ir̂  

2 2 1 r°° 
(v cr \ Ay + Cy /-, ^ e N 4 ^-ite/Eo 

.y(E,,e,,) = - ^ ^ (1 . - ) j j <o?> <o.,7r,<0^,>,>,dt 

The spin states formed during the interaction betveen the neutron and atom 

V determine the strength of the interaction. Eq. (l) averages over the 

various spin states by using suitable coherent and incoherent scattering 

lengths Ay and Cy'̂ ii''. Eq. (l) employs a time in units of-fi/Eo. This 

makes the time dimensionless and time in seconds is given by^t/Eo- The 

primes on the OQ(t), Oyp(t) and 0' (t) are used to distinguish them from 

other related operators vhich vill be introduced vhen some of the ap

proximate techniques are developed. The operators are defined as follovs: 

„,/,N ItHp iK.rp -itH(̂  -iJS-̂ n /o N 
OQ(t) = e C e - ' - O e i - e " ~ C (2a) 

„, t.s itH' iK-Ar̂ . -ItHl -iji-Ẑ r̂ , (2b) 
OAW(t) = e T e ' - ' " V e " e " V "• ' 'VT^ 

•IfR-k -iK.r?, itHA iK-rP 
•̂ vTRv̂ ) ~ ̂  K e — -v e W e '"̂  -^ (2e) 
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In these equation H^ = HQ/EQ, H^ = HR/EQ, H| = HT/EQ vhere H^, Hp, 

and H..̂  are the Hamiltonian operators for the translational, rotational, 

and T normal vibration. The Ĥn is for a rigid molecule vith atoms at 

their equilibrium positions and H^ assumes a harmonic potential function. 

The r^ is the vector to the center of mass, r^ is from the C.M. to the 

equilibrium position of atom^ and Aj^ is from the equilibrium position 

to the displaced position. For a semi-rigid molecule |Aryl<^r°. The 

Kft = kh - k̂ fi is the change in momentum of the neutron resulting from 

the scattering impact. Here ICQ and k are the vave vectors of the neutron 

before and after impact, respectively. The v^ denotes a product over 

all normal modes. 

The thermal expectations in Eq. (l) are defined as follovs: 

<^C>T = ^ / ^ C < 0 6 - . c = e-"«/Po e-^^/Po^- (3a) 

< 0 ; T > T = ^j-rjr < ° : T > J T (3b) 

< O v R K < P v r > T > T ^ ^ R ^JR ^^VR K <%r>^ > j R ^ 3e) 

In Eqs. (3a - 3<̂ ) "the 7^n, 7̂ p and '/^j are the probabilities that a scat

tering impact involves the molecule in a translational vave function ^AQ? 

a rotational vave function ^ .-n and the T normal vibrational vave function 

1̂̂ ^̂ . The expression given for <S)(y^ is given in Eq. (5-1) of Z.G. It 

involves the neutron mass m, the mass of the molecule M and is conveniently 

expressed in terms of function 0 and a defined by 

0 = ~ + 2 - 2(1 t |-)2^ (4) 
^O ^O 

« ̂  2Mr- kP = M M (5) 

Po = ̂o/kfiT 
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The use of a and 0 in place of K^ has the advantage that they are dimen

sionless quantities of moderate magnitude vhich are closely related to 

the energy transferred to the motion of the molecular center of mass. 

Furthermore, the presentation of differential scattering cross sections 

in terms of functions of a, or quantities proportional to a, is gaining 

acceptance V2>12j _ 

B. Rigorous Treatment of Rotations 

Grifflng(i3) has used Eq. (l) to calculate the scattering of very 

lov energy neutrons by methane vhich is a spherical top. When EQ is 

much less than any of the characteristic vibrational energies the 

<J)y^^ are nearly unity. Griffing found it satisfactory to use the 

Krieger-Nelkin expressionVx-' vhich inserts average values of functions 

of the Eulerian angles into the expression for <P'^^;> . When this is 

done the expe:;tation in Eq. (3c) may be vritten in the form 

-OvR //T <Py^^^>p - -^;>T L^ ^ f ^JR ^ ^ K^jpe ^^^^fR^-

(6) 

Eq. (6) results by introducing the sum over rotational states explicitly 

analogous to the formulation used in Eq. (2.4) of Z. G. 

77; exp i - (Eo0m6yT/3ET) coth(3T/2)| (?) 

Eq. (7) is the same as Eq. (20) of Krieger and NelkinU) vith K.'^y^y of K.N 

being the same as the terms in the exponent. The B ..,. is determined from 

the transformation betveen the normal coordinates and the cartesian dis

placements of the atoms relative to axes fixed in the molecule. Its 

'^' 'rp 
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derivation for any semi-rigid molecule is outlined in the Appendix. 

The E^ is the characteristic energy of the T vibrational mode, p^ = Er/kgT 

and 0 is given by Eq. (4). 

The matrix elements in Eq. (6) are calculated by expanding e ^ 

is a series of Legendre polynomials of cos 9 vhere 9 is the angle betveen 

K and r§. The coefficients in the series are spherical Bessel's functions 

of IJJI |jv| ' '^^ cases of greatest interest involve molecules vhere jy 

lies on a symmetry axis. Then cos Q is an argument in the rotational 

vave functions and the integrations over orientation can be obtained in 

closed form^ii^). Then Eq. (6) is a series vhich, together vith Eq. (3a), 

can be inserted into Eq. (l). The time integration can be carried out 

yielding 

a^(Eo,e,n) = (1 + €/Eo)* e'^/^ ĝ (ct,p) (8) 

The Sy(a,3) is the Egelstaff scattering functionii^) vhich is given in 

this case by 

X., = cosh rp(PjR^/fR)jexp f-l^oEj^m)' - (̂ 4Elgffl)j |<tjRe-^ '̂-^v , ^ > 

Z = V. V. e'f̂ JR (10) 

PjR = EjR/kgT PjR = Ej^/kBT 
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The W-̂  in Eq. (lO) is the degeneracy of the states vith energy E-̂ ĵ . In 

linear molecules and spherical top molecules the energy is given by the 

total angular momentum quantum number J and the degeneracy is 2J-fl for 

a linear molecule and (2J-i-l) for a spherical molecule. For asymmetric 

tops the energy depends on the quantum number K associated vith the 

projection of the total angular momentum along the top axis. States 

vith + K are degenerate vith degeneracy 2(2J-t-l) . When K = 0 the degeneracy 

is 2J+1. Some vriters do not incorporate the l/kgT into the definition 

of Sy(a,p). Its inclusion gives Sy the same units as oy vhich has some 

practical convenience. 

C Classical Treatment of Rotations, Inclusion of Vibrational Excitations. 

MolecTiles vith large moments of inertia vill have densely spaced 

rotational levels. When the symmetry is lov the splitting of degeneracies 

vill make the levels still more densely distributed. When either or both 

of these conditions cause a dense distribution of levels a classical 

treatment of rotations is tenable. 

The classical treatment is achieved by commuting the operators 

O^i-Y and Oy-p in Eqs. (l) and (3c) and calculating the thermal average of 

the rotational expectations <CPyĵ !̂;>̂  by using a classical treatment of 

the rotational motion. This is done by considering a phase space defined 

in terms of the classical angular momentimivT^lO). When principal axes 

of inertia are used the result may be expressed in the formv±2/ 

<3^^>^ = exp /-itm0[A^]R; l"^Ry[Az]| < O y R > ^ (ll) 

<OvR>T = exp /-t2 |- m[A^]R^ r^ Ry[Az]} (12) 
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In Eqs, (.11, 12) the term [Al]R-(,I"lRy[A2;] is a matrix product. Brackets 

denote column matrices and primes denote transposed matrices. Thus [A^] 

is a rov matrix. Its significance is explained belov. The I~l is the 

reciprocal of the moment of inertia tensor vhich is most conveniently 

expressed in terms of principal axes of inertia so that I~l is diagonal. 

The Ry is in terms of the equilibrium positions x^, y^, z^ of atom V 

relative to the axes fixed in the molecule. 

Rv 

0 - 4 yv 

(13) 

In deriving Eqs. (ll, 12) the vector product of K and a vector 

related to the angular momentum JL is needed. The L; is most conveniently 

expressed in terms of components along the molecular axes x, y, z, vhile 

K is most easily vritten in terms of components along space fixed axes 

X, Y, Z.. Hence the vector product of K_ vith any vector related to ^ 

vill depend on molecular orientation. It proves convenient to express 

such vector products as products of rov and column matrices. The general 

procedure is as follovs: let [L] denote a three element colimm matrix 

vith its elements being Lx^ Ly, L^, the components of_I^ along the molecular 

axes X, y, z. Let A denote a 3 x 3 matrix vith the top rov [AT̂ ] , the 

middle rov [A'] and bottom rov [AA] containing the direction cosines of 

X, Y, Z, respectively, relative to x, y, z. Then the matrix product 

A[L] gives a three element column matrix vith elements L̂ ,̂ Ly, L^ being 

the components of L along X, Y, Z. There is no loss in generality if 
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the Z direction Is taken along K. The vector product jj^'J^ is given then 

by KLA^] [L] vhere K = [ĵl . In this vay the dependence on orientation 

in Eqs, (ll, 12) appears through the presence of [•AA] . Specifically 

[A^] = [- sin P cos X sin 9 sin X cos 9] (l4) 

In Eq. (l4) 9 and X are tvo of the Eulerian angles used in defining the 

molecular orientation. Eq. (l4) is obtained directly from Table I-l 

of ref. (iH). 

In dealing vith the operators OA^ in Eq. (2b and 3b) it is necessary 

to express the Ej and ̂ y in terms of the normal coordinates. Some useful 

properties of the transformation betveen the normal coordinates and the 

cartesian displacements of the atoms are given in the Appendix. Î e 

vector Ẑ y in terms of components along the space fixed axes X, Y, Z is 

[Ary] = AZT-[TVT]QT (15) 

In Eq. (15) [Ty-T-] is a three element column matrix with elements Tyx x:" 

Ty^^y, Tyr z such that Ty-T XQT^ TyT yQrj TyT,zQT give the displacement 

of atom V along the x, y, z axes when the T normal coordinate has the 

magnitude Q^. When the Z axis is taken along K it is then true that 

^•Z^y = K.[Â ] X^^TTy^jQ^ (16) 

When the transformation 

itH' iK-ry -itH' -ijs-ry ItH' itH'(py-K;ft) e e~̂ —'̂ e e "^ ^ = e e ^ ^ v — / 

is specialized to the case where H' = H| and r^ = Ary the result is (15) 

0̂ ,̂  = exp i-it0m6yT \ Oy-̂  (I7) 
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OyT - exp iitHjUxp ^-it[H; - (2m05^yEo)^PT][ (l8) 

&VT(0,X) = ([A^][TyT])^ (19) 

In Eq. (18) p^ is the momentum conjugate to the T normal coordinate. 

When mass adjusted normal coordinates are used Py = Q̂ -• 

[Jq. (3.19) of Z. G. gives the expression for <X)^^'^ vhich (for V = v ili'C 

is 

O v T > T = <'^>T Z V(gVT) exp Unr^^/2) -it(n^p^/Po) | (20) 

In Eq. (20) 

SVT = p,sinh(p,/2) '^-^T (21) 

PT = Ey/kgT vhere E-j- is the characteristic energy of the x mode. 

< X ° ^ > = exp i-(Eo0m6^^/ET)coth(Py/2)i (22) 

The In is the modified Bessel function of order n and 5^^ is given 

by Eq (19). 

When Eqs. (3a, 11, 20) are used in Eq. (l) the time integration can 

be carried out yielding 

Pv(Eo,e,^) = ^̂  V^^''^^ e-P/2 f f Sy(a,p)dudX (23) 

u=-l 

Integrations are only needed over the Eulerian variables X and u = cos 9 

since the azimuthal variable cp is not in [AA]. The Egelstaff scattering 

function Sy includes terms due to vibrational transitions vhich vere not 

included in Eq. (8). In fact, Eq. (8) uses Eq, (20) with only the terms 

vith n^=o and with •<X̂ >> calculated using a 5̂,̂. obtained by averaging 
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Eq. (19) over orientation in the Krieger-Nelkin manner^Z'iZ''. Hence, 

Eq. (23) applies to neutron energies high enough to cause vibrational 

transitions, and temperatures high enough so that collisions vith molecules 

in thermally excited vibrational states are possible. It assumes no 

rotation-vibration coupling and neglects anharmonicities in the vibrations. 

The equation for Sy is 

\2 p2 

In the summation term in Eq. (25) each nj can take all integral values 

beginning at 0, but at least one nr must be greater than zero. Any factor 

vith n-r = 1 gives contributions to excitation and de-excitation of one 

quantum of the T vibrational mode. If the n^ = 2 double excitation and de-

excitation is involved etc. The <;Xy>- is the product of factors given 

by Eq. (22) for all the normal modes. 

CCy = ^o^l~ + mLA^lR^I-lR^CA^lj (26) 

In many applications some or all of the p^ are much larger than one. 

The arguments gy^ are then small and it is possible to approximate using 

In,(gvT) = ̂ :̂ j S ^ J " ^ exp r- ̂ j (27) 

Eq. (24) vith the approximation in Eq. (27) has been used to cal

culate the scattering of CEi^ up to O.3 ev*-— ', and in the accompanying 

paper for evaluating computations made by less rigorous methods. 
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D. The Equations With Krieger-Nelkin Averaging. 

Eqs. (23-^7) involve functions of the Eulerian angles through the 

presence of [A17] in the gy^ and Oy. In the Krieger-Nelkin method 

average values of the functions of the Eulerian angles are used(7). 

This leads to replacing ay by tty and gy^ by g.̂.̂  vhere 

a . 

1 

PO0 M 

My " M Myj^ 

1 ^ 1 

MvR ~ 3 

jf + ̂ r _xr ^ < t ŷ  
2n 

•-x 

(28) 

(29) 

(30) 

=VT 
m05y.T- Po 

3 p T s i n h ( P T / 2 ) (31) 

'vr = [ T ^ y ] [ l V ] (32) 

I n E q s . ( 2 8 , 29) my i s t h e S a c h s - T e l l e r mass f o r atom V ( 2 J ' 1 5 > 1 7 ) . 

When t h e a p p r o x i m a t i o n i n Eq. (27) i s v a l i d i t i s b e t t e r t o use*-—2.'' 

I n ^ ( g v T ) ~ (2ny + l ) n ^ : 

- inr 
Po0mOyT-

Pi 
exp 

- Tp7 (33) 

When K r i e g e r - N e l k i n a v e r a g i n g i s u s e d Eq . (33) becomes 

e i 
C v ( E o . e , p ) = (1 + ~ )2 Sy(Q;,p) (3^) 

In Eq. (34) Sy is calculated from Eq. (24) by inserting average values for 

a^, &y;,ĵ  vherever they appear. 
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E. The Short Collision Time Equation 

When the neutron energy E Q » k-gT and E Q » E-p the neutron will pass 

over an atom before it moves appreciably either because of the thermal 

motion or of the vibrational motion contributed by the T mode. In such 

cases the operator Oyr in Eq. (l8) can be represented by an expansion in 

powers of (it)''—•'. In some problems E Q will greatly exceed some of the 

E..p but will be near to or less than others. To distinguish these situations 

the subscript A, is used for those modes with E^ « E^ which are treated by 

the time expansion while T is reserved for those with E^ - E Q or ET > E Q 

which are treated exactly by Eq. (20). 

The time expansion of Oy^ can be obtained by Wick's procedureV^^. 

It employs the expansion 

(n), Oy,,(it) => ^, oS^it)^ 

-in=o 

In this equation Oy^ denotes the nth derivative of Oy^(it) with respect 

to (it) evaluated at t = 0. It is readily shown that(l^) 

o(") - TTT' n(^"^)l + n(""^)R 
"VX - LH^, Oy^ j + 0^^ Byj^ 

1 (35) 
By^ - (2m05y^Eo)^p^ 

The thermal average <;0y^^ is a power series in (it). The necessary 

expectations can be calculated from the properties of the harmonic oscil

lator wave functions. The result to the third order ±s^±2.J 

<Ovx>j. • >- -f <0<.|'>T - -î ^ <oil^>^ (36) 
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<o^3)^ 
T̂ = - ̂ '̂̂ V̂X g h.\ (38) 

When Eq. (3a) and (ll) are used for the thermal averages of the 

translational and rotational expectations, Eq. (20) for the r modes and 

Eq. (36) for the \ modes the result is 

„ fE c A - ^V ^ ̂ V (1 + ̂ /Eo) 
47r 2kBT ̂ '̂ -

-Ay 

dudX (39) 

$y(X,u) = <X0^>^ 1 e ̂  ^y il- ̂  (1 - ̂ ) Z,Pxm5y,(i t _ L ^ ) 
jPx_l' 

(» \ -=> 
^r(3-^) ^A^^^x 

^ 
[p + Qy + pQ0m Zx.5yJ^ 

Ov 

(̂ 0) 

(i^l) 

In Eq. (40) 0 is given by Eq. (4), Oy by Eq. (26), 6y;,̂  by Eq. (19). 

The < X y >> is calculated from products of factors from Eq. (22) and 

i|fyq from Eq. (25). However, only the T modes are included. 

The Krieger-Nelkin equivalent to Eq. (40) is obtained by using 

average values of functions of the Eulerian angles in x y . When this 

is done the numerator in Eq. (4l) for Ay involves the sum 

«V + \ Po0 ̂ x ̂ VX = iT Poî  (i+2) 

VA. Mvc My 3 ^ A 

It is shown in the Appendix that My^ defined by Eq. (43) is intermediate 

between the Sachs-Teller mass My vhich holds when all modes are treated 

exactly by Eq. (20), and the mass my of atom V which holds when all modes 

are treated by the^ expansion method in Eq. (36). 

(i^3) 
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E. 'Ihe Classical Treatment of Vibrations. 

When EQ » E^ it should be permissible to treat the vibrations 

classically just as is done for the rotational motion when the rotational 

levels are closely spaced compared to EQ. AS before it will be con

venient to use the subscript X for modes with E^ « EQ which are treated 

classically, reselling T for those with Ex - EQ or Ê - > EQ which are 

treated exactly. 

The classical treatment assumes that the factors in Eq. (l8) for 

Oyĵ  commute so that 

Ovx - exp i i t (20mSvx/EoPp;^> 

The thermal ejq^ectation of t h i s ope ra to r i s found by cons ide r ing a phase 

space for the momentijm p ^ . The eqixation for <^0y)^'^ i n t h e c l a s s i c a l 

approximation is 

1 

i 

<0VA>, ^ IJ"^ [~i^] °v̂ p̂̂  2irkBT 

= exp / - (m05yj^ /po) t2 | (kk) 

When Eqs. (3a, 11, 20, hk) are used in Eq. (l) and the time integration 

is carried out the result is 

av(Eo,e,^) = ^ H r ^ ^ ^ e-P/2 C^ p Svc(a.p)dXdu (i.5) 

^̂  Jx=o ju=-l 

(^e = P o 0 | ^ + m[A^]R^I-lRv[Az] + m 5 ] ^ 5 y A (4?) 

As in Eq. (39, M3) the <;X̂ q>>- and ty^ in Eq. (45, U6) are calculated from 

products of Eq. (22) and from Eq. (25) using only terms for the T modes. 

- 162 - I 



It is shown in the Appendix that when all modes are treated classically 

aye reduces to pQ0(m/mv) where my is the mass of atom V. The equation is 

then just that for the scattering by.an unbound particle. The equation is 

cTy = (1 + e/Eo)* e-^/2 Sy(a,p) (hQ) 

_ Ay + Cy 5S /, X 
V̂ - 2kBT(7ra)2 ® ^̂ ^̂  

In Eq. (1+9) a is given by Eq. (5) with m = my. 

When Krieger-Nelkin averages are used Eq. (46) comes out in terms 

of the Mvc in Eq. (43). This mass is intermediate between the mass my 

of the atom, which holds when all modes are treated classically as in 

Eq. (48) and the Sachs-Teller mass My which applies when all modes are 

treated exactly. 

Although Eq. (44) uses a classical operator it yields a thermally 

averaged expectation which is not limited by the nimiber of terms taken 

in a series expansion as in Eq. (36). For that reason Eq. (45) based 

on the classical treatment may give better resxilts than Eq. (39) based 

on the Lime expansion which can only be practical for calculations if a 

few terms suffice. 

When EQ » Ê - the quantum treatment which uses the harmonic oscillator 

approximation will bo inadequate for calculating the contribution of 

transitions to high vibrational states. The spacings of the excited 

states will gel closer together and will merge when the excitation 

exceeds th^ energy to break the bond. In these situations the equations 

for sca+*.ering by an unbound atom may be preferable to a quantum treat

ment bas<=d on the assiimptlon of har̂ '̂ nic oscillator potential f•unctions. 
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APPENDIX 

EFFECTIVE SCATTERING MASS WHEN VIBRATIONS 
ARE TREATED CLASSICALLY 

When some of the normal vibrations are treated classically and 

averages over orientation are obtained by the Krieger-Nelkin method the 

effective mass of a scattering atom is intermediate between the Sachs-Teller 

mass which holds when no vibrations are treated classically, and the mass 

of the atom itself which holds when all vibrations are treated classically. 

In the latter case the statement is true in general because the dependence 

on molecixLar orientation disappears. 

These properties can be shown by using the properties of the orthogonal 

transformation which relates the normal coordinates to the mass adjusted 

cartesian displacements. The proof will be given on the assumption that 

principal axes of inertia are used for the molecule. There is no loss 

of generality in this. 

The normal coordinate transformation may be expressed in the formv±4^±H/ 

•'R-l 

[q] (A-1) 

I f t h e r e a re W atoms t h e column ma t r ix [q] has t h e form 

[q] 
ci2 

5N_ 

[av] -Ply' 

Ax, 

Ayy 

LAzy_ 

(A-2) 
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The column matrix on the left side of Eq. (A-l) contains the 3N-6 normal 

coordinates as elements, together with two sets of three elements which 

are zeros. These are indicated by the 0 symbols. The matrix multiplying 

[q] is orthogonal with dimension 3̂ - There are 3N-6 rows of 3W elements 

in ̂  and three rows of 3N elements in Cij and OR. The normal coordinates 

Q are defined by the equation 

[Q] = ̂ [q] (A-3) 

The equations [O] = CfpLq] express the condition that the linear momenta 

vanish relative to the axes fixed in the moleciile. The equations [O] = Cp[q] 

express the condition that the moleciiLar axes x, y, z are oriented so that 

when the atoms are in their eqtillibrium positions the angular momenta 

observed from this coordinate system vanish. The matrices C-p and Cĵ  may 

be written (i§) 

A p A A •* 1 

Crj = LClT - - - Cyip - - - Cjq-ijiJ 

CR - [CTD - - - C -IR VR ^NR^ 

VT 

VR 

^M ' 

- / 

1 

0 

_0 

0 

Li 
0 

z^ 

0 0 

1 0 

0 i_ 

-TP 

0 

I x ^ 

0 

1 
= myl"2R 

(A-4) 

(A-5) 
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1 i i 1 
-^ _~1 In Eq. (A-7) Ry is the matrix in Eq. (I3) and l"^ is such that I'̂ I ^ = I 

where I"-'- is the reciprocal of the moment of inertia tensor. Eq. (A-5) 

assumes the use of principal axes of inertia. 

Q ^ i s 

If Eq. (A-3) i s expanded the expression for any normal coordinate 

QX= Lyt^vJflv] 

[̂ vx,̂  = tQvX,x Qvx,y Qvx,z^ 

From Eqs. (A-4, A-5, A-6) i t follows tha t 

(A-6) 

L^([A^][^Vxl)'^ + [A^lS^T^VTtAz] + [A2]6̂ p6yĵ [Az] = 

i;^([A^][Qvx])^ + ^ [A^][A2] + my[A^]R;i-lRy[A2] (A-?) 

However, from the orthogonality properties of the transformation matrix 

in Eq. (A-l) it follows that the terms on the left hand side of Eq. (A-7) 

sum to unity. This can be seen by carrying out the matrix operations. 

The coefficients of the tenns multiplying A^xA^y^ -^x-^Zz' ^Zy^z ^^ 

vanish because they involve products of different column vectors in the 

transformation matrix and these are zero because of the orthogonality 

property. The surviving terms are 

*§x {ZAx,x * ? * -vg ' ?s!l + 

„2 r<r ?s2 my ,xo2 zo2i^ 

- Ai, fZ,Q^,,, . ^ ^ 4 ^ . ^M = AL . A|^ . A ,̂ = 1 (A-8) 
L \ X y M 
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Each factor in brackets in Eq. (A-8) is a product of a column vector 

in the transformation matrix in Eq. (A-l) by itself and gives unity 

because these column vectors are normalized. 

The column matrix [Ty)̂ ] which appears in Eq. (15) and other places 

is related to [Q,\i\] by 

t^vJ = t i f̂ vx] (A-9) 
1 - r/i 

ay-

Substituting Eq. (A-9) into Eq. (A-7) and using Eq. (A-8) yields 

Z^([A^][TyJ)2 + i + [A^]R^I-lRy[Az] = i- (A-10) 

From Eq. (lO) it follows that if the sum over X in Eq. (47) includes all 

normal modes the result is 

«Vc = ^ M (A-11) 

There is then no dependence of oc^^ on the Eulerian angle variables and 

Sy(a,p) in Eq. (45) can be integrated to give Eqs. (48, 49). 

If some, but not all, modes are treated classically and the Krieger-

Nelkin method of averaging is used an effective mass My^ intermediate 

between the Sachs-Teller mass My and the atom mass my is defined by the 

equation 

I^(LA^][TyJ)2 + I + [A^]R^I-lRy[Az] = ̂  ̂  Byx + 1^ = ^^ (A-12) 

In Eq. (A-12) the sum over X includes only the modes which are treated 

classically. The mass My in the Sachs-Teller mass for a non-vibrating 

molecule^il-' . When principal axis of inertia are used it is given by 

Eqs. (29,30). The 6y^ is defined in Eq. (32) and [TyJ by Eq. (A-9) • 
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i 

Eq. ( A - 1 ) can be i n v e r t e d t o y i e l d 

[q] = ^ ' [Q] (A-13) 

Equation (A I3) shows t h a t t h ? v i b r a t i o n a l k i n e t i c energy i s gl-"-en by 

2 T ^ = [ q ' ] [ q ] = [ Q ' ] ^ ^ ' [ Q ] = [ Q ' ] [ Q ] ( A - 1 4 ) 

Eq. ( A - 1 4 ) shows t h a t t h e momentum p^ conjugate t o t h e coord ina te 

Qx i s Px = ^X-
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A B S T R A C T 

The methods presented in the accompanying paper for computing partial 

differential scattering cross sections are evaluated by comparing calculated 

results with experimental results for methane and propane, and by comparing 

results on a hypothetical OH molecule of the more approximate methods with 

the most rigorous ones. 

The method which treats rotations quantum mechanically gives good agree

ment with experiments on methane and can be considered as rigorous. The method 

which treats rotations classically, vibrations by quantum mechanics and averages 

over orientation exactly also agrees well with methane experiments, except for 

scattering at forward angles and low neutron energies where the energy ex

changes are comparable to the rotational level spacings. It is used as a 

standard of comparison for calculations on the OH molecule. 

The Krieger-Nelkin method, which averages over orientation by inserting 

average values of functions of the Eulerian angles wherever they appear, works 

very well at low neutron energies. Calculations on OH show that when the 

characteristic vibrational energy is high, but much lower than the incident 

neutron energy, the K.N. method breaks down. 

The short collision time method of treating low energy vibrations is 

impractical because too many terms in the required series expansion are needed 

to give good restilts. 

The method which treats low energy vibrations classically is very promising. 

It gives very good results when the characteristic vibrational energies are 

low, and is better than the K.N. when the characteristic energy is high, but 

much lower than the neutron energy. 
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INTRODUCTION 

This paper evaluates the methods presented in the accompanying paper 

((1), hereafter referred to as l) for calculating the partial differential 

scattering cross sections of semi-rigid molecules in the gas phase. Such 

systems are relatively easy to deal with theoretically and it is hoped 

that the insights gained from their study will help in devising practical 

techniques for computing partial differential scattering cross sections 

of liquids and solids. 

Five methods are considered ranging from a quanttim treatment, which 

is strictly valid provided the neutron energy and kgT are less than any 

of the characteristic vibrational energies of the molecule, to two methods 

which treat vibrational contributions approximately and are simple enough 

to be adaptable to treating liquids and solids. 

Several of the methods are evaluated for low neutron energies by 

comparing calculated values for the partial differential scattering cross 

section with respect to energy and angle with experimental results for 

methane and propane obtained using the MTR slow neutron velocity selectorv2,3 

Further evaluations, particularly for neutrons with energies beyond the 

range of present scattering experiments, are made by calculations on 

methane and a hypothetical OH molecule. Here methods which are shown to 

be good by I'ompariscn with the experiments on methane and propane are used 

to evaluate the more approximate procedures. 

The hypothetical OH molecule is used because it has but one vibrational 

degree of freedom and this makes it easy to study the effect of changing the 

characteristic vibrational energy, as well as the incident neutron energy. 

- 174 -



METHODS AND PHYSICAL DATA 

A. Methods 

The most rigorous method was developed by Griffing and treats the 

translational and rotational motions correctly by quantum mechanics'z/. 

It is applied at temperatures and incident neutron energies low enough 

so that the effects of zero point vibrations can be dealt with adequately 

in an approximate way. The method is too cumbersome to apply to scatter

ing by any but highly symmetrical molecules and the results reported here 

are only for scattering by methane. The method will be denoted by Q.M. 

for "quantum mechanical". 

The second method treats rotations classically but goes beyond the 

first method by including the contributions due to exchanges of vibrational 

energy quanta with the neutron. The vibrational contributions are cal

culated quantum mechanically assimiing a harmonic potential function and 

neglecting rotation-vibration coupling. Averages over molecular orientation 

are computed exactly by numerical integration and for this reason the 

method is designated by E.A. for "exact average". The method gives 

good results for methane and, within the limitations imposed by the 

classical treatment of rotations, applies rigorously to the case of the 

hypothetical OH molectile. Hence it is the chief standard of comparison 

for that case. 

The third method is like the second except that averages over 

orientation are approximated in the manner of Krieger aind Nelkin(5.) by 

inserting average values of functions of the Eulerian angles wherever 

they appear. Henre the method is designated by K.N.. The K.N. averaging 
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simplifies the equations so that numerical integrations are not required. 

Hence there are wider possibilities for practical application. 

The foiirth method treats vibrations with characteristic energies 

much lower than the incident neutron energy by a short collision time 

approximation(£^ and is denoted by S.C.T. 

The fifth method treats these low energy vibrations classically. 

It is denoted by the letters C.A. which are meant to imply that some or 

all of the vibrations are treated by a classical approximation. 

B. Physical Data 

1. Methane 

The equation for the partial differential scattering cross section 

of methane is 

Eqs. (8-10) of I tell how to calculate a-^ and OQ in the Q.M. method. The 

calculations are described in detail by Griffingvit̂  . He used ntmierical 

data from the work of Krieger and Nelkin'Z-' . These authors made use of 

Pope's normal coordinate analysis for methane(7). 

The physical data for the K.N. and C<A. calculations maybe derived 

from those needed in the E.A. calculation. The quantities needed appear 

in Eqs. (23-25) of I. Among them are ag and QQ for which Eq. (26) of I 

yields(§) 

«H = Mfi^ + H ^1-^^)^ ^̂ ^ 

ac = Po!2>A6 (3) 
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In Eq. (2) u is the cosine of the angle between the momentum change of 

the neutron Kft and the vector rTT from the molecular center of mass to 

the scattering proton. The Po = Eo/k-gT where EQ is the incident neutron 

energy^and 0 is defined by Eq. (4) of I. The I6 is the mass of methane 

in atomic units. 

The other quantities which are needed to express Eqs. (23-25) of I 

can be obtained after the quantities &y defined in Eq. (19) of I are 

derived from a normal coordinate analysis. Pope's analysis will be usedW' 

The accepted numbering of the normal modes, together with their de

generacies, characteristic energies and symmetries are shown in Table I. 

TABLE I 

NORMAL COORDINATE ENERGIES FOR CHi,. 

Mode 

1 

2 , 

h, 

7, 

3 

5, 

8, 

6 

9 

C h a r a c t e r l S t i c 
E n e r g y ( ev ) 

0 . 3 6 1 

0 . 1 8 8 

0 . 3 7 4 

0 . 1 6 2 

Syimne-
Speci i 

Al 

E 

^2 

F2 

t r y 
s s D e g e n e r a c y 

1 

2 

3 

3 

The present calculations are for neutron energies no higher than O.3O6 ev 

and take k-gT = O.O252 ev. Under these conditions the only energy trans

fers to the vibrational modes which contribute significantly to the ay 

are for single excitations of modes 2, 3̂  7̂  8, 9- Also, the characteristic 

vibrational energies are high enough to permit the use of the approximation 

in Eq. (27) of I. This means that Eq. (25) of I may be approximated by 
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t y - 1 + 2 I 0m(6y2 . 5y3)exp [ - ^ ^ cosh fe] exp [ - | 

- 1̂  0-(5y7 " N8 - 9̂̂ ^^ ('1 }̂ -̂ ^ ( i j ] ^̂  ('iy] 

The use of Pope ' s normal coord ina tes l e ads t o ( £ / 

BH2 + % 3 = 0.2500 ( l - u 2 ) 

^H7 "̂  ^H8 + % 9 = 0.01875 + 0.5746 u^ 

SC2 = 5c3 " ° 

^07 "'' ^c8 + &C9 = 0.01341 

F i n a l l y , t he <CXy>» appear ing i n Eq. (24) of I a r e given by(2^ 

< ^ H > T " ^^ | - E o 0 ( 2 . 2 3 + 2 .37u2) | 

< x g > ^ = exp {-O.IO3EO0} 

W 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The q u a n t i t i e s Q!y, &y^ which r ep l ace tty and &y^ in ob t a in ing the 

K»W. forms of Eqs . (23-25) of I are def ined by Eqs. (28) and (32) of I . 

The CCjj i s ob ta ined r e a d i l y by r ep l ac ing u^ i n Eq. (2) by i t s average 

va lue of —o The aQ and â ^ a re i d e n t i c a l . The use of &ŷ  a l so Impl ies 

the use of Eq. (33) of I for l^r(Syy) • The r e s u l t s for methane are'^—'' 

a m Pn0 = H ~ Mg Po" - 3.2 ^o Poî  (11) 

— m 
«C = M^ Poî  - 1^ Po0 

5jj2 + 6^3 = 0.5000 

(12) 

(13) 

% 7 ' ^H8 - ^ H 9 = 0-6303 ( U ) 
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Sc7 + ^C8 + ^09 = 0-0^°2 (15) 

<y^>-^ = exp / - 3 . O 2 E Q 0 | (16) 

< x o > ^ = < X ° > ^ (17) 

The equation for ty is the same as Eq. (4) except that 2/3 replaces 

the factor 2 and the tty and S are replaced by the tty and 6y^ given in 

Eqs. (11-15). 

The C.A. method was applied only for the case of EQ = O.3O6 ev. In 

this application modes 2, 3> 7> 8, 9 with the lowest characteristic energies 

were treated classically and the others by the K.N. method. 

Using the numbers in Eqs. (13-I5) in Eqs. (42, 43) of I leads to 

MHC = 1-^50 

Mcc = 13.16 

% c = 3o0A-^5O 

"Cc = Po!̂ /i3.l6 

The <Xy >• quant i t ies cal led for in Eq. (46) of I are obtained by sub

t r ac t ing out the contributions of modes 2, 3, 7, 8, 9 to the <CX^>- . 

The numbers in Eqs. (I3-I5) lead to 

< ^ q > r r = exp |-O.839Eo0| (I8) 

^ ' ' c q ^ T " ^"^ |-O.O2OEo0\ (I9) 

2 p 2 ? 
In a l l the calculat ions the quant i t ies Ajj + C^ and Ap + Ĉ  are the 

same as used by Krieger and Nelkin^Z''. 

A^ + c | = 6.53 barns 

A§ + Ĉ  = 0.41 barns 
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2. Propane 

Only the K.N. and C.A. methods are used for propane. All of the 

physical data and most of the computations are from Marshall's work(3^9). 

The Ag + Cg and A§ + C^ are the same as for methane. Marshall computed 

the 27 normal modes using a potential function that gave good agreement 

for all but two observed frequencies. However, there are no experimental 

data for some frequencies including the two lowest which involve mainly 

torsional oscillations of the CHo groups about the symmetry axes for 

these groups. Marshall's work employs values calculated for these 

energies which arise by using a force constant for the torsional 

motion derived assuming a potential barrier against rotation about the 

symmetry axis of a CHo groiip of 3kcal/mol. In writing the K.N. form of 

Eq. (25) of I Marshall included only the terms associated with transfers 

of single quanta of vibrational energy to and from the three lowest energy 

modes. In his work they are denoted by the numbers 9 (0.0455 e'v), 

14 (0.0387 ev) and 27 (O.O343 ev). The approximation of Eq. (33) of I 

was used for all modes except these three. 

In propane two of the hydrogens on each methyl group are equivalent 

as far as neutron scattering is concerned, but the third one is so nearly 

like the others that Marshall treated all methyl hydrogens as equivalent 

using weighted averages of the a-g, 6̂ .̂  etc. Then the equation for the 

partial, differential scattering cross section may be expressed as 

^C3H8 = 6^H1 + 2aH2 + 2â -|̂  + a^^ (20) 

In Eq. (20) subscripts 1 and 2 denote atoms in the methyl and methylene 

groups, respectively. The molecular dimensions, together with quantities 

derived from the normal coordinate analysis yield the following quantities 
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i which a re needed i n t h e K.N. form of Eq. (23) of I 

MHI = 12 .98 ; Mg2 = 12 .73 

< X ^ > ^ = exp /-9.I5 EO0I 

<^2>T = e^ [-6-̂ 8 VJ 

Mci = 24 .03 ; MQ2 = 31-8 

< x O ^ > ^ = exp ^O.466Eo0 

< ^ C 2 > T = exp ^-O.522Eo0| 

6g-j_ g = 0.0612; 5jji^]_i^ = 0.1624; S H 1 , 2 7 = O.I409 

6g2 9 = 0.00929; 5jj2^il| =• 0.00068; S H 2 , 2 7 = 0.0457 

^Cl 9 = 0 .0202; S c i , i 4 = O.OOIO5; &Q-J_ 27 = 0.00142 

SC2,9 = 0 .0108; &c2,l4 = 0.00192; 6|^3 27 = 0.00650 

When the t h r e e low energy modes a re t r e a t e d c l a s s i c a l l y in t h e C.A. 

method t h e r e r e s u l t s 

% i , c - 5 .07 ; MH2^C = 10-29 

<^Hl ,q>T = e^P f ^ - l i M 

< ^ 2 , q > T =exp<r_5.84Eo0| 

Mp̂  ^ - 20.34; MC2,C = 26.84 

<^C2,q>T " """^ 1-0-306 EQ0 | 
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In this approximation the %r and ^Q were put equal to one. 

3. The OH Molecule 

Only the hydrogen is considered to scatter in this molecule and the 

equation for the partial differential scattering cross section is 

^OH = t̂H 
? 2 — — 

The -^ + Cg i s as for methane. The OĤ  ccjj, 5JJT and 85.̂  are given from 

Eqs. (26, 28, 19, 32) of I, respectively, by 

an = Po0 [1 - i| u2]; 

5jj., = j | u2 = 0.9412 u2 

6jĵ  = 0.9412 

< X O > ^ = exp/-|a^ (0.9412 u2)coth(p.,/2)| 

< X ° > ^ = exp |-O.313^(Eo0/ET)coth(p^/2)| 

In this simple example the C.A. equation results in 

Q=Hc = «Hc = ^o^' % c = 1 

<^Hq>T =<'^Hq>T = ^ 

Therefore, the equation for the partial differential scattering cross 

section reduces in the C.A. approximation to that for scattering by 

hydrogen atoms in a monatomic hydrogen gas. 

In the applications several values of E.,- are used so that this 

quantity enters as a parameter in the equations. 
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RESULTS AND DISCUSSION 

A. Comparison of Theory with Experiment for Methane and Propane 

1. Methane 

Fig. 1 compares calculated with measured a(Eo,E,(i) vs. E curves 

for incident neutrons of 0.015 ev and O.IO3 ev scattered at l6.3°. At 

this low scattering angle the conditions of energy and momentum conservation 

dictate that the average energy transferred to the molecule in a collision 

is quite small. The O.OI5 ev neutrons have an energy comparable to the 

spacings of the rotational levels. Hence the quantum nature of the levels 

is expected to influence the scattering of such neutrons, particularly at 

forward angles. The results in Fig. 1 bear this out. Only the Q.M. method 

satisfactorily predicts the profile for the scattering of the O.OI5 ev 

neutrons. The narrowness in the profile is due to the discrete character 

of the rotational levels which results in an inhibition of energy trans

fers to the rotational motion. This effect is revealed more dramatically 

when the partial differential scattering cross section a(Xo,A,,n) with 

respect to neutron wavelength X is presented'it-'. At O.IO3 ev the E.A. 

and K.N. methods give mush better agreement. This is because the neutron 

energy is now high enough so that many possibilities exist for transfers 

of rotational energy and a classical treatment of rotations is more adequate. 

There is a sizeable discrepancy in the peak heights at the 16.3° 

angle. This discrepancy may be due to experimental errors but further 

work is needed to establish its origin. 

Fig. 2 shows the scattering of 0.0252 ev neutrons at the high angle 

of 59-5°. The Q.M. method gives very close agreement and both the K.N. 

and E.A. results are also good. 
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Neutrons of the energies studied here have wavelengths of 0.893> 

1.803 and 2.236A° for the O.IO3, 0.0252, and O.OI5 ev energies, respectively. 

These wavelengths are comparable to the C-H and H-H distances (r,—̂  = 1.09A°, 
On 

rgjj = 1.79A°) and Griffing^i^) finds that scattering by C-H and H-H pairs 

can be significant. Some of his results are included in Figs. 1, 2. 

The C-H contribution is often negative and Griffing's calculations show 

that under some conditions the C-E and H-H contributions nearly cancel. 

However, there are cases where the C-H scattering dominates and amounts 

to as much as 15^ of the direct scattering. 

It can be concluded that at these low energies and temperatures the 

scattering by a semi-rigid molecule with relatively high characteristic 

vibrational energies can be calculated satisfactorily by the Q.M. method 

and, except at forward angles, the K.N. and E.A. methods give good results. 

However, if precise results are required pair scattering must be con

sidered even for hydrocarbons. 

- 184 -



2. Propane 

Figs. 3̂  ^ compare calculated and measured a(Eo, E, |i) vs E profiles 

for propane. The results in Fig. 3 i"©!" scattering by 0.0254 ev neutrons 

show very good agreement for the K.N. method and quite good agreement 

for the C.A. method which treats the three lowest energy vibrations 

(0.0455, 0.0387 and O.O343 ev) classically. 

For the 0.101 ev neutrons Fig. 4 displays good agreement at l6.3° 

by both methods, but considerably worse at 84.7°. Even here, however, 

the C.A. agrees quite well with the more rigorous K.N. 

Factors to be considered in seeking the cause of the discrepancy 

are the contributions from the C-H and H-H pair scattering (not included 

in any of the propane calculations), the error arising from the K.N. 

approximation for averaging over orientation, and errors due to using 

Incorrect normal modes and characteristic frequencies for the two lowest 

frequency vibrations for which lack of experimental data make reliance 

on computed values necessary. 

The contribution of the pair scattering is difficult to assess. 

Examination of Griffing's calctilations(.i£/ for methane shows that there 

these terms contribute the most in the vicintiy of the peak of the 

a(EQ,E,|i) vs E curves and in extreme cases can amount to as much as 

15^ of the direct scattering contribution. However, the amount is 

usually less than this and it is often negative because the C-H scattering 

can make a negative contribution. In propane there are more atom pairs 

to contribute to the indirect scattering, but the pairs occur with dif

ferent distances. This means that if conditions are right for a large 
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scattering at one distance they may be less favorable for another. For 

example, if the C-H pairs on a methyl group scatter strongly the contri

bution from the carbon on one methyl and a hydrogen on the other is 

probably smaller. These facts indicate that the large discrepancy for 

the 84.7° case in Fig. 4 may be due partly to neglect of pair scattering 

in the calculation, but that this is probably not the major reason for 

the difference. 

The K.N. averaging inserts average values of 5yy and a^ into Eq. (24) 

of I and thereby affects all the factors in this equation. Some evaluation 

of this averaging can be made by comparing the E.A. and K.N. results for 

methane. Here the K.N. calculations never give results more than a few 

percent different from the E.A. results near the peaks of the CT(EO,E,|I) 

vs E curves. This is true for scattering of O.306 ev neutrons as shown 

in Fig. 5 as well as for the scattering of lower energy neutrons already 

considered. 

It is not certain that this situation is repeated in propane. For 

one thing the exponents of the <CX§^^ factors are always large in pro

pane because the very low frequency modes have large 6y..j-/E ratios and 

coth (p^/2) factors (see Eq. (22) of l). However, for O.306 ev neutrons 

scattered at 84.7° in methane the exponent in the <^§^]i^ factor is com

parable to what it is for 0.1 ev neutrons scattered at this angle in 

propane. Since in methane the K.N. and E.A. results are fairly close 

it does not seem that the E.A. treatment of the <C!X§!!^ factor in pro

pane would lead to a large change. 
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In support of this is the fact that when the three lowest frequency 

vibrations of propane are treated classically the C.A. calculation for 

the 81)-.7° scattering of 0.1 ev neutrons is not greatly different from 

the full K.W. calculation. However, the C.A. calculation uses exponents 

in the ^ X 2 ^ factors, particularly for the methyl hydrogens, which 

are much smaller than m the K.N. equations. Also, the other factors 

depend on a-a etc. which have magnitudes rather like those in methane 

and are much different from those used in the K.N. calculation. This 

suggests that the C.A. calculations would not change much if exact averages 

were used rather than the Krieger-Nelkin averages. This iiiiplles that 

if the K.N. calculation for the 84.7° scattering of 0.1 ev neutrons 

was low because the averaging was a poor approximation the results would 

be lower than on the C.A. method. However, this is not the case as the 

values are comparable, a res-ult which lends weight to the conclusion that 

K.N. averaging is not at fault. 

While these arguments are not complete proof that causes other 

than K.No averaging are responsible for the discrepancy in Fig. -l+̂ they 

suggest looking for a more plausible explanation. The use of in

correct normal modes and characteristic energies for the two lowest 

frequency modes is a good possibility. The frequencies for these vi

brations are not known from experiment and they, as well as the associated 

normal modes, were obtained from calculations which depend most on the 

value of the force constant for the torsional motion. The assumed value 

was based on a barrier height inhibiting CHo torsional rotations of 

uncertain validityw). A higher barrier would result in higher values 
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of Ey for these modes and lower 5g^ values. Both changes woiild decrease 

the exponents in the <C!X§ ] ^ terms, and that for the methyl hydrogens is 

particularly sensitive to such a change. Reduction in 6jĵ  would raise 

the value of Mg^ in the C.A. method (see Eq. (U3) of l) which would 

increase the a values. A complete study would require recalculating 

the normal modes but a qualitative idea of what would resvilt from an 

increase in E^ values can be gained by assuming the 6jĵ  remain unchanged. 

It is fo\md that then increase of 25^ in the characteristic energy of 

each of these modes would alter the < C ^ 1 ^ factors so that they alone 

woiild cause a 25^ increase in the calculated a(Eo,E,jj) at the peak value 

for 0.1 ev neutrons scattered at 84.7°, and only a 5^ increase for 

0.0254 ev neutrons scattered at this angle. Therefore, it is quite 

possible that an incorrect choice of barrier height is the main cause 

of the discrepancy. 

It would be useful to study the influence of barrier height on the 

slow neutron scattering of ethane. This molecule possesses a single low 

frequency torsional vibration and is simple enough in structure to make 

more detailed calculations, including interference contributions, 

feasible. Such a study amounts to exploring the possibility of using 

slow neutron scattering data to estimate barrier heights. 
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B. Evaluations from Computations on CHĵ  and OH 

1. General Remarks 

The evaluations based on experimental data focus attention on how 

well calculated a(Eo,E,|i) vs E agree with experiment. Available data 

limit these studies to neutron energies EQ below about O.I5 ev and for 

molecules whose E^ values are either all high, or are not all known. 

To study the validity of the computational techniques under a wider 

range of condition the E.A. method is used as a standard against which 

the other techniques are tested. The exception to this is for some cases 

where the approximation in Eq. (27) of I is not valid. There reliance 

has been on the K.N. method because the results on methane (Figs 1,2) 

show that it is a reasonable standard. 

In making these evaluations there always occurs the question as 

to what constitutes "good" agreement. Thus it is generally true that 

the a(Eô E,|i) vs E profile calculated by the C.A. method is shifted 

toward lower E from that obtained on the reference method. There will 

obviously be large differences when an E value is on the slope of one 

a(Eo,E,|j.) vs E curve and near the peak of the other. Therefore, it is 

evident that a comparison of a(Eô E,|j,) vs E profiles is very stringent. 

Reactor calculations generally use integrals of a(Eo,E,|_i) over ranges 

of E and |j, and techniques which give rather different results for 

cT(Eo,E,|a) may give close agreement between the integrated quantities. 

Preliminary calculations of differential scattering cross sections 

0(EO,E) = / cr(Eo,E,|j.)dii bear this out. 

- 189 -



Therefore, in what follows the term "good" and "poor" will be used 

qualitatively but it is felt that when "good" is used the cr(Eo>E,|a) will 

suffice for most reactor physics needs. 

2, Inadequacy of the S.C.T. Method 

Figs. 6,7 compare the K.N., C.A., and S.C.T. calculations on a 

hypothetical OH molecule with EQ = 0.01 ev, Ê- = 0.025 ev, and EQ = 0.20 ev, 

ET = 0.10 ev. 

It is immediately apparent that S.C.T. calc\jlations based on the 

three term expansion in Eq. (40) of I has limited value. While the re

sults for EQ = 0.01 ev are fairly close to the K.N. calculation, they 

are not as good as those given by the simpler C.A. approximation. As EQ 

is increased the S.C.T. method diverges badly, especially at the forward 

angles. Calculations at higher EQ than shoA-m in Figs. 6,7 lead to still 

worse resiilts. 

The main difficiilty is that more than three terms in the S.C.T. 

expansion (Eq. (36) of l) are required for many practical cases. A 

condition for the S.C.T. method to be valid might be that the term 

(5],<Coi,J^>)t3/3: arising when Eq. (36) of I is used in Eq. (l) of 
^ iji 

I should be less than one when the time t is large enough so that the 

factor exp(-ayt /PQ) coming from Eqs. (3a) and (ll) is small. In the 

K.N. approximation this leads to a condition 

" ^ ^ 2 £ ^ f (Mv)3 1 ^ ^ (22) 
15 J ^m ^ 0 ̂  kgT ^̂  -* 

For high values of EQ at forward angles C/EQ is small where â  is largest. 

Then 0 ~ 2(l-|j,) and the criterion in (22) shows that a three term expansion 
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will be poor at forward angles. It will also be poor when p^ » 1 be

cause the left side of Eq. (22) involves the ^-y to the fourth power. 

If enough terms were used in Eqs. (36) and (40) of I, agreement 

could be obtained with the K.N. or E.A. calculations. However, this is 

impractical because the higher terms in Eq. (36) become very complicated. 

Although the C.A. approximation is classical it is not limited by the 

number of terms in an expansion and turns out to be siiperior to the S.C.T. 

method in all cases tried. 

3. Evaluation of the C.A. Approximation 

The a(EQ,E,^) vs E profiles in Figs. 4-10 computed using the C.A. 

method are always displaced toward lower E from the comparison standard. 

The heights are usually low at the forward scattering angles and in fair 

agreement at the larger angles. There is some deviation from this at 

high EQ where the C.A. peaks are sometimes higher at all angles. Pre

liminary claculations of G(EQ,E) VS E curves shows that the C.A. method 

is close to the K.N. in those cases where the latter is expected to be 

valid. 

The C.A. results are especially good when E^ is low (less than 0.1 ev 

in this work). This is shown in Figs. 6, 7 which give results for the 

hypothetical OH molecule, and in Fig. 4 for propane. 

When Ex is raised the C.A. results are less good, but for a given 

E-T the result improves as EQ/ET increases. 

The effect of raising E^ can be seen by comparing the good C.A. and 

K.N. agreement shown in Fig. 4 for 0.1 ev neutrons scattered by propane, 

and the mediocre agreement shown in Fig. 5 for O.306 ev neutrons scattered 

by methane. The vibrations which are treated classically in propane all 
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have Ey < O.O5 ev while those in methane have Ê - = O.I88 ev (modes 2,3) 

and 0.162 ev (modes 7>8,9)• A further example is shown in Figs. (9-IO) 

where increasing the E^ of the OH molecule from 0.25 ev to O.5O ev causes 

a detrimental effect on the C.A. calculation of the scattering of 2.5 ev 

neutrons. 

The effect of raising EQ/EX when ET is fixed is shown iji Figs. 8,9. 

The increase in EQ/EX from 2 to 10 when E = 0.25 ev is accompanied by 

an improvement in the C.A. result. 

Calculations based on the assimiption of harmonic vibrations are of 

questionable validity when EQ is much over 1 ev. This is because the 

vibrational eigenstates can no longer be looked on as equally spaced. 

Rather they begin to converge until they merge into a continuum when the 

dissociation energy is reached. When EQ is large enough so that vibrational 

excitations involve more densly distributed upper states the C.A. method, 

which assumes a continuum at the outset, may be preferable even to the E.A. 

method, and is certainly to be preferred to the K.N.. 

4. Deviation of the K.N. Method at High EQ 

Figo 9 shows that even if the assumption of harmonic vibrations were 

valid the K.N. method is poor when EQ and EQ/EX are both high. For the 

more extreme case considered (EQ = 2.5 ev, E^ = 0.25 ev) it is much worse 

than the C.A. calculations. 

Some calculations have been made for low EQ and E^ low enough so 

EQ/EX is quite large. The CA. and K.N. methods agree well even though 

many terms in Eq. (25) of I are needed. Since calculations have not been 

done by the E.Ao method it is not certain that the C.A. and K.N. results 

are applicable in such situations. 
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DISCUSSION AND CONCLUSION 

The results on methane show that the Q.M. method is rigorous when 

EQ and kgT are much less than any of the Ex- They also show that the 

E.A. method is accurate except in special cases where small momentum and 

energy exchanges take place with a moleciiLe having relatively widely spaced 

rotational energy levels. These methods are too cumbersome for general 

application and mainly serve to evaluate more easily used procedures. 

Of those studied the S.C.T. approach is impractical because acciiracy 

will require using many terms in the expansion upon which the equation is 

based, and the coefficient of all but the first few involve complicated 

algebraic expressions. 

The K.N. method is good for small and intermediate values of EQ. 

Some unreported calculations indicate that it may serve in these cases 

even when EQ/E^ is quite large. However, more needs to be done on this. 

When Ex is in the range of the energies associated with H-C-H and H-O-H 

bending vibrations (about 0.2 ev), or C-H and O-H stretching vibrations 

(about 0.4 ev) in hydrocarbons and water the K.N. method should apply as 

long as EQ IS less than about 1 ev. 

When EQ exceeds 1 ev the C.A. approximation shoiild be preferable to 

the K.N. partly because the K.N. averaging becomes suspect at these high 

EO/EX, but also because the assumption of harmonic vibrations begins to 

lose its validity and the C.A. method, which treats vibrational energy 

states as a continuum, may be closer to reality. If all vibrations are 

treated by the C.A. method for EQ > 1 ev the scattering reduces to that 

for unbound particles. 
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Preliminary calculations of I a(EQ,E,|a)d(i = a(Eo,E) for the 

hypothetical OH molecules show that the C.A. and K.N. res\ilts are quite 

close. For the EQ = 0.01 ev, Ex = 0.025 ev and EQ = 0.2 ev. Ex = 0.1 ev 

cases they agree to within a few percent over most of the E range. For 

Eo = 0.50 ev, Ex = 0.25 ev the deviation, while larger, are not very great. 

For neutron energies above 0.2 ev cr„(EQ,E) approaches a^-a/^o where afg is 

the free atom cross section for the proton. This is just the result re

quired by a calculation based on scattering by free protons at rest. 

In view of these results it appears that the scattering by liquid 

water for neutrons above a few hundreths of an ev could be calculated by 

treating the system as a dense gas and using the K.N. method up to 1 ev 

(possibly less) to calculate the effect of the internal vibrations with 

high Ex" The dense gas model would result from treating degrees of free

dom associated with low energy translational and torsional oscillations 

of the molecules by the C.A. method which is equivalent to regarding them 

as xmrestricted. 

Similarly, it should be possible to calculate the scattering by hydro

carbons of neutrons above about 0.1 ev by treating all interatomic motions 

and low frequency molecular vibrations on the C.A. method, using the K.N. 

method to deal with the relatively high energy H-C-H bending and stretching 

modes. 
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Fig. 1 Partial Differential Scattering Cross Sections 
of methane for low Neutron Energies 
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Fig. 2 Partial Differential Scattering Cross Section 
of Methane for O.IO3 ev Neutrons 

- 196 -



CH^CHgCH^ 
E(,= 0 0254 ev 

84 7 ' 
kT = 0 0252 ev 
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Fig. 3 Partial Differential Scattering Cross Sections 
of Propane for O.O252 ev Neutrons 

3 04 0 08 0 12 0 16 
SCATTERED NEUTRON ENERGY (ev) 

0 04 0 08 012 016 
SCATTERED NEUTRON ENERGY (ev) 

Fig. 4 Partial Differential Scattering Cross Sections 
of Propane for 0.101 ev Neutrons 
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Fig. 6 Calculated Pa r t i a l Differential Scattering Cross Sections 
of a Hypothetical OH Moleciole for 0.01 ev Neutrons 
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Fig. 7 Calculated Partial Differential Scattering Cross Sections 
of a Hypothetical OH Molecule for 0.20 ev Neutrons 
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1. INTRODUCTION 

The numerical stucJy of the Boltzmann equation undertaken 

by standard multigroup methods is based upon knowledge of the 

scattering matrix - the differential scattering cross section as 

a function of energy and angle. Alternatively, the study of the 

Boltzmann equation using orthogonal polynomials requires determi

nation of the "matrix elements of the scattering operator." By 

using these matrix elements, a large class of neutron thermali-

zation problems can be reduced to the numerical solution of a 

set of linear algebraic equations. For the energy variable, the 

associated Laguerre polynomials are chosen, and for the velocity 

variable the Hermite polynomials are the logical choice. The 

matrix elements corresponding to the associated Laguerre poly

nomials can be obtained from energy transfer moments or their 

associated integrals. It is the purpose of this study to obtain 

energi' transfer moments and their associated integrals for the 

crystalline case by using Placzek's mass expansion formalism (jL) . 

In another paper submitted to this conference, Purohit 

and Rajagopal (2) have discussed formal expressions for obtaining 

energy transfer moments and their associated integrals in terms 

of "time integrals" derived from Van Hove's well-known scattering 

formalism. It is shown that these integral quantities can be 
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analytically given for the "general Doppler approxim.ation" case. 

For this approximation, the width function (the mean square dis

placement of scattering atoms in terms of the collision time 

between a neutron and an atom) is of the quadratic form. For a 

scattering medium characterized by vibrational modes, such as 

crystals, the time integrals can be transformed into integrals 

involving the frequency distribution of vibrational modes by 

using mass expansion, or they may be evaluated numerically . 

Kothari and Singwi Q) have reviewed thermal neutron scat

tering in solids by mass and phonon expansions in an excellent 

article. The usefulness of mass expansion in obtaining the total 

neutron scattering cross section (coherent and incoherent), 

demonstrated first by Placzek (1.) , has been further established 

by the recent studies of Marshall and Stuart (4) on polycrystalline 

materials. Nelkin (_5) studied the thermal neutron spectriim in a 

heavy crystal by using the differential scattering cross section 

obtained by retaining only the first term of the mass expansion. 

The phonon expansion is also extensively used in studying thermal 

neutron scattering. The contribution of multiphonon processes, 

as proposed by Sjolander (6̂) and also by Schofield and Hasset {7) , 

is obtained by using the central limit theorem. Parks et.al, (Q) 

have undertaken extensive neutron thermalization studies in 

graphite by using phonon expansion as developed by Parks (8̂) . 
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We extend the application of Placzek's mass expansion to obtain 

integral quantities of interest in the study of neutron thermal-

ization. For a heavy crystal, these results are exact and easy 

to evaluate numerically. 

Once energy transfer moments and their associated integrals 

are determined, the matrix elements of the scattering operator 

corresponding to any set of polynomials in energy can be con

structed. The use of orthogonal polynomials in the study of 

neutron thermalization problems, especially in a heavy gas, is 

very well known. A brief summary of such studies is presented 

below. 

Kottwitz (9̂) studied the problem of neutron flux in two 

media having a temperature discontinuity at the interface, by 

using the heavy gas model. Bailly du Bois, Horowitz, and 

Maurette (10) employed the Hermite polynomials in the study of 

neutron thermalization in a heavy gas and hydrogen. Kazarnovsky 

et. al. (11) used the Laguerre polynomials to study many neutron 

thermalization problems. Hafele and Dresner (12), Michael (13), 

and Virkkunen (14) have also applied these polynomials to spe

cific problems of a heavy gas, and Singwi (15) used them in the 

development of a general theory of diffusion cooling in an arbi

trary moderator. Purohit (16,17) has given a general formalism 

for obtaining eigenvalues associated with a decaying pulse of 
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neutrons in a finite multiplying or nonraultiplying medium and has 

considered its extension to the spatial decay of neutrons in an 

infinite medium. The application of the polynomial method to the 

study of thermal neutron spectrum problem from a slowing-down 

source has been recently proposed by the author (18). 

Schofield (19) has discussed the application of perturbation 

theory to the study of the thermal neutron spectrum, using the 

energy polynomials. Nelkin (20) formulated the variational method 

with the "neutron temperature" as the variational parameter in 

estimating thermalization parameters. Corngold and Zamick (21) 

employed the velocity polynomials as the trial function. Takahashi 

(22) has undertaken studies of time and space dependent neutron 

thermalization by the supervariational method. Selengut (23) has 

discussed applications of the general variational method in the 

study of a large class of neutron thermalization problems. 

All these studies emphasize the importance of matrix ele

ments oi the scattering operator in studying neutron thermalization 

problems. In Appendix I we give expressions for the thermalization 

parameters - the diffusion cooling coefficient, the thermalization 

time constant, the diffusion length, the rethermalization area, 

and the "neutron temperature" - in terms of M„ (second energy 

transfer moment weighted by the Maxwellian distribution). Nelkin 

(20) first introduced M in estimating thermalization parameters by 

the variational method. 
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We obtain analytical results for energy transfer moments 

and their associated integrals for a crystalline scatterer in the 

incoherent approximation. Numerical results for thfe first two 

energy transfer moments for a heavy Debye crystal for various 

values of B/TQ (ratio of Debye to thermodynamic temperatures) are 

presented and discussed. The numerical results of the associated 

integrals for studying neutron thermalization in a heavy Debye 

_e_ 

of any order are given in Table I. 

crystal f — = 3.33) using five associated Laguerre polynomials 

We also discuss the variation of M with the frequency 

distribution of vibrational modes. A comparative study of M2 as 

a function of Q/TQ for Debye and Einstein models and the "Detailed 

Balance Doppler approximation" (2) for a heavy crystal is pre

sented. It indicates that an Einstein temperature Zo= 0.15Q and 

a fictitious Debye temperature 6*- 1.5 9 for the Doppler approx

imation would give the same value of M^ as the exact Debye model 

over a limited range of binding. 

2. MATHEMATICAL DEFINITIONS 

The differential scattering cross section in the incoherent 

approximation is given by the following well-known time inte

gral, fsee Sjolander (§_)j. 
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i 1 "••* 

aM^ = i^(T) J -p[i(E'-E)t-|jT(t)]at (1, 
— eo 

where 

E',E = final and initial energy of scattered neutrons 

M,m = mass of scattering atom and neutron 

K = gain in momentum of scattered neutrons in units 

of ft 

a, = bound atom scattering cross section 

Y(t) = width function - the mean square displacement of 

scattering atoms in terms of collision time be

tween a neutron and an atom 

N = nximber of scattering atoms per c.c. 

For a simple cubic Bravais lattice, Y(t) is given by 

Y(t) = - A + ^^ f<^) ̂ "'^^ (2) 

— 00 
<e?^^»- l) 

f(§)df; is the symmetric frequency distribution of phonons. 

T^ is the thermodynamic temperature measured in Boltzmann con

stant units. The symbol X represents the well-known Debye-Waller 

factor integral. 
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r dgj i s l _ . ^ - 1 
? 

coth -T—- df 
2T« -

(3) I 
The kth energy transfer moment A, (E) is obtained by inte-

2 
grating the differential scattering cross section d E/dfldE' over 

all angles and final energy. 

Aĵ (E) 
2 

^ - ^ (E'-E)^ dE'dn dOdE 
(4) 

0 0 

vJe define mathematically the matrix elements of the scat

tering operator that correspond to the associated Laguerre 

polynomials of order a, as follows: 

00 00 

.a , E 
mn J m TQ J 

M(E,Tji:^(E - - E O L ^ (—•)dE'dE 
s n J.Q 

0 (5) 

^m <^^^n (^)^3(^^^^^'^o) dE 

0 

where 

= mth and nth associated Laguerre 

polynomials of order a and argument 

if-) 
M(E,TQ) = Maxwellian distribution of neutrons of 

energy E at thermodynamic temperature TQ 
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I Z (E-*E') = partial scattering cross section 

obtained from eq. (1) by integrating 

over all angles 

The matrix elements F are obtained from the Boltzmann 
mn 

equation, when the energy part of the neutron flux is expanded 

in a complete set of associated Laguerre polynomials of order a 

and argument (E/TQ). By using the Detailed Balance theorem and 

the series representation of Laguerre polynomials in powers of 

E/TO, F is transformed into 
mn 

F mn /,m+a^ ,n+a 

m n r 

L CqTAm-aJ i L L K T^) \rl) 
( ^ ) ( ^ ) q= l r = l k = l 

(6) 

Vn-rJ W \?q+r -k J J ~J 
^ (a+1) 

The determination of the matrix elements F is thus re-
mn 

duced to the evaluation of a series of integrals of the M^ type 
k, p 

We define i% as the associated integral: 

M^ = J E^ M(E,To)Aj^(E)dE (7) 
0 

In Appendix II we give expressions for matrix elements up to F 

in terms of M, . Relations between M, with odd values of k 
k,p k,p 
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obtained using the Detailed Balance theorem are also given. 

Purohit and Rajagopal (2) evaluated A^(E) and R for the 

general Doppler approximation case. The width function Y(t) for 

this approximation is of the following form: 

Y(t) = ci^t^ + bit - a (8) 

In the next section we treat the crystalline case by using 

Placzek's mass expansion formalism. 

3. THE CRYSTALLINE CASE (PLACZEK'S MASS EXPANSION) 

In Placzek's mass expansion (1^), the factor exp —: yCt) 

in eq. (1) is expanded in powers of m/M (the ratio of neutron mass 

to scattering atom mass). This expansion transforms the dif

ferential scattering cross section into an infinite series of 

powers of m/M. The kth energy transfer moment is obtained from 

eq. (4) by integrating over-all energies and all angles. 

Na, «> n - ^ , ̂  ^n-l 

n=l ^=1 

\<E) = -^ I (jj (j^) { I ^̂ _̂ j ,̂ , 

I +CO z^f(? )F(E,z) 

-" Z^ie "• - 1) 

212 

(9) 
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where r(E,z) and z are given by 

F(E,Z) =. ( ̂  + /Sy"*^ - ( ^ - /EJ"*- (10) 

i=l 

To obtain the associated integral R , we transform the 
K , p 

integral representation of R given by eq, (7), by using the 
K , p 

differentiation technique 

T^ d- - , „ T 
(12) 

'̂  T ' 0 T '=T 

The integral in the above expression is evaluated by using 

the following result for the Laplace transform Erdelyi (2̂ 4) 

^ 2n+2 2n+2 
exp - ;p -[ (̂ ^̂ +z + /E) - (̂ ŷ T̂  - /E) } dE 

n+1 
2''"'^(n+l)T'(|) exp (^) K^^j^ (^,) . (13) 

The pch differentiation with respect to (—7) is obtained 

by using the Tollowing recurrence relations for the modified 

Bessel functions of the second kind, K (y), according to 

Watson (2_5) 
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•'n.l'^' 
2 (n+1) 

(14) 

K , (y) + K fy) = - 2K' (y) 
n-1 -' n+1 n -̂  

(15) 

The final result for M, is as follows k,p 

\ , 

Na 

p " "ir'c 
n n n-^ 

I L ^M' L (n-t) \l\ 
n=l -1=1 

i +00 f(?.)7>''"''^Y (§,TJ 
n 

i=i " 
?./T, d?. 

?̂ (e - 1) 

(16) 

Y (2,To) is given by 

Y^(z,T ) 
p o = '1' - P '̂ ' [ I I <S> <r' <-^' 

p+s 

s=0 r=0 

n+l-s+2r 

2® (n+1) 
K r - ^ ^ 1 
n+l-s+2r ^2To^ J 

(17) 

It is easy to establish that M^ with odd values of k are 

zero. This is consistent with the Detailed Balance theorem. 

R with odd values of k can be transformed into M, with even 
> , p Tc, p 

values of k by using the Detailed Balance theorem to minimise 

2 111 

J 



i 

J 

numerical work. See Appendix II. 

4. THE HEAVY CRYSTAL 

The analytical results given in section 3 for an arbitrary 

mass reduce to simple expressions involving single integrals, 

if only the first term of Placzek's mass e>:pansion is retained. 

This is the heavy crystal case. 

4.1 The Energy Transfer Moments. 

The kth energy transfer moment is given by 

CT, miN _ K — ! _ , _ » /^_ ^\ #_ „N 

For the Debye frequency distribution of phonons, where 

3?^ f(5)d§ = - ^ d§, A, (E) reduces to 

3a m N +e 1/2 

. (E) - — f r ^2E+^ME^^) d§ (19) 
^ ME^/^e^ , ,, (e^/- - 1) ' 

max(-e,-E) 

0 is the Debye temperature in Boltzmann constant units. 

For neutron energies lower than the Debye temperatur.e, the lower 

limit of the integral is equal to -E. A^(E) for such energies 

is obtained by numerical integration. However, for neutron 

energies greater than the Debye temperature, A. (E) is given by 
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a rapidly convergent series in powers of 0/2E. 

A^(E) 
3CT TQ ra N 

t^ M 

n-1 
V ^ n " 1.1.3. . . (2n-5) (3-n) _9_ 

n=3 
k+n+1 

(20) 

i 

and 

k+p 

+1 

-1 
e^/^-1 

<a§ (21) 

The integrals § are essentially Placzek's integrals {26) 

for the moments of frequency distribution. These integrals are 

characterized by the binding parameter t equal to T Q / S . For very 

large neutron energies compared to the Debye temperature, the 

first two terms of the above series are sufficient. The asymptotic 

expression for the first energy transfer moment is given by 

Aĵ (E) = 
M 

2T r — 
L T 

elf 
o 

E (22) 

which reduces to the free particle value for neutron energy 

greater than 2T _.. Conventionally, T ._ is defined as 
^ eff eff 

T eff = 1 % f(?)coth 
2Tr 

d§ (23) 

0 
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i In terms of the $_ integral, 

eff 
il ̂ 3<^> (24) 

In the weak binding limit, the first two energy transfer 

moments are 

A^(E) = 
2a m N 
b 
M [̂-= (̂  - -h ) - E -

20T, 
40 E J 

2 
2a, m N .̂ 2 ^ ' 2 . ^ ^ ' ^ , 

A.(E) = - V - [2ET. (l . --^) - ̂ ^ ' 
o -. 

M 20Tr 20 E 

(25) 

(26) 

J 

These expressions reduce to the heavy gas moments for the Debye 

temperature (9) equnl to zero. 

In Figs. 1 and 2, we plot the first energy transfer moment 

as a function of energy for values of TQ/S equal to «>, 0.76, 

0.3, 0.25 and 0.10. For energies smaller than the Debye temper

ature, we note that the magnitude of gain in neutron energy 

decreases v;ith the increase in binding. Over a large range of 

energy, this gain in neutron energy is constant. At very low 

energies, the gain in neutron energy for the crystalline case 

increases rapidly. As shown in Fig. 1, the first moment is zero 

at neutron energies equal to 2To, 2.1Tp, 2.79Te, 2.95To and 3.48To 

for TQ/S equal to », 0.76/ 0.3, 0.25 and 0.10, respectively. The 
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values of T _^ for the last four cases are equal to 1.0795To» 
eff 

1.4944To, 1.6817Tp, and 3.7694To. It should be noted that the 

deviation between 2T ^^ and the neutron energy for which the 

first energy transfer moment is zero increases with the increase 

in binding. For energies greater than the Debye temperature, the 

first moment decreases linearly and approaches the asymptotic 

value given by eq. (22) as shown in Fig. 2. However, it is 

evident that the asymptotic value is reached at a lower energy 

for the small binding case. 

In Fig. 3, we plot the second energy transfer moment. At 

very low energies, it increases with the decrease in neutron 

energy. As the neutron energy is increased, the second moment 

becomes constant over a wide range of energy, and this range 

increases with the increase in binding. At high neutron energies, 

the second energy transfer moment increases rapidly and can be 

given by the first two terms of eq. (20). It should, however, 

be noted that the second energy transfer moment does not approach 

2 m 2 

the free particle value, which is proportional to E (*-) . Accord

ing to eq. (20) this term is absent in the heavy mass case. 

4,2 The Associated Integral - M. 
K , p 

Retaining the first term in eq. (16), we get the following 

result for M, 
k,p 

- 218 -



1 P s Na m p+s 

sr-.o r=0 

- *(?)!''*\.,«,(if7) 
Sinh -r±-2To 

d§ (27) 

i 

For the heavy gas case, only M and M contribute, since 
1, p 2 , p 

the higher energy transfer moments are zero. 

^l,p = " 2aĵ  S P(P+1)I To^^'^N (28) 

^2,p = ^^b 1 ^'^'-^^' '^0^^^^ ^2^^ 

M is equal to zero for k greater than two. 

The integrals given in eq. (27) can be analytically eval

uated for the Einstein crystal, since the frequency distribution 

of phonons is just the Dirac delta function 6(?-?o)' 

In Table I we give numerical values of M, foz- various 

values of k and p for the heavy Debye crystal with the ratio of 

the thermodynamic temperature to the Debye temperature equal to 

0.3. This corresponds to the beryllium case with the Debye 

temperature equal to 1000°K and the thermodynamic temperature 

equal to 300°K. These results are sufficient to construct a 5x5 
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matrix of F , corresponding to five associated Laguerre poly

nomials of any order. 

The well-known thermalization parameter M introduced by 

Nelkin (20) is the associated integral M^ ̂ . w7e discuss it in 

detail in the next section. 

4.3 The Thermalization Parameter M or M . 
i. t.f 0. 

The expression for M obtained from eq. (26) is as follows 

Nam ^ *«15S'i§7' 

"2,o = i5fr J ~ — E — " " 5 • "°' 

In the weak binding limit, by using the following values 

F F 
of K (•::3~) '̂ nd sinh — 7 - for s.Tiall values of n ^2To' • 2T3 2To 

^ ^ = 1 /-L -n 
\ 'I?:' = 2 <3t' '•(n) "1> 

and 

sinh -r^ = r ^ (3 2) 
2To 2To 

8 a, mNTo "^ 
we obtain the heavy gas result for M ^ equal to — . 

Nelkin (20) gave a curve for M^ versus G/TQ between zero 

and six for the Debye model. In Fig. 4 we extend tliis result 

to G/TQ equal to 10. The evaluation of a single integral is 

sufficient to obtain M , without the numerical integration of the 

double integral as given by Nelkin. 
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I We also plot M in Fig. 4 for the Einstein model and for 

the Debye model in the Detailed Balanced Doppler approximation 

(2_) according to the following expressions 

^^b"^ ^° ^2^1?7> ^. ^ . (33) 

^,0 = i ^ ^ — I T ' - ' -
2To 

§Q = Einstein temperature in Boltzmann constant 

units 

2 

M^ ^ = 12Na, -m ^° 
2,0 b M t 

i^(2t) - ^^(t) Ref. (2) 

(34) 

i 

Comparison of these curves yields the following observations: 

(1) The value of M obtained by using the Debye model 

can be given by an Einstein model by assuming the Einstein 

temperature §o to be = 0.759 over a limited range of binding. 

(2) Over almost the same range, the Detailed Balance 

Doppler approximation also gives the same value of M as the 

exact Debye model, provided an effective Debye temperature 

9* Z 1.59 is used. 

The range over which the above statements hold good is apparent 

from F i g . 4 . 
M T 

2 eff In F i g . 5 we p l o t r— v e r s u s {—— - 1) for t h e 
8Na,To S 0 

b ° M 
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T 
eff 

Einstein and Debye models. In Table II we give ~ — for these 

models. From these results, it is evident that the variation of 

M is not strongly dependent upon the detailed knowledge of the 

frequency distribution of phonons for binding corresponding to 

~ - 4 . 0 . 
•••0 

It is interesting to note that two important moderators, 

beryllium and beryllium-oxide, are covered in this binding range 

at room temperature. Beryllium and beryllium-oxide have Debye 

temperatures of 1000°K and 1200°K, and Einstein temperatures of 

740°K and 900°K, respectively. Taking thermodynamic tempera-

tures equal to 300° K, r in both models (Einstein and 
b ° M 

Debye) is equal to 0.585 for beryllium and 0.47 for beryllium-oxide 

The fictitious Debye temperatures for beryllium and beryllium-oxide 

to be used in the Doppler approximation calculations may be taken 

to be 1500°K and 1800°K, respectively. 

The Einstein model and the Doppler approximation can be 

applied to correct the results obtained from the heavy crystal 

case due to higher terms in the mass expansion. The value of M 

decreases by 28% for beryllium, and by 20% for beryllium-oxide 

when estimated by using the Einstein model and terms up to 
3 

("-) in Placzek's mass expansion. When the Doppler approximation 

is used, corrections for beryllium and beryllium-oxide are about 

22% and 14% respectively. It should be pointed out that these 
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corrections are very large and therefore cannot be neglected in 

the estimation of M for beryllium and even for beryllium-oxide, 

5. CONCLUSIONS 

We have demonstrated in this paper the usefulness of Placzek 

mass expansion in obtaining energy transfer moments, associated 

integrals, and the matrix elements of the scattering operator 

corresponding to a set of polynomials of energy variables. For 

a heavy crystal, these quantities are given by single integrals 

involving the frequency distribution of vibrational modes, which 

can be easily evaluated. The importance of the first few energy 

transfer mom.ents is evident if the integral scattering operator 

is replaced by a differential operator. The detailed discussion 

of the first energy transfer moment for a heavy Debye crystal 

indicates that the gain in neutron energy decreases as the 

binding increases but takes place over a large range of energy. 

At higii energies, the loss of energy takes place linearly, and 

the deviation from the free particle value is governed by the 

effective temperature corresponding to that binding. 

A detailed comparative study of M indicates that the 

variation of M with the frequency distribution of vibrational 

,, , . ,. 9 (Dabye) ^. 
modes is insensitive over the binding range -—rrr ^r :—\ =̂ 4 . To(Thermodynamic) 

A correctly chosen binding parameter would give the same value 
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of M . To obtain the same results with the Einstein model as 

the Debye model, an Einstein temperature §o =0.750 should be 

chosen. Similarly, the Detailed Balance Doppler approximation 

gives the same value of M as the exact Debye model, provided 

an effective Debye temperature 9* ~ 1.59 is used. These obser

vations should prove useful in evaluating the contribution of 

higher terms in Placzek's expansion and even in the determination 

of integral quantities for moderators like beryllium and beryl

lium-oxide. 
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TABLE I 

ASSOCIATED INTEGRALS R FOR A HEAVY DEBYE CRYSTAL 
\ . 

To gk+pfr2 
= 0 . 3 IN UNITS OF 3a, 

9 ' -^ -- - b M 2 

PV 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

0 

- 6 . 2 7 7 x l 0 ~ ^ 

- 1 .312x10"^ 

- 2 .608xlO~^ 

- 5 . 5 6 3 x l 0 " ^ 

- 1.293xl0~' ' ' 

- 3.400X10"' ' ' 

- 9.703xlO~"'' 

- 3 .043 

- 1 0 . 3 9 8 

2 

1 .247x10"" 

1.310x10"'" 

1 .850x10"^ 

3 . 1 4 4 x 1 0 " " 

6 . 1 9 0 x l 0 ~ ^ 

1.380xl0~"' ' 

3.502x10""'" 

0.790x10"' '" 

3 .022 

_ 

3 

0 

- 3 . 3 7 6 x 1 0 " ^ 

- 7 . 2 6 0 x 1 0 " ^ 

- 1 . 4 7 3 x l 0 ~ ^ 

- 3 . 1 8 5 x 1 0 " ^ 

- 7 . 4 7 8 x 1 0 " ^ 

-1.980x10""'" 

-7.023x10""'" 

-

^^ 

4 

6 . 6 7 4 x l 0 ~ ^ 

7 .238x10"^ 

1 .057x10"^ 

1 . 8 4 1 x l 0 " ^ 

3 . 6 8 8 x 1 0 " ^ 

8 .309x10"^ 

2 . 1 2 9 x l 0 ~ -

-

-

_ 

-2. 

- 4 . 

- 1 . 

- 2 , 

- 5 . 

5 

0 

.211x10" 

.915x10" 

.014x10" 

,200x10" 

,228x10" 

-

-

-

mm. 

-3 

-3 

-2 

-2 

-2 
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TABLE I I 

EFFECTIVE TEMPERATURE 

D e b y e Mode l E i n s t e i n Mode l 

e f f e f f 
o/r 

0 

0.40 

0.50 

0.667 

1.000 

1.667 

2.000 

2.500 

3.333 

4.000 

5.000 

6.000 

6.667 

8.000 

10.000 

1-0 

1.0 

1.00793 

1.01246 

1.02211 

1.04946 

1.13453 

1.19113 

1.29165 

1.49441 

1.68174 

1.99259 

2.34027 

2.559 

3.038 

3.76935 

To 

0 

0.40 

0.80 

1.60 

2.00 

2.40 

2.80 

3.20 

3.60 

4.0 

4.8 

6.0 

7.0 

8.0 

10.0 

To 

1.00 

1.013 

1.0528 

1.2048 

1.3130 

1.4394 

1.58129 

1.73598 

1.90113 

2.0746 

2.43983 

3.0149 

3.5064 

4.003 

5.00 
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i APPENDIX I - THERR^LIZATION PARAMETERS (ISz-L^) 

By expanding the energy part of the neutron flux in the 

Boltzmann equation in a set of orthogonal polynomials (associated 

Laguerre), three specific problems of neutron thermalization can 

be studied. 

1) The decay of a pulse of neutrons in a finite 

or infinite moderator. 

2) The spatial decay of neutrons in an infinite 

medium. 

3) The thermal neutron spectrum in an infinite 

medium from a slowing down source. 

The neutron flux $(E,r,t) as a function of energy (E), 

space (r) and time (t) variables is expanded as follows: 

p i n=0 

(Time dependent) (1) 

- ^ , r _ 
ME.r) =le ' I a^.L^(^)M(E,T„) 

•0 

~ (Space dependent) (2) 

J 
V I E $ (E) = ) a L (r—)M(E,To) (Thermal neutron spectrum) (3) 

1,E 
a i 
n 

n=0 
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We give below the expressions for the following thermal

ization parameters - the diffusion cooling coefficient (ĉ )» the 

thermalization time constant (t , ) , the diffusion length (L ), 

2 
the rethermalization area (L,) and the "neutron temperature" T • 

1 n 
The parameters c and t occur in the pulsed neutron problem; 

2 
L and L are obtained from the zeroth and first eigenvalues 

associated with the spatial decay of neutrons. The "neutron 

temperature" T may be considered as a measure of the displace

ment of thermal neutron spectrum peak due to absorption. 

1. Diffusion cooling coefficient (c ) (16) 

3 D VTT 

2,0 

using two polynomials where 

^01 = J 
LQ^ if-) L^\l^) D(E) M(E,To)dE . 

0 

2. Thermalization time constant (t̂ , ) (16) 
th ^— 

F F 2 F I — 1 
3/7r r , , _22v r , , _22, ^ 12 1? n ,_. 

^^ ^2,0 ^ ^11 ^ ^11 F^^^-" -' 

using three polynomials. 

See Appendix I I . F i s corresponding to a equal to f 
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I 3. Diffusion length (L ) {llj 

For 1/v absorption lav7 and the constant diffusion coeffi

cient, in L approximation 

•^ = C:i) [ -
A /TT §5: 

sO 
16 M 

0 00 
2,0 

(6) 

2 
4. Rethermalization area (L. ) (12) 

2 V ,2 y A /TT L 

M 
2,0 7/7r A -/r A §Z 

sO 
A /TT L 4§E 

00 sO 64 128M 2,0 
(7) 

where 

4E E 

5. "Neutron temperature" T or ratio a /a {!§) 

J 

In L approximation, the ratio of coefficients a /a is 
T -Tg 

equal to - /2 T—r;—j, if the neutron flux is given by M(E,T ) 

with T as the neutron temperature. For 1/v absorption law. 
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T -T. n ^ 
a-i] 

ii 3 ^-^^^^.0 
2S^ •'' 4 "̂  A?z: 
0 so 

a^/2 
I 

S(E) is the slowing down source. 

[s(E) (^)aE = / 

APPENDIX II - MATRIX ELEMENTS AND ASSOCIATED INTEGRALS 

1. Associated integrals R 
k , • 

By using the Detailed Balance theorem,M^ with odd values 

of k are transformed into M, with even values of k. 
K , p 

\ , 0 

\ , 1 

\ , 3 

^ , 4 

\ . 5 

= 0 

\ + l , 0 

\ + l , l 

3 1 
2 \ + l , 2 •*" 4 \ + 3 , 0 

^ \ + l , 3 "̂  \ + 3 , l 

• \ + 5 , 0 ^ 5 \ + 3 , 2 - ^ \ + l , 4 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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I 2. Matrix elements F 
m,n 

F^ = F - = 0 
On nO For a l l n (1) 

M 
2x0. 

^'^ 2 [(^^ 
(2) 

F = F 
2 , 1 1 , 2 

.a. 
](a+2) |(a+3) 

1 /2 [-
' " - ^ ^ ' " 2 . 0 " 2 . 1 

+ (3) 

2 , 2 
!(a+3) 

( a+2) M 

T - ^ * <°^2'"2,l 
M M 

2 , 2 4 , 0 
8 

(4) 

p = p = ZL 
3 , 1 1 , 3 ^A I / , .ox I/-. , ^ v ' \ l / 2 (4 |(a+2) |(a+4)J) 

( a+3) (a+2)M 
2 , 0 

- ( a+3)M 
2 . 1 

M„ „ M, 
. _ 2 t l _ -4*0 ] 

2 12 J 
(5) 

^ ^12 
3,2 2,3 r n r r r r \7Z7r^^/2 (R^TIf l(a+3 J 

( a+3) ( a+2) M 
2 ,0 

3 ( a + 3 ) M 2 , 2 (a+3) + ( a+2) M M 
+ *— - *— + —'— 

4 4 ^ 4 

3 (a+3) + ( a+2) M ^ -
, ±JJl _ ...Tl.-': 

24 6 J 
(6) 

3,3 

(a+3) ^ (a+2) ^M^ ^ ( a+3) ^ (a+2) M 
2,0 

8 + 
ILI (7) 

(a+4) 
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Eq. (7) continued 4 
(a+3) (3a+8)M^ ^ (a+3)M^ _ M 

2,2 2,3 
4 

2uA 
8 

(a+3)(4a+ll)M^^Q (â -3)M̂ ĵ̂  M ^ 

24 ' 3 "̂  6 

5 M. 
6,0 
144 

Note: 1 , V represents r, s 
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ABSTRACT 

A general mathematical formalism for the energy transfer moments 

and their associated integrals, useful in the study of neutron thermalization, 

is presented. This formalism has been employed to obtain these quantities 

for the "general Doppler approximation" case, which represents a large 

number of approximations that belong to the Doppler class. An exact formula 

for M (the second energy transfer moment weighted by the Maxwellian dis -

tribution) is given in terms of binding parameters for the general Doppler 

case. A new, useful Doppler approximation, which satisfies the Detailed 

Balance theorem and is based upon the Debye-Waller factor and the specific 

heat integral, is also formulated. A comparative study has been undertaken 

of this and three other previously known Doppler cases (the monatomic gas 

model, the effective temperature, and the Krieger-Nelkin approximations 

for rotating molecules) in terms of the validity of the Detailed Balance theo

rem and the asymptotic scattering behavior. Numerical results based upon 

the Debye frequency distribution of vibrational modes in the Doppler approxi

mation are presented. 
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1. INTRODUCTION 

We present an analytical study of thermal neutron scattering in the 

Doppler approximation, which is generalized in this paper. The mean 

square displacement of scattering atoms in the "general Doppler approxi

mation" is ejqpreased quadratically in terms of the collision time between 

a neutron and an atom. With the help of Van Hove's scattering formalism (1) 

the energy transfer moments and their associated integrals useful in the 

study of neutron thermalization are determined. 

A new approximation tliat belongs to the Doppler class and is useful 

for studying thermal neutron scattering is formulated. Since the scattering 

law in this approximation satisfies the Detailed Balance theorem, we term 

it the "Detailed Balanced Doppler approximation." It is based upon two inte

gral physical parameters — the Debye-Waller factor and the specific heat 

integral. The former is given by the zero point mean square displacement 

of scattering atoms and the latter by the second moment of the frequency 

distribution of vibrational modes in the scattering system. The neutron or 

x-ray scattering data give the Debye-Waller factor, and the specific heat ex

periments give the specific heat integral. 

Three other cases, well known in the literature, also belong to the 

Doppler class: the monatomic gas model, the effective temperature or T .. 
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aj^roximaticm based upon Lamb's paper (2), and the Krieger-Nelkin ap

proximation (3) for rotating molecules. A comparative study of these four 

Dc^pler cases from the standpoint of the Detailed Balance theorem and the 

asymptotic scattering behavior has been undertaken. 

In a previous paper, Purohit (4) has shown the importance of energy 

transfer moments and their associated integrals in the study of time-depen

dent neutron thermalization. By using the same formalism, the usefulness 

of these quantities in space-dependent (5) and thermal neutron spectrum 

problems can be demonstrated. This formalism is based upon expanding 

the energy part of the neutron flux in the Boltzmann equation in a complete 

set of associated Laguerre polynomials of order one. In another paper sub

mitted to this by Purohit (3̂  expressions for thermalizati(»i parameters (the 

thermalization time constant, the diffusion cooling coefficient, the dlffusicm 

length, the rethermalization area and the 'Wutron temperature") are given 

in terms of M2 (the second energy transfer moment weighted by the Max

wellian distributionl Nelkin (6) first pointed out the importance of Mn 

in estiTTuting thermalization parameters, using the variational method based 

upon the neutron temperature concept. Recently, Selengut (7) has stressed 

its importance in a large class of neutron thermalization problems, using 

the general variational method. In this paper, we give analytical expressions 

for M2 and other associated integrals for the "general Dealer approximation 

in terms of binding parameters. 
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Numerical results for M2 for various masses and for the incoherent 

scattering cross section of beryllium in the Doppler approximation are 

also given. 

2. THE GENERAL FORMALISM 

The differential scattering cross section in Van Hove's scattering 

formalism (1) is expressed by the double Fourier transform with respect 

to space and time of the correlation function. In the absence of Interference, 

this function is given by the self correlatiwi function Gg(r ,t). Classically, 

G_(r ,t) defines the probability of finding a particle at position r at time t, 

when at time t equal to zero, the particle was at the origin. If the spatial 

variatitMi of Gg(r ,t) is assumed to be given by the Gaussian distributicm with 

the width y(t), then the differential scattering cross section can be expressed 

as follows: 

'O -oc 

where 

a = bound atom scattering cross section, 

R%k = final and initial momentum wave vectors of scattered neutrons 

in units of TV 

m,M = mass of neutron and scattering particle respectively, 

E',E = final and initial energy of scattered neutrons, 
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y(t) = width function in terms of collision time t between the neutron 

and the scattering particle. 

The above expression holds rigorously for crystals and gases. For 

liquids, it is valid only if Gg(r ,t) can be represented by the Gaussian spatial 

distribution at all collision times. As discussed by Vine3rard (8), the Gaus

sian representation is valid for short and long collision times. At short 

times, the behavior of atoms can be represented by a gas, and at Icmg times, 

it can be given by the diffusing type behavior. If the results obtained in this 

study are applied to liquids, then it must be assumed that the Gaussian rep

resentation is valid at intermediate collision times as well. 

We introduce two integral quantities, A (E), the k^ energy transfer 

moment, and the associated integral M . The latter is obtained from the 
ic,p 

k̂ h energy transfer moment by multiplying with the Maxwellian distribution 

and E and integrating over energy. Mathematically these integrals are ex

pressed in the following manner: 

In the above equation, T is the thermodynamic temperature of the 

system. The associated integrals M are very useful in the study of 
k,p 
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neutron thermalization. The relation between M, and F (the matrix 
k,p m,n 

elements of the scattering operator) introduced in the study of time and 

space dependent neutron thermalization is given in reference (5). By 

putting k equal to two and p equal to zero, M reduces to the thermaliza-
k,p 

tion parameter M . 

The three quantities defined by Eqs. (1), (2), and (3) depend upon the 

knowledge of the width function y(t). This is determined by the dynamics 

of atomic motion. For a simple cubic Bravais lattice, y(t) is very well 

known. See Kothari and Singwi (9) and also SjtJlander (10). 

y(t) = - / ^ coth r | d | + / [coth ^ c o s It 
o o 

+ i s i n n ] ^ d | . (4) 

Alternatively, we can also write 

«0 

^t\ f '^^^n«»h ^ Af^ r f/.xCOS g(t-i/2T) 
Yii) = - j^ — coth 2T d« * Ĵ  iiO ^ 3 1 ^ ^/2T <»« 

(5) 

f(|)d| is the frequency distribution of vibrational modes. The two 

above expression for ><t) are identical, if retained intact. However, if ^(t) 

is expressed in powers of t and (t-i/2T) and a finite number of terms are 

retained, then the two expansions are not equivalent. The expansion of yit) 

in powers of (t-i/2T) according to Eq. (5) satisfies the Detailed Balance 
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theorem, but does not give correct high energy scattering cross section. 

Conversely, the expansicm in t makes y(t) violate the Detailed Balance 

theorem, but gives the correct asymptotic scattering cross section. 

The validity of the Detailed Balance theorem demands that yit) and 

yi-t+i/T) be equal. This follows from the well-known property of "imagi

nary time translational invariance" used extensively in statistical mechan

ics. The expansion of y(t) in powers of (t-i/2T) does not violate this in

variance, but the expansion in t does. 

It is also very well known that the asymptotic scattering behavior is 

governed by the zeroth moment and the first moment theorems for the 

scattering law, as given by Placzek (11). It is easy to show that the scat

tering law obtained from the t expansion satisfies these theorems, but the 

(t-i/2T) e:q)ansion does not give correct results. 

Several authors discussed various time expansions at the Vienna con

ference on the inelastic scattering of neutrons in solids and liquids; see 
2 

Nelkin, Egelstaff, and Schofield (12). Egelstaff proposed the (t +it) vari

able time expansion. The application of this eiqiansion in the determination 

of neutron scattering law has been investigated by Schofield. Recently, 

Egelstaff and Schofield (13) have studied the scattering law by using the 

steepest descent method. 
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Let us substitute T for (t-i/2T). The differential scattering cross 

section in r-notation is given by 

d g _ b . [ 

dS^dE' '̂  4ir T s t = "i <Trf̂ '" «^ l(E'-S)(r.̂ ) . |-v(r.A.)dx] (6) 
O - 0 0 

also 

'̂ •-̂ '' diar - ̂ 'f;' ;r ({J^'" ''̂  "̂ '•̂ ""'" 
K^ , i 
2^><^*2T ^ dT]^i/2T (7) 

The differentiaticHi technique to obtain energy transfer moments is 

widely used in the literature. We integrate Eq. (7) over all angles and final 

energy. The eiqiression for A (E) reduces to the k*̂  differentiation of a 

single T-integral. The intermediate steps are omitted here. 

v2 
E(Tf7?) 

A, (E) = 
.^b r, d .k r PJT.v) ^_ , fQ. 

l̂ vv., - - ^ - x [ ( g - ) j ^—72 dT] (8) 
^ AlTti^^-n . « [p(T,T7)r^ 77=i/2T 

Similarly, for M, by interchanging the order of T and E Integra-k,p 

tions and introducing differentiation technique, we obtain 

ff, . . . +« 
M, 

'b . . d .p r . d .k /• d r 

^ (9) 
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I p{T,rj) appearing in the above equations are given in terms of the width func

tion. 

TYl 1 

piT,v) = -[i(T + 77) + ^ y ( T + 2f)] • (10) 

We define r-integrals appearing in Eqs. (8) and (9) by functions F(E,T7) and 

G(T7,T') respectively. 

E(T-fT7)^ 
+«e exp — F ( E , , ) . - ^ / efe!) 

4/jrE -00 [p(T,n)] 
3/2 

dT (11) 

+ 0C 
dT 

° < ' ^ ' - ' " - / ,p(r.tf , ,2,3/2 » ^ ' 
- * [ ^ y / + ( T+ Tj) ] ' 

These functi(»is constitute generating functions for determining A (E) 

and M . The technique of generating function was first introduced to us 
K,p 

by N. Corngold in connection with the evaluaticm of M for the gas case. 

We have extended the use of generating function to A (E) and M type inte-
K K,p 

grals. 

It has not been found possible to evaluate F(E,77) and G(T7,T') by using 

the width function as given by Eq. (4) or (5). These integrals can be exactly 

evaluated for y(t) of the followii^ form: 

y(t) = ci^t^ + bit - a . (13) 
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The representation of y(t) by the above expression is termed the 

"general Doppler approximation." Four Doppler cases (the monatomic 

gas model and the T^jj (2), Krieger-Nelkin (3), and Detailed Balanced 

Dc^pler approximations) can be represented by the above form of the 

width function. In Table I we give expressions for a, b, and c for four 

Doppler cases in terms of specific physical parameters. The validity of 

the Detailed Balance theorem requires bT to be equal to c. This follows 

from Eq. (13) by using the equality between y(t) and y(-t+i/T). To satisfy 

Placzek's zeroth moment and first moment theorems for the scattering 

law obtained from the above expression of y(t), a must be equal to zero and 

b must be equal to one. 

3. THE GENERAL DOPPLER APPROXIMATION 

Integrals for F(E,TJ) and G(E,T7), as given by Eqs. (11) and (12), can be 

transformed into standard form by making the following substitutions. 

P(T?) = H [a + ib(n - ^ ) + C(T/ - ^ ) ^ ] (14) 

Q(̂ > = - [ i a + ^ b ) + ^ c ( 7 , - ^ ) ] (15) 

R(T;) = g C (16) 

X = ( T + T 7 ) . (17) 

J 
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F(E,t7) is given by the following integral: 

EX^ 

F(E,T7) = —rrr J ;; ^ / » dx . (18) 
4^^E .«, [Rx2 + QK+pf/2 

This integral has been evaluated in terms of the confluent hypergeo-

metric functions, .F (n,m,x), with n amd m being positive half integers. 

These functions are related to error functions. Hurwitz and Zweifel had 

also evaluated this t3rpe of integral, as mentioned by Krieger and Nelkin (3). 

E 

4^ ;rERp2 Q -4PR 

2 

^ ^ 2 ^ Q2 -4PR 

3.1 Energy Transfer Moments 

All energy transfer moments can be obtained in princ^le by the suc

cessive differentiation of F(E,T7) with respect to T; and evaluating the re

sulting expressions for 77 equal to i/2T. We give expressions for the 

zeroth, first, and second energy transfer moments. The zeroth moment 

is the total scattering cross secticm. 
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v̂^ = 
EM 

a exp 
b mc 

/ . T. m^ o , 1 / 2 (4rrE - - a ' ^ c ) ' 
M^ 

, _ ., 3 EM. _ ,, 3 EM ,, 

flV'2'-J^^-^0lV'2'^VJ 

EM . a exp 
A,(E) = - - A / E ) + 2 E!ic_ 

(4.E 4a2c)^/2 
M^ 

r, /o 3 EM , 
^ i ^ l ^ ^ j g ; — X Q ) 

9 EM 

M' /A T-, ^^ 2 \ l / 2 (47rS —r-a*c) 
M** 

[<^la"2'l''l'2'i' 
X EM . ^̂  Ex," _ Ex^M 

mc ' 3 m c 1*1'"'2' mc 

X . X , and x are given by 

" o -
(I^S"'^ 

[(1+ b) + 4 - - - a c ] 
M^ M 
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b 

i 

q 2 
- m* 2/1 ™ r.\r2ni b mb , 

';;;^'=»*M'''tM-»*s*2i*i 

^ M^ 

„ m 2r/t ™ . . 2 o m2 m2 2 2m2 -8 —5-c*[(l -b) + Sac —^{—^b" + —5-ac -1)] 
M^ M^ M^ M^ M*̂  

x^ = (25) 
... m. ,2 ^ m^ ,2 

For a not equal to zero, the oiergy transfer moments can be given for 

any Doppler case by usii% the appropriate a, b, and c. However, for a equal 

to zero, the monatomic gas case, these moments can be obtained by taking 

the limit for a equal to zero usin^ "L'Hospital" rule. In the Appendix, we 

give the first three energy transfer moments for the monatomic gas in terms 

of error functions. The details of these moments have been treated by 

Rajagopal (14). The first two of these moments for the gas are well known 

in the literature. See von Dardel's (15) paper. Takahashi (16) has inde

pendently obtained the second energy transfer moment for the gas. He has 

also obtained the moments for the Krieger-Nelkin case (16). 
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3.2 The Total Scattering Cross Sectltm 

The high energy behavior of the total scattering cross section A (̂E) 

is obtained by using the following asymptotic expressicm for F (n,m,x), 

as given by Slater (17). 

^ / V r(ni) m-n /«-\ 
^F^(n,m,x) = -^^ X exp x (26) 

A /t,x °t>^ r. /, 4m2ac .-1/2 , 4Ema ,, 
0 4Ema "̂  .,2/» no . . ,,r/» ™i-\2 ^m* -i 

M^(l + rr b) M{(l+r7b) + 4—r-ac} 
M M y^l 

(27) 

For very large energy, A (E) varies as 1/E. However, for a weakly 

bound system, where a is small, A (E) is given by the constant 

" (1+2)2 M^i, 
M m 

The correct asymptotic value for A^(E) is given by the above expres

sion with b equal to unity. From the values of b given in Table I, one notes 

that the gas and T̂ ^̂  cases give correct high energy limit for A^(E). Otx the 

other hand, the Krieger-Nelkin and the Detailed Balanced Doppler approxi

mations fail to give the correct asymptotic value. 

J 

i 
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V For the Detailed Balanced Dqppler approximation using the Debye 

frequency distribution of vibrational modes, the expression for b is given 

9/T is the ratio between the Debye and thermod3rnamic temperatures. 

2 2 

Thus we note that the correcticms to unity are terms of order 6 /T or higher, 

which are small for weakly bound systems. 

For very low energy, A (E) exhibits 1//E behavior, as the ccmfluent 

h3^ergeometric function approaches unity. A (E) is given by the foUowii^ 
expression: 

A (V.\ = -
/E 

, ._. Constant , , 
Ao(E) = ~j=— (30) 

,4mCvl/2 
%^7M ^ 

Constant = (31) 

(1 + ̂  b) + —r- ac] 
M M2 

For the incoherent scatterer, the total scattering cross section at low 

energy exhibits 1//E type behavior, as demonstrated by the recent slow 

neutron scattering experiments of J. J. Rush (18) in bound hydrc^enous 

systems. For the monatomic gas model , the above ccsistant reduces to 

253 



a (i2.)l/2 

It n i . 2 
^ ^ * M ^ 

The constant gives the a\op(b of the scattering cross secticm at low energy. 

It is a measure of the upward scattering of neutrons or gain in energy trans

fer. The constant decreases in value with the increase in binding. 

3.3 The Associated Integrals M, 
k,p 

The associated integrals M. are given in Eqs. (9) and (12). 
k,p 

oT i 

For the determination of M. , (me may consider G(i7,T') to be the generating 
K,p 

function. G(T;,T') is evaluated by using the transformations given by Eqs. (14), 

(15), (16), and (17). 
om,3/2,_, m .1/2 8T' (T' •»• —c) 

G(T,,T ) = ^ 
. 4 m 2 4m _ , . , no. x2 4 im. i .,,-, . 4m _ , , 1 v2, [ - - ^ a c * — a T ' . ( U ^ ) . - ^ ^ _ ) ( b T ' - c ) . — c T ' ( ^ - - ) ] 

(33) 

By using the Detailed Balance theorem, it can be shown that M with 
K,p 

odd values of k are either zero or can be converted into M, with even values 
k,p 

of k. This fact is equivalent to the absence of odd powers of (t) - c=) in the 

expression of G(T7,T'). The condition for this is that the coefficient of 

J 
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i (77 - r=r) is zero. Mathematically, it means 
ok 

bT' - c =0 forT' »T . (34) 

Eq. (34) furnishes the test for determining the validity of the Detailed 

Balance theorem. From Table I it is evident that all three cases except 

the Tgf̂  case satisfy the fundamental theorem of the Detailed Balance. We 

consider only the cases that meet this requirement. G(n,T') is then given by 

the following series: 

G ( T 7 , T ' ) = 8 T ' ^ / ^ T ' + S C ) ^ ^ ^ 
M 

. «.n.4m _, .n. i v2n 
00 ( - l ) ( - ^ T ' c ) ( 7 ; - ^ ) 

/ "i •» 

n»0 .4m* 4m _, ., m. .2 .m-l ( _ a c . — a T ' . ( l * - b ) ) 
(35) 

This is equivalent to the Taylor expansion: 

n==0 n! . n 77»i/2T 

The associated integral M. using Eqs. (32), (35), and (36) is given 
ZK,p 

i 2k 
by the ^^ differentiation of the coefficient of the (17 - r=r) term. 

AX 
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_, ..4m .k 

M - -^ M r( ^ )P 
2k,p ^2 ^ \ l ' 

T ' 

^ ' (37) 7 *r'«T .4m* ., m. .2 4m _„»k+l ( ^ a c . ( l * - b ) . - ^ a T ' ) 

The well known thermalization parameter M. . is obtained by puttii^ 
2,U 

k equal to one and p equal to zero in the above equation. 

. m - , l / 2 ,_ m .1/2 

M^ 0 = ^^ ^ (38) 
' .4m2 m. .2 4m _,2 

t^^^^^^^M*'^ *-M *̂ J 

The above expression is the exact formula for M., for the general Doppler 

approximation, which satisfies the Detailed Balance theorem. Using the 

values of a,b, and c for the gas case, Eq. (38) reduces to the well known 

formula, first given by von Dardel (15). 

M 

Since a, b, and c depend upcm the binding parameters, therefore, Eq. 

(38) is useful for studying the effect of binding upon M. . . 
4ByU 

4 
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b 

i 

4. THE DETAILED BALANCED DOPPLER APPROXIMATION 

We discuss a new Doppler approximation in this secticm. It satisfies 

the Detailed Balance theorem, which is the basic requirement for an ap

proximation used in the study of neutrcm thermalication. The width func -

tion y(t) is obtained by retaining terms up to T^ in the expression of y(T -«• r=;) 

according to Eq. (5). 

y(T + ^ ) « - X + a i V (40) 

X and a are characterized by two binding parameters - the Debye Waller 

factor and the specific heat Integral respectively. 

X, fm coth 4- d«. / ~ - M ^ di (41) 
jj ^ 2T "̂  I sinh €/2T 

- - { 2iSifw "« <«' 

After some manipulation, X and a can be given by the familiar integrals 

00 00 

X = 2 / - ^ c o t h ^ d l - / M . c o t h ^ d { (43) 

oo ^ . . . . 00 

n(l) . . r n(i) 
0 e ^ / ^ - 1 0 e^/^-1 

(44) 

Experimentally, X can be obtained from the Debye-Waller factor at 

two different temperatures of sample T and 2T from the x-ray or neutrcm 
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m 
scattering data. The integrals appearing/the Eq. (43) are related to the 

zero point mean square displacement of the vibrating atom. 

a is obtainable from the specific heat (c ) integral data. The speci

fic heat integral is given by 

T * / \ 
/ c dT = / - I 3 P - d| . (45) 

0 e-^ -1 

The above approximation can be applied to any system provided the fre

quency distribution of vibrational modes or the parameters X and a are 

available from the experiment or otherwise. For known frequency dls-

tributicms of vibrational mcxies such as Einstein and Debye X and a can be 

theoretically evaluated. For temperatures greater than the frequency of 

vibrational modes X and a approach the gas values. In this limit, a and X 

reduce to the followii^ simple egressions: 

a » T and X = 1/4T . (46) 

All the results given in section 3 for the general Doppler approxi-

maticm can be obtained for the above case by using the appropriate values 

of a, b, and c. The enpressicm for the thermalization parameter M reduces 

to the following form: 

J 

i 
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2 M T ,^,, 
8 c / <X.2£,3 /2 , ,^4^, , ,2 

5. NUMERICAL RESULTS (DeBYE MODEL) 

In this f»per, we consider only the frequency distribution of vibra

tional mcxies, as given by the Debye model to obtain numerical results. 

3«^ 
f(e)di = ^ d« (48) 

9 is the Debye temperature. For this case a and X are given by the inte

grals characterized by parameter t equal to T/6, the ratio between thermo

dynamic and Debye temperatures. 

X = I [20^(t) - 0j(2t)] (49) 

oi'~-[<P^{2i)-cp^{t)] (50) 

+1 n̂ 

'"'" "l.^/' (51) 

In Table II we give numerical values of XT and a/T for various values 

of t or 1/9. We also give Tg((/T for different values of t. A curve for 

Tgjj/T versus t was given by Lamb (2). T « is defined by 
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or 

^eff 
T 

T eff 
T 

1 
2T 

3 
'2t 

00 

0 

^3(0 

COthrl; 2T 

(Debye 

d| 

model) 

(52) 

(53) 

0 (t) integrals were evaluated for 9/1 less than 2ir using the generat

ing function for the Bernoulli Numbers. For 9/1 greater than 2jr inte

grals were evaluated numerically. Since these integrals are connected 

with Placzek's moments (11) for the Debye mcxlel, they are very useful in 

the study of neutron thermalization. In Table III we give numerical values 

of the first four integrals. As shown above, the Debye-Waller factor inte

gral and the T^jj are given by 0. (t) and (̂  (t) respectively. 

We give numerical values of M2(crystal)/M2(gas) as a function of 1/9 

for masses equal to 2, 9, 12, 18, and oc in Table IV. We note that M2 de

creases with the increase in mass for a fixed value of d/T, and for a fixed 

mass it decreases with the increase in 9/1. Increase in mass as well as 

9/1 of the moderator are associated with the increase in binding. Thus cme 

can conclude that M2 decreases with the increase in binding. In Figure 1, 

we plot M2(crystal)/M2(gas) for various masses as a functicm of 1/9. One 

notes the existence of a universal curve for various masses. 

i 
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In Figure 2, we plot A^(E)/a for a moderator of mass 9 a.m.u. and 

1/9 equal to 0.3 in the incoherent approximation. This correspcmds to the 

beryllium case. Curves A and B represent the gas and the Dc^pler approxi

mation respectively. Curve C is obtained by adding to the elastic scattering 

cross section the contribution due to cme phonon coherent and two phcmons 

incoherent inelastic scattering, as given by Bhandari (19). The elastic cross 

section was determined by the following formulae: 

4CT M . „^ 
A / , - \ b Tt 4 m E X , / - A \ 

V^^==;iiiE^^-^'^--M-i ^̂^̂  

00 

X= / ^ f ( | ) c o t h ^ d | (55) 
0 ^ ^ 

We also plot curve D obtained from Placzek's mass expansion (20) by 

2 
retaining terms up to (m/M) . Numerical results for these calculaticms 

were taken from Marshall and Stuart's paper (21). In Figure 3, we plot 

A.(E)/o for the gas and the Doppler approximation for the wide range of 

energy. 

The gas model underestimates the total scattering cross section, ex

cept at very low energy and at h^h energy. At very low energy, it overesti

mates and at high energy it apprcmches the ccmstant value. The Detailed 

Balanced Doppler approximation underestimates the cross section below 
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47 Mev, and overestimates it above this value. At about 300 Mev the curve 

for the D(̂ >pler case crosses the curve for the gas model. Above this energy 

The Doppler approximation breaks down as shown in Figure 3. Curves C 

and D give identical results below 60 Mev. Above this energy, the contribu

tion due to higher phcmons causes the mass expansion curve to lie above the 

phonon expansion curve. It must, however, be pointed out that the Doppler 

approximation is better than the gas model in the thermal energy region. 

6. CONCLUSIONS 

We have shown that the thermal neutron scattering problem can be 

analytically solved by using the general Dq[>pler approximation. A large 

number of interesting physical cases can be treated with this approximation. 

We have obtained expressions for the energy transfer moments and their 

associated integrals including the specific integral M2 (the second energy 

transfer moment weighted by the Maxwellian distribution). These quantities 

are useful in the study of neutron thermalizaticm and in the determination of 

the thermalization parameters. 

It has been demonstrated that, except for the monatomic gas model, 

it is not possible to achieve correct asymptotic scattering behavior and satis

fy the Detailed Balance theorem in a single Dc^pler approximation. These 

two types of behavior result from two different kinds of expansion of the 
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width function y(t) — the mean square displacement of scattering atoms 

e^qpressed in terms of the collision time t between a neutron and an atom. 

The expansion of y(t) in powers of t gives the correct asymptotic scatter

ing behavior; however, the Detailed Balance theorem is violated. The con

verse is true for the expansion of y(t) in powers of (t -i/2T). In the Dop

pler approximation the effective temperature and the Detailed Balanced 

Doppler cases respectively represent these two eiqKUisions. For neutron 

thermalization prdslems, since the validity of the Detailed Balance theorem 

is important, the (t - i/2T) t3rpe of expansion is to be preferred. Comgold 

(22) has used the expansion of y(t̂  in powers of t to study binding effects 

on neutron scattering in the Joining region between slowing down and thermal 

energies. 

We prc^ose the use of the Detailed Balanced Doppler approxiroation 

in the study of neutron thermalization problems, where the validity of De

tailed Balance theorem is of importance. This approximation can be em

ployed to investigate thermal neutrcm scattering in any physical system, 

given the value of the Debye-Waller factor and the specific heat integral. 

Experimental values of these integral parameters must be used to ensure 

internal consistency of the frequency distribution of the vibrational modes. 
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It is well known that the use of phonon expansion and Placzek's mass ex

pansion techniques in studying thermal neutron scattering in crystals in

volves tedious numerical calculations to obtain integral quantities of inter

est in reactor physics. The Doppler approximation, because of its analyti

cal simplicity and the fact that it also takes into account binding, merits 

serious consideration. Since this approximation gives results for the inco

herent scattering, it should also prove useful in investigating the effect of 

bound hydrogen atoms on thermal neutron scattering. It would be of inter

est to compare the results obtained with this approximation with those ob

tained by other methods. 
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APPENDDC 

Energy Transfer Moments for the Monatomic Gas Model 

Ao(E) = - | - - ^ ^ [1 + Z(0 + 1/2)] (1) 

(2) 
2a E 2 exp -p 14/, 0^2 1 5 , 0^3 

4 ,,11 14^ 2 2̂v „,b 15^ ^^2 2 A , , /„, 

where 

Z « exp 0 erf 7 J >/jr//3 

X 

erf Tx = - / (exp -t2)dt 
'̂  0 

0 = EM/mT 

M = ( l + g ) . 

i 
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TABLE I 

Doppler Case Parameters 

Parameter 

Case 

Gas "̂ eff 
Detailed Balanced 

Doppler Krieger-Nelkin (3) 

(X a 

4T' 
) -2My 

1 

T eff 

a/T 

a 

M/My 

(M/M^)T 

where 

f(|) I f(|) 
X = f - ^ COth ~ - f „ ^ ^ ,.7SS, 

Jj I 2T ;Jj f sinh | /2T 
d« 

" ° \ 2 sinh I/2T *̂^ 

eff 
=r^co.x., ref. (2) 

M /M 3 ratio between mass of v ^ nucleus M and the average 

effective mass M^ . ref. (3) 

y = Debye-Waller factor integral, ref. (3) 
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TABLE II 

Debye Model 

t=T/0 

0.10 

0.20 

0.25 

0.30 

0.40 

0.50 

0.60 

0.80 

1.00 

1.50 

2.00 

2.50 

oc 

X'T 

0.13101 

0.19540 

0.21089 

0.22093 

0.23240 

0.23832 

0.24174 

0.24526 

0.24693 

0.24858 

0.24924 

0.24954 

0.25000 

T/9 » Ratio between thermodynamic and Debye temperatures. 
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Parameters 

tt/T 

0.21585 

0.59070 

0.70050 

0.77465 

0.86179 

0.90771 

0.93438 

0.98216 

0.97551 

0.98899 

0.99376 

0.99602 

1.00000 

^eff/^ 

3.76935 

1.99259 

1.68174 

1.49441 

1.29165 

1.19113 

1.13453 

1.07872 

1.04946 

1.02211 

1.01246 

1.00798 

1.000 



TABLE m 

Placzek's Moment Integrals (Debye Model) 

t=T/0 

0.10 

0.20 

0.25 

0.30 

0.40 

0.50 

0.60 

0.80 

1.00 

1.20 

1.50 

2.00 

2.5 

3.0 

3.5 

4.0 

5.0 

4>^it) 

0.53251 

0.62835 

0.69407 

0.76781 

0.93103 

1.10695 

1.29014 

1.66839 

2.05501 

2.44598 

3.03687 

4.02771 

5.02219 

6.01850 

7.01586 

8.01388 

10.011107 

*3(t) 

0.25129 

0.26568 

0.28029 

0.29888 

0.34444 

0.39704 

0.45381 

0.57425 

0.69961 

1.08740 

1.02211 

1.34995 

1.67997 

2.011096 

2.34285 

2.67499 

3.339997 

<^.(t)«-0.20000 
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TABLE rv 

Average Second Energy Transfer Moment Mg 

(Debye Model) 

M (crystal)/M (gas) 

T / e = t M » 2 

0.1 

0.2 

0.25 

0.3 

0.4 

0.5 

0.6 

0.8 

1.0 

1.5 

2.0 

2.5 

0.48032 

0.85846 

0.91308 

0.94271 

0.97000 

0.9816 

0.98698 

0.99326 

0.99567 

0.99814 

0.99890 

0.99931 

1.00000 

Mc 

8a^T 
b 

2-(ga8) 12.09522 

X 10'^ 

M»=9 

0.26919 

0.65789 

0.75669 

0.82043 

0.89231 

0.92917 

0.94998 

0.97122 

0.98144 

0.99174 

0.99529 

0.99704 

1.00000 

7.6844 

X 10'^ 

M = 12 

0.25494 

0.64102 

0.74323 

0.80963 

0.88539 

0.92398 

0.94642 

0.96919 

0.98028 

0.99133 

0.99502 

0.99688 

1.00000 

6.2967 

X 10"^ 

M = 18 

0.24194 

0.62092 

0.72934 

0.79701 

0.87744 

0.91906 

0.94277 

0.96704 

0.97868 

0.99054 

0.99475 

0.99682 

1.00000 

4.59733 

X 10"^ 

M = 00 

0.21585 

0.59070 

0.70050 

0.77465 

0.86179 

0.90771 

0.93438 

0.96216 

0.97551 

0.98899 

0.99376 

0.99602 

1.00000 

m 

M 
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CAPTIONS 

M„(crystal)/M2(gas) for Various Masses as a Function of 

Binding Parameter T/e. 

Total Scattering Cross Section A-(E)/a. for Beryllium using 

the Incoherent Approximation. 

Comparison of A (E)/a for Beryllium using the Gas Model 

and the Detailed Balanced Doppler Approximation. 
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COMPARISON OF "CLASSICAL" AND "QUASI-CLASSICAL" 

CROSS SECTIONS FOR SOME SIMPLE SYSTEMS* 

M. Rosenbaum and P. F. Zweifel 
Department of Nuclear Engineering 

The University of Michigan 
Ann Arbor, Michigan 

1 2 

Van Hove and Glauber introduced the concept of a so-

called time-dependent pair correlation function (^(^p^irj which 

is essentially the Fourier transform of the differential neutron 

scattering cross section: 

y^V-a ^;!r^ ^, J ^ l-^ -* ^ (1) 

Here ^ and yf are the momentum and energy charges in the 

scattering, ̂ f̂̂ t' and ^/K are the initial and final neutron 

moments , and // represents the mass of one of the atoms of the 

scattering system (which contains /^such atoms, assumed iden

tical for simplicity). 

Explicitly, 

where the brackets denote a thermal average, i.e., 

<X>--/:^/^^ (3) 

if /y^^ (^ is the density matrix of the system under 

consideration. Note that in the limit T^^^j ^^.T'^J becomes 

the ordinary radial (pair) distribution function ^Cc) familiar 

Supported by the U. S, Atomic Energy Commission. 
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in the static approximation in which the energy change in scatter

ing is assumed to be small compared to the incident particle 

energy ( >ẑ <r<'/'£l̂ * ). However, the interpretation of (^Cr/^) 

as the generalization of ^C^^ to the time dependent case is 

obscured by the fact that ^j i^' and Yj(p) are non-commuting 

operators, so that 

J^r'Kr^m-r') kr-rjU)) ^ Y- O(^'-^J(^^ '''''), (4) 
^ V - ./ ^v7--' 

It is, of course, the thermal average of the righthand side of 

Equation (4) which is, physically, the probability that if there 

is a molecule at the origin at time L-O there will be a 

molecule (the same or another) a distance f away at time L 

(i.e., the time-dependent pair correlation function). 

The question then arises, if (~^C-f'^^ "^^ not the time 

dependent pair correlation function, what is it? It is, of 

course, a multiple of the Fourier transform of the neutron cross 

section. If we can then relate it in some physically meaningful 

way to the motions of the atoms in the scattering system, then a 

measurement of the neutron cross section will provide a dynamical 

description of the scattering system. This, of course, is why 

one does neutron scattering experiments anyway, and was the 

incentive for the introduction of the function (^(^r/'6j in the 

first place. 

The physical interpretation of the convolution of delta func

tions in the defining equation for (^C^''^) ^^ virtually 

impossible because this convolution is not an hermitean operator 
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and thus does not actually represent a measureable quantity. In 

fact, it is well known that its eigen values are not real . In 
3 

fact, Schofield has obtained a dispersion relation relating the 

real and imaginary parts of (^Cf^^) which is obtained simply 

by requiring that the cross section obey the principle of detailed 

balance. Clearly the time dependent pair correlation function 

(i.e., the thermal average of the righthand side of Equation (4)) 

cannot obey any such relation since it is an hermitean operator 

and has real eigen-values. 

Nonetheless, it is possible in some sense to attach physical 

meaning to (^(r^^^ if we convert it to a function of classical 
4 

variables. The procedure is described in detail elsewhere . 

Briefly, one makes use of the fact that one can write thermal 

averages in either of two equivalent forms 

Here ^ is an (operator) function of the operators (Ĵ yT̂ / />/̂'/--/̂ '̂) J 

r^(^,, ^9 is the Wigner distribution function which depends 

on the classical variables ^', ^z.~-S^^.-^'> - Z^ and /^^ 

is a function (of classical variables) related to A in a 

simple manner . Briefly, if l K j ; l^i ] are Schrodinger operators, 

and /'y a / /p , etc. are arbitrary functions, then simply 
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However, if A(r„/;i)' /^Cr.)/C/^'^) / then 

where the operator (y is given by _. 

^-- <^ " (8) 

where the arrows indicate the function to be differentiated, 

similarly, if ^(n,^,). )^(n)?!f/b)/^a-)ffy^'^) 

and so forth. 

Since ^C^^/^) is defined in terms of Heisenberg 

operators and this method applies only to Schrodinger operators, 

it is necessary to reformulate the expression for (^Ct'^J 
* 

entirely in terms of Schrodinger operators . This is most con-
Q 

veniently done by using Wick's time expansion of 

Z(^'^)' ^e'^"a-o^)^^r 
and applying these rules tenn by term. The details are found in 

Reference (4), where the calculations have been carried out to 

first order in ^ 

If 7 

Turner attempted to apply these rules to Heisenberg operators, 
and so his results were not strictly correct. 
*However, the procedure, followed by some other authors who let 

^-^o but kept ^ - /y^ and U>~'^//7' finite, was not used. 
Our expansion parameter was essentially ^^V*^V/ UrAaA? V/ id 
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Then, making use of the fact that the Wigner distribution func

tion is, to first order in ^ , identical with the classical 

Maxwell-Boltzmann distribution function, we find 

where ( 5i--̂ ^ I is simply the Fourier transform of the classical 

time-dependent pair correlation function. - The subscript "V" 

9 

stands for Vineyard, who used the approximation of calculating 

the cross section as the Fourier transform of the classical 

correlation function. Our result. Equation (10), is identical 

to the result used by Singwi and Sjolander (who speculated that 

it might be correct because it works exactly for the ideal gas). 
3 

It differs from a prescription introduced by Schofield only by 
the factor (̂ "̂ "t̂  (Schofield's prescription was introduced 

to force the cross section calculated from the classical corre

lation function to obey detailed balance). 

One important point should not be overlooked. It does not 

follow that the classical approximation to the cross section for 

any system can be obtained from the classical correlation func

tion. The limit of the cross section as ;^-^0 is not the 

cross section of the limit. This may best be illustrated in the 

core of the ideal gas, for which the cross section is entirely 

classical, containing no powers of ^ at all. Nonetheless, 

for the .as ^..,;._ ^ _ ^ £ _ _ ] V ^ ^ ^ - ^ ^ j 
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If one takes the limit 7^-^o in the expression for C^t^^JTy'^^) 

one does indeed obtain the classical correlation function. 

However, the Fourier transform of the latter quantity clearly 

does not give the correct cross section. Thus, while our pres

cription is correct to order X̂ ^ the Vineyard prescription is 

not correct even to order /^^ 

In Figures I-V, we compare the cross sections for some 

simple systems at one low and one high incident energy (scatter

ing angle = 90 ) as calculated by the Vineyard prescription 

(i.e., by taking the Fourier transform of the classical correla

tion function) with the cross sections obtained from our Equa

tion (10). The differences are seen to be significant, particu

larly at the higher incident energy. It is perhaps up to the 

experimentalists to determine if the differences between the two 

curves are within the realm of experimental observation. 
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FIGURE CAPTIONS 

Figure 1 - Differential scattering cross section versus outgoing 
-3 neutron energy for neutrons of incident energy 5 x 10 ev 

scattered at 90° by an ideal gas of mass 18 at 295 K. 

Figure 2 - Differential scattering cross section versus outgoing 

neutron energy for neutrons of incident energy 0.1 ev scattered 
o o 

at 90 by an ideal gas of mass 18 at 295 K. 

Figure 3 - Differential scattering cross section versus outgoing 

-3 
neutron energy for neutrons of incident energy 5 x 10 ev 

scattered at 90 by a system of particles of mass 18 diffusing 

according to the Langevin model at 295 K. 

Figure 4 - Differential scattering cross section versus outgoing 

neutron energy for neutrons of incident energy 0.1 ev scattered 

at 90 by a system of particles of mass 18 diffusing according 

to the Langevin model at 295 K. 

Figure 5 - Differential scattering cross section versus outgoing 
_3 

neutron energy for neutrons of incident energy 5 x 10 scattered 

at 90 by a Debye model of a solid with <§) = 135°K. 

Note:- The solid lines correspond to { 3_-ii ) 

The dashed lines are obtained from Equation (10) 
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DIFFERENTIAL CROSS SECTION - ARBITRARY UNITS 

O 
c 

o 

o 

1 

ro 
OD 
U l 

m 
c 
H 
ro 
o •z. 

m 
-z. 
m 
33 
o 
-< 
—̂̂  n> 
< 

~ ' 

! 

™ 

1 

" ^ 

L 

~ 

i 

1 

— -

— = 

— 

— 

H 

L -

ri 

! ! 

r-

L 

— 

L -

^ — - ^ 

r ' " — '^'^ 

1 

-

— — , 

„ ^ -

— 

- ^ 

- -

1 — 
J 

f^ 

—— 

--

. - 1 

-

L 

r X 
^-^''^y J 

— - ^ ^ ^ - ^ 
-'"' 

- - -

D 
m 
> 
r 

0 
> 
CO 



- L A N G E V I N D I F F U S I O N - J 
100 

CO 

cc 10 < 
H 

CD 
CC 
< 

O 
UJ 
(/> 
CO 
</) 
O 
£r o 
_) 
< 
I -
z 
UJ 
Q: 
UJ 

u. 

// 
/ / 

/ / 
/ / 

/ / 
/ / / / 

/ / 
/ / 

/ / 
/ 

/ / 

y 

i 
/ 

// 

1 

/ 

\ 
\ 

1 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 

\ 

\ 

NS 
Vv 1 

\\ 1 

.01 
•OUTGOING NEUTRON ENERGY (ev) 

.001 

FIGURE 3 I 
286 
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'HINDERED ROTATIONS" IN LIQUIDS AND 

SLOW-NEUTRON SCATTERING 

S. Yip+ and R. K. Osborn 

Department of Nuclear Engineering 

The University of Michigan 

+ Phoenix Owens-Corning Predoctoral Fellow. 
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ABSTRACT 

h quasi-crystalline model which describes both free and 

hindered rotations is proposed for the study of polar molecules 

in the liquid state. By means of the coupling between molecular 

dipole moment and a local electric field, which represents 

orientation-dependent effects of intermolecular interaction, 

hinderance in the rotational motion of a molecule is produced. 

Under the condition of strong field oscillator-like solutions 

are obtained for symmetric and linear molecules. 

Differential neutron scattering cross sections are calcu

lated, and effects of hindered and free rotations discussed. 

When free rotations are ignored, a simple expression suitable 

for practical applications is given. 
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INTRODUCTION 

In an effort to analyze experiments involving neutron 

scattering by polar liquids, a simple, quasi-crystalline model 

of the liquid state is constructed. Tne fundamental assumption 

in the model is that for times long compared to neutron-nuclear 

interaction times, each molecule moves in a potential generated 

by interactions with its neighbors, which is approximated by a 

function depending upon the coordinates of that molecule only 

and is taken as the sum of two parts. One of these is assumed 

to be a function of the coordinates of the center of mass of the 

molecule only and, at least for the description of bound (or 

hindered) translation states, may be approximated by the Hooke's 

Law potential appropriate to an Einstein-crystal description of 

the corresponding solid phase. The other part of the potential 

is a function only of the orientation of the molecular electric 

dipole moment with respect to a local electric field. This field 

is presumably produced by the ordered near neighbors of the 

molecule in question, and its magnitude is expected to be of the 

same order as that estimated for the corresponding crystal . The 

orientation of such a field with respect to laboratory axes is 

taken to be random. 

In view of the above assumptions, the energy of the liquid 

is therefore approximated by the sum of energies of individual 

This supposition finds support in measurements for water using 
neutron scattering ̂-'-̂  and Raman spectroscopy ̂ 2) _ 
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molecules. Furthermore, in the sense of approximations suitable 

to the present discussion, the energy of any given molecule is 

also decomposable into parts, i.e., electronic energy, nuclear 

vibrational energy, energy of center-of-mass motion in the form 

of the above-mentioned potential, and the energy of orientation 

arising from the coupling of the molecular dipole moment to the 

local electric field (energy of hindered rotation). The present 

discussion is devoted almost exclusively to the influence of the 

last of these upon neutron scattering. 

It should be noted in passing that the proposed model implies 

no dynamical correlations between molecules. Thus there will be 

no intermolecular, inelastic interference scattering. 

J 

I 
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THE MODEL 

The dynamical behavior of a molecular rotator, assumed to 

be rigid, in a potential field is described by the equation 

p. 
» . . w _ ^ , ^.. _ ^ S<*^ (1) 

where •! is the component of the total angular momentum along 

the principal axis s:̂  and 1- is the moment of inertia about 

this axis, *^^ and e<.î  are the wave function and energy 

of the rotator in the state characterized by quantum numbers, 

"5 J K and M appropriate to the three degrees of freedom. By 

taking the molecular dipole moment |A along the body-z axis and 

the local electric field E along the space-z axis, the poten

tial V according to the present description becomes simply 

— Xc«i fe- with K •= jX^ . Since we assume that quasi-

crystalline ordering exists in the liquid and because of rela

tively close packing of the molecules, E is expected to be 

sufficiently large so the condition X"$>"/2X- applies . 

In the presence of a strong field the dipole will tend to 

be aligned along the direction of E so ^ , the angle between 

U and E, is restricted to have only small values. This 

suggests a method of solution in which terms in Equation (1) are 

"*"A crude estimate of E based upon the known structure of ice 
shows that indeed the strong-field condition is satisfied. 
Similar conclusion has been reached by Magat^*^). 
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expanded in a truncated power series in ^ about ^ - C . The 

first-order solution for the symmetric molecule is 
+ 

•"<SvtM " '"•^ """̂-̂  (2) 

where 

(3) 

iS 

In this notation, i-^ is the moment of inertia about symmetry 

axis ^, and L ~ J. "=• X , \_ ̂  is an associated Laguerre 

polynomial. The above result is valid when X ^ R> . 

The first term in ^g^M I'epresents the energy of hindered 

motions which, although influenced by all three degrees of free

dom, is actually determined by only two numbers. We see that by 

ignoring the small energies of free rotation, terms proportional 

An approach applicable for any value of A is to use the free 
rotator solution to obtain by orthogonal transformation a new 
basis in which V is diagonal.^^^ This method necessarily 
involves the diagonalization of an infinite tri-diagonal matrix, 
and results in a continued fraction form of expressions for the 
energy and transformation matrix elements. Such a solution is 
not suitable for our purpose since considerable numerical 
efforts would be involved. 
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to B, the model describes the dynamical behavior of symmetric 

molecules as a system with two effective degrees of freedom, in 

fact, a two-dimensional isotropic oscillator. The energy struc

ture of the rotator will thus appear as a set of complicated 

levels due to free rotations superimposed upon the equally-spaced 

hindered-rotation levels. 

Evidently not all possible rotator states given by Equation 

(2) are admissible. The reason for this follows from the res

triction to small angles. The expectation value of O" in a 

given state. 

A ) V. ^ ^ - , ^ 1 - .--»,. V (4) 

can be used to provide an estimate of our small-angle approxima

tion, so the model breaks down for large values of ^ and iK-Ml 

where K.̂  ̂  is no longer small. Our description also ceases to 

apply when tne energy available for rotation is so large that the 

molecule effectively rotates without hindrance. This effect 

coi'responds to the limit of weak field and is not derivable from 

the present results. 

Linear molecules can be treated as a special case of the 

solution just obtained. Since there is no rotation about the 

molecular-axis the angle fi and quantum number K do not exist; 

consequently the model for linear molecules is the same as that 

for symmetric molecviles with \<—o and the factor L'Z\\) removed 

from normalization constant N. It can be seen that the strong-
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field approximation leads to the same description of hindered 

rotation regardless of the number of degrees of freedom available 

to the molecule. The difference in dynamical behavior of the 

two systems therefore lies in free motion. From Equation (3) we 

observe that the energy of a symmetric molecule can undergo a 

small change by a change in K and M which still leaves \k.-NA\ 

the same. Physically this would correspond to altering the 

rotational frequency about the symmetry axis, and since relative 

orientation of U and E is not affected the process requires 

only a small'amount of energy. On the other hand, in the case 

of the linear molecule, this is not possible, and any change in 

energy affects both hindered and free rotations. 

The model has not yet been satisfactorily generalized to the 

asymmetric molecule. The method of orthogonal transformations, 
(5) 

successfully employed by Wang in treating the free asymmetrical 

top, requires considerable numerical work and is probably not 

promising. However, as seen earlier, hindered rotations appear 

to be insensitive to system symmetries, then in the limit of 

strong field the symmetric model should provide a good approxima

tion since terms introduced by the asymmetry are of the order of 

free rotation energies. 
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SLOW-NEUTRON SCATTERING 

The hindered rotator model just proposed is suitable for 

use in calculating differential cross sections. For scattering 

from a single molecule the expression to be evaluated is of the 

W > - <̂ ^̂ \<̂  ^ ^ ^ ^^^^^ (5) 

_ is equilibrium position of o<— nucleus measured with 

respect to center-of-mass of the molecule and subscript Tdenotes 

average over molecular and electric field orientations. The 

result can be conveniently expressed as a power series in 74-? 

where ^ — (̂ 2.̂ vN For symmetric molecules we obtain 

where h is a spherical Bessel function, b ig the direction of 

oC— nucleus measured in the body system, and y —nSAtb/l^rC , 

Average over molecular orientations has been computed using all 

possible states. In cases where this is not consistent with the 

molecular model, the appropriate partial sum can be performed 

without difficulty. Corresponding expression for linear molecules 

is given by the k = 0 terms. 

The first term in Equation (6) represents the contribution 

due to elastic scattering while the two time-dependent terms 
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correspond to one-quantum inelastic scattering in which neutron 

energy is increased and decreased respectively by an amount ->J2, TvB 

This rather large energy transfer may be interpreted as the 

hindered rotation peak, which has been observed in cold-neutron 

scattering from water ' and ammonium halides . In fact, 

the same type of energy transfer can also be obtained by treating 

the rotator as an ordinary oscillator with frequency equal to 

M'2MS>/TI J and in this respect the nature of approximation in 
(9) 

Nelkin's model for treating hindered rotations in water is 

demonstrated. Aside from this aspect little similarity exists, 

particularly in the intensity factors and the manner in which 

molecular constants enter, between Nelkin's calculation and the 

present treatment, which within the small angle approximation 

represents a fairly rigorous and formal calculation of scattering 

by systems with only rotational degrees of freedom. 

The general expression for ôlcK'̂  contains terms correspond

ing to multiple-quantum transitions. These terms do not appear 

because they are of order A^^^ and higher. It should be evident 

that in arriving at Equation (6) we have ignored free rotations, 

for otherwise energy exchange will involve free-rotation energies 

and, as in the free rotator calculation, the average over molecu

lar orientation cannot be given in closed form. When free rota

tions are considered, a broad distribution of energy transfer 

•̂ The general method of calculation employed here has also been 
applied to free rotators. Independently Rahman has described a 
similar approach in his recent paper̂ -'-̂ .̂ 
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centered roughly about each hindered-rotation peak can be 

expected. It was mentioned earlier that free rotations of a 

symmetric molecule can be excited independently of the hindered 

modes; consequently there will appear in the neutron distribu

tion low-energy peaks. Such peaks do not exist for linear 

molecules. 

By taking terms with y=-i) and y^ P we obtain from 

Equation (6) contributions to the cross section due to direct and 

"inner" (interference within the same molecule) scatterings. The 

contribution due to "outer" (interference from different mole

cules) scattering is given by 

T T \ (7) 

where we have assumed that average over electric field orienta

tion can be performed separately for each molecule, the assump

tion of no angular correlation previously noted. For this reason 

the outer scattering is purely elastic which is characteristic of 

all independent-particle models. 

Finally we mention that the mass-ratio expansion discussed 

by Zemach and Glauber^°^ can be applied to the present model. 

For direct scattering by linear molecules the difference in the 

free rotator results and that obtained for the hindered rotator 

first appears in the term proportional to (. /vM/^^o) where \M/ 

is the "effective" rotational mass, m is neutron mass, and K 
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is the magnitude of its initial momentum. As we would expect, 

the distinction between hindered and free rotations vanishes as 

incident neutron energy becomes large. 

J 

I 
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PREFACE 

A conference on the subject of neutron thermalization was held at 
the Brookhaven National Laboratory from April 30 to May 2, 1962, 
precisely four years after the close of the last thermalization conference, 
the Gatlinburg conference of April 28-30, 1958. The subject of thermal
ization, which concerns the approach to thermal equilibrium and the 
manner of the equilibrium distribution of neutrons in matter, has elicited 
a great deal of interest in the meantime. While the seventeen papers 
contributed at Gatlinburg could be assembled into a single, convenient 
volume, presenting the seventy Brookhaven papers has required four 
weighty books. 

The Brookhaven conference was conducted as a "reporter" confer
ence. The technical papers which were submitted were sorted into six 
categories, viz., the experimental and theoretical aspects of the "scat
tering law," of spectra in infinite media, and of transient phenomena. 
A reporter was chosen for each of the six topics, and was asked to pre
pare a talk which would contain an appreciation of the technical papers. 
The reporter talk, followed by a general discussion constituted each 
session. Thus, the individual papers were not presented, though copies 
were available to all who attended, and are presented in these proceed
ings. (While the papers from our Soviet colleagues were received too late 
for discussion at the conference, translated versions will also be found in 
these volumes.) 

The success of a technical conference is always due to the efforts 
of many people. We must first thank the reporters and authors for the 
fine quality of their contributions. Mr. Robert Brown of Brookhaven's 
Graphic Arts Division was responsible for the prompt publication of the 
proceedings and for having more than ten thousand copies of the tech
nical papers ready in time for the conference. Mrs. Mariette Kuper and 
Mr. Edward Bergin and their staffs directed the mechanics of the con
ference with skill and aplomb, while several members of the Theoretical 
Reactor Physics Group made important contributions to its planning 
and execution. In particular, we should thank Drs. Paul Michael and 
Henry Honeck, and for his kind encouragement throughout, Mr. Jack 
Chernick, the Group's Director. 

NOEL CORNGOLD 
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L Introduction 

There have been discussions at this conference of the experimental 

status of scattering law determinations and discussions of the theoretical 

procedures used to interpret and extend these measurements. In addition, 

H. Honeck has discussed the analytical and numerical procedures used to 

predict reactor neutron spectra and reaction rates using the best scat ter

ing laws available for the common moderators. He has pointed out how well 

much of the experimental data, especially that on reaction rates in actual 

lattices, can be fit by approximate procedures which preserve only certain 

important properties of the scattering law. In this paper the status of dif

ferential neutron spectra (experiment and theory) will be discussed and ex

isting discrepancies whether of new or old origin pointed out. 

Ultimately most spectral investigations are performed for reactor 

technological reasons. Reliable tested methods for predicting neutron spectra 

in reactor cores, reflectors, or shields are badly needed and it has been the 

primary objective of those working in the field to find these methods. Speci

fically, experimentalists have one of three possible objectives in measuring 

spectra: 

1. to measure or infer information on scattering laws, 
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2. to perform a check on the adequacy of the physics and t r ans 

port approximation made in typical problems, and 

3. to measure a spectrum for a specific practical application. 

The first and third objectives are of rather limited usefulness. In the first 

case neutron spectra are in general not extremely sensitive to the details 

of a scattering law so very high precision of measurement of spectra whether 

they be steady state or time dependent is required - even then ambiguous 

interpretations are hard to avoid. However, differential spectra if measured 

precisely, can indicate qualitatively where either better physics information 

or refinements in theoretical methods is required. For example at present 

it is clear that at neutron energies above 0.1 ev, for most common moderators, 

better scattering law information is needed. These methods then are capable 

of checking the adequacy of various approximations (physical and numerical) 

for general classes of problems encountered in reactor analysis and are thus 

of considerable utility. 

Next let us review briefly the procedures used for measuring or in

ferring neutron spectra from measurements and discuss the current status 

of the experimental results for the common moderators, pointing out where 

possible the work that needs to be done experimentally and the best approach 
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to these experiments. It has not been possible here to refer to every paper 

submitted to this conference which has some bearing on spectra, but general 

conclusions based on the general run of experiments will be given. 

II. Basic Experimental Methods 

There are two basic techniques normally for inferring or specifying 

neutron spectra. These a re : 1) direct measurements, and 2) indirect meas

urements of spectral index - usually done by foil activation procedures. 

Having established the motivations for making spectral measurements 

one is next inclined to ask what precision is needed in the measurements. In 

general, spectral experiments require relatively high precision since theore

ticians desire to make comparisons at experimental tie points they can rely 

on to be correct. Various workers suggest a need for precision in various 

parameters as the cri teria. Since the product of cross section and flux always 

occur in reactor analysis, normal cross section precision of about 1% accuracy 

is often suggested as an acceptable er ror . This is a very severe requirement 

and not really realistic. Normally the product of (p and a is integrated over 

a fairly wide energy interval before use in any reactor analysis code. This 

certainly decreases, due to the existence for example of conservation effects, 

the requirement for precision in the relative flux. Relative flux variations 

of 5 to 10% are usually acceptable before e r ro r s in integrated quantities exceed 

nc-k 



1 to 2%. Even this is not a truly realistic approach to the matter of precision. 

What one wants to know well is a quantity like ryf (fission neutrons produced 

per capture in a typical cell) which contains ratios of reaction rates and is 

relatively insensitive to spectra. Temperature coefficients of reactivity, on 

the other hand, place a relatively high precision requirement on temperature 

determinations of rji, namely 0,1% accuracy. 

Experimentalists measuring neutron spectra should strive to produce 

experimental data which will not prove to be the limiting factor in compari

sons between various theoretical approaches. A fairly safe rule to follow 

today is that 5 to 10% accuracy in relative spectral shapes should be an ex

perimental objective. 

In this paper results and potentialities of the direct spectral measure

ment technique will mainly be reviewed. However, since an appreciable amount 

of work is still being done by foil activation procedures, this method will be 

discussed briefly first. 

Integral Methods of Spectral Measurement 

This technique consists in general of measuring some index of the neu

tron spectrum by determining relative reaction rates in bare and cadmium 

covered absorbers. 
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235 
Common materials used are : lutetium, europium, plutonium, U , etc. 

Good fast to slow indices are provided by Lu to U ratios and Pu to 

235 
U ratios. These measurements often have the advantage that they give one 

very nearly what is needed for reactor analysis, i.e., reaction rates or ratios 

thereof. However, very often they do not satisfy the exact need and some 

method must be found to infer the desired answers from the measured quanti

t ies. In general, one can proceed two ways: 1) a spectrum can be constructed 

from the data by the methods of Wescott, Campbell, Freemantle, etc., 2) one 

can utilize theory to calculate directly measured quantities (the activations for 

example). In the first method the low energy spectrum is represented by a 

Maxwellian plus a X/E tail which joins at some cutoff energy. The parameters 

describing the spectrum are the Maxwellian temperature T, X, and the cutoff 

condition. Usually something like a linear fall off from 4 to 1 KT is postu

lated for the epithermal spectrum. A comparison of spectra determined in 

the same assembly by integral and differential measurements is shown in 

Figure 1. These measurements were reported at the Second Geneva Confer-

2 

ence by Poole, Campbell, and Freemantle. It is clear that at least in this 

specific example one has lost a great deal of precision in doing things this 

way. From a qualitative point of view this procedure is useful for correlating 

data from various laboratories since effective temperatures which depend on 
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the hardening parameter S / ^S = A can often be inferred by methods like 

3 
that of Coveyou, namely T = T ^ (1+. 9lA). Figure 2 shows the spectral 

4 
work of Reichardt and Burkart reported to this conference together with 

that for a number of other experiments. A general tendency for the data to 

behave as one would expect from some simple model of neutron scattering 

like the heavy gas law is about all that is apparent. Also a general tendency 

toward disagreement among experimenters on the magnitude of the tempera

ture dependence seems apparent. 

The second method of analysis in current use for interpretation of act i 

vation data has been discussed by H. Honeck. It would appear that when proper 

transport codes are used to calculate the measured activation curves in both 

heavy and light water lattices, relatively good agreement can be obtained with 

experiment. 

In summary, the foil activation technique is rather limited in the detail 

with which it lends itself to predictions of spectra. Assumptions based on 

simple energy dependences (i.e., Maxwellian plus X/E tails) a re not in general 

valid when resonance absorption is prevalent, or when a strongly hardened 

spectrum is present, whether produced by 1/v absorption or a more compli

cated energy absorption dependence. It would appear far more profitable to 
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compare activation measurements with direct numerical predictions of this 

quantity rather than attempting to construct equivalent spectra. Precise 

integral activation measurements can serve a very useful purpose in reactor 

analysis since spatial resolution is good and cell distortion minimal. These 

are conditions hard to satisfy in differential spectral determinations because 

of re-entrant tube perturbations. 

Differential Spectrum Determinations 

The conditions for a good spectrum experiment are not necessarily 

easy to specify completely. They depend, to a large extent, on what measure

ments a re desired. Spectra that are subject to measurement can be of the fol

lowing types: 

1. Homogeneous - infinite medium 

2. Homogeneous - one-dimensional 

3. Homogeneous - two-dimensional 

4. Homogeneous - with temperature gradient 

5. Heterogeneous - one-dimensional 

6. Heterogeneous - two-dimensional 

7. Heterogeneous - with temperature gradient 

8. Time Dependent Spectra 
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9. Diffusion Cooled Spectra 

10. Diffusion Heated Spectra 

Obviously conditions which one tr ies to eliminate in one class of spec

trum measurement are exactly those which one desires to study in another 

class. In the time permitted here it is not possible to discuss in detail each 

experimental technique but it is informative to review where the various ex

perimental techniques are useful. 

The regions of usefulness of the Poole or chopper technique depend again 

on what equipment one has available since there is a considerable region of 

overlap. Accuracy of both methods is influenced by the ability to measure 

or calculate accurately the energy sensitivity of neutron detection devices. 

The usefulness of the Poole technique is limited by the time widening of the 

neutron burst due to assembly characteristics, since no auxiliary attempts 

to chop the neutron beam are made. The same type of problem ar ises in the 

use of a chopper for time-of-flight measurements in that burst width from 

the chopper will limit experimental resolution. However, somewhat better 

control is provided than with the Poole technique. Disadvantages of the 

chopper method are , however, the necessity for making large corrections 

to the experimental data for the energy dependent chopper transmission. 
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The existence of time dependent backgrounds and collimator alignments are 

other critical considerations. 

Let us next consider resolution requirements. No discussion of resolu

tion requirements in integral spectra measurements was made since this is 

not really an adjustable quantity. One takes what one can get, and hopes it is 

adequate. It can be shown that the uncertainty in the measured neutron flux 

at any energy is proportional to the second time derivative of the spectrum 

at that point, according to the relation 

In general, if one wishes less than 1% distortion in the spectrum due to 

resolution he will find (except in a resonance region) rather poor energy reso

lution possible in the experiments. Figures 3 and 4 illustrate this point. Fig

ure 3, reported by M. J. Poole, shows requirements for approximately 1% 

precision of measurement both in the Maxwellian and 1/E energy regions and 

also the energy resolution being used in various experimental spectral de

terminations. 

In general, the statement can be made that meaningful neutron spectra 

can be measured for any moderator by either technique up to 10 ev. These 
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measurements are of the precision necessary for rigorously checking theo

retical predictions. Above 10 ev the Poole technique has many advantages 

for non-multiplying systems. For highly multiplying systems the chopper 

method is in general better. Combinations of the two methods for steady 

state spectral studies have been devised and can extend the general useful

ness of either method. 

Figure 4 shows what has been used in some of the work to be reported 

today. The upper chopper curve is the resolution used in Zenith measure

ments of graphite spectra. The lower chopper curve is what would seem to 

be reasonable to obtain with present slow choppers. 

The next point worth mentioning is that there are very easy analytical 

methods of correcting the time spectrum in Poole experiments which should 

5 
be used. These techniques, due to D. E. Parks, permit one to calculate the 

first time moment for any neutron energy (mean emission time). There is 

simply no need to guess this quantity any more. This places pulsed spectra 

measurements on a completely objective basis even for heavy moderators 

such as graphite. Calculations of mean emission time for graphite a re shown 

in Figure 5. 

Other general considerations in making differential spectral measure

ments which should be mentioned are the following; 

EC-15 



w o 
H 
ON 

O 
UJ 
(/> 
-1 
-J 
5 

.35 

.30 

.25 

.20 

.15 

.10 

.05 

on 

. . ^ ^ ^ 

WEIGH ILD CURVE ^ \ ^ 

- : ^ ^ 

- ^ ^ ^ 

-

— 

1 

2 FT CUBE BORATED GRAPHITE 

MEAN EMISSION TIME 

\ 

\ \ 

' ^ ^ ^ ^ ^k 
1 ! 

.001 .01 0.1 
E(EV) 

Fig. 5 Calculation of mean emission time for graphite 



1. Spectra measurements in arbi trary unpoisoned geometries a re hard 

to understand. This problem is complicated by spatial effects. 

Simple interpretations of results a re not likely, 

2. Spectra measurements in the direction of a flux gradient - 0° flux 

leakage spectra are hard to understand. Correction procedures for 

determining the scalar flux from an angular measurement are not as 

yet verified, 

3. One must watch beam extraction techniques since spectral per tur

bations are possible. The scatterer techniques should never be used 

near discontinuities. 

4. Lattice studies by direct measurements are very hard to do. Beam 

extraction can perturb measured quantities severely. In addition, 

these techniques presently lack sufficient spatial resolution, 

5. Energy sensitivity of neutron detectors for these measurements 

should always be measured relative to a standard rather than cal

culated, 

III. Measurements 

Infinite Homogeneous Medium Spectra 

Calculations of infinite medium neutron spectra represent one of the 
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simplest integral applications of scattering law data. What is meant here is 

that the neutron flux is flat at all energies, no transport of neutrons in or out 

of a typical volume exists, thus only the competition between thermalization 

and absorption determines the spectrum. In general, if one desires to check 

the adequacy of proposed scattering laws for a moderator, in an integral way, 

this is the place to start . Leakage and transport effects together with self-

shielding difficulties should be avoided. This means that homogeneous absorp

tion should be utilized, and measurements where there is either a flux gradient 

or a large second derivative (B ) of the flux should be avoided. Once this situ

ation is under control for a moderator then it is proper to proceed to finite 

medium studies. The ability to solve this problem for a moderator is a very 

great step forward since it is then not too large a step to the practical prob

lem of predicting reaction rates in fuel and absorbers present in a reactor. 

Workers in this field have been, M. J. Poole, R. Slovacek, K. Burkart, and 

W. Reichardt, and the General Atomic group. 

The mathematical expressions with which one t r ies to calculate the 

measured spectrum or its average properties are : 

E 

-DV^0(E) + S 0(E) = / 0(E')S(E'-E)dE' + S(E) (1) 
0 

^o 
/ 0(E')S„(E')dE' = E0(E)[ |S (E) + yS ] (2) 
0 s a 
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The first equation is the neutron balance equation written in diffusion approxi

mation. Leakage plus scattering and absorption losses from a unit cell a re 

set equal to neutron gains from neutron upscatterii^ and downscattering. The 

second equation is a conservation condition on the spectra which simply states 

that the total scattering across threshold E must equal the total absorption 

below it. This expression is used to check the validity of a measured spectrum. 

If it is not satisfied, one does not have infinite medium conditions for the spec

trum measurement. 

Results from various laboratories in general indicate that spectra can be 

better predicted with a bound hydrogen scattering kernel, such as that proposed 

by Nelkin, than with a free hydrogen kernel. The spectra are 15 to 20% differ

ent than those predicted by free hydrogen models and in general a re harder. 

Reaction rates calculated using the bound spectra a re some 5% different than 

those using free hydrogen. Figure 6 shows differential experimental results 

taken at Karlsruhe compared to predictions of the Nelkin water model. A very 

unusual occurrence is evidenced here, namely the theoretical spectra (dashed 

curve) is higher than the experimental in the joining energy region around 

0.1 ev. This is not in agreement with spectra measured by Poole in England 

or Beyster et al. at General Atomic. Length of flight path and size of assembly 
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were less in this new experiment than that used in previous work. However, 

the reason for this disagreement is not at all clear at present and should be 

ascertained in the near future. The spectra measured for boron and cadmium 

absorption (taken at General Atomic) a re shown in Figure 7. These spectra 

on cadmium agree with Poole's independent data to within 10% at the same 

poison concentrations. Both spectra show hardening and agree relatively 

well with infinite medium spectrum theory using Nelkin's water kernel. 

Erbium has also been studied under infinite medium conditions at several 

laboratories and shows good agreement with theory (Figure 8). The study of 

the effect of the erbium resonance on neutron spectra in water systems is 

extremely important since the erbium resonance structure is not unlike that 

239 
of Pu , often a very important source of reactor absorption after relatively 

long reactor burnup. It will be observed that the very large erbium resonance 

perturb the spectrum relatively little in water assemblies since qualitatively 

there is such a high probability of scattering over the resonances. Gadolinium 

absorption spectra have also been measured and agree relatively well with 

analytical predictions. In fact, of the various homogeneous situations studied, 

only samarium absorption has given really peculiar results . The spectra are 

too hard and the neutron conservation condition (Figure 9) fails. These are 

General Atomic measurements. It is a long standing problem. Disagreements 
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both in relative shape and in the neutron conservation condition of roughly 

twenty percent are apparent. Since samarium in thermal reactors overrides 

the effects of all long lived poisons, the importance of resolving this problem 

is obvious. 

A general conclusion which can be drawn from the infinite medium 

spectrum measurements in water is that even more molecular binding is 

called for in the model, especially between 0.1 and 0.4 ev neutron energy. 

Differential measurements to substantiate this conclusion are clearly needed. 

For polyethylene, experimental data has been available for some time. 

D. Goldman at KAPL has recently constructed a scattering law, based on 

the Nelkin model, and the comparisons between theory and experiment a re 

shown in Figure 10. The agreement is really excellent. The effect of binding 

on the neutron spectra can be evaluated in an integral sense by calculating 

the average 1/v cross section for the spectra assuming bound and free poly

ethylene kernels. These two methods of approach give average cross sections 

differing by some 16%, a significant number. Polyethylene spectra measured 

in various matrices at KAPL (Figure 11) using the chopper technique have 

also been analyzed but the theory tends to differ by some 20% with experiment 

which gives a harder spectrum. Water spectra on the other hand, measured 

with the same apparatus are in agreement with those measured elsewhere. 
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These geometries consisted of thin fuel and moderator (polyethylene) strips 

so self-shielding corrections are necessary. Here, again, this discrepancy 

should not be allowed to persist . Either present theoretical techniques are 

not adequately handling this problem or experimentally there are effects (i.e., 

leakage or gradient conditions) being overlooked which all workers in the field 

would like to understand. 

Areas where work is needed for this class of experiment is on clean

ing up the existing discrepancies enumerated above and proceeding to studies 

of heated water spectra. The older experimental data indicates that binding 

effects in water are not important at absolute temperatures of 500° to 600°K. 

This should be verified since these studies indicated the same conclusion for 

300°K temperatures, which we know now to be incorrect. An experimental 

apparatus being used to study temperature dependent spectra in water is shown 

in Figure 12. 

rv. Finite Medium Neutron Spectra 

The first objective of this type of measurement is to perform studies of 

spectra under easily understandable one-dimensional geometrical conditions 

as similar as possible to those normally encountered in the classic Milne 

problem. This means that one has something like a semi-infinite one-dimen

sional slab with a vacuum boundary. All spectra to be discussed here have 
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been measured in homogeneous or nearly homogeneous media so that one does 

not observe flux depression and self-shielding effects. 

The next question to consider is why one should measure and analyze 

angularly dependent spectra in finite medium. Clearly from the reactor de

sign standpoint it is most important to understand scalar flux spectra. One 

does, however, encounter situations in reactor analysis where a knowledge of 

the angular flux is extremely important. This occurs in control rod analysis 

and in general in most change-of-medium problems. In the cylindrical lattice 

or cell problem one finds marked similarities to the Milne problem when one 

considers the transition region at the interface between fuel and moderator -

namely a strong neutron sink exists in both cases. 

In general finite medium spectra constitute a very good check of cal-

culational techniques. For example questions of spatial and energy mesh size, 

degree of approximation to the scattering kernel and approximate methods of 

integration a re all amenable to careful study. The work to be reported here 

is mainly that done at General Atomic during the last year. 

In these investigations there are a myriad of quantities which could be 

measured. Limiting this program to the essentials becomes the problem. 

Geometrically, two possible arrangements are shown in Figure 13. Inter

mediate angular measurements are also possible. Beam extraction from the 
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assembly can be attained either by standard re-entrant hole methods or by the 

beam scatterer technique. In the present program most of the emphasis has 

been placed on measurements at 90 and 0° with occasional check points in be

tween. The 90° measurements essentially establish the scalar flux whereas 

the 0° measurements specify the spectrum of the angular flux (not current) in 

this specific direction. The scalar flux is of course defined as the integral 

over all angles of the angular flux. The slab thickness to be used in the in

vestigation can and should be varied. It is of course essential in these experi

ments to emphasize the study of situations where strong spatial gradients exist 

rather than flat flux conditions. 

Scalar flux measurements have been made in slabs of pure water, boric 

acid solutions, and in an effectively homogeneous multiplying assembly. Two 

typical examples are shown in Figures 14 and 15. The first example is the 

scalar flux determination in the center of a four-inch slab of pure water. 

Various calculations of the spectra using the integral transport code THERMOS 

are given. The top curve is a calculation assuming only a P scattering law 

whereas the dotted curve has been calculated including many refinements. A 

diagonal P.. kernel is used together with the P kernel to describe anisotropic 

scattering. An anisotropic source specified in diffusion theory approximation 

and transverse leakage corrections for the geometry are all used. The Nelkin 
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bound hydrogen scattering model is used. One does not expect theoretical 

and experimental spectra to agree below 0.01 ev neutron energy because of 

the method of beam extraction. Above this energy, however, good agreement 

is attained. Figure 14 illustrates that even for scalar flux determinations 

the calculated spectrum depends on geometrical and kernel refinements. 

Figure 15 shows calculated and measured scalar flux spectra in the sub-

critical assembly. Here, again, good agreement is obtained between theory 

and experiment. 

Difficulties to be encountered in the performance of 0° spectrum meas

urements a re indicated by the calculations shown in Figure 16. It is clear 

that only in the last centimeter from the edge of the slab does one encounter 

rapid spectral variations. This fact puts a stringent requirement on spatial 

resolution in any angular flux measurement. The next two figures illustrate 

some of the current problems with the fitting of the experimental data. In 

Figure 17 the leakage spectra from a two-inch slab of poisoned water is 

shown. Residual disagreements after the anisotropy of source and scat ter

ing in P^ approximation have been corrected a re about 15%. The source 

anisotropy is taken into account in both THERMOS and DSN by assuming 

the diffusion theory angular distribution 

S(E,X,^.) = 0 ( E ) [ ^ - | ^ i D ( E ) ^ ] . 
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In Figure 18 for pure water the residual disagreements are about 40%. For 

all of the larger slabs the magnitude of disagreement is around 40%. Both 

codes DSN and THERMOS appear to give the same result at present. Leakage 

spectra (0° flux) measured in multiplying geometry also disagree by a large 

amount with theoretical predictions. Thus very little chance exists that a 

subtle source geometry effect is perturbing the measured spectrum. 

The explanation of the large disagreement encountered in the study of 

angularly dependent spectra is not obvious. More refinements (P„, P„, etc.) 

in the scattering kernel may be necessary. Mesh size used in the calculation 

may be affecting the predictions. Since this is one of the largest discrep

ancies existing in the field today a concerted effort to clean it up should be 

made. 

V. Lattice Studies 

The understanding of neutron spectra measurements in actual lattices 

or mock-up lattices is a worthwhile practical objective for people making 

spectra determinations. The lattice geometries are the most likely to be 

encountered in reactor design and are thus the problems for which solutions 

are really desired. The work done for some common moderators will be 

summarized here. Graphite, DoO, and water lattices will be considered. 
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Graphite 

The work to be discussed here is mainly the new work reported to the 

7 

thermalization conference on Calder Hall and Zenith experiments. An at

tempt, however, will be made to indicate the over-all status of experiments 

on graphite systems. The fuel cell studied in Zenith is shown in Figure 19. 

Although this is strictly speaking a two-dimensional problem the analysis 

as handled by essentially a one-dimensional DSN calculation. All graphite 

was effectively lumped into the graphite regions between the fuel materials 

by increasing the density by 7.7. Although this experiment appears to be an 

interpretable one, it is questionable that it is a recommended way to go about 

verifying the adequacy of a graphite scattering law. The two-dimensional 

geometry and lumped absorption nature of the cell can possibly make agree

ments between theory and experiment fortuitous. The experimental conclu

sions reported are : that with the Egelstaff-Schofield kernel, derived from 

experimental scattering data, one can predict the measured spectrum in the 

graphite cell. Using standard homogenization assumptions (self-shielding) 

rather than transport theory, the spectrum did not agree well with experi

ment. Further it is apparent in Figure 20 that the measured spectrum is in 

far better agreement with the E.S. spectrum than with either the spectrum 

calculated using the free gas or Debye kernels. 
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In the paper by J. D. Macdougall on spectra at the Calder Hall cell 

edge in a graphite natural-uranium lattice, a clear-cut need for the E.S. 

scattering law or equivalent is indicated. Although not as severe a check on 

scattering law or calculational methods as the Zenith work, carbon of mass 

12 is clearly ruled out. This spectra, however, shown in Figure 21, is cal

culated to be slightly softer than experiment as in the Zenith case (Figure 20) 

indicating an underestimate of the high frequency components of the phonon 

distjribution. 

Another set of experiments discussed at previous conferences has been 

done in graphite at General Atomic under homogeneous conditions. Results 

are shown in Figures 22 and 23. In this case, as in the latter, the calculated 

spectrum was very sensitive to scattering law. The kernel used in the calcu-

9 
lation was devised by Don Parks and is based on the frequency spectrum of 

Yoshimori and Kitano, derived largely from specific heat data. Thus two 

different methods of interpretation have been successful in two different ex

periments. It is thus worthwhile to try to compare the predictions of the two 

scattering laws for the same case. Figure 24 shows the result calculated for 

the Zenith lattice. The Parks ' kernel was used in calculations of the homo

geneous A and B cases for the Zenith lattice. In the A case complete homoge-

nization was used for both kernels and for case B and energy independent 
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self-shielding factor was introduced. In both comparisons the spectra p r e 

dicted using the Parks ' kernel are harder than the E.S. predictions, indicating 

the presence of higher frequency components in the phonon spectrum in the 

former case. Clearly, in addition to further typical experimental investiga

tions it would be desirable to re-analyze the Harwell data using a two-dimen

sional representation of the cell plus the Parks ' kernel and to re-analyze the 

General Atomic data using the Egelstaff-Schofield's kernel. 

The time dependent spectrum studies (at short times) in graphite r e 

ported to the conference by E. Barnard do not presently indicate the exist

ence of a spectrum harder than predicted by the Egelstaff-Schofield scattering 

law. At long times, however, after the introduction of the neutron pulse the 

spectrum is more diffusion cooled than predicted with the Egelstaff-Schofield 

kernel indicating as before the need for the higher frequency terms in the 

phonon distribution. 

D2O Lattices 

Here again it is desired to correlate as much as possible spectra meas

ured in homogeneous D^O systems with that in heterogeneous situations. First , 

let us consider the available homogeneous data. It was taken at General Atomic 

in the geometry shown in Figure 25. The resulting spectrum is shown in 

Figure 26. Clearly, we have a situation where the least physically accurate 
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kernel works the best. The Brown and St. John kernel with an effective mass 

of 3.9 would fall somewhere in between the results presented. All calculations 

in DnO were done with the incoherent approximation. Butlers ' theoretical 

work in England indicates this assumption is relatively good. 

Considering the integral results now, Brown at Savannah River has made 

foil measurements in fuel moderator configurations and finds a harder spec

trum in fuel than predicted by theory using the Brown and St. John's kernel. 

The same information is indicated by the M.I.T. work where the Brown and 

St. John flux shapes agreed reasonably well with experiment but here theory 

also predicts a softer spectrum in the fuel. The comparison between theory 

12 
and experiment by D. C. Leslie for the D„0 reactor OCDRE shows the same 

effect. This effect is opposite to that shown by the differential work, Figure 

26. It perhaps is worthwhile reasserting at this time the point that although 

the integral foil method is somewhat sensitive to scattering law it is more 

sensitive to transport assumptions concerning the leakage from the moderator 

and transmission properties of the cell. It thus checks these methods most 

strongly. The differential spectral measurements a re , however, more sensi

tive to scattering law approximations. Some confusion on how to describe 

low energy DgO scattering is thus indicated by the presently available experi

mental results. 
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Water Lattices 

Workers on heterogeneous water-uranium lattices have included Camp

bell and Poole at Harwell using pulsed and integral techniques and Mostovoi 

in Russia who employed a chopper technique. Experimental geometries used 

in both cases were typical of those employed in non-heterogeneous investiga

tions, i.e., cylindrical rods were spaced in a water tank. In the English work 

approximately three centimeter rods were spaced on a four centimeter pitch 

while in the Russian work approximately four centimeter rods were spaced 

on a six centimeter pitch. Spectra were measured both perpendicular and 

parallel to the rods' axes both in the rods and in the water channels between 

rods. Honeck and Takahashi have attempted to calculate the spectrum in both 

cases and find measured spectra to be considerably harder than the theoretical 

predictions. In addition, the necessary spectral neutron conservation laws 

are not obeyed on these spectra. The current situation is shown in Figures 27, 

28, and 29. The worst disagreements are encountered when the spectra in the 

fuel and parallel to it are compared to theory. 

The situation for these lattices is not entirely unlike that observed for 

the finite medium leakage spectra reported in Section III. The affect is 

in the same direction and the disagreements of the same order. However, 

the experimental problems are far more severe in the lattice case than in 
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the Milne case. A clear-cut need for further experimental lattice work in 

clean geometry exists to straighten out the present problems. 

At present some suggestions for future experimental work are in order. 

It is now clear that spatial gradients introduced by source position strongly 

influence angular spectra. It is thus necessary to guarantee in lattice work 

that these gradients, and for that matter bucklings, are very small relative 

to those established by the lattice structure. This can best be assured if the 

measurements are made in a multiplying system. Flux flattening can be a t 

tained for this work with system multiplications of 10 or so. In addition, 

methods of beam extraction can perturb the measured spectrum strongly when 

the hole introduced into the lattice is 1/3 or more of the rod or channel size. 

Thus small re-entrant tubes must be used if good spatial resolution, with no 

attendant flux perturbation, is desired. It would appear that investigations 

in which flux averages are measured over many lattice cells would be a less 

ambitious first course of action. Foil work also has many distinct advantages 

for this class of experiment. Good spatial resolution with little or no per tur

bation of measured quantities can be obtained. In addition one often measures 

the quantity desired directly in a practical reactor problem, namely the act i 

vation distribution which can be related to the thermal utilization for the 

cell. It will be recalled that activation studies reported in the previous paper 
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by Honeck for water-uranium lattices indicate the existence of relatively 

good agreement between transport theory predictions and experiment. 
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Measurements of Spatial and Spectral Distributions of Thermal 

Neutrons in Heavy Water^ Natural Uranium Lattices 

P. Brown, I. Kaplan, A. E. Profio^ 
T, J, Thompson 

Masssachusetts Institute of Technology 
Cambridge, Massachusetts 

March Ikt 1962 

I, Introduction: 

Measurements of the spatial distributions of thermal neutrons 

in natural uranium^heavy water-moderated lattices have been mad© 

with gold, lutetlum^ and europium in the exponential facility of 

1 2 3 1 

the M.I.T, Lattice Research Project. * '^ Gold was used as a —-

absorber to measure the relative neutron density; Lu has a 

neutron capture resonance at 0.1)-|.2 ev with the result that the 

activation depends strongly on the neutron energy spectrum; Eu ̂  

has a(^) - thermal neutron absorption cross section and also a 

strong resonance at 0,1|.6 ev. As In the case of lutetium, but to 

a lesser degree, europitom activities depend on the neutron energy 

spectrum. 

The experimental distributions were compared with those calcu

lated with the THERMOS CODE.^ THERMOS assumes a cylindrical cell 

centered on the fuel rod and computes the spatial and spectral 

thermal neutron distribution for various eplthermal cutoffs. The 

Brown - St. John kernel is used in these calculations. Several 

integral properties of the cell, such as average velocities and 

activity distributions for various detectors, are also computed, 
II, Experimental Technique: 

The M,I,T, Heavy Water Lattice Research facility consists of 

a well shielded tank containing the lattice and heavy water and fed 
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from the bottom by a special source arrangement utilizing the 

M,I,T, Reactor thermal column. Measurements made to date have 

been in a l|.-foot diameter tank containing lattices of 1.010 inch 

diameter, aluminum clad, natural uranltim metal rods on triangular 

pitches of l̂ -.S-lnches, 5.0-lnches, and 5.75-inches, respectively. 

Experiments are presently being performed with 0.250 inch, 1.03^ 

TT'-^-^ metal rods, on spacings of 1.25-inch, 1,5-inch^and 1,75-inch, 

respectively. 

Intracell flux traverses were made in the central cell inside 

a split fuel rod and on thin aluminum foil holders strapped to the 

rod and extending out into the moderator both toward the next 

adjacent rod and to a point midway between the next two adjacent 

rods, as shown in figure 1, Aluminum was used Instead of plastic, 

because an early experiment showed that plastic holders depressed 

the flux by as much as 3% whereas the effect of aluminum was only 

about 0.5^. Polls in the moderator were corrected for this flux 

depression by al\iminum. Foils in the fuel were arranged in a 

spiral pattern to provide maximum foil spacing and minlmtun flux 

perturbationywhlch was computed to be negligible. Flux traverses 

were made with bare foils and with foils with 0.023 inch thick 

cadmium covers, The cadmium covered foils were irradiated at the 

same time as the bare foils, but at different heights in the tank 

to avoid thermal flux perturbation by the cadmixxra. An experimentally 

measured exponential extrapolation length was used to correct for 

the differences in height. The Au foils were about 2 mils thick, 

and were weighed accurately to a fraction of a percent. The Lu and 

Eu foils were very dilute and only a small fraction of a mean free 
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path thick. They were fabricated by spraying glyptal suspensions 

of the oxides on 0.005-inch thick altnniniam backing and were 

calibrated accurately in a uniform flux on a rotating foil wheel. 

All foils were TT inch in diameter. 

Several measurements were made to determine the effect of 

macroscopic position on the intracellular flux distribution. Axial 

and radial macroscopic traverses made with TT-^ foils gave the 

2 1 same shapes as those made with gold, *-̂  indicating that the thermal 

and epithermal neutron distributions had the same spatial depend

ence sufficiently far from the source. Similar macroscopic fliix 

shapes were obtained with lutetium foils. Intracellular gold flux 

traverses made near the edge of the tank showed only small differences 

from those made at the central cell. It was concluded that, certain

ly in the central cell, the neutron flux was separable into a 

macroscopic J ( *\ ) distribution and a microscopic distribution, 

III. Results: 

Measured activity distributions were normalized at the cell 

edge to those calculated b^ THERMOS, Two sets of measurements 

with each detector were made at the three lattice spacings; the 

results were foimd to be reproducible to within about one percent. 

The cell edge was chosen as the normalization point because that 

is where the thermal neutron distribution is closest to a 

Maxwelllan; calculations of effective neutron temperature are 

then made relative to the temperature at the cell edge. It was 

found that, in all cases, the shapes of the experimental activity 

distributions in the moderator were fit very well by THERMOS. Any 

differences between theory and experiment would thus appear in the 
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it was possible to extrapolate the cadmium covered europium 

activity for 0,023 inch thick cadmiiom to zero thickness of 

cadmium. The use of the asymptotic'activity mentioned above 

and the extrapolated activity made it possible to correct the 

europitim plots to values of the cutoff energy both below and 

above the OJ4.6 ev resonance. The experimental activity at the 

center of the fuel was higher than that predicted by THERMOS 

by about 3.7^ for an 0,63 ev cutoff and Ij..?̂  for an 0.19 ev 

cutoff. Typical results are shown in figures k and 5. The 

discrepancies are perhaps due to the simple model used in 

correcting the activities of the cadmium covered foils. The 

simplicity of the model seems to be justified, however, by 

the fact that the activity of the cadmium covered europium 

foils is less than 10^ of the total activity and the model 

applies a correction to this already relatively small effect. 

Spectral hardenings from cell edge to rod center were 

obtained by assigning at these points a maxwelllan temperature, 

at which the average velocity is equal to that of the computed 

spectrtun over the energy range up to 0.23 ev, the beginning of 

the w tail. The neutron temperature changes from cell edge to 

cell center were, for the )|.,5-inch, 5»0-inch and 5»75-inch 

lattices, 100.90c, 97.6°C, 9î .2oc, respectively. The tempera-
7 

ture changes compare favorably with those computed previously 

with THERMOS for 1,0-in. natural uranium - heavy water lattices 

and square pitches of 3,625-in. and if.5-in,; the temperature 

changes for these lattices were 100°C and 95°C, respectively. 

This method of obtaining the changes in neutron temperature 

seem to be justified by the good agreement between THERMOS and 
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4 experiment lu te t ium, exiroplum, and gold d i s t r i b u t i o n s . 
A 

IV, C onelus i ons: 

The experimental results show, for the heavy water, natural 

uranî im lattices here treated, that the thermal neutron density 

can be computed to a high degree of accuracy. In view of the 
176 

complicated energy dependence of the cross sections of Lu 

and E u ^ , the results for these detectors agree very well with 
176 

those computed with THERMOS. It should be pointed out that Lu 

1^1 is a better detector than Eu ^ , in that it is much more sensitive 

to changes in the thermal neutron spectrum, and that it does not 

require an involved correction for epicadmlum activity. 

Some of the difference between theory and experiment may 

be due to approximations in the Brown -St. John kernel. H. C. 

Honeck, of BNL, has recently developed for THERMOS a method 

for computing a Nelkin type kernel using parameters for heavy 

water. The theoretical distributions in the above mentioned 

lattices will be recomputed with this new kernel. 

At present, heavy water lattices of 0,25-inch diameter, 

uraniiam rods with a TT-'-' concentration of 1.03^ are being studied. 

Possible corrections for the finite size of the system, such as 

leakage, are being studied. "pie possible failure of the 

Wigner-Seitz circular cell approximation at small lattice spacings 

(e.g. 0.25-in. rods in a 1.25-ln. triangular pitch) will also be 

investigated. 
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Observation of Hardened Neutron Spectra 

in Water and Boric Acid Solutions 

by 

K, Burkart and W. Heicuardt 

Institut fiir Neutronenphysik und Reiiktortechnik 

des Kernforschungszentrums Karlsruhe 

Abstract 

Neutron spectra in water and boric acid solutions have been observed 

by the time-of-flight method and by Lutetium foil techniques. Both 

methods yield results in good agreement. They show a stronger hardening 

than those obtained by previous authors. The agreement with the pre

dictions of the Nelkin model is satisfactory, 

1. Introduction 

In 1958 Westcott ^ ' suggested that Lu might be a good indicator 

of the "temperature" of thermal neutrons because of its large capture 

resonance at 0,142 eV. Measurements on these lines have been done by 

G.A. Price ^ ' and by L.C. Schmid and W.P. Stinson ^ '. They compared 

1 7A 1 

the activity of Lu with that of a detector in heated graphite 

and showed that the ratio of their activities is a very sensitive mea

sure for the graphite temperature. We have applied this method to de

termine the hardening of neutron spectra in water poisoned with diffe
rent amounts of boric acid. When analysing the results using the 

Westcott convention ^ ' we found a stronger hardening of the spe( 

(5) than M.I, Poole ^ ' had obtained by the time-of-flight method. 
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The results did not agree, too, with the theoretical predictions of 

Coveyou's formula ^ ' and the theory of Brown ^ ', We therefore started 

some differential measurements on neutron spectra in aqueous boric acid 

solutions by the pulsed source time-of-flight technique ^ '^ . The 

results of the differential and the integral measurements are described 

in this paper. 

2, Experimental Arrangements for the Time-of-Flight Measurements 

The experimental set up for the spectrum measurements by the time-of-

flight method was essentially the same as that described in ref, 9 , 

Neutrons were obtained from a pulsed T(d,n)He neutron source yielding 

g 
about 10 neutrons per pulse. An evacuated flight path of about 5 m 

length shielded by 10 cm of B-O was used. Neutrons were detected by 

a layer of 8 high pressure BF_-counters which fed the counting pulses 

into a TMC 256 channel time analyser. The collimators were made from 

boron carbide encased in aluminium or from boron carbide mixed with 

plexiglas. No difference in the measured ^ectra using these two sorts 

of collimators could be observed. The neutron beam from the middle of 

the moderator assemblies was extracted by conical extraction channels. 

The angular divergence of the cone was slightly greater than that of 

the neutron beam which was defined by two apertures in the flight tube. 

No neutrons from the walls could therefore reach the counters. Because 

of the conical shape the flux distortion caused by the extraction 

channels is much smaller than when a cylindrical shape is used. 

3. Results 

As the intensity of our neutron source was not sufficient to do measure

ments on infinite geometry we have measured the spectra inside 15 cm 
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and 30 cm cubes. Whereas the leakage from these cubes causes a deviation 

from the infinite medium spectrum as far as the ratio of thermal to 

epithermal flux is concerned, it does essentially not affect the shape 

of the thermal part of the spectrum as the small hardening caused by 

the leakage loss is compensated to some extend by a "diffusion cooling" 

(9) 
effect^ '. This will be shown below by comparing the spectra of the 

15 and the 30 cm cubes. 

The following corrections had to be applied to the measured data: 

1. Subtraction of the background which was determined by closing the 

collimator with a boron carbide-plexiglas plug. 

2. Correction for the energy dependent counter sensitivity which was 

calculated using the data given by the producer (20th Century Electronics) 

3. Correction for the neutron losses in the flight path, i.e. trans

mission through 80 cm of air, 5 l/2 mm of aluminium, and 0,7 mm of copper. 

k. Correction to the flight time due to the delayed emission of the 

neutrons from the moderator.This effect was neglected in the epithermal 

region (>0,25 eV). In the thermal region (<0,08 eV) an average delay 

f 2 1 —1 
time equal to the thermal lifetime [{^ v) +DB J was assumed. The 

average emission time in the transition range (0,08-0,25 eV) was deter

mined by a transmission measurement through a thin sheet of cadmium 

(for the case of pure water). 

5.Resolution corrections because of the finite time spread of the 

neutron pulse emerging from the moderator. Resolution corrections were 

applied to the pure water data only. They amounted up to 8^ for the 

spectrum inside the 30 cm cube but were always smaller than 1% for the 

boric acid solutions. 

- 320 -



Fig.l and 2 show the spectra obtained from pure water and several boric 

acid solutions for the 30 cm and the 15 cm cube. In addition to the 

spectra from inside leakage spectra from the surface of the 15 cm cube 

were measured. These data are plotted in fig. 3. 

k) Analysis of the Results 

As can be seen from fig. 1 and 2 the thermal parts of the spectra from 

inside the moderators can be reasonable well fitted by a Maxwellian 

distribution. They deviate from the Maxwellian shape only below~0,01 eV 

0(E\ 
In fig. 4 the data of both vessels are compared by plotting '̂  ̂  /E versus 

energy. No significant difference between the spectra of the two cubes 

can be observed. Furthermore the data follow a straight line thus indi

cating that a Maxwellian distribution is a good fit, which suggests 

that the concept of a "neutron temperature" is at least a good approxi

mation. The "neutron temperatures" obtained from the slopes of these 

straight lines are listed in table I. 

The concept of a "neutron temperature" is not applicable to the 

leakage spectra. Fig.3 shows, however, that the spectra have identical 

shapes in the thermal range but are shifted towards higher energies with 

increasing boric acid concentration. The thermal part of the leakage 

spectrum from pure water is well represented by the asymptotic leakage 

spectrum from an infinite half-plane calculated by Kiefhaber^ ' using 

the Nelkin scattering kernel of water^ . In order to fit the leakage 

spectra from the boric acid solutions, the Kiefhaber spectrum was 

shifted by an amount • which agrees well with the values as 

can be seen from table I. 
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Table I 

Temperatures of the Maxwellian distributions fitted to the measured spectra. 

The last column shows the relative energy shift of the leakage spectra. 

4 

a 
' v*eff ^ 1 barns T 
ihydrogeni 

0,332 

1.37 

2.13 

3.33 

4.24 

Spectrum from inside the cubes 

15 cm cube 

T.t-Kl 

292i4 

356^5 

387-6 

N̂-̂ M̂ 
Tu 

0.215-0.017 

0.321^0.021 

30 cm cube 

T^l-Kl 

293-3 

301^5 

328i5 

355^5 

386^6 

T -T 
^N M 
M̂ 

o.o6oio.oi7 

0,119-0.017 

0.212-0.017 

0.317-0,021 

Leakage 
spectrum 

15 cm cube 

AE 
E 1 

0.08i0.03 

0.23±0.03 

0.30io.04 

T^ = temperature of the fitted Maxwellian 

T. = temperature of the moderator 
M 

In the transition region and the epithermal range the accuracy of our 

data is not sufficient to draw exact conclusions. Therefore no "joining 

functions" were determined. The ratio of thermal to epithermal flux for 

'̂ th pure water in infinite geometry was obtained by plotting TJ—— versus 
'̂ epi 

the effective thermal absorption cross section and extrapolating to its 

value of pure water. The extrapolation yields a value of 67 which is in 

(5) good agreement with Poole's result ^ '. 
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Integral Measurements with Lu-Foils. 

The integral measurements were performed by comparing the saturation 

activities of Lu and Cu in different boric acid solutions con

tained in a 30 X 30 X 25 cm plexiglas box. This device was irradiated 

in the pool of the FRM swimming pool reactor in a distance from the 

graphite reflector where the cadmium ratio was almost independent of 

space. The size of the container was sufficient to establish an infi

nite medium spectrum of thermal neutrons in the boric acid solutions. 

The slowing down spectra were almost the same inside and outside the 

box because of the surrounding water. 

The Lu-foils contained about 1,5 ^/cm of Lutetiumoxide with a purity 

of 99,9^, They were prepared by a sedimentation technique. The copper 

foils were punched out of a 8 /X sheet of electrolytic copper and weighed 

for calibration. The Lu-foils were calibrated relative to a standard by 

irradiation on a rotating disc in the pool of the FRM. 

During irradiations Lu and Cu foils were combined into "sandwiches". 

The small thickness of the foils allowed to neglect the self shielding 

and the mutual activation disturbance. Measurements were performed with 

bare and with cadmium covered sandwiches (Cd-thickness 1 mm). The foil 

activity was determined using 2/7 methan flow counters of high stability. 

The saturation activity ratios as obtained after the usual corrections 

for counter losses and radioactive decay are listed in table II, The 

"graphite" values were obtained in the thermal column of the FRF reactor 

and will be used for normalisation. 
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Table II 

Saturation activity ratios of Lu and Cu 

% f f 

r b a r n s i 
[hydrogen J 

g r a p h i t e 

0 , 3 3 2 

1,37 

2 , 3 0 

3 , 3 3 

4 , 2 4 

C^" 

^Cd 

8 3 , 0 

1 8 , 2 6 

1 0 , 7 1 

6 , 8 5 

5 , 6 0 

C^" 

C^" 

[ a r b i t r a r y u n i t s ] 

0 , 4 5 ( 5 6 ^ 5 0 ) 

0 , 4 5 ( 8 4 ^ 6 0 ) 

0 , 4 9 ( 1 9 ^ 7 5 ) 

0 , 5 1 ( 2 5 ^ 7 7 ) 

0 , 5 2 ( 8 2 ^ 8 0 ) 

0 , 5 4 ( 2 9 ^ 8 1 ) 

pLu Lu 
^ -^Cd 
pCu Cu 
^ ~^Cd 

[ a r b i t r a r y u n i t s ] 

0 , 4 5 ( 5 6 ^ 5 0 ) 

0 , 4 6 ( 2 3 - 7 0 ) 

0 , 5 1 ( 3 2 ^ 9 0 ) 

0 , 5 ( 5 2 9 - 1 1 0 ) 

0 , 5 ( 9 7 2 - 1 2 0 ) 

0 , 6 ( 3 5 0 i l 3 0 ) 

C = Saturation activity of the bare foils 
C„j = Saturation activity of the cadmium covered foils 
Cd •' 

6) Analysis of the Lu-Foil Measurements using the Westcott Convention 

(4) Following Westcott,^ ' we write: 

,Lu 

rcu 
g^"(T) ̂  rŝ '̂ (T) 

s'" (T) C"" 1 + r • s"" (T) (l) 

Here, g, r, and s have the well-known meaning while "the factor G contains 

the absolute cross sections, the foil thickness, and the counter 

efficiency. G is only very badly known but can be determined from the 

graphite measurement: In a thermal column, the neutrons are in thermal 

equilibrium (r-̂ tO) and follow a Maxwellian distribution with moderator 

temperatur T.., We therefore have 
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^ ) -0-g^"(V (2) 
C /graphite 

from which G is easily derived. Combining eq (l) and (2) yields 

(A ^ S""(T) . rŝ T̂) 
( c ^ 1 . rs^^T) (3) 

/c^"Y 
where is obtained by deviding the measured activity ratios 

through the experimentally determined G factor. For a g: 

eq. (3) represents a relation between T and r, A second relation is 
' ' " " & 

obtained from the cadmium ratio R , of the copper fo i u W = 

B„j = 
_ 1 + rs^"(T) 

•̂̂^ r(sC^(T)+0,437yj7) (M 

Combining (3) and (4), r and T can be determined. For this evaluation, 

S(T ) for copper was computed using an excess resonance integral of 

2.82 barns *̂  ' and a 2200 /sec activation cross section of 4.3 barns, 

g(T) for Lu was taken from Westcott's table^ . For g (T) the values 

given in table III were used. 

Westcott gives S ( T ) based on two extremely different "joining functions 

We found that both of them led to almost identical neutron temperatures. 

The values in table IV are average values for the two assumptions. 
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Table III 

g(T) for Lu^ 

T 

Cc) 

20 

40 

60 

80 

100 

120 

140 

Case I 

g from AECL 1101 

1.7011 

1.8373 

1.9769 

2,1175 

2.2576 

2,3957 

2.5305 

Case II 
g calculated froifl the re
sonance parameters of Ro-
berge and Sailor'1^)(l^* 
resonance) and Westcott 
(2nd resonance) 

1,741 

1.886 

2.035 

2.184 

2.334 

2,482 

2,632 

The T and r values thus obtained are listed in table IV. 

Table IV 

a 
%ff 

r barns \ 
hydrogenj 

0,332 

1.37 

2.30 

3.33 

4.24 

Case I 

^N 
(°K) 

294,5^2 

516 i3-

334 tj 

35 9 -k 

385 ^5 

T —T 
N̂ ̂ M 
T 

0,00(48^68) 

0,0(78il0) 

0,l(40ll0) 

0,2(25^14) 

0,3(15^17) 

r 

0,0104 

0,0471 

0,0800 

0,125 

0,151 

^N 
(°K) 

294,5-2 

315 -3 

333 -3 

356 i4 

380 -5 

Case II 

^N-^M 

^M 

0,00(48i68) 

0,0(75^10) 

0,1(35^10) 

0,2(13-14) 

0,2(96il7) 

r 

0,0104 

0,0471 

0,0802 

0,126 

0,152 

It is seen that the neutron temperatures do not depend sensitively on 

the Lu resonance parameters used. 
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7) A D irect Comparision of the Integral and the Time-of-Flight 

Measurements 

It is possible to compare the time-of-flight and the integral measurements 

without use of the "neutron temperature" concept. Therefore, the satura

tion activity ratios of Lu and Cu were computed from the measured 

spectra using the Lu and Cu activation cross sections. Since the 

time-of-f1ight measurements are inaccurate in the epithermal region, the 

subcadmium activation ratios were compared. The computations were per

formed using leV 
C-C^^=const/ ^„^,„ved (E)^ct(E) ̂  l-E2(Z:,^(E)d^^)] dE (s) 

where E_(ZZ (E)d ) describes the absorption of a 1 mm Cd filter. The 

Cu activation cross section was assumed to follow a l/v law while the 

1 76 

Lu activation cross section was calculated from the resonance para

meters of Westcott (case I as above) and Roberge and Sailor (case II), 

Normalisation was done via the thermal column measurements where the 

spectrum was assumed to be a Maxwellian distribution. The results are 

given in table V. 

Table V 

Subcadmium Lu /Cu activation ratios calculated 

from the measured spectra 

<5 

Sff 
barns /, , 

/hydrogen 
2 9 3 " K Maxwellian 

d i s t r i b u t i o n 

0,332 

1,37 

2 ,13 

3.33 
4,24 

Case I 

0,4556 

0,4561 

0,5023 
0,5345 

0,5912 

0,6389 

Case I I 

0,4556 

0,4S96 

0,5082 

0,5419 

0,5999 

0,6485 
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8) Discussion 

The measurements by the differential and the integral technique are 

in good agreement. This is seen by comparing the obtained neutron tempe-
Cd 
I 

Cd 

Cd 
ratures (tables I and IV) and the ratios j ^ in tables II and V, 

Cu-Cu 

The differential neutron spectra (fig. 1 and 2) seem to be in a reasonable 

(8) 
agreement with those observed by Beyster et al,^ , In fig.5 the "neutron 

temperatures" of tables I and V are compared with the values obtained by 

(4) 
Poole^ '. Though the limits of error overlap, our spectra are apparently 

always harder than Poole's, The figure also shows a remarkable deviation 

from Coveyou's formula and Brown's theory. The subcadmium /Cu activation 

ratios are plotted in fig.6 (LU parameters from Westcott, case l) and 

1 76 
fig,7 (LU parameters from Roberge and Sailor, case II) together with a 

calculation based on the Nelkin model of neutron thermalisation in water. 

While for higher boron concentrations the activation ratios as predicted 

by the Nelkin model agree well with those observed, there might be a small 

discrepancy for low effective cro.ss sections. 

Acknowledgements: 
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2 
Unfortunately, there is a difference in the boron concentration 

(2,13 resp. 2.30 / H in one case) 

3 
We are indebted to Dr, I.R, Beyster, San Diego, for providing us with 

the Nelkin spectra calculated for various boron concentrations. 
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INTEGRAL SPECTRUM MEASUREMENTS IN HETEROGENEOUS MEDIA 

I. Introduction 

In reactor calculations, neutrons are usually considered 

to be either in a "thermal" group or in one or more higher energy 

groups and this energy distribution is assumed to be constant 

throughout a unit cell. In heterogeneous reactors containing 

regions of high absorption, however, the neutron spectrum can 

change significantly in different regions of the unit cell with 

consequent discrepancies between the calculated and the actual 

neutron economies. Recent improvements in the theoretical 

method have been developed by Honeck; ̂•'•'̂ ' however, very limited 

experimental data * ' were available for comparison with the 

calculations. The purpose of our experiments is to provide 

sufficient data to permit a definitive evaluation of various 

calculational methods. 

Specific information which might be derived from the ex

periments includes the following: 1) an analytic representation 

of severely hardened spectra; 2) the form of the joining function 

for synthesizing a spectrum from a Maxwell-Boltzmann distribution 

plus a 1/E distribution; 3) properly averaged cross sections 

for evaluating (jyt) , the number of neutrons produced per thermal 

neutron absorbed in a heterogeneous lattice. 

It would be desirable to obtain differential spectrum 

measurements on heterogeneous lattices; however, experimentally 

it is much easier to obtain integral data with activation de

tectors. Accordingly we have used Lu, Au, Mn, and Dy detectors 
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and we plan also to use Pu. The properties of these materials 

are shown in Figure 1 and summarized in Table 1. 

II. Experimental Techniques 

For most of the measurements the activation detectors were 

fabricated in the form of wires .005 inches to .050 inches in 

diamecer. The Lu was fabricated from a dispersion of LU2O2 

(10% by weight) in an Al matrix. This material was drawn into 

wires .030 inches in diameter and cut into 0.5 inch lengths. 

The Dy wires were also made from an Al alloy,' likewise, Pu 

(4) 

detectors will be in the form of wires containing Pu Al alloy.* ' 

For activation measurements with strong resonance absorbers, 

it is desirable to have very thin foils to minimize self shielding. 

Accordingly, gold goils were prepared in the usual manner by 

vacuum evaporation. An alternative procedure which proved con

venient was to apply a solution containing a gold compound* 

on an Al foil backing and then baking to obtain a uniform gold 

film. Foils of 2-4 microns thickness were prepared using this 

technique. The resonance self shielding correction for this 

thickness is approximately 15%. 

III. Data Reduction and Analysis 

Since the activations must be measured to a precision of 

0.5% or less, it is necessary to count the detectors several 

times. To obviate many hand calculations of the decay corrections, 

a program was written for the IBM 650 computer. After the decay 

and foil weight corrections were applied, the Lu data were 

•Supplied by 'the Hanovia Chemical and Manufacturing Company, 
East Newark, New Jersey 
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analyzed using the method described in Reference 5. The calibration 

curve for the determination of the effective neutron temperature 

is shown in Figure 2. 

The method described by Westcott^°^ has been used to analyze 

the data where there is an appreciable epithermal component. 

Using this method the product of the epithermal factor, r, and 

the ratio (T/TQ)^ may be obtained as follows: 

The effective activation cross section a-^ is 

cr- = (g + rs) <^200 ^^"^ 

where r is the epithermal index and g and s are functions of 

the effective neutron temperature, T. For 1/v absorbers, g = 1 

and s = 0. 

The cadmium ratio for a "thin" foil is 

Red = ^-LJ£3. _ 
r js + (1/K) {T/To)̂ 2l (2) 

where K depends on the Cd thickness, (K::^2). Therefore 

r(T/To)^ - J 1 ^ ̂  
s (To/T)-2 (R^^ - 1) + Rcd/K (3) 

For the Lu detectors, 

A 
A 
A-L̂ bm (g + j-s) 
Â "̂ "̂  = (g + rs)i76 (3) 

175 

and 
A 1 7 6 

gi76 = Al76m (i + rs)^^^ - (rs)^^^^ (5) 

For measurements in the thermal column, r was taken to 

be zero. 
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IV. Results of the Measurements 

A. Stainless Steel Rod in the UFTR Thermal Column 

The results of traverses through a one inch stainless steel 

rod centered in the UFTR thermal column are given in Table II 

and are also plotted in Figure 3. As would be expected, the 

normalized activities of Au-198 and Lu-176m are identical since 

both have 1/v absorption cross sections. From Figure 2, the change 

in the effective neutron temperature from the center to the outer 

edge of the stainless steel rod is 25oc. 

B. Uranium Slab in the UFTR 

The sensitivity of the method is illustrated by the results 

summarized in TaHLe III and shown in Figure 4. If one assumes 

again that the spectra in the interior of the U slab and at the 

edge of the slab are Maxwellian then the corresponding change 

in neutron temperature is 16°C. 

C. Uranium Rod Clusters 

The results of traverses through 3 and 4 rod clusters are 

summarized in Tables IV and V and shown in Figures 5 and 6. In 

both cases, the individual U rods were one inch in diameter. 

For the three rod cluster the assembly was enclosed in a D2O -

filled Al can 2.9 inches in outside diameter. The four rod 

configuration was housed in a can 3.5 inches in outside dicimeter. 

Both of these assemblies were centered in the UFTR thermal column. 

D. Traverses through the UFTR Core 

Activation measurements were made throughout the UFTR core 

using Lu and Au detectors for the total flux. In addition 

cadmium ratio measurements were made with thin Au and In foils 
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in order to evaluate the epithermal component. A summary of 

the data is given in Table VI and a plot of cadmium ratios, 

lutetium activations, and r(T/TQ)^ is shown in Figure 7. 

E. Traverses through the Stanford Pool Reactor Core 

Table 7 summarizes the results of Lu and Dy traverses 

through the SPR core. The data are also plotted in Figure 8. 

The Lu data illustrate the rapid change in the spectrum above 

the core-reflector interface. 

V. Conclusions and Future Program 

The results of Lhe Lu activations indicate the sensitivity 

of this technique for measuring changes in the effective neutron 

temperature. Additional activation measurements are planned 

using Pu detectors. Comparison of the data with the spectra 

described by Westcott^^' is now in progress. Additional com

parisons will be made with spectra calculated using the THERMOS 

code.^^' 
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TABLE I 

Stable 
Isotope 

Lu-175 
Lu-176 
Pu-239 
Dy-164 
Au-197 
Mn-55 

Abundance 

S7.4% 
2.6% 

2 3.2% 
100 % 
100 % 

PROPERTIES OF 
ACTIVATION 

T^ 

2.69h 
6.74d 

-1 h 
2.33h 
2.69h 
2.57h 

Eres 
(ev) 

2.62 
0.142 
0.296 

4.9 
337 

DETECTORS 

'Activation (b) 
0.25 ev Er 

' 

35 850 
4000 13,600 
315 5,900 
2600 1,000 
96 30,000 
13.4 2,000 

Ej, 
(Mev) 

0.089 
0.112, 0.206, 0.318 

0.095 
0.412 
0.822, 1.77, 2.06 

TABLE II 

Lu AND Au ACTIVATIONS IN 
STAINLESS STEEL ROD 

Lu-177* 
Radius, Total Activity Lu-176m 

cm 

0.0 
0.254 
.381 
.508 
.625 
.762 
.889 

1.016 
1.143 

0.0 1,000 
.200 .997 
.400 .987 
.600 .973 
.800 .948 

1.000 .^32 
1.200 .915 

Ratios obtained from lo( X r) fits to experimental data. 
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Lu-177 

1.000 
1.021 
1.017 
1.022 
1.082 
1.111 
1.178 
1.193 
1.2B4 

Lu-176m 

1.000 
1.057 
1.032 
1.115 
1.117 
1.156 
1.225 
1.288 
1.387 

Au-198 

1.000 
1.018 
1.029 
1.089 
1.115 
1.162 
1.216 
1.297 
1.385 



TABLE III 

Lu ACTIVATION IN 

Position,cm 

.b255 

.5715 

.15875 
0 

-.15875 
-.5715 
-.8255 

U SLAB 

Activation 
Lu-177 

1.1300 
1.1134 
1.0126 
1.0000 
1.0092 
1.1187 
1.1360 

Lu-176m 

1.1820 
1.1431 
1.0369 
1.0000 
1.0267 
1.1544 
1.1660 

TABLE IV 

Lu AND Mn ACTIVATIONS IN 3-ROD CLUSTER 

Radial 
Pos'n.,cm 

0.85 
1.09 
1.321 
1.56 
1.80 
2.04 
2.27^ 
2.51 
2.75 
0.63 
1.27 
l.yo 
2.54 

Material 

U 

DjO 

Activation 
Lu-177 

1.008 
1.000 
1.049 
1.042 
1.066 
1.110 
1.173 
1.219 
1.297 
1.065 
1.157 
1.313 
1.528 

Lu-176m 

1.003 
1.000 
1.027 
1.032 
1.053 
1.078 
1.136 
1.185 
1.282 
1.112 
1.190 
1.353 
1.543 

Cd Ratio 
Lu-177 Lu-176m Mn 

75.1 1.59 24.6 
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TABLE V 

Lu AND Dy ACTIVATION IN 4-ROD CLUSTER 

Radius, 
cm 

1.35 
1.59 
l.o3 
2.06 
2.30 
2.54 
2.73 
3.02 
3.25 

0.63 
1.63 
2.03 
3.03 
3.G-> 

Material 

U 

D2O 

U 

La-177 

1.021 
1.000 

1.053 
1.1C2 
1.142 
1.259 

1.402 

1.189 
1.219 
1.492 
1.835 

Activation 
Lu-176ra 

1.024 
1.000 

1.041 
1.060 
1.086 
1.183 

1.309 

1.194 
1.216 
1.431 
1.677 

Dy 

1.010 

1.000 

1.079 
1.142 

1.333 
1.492 

1.277 

2.274 

Cd Ratios 
Lu-177 Lu-176m 

51.8 2.50 

80, 2.13 

TABLE VI 

Lu AND Au ACTIVATIONS IN THE UFTR CORE 

Pos'n.,cm Activation Cd Ratio xiT/T^y 

0.0 

0.0 
5.56E 

14.79E 
25.a5E 
35.10E 
5.56W 

14.79W 
25.85W 
35.low 

5.56N, 
13.15N, 
21.57N, 

S 
S 
S 

Lu-177 

1.000 

1.000 

1.023 
1.017 
0.881 

Lu-176m 

1.000 

1.000 

1.087 
1.270 
1.307 

Au 

60,467 
53,477 
52,253 
44,006 
40,211 
55,750 
48,096 
44,525 
41,289 

—~.» 

Au 

2.29 * 

2.176** 

.—^ 

——— 

In 

2.31* 

mm^ — 

— — — 

0.0355(ln) 
0.0417(Au) 
0.0457 

wm.mm — 

* Vacuum Evaporated Au Foil 
** Au Film from Solution 
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TABLE VII 

Lu AND Dy ACTIVATIONS IN SPR CORE 

Position,* 
Detector cm Total Activity 

Lu-177 Lu-176m Dv-165** 

Lu 3.4 
28.8 
41.6 

Dy 4.2 
14.2 
24.2 
29.2 
34.2 
36.2 
38.2 
42.2 
44.2 
48.2 
50.2 
-0.8 
-5.8 

-15.8 
-25.8 
-28.3 
-33.3 
-33.8 

* Vertical distance from midplane. 
** Normalized to 1 at ^ . 

1233 
564 
293 

- — 
___ 
---

——— 

28167 
8006 
2255 

---

— — 

0.990 
0.874 
.625 
.483 
.564 
.467 
.340 
.13li 
.1302 
.052 
.031 

0.981 
.987 
.817 
.524 
.576 
.655 
.762 

i 
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Pig. 1 Activation Cross Sections 

Energy, ev. 

- 3J+9 -



4 

Pig. 2 REF: HW-64866 
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Figure 4. Lu Traverse Through U Slab 
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FIG a 

FLUX TRAVERSE IN THE 

STANFORD POOL REACTOR 
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k Addendum t o p a p e r e n t i t l e d , 

" I n t e g r a l Spec t rum Measurements i n H e t e r o g e n e o u s M e d i a , " 

by T. F . P a r k i n s o n and S a g i d S a l a h 

TABLE VIII 

Lu and Dy Act iva t ion in B2O3 Solu t ions* 

B2O3 Cone. 

H2O 
• 1 

• 1 

M 

tl 

5 gm/liter 
II 

II 

II 

II 

10 gm/liter 
II 

II 

II 

n 

Pos'n.,cm** 

.6 
1.6 
2.6 
3.6 
4.445 

.6 
1.6 
2.6 
3.6 
4.445 

.6 
1.6 
2.6 
3.6 
4.445 

Activation*** 
Lu-177 

0.596 
0.709 
0.795 
0.873 
l.OCO 

0.295 
0.347 
0.503 
0.791 
1.000 

0.179 
0.223 
0.399 
0.740 
l.OCO 

Lu-176 

0.591 
0.697 
0-781 
0.871 
1.000 

0.277 
0.329 
0.476 
0.768 
1.000 

0.160 
0.201 
0.373 
0.717 
1.000 

Dv-165 

0.640 

0.769 
0.910 
1.000 

0.274 
0.332 
0.472 
0.759 
1.000 

0.155 
0.209 
0.370 
0.706 
1.000 

Ratio 
Al77/Al7bm 

1.008 
1.017 
1.017 
1.003 
1.000 

1.063 
1.055 
1.056 
1.029 
1.000 

1.119 
1.106 
1.070 
1.032 
1.000 

A177/A165 

_-_ 

1.075 
1.045 
1.065 
L.041 
1.000 

1.115 
1.067 
1.078 
1.048 
1.000 

* s o l u t i o n s in 3.5 inch Al can 
** from cen te r of the can 

*** normalized a t 4.445 cm 

i 620426 

357 -



4 

Lu Activations in B-O^ Solutions 
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1o Introduction 

The accurate calculations of the neutron energy spectrum plays an important 

part in the reactor physics design of the DRAG-ON reactor experiment. As an 

experimental check on the methods of calculations employed time-of-flight spectra 

have been measured on the second core loading of ZENITH, which had a composition 

close to that originally proposed for the initial loading of the DRAGON reactor. 

Atomic ratios C/U^^^ =210? 

TVU255 = 4.76 

A comparison of calculated with measured spectra in a given system is a good test of 

nuclear data, moderator scattering properties and calculating techniques. The main 

motive for the present calculations was the checking of various scattering models for 

is) 
graphite suggested from the scattering law project* '. In addition it was expected 

firstly that the calculations v/ould give useful information on the spacial and 

angxlLar dependence of the neutron spectrum, thus checking whether the actual spectrum 

which was measured was a representative(;411 spectrum and secondly that the validity of 

space-independent spectjrum calculations could be tested. 

(1) The general properties of the core are described in Ref^ and the reactor is 

shown diagramattically in Pig,1, Spectrum measurements were made in a collimated 

beam emerging from the top surface of a half length fuel element positioned 

at the centre of the core and h) close to the core side reflector bovindary. The 

measurements covered a range of core and side reflector temperatures between 20°C and 

650°C, with a maximum side reflector temeparature of 410°C. The experimental 

chopper spectra which it is proposed to compare with the calculated ones are those 

emerging from the centre if the reactor, particularly the spectrum with the reactor 

at room temperature, 

2. The principles of Time of flight Measurements usin^ a. Chopper, 

The method of obtaining the velocity distribution of neutrons in a directed beam 

from a reactor using a rotating slit system is much used and is well established (c.f. 
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Poole et al Ref. 42) 

A continuous neutron beam fal]s onto a spinning; rotor, made of material wi^h a 

high neuti'on removal cross section, containing a slit system which allov/s the free 

passage of neutrons during the interval for 7/hich the slits are aligned in the beajn. 

Pulses of neutrons are thus produced of a duration dependent on the dimensions and speed 

pf rotation of the slit system. The neutrons contained in the pulse are allowed to 

travel along a flight path several me res long before detection. A multi-ch^jinel time 

analyser giwes the flight time distritmtion of these detected neutrons relative to the 

moment of formation of the neutron pulse at the rotor. 

The observed spectrum of counts differs from the true beam spectrum incident on 

the rotor for four basic reasons. 

(i) the presence of background neutrons 

(ii) the finite length of the rotor s^its in the direction of motion of the 

neutrons resulting in the trensmission factor for neutrons decreasing 

with decreasing neutron velocity. A detailed discussion of the trans

mission of straight slit choppers is given by Larsson et al (3) and by 

Slovacek(4). 

(iii) the sensitivity of the detectors used is usually a function of neutron 

energy. 

(iv) counting losses we usually present in the spectrometer, particularly, if 

it is of the type that can only register one count per neutron burst. 

Pactors have to be applied to the observed data to allow for these effects. 

In using time of flight to measure reactor spectra two limitations must be 

remembered. Firstly the beam spectrum is proportional to the directed flux f(r 9 ) 

where ^ denotes the direction of the beam. In a hetergeneous reactor this is not 

usually the same as the direction averaged flux spectrum at the surface from which 

the beam emerges. Secondly, in order to extract the neutron beam a hole has to be 

made into the reactor, and sometimes, as in the experiments in ZENITH, it is necessary 
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to insert a probe tube into this hole. This can alter the conditions at the 

source area both by causing changes in the local scattering and absorption, and 

by allowing neutrons to stream to the source area from the sides of the hole. 

i 
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3. Design Considerations 

ZENITH is a low power reactor, the neutron flux a.t the positions where the spectrum 

8 2 
has been measured being of the order of 10 n/cra /sec. This low intensity influences the 

design of the experiment, the basic requirements of v/hich are as follows: 

(i) To extract a beam of neuti-ons from the region vfhere the spectrum is to be 

measured (the source) with a collimating system which allows only neutron from 

this region to emerge. The intensity of this beam must be as high as possible, 

and the presence of the collimator must not perturb the spectrum at the source. 

(ii) To design a rotor to measure the energy spectrum of the emergent beam in the 

energy Interval 0,01 eV to 10 eV. The energy resolution of the instrument must 

not distort the basic shape of the spectrum, but a balance between resolution 

and intensity has to be struck to enable a complete spectrum to be measured 

in less than two day's operation and with a statistical accuracy of better 

than 3/i on all points. (These requirements preclude the possibility of studying 

any detailed structure of the spectrum, which for example might be caused by 

the low energy resonance of U ). 

AE 
The rotor was designed to give a basic energy resolution of no worse than, — = 25^> 

in the energy region (O.OI - 0.5)eV, higher resolution v/idths being accepted at higher 

energies. The nominal rotor paraaneters chosen were x = 4 metres, 211 = 13«34 cm, 

S = 0.46 cm and d = 0.62 cm. Where x is the flight path length, R the radius of the 

rotor, S the spacing between the slits and d the slit width. There were seven slits 

in the rotor. The value of x was chosen to place the detectors above the moveable 

reactor shielding which helped to reduce extraneous background. Table I illustrates the 

resolution obtainable at various energies. 

It was calculated that vdth this choice of resolution, the difference betv/een the 

observed and the true spectrum is less than 1/c for all channels. Vfith the parameters 

listed above it was calculated that the rotor transmitted background should be less thcji 
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2% of the true counts for all channels. Ideally with the large energy range which is to 

be studied, t¥ro different rotors should have been used. However it was found that 

sufficient counting rate was available to study the lower energy regions by merely 

reducing the speed of the rotor. 

oub-collimators, each with a slit system identical to that of the rotor, were 

placed on either side of the rotor. These collimators served to reduce broadening of 

the neutron burst due to the inherent divergence of the incident beam, and also to 

reduce general background when the rotor was in the closed position. 

The experimental arrangement on the reactor is shovm in Fig.2 and is described belovf. 

Fig.3 shows the fuel element configuration in the neighbourhood of the surface from which 

the neutron beam emerges. Possible effects of the hetergeneous nature of this region on 

the measured spectrum ere discussed later. To reduce the distance the beam neutrons 

travel in nitrogen (which fills the free space within the reactor vessel) an argon* 

filled stainless steel probe tube, 9 ft long and 34" diameter, penetrated the reactor 

vessel lid to terminate 2 ft. above the half fuel element. The argon is at atmospheric 

pressure and is fed from a flexible reservoir which allows the probe tube gas to expand 

v/hen the reactor is hea,ted. It was not practicable to maintain a vacuum in the probe 

tube, as the thin v/indow is too much weakened by heat. It was sealed at its lower end 

by a stainless steel plate 0.019" thick and at its upper end by an Al plate 3/l6" thick. 

(The effects of these end plates, and other plates in the beam, on the measured spectrum 

are discussed below). The probe tube contained a stainless steel sleeve which held a 3" 

long collimating boron steel ring which was set in an array of boron steel rings. These 

additional rings were to prevent unwanted neutrons from being scattered into the beam, 

and didnot define the beam geometry in any way. All the boron steel was above the level 

of the upper boundary of the reflector. Fig.4 illustrates schematically the collimator 

geometry. 

* c (Nitrogen = 10 barns; c (argon) =1.5 barns. 
5 S 
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The sea l where the probe tube entered the reac to r vessel allov/ed mechanical 

adjustment to permit alignment, \7hen measurements were made at the centre of the core 

the tube vias set v e r t i c a l l y over the half fuel element. For the core-side r e f l ec to r 

measurements a t i l t of 0 .9 ' from v e r t i c a l was introduced to minimise the effects of non 

uniform expansion of the reac tor when heated, since i t was calculated tha t with the core 

at 650 C the probe tube would t i l t by 0 . 9 ' , to the opposite side of v e r t i c a l . 

The v e r t i c a l l y mounted f l i gh t tube , shown in Fig .2 was evacuated to — 100 microns 

pressure and was sealed at each end with Al. p la tes each 3/16" t h i ck , and v/as l ined with 

~ 6" thickness of boron loaded paraff in wax to prevent ingress of s t ray neutrons. The 

tube was supported on s t ee l girders at i t s base and adjustment was provided to permit 

alignment T.dth the probe tube and col l imator . At the top of the tube was s i tua ted a 

bank of ten copper walled BF, proport ional counters arranged, as shovai in Fig.2 each 

counter was 5 cm diameter vfith an act ive length of 15 cm, and was f i l l e d to a pressure 

10 
of 70 cm Hg vd.th BF, gas enriched to %% B F , content . The counter benk ims shielded 

by blocks of boron loaded paraff in wax 7.3 cm t h i c k . The distance betvreen the centre 

of the ro to r and the centre of the counter* was 4«02 metres . 

4 . Reduction of Data 

The energy spectrum of the neutron flux in the beam from the reac tor i s given by 

N(E) = KtV 1 % - B(t)7 /•^(t) c(t) 7 -' 

where t = time of flight 

= counts in corresponding channel of analyser 

a(T) = time analyser correction 

B(t) = background corrections 

'v(t) = cut off function 

e(t) = counter efficiency 

fnd K is a constant. 

*It may be shown that this is the effective starting point of the neutron flight 
path (c.f. Larsson et al (loc cit) . 
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The t factor in this expression arises in the conversion from a time to an energy 

variable. 

The energy corresponding to time of flight t is given by: 

E = —2 (8.4^ X 10 ) ev where t is in microseconds. 

The most significant factors vri.ll now be considered. 

The background correction to the channel counts has two components; one which is 

independent of reactor power and which is a constant for each channel, and one due 

to the variable transmission of neutrons through the body of tlie rotor, v.'hich varies from 

channel to channel. The power independent part was obtained by proportion from a deter

mination of the total number of covints in a given time with the reactor shut down. The 

variation of this count rate with time was negligible. The channel dependent component 

was largely due to fast neutrons transmitted through the material of the rotor. The 

presence of the slits causes the effective thickness of rotor metal in the neutron beam 

to change during the cycle between neutron pulses, the maximum amount of metal beixig 

presented when the slits are perpendicular to the beam direction: viz. midv/ay through 

the cycle; the effective thickness varies symmetrically with respect to this position. 

The majority of these background neutrons have an energy above ~ 20 keV due to the drop 

in the removal cross section of K-Monel at this energy. The transmission of the rotor 

with the slits perpendicular to the neutron beam direction varies from ~ 8.10 for low 

energy neutrons to~1.8 10 for neutrons above 20 keV. Since neutrons of energy 20 keV 

and above have virtually zero time-of-flight, the background in a given channel is 

determined basically by the position of the rotor at the instant the neutrons are recorde 

Kence the background variation over the cycle may be obtained by counting the number of 

neutrons transmitted with the rotor stationary, as a function of î 'otor orientation. Such 

measurements were made and coraprxed with measui'ements mvde with the rotoi" opex̂ ating at 

2400 r.p.m. using 100yti.i»<-chexinels. Under the latter conditionc the beam spectrum was 
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such that there were virtually no spectrum neutrons present to be recorded in the last 

60 channels, which thus gave background counts over a known portion of the cycle. 

Agreement between the two experiments was good except that details of fine structure in 

the background variation (caused by the presence of the sub-collimators) differed slightHy. 

the v8j:'i£tion could be well approximated however by the linear form shown in Fig. 5, which 

neglects fine structure. The uncertainty in background correction due to this approxi

mation has a negligible effect on the accuracy of the data. 

The reactor dependent background for a spectrum was obtained using the variation 

shovm in Fig.5 normalised to a count, corrected for reactor independent background, made 

with the rotor slits stationary and perpendicular to the beam direction. Reactor power 

was monitored continuously during both background and spectrum determinations to allow 

accurate correlation. The reactor independent background was then added to give the 

total correction. 

For measurements made with the rotor opei-ating at 4800 r.p.m. there were insignifi

cant spectrum neutrons in the last 20 channels, which thus recorded background only, 

and a criterion for acceptance of a measured spectrum was that these counts should be 

consistent vrith the calculsted total channel background. 

Rotor Slit Transmission Factor (Cut Off Function) 

ii rotating parallel slit does not transmit neutrons of different velocity with 

equal probability. The form of the transmission, or "cut off" function for a parallel 

incident neutron beam has been given by Stone and Slovacek (loc.cit.) and Mostovoi et al 

(loc. cit) as:-

•r (p) =1 -fp^(0.< p^^) (1) 

1 
X (p) = 8(^p2 -p + 3 p 2) (̂  ^p^l) (2) 

where t (s ) i s the transmission r e l a t i v e to neutrons of i n f i n i t e ve loc i ty of neutron 

chEiracterized by p where: 

P = \ 
V 
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where v = neutron velocity 

2 
and V = R a the velocity of the slowest neutron transmitted by a slit of width 

° S 
S and length 2R in the d i rec t ion of the neutron beam, r o t a t i n g about i t s centre v/ith SJi 

angular veloci ty o) . 
V 

Since the cut off function depends only on — an experimental determination may be 

made by comparing the r e l a t i v e i n t e n s i t i e s of neutrons having equal t ime-of- f l ight 

observed with different speeds of s l i t r o t a t i o n . Such data were obtained with the 

ro to r operating a t speeds of 2400, 48OO, and 96OO r .p .m. 

In the f i r s t analysis t was calculated using the average s l i t parameters, v ix . 

S = 0.46 cm and R = 6.35 cm (R i s not constent since the s l i t s are chords of a cy l inder ) , 

and the experimental cut off function proved markedly different from the t h e o r e t i c a l 

value . G-ood agreement could be obtained however using a value of t lower by 13?^« The 

explanation of t h i s apparent discrepancy i s discussed below. 

I t was discovered, a f te r the experiments had been completed on the r eac to r , tha t 

the rotor-sub-col l imator assembly was not in correct alignment with the neuti'on beam. 

Although the ro tor s l i t s were aligned p a r a l l e l to the sub-collimator s l i t s p r io r to 

at taching the assembly to the base of the f l i g h t tube , as indicated in S 4»4, a machining 

error in the locat ion system caused the plane defined by the walls of t?ie ro tor and sub-
1 o collimator s l i t s to be set 2 out of l ine with the axis of the neuti^on beam. 

To obtain the effect ive values of t for the ac tua l s l i t system two fac tors have to 
o •' 

be considered, (the f i r s t of which i s not bas ica l ly due to misalignment.) 

( i ) Each s l i t of the rotor-sub-col l imator e,ssembly accepts neutrons coming from a 

different region of the upper surface of the half fuel element and these d i f fer 

in area (even when the assembly i s in correct alignment). This r e s u l t s in a 

v/eighting factor for each s l i t which enters into the evyluation of t tlir-ough 

i t s dependence on R. Thus a v/eighted average value of li, determined frora the 

geometry of the system, must be employed, and not the ar i thmet ic average. 
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( i i ) The misalignment r e s u l t s in some s l i t s of the ro tor -sub-col l imator assembly 

accepting a neutron beam which i s narrower than the physical s l i t width. The 

S value used to calcula te t i s thus reduced. 
o 

The experimental cut-off fmiction is plotted in Fig,6 together with a theoretical 

curve calculated by D.J. Reed and taking into account the two factors above. Agreement 

is good and this curve is used to reduce the data. 

The counter bank was calibrated against a bank of BF, counters having a /v 

response. The measurements were made on Beam Hole 2 of the reactor LIDO at Harwell, 

using a beam geometry similar to that for the ZENITH experiments. Fig.7 shows the 

measured counter sensitivity. 

It is interesting to note that a calculation of the counter sensitivity, treating 

the counter bank as alternate layers of Cu and EF, of appropriate average thickness 

yields excellent agreement with the experiment. The copper was treated as a neutron 

absox-'ber only; neutron scattering effects were ignored. 

5. Preliminar.y Sxperiments 

A number of experiments were carried out (on the central, hole K10 only) to obtain 

information on the perturbation effects on the reactor flux distribution and spectrum 

produced by the absence of the upper hslf of the fuel element and the presence of the 

probe tube, the definition of the time-of-flight neutron beam, and the detailed spectral 

variation over the upper surface of the half fuel element used in the time-of-flight 

expex-iments. 

Detailed scans -»vere made along a vertical direction of the hole K10 and in a hori

zontal direction aci-oss the centre of the reactor:-

(i) with the full fuel element in position viz. the reactox- operating under normal 

conditions, 

(i-j) vfith the half fuel element used in the time-of-flight experiments in position, 

but the pi'obe tube absent. 
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(iii) with both the half fuel element and the probe tube in position. 

(For convenience the probe tube used in the time-of-flight experiments was not 

used to make these measurements. It was considered necessary to simulate 

only that part of the probe tube in the reactor core, leaving the hole in 

the reflector void. This was done with a mild steel tube, 2 ft. long.) 

255 
Flux scans were made using U fission chambers and the spectrum of the flux 

characterised with gold manganese foils. The results of the flux measurements are shown 

in Fig. 8 and the foil measurements are presented in Table ̂ . 

The only significant perturbation is shown in the flux measurements in the vertical 

direction made with the probe tube simulator present. The spectral character of this 

perturbed flux distribution was the same, within the errors of measurements, as that in 

the unperturbed state. No significant perturbations appeared in the measurements made 

in the horizontal direction. 

The perturbed flux has a gradient in the direction of the time-of-flight neutron 

beam. In the diffusion theory approximation this causes the measured beam spectrim 

1(E) to differ from the isotropic flux spectnM 0{E) at the source area of the beam 

(cf. Poole et al (loc.cit.)) by an amount given by: 

where X ( E ) = neutron transport mean free path in the region, and the z axis is in the 

beam direction with the origin at the source area. 

Assuming the x value for graphite (2.5 cm) the value of 

Vi^(E) ^ 

is only 0,007. Correction for the observed, flux gradient is not therefore significant 

and in any case the heterogeneous nature of the reactor core will cause a more compli

cated relation to exist between the directed flux and the direction averaged flux. 

In order to investigate the variation of spectrvim across the fuel element fine 
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s t ruc tu re measurements were made using f o i l s i r r a d i a t e d on the top surface of the half 

fuel element. Two experiments were made. The f i r s t used a copper f o i l 7«3 cm in diameter 

which was cut a f te r i r r a d i a t i o n into seven concentric annixli, and r e a c t i v i t y on each 

annulus was measured separa te ly . For the second gold-manganese f o i l s were i r r ad i a t ed 

d i s t r i bu ted along a diameter. 

The r e s u l t s of these experiments are shown in Fig .9 and t ab le 3- No s igni f icant 

s t ruc ture v/as apparent . 

I t must be emphasised however t ha t t h i s resixlt appl ies to the spectrum at the 

surface. The t ime-of- f l ight experiment measures the d i rec ted flux spectrum perpendicular 

to the surface, which could be significaxit ly di f ferent because of the heterogeneous 

nature of the fuel element. 

Two experiments were also made to check the collimation of the beam by the boron 

s t e e l r ing in the probe tube (The experimental probe tube was in pos i t ion for 

these measurements). 

( i ) The sharpness of the beam def in i t ion was determined by i r r a d i a t i n g a s t r i p of 

indium f o i l 5^" x 1" placed in the beam at the top of the probe tube . The f o i l 

was then cut in to 23 sect ions each 5" wide and analysed. The r e s u l t s indica te 

tha t the beam had the cross sect ion expected, 

( i i ) The neutrons emerging from the top surface of the half fuel element were 

absorbed by a B.C plug, 1" th ick , placed v i r t u a l l y in suirface contact , and a 

measurement made with a 1" diameter BF, counter lying ax ia l ly along the beam 

di rec t ion at approximately^ the pos i t ion occupied by the ro to r during the t ime-

of-f lif;ht experiments. When the measurement was repeated rdth the plug removed 

the count r a t e increased by a fac tor of 200. The nxmiber of neutrons enter ing 

the beam which were not emitted from the surface of the half fuel element, was, 

the re fore , neg l i g ib l e . 

The accm'acy of the experimental spectra depends on the s t a t i s t i c a l error in a 
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channel count, the channel background correction, the precision to which the channel 

dependent conversion factors are known, the energy calibration of the 

spectrometer resolution. These are discussed below, 

(i) Statistical Error 

This is negligible at the high energy end of the spectnam and increases 

to approximately Zfo at 0.02 eV. Below this energy the error rapidly becomes 

larger. 

(ii) Background Correction 

The channel background count, which is known to an accuracy of 1-2^, 

becomes an appreciable fraction of the spectrum count at low energies. Typical 

values are: (a) in K10, room temperature: 20^ at 0,02 eV, 50?o at 0,01 eV. 

(b) in T17, room temperature: 8?? at 0,02 eV, 28^ at 0,01 eV, 

(iii) Analyser Dead Time Factor 

The effect of the dead time can be obtained exactly and is such that the 

maximum change to a channel count is < 25/̂ . 

(iv) Rotor Slit Transmission 

The cut off function is known to 1-2^ over the range used for converting 

the data. At 48OO r.p.m. the effect is to change the count of 0,02 eV neutrons 

by about 20/t. At 96OO r.p.m. the corresponding neutron energy is 0,1 eV, 

(v) Counter Sensitivity 

For energies above 0.02 eV this is known to an accuracy of~ 1^, 

(vi) Energy Calibration 

A spectrum T;as measiored with a 0,004" thick cadmium filter in the neutron 

beam and a marked depression was observed at 0,17 eV which corresponds to the 

peak of the cadmium resonance, 

(vii) Resolution 

Calculations indicate that a spectrum is distorted < 1^ by 

the effects of spectrometer resolution, 

- 372 -



% 

Energy 

(eV) 

002 

0.05 

0.1 

0.5 

1.0 

5.0 

10.0 

Normal 
Rotor Speed 

(spin) 

5,000 

If 

II 

10,000 

It 

II 

n 

TABLE I 

Burst 
.^idth 

(usee) 

68 

It 

II 

34 

II 

II 

ti 

Gate 
Width 

(usee) 

200 

100 

50 

50 

2550 

25 

25 

E/] 

20 

15 

17 

24 

34 

60 

80 

i 
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TABLE 2 

The va lues of ^* (= r / T_) t a b u l a t e d below v/ere o b t a i n e d under t h e fo l lowing 
/ To 

c o n d i t i o n s : 

(a ) D e t e c t o r s i n an i n t e r s i t i t i a l h o l e ad jacen t t o a normal f u e l element i n t h e 

c e n t r a l h o l e . 

(b) D e t e c t o r s i n same p o s i t i o n as f o r ( a ) bu t h a l f element i n p l a c e of f u l l 

e l emen t . 

( c ) As f o r (b ) bu t w i th p s e u d o - c o l l i m a t o r p r e s e n t . 

The d i s t a n c e s a r e measured up (+ ) axxd down ( - ) from t h e mid-p lane of t h e 

r e a c t o r . r 'S fU Wt-s-Jco tt Ko-rtU /̂uVg pa.iainc4<rr 

D i s t ance 
above core 
mid -he igh t 

114*3 cms. 

101.6 

88 .9 

76 .2 

63 .5 

50 .8 

38.1 

2 5 . 4 

1 2 . 7 

0 

- 1 2 . 7 

- 2 5 . 4 

F u l l Element 

0 .017 + 

0.023 + 

0 .043 + 

0 .063 + 

0.006 + 

0.208 + 

0.249 + 

0 .264 + 

0 ,295 + 

0 ,264 + 

,002 

.003 

.003 

.0035 

.005 

.007 

.008 

.009 

.009 

.009 

Half Element 

0 .025 + 

0.028 + 

0 .045 + 

0.061 + 

0.116 + 

0.182 + 

0,241 + 

0.261 + 

0 ,255 + 

0,260 + 

0.260 + 

0,268 + 

,003 

.003 

.003 

.0035 

.005 

.007 

.008 

.009 

.009 

.009 

.009 

,009 

Half element 
+ Pseudo-
Co l l ima to r 

0 ,033 + .003 

0,04J3 + .003 

0 , 0 6 4 + .0035 

0 ,087 + .004 

0 ,137 + .005 

0 . 1 9 4 + .007 

0 .244 + .008 

0 ,257 + .009 

0,276 + ,009 

0 .275 + .009 

0 ,257 + .009 
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h TABLE 3 

Integral spectrum measurements along a diameter on the top of the 

half element. 

Distance from 
centre of element 

- 3 . 3 cans 
0 

+3»3 cans 

r« 

0.262 + 0.009 
0,260 + 0,009 
0.264 + 0.009 

6. Results of Measurements. 

The spectra obtained from core centre and core edge positions for different 

temperatures of core and reflector are shown in Figs. 10 and 11, while Figs 12, 13 

show comparisons between spectra for the two positions under corresponding conditions 

of temperature. Detailed comparisons of the cold spectra v/ith theoretically 

calculated spectra are given in section 7. while section 8. compares reaction rates 

for various detectors with calculated values. 

i 
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7. C.4LClJLfJI0N OF THE THSm̂ IAL SP'̂ CTRU?,! IN TH5! COLD SYSTEM 

I t was believed tha t the spectrum shape in the centre of the reac tor 

did not vaiy so much frora one fuel element to the next t ha t a s ingle c e l l 

ca lcula t ion for one fuel element with r e f l ec t ive boundary conditions would 

be incor rec t , and, with no two-dimensional neutron t ranspor t thermalisat ion 

code read i ly avai lable , a sui table one-dimensional representat ion of the 

fuel element was sought. Figure 15 shows a c e l l of a fuel element, which 

has cy l indr ica l symmetry about the indicated ax is , and the slab model for 

which calcula t ions were done. The r e l a t i v e proportions of mater ia l s , the 

fuel and thor ia densi ty , and the axia l dimensions so fa r as poss ib le , were 

unchanged, and the sleeve graphite was incorporated with the spine graphite 

by r a i s ing the physical density of the l a t t e r by a fac tor 7.72. 

The DOP (d i sc re te ordinates program) code was used for the ca lcu la t ion . 

This i s an improved vei^sion for slab geometry, wri t ten by M. P . James of 

A.S.E. Winfrith, of the Carlson SNG program; i t represents the fox-'tvard- and 

backward-directed angular f luxes by separate polynomials vfhlch are evaluated 

a t pa r t i cu l a r angles, s ix in number in the present ca lcu la t ion . The energy 

range from 0 to 1.5 eV was divided in to 35 unequal groups, 0(,005) , 05 ( ,0 l ) 

,1( ,02) ,2( ,05) . 4 ( . l ) 1.5 eV, and group average absorption cx-oss-sections 

calculated for l / v and U235 absorbers ( the only ones present , since thorium 

was t rea ted as a l / v absorber) . The group-to-group sca t t e r ing cross-sect ions 

for a l l substances present except graphite were oalcxilated on the gas model, 

which gives to f i r s t order the thermalising effect of these r e l a t i v e l y 

Tininfluential moderators. Three se t s of room-temperature grephite sca t te r ing 

cross-sect ions were used, derived respect ively from 
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(i) the monatomic gas model, the simplest and basic model, 

(ii) the incoherent Debye crystal model with Debye temperature 1172°K, 

representing the effects of a simple type of ciystal binding, 

(iii) a model by P. Egelstaff and P. Schofield using the Chalk River 

scattering law measurements, the best available model for room 

temperature graphite (for convenience referred to as E.S, graphite 

hereafter), 

For each of these types of gx-aplxite the flux as a function of energy, 

position and direction was calculated throughout the cell. It was not 

expected that the experimentail spectrum, being the neutrons emerging in a 

particular direction from part of the fuel element, would equal the direction-

averaged spectrum at any particular point in the calculated cell; but it was 

hoped that the observed spectrum would be fairly represented by the flux 

travelling directly away from the fuel at a point in the redsed-density 

grapiiite at about the same number of scattering mean-free-paths from the fuel 

as lay between the fuel and the source point in the experiment. This directed 

flux, which will be called the preferi-ed spectrum, is compared with the experi

mental spectrum in Figure l6. It can be seen that the spectrum based on E.S. 

graphite is in fairly good agreement with the experiments, and that the Debye 

crystal model, though better than tlxe gas, is not as good. The importance 

of comparing the experiment with the calculated directed flux in the appropriate 

direction and position is shown by Figure 17, which shows for E.S, graphite 

the outward flux at the surface of the fuel, the outward flux at a point in 

the graphite twice as far from the fuel as the preferred point, and the inward 

flux at the preferx-ed point. 

Further evidence is given by Figure 18, which shows (among other things) 

the mean cell spectrum in the S,S, graphite calculation. It is clear that a 

simple comparison of the experimental spectrum and the mean calculated spectrum 
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is not in the present situation a guide to the accuracy of a bulk moderator 

scattering law. 

Previous thermal spectrum calculations of this reactor system have all 

had the space-dependeiice taken out by homogenisation, and the agreement with 

experimental spectra has not generally been good. These calculations have 

been intended to give the mean spectrum in the reactor, but since this 

differs from spectrum experimentally examined, this lack of agreement is 

not proof that a faulty theoretical moderator model has been used. To 

test the accuracy of the homogeneous calculation, the calculated spectrum 

should be compared with an experimentally determined mean spectrum. 

In the absence of an experimental spectrum which can properly be regarded 

as the mean reactor spectrum, certain methods of homogenisation have been tested 

by comparing the mean spectrum obtained in the heterogeneous calculation with 

space-independent spectra obtained using the same nuclear data and scattering 

models. Three different methods of homogenisation were tried: 

(A) Intimately mixing the materials of the cell in the proportions in 

which they are present in the cell, 

(B) Intimately mixing the materials of the cell in proportions based 

on those in (A) but weighted by the ratio of the total thermal 

neutron densities in the materials, i.e. using energy-independent 

disadvantage factors. 

(C) As (B) but using energy-dependent disadvantage factors corresponding 

to the ratios at each energy of the neutron densities in the 

materials. It may easily be shown that if this is done perfectly 

the spectrum obtained is the mean spectrum in the space-dependent 

case, but in practice the disadvantage factors are usually not 

accurately laiown, A commonly used theoretical for-iiula for the 

disadvantage factor of a material is 
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^ (E) 

where ^ ( E ) i s the average neutron f lux a t energy E in the bulk 

moderator, supposed only weakly absorbing, 

^ . ( E ) i s the average neutron flux a t energy E in mater ia l 

i , a strongly absorbing mater ia l such as the fue l , 
a 

2 ( E ) i s the macroscopic absorption cross-sect ion of 

mater ia l i , and c. i s an adjus t ib le parameter. 
— — a 

(This formula has the r i g h t p rope r t i e s : Ĵ . = j ^ i f ^ = 0, d. 
a a -; ^ 

an increasing function of Ĵ » ^^^ 2.- *• "*• constant as 
a ^ i i ^ 
1 

In the ca lcu la t ions with these methods of homogenisation, the disadvantage 

fac tors in method (B) and the parameter c„ .. in method (C) were f i t t e d from 

the space-dependent ca lcu la t ion , and so are based on a p o s t e r i o r i information 

of a type not normally avai lable when homogeneous ca lcula t ions are attempted. 

In a sense, therefore , these disadvantage fac tors are unfa i r ly good. 

Figure 18 shows these three homogeneous spect ra , together with the 

mean spectrum from the space-dependent ca lcula t ion and the experimental 

spectrum (which, as has been remaftded, has no p a r t i c u l a r relevance in t h i s 

c a se ) . The spectrum calculated with method (A) i s , as expected, too much 

depressed by absorption a t low energ ies . The spectrum calculated with method 

(C) i s intended to be the mean bulk moderator spectrum in the heterogeneous 

system, which i s grea ter than the mean c e l l spectrum in tha t system a t 

those energies a t which there i s f lux-depression in the fuel ; the difference 

i s as great as 6^ a t ,01 eV. Making t h i s allowance, the spectra calculated 

with methods (B) and (C) are in f a i r l y good agreement with the mean 

heterogeneous spectrum, and method (C) gives the bes t agreement. 
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8. RE/LCTION RATE RATIOS 

A valuable, because realistic, measure of the importance of spectrum 

differences is the reaction rate ratio of different isotopes in the spectra. 

For this reason the reaction rates of a l/v absorber of cross-section 1 bam 

at 2200 m/sec. and of Lu176, and the fission rates of U235 and Pu239 detectors, 

have been calculated for the spectra below 1,5 eV, and the resulting ratios are 

shown in Table 3. In conjunction with figures 16 and 18 they show the sort 

of spectrum differences which give rise to substantial changes in reaction 

rate ratios; also the great sensitivity of Lu176 to spectrum shape is shown. 

The lower half of the table compares the homogeneous spectra with the 

corresponding heterogeneous spectrum; it shows that of the methods of 

homogenisation (A) is much inferior to the other two, which are roughly 

equally good. Considering the extra labour involved, method (C) shoves a 

disappointing lack of improvement over (B) , and the reason for this is being 

investigated. 

In addition it has been possible to check the heterogeneous E.S. 

A 

graphite spectrum calculation by comparing reaction rate ratios deduced from 

it with experimental measurements of the ratios obtained with foils and fission 

chambers placed in the reactor. The experimental ratios are standai-dised by 

comparison with the ratio obtained in a very well-thermalised spectrum, and 

the quoted values are of the type 

reaction rate of isotope 1 in reactor spectrum 

n II II II 2 " " " 

Reaction rate of isotope 1 in a very well-thermalised spectrum 

11 II II It 2 " " " " " " 

To each calculated theoretical thermal reaction rate is added a contribution 

for epithermal reaction, and the reaction rate in a room-temperature Maxwellian 
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spectrum is used for that in a very well-thermalised spectrum. The results 

are as follows:-

Ratio 

Pu239 fission/U235 fission 

Lu176/Mn55 

Experiment 

1,66 +.04 

1.54 +.03 

Theory 

1.67 

1-51 

Finally, the disadvantage factors 
Mean neutron density in bulk moderator 

" " " " fuel (or thoria) 

ai'e found experimentally from the reaction rote ratios of Cu foils (connected 

for non-l/v behaviour) and compere with calculated values as follows. 

Material 

Fuel 

Thoria 

Disadvantage Factor 

Experiment 

1.55 + ,06 

Theory 

1.53 

1.12 

These figures suggest that the slab representation of the fuel element is 

satisfactory. 

- 381 -



9. CONCLUSIONS 

(1) In the reactor system considered 

(a) cell spectra depend as much on position and direction, 

even within the bulk moderator, as on the particular 

moderating properties of graphite; 

(b) the spectrum on which chopper measurements are made differs 

considerably from the direction-averaged spectrum in the 

bulk moderator; 

(c) a comparison of the experimental spectrum with a calculated 

spectrum must allow for the non-typical character of the 

emerging beam if it is to be a good test of graphite 

moderating properties; 

(d) a direct comparison of experimental integral reaction 

rate ratios in the core with those calculated from the 

emerging experimental spectrum is not very meaningful. 

(2) In the system considered, homogeneous calculations with suitable 

simple disadvantage factors can approximate a heterogeneous 

calculation sufficiently closely to give thermal reaction rate 

ratios of important isotopes within l̂ j. 

(3) The model of room-temperature graphite due to Egelstaff and Schofield 

with the data used is sufficiently close to reality for nox-̂ nal 

spectrum calculations. 

Theoretical work continues to explore the effects of fuel element 

geometry and disadvantage factors, and compare calculated reaction rate 

ratios with experimental measurements. Spectrum calculations for the hot 

core have begun, and it is hoped that before long satisfactory scattering 

laws for graphite at all temperatures between 0 and 6OO C will be determined. 
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TABLE 4 

Thermal Reaction Rate Ratios 

Spectrum 

Experimental 

Gas prefer red 

Debye prefer red 

E.S. preferred 

E.S. mean 

A 
E.S. homogeneous (p.) 

6 
E.S. homogeneous (y) 

c-
E.S. homogeneous (^) 

bulk moderator 

mean 

U235 f i s s i on 

1/v 

516,0 

530.8 

524,3 

516.2 

523.8 

510.6 

521.3 

526.1 

525,4 

Pu239 f i s s i on 

1/v 

1411 

1222 

1277 

1379 

1309 

1473 

1318 

1270 

1275 

Pu239 f i s s i o n 

U235 f i s s ion 

2,74 

2.30 

2.44 

2,67 

2,50 

2,89 

2.53 

2.41 

2,43 

Lu176 

1/v 

6610 

5290 

5970 

6460 

6180 

6760 

6370 

5990 

6020 

J 
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Conference on Neutron Thermalization, Brookhaven, April 30th, 1962 

INTEGRAL NEUTRON SPECTRA MEASUREMENTS NEAR A CAI}MIUM DISK 

by P. Korpiun, K. Renz, and T. Springer ' 

Integral measurements of neutron spectra in moderating substances by foil 

activations have been performed in several cases using combinations of iso

topes with a different energy dependency of their activation cross sections, 

^ ( E ) , e.g. for the Isotope pairs Lu/Mn, Lû '̂ /̂Lû '̂ ,̂ Eu^^-^/Cu^^ , and 
« 

Pu'"' /U /I,2,3,12/. The activation measurements give the ratios of the 

mean cross sections ^^ 

where ^(E) is the neutron spectrum. Theoretically predicted spectra can 

be examined by averaging over the known cross section curves and by comparing 

the results with the experimental mean values. 

This integral procedure naturally furnishes much less information than a 

differential time of flight experiment. For hydrogen moderators, however, 

it is the more reliable method, because in this case the spectrum can change 

very rapidly over space: The characteristic length /) responsible for the 

temperature relaxation in water near a temperature discontinuity given by 

Ik, 5/ is only£v/0.7 cm /6/. The transport mean free path responsible for 

the spectral relaxation near an absorbing plane /6/ isy)(-j. = 0.43 cm 

( V= neutron heat transfer coefficient, v = mean neutron velocity. In 

graphite, on the other hand, these quantities are Â '̂  8 cm and/f̂ ^ = 2.6 cm, 

r 
respectively.) Under these circumstances a channel of reasonable diameter 

' Laboratorium fur Technische Physik der Technischen Hochschule MOnchen 
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for neutron extraction parallel to the plane of the temperature discontinuity 

or absorber would remove too much moderating substance. If the channel is 

perpendicular to that plane it would more or less average over the range 

where the spectrum changes. Further, near an absorbing plane the intensity 

extracted would not be exactly proportional to the neutron flux because of 

the strong local flux gradient. Thin foils, on the other hand, do neither 

disturb the flux nor the spectrum. Further they can be used for experiments 

in very small volumes. 

Eu/Cu and Eu/Lu foil pairs have been used by us to measure the changes in 

the leutron spectrum near a cadmium disk. In order to obtain good spatial 

reproducibility, the foils were mounted on polystyrene disks. The whole 

set of foils was put inside a hole in a polystyrene cylinder as shown in 

fig, 1, Thus the measurement was practically performed in an infinite 

polystyrene medium . The cadmium disk was large compared to/\t:r> ^^^ f°^ 

technical reasons it was not made large compared with the diffusion length 

L. Thus the flux change near the disk was a little different from that to 

be expected for a very large absorbing disk. It is thought that the influ

ence of this fact on the relaxation of the spectrum is small. 

Ufre 
The rare earth foilsifmade of paper soaked with solutions of Eu or Lu salts. 

_3 

The absorption probability in the foils was less than 10 . Thus the acti

vation is proportional to ̂ g j the flux and spectrum perturbation can be 

neglected. The foils were exposed in the water reflector of the FRM reactor. 

*) At the beginning of the experiments, the use of polystyrene instead of 
water was not thought to cause complications in the theoretical interpre
tation of the results. Our opinion was that a gas kernel would be used 
in every case. The transport scattering cross section, -̂ /̂  , per H atom 
was determined from the space dependency of the thermal flux near the 
cadmium disk by î itting the flux with the theoretical curve /ll/. The 
resulting value, *S^^ = 34 barns, is very close to the value for H2O. 
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By rotating the polystyrene cylinder perpendicular to its axis the change 

of the moderation density was kept small over the spatial range investigated. 

To avoid absolute calibration of the activation measurements double ratios 

for every foil pair were determined, namely (k^/k^m.^^^) /k2(pO)\, where 1 

and 2 labels the two foil materials used. A(oo) is the activation with 

the cadmium plate removed. The latter gives a normalization of the activa

tion by the undisturbed spectrum. This can be considered to be a Maxwellian 

with the actual moderator temperature. The results of the activation ratios 

as a function of the distance from the absorbing disk, z, are shown in fig. 

2a and b. 

Attempts were made to substract the resonance contribution from the measured 

total activation cross sections and to transform the remaining thermal 

activation into an effective neutron temperature by assuming a Maxwellian 

spectrum with temperature T̂ ,̂ which is different for different detector 

pairs. Near the cadmium disk the resonance correction is very high because 

of the large thermal flux depression (see Cu(th) in fig, 3), Furthermore, 

the resonance correction shows large errors in the case of Lu and Eu (see 

below) . Thus the error which is introduced by the resonance correction is 

rather high. 

The resonance correction factor that must be applied to the total 

activation Aĵ  ĵ , is 

k = 1 - F(T^)/K(z) (2) 

where K(z) is the space dependent cadmium ratio which has to be measured. 

Characteristic flux curves from the activations Â .̂  and k^ ^ of different 

cadmium-covered and bare detectors are shown in fig, 3 as a function of z. 

There is a considerable depression of the epicadmium flux as measured by Eu 
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because its main resonances are situated near the cadmium cut-off. The 

smallest resonance flux depression was found by gold activation because 

the main absorption comes from the 4,9 eV resonance, (The slight slope 

also in the case of gold comes from the non-uniform distribution of the 

source neutron density.) 

Farther is ^ ^fygJ^e/S //oi[£j S-jB) c/B/a, C.Ur. cC(E) 

is the cadmium transmission for isotropic neutron incidence. The main un

certainties result from uncertainties of the resonance data, especially in 

the case of europium where the fraction of the 9,3 h activation cross 

section to the total absorption cross section has different values for 

different resonances /8/. Further, the applicability of (2) is complicated 

by an energy dependent depression of the resonance flux, induced by the 

cadmitim disk and by the filter itself because the cut-off is situated just 

in the surrounding of the main resonances of Eu and Lu, Uncertainties in 

dt(E) result from the influence of the flux anisotropy on the filter trans

mission, and in F from the lower limit E (namely, £„ depends on T (z) 

g o n 
which introduces a considerable space dependency of F), 

The calculation of the effective neutron temperature from the thermal acti

vation A , was performed for Lu by the functions given by Schmid and Stinson 

HI and for Eu by combining the data from Westcott / Sv^i"^)/ 1^1 and 

Pattenden/ ggû f-̂  (Y// / 7 ^ The effective neutron temperatures as functions 

of distance z are shown in fig, 4) ^. A strong flux hardening near the 

cadmivim disk is observed. The difference between the results for the 

+) ̂  can be ^hown. a very good approximation for the cross section ratio 
6̂ .th(Eu)/6"th(Cu) is the function const, erf (0^0'f^BeiZ/kTJ''^^ 
This was found by approximating the curve log ^^^(E) by two straight 
lines with an intercept at 0.0129 ev. 
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effective temperatures from both methods are not large except at z ~ 0, 

where the distortion of the Maxwellian will be largest. The flux hardening 

at the surface is considerably larger than predicted by the theory in /6/ 

when the data /and D of water were used. The discrepancy may be introduced 

by the inapplicability of the water data, and by the MaxWellian hypothesis 

used in the theory /6/. 

One should not lay too much emphasis cn these effective neutron temperature 

curves because of their uncertainties described above. Rather, one should 

calculate the total mean cross sections (D'̂  according to (1) from computed 

spectra by using the SIC^) " curves which are rather well known, at least 

in a relative ordinate scale. Thus a simple experimental examination of 

the theory can be achieved if different foil combinations are used. On the 

other hand, the effective temperature concept i^ useful for reactor physics 

in many cases where only the mean cross sections must be known too. 

The experiments will be continued in water with a considerably larger cadmium 

disk. 

Our thanks are due Lo Professor Maier-Leibnitz for valuable discussions. 
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Legends of Figures 

Fig. 1. Polystyrene cylinder with foil pairs, placed in the water reflector 
of the FRM, about 30 cm distant from core. 

Fig. 2a and b. Activation ratios for CU7EU and Lu/Eu foil pairs as a 
function of distance z from the cadmivim disk. Experimental points^ 
from several independent measurements. Activation ratios are 
normalized at the activation ratio measured with the cadmium disk 
removed, A(oo), 

Fig. 3. Space dependency of thermal activation measured with Cu foils = 
Cu(th), and epithermal activation measured by cadmium covered Eu, 
Lu, and Au foils (labeled by Au, Lu, and Eu) normalized at the 
values for z =«>o , The activations are representative for the 
fluxes in different energy ranges. 

Fig, 4. Effective neutron temperature as measured by CU/EU and Lu/Eu foils pa 
Shaded region represents estimated range of systematic errors, 
mainly resulting from resonance correction^in the case of Lu/Eu; 
for CU/EU, the error range is of similar magnitude.) 

A. f. - transport mean free path, estimated from space dependency 
of thermal flux in fig. 3. 

• = Cu/Eu - method, o = Lu/Eu - method (mean values from several 
measurements), 

Values normalized at z = o© where T̂ ^ = T/jjjQjjgj.gt-Qj.N 
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V. I. Mostovoi, V, S, Dikarev, M, B. Egiazarov 

and lu. S. Saltykov 

MEASUREMENT OP NEUTRON SPEOTRA IN URANIUM-WATER AND 

URANIUM-MONO ISOPROPYL DIPHENYL LATTICES 

INTRODUCTION 

Heterogeneous systems containing uranium with ordi

nary water have found extensive use for power and research 

reactors. In this connection, more attention is being 

paid in recent years to the many unique features of the 

physics of these systems. 

The features of physics of heterogeneous reactors 

using uranium and ordinary water are brought about essen

tially by the nature of the slowing down and ther

malization of the neutrons in these reactors. 

As is well known, owing to the large absorption in 

such systems, the neutrons do not enter into thermal 

equilibrium with the atoms of the moderator. 

Their average energy is much higher than the average 

thermal energy of the moderator atoms. The neutron spectra 
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in the fuel and in the moderator are appreciably different. 

Heterogeneous systems with organic moderators, offer 

certain advantages for use in power installations, since 

they have acceptable thermodynamic properties and have a 

sufficient resistance to radiation. One can expect that 

from the point of view of the physics of neutron thermali

zation such systems are similar to uranium-water systems. 

Owing to the lack of complete data on inelastic 

scattering of neutrons by water molecules, the calculations 

of the neutron spectra in uranium-water systems have been 

based until recently on various model representations con

cerning the character of energy exchange between the neu

tron and the water molecule [1, ?, 3], Such calculations 

need experimental verifications so as to determine their 

accuracy and practical usefulness. 

In many of the researches done on neutron spectra in 

heterogeneous uranium-water systems [4, 5> 6], valuable 

Information was obtained In the neutron spectrum in the 

fuel and in the moderator. This information was useful 

also for a critical estimate of the theoretical calculations 

However, these experiments did not answer the question of 

the character of variation of the neutron spectrum in the 

uranium and in the moderators themselves, within the limits 

of the elementary cell, a factor of Importance for further 

Improvement of the theoretical calculations. 
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The present investigation was made in order to obtain 

a detailed picture of the space-energy distribution of the 

neutrons and in order to establish the main laws governing 

their thermalization in heterogeneous uranium-water and 

uranium-mono isopropyl diphenyl systems, 

MEASUREMENT PROCEDURE 

The procedure employed for the measurement was already 

described in previously published papers [6, 7], 

A subcrltlcal assembly was made up of blocks of 

natural uranium 3.5 cm in diameter and 40 cm long, located 

in the sites of a triangular lattice with spacing 5.5 cm. 

The subcrltlcal assembly was mounted in a cylindrical tank 

50 cm in diameter and 50 cm high, which depending on the 

type of the measurements was filled either with ordinary 

water or with mono isopropyl diphenyl (O-^H,^). The lateral 

surface of the assembly was surrounded by a reflector, made 

up of a special tank filled with moderator. All the basic 

measurements were made in the presence of the reflector 

and only in the control experiments was the reflector re

moved. 

The composition of the elementary cell of the lattice 

is characterized by the following volume concentration of 

materials: uranium — 36.7^, water (or G^cH^g) -- 53.6%, 

and aluminiim — 9.7^. 
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The external neutron source was a broad neutron beam 

from the VVR-2 (water-moderated water-cooled power reactor). 

The entire arrangement with the assembly were mounted in the 

well of a thermal column and reactor shielding, located on 

a moving platform. In some measurements a thermal neutron 

converter, consisting of an assembly of uranium rods, was 

placed between the active zone of the reactor and the in

vestigated system. The assembly with the reflector were 

Isolated from the thermal column with cadmium and boron 

carbide. 

The heat released in the lattice during operation was 

carried away by means of a forced-cooling system. 

The space-energy distribution of the neutrons was in

vestigated by measuring the spectrum of the neutrons leav

ing from different points of the cell. For this purpose 

seven microbeams were brought out of the central part of 

the assembly, and the neutron spectrum was measured in these 

beams by the transit-time method. Pour beams left the uran

ium blocks and three the moderator. To bring out the beams, 

holes 0.8 cm and 20 cm deep were drilled in the uranium 

blocks. The neutron beams from the moderator were brought 

out with the aid of thin-wall aluminum tubes 0.8 cm in dia

meter with bottoms that reached the center of the assembly. 

The temperature of the medium at the point where the spec

trum was measured was monitored by means of thermocouples 
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mounted on the bottom of each of the cavities. 

To reduce the local perturbations due to the cavities 

in the uranium and the moderator, the cavities were dis

tributed over three neighboring cells. In this case the 

centers of their bottoms were arranged along the line of 

the bisector to the lattice triangle (Pig. 1). In this 

connection, the coordinates of the point where the spec

trum was measured was determined by the distance r meas

ured from the center of the block along the direction of 

the bisector of the lattice triangle. Special experiments 

have demonstrated that the system of cavities employed to 

bring out the beams did not disturb the energy distribution 

of the neutrons in the cell. 

A collimator with holes exactly duplicating the place

ments of the cavities was placed in the shield of the reac

tor. The collimator consisted of an assembly of materials 

that absorb neutrons and gamma rays (boron, paraffin, iron). 

The colllmatlng holes, covered with cadmium on the outside, 

were made divergent in such a way that the only neutrons 

striking the detector were those traveling from the bottom 

of the cavity. In the measurements, all the holes of the 

collimator, with the exception of one, were covered with 

special protective plugs. 

The interrupter used for the mechanical selector 

consisted of an assembly of nickel plates and aluminum 
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grids 10 cm long, which comprised plane-parallel slots for 

the neutrons, with width 0.1 cm. To reduce the background, 

the body of the rotor was made of steel and plastic, and 

in addition the diameter of the rotor (15 cm) vias greater 

than the length of the interrupting plates. 

The neutron detector was an end-window proportional 

counter 10 cm long, filled with enriched BP, to a pressure 

600 mm Hg,. The counter was located 398 cm from the mech

anical interrupter in a shielding tank, filled with an 

aqueous solution of boric acid. 

The detector with the shielding and the selector were 

located on special "coordinate" devices, which made it 

possible to remotely set them at any of the beams. 

To register the neutrons by their transit time, a 

l6o-channel time analyzer was used, in which 128 channels 

registered the effect and 32 channels registered simul

taneously the background. The neutron transit time was 

measured as a function of their energy range with a resolu

tion of 12 usec/m, 25 usec/m, and 50 ̂ sec/m. The resolu

tion in the spatial coordinates was determined by the 

dimension of the cavity (0.8 cm) with which the beam was 

brought out. 

The neutron density was calculated from the measured 

counting rates in the time-analyzer channels from the 

known ratio, which includes the transmission function of 
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the mechanical selector, the energy dependence of the 

counter sensitivity, the energy dependence of the total 

cross section of the air and the structural materials along 

the path of the beam, and a correction for the neutron 

flux gradient [6, 7], No corrections were made for the 

resolution in the measurement of the transit time, sirce 

calculations show that these corrections are smaller than 

the statistical measurement errors. 

MEASUREMENT RESULTS 

1, Uranium-water lattice. 

The results of the measurement show that the neutron 

spectra in the water and in the block have the following 

characteristic features. 

The neutron spectrum in the water of a urani\im-water 

lattice can be approximated in the thermal-energy region 

by a Maxwellian distribution with a neutron-gas tempera

ture greater than the temperature of the water. This rise 

in the neutron-gas temperature above the water tempera

ture amounted to 45°. It Increases with increasing ratio 

of the uranixom volume to the water volume, i.e., with de

creasing lattice spacing [6], Compared with the correspond

ing Maxwellian spectrum, the spectrum measured in the water 

is noticeably broader. 

The neutron density at energies greater than 0.3 ev 
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follows the l/v distribution. 

A typical neutron spectrum, representing the results 

of measurements in water at 50° C for point 7 (r = 3»17 

cm) is shown in Fig. 2. In this figure the ordinates rep

resent the neutron density multiplied by the square of the 

velocity, while the horizontal axis is marked in the re

ciprocal of the velocity. Here and below we give the spec

trum in relative units, not normalized to the integral neu

tron flux at the measurement point. 

The neutron spectrum in the block is much harder in 

the thermal region than the spectrum in the water. It does 

not fit a Maxwellian distribution and consequently the con

cept of the neutron-gas temperature in the block does not 

have any special meaning. The neutron density in the reg

ion of the slowing-down spectrum experiences sharp dips at 

the resonances of U-238, U-235, and on the average is 

steeper than the l/v distribution. Fig. 3 shows by way of 

illustration the spectrum of the neutrons measured at the 

point 1 (r = O) of the block The water temperature corres

ponding to these measurements is 323° K. 

The described features of the spectra were manifest 

also in the previously investigated lattice with spacing 

5.0 cm [6]. 

The results of the present measurements show in 

addition that the energy distribution of the neutrons, both 
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both in the uranium and in the water, depends little on 

the coordinates of the measurement point. Only on the bound

ary between the block and the water does the energy dis

tribution experience an appreciable change. 

This can be seen from Pigs. 4 and 5, which show the 

spectrum of the neutrons measured at the point 4 (r = 2,34 

cm) near the block, and the spectrum measured at the point 

6 (r = 1.30 cm) of the uranium block near its surface, res

pectively. Additional information concerning the measure

ment conditions are indicated in the figures. Neutron spec

tra that differ little from those given here were obtained 

also at other points of the uranium block and in the water. 

Table 1 lists the Integral characteristics of the 

measured spectra, which make it possible to obtain more 

definite quantitative Information concerning the variation 

of the neutron spectrum over the cell. The average values 

listed in the table were obtained from the neutron den

sity in the energy interval 0.25 — 0.005 ev. 

An Illustrative idea of the variation of the neutron 

spectrum over the lattice cell is given by Pig. 6. This 

figure shows curves of the neutron "temperatures," calcu-
—• 2 lated from the experimental values of v , v, and v using 

the relations given by the Maxwellian distribution, and 

also the distribution of the temperature of the medium 

over the cell, measured with thermocouples. It is seen 
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from the figure that the neutron spectrum varies little 

both in the block and in the water. An appreciable change 

in the neutron spectrum occurs, as was already mentioned, 

only on the boundary between the block and the water. It 

must be noted that the curves of Pig. 6 in the vicinity of 

the uranium-water boundary are distorted because of the 

effect of resolution over the spatial coordinate. One 

must therefore expect the character of the variation of the 

neutron spectrum on the boundary block and in the water to 

be actually sharper. 

The discrepancy between the curves of Pig.6 illus

trates the non-Maxwelllan character of the neutron spec-

tinm. This pertains In particular to the spectrum of the 

neutrons in the block, which differs greatly from the 

Maxwellian distribution. 

The main factor determining the spectrum of the 

thermal neutrons in the block is the absorption of the 

neutrons incident on the water. The following empirical 

relationships shows the transformation occurring in the 

spectrum as a result of absorption on going from the 

moderator to the block: 
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Here ^_(v) — macroscopic capture cross section in urani-

um, 

R — radius of the block, 

u and m — indices pertaining to the uranium and 

the moderator, respectively. 

The points on Pig. 7 show the spectrum measured at 

the center of the block (point 1), while the continuous line 

shows the spectrum calculated from the above relationship. 

V.'e used in the calculations the spectrum in water, meas

ured at the point 4 (r = 2.34). Vie see that in the thennal 

energy region the neutron spectrum calculated in this fash

ion, in the block, agrees well V7ith the measured spectrum. 

In the region of the slowing-down spectrum, neutron scatt

ering in uranium manifests itself noticeably along with 

absorption. 

II. Uranium-mono Isopropyl diphenyl lattice. 

The characteristic features of the space-energy dis

tribution of the neutrons in a uranium-mono Isopropyl di

phenyl cell are the same as in the uranium-water lattice. 

A comparison of the neutron spectra measured in both latt

ices shows that the differences observed between them are 

due to the relative increase in absorption, as compared 

with the moderator in the lattice with the mono isopropyl 

diphenyl. This is the consequence of the fact that the 

hydrogen-atom concentration in the organic moderator is 

- i+21 -



lower than in the water. A lattice with mono isopropyl 

dephenyl is equivalent with respect to slowing down and 

moderation to a water lattice with a smaller spacing. 

Pin-. 8 shows the neutron spectrum in the water and 

in mono isopropyl diphenyl, measured at point 7 of the 

lattice. 

The temperature of the moderator was in both cases 

34o° K. The spectra measured at the center of the block 

(point l) for the same moderator temperature are shown in 

Pig. 9. 

As can be seen from the figures, the neutron spec

trum in the uranium-mono isopropyl dephenyl lattice is 

harder than in the urani vim-water one. The average neutron 

velocities for these spectra, calculated in the region 

0,25 — 0.005 ev, are equal to 3.31 x 10 cm/sec for the 

5 / mono isopropyl diphenyl and 3.0 x 10 cm/sec for water. 

In uranium the values are 3.62 x 10 and 3.16 x 10 

cm/sec for the lattice with mono Isopropyl diphenyl and 

water, respectively. The observed hardening of the spectrum 

is connected vjith the Increase in absorption relative to 

moderation, A = ^^(kT)/ ^i^„(l - ^ ) (here ^^(kT) 

and $• are the macroscopic cross sections of the mod-

erator), owing to the Increase in the coefficient of ther

mal utilization 6 In the lattice with the mono Isopropyl 

diphenyl [8]. For the same reason, the density of the 
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thermal neutrons is less in the mono isopropyl dephenyl 

as compared with the density of the moderated neutrons. 

Prom a comparison and an anslysis of the results 

obtained, we can conclude that the difference in the chemi

cal bond does not appreciably manifest Itself on the form 

of the spectra in the lattice with water and with mono 

isopropyl dephenyl. The space-energy distribution of the 

neutrons in uranium-water and uranium-mono Isopropyl di

phenyl cells with equal ratios of hydrogen to uranium nu

clei should be the same. 

As already mentioned, the neutron spectrum in the 

heterogeneous uranium-water lattices was calculated by 

many authors on the basis of the Wigner-Wilkins and 

Wllkins models. Recently L. de Sobrino and M. Clark [3] 

calculated the space-energy distribution of neutrons on 

the basis of the Wllkins equation with account of the 

l/v leakage. Their calculations are in good agreement with 

the results for a urani vim-water lattice with spacing 5.0 

cm, which we have obtained previously. 

The space-energy distribution of the neutrons for 

the uranium-water lattice investigated In the present work 

was obtained by G. I. Marchuk et al. [9]. The neutron 

spectra were calculated with the aid of the scattering 

function proposed by van Hove. The dispersion of the auto

correlation function was obtained on the basis of the Inter-
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polation formulas of V. P. Turchin. The calculations were 

made in the P.̂  approximation using 15-group representation 

of the balance equations. 

Pigs. 2 and 3 show the results of these calculations 

(continuous curves). We see that the calculations dupli

cate quite well the experimentally obtained spectrum in 

the thermal energy region. A poorer agreement is observed 

between the calculated spectrum and that measured in the 

block. 

Table I 

Points of measurement 

Distance from 
center of rods, cm 
Temperature of 
medium at point 
of measurement, °K 

Most probable velocity 

mr •!«'] * 
CM 
ceK 

i?ff7.10-] 
7, = ̂  C''/<7 

336 

3,90 

3,47 

0,50 

338 

3,86 

3,48 

0,330 0,331 

n = f ^ ["Hi 

13,6 

462 

575 

550 

13,7 

452 

575 

554 

0,88 

338 

3,78 

3,41 

0,338 

13,1 

434 

553 

531 

1,30 

337 

3,83 

3,36 

0,345 

12,9 

445 

539 

520 

2,34 

328 

3,57 

3,02 

0,391 

10,6 

386 

434 

428 

2,70 

321 

3,47 

2,94 

0,402 

10,1 

365 

413 

410 

3,17 

323 

3,48 

2,95 

0,402 

10,2 

367 

414 

411 

* The most probable velocity corresponding to the experimentally 
measured distribution v^ • n(v). 
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FIGURE CAPTIONS 

Figure 1. Experimental arrangement. 

Figure 2. Neutron spectrum in water in a uranium water lattice with 

spacing of 5.5 cm. Water temperature, 323°K (beam #7). 

Figure 3. Neutron spectrum in rod in a uranium water lattice with 

spacing of 5.5 cm. Rod temperature at point of measure

ment 336°K. Water temperature 323°K (beam #1). 

Figure 4. Neutron spectrum in water in a uranium water lattice with 

spacing of 5.5 cm. Temperature at point of measurement 

328°K (beam #4). 

Figure 5. Neutron spectrum in rod in uranium water lattice with 

spacing of 5.5 cm. Temperature at point of measurement 

337°K. Temperature in moderator at point #7 is 323°K 

(beam #6). 

Figure 6. Variation of neutron spectrum over lattice cell. 

Figure 7. Neutron spectrum in rod in a uranium water lattice with 

spacing of 5.5 cm. Rod temperature at point of measure

ment is 336°K. Temperature of water at point #7 is 323°K 

(beam #1). 

Figure 8. Neutron spectrum in moderator in a lattice with spacing 

5.5 cm. Temperature at point of measurement is 343°K 

(beam #7). 

Figure 9. Neutron spectrum in rod in a lattice with spacing 5.5 cm. 

Temperature at point of measurement 358°K. Tempera

ture of moderator at point #7 343°K (beam #1). 
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Introduction 

We will briefly discuss in this review the techniques used to compute 

thermal neutron spectra in heterogeneous media. Equations will not be de

rived nor, in most cases, will they even be stated. Rather, we will try to 

describe in words the approximations that lead to each method and give an 

over-all picture of the methods that are actually used and their relationship 

to one another. We will frequently use figures from the contributed papers 

to illustrate a point; the details of the calculation or experiment represented 

in the figure can be found in the original papers. 

Theoretical Techniques for Computing Spectra 

The time independent transport equation describes the steady state be

havior of neutrons in a medium in terms of the flux as a function of position r 

direction Q, and energy E. This equation is too complex to be solved exactly 

and it is necessary to make simplifying approximations to obtain tractable 

equations. These approximations are made in the: 

1) description of the angular variation of the flux, 

2) energy transfer kernel and cross sections, 

3) description of the angular variation of the scattering process, 

4) description of the geometry, and 

5) numerical methods used. 

BD-2 



It is generally necessary to make approximations in many of these items and 

the e r ro r s introduced are frequently of opposite sign and tend to cancel; the 

theory then gives apparently accurate results. This cancellation of e r ro r s 

should be kept in mind when one is comparing theory and experiment. In

deed it is often more appropriate to ask the question "Why does this approxi

mate theory give good r e su l t s ? " than to ask "Why does this theory not cor

rectly predict the experimental r e s u l t s ? " 

Various approximate methods for describing the angular variation of 

the flux are shown schematically in Figure 1. Computer codes which use 

these methods are given in parentheses at the bottom of each box. We start 

with the transport equation written either as a differential equation or, equi-

valently, as an integral equation. The P [used by Gelbard (1)], double P , 

and discrete ordinate equations are obtained from the differential form by 

representing the angular variation of the flux by an n order polynomial. 

The S equations used by Leslie (2) and Macdougall (3) a re obtained by rep re 

senting the angular variation of the flux by n linear segments. Both S and 

Pj^ methods lead to coupled first order differential equations in the spatial 

variables. Computer storage requirements vary linearly with the size of the 

region under investigation and the number of angular intervals or polynomials. 

A second approach starts from the integral transport equation, many 
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TRANSPORT EQUATION 

H(r,E,n) = <^(r,E,n) + / d f i ' / d E ' S g ( r ,E'- .E,fiQ)0(r,E,n) 

[O- A + 2;(r ,E)j (^r ,E,S2; = m r , t ; , « ; 

1 

' 

i 
APPROXIMATE ANGULAR PART OF 

0 AND H BY n LINEAR SEGMENTS. 

RESULT: 

Sĵ  EQUATIONS 

(DSN, SNG) 

' 

EXPAND <p AND H IN ANGULAR 

POLYNOMIALS (SPHERICAL 

HARMONICS). RESULT: 

V^ EQUATIONS 

(EXCEL P-3) 

/ - > / T r°° s 

0 0 

i 
EXPAND H IN SPHERICAL HARMONICS 

AND KEEP ONLY THE LEADING TERM 

(ISOTROPIC SCATTERING). INTEGRATE 

OVER n . 

<^^(r,E) = / d r ' T ( r , r ' , E ) H Q ( r ' , E ) 
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* 
SOLVE ONLY FOR THE AVERAGE 
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0^(E) = T^^(E)H^(E) + T^2(E)H2(E) 

T (E)= / d r / d r ' T ( r , r ' , E ) 
^" £ " n 

COMBINE P^ THEORY IN THE 

MODERATOR WITH COLLISION 

PROBABILITY THEORY IN THE FUEL. 

(SPECTROX) 

F i g u r e 1, 
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forms of which a re discussed by Dalton (4). In this approach the scattering 

process is assumed to be nearly isotropic and the angular variation of the 

flux is treated (within numerical approximations) exactly. This method, 

with isotropic scattering, is used by P. Brown et al. (5) and H. Brown et al. (6), 

and Honeck (22). Computer storage requirements vary as the square of the 

size of the spatial region investigated and the number of angular moments 

used to represent the scattering kernel. If we further restr ict ourselves to 

computing only the average flux in each of two regions, as in a lattice, we ob

tain the first flight collision probability method used with great success for 

computing fast fission and resonance escape probabilities in lattices. 

If the medium is weakly absorbing, is large in extent, and has a smooth 

variation of properties, the low order P̂ ^ and Sĵ  methods a re most applicable. 

If the medium is highly absorbing, is small in extent, has sharp material 

discontinuities, and has nearly isotropic scattering, the integral transport 

theory is most applicable. If one must be able to handle all situations, a high 

order S^ (^^Q) method appears to give the most accuracy for the least work. 

From these arguments it is reasonable to combine P^ theory in a large 

graphite or DoO moderator of a cell with collision probabilities for the fuel 

regions as reported by Leslie (2). Vaughan (7) and HSfele (8) use diffusion 

theory and the heavy gas scattering model in the moderator of a cell with 
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an arbitrary boundary condition [i.e., - --^ =a(E)] at the fuel surface. Vaughan 

obtains an analytical expression for r/f when a(E) = 1; other forms for «(£) a re 

then treated as perturbations from a{E) = 1. HSfele t reats the fuel rod as a 

line absorber and uses Meetz's method (23). The advantage of this approach 

is that the variation of the spectrum across a finite reactor can be conveniently 

computed. 

Various methods for treating the scattering operator a re shown sche

matically in Figure 2. The numbers following the names of the computer codes 

are the number of energy groups used. Three techniques have been used to 

represent the scattering operator; multigroup, factorization of the kernel, 

and representation by a second order differential equation. If the full scat ter

ing kernel is used, the flux can be expanded in orthogonal functions; expansion 

in delta functions (or step type functions) leads to the multigroup equations. 

One can also expand in functions which, though not orthogonal, represent much 

of the known behavior of the flux [Ott et al. (20) and Calame et al. (24)]. Each 

of the above methods leads to a set of coupled linear equations which are to 

be solved numerically. 

A second method is to represent the scattering operator as a second 

order differential equation. Klahr (9) suggests a straightforward expansion 

of the flux in a Taylor ser ies and truncation beyond the second order term. 
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SCATTERING OPERATOR 
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The resulting equation, however, does not satisfy detailed balance and will 

be inaccurate for systems near equilibrium; since it contains only limited 

information about the scattering process, it will also be inaccurate for highly 

absorbing systems. The most general second order differential equation which 

satisfies detailed balance and neutron conservation contains one arbitrary 

function f(E), often called the Horowitz function. Setting f(E) = 1 leads to 

the usual heavy gas equation used by HS fele (8), Vaughan (7), and Taka-

hashi (10); Leslie (2) determines f(E) from a measured spectrum; Corngold 

(11) bases the choice of f(E) on the first energy transfer moment A-ĵ (E); 

Schaefer (12) uses a combination of A.(E) at low energies and Corngold's 

asymptotic expansion for the flux at high energies to deduce f(E); and finally 

Cadilhac et al. (13) treat f(E) as an operator and obtain a second order differ

ential equation for the slowing down density which contains two arbi trary 

functions. Schaefer's choice of f(E) for graphite is shown in Figure 3. 

An example of the use of the heavy gas equation, free gas equation and 

expansion in orthogonal polynomials is given by Takahashi (10) for the case 

of an infinite non-absorbing homogeneous medium of two materials with 

different temperatures. The heavy gas equation predicts a Maxwellian d is 

tribution at an average temperature T » while the free gas equation predicts 

a softer non-Maxwellian spectrum (Figure 4). 
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VEAT 

Figure 3. f(E) for graphite, (from reference 12) 
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Figure 4. Neutron spectrum in a medium with two temperatures. 
(from reference 10) 
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A third method, in which the scattering kernel is approximated by a sum 

of degenerate scattering kernels (25, 26), is relatively new and unexplored 

but shows great promise. 

The choice of a method for representing the scattering operator depends 

strongly on the application. The information contained in f(E) is adequate 

for describing the gross distortions of the spectrum from Maxwellian but 

certainly cannot provide detailed information about the flux in the vicinity 

of a resonance absorber. The method of Cadilhac may alleviate this diffi

culty. The representation of the flux by orthogonal polynomials in energy 

or velocity is useful only if the flux has an exponential behavior at high 

energies. The multigroup methods using almost the full information contained 

in the scattering kernel appear to be the best over-all methods. 

The multigroup method implies a high energy cutoff for the thermal 

group, above which the flux is known. It is necessary to compute the slowing 

down source, Q(r ,E), given in Figure 5. It is customary to assume that Q 

can be approximated by a function of r (i.e., an indium foil activation d is 

tribution) times a function of E obtained by using a 1/E flux and a free gas 

scattering law. Macdougall (3) shows in Figure 6 that even with a cutoff at 

1.5 ev the use of the free gas law can lead to a 10 to 20% er ror in the flux 

240 
between 1.0 and 1.5 ev, the region of the Pu resonance. Both HSfele (8) 
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EPITHERMAL NEUTRON DENSITY, N(v) ~ 0(E), 

AND THE SLOWING DOWN SOURCE 

Q ( E ) = / dE'S (E'-E)(|)(E') 

E » E 
s 

E « E 
s 

Kelber and Min: N(v) = ~{v/v+Ty Kostin: N(v) = v^ e [1+ - ! - + - = - + . . -l 

1 In - - 1 
1-X 2 ^ 

1 '^l ^1 
Corngold: N(v) = — [1+ — + —^ 

c^ = Cĵ (A,M) 

r X ^ ^etf „^ , 

vS„(v) 

' ' ^ ^ M 

C2 = C 2 ( A , M , ^ ) 1-M M-1 
1+M ~ M+1 

Figure 5. 
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Figure 6. Joining region of a graphite spectrum. 
(from reference 3) 
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(Figure 7), and H. Brown (6) show that the epithermal flux is not spatially 

uniform in large D^O and graphite cells. The asymptotic high energy be

havior of the flux has been investigated by Corngold (21) and Kelber (14) 

for the case of a very high energy source, and by Kostin (15) for a very low 

energy source (Figure 5). An illustration of these methods and of the non-

1/E behavior of the flux is given by Shapiro (16) in Figure 8 where he uses 

the Corngold expansion (with a Maxwellian subtracted off) to compute the 

epithermal bump in the flux in a graphite cell. Pearce (17) notes that this 

bump has a radial dependence and disappears in the fuel rod; the concept 

of a Maxwellian distribution in the fuel rod and the subsequent definition of 

a bump is, however, somewhat artificial. The point to these statements is 

that accurate methods a re available for computing the slowing down source 

and that the use of approximations (such as spatially flat sources, l / E flux, 

and free gas scattering) can cause significant e r ro r s . 

The angular variation of the scattering process can be directly in

cluded in the P̂ ^ and S methods, but is difficult to include in the integral 

transport theory methods. It is only recently that scattering models for 

graphite and heavy water have been developed that a re sophisticated enough 

to predict the anisotropic scattering. Some calculations with anisotropic 

scattering for water have been done by Gelbard (1) and Honeck (22). It 
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Figure 7. Spectrum in a D2O lattice. (from reference 8) 
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appears that, for water, only P . scattering need be included and that this 

can be accurately treated by a Selengut-Goertzel approximation or by de

fining an effective isotropic scattering kernel (transport correction). More 

work needs to be done to determine good anisotropic scattering corrections 

for cell calculations and leakage calculations. 

No reactors and few experiments can be described by one dimensional 

slab geometry. Most reactors consist of fuel rods in a rectangular or square 

ar ray with moderator in between the rods. To avoid lengthy two dimensional 

cell calculations one replaces the actual cell with an equivalent cylindrical 

cell (Wigner-Seitz cell). The circular outer boundary reflects neutrons 

back into the cell. Honeck (22) has found that this assumption is poor when 

the moderator thickness is less than about one mean free path (Figure 9). 

The THERMOS calculations shown in Figure 9 were multigroup calculations. 

The other calculations are one group calculations with spectrum averaged 

cross sections. The moderator in most graphite and D„0 cells is many 

mean free paths thick and the cylindrical cell approximation should be 

accurate. 

Finally, we should remark about numerical accuracy. Experimental 

results always contain an estimate of uncertainty, yet theorists state their 

results to many significant figures without any indication of how accurately 
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the calculation was done (the author is no exception). In many instances, 

the discrepancy between theory and experiment is only a few percent and 

certainly the numerical inaccuracy should be investigated and eliminated 

before attempts are made to improve the physics in the theory or the ex

perimental procedures. 

Some Experimental Foil Activation Results 

In this section we will describe and briefly comment on the results of 

foil activation experiments presented at this conference. Foil activations 

accurately measure the spatial distribution of the flux and, if various types 

of foils are used, spectral moments of the flux. Kelber and Min (14) com

pare spectra computed from the Wilkins (heavy gas) equation and the Wigner 

1 fifi 
Wilkins (gas) equation (Figure 10) and show that Yb activations would be 

14% different for the two spectra while Lu , Pu , and U activations 

168 
would be only a few percent different. They conclude that Yb activation 

is sensitive to details of the scattering kernel while Lu, Pu, and U are in

sensitive to the fine details of the kernel. 

Korpium, Renz, and Springer (18) have measured the Lu/Eu activation 

ratio as a function of distance from a cadmium disk in water (Figure 11). 

This ratio, normalized to unity far from the plate, is a direct measure of 

the change in spectrum near a black (vacuum) boundary. Parkinson and 
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Figure 10. Comparison of spectra computed from the free gas model 
and heavy gas model. (from reference l4) 



Figure 11. Foil activation ratio as a function of distance 
from a cadmium disk. (from reference l8) 
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1 77 1 7fi 

Salah (19) have measured Lu /Lu activation ratios in a one-inch steel 

rod (Figure 12), 3 and 4-rod clusters in D^O, and in a reactor core. In both 

of the above experiments the source of neutrons was a thermal column so 

that the spectra are distorted Maxwellians. No theoretical comparisons 

have been made for these cases. 
1 7R 

Leslie (2) has computed 1/v and Lu foil distributions in a CANDU 

lattice (D„0 moderator, natural uranium and H^O in the fuel) using an S^ 

code with free gas scattering kernels (Figure 13). The 1/v foil activity is 

in good agreement with experiment but the computed Lu activity is too small 

(spectrum too soft) in the fuel. This underestimate of the hardening in the 

fuel is probably due to the use of a free hydrogen kernel for the water in 

the fuel. Brown, Kaplan, Profio, and Thompson (5) (Figure 14) have meas

ured 1/v and Lu foil activations in a natural uranium, DgO cell and computed 

the activations with the THERMOS code using the Brown and St. John scat ter

ing kernel. They also find good agreement for 1/v activation but the theory 

underestimates the Lu activation in the fuel. Brown and Hennelly (6) (Fig-
239 

ure 15) measured the 1/v and Pu foil activation in a large uranium rod 

in D^O and computed activations with the THERMOS code using the Brown 

and St. John scattering kernel. They find good agreement with theory for 

both foils in the fuel rod but that the theory overestimates the flux in the 
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Figure 13. Activation measurements in a DpO cell, 
(from reference 2) 
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moderator by about 20%. A large part of this discrepancy is due to the 

use of a spatially flat slowing down source which in fact varies by a factor 

of two from the moderator center to the fuel rod surface. The only con-

sistant observation from these three experiments is that the computed 

spectra in the fuel are too soft indicating that both the mass 2 and Brown 

and St. John kernels yield too soft a spectrum for DoO. 

A comparison of various scattering models for water has been made 

by Honeck (22). The disadvantage factors and average neutron speeds in the 

moderator of a slab lattice as a function of the light water/uranium volume 

ratio are shown in Figure 16. The disadvantage factors for models which 

predict the same cross section variation with energy (such as Nelkin and 

Brown and St. John) have the same slopes but a re displaced due to differ

ences in moderating ability. The point here is that since the disadvantage 

factor is a spatial moment, the scattering cross section involved in the 

transport of neutrons is more important than the moderating ability of 

the kernel. Cylindrical THERMOS and two dimensional (2D) THERMOS cal

culations using the Nelkin kernel a re compared in Figure 17 with experi

mental disadvantage factors for water lattices. The systematic 6% dis 

crepancy is at present not understood although recent measurements indi

cate that the experimental data presented here may be as much as 4% too 
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low. Calculations by Gelbard (1) (Figure 18) also indicate this discrepancy. 

An attempt to correlate the average neutron speed in the moderator (with 

a cutoff energy of 0.78 ev) with a parameter related to the average absorp

tion cross section is shown in Figure 19 for a ser ies of 60 water lattices. 

The correlation is quite good indicating that the spectrum in the moderator 

is insensitive to the geometrical description of the lattice and that it is 

possible to give simple prescriptions for computing spectrum averaged 

cross sections. The cross sections used here were nearly 1/v and these 

statements will probably not be true where resonance absorbers a re used. 

Summary 

The methods for computing thermal neutron spectra have developed 

along two different lines. In the first approach large high speed computers 

are used to solve the transport equation with the best scattering kernel avail

able in an attempt to gain a full understanding of the theory and confidence 

in the ability to compute spectra in any assembly. A second approach recog

nizes the fact that not all of this physical information and mathematical rigor 

is required in the practical design of reactors. Not everyone can afford the 

large investment in computing time required to do these sophisticated cal

culations. Thus the second approach is in the use of simpler methods such 

as diffusion theory (perhaps combined with collision probabilities) and second 

ED-29 



1 1 

CALCULATED AND EXPERIMENTAL THERMAL 

ACTIVATIONS IN A TRX ROD X 
^ r 

EX PERIMENTAL POINTS / / 

® - MEDIAN LINE IN WATER / ^ 
A - ROD TO ROD LINE IN WATER / / 

1 r t A pv » ^ I 

NELKIN 
/VSKY KERNEL / / 

KERNEL / / ® 
/ / A 

/ ^ 
1 ^ 

6 GROUP P-3 / / 
EXCL-I \ K / / ® y ^ 

^ / A X " 
/ / ^/ 
1 >r 

' / ^ 
1 / \ 

1 / K\ 

TRX ROD 

1,3% ENRICHED j 
/' 

/' 
// 

// 
// 

/ / 
// ® /^ 

/ // 
/ // 

/ y ^ 
/ ^ 

y >^ 
y .^^ 

^r0 >^ 
^r ^ ^ 

V ^ ^ ^ 

^^^^^ 
^^,^^^ 

Q 
< 
-J 
o 

- J 
< 

^ 

/ / / 36 GROUP 
/ / h // SLOP-I 

// / 
/ / / 

' / 

/ / WATER 

jl 
jl 
ll 
j 
jl 
jl 

1 

^ 

O 

A 

y<^^^^^^^^ 
^ 

=- i 

II 

*^ 
o 
1 -

ISl 

a 
o 
Q. 
1/5 

( t 

8 
> 
< 
O 
2 
3 
o CQ 

0.5 1.0 

DISTANCE FROM ROD CENTER (cm) 

1.5 

Figure l8. (from reference l) 

RD-30 



X SYMBOL 
• 
A 
0 

0 
• 
• 
a 

• 

• 

FUEL. 
METAL 

I I 

OXIDE 
BORON 
METAL 

I I 

H 

I t 

BORON 

SCATTERING 
GEOMTRY MODEL 

CYLINDRICAL NELKIN 
TRIANGULAR 
CYLINDRICAL 
HOMOGENEOUS 

SLAB 
MASS 1 GAS 
BROWN a 

SX JOHN 
MASS 18 GAS 

HOMOGENEOUS EXPERIMENT 

14 .18 

Figure 19. Moderator neutron spectrum hardness parameter T^ for all lattices, 
The parameter 0 is computed from hardened cross sections and the computed dis
advantage factor. (from reference 22) 



order differential equations for the scattering operator. Both approaches 

are necessary. 

Our ability to compute intracell activation distributions with our best 

theories appears to be very good (better than say 5%) for graphite and heavy 

water cells. The experimental uncertainties for water lattices make it diffi

cult to assign an accuracy here. Our ability to compute rjf is then much 

better than the precision of the cross sections. Few calculations of tem

perature coefficients have been made but it is clear that they are at least 

an order of magnitude more sensitive to the scattering kernel than is r]i, 

so that there is still a need to refine techniques. 
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S U H M A R y 

1) The general mathematical properties of the thermalization 

operator are discussed in order to exhibit its important 

properties for the behavior of the neutron spectrum at 

high and low energies. 

2) A new model is presentedo For the calculation of any 

spectrum in infinite homogeneous systems this model leads 

to a second order differential equation. Hydrogen and heavy 

gas are included in this general model. 

3) The adjustment of model parameters on experimental data 

is discussed. 
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I - IÎ TRO DUCT ION 

This report deals mainly with the problem of neutron 

thermalization in an infinite homogeneous medium. 

It is well known that in a not too undermoderated system 

very different scattering laws lead to rather similar flux shapes. 

Let us consider for instance the two extreme cases A = ^ and 

A = oo of the gas model with a - absorption : 

Z^ [^) - ^xt) . If we assume E^A£} /< ^ the flux ^ f-̂ ) 

is expressed by 

v/here 

^ {^ 

Pig. 1 shows the functions CP^ (•u) and their asymptotic expansions 

limited to the two first terms. 

nevertheless these differences in shape, thoiAgh small, 

are of importance in reactor calculations. But it seems desirable 

to describe mathematically the thermalization process in a manner 

exhibiting the factors which deternine the flux shape more directly 

than the scattering law. Similarly since the neutron flux is not 

sensitive to all the details of the scattering law it sho\ild be 

possible to approximate it by a simple model depending on a few 

adjustable functions. 

The fact that the thermalization operator acting on the 

maxv/ellian fltix foi'^) gives zero suggests to use the function 

C ( M ) =i f_ fhi' rather than the flux cffxi) itself. 

C('\̂ ") is related to the slowing dov/n density ^ ('̂) "by the linear 

operator L -r < ^ 

- iiin -



The kernel L (̂ ,̂ 0 is given by ^ 

where '^^ ajid '̂  . are respectively the smaller and larger of the 

energies '̂  and T̂ ' . 

This relation shov/s that : 

^ is a positive definite hermitian operator, as a 

consequence of the detailed balance condition. 

In the next section vre consider the operator ^ [ a,, \o) 

deduced from "t. ('̂''\i') by a double Laplace transformation. 

In section III v̂ e introduce a simple model in approximating 

J - Ti by a second order differential operator. 
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w I I - TIIE KERi-iEL E(<.,x) 

E('u,"fe) is defined by 

(11.1) Pfa,I) = Ĵ  J L(^J,^•) e " ' ^ ^ ^ a^d^' 

Its expression is particularly simple in the case of the 

gas model : ^ 

(11.2) Pfa,̂ ') = _ 1 _ _ _ _ _ _ _ ^ P ^ .-— 
(a+t+1)^ ra+"&^-^ +^aX) 

and takes the form 

(A+i)^ 

if A :^4 

!(a,^) ̂  ^ ^ ^ / , s3 if A = CO 
(O. 4- t:> -f l) 

More generally in the case of the heavy gas model with 

a variable cross section 2 ( ô  ) = f f''̂) ̂ oQ 

^ 9- {^ 7 - -MfQ̂ -'̂  + O . 

0 

Where K b ) ^ ± \ \[^) f^^'^ ' ^(o) -^ 

, 1̂  f oo -_ au -'OVA' 
Putting ' ~ ^ 1 1 o -3 ĉ  

g(a,^) =^ ) ^ \ ^ ^o(V)^ (V^^)^^^ ̂ '̂ . 

^(a,b) = ^ (̂ >"0 - SÔ '̂E' ̂ ) 

is the double Laplace transform of the thermalization operator H 

and 0 ̂  X \ LL^"^) 
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In the case of the gas model 

For a scattering law 5 [o'y (*>) 

0 O 

In the (a,\) plane the domain ( oU ) of interest is 

limited by the line of singularities ( P* ) as shown in fig. 2. 

In ( S) ) ^(a,'E) is regular and has the properties mentioned 

above for X('̂ /'̂ ')» ( T ) is detennined by the scattering cross 

section at high energy ; thus ( £* ) and the dominating singularity 

on ( Ĵ  ) are the. same for a gas and crystal model. 

In practice, it is not necessary to know ^(oi,%^ very 

accurately in the whole domain ( <S) ) and even the exact form of 

( r ) is of little importance. 

For problems involving only thermal energies, it is the 

behaviour of f(a."&) near the origin which is of importance. Note 

that 

o c 

On the other hand, the high energy part of the neutron fliix 

h\h 



depends only on the behaviour of (̂a,"t) near the singular point 

0^ - 0 ^ [> - - i . 

To illustrate this, we consider the case of a 4; 
absorption with a source of intensity Q. at an infinitly high 
energy. 

Putting 

CO 

the flux may be written as a siim of two terms 

The total number of neutrons corresponding to the first term is 
aero. 

(4;(t) is given by the eqtiation 

(11,4) ^ no.,\)^{^^^\ +- r onr>fa,-&) 4̂ (̂ )clt = ̂ ^ ^ 0 4 

where r x \^ 1 

The asymptot ic expansion of the f lux corresponds t o the 

I expancion of 4^ (t) in pov/ers of -̂̂ t> vrhich fo l lows from the 

condi t ion t h a t 

0. [ [ e(u^b) +-m(a,"&)j 4 ( t ) at) 

I 
p 
I - H5 -

-1 

i s a r e g u l a r funct ion of (X. in the v i c i n i t y of <X = 0 , 



In fact, the expansion of kj; ("E) in powers of ^+1 converges 

for H+t| < M , 

A forthcoming Saclay report describes an analytical and 

a numerical method for solving the equation (11,4). A division 

of the interval ( -^/ OQ ) into two parts ( -'I/O ) and ( 0/oo ) 

appears in a natural way, the former giving the "fast part" of the 

flux,the latter the "thermal part". A characteristic shape for 

»4/(t)) is shown below, in. the case of small absorption. 

Tne aim oi tne " ?(ft;'t) uetnoa" is to fit theoretical 

models and experimental data i/ith a small number of parameters. 

Work on this subject is in proji-cco. 
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h We v;oula liice to mention shortly the method using a 

representation of the thermalization operator or of L, in terms 

01 Laguerre or similar functions. Such a representation may be 

useful for purely tiiermal problems such as the diffusion cooling 

or for calculations of spectra if the "fast part" of the flux is 

dealt with separately. 

We can define a set of functions ^i such that 

Putting L C • = Q ̂  one has 

In many cases, the calculations are simple if the C^ 

are polynomials ; these are obtained from the derivatives of 

6fa/'t) at tiie origin. This choice may not be the best from 

the point of view of convergence. 
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Ill - The "differential model" 

A fundamental problem of the thermalization theory 

is the determination of the operator T . L-̂  
In the case of the heavy gas model one has simply 

where 

This model which has been used at Saclay and by Dr. Leslie at 

V/infrith has the disadvantage that slowing down takes place in 

infinitly small steps. On the other hand if f (y) is chosen 

to give the right flux at very low absorption no degree of freedom 

is left for other adjustments, if necessary, for instance in 

order to provide the exact value of the diffusion ocoling constant 

or the flux shape at a stronger capture. 

The gas model gives for A = 1 

J = 

where D = T" and 

^ ) 
:^ 

^^h) 
H 4-T>) 

^ 
M^(U) = ti^ (̂  î  

0 v'^ 
+ v! 

-^ 

Considering these two expressions for J, Cadilhac 

proposed to approximate generally J by a hermitian second order 

differential ODerator : 

(111,1) i^) 'D '^<']\^ I 

Thus 

(111,2) c(^^ ^ J v'^^ - ,\^''^^v^) ' rJ^ '̂̂ Vf̂ " '̂̂ ', 
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(lll,l) implies (if R 7: 0 ) that ^ i 'is ' ^ ) ̂ ^^ ^^^ form 

(111,3) '' '^i'^'^ - ^^i'^)<V^^(-^j:.) 

and f̂o(̂ )̂ II^-^^') = - ,̂ -̂>̂ / ^̂  

^'-^ 

u( T̂  •) and "̂f •̂  ) are the solutions of J <̂  - O respectively 

regular for -u - O and \\ ~ OQ , The operator J may therefore 

be written as 

u -u 

and one has t he r e l a t i o n s 
&o 

^ 
5iCb^ uM-^) 

R V - ^(^)^o(y) 
(^;0 

In general, the differential form for J being only 

an approximation, the best fit for J does not necessajrily 

satisfy (ill,4). 

High energy behaviour of I and 

At high energy where binding and temperature effects 

are negligible, the flux is given by the approximate relation : 

(111,5) '̂00 S ' U ) 

v/hich l e a d s to : f (̂ ) C)(oo) 

To deterraine the constant jU- , v;e use the condition 

that in the case of a — absor-otion, the coefficient of the 

next tern in the expansion of '^{^) , i-e the — term, is exact 

^ 
yi-
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This gives 

In practice, one may use the approximation 

r 5A + -I 

The behaviour of i and ^ at high energies results from the fact 

that (111,2) reduces to (111,5). We find therefore : 

If the moderator is not monoatomic, ^ and v" are to be v/eighted 

by the cross-sections of the various elements. 

The relation (111,2) shoves that the asymptotic expansion 

of i(^) 

is identical with the expansion of C (•i,̂,) if the capture is confined 

to the thermal region, the source of tmit intensity being at an 

infinitely high energy. Since the asymptotic expansion of the fltix, 

even limited to the first two terms, gives a good approximation 

down to energies "̂  - -lo (as shown in fig, 1) it is essential 

to take for y, the exact value. For a gas : 

' A 

As already mentioned, the best f i t for fe does not 
necessari ly sa t i s fy (111,4), but by wri t ing 

( I I I . 6 ) ^(^) - ^ ^ 
-I 

Z^(V^u(^) 
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J^* (M ) wi l l be a slowly vaj?ying function of energy with 

I*(oo) = I ^ I N 

Dr Leslie* has adjusted the function •(i'yi = - ̂  -

appearing in the heavy gas model in order to fit the measurements 

of the spectra in well moderated graphite lattices. 

In the "differential model", 

has a shape similar to \i'^^ 

Calculation of the spectra with the "differential model" 

Let us consider the case of a source of intensity 61 at 

an infinitly high energy and an arbitraj?y absorption law ^ai"^) • 

To the equations written previously 

(111,2) a^) = .]l̂ V̂̂ A) - 4.^^^^-/ll^\ 

\m add the relation 

(111,6) ^ - ?al^)^(^) 

which expresses the neutron balance. 

Putting 

v;e o b t a i n 

^ I £ ,..\ ^ 
(111,7) .)h) ^h) - X' r^i^^fj '^^ h ^ '̂̂  - o 

* "Calculation of thermal spectra in l a t t i c e c e l l s " , paper presented 
at t h i s confei-ence. 
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with the conditions ^i<-') ̂ ^ (̂ foo) - O. 

We wish to emphasize that the calculation of the fliix 

is mathematically as simple here as for the heavy gas model. 

In fact, if \ie take a heavy gas model v/ith 

and an absorption cross section r -. 2-„z 
^^~M^<i 

r„ + £ ^ V-

we obtain a fltix '̂  (H) related to {f"̂ "* by 

Putting 

f. = f 

The problem can be solved by an iteration process. 

y 
^ ' ^ ) v/ith 

7\-0 

Air 0 

'fo = ^ 

we have 

q . ( ^ 5 ) - \ ^<^'*b) 'f- ^̂ ^ ^^ 

When the iteration is stoi^ped, the functions '4> and Q 

should be multiplied by a constant such that ^{^) = ^ 

If the capture is small we obtain 

f̂ f̂ ^ - ^~: ^f. + ^̂  
\ \,i^^\^j^^^A^ L 

when 

and ' 

)f^M.(iW, - JvJ 

^ 
. , j ^ ) . 1̂  ^ a l V i o ( ' ^ ) i><, 
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k The adjustment of the functions Ĵ(î) and ^(^) 

Vie v/ant to adjust the "differential model" i-e the 

fiinctions j(uj) and (̂̂ )̂ , in order to pix)vide a good approximation 

to a theoretical model or to fit experimental data. 

Since the model depends on two arbitrary functions, one 

needs for the adjustment tv/o fluxes corresponding to two different 

absorption laws. Taking a -̂  law and values of -zill) respectively 

equal to 0-1 and o-9_^ , v/e have calculated the functions J-'̂ ) and 

R̂ ij) to give exactly the sam.e fluxes as the gas model, for A - ^ ; 

4 and 12. Tlic functions, for f\ ~ i ; 2 and 12 are shown in fig. 5 

and 4. An in.portant point to be checked is that v/ith this adjustment 

the "differential model" approximation gives also the right spectrum 

v/ith other absorption laws. Therefore, v/e made the calculations for 

^"-J) - 0--T and ^ ( ^ absorption lav/) and for a capture having 

a strong resonance (Pu 259). The results were very satisfactory. 

This pi'oves that the "differential model" provides an excellent 

approximation for thermal reactor calculations. 
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IV - CONCLUSION 

The study of various theoretical scattering laws and of 

the available experimental data using the "differential model" 

and eventually the " €(*-̂ b) formalism" is now in progress at Saclay. 

Applications to heterogeneous reactor problems are included in 

this work. This v/ill improve the analysis of the rapidly increasing 

amount of integral data provided by reactor lattice measurements. 

A few test calculations have been made, using scattering laws data 

for graphite, kindly communicated to us by Dr Egelstaff, Schofield 

and Leslie, in order to point out the effect of experimental and 

theoretical uncertainties. 

For instance, we have calculated the second term o^ of 

the asymptotic expansion of the flux for v/oak absorption 

<f(^^ ~ i . ( ^ . | . ) 

using the ^(^) function given by Dr Leslie and the Ege l s t a f f s 
K (ft ) . One has : 

Mi-> oo n -̂  r 

and ^ ^ J i^cp) ^ I JjS 

T 

At room temperature, v/e obtained respectively 

T 
= 2. U from fvfî ) 

T * - = A.U from l(^) 

4 

454 -



\'[^) has the follov/ing shape 

H^) 

T"* 

6- , v/e have calculated 1~ a£ 

Only the part of the curve 

corresponding to ^ j ^ 2. Is 
determined experimentally. In 

order to see hov/ sensitive the 

asymptotic behaviour of the flux 

is to the choice of the cut-off 

a function of [Sj 

Â  (in kT uni ts ) 

^ / T 

5 

1.76 

6 

2.07 

7 

2,43 

On the other hand, for a given fi^ , T ^ T is almost 

insensitive to the shape of the left part of the curve. 

The knowledge of the neutron flux in a well moderated 

system does not give enough information on the properties of the 

thermalization operator in the thermal region. In particular, it 

does not permit to deduce accurately the diffusion cooling constant 

or the neutron flux when the absorption is strong or departs 

considerably from a ^/r^ law in the thermal region. As a test, we 

have calculated the quantity l(o^i>) for graphite, using : 

- Leslie's ffn) at room temperature : 

- Egelstaff s S>[oi. R): 

f f D, p) = 0.143 ^ ^ 

0.250 ^ « ) 
0.261 ^ « J 

(The tvra va lues a t 900° K correspond to tv/o extreme shapes of 
^(d ft) t ak ing in to account exper imental e r r o r s ) 

= 0 .166 ^ , 

a t 300° K 

a t 900° K 
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- the gas model (A = 12) 

It is necessary to emphasize that the value of Z(o,o^ 

deduced from \['\) is very sensitive to the sliape of fĈ ") in the 

thermal region, whereas tne flux in a well moderated system is 

rather insensitive. 

The uncertainties on the diffusion cooling constant arc 

of the same order as those, on ^(o^o) . 

If transport corrections are small or satisfactorily 

taken into acco\int, good measurements of the diffusion cooling 

constant provide an important check of the thermalization models. 

To illustrate this point, v/e give the expression of 'C 

in the case of the "differential model" : 

e J » 

^witVl b>o = 
^ / "̂ VT-̂ ^^^ 

For simplicity, v/e assume that ^i'^) is constant : 

Ĉ Ĥ'̂  = !!!_ !;>£, .We compare the value C^ obtained with the 

genei^alized heavy gas model : 

and the value C given by a "differential model" Q ^('\) =5̂  ^ ) 

leading to the same flux for a v/eaiv ^1^ capture. One finds : 

oo 

(".') c - e, = t> /ffcl52 
o 

i-,,1 " ' > ' ' 

4 
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b where _ 

, sr-''^^^ 
IS given m iig. 5. <? 

This shows that a precise determination of C provides 

a good discrimination between different models. It is seen in 

(IV,1) that "C—lfg is very sensitive to the behaviour of "^A) 

in the thermal region. 

Unfortunately, the experimental situation does not seem 

satisfactory for the time being. 

We hope that the "differential model" or the " l{a^\>) 
formalism" v/ith tv/o arbitrary functions will provide a good 

approximation for the thermalization operators (apart from very 

special cases, for instance when kT is near to the Bragg cut-off). 

This v/ill simplify very much the spectra calculations and permit 

an easy comparison between the thermalization properties of various 

moderators at different temperatures. 

457 -



NOTATIONS 

<JL neutron energy in -̂ T units 

• 3? neutron velocity : •%.'' ~ ^ 

•̂  (̂M-*• V ) M ' differential scattering cross section 

^C^-^ =c"')̂ *.*' differential scattering cross section 

The scattering law ^(^) f^ with << = (?'- S*) |S = *' - ^* 

is defined by a-^^fsT— ?') _ eT S('( &) 

^i^^ neutron flux 

f̂ 'i'̂ " »Ae ̂ maxwellian flux 

\(,'\\ is the slowing down density i-e the difference between tlio 

number of neutrons per tmit time v/ich jump from an energy above y 

to an energy below vi , and the number of those v/hich do the reverse 

4 
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Since the energy dependent neutron transport equation 

can be considered as a series of coupled one speed 

equations with an arbitrary source, the one speed equa

tion is of some interest. The one speed space and 

angular dependent transport equation for steady state 

may be written symbolically as: 

where l_ is the leakage operator -TL.'̂  V ^ T [ jl J is 

the space dependent total cross section / T ̂  — } 

O ( t,-G-) is the scattering integral operator 

/z:^(t)f(!i'-*^)[$<^t,!-oJfJii^ 
then Jj''^ t I — ) is the source term due to scattering 

from other groups and 0 ( 1.1 -TZ- ) is the neutron path 

length per cm-̂  per sec per unit solid angle. The argument 

Jl in the I C Jz J and vS i - , -Qr) is meant to repre

sent a stepwise continuous function associated with 

several regions of constant composition. Next there must 

be boundary conditions for the equation. For a unit 

cell with a perfectly reflecting surface * i t j — CJ 

and surface unit normal "77 (L) then at the surface 
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^ /̂  

where J2 is on / and —£3— A fj — -::__ __ -

These same boundary conditions will apply to all 

differential equations in this paper, even those de

fining the Green's functions, unless otherwise stated. 

Next one imagines the same unit cell with slightly 

changed nuclear properties in some region(s) of the 

cell. Using primes to denote the changed situation 

the transport equation becomes: 

Next define the difference flux as 

_ / 

Subtracting the two transport equations gives 

L^(t,^)-hr(t)(^(t,-r^)~r(t)§h.^) 
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(4) 

'- f (t,-:^)-9-'(t.-il-'' 

In Eq. (4) the unperturbed flux <P ( t , -zlr) 

in the unit cell is assumed to be known and one is 

interested only in the changes in flux (i.e. ^(t,-£]^J) 

which occur when the disturbances in materials are 

introduced in the cell. The sources ^ ( b / -£2r ) ^̂ "̂  

C { 1^ _ri~ j are assumed known for the one speed case; 

however, the sources will be calculated for the multi-

speed case based on the scattered source from other 

speeds. 

Next add ZT r ^ ^ ~ / -C^ J to both sides of 

Eq. (4) and use Eq. (3). 

(L^z;)^(h,^)^ Zr^ct,^) (5) 
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(5) 

-h f^t,-£^) - ^'^t -Or 

Or 

{T'(t)'-T(t))(^Cb.-a-)-Th)^(t.-Or) 

+ s'(h,-rt-)(4^(t,-^)i-f^t.-^)-f'^l:,-a-) 

The constant 2_ 7- which is independent of position 

will be taken equal to the Z-7- for the material which 

occupies the largest volume in the cell (typically the 

moderator). 

4 
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A Green's function for the operator { L. -f- 2— -j- ) 

and the above mentioned outer boundary conditions for 

a unit cell with perfectly boundaries is defined as 

the solution of 

S(t-t') 6f^-^') "' 

in the unit cell. The function ^ ( t,-Qrj — j z£h .) 

is then the first flight or uncollided flux (cm of path 

length per cm-̂  per sec per unit solid angle) in the 

cell at point r_ in direction -CL. due to a unit source 

emitting one neutron per second at point Jz in direction 

-:£}-- . Note that reflection at the cell surface does 

not constitute a collision. 

Using this Green's function to convert Eq. (6) to 

an integral equation gives 

(r'(t') - T (t'))±(t',^)Jt'j-r^' 
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_ri_' 

-H (8) 

h' ̂ M CI 

J 

Y' 

+ 

•t';-^' 

Here the region P is that portion of the cell where I ' — j 

differs from 7~ (Lj and Q is that region where / (tj 

differs from 27— • Unless otherwise noted integrals 

over _/2. extend over the entire cell. 

Let us next examine a more conventional use of a 

first flight Green's function associated with Eq. (4).'-̂ ' 
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Rewriting Eq. (4) gives 

(9) 

-5'(t. ->)[^ ̂  t, -e) - (^/i, ^)] + f ^-', -J 

The Green's function corresponding to the operator on 

the left of Eq. (9) is called ^J^ (^1, -St. ^ h ^-T}!) and 

is defined as the solution to the equation: 

" (10) 

The sole difference between the ^ ^ ̂  •— > — ' — 

and ^^ ( L, -^) H/ -£}r'J is that ^ is the flux in a 

single medium unit cell with / — whereas .^^ is 

the flux in a cell with the perturbed total cross section 

1~ {t} ^hich is a stepwise function of position. The 

source and observation coordinates and the unit cell 

boundary conditions are the same for ^ and -'̂ ^ . 
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Using the Green's function 

Eq. (9) becomes: 

^^-^-t;i^•o^) ^ 

h' c^ p 

^T'(f}-T(f)] S(t:^)Jh'J-a-' (11) 

t;^ 

+ \J (L^:t:^)[_ f(t:^)-f'cK^)] 

Jt'J-Or 

U72 
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The above mentioned heterogenities associated 

with --rU make it a more difficult function to calculate 

numerically. Further the integral equation which results 

from the use of ^ (Eq. (8)) is no more difficult to 

integrate numerically than Eq. (11) associated with the 

,yyl^ function. 

Thus it seems that using the Green's function <̂  

associated with a ficticious homogeneous cell has the 

distinct advantage of being considerably easier to 

calculate than the Green' s function .^^ for the real 

heterogeneous cell. Once the Green's function has been 
difficulty of 

calculated the/numerical solution of the resultant integral 

equation is essentially independent of the Green's 

function used. 

There is yet another integral form of Eq. (4) which 

is of interest. Rewrite Eq. (4) as: 

[t + ~fj:)- 5('i,^)Jtf('ir,^ 

[ra) -r'(t)]'i'(t.-n-) + 

[r'(t)-rft)]<^(h,^) -t- (12) 
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In this case the Green's function Cn ( t,-z}r j h '-^"^ ) 

is defined as the solution to the equation: 

The function G ( t, -£}- J î  '/ -£?- / ' sometimes 

called the transport kernel, is the neutron flux (path 

length per unit volume per sec per unit solid angle) 

at il and -f2r due to a unit source of one neutron per 

second introduced at IZ and -£i- in the cell with 

heterogeneous properties ' ( iz / and O C jt, -£2-) • 

For the special case of a unit cell which is many mean 

free path in least dimension and homogeneous the function 

of G ' -( -Or J î  y -Or) is known analytically and 

numerically. (2., 3̂) However, the general Ci ( h -Qr JT' -CZ! ) 

can be determined in a systematic fashion for a 

heterogeneous finite cell if enough effort is expended. 

For this case the integral form of Eq. (12) is: 
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'- (14) 

As before region P is that region or regions in which 

the properties ( '/ S or ^ ) have changed between 

the unprimed and the primed condition. The fact that 

all of the integrals of Eq. (15) are only over the 

perturbed region offers a particular advantage in the 

case of a cell with infinitely remote outer boundaries 

(e.g. a detector located in an infinite medium) in that 

the differential Eq. (12) which is infinite in extent 

in L. space is reduced to an integral Eq. (14) which 

is valid for all J2 but need be integrated only over 

a finite Y_ in P. For the case of a small unit cell 

the integral Eq. (12) still has the advantage that its 

integrals extend only over the perturbed regions of the 

cell but is valid everywhere in the cell. 

We are now in a position to observe one of the 

unique advantages of integral equations. For a given 

order of expansion in spherical harmonics integral 
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Eqs. (8), (11), and (14) are inherently more accurate 

than the differential Eq. (4). In order to see this, 

one expands the -£?_ angular dependence of ^ ^ — ^-QrJ 

<§'(t,-^), <^[t:^^) , f(h^_a,) and 
<S i t , -p- ) in an infinite series of spherical 

harmonics j ̂  ( -£^J • That is^ for a general functic 

•vi-oo 

next expand the functions *5, ' — / •if"-' L- / -Qr ' , 

J^(t,-e^l!:',-r!^') ^^^ (̂̂ i:,-£?r; iTy -£>') in an 

infinite series of the complex conjugate spherical 

harmonics 

Wl - M 

Insertion of the expansions for ^^ifj'^/jf ĉ d̂ ^ 

in the differential Eq. (4) and use of the recursion 

relation for the associated Legendre polynomials of the 

1st kind gives the usual infinite series of coupled 

equations in the unknown coefficients ^ ^ (t. 1 similar 

in form to the equations for the spherical harmonic co

efficients developed in Ch. of Ref. (4). In the N^^ 
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order approximation of the differential equation one 

terminates the summation for ^ ( — , -TL-y after N + 1 

terms and assumes that 

Next insert the expansions for ^ , ^ y ^ (J/and ^ 

into Eq. (8). Carry out the -£Z_ integration noting that 

Typical of the terms which now remain is the term re

sulting from the second term on the right of Eq. (8): 

^r(r,-^;':')dt' 
If one now terminates the expansion at N terms one im

plies that 

M, , -^,. ^\ (19) 

Insertion of the expansions into Eq. (11) and termination 
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at N terms implies that: 

> > 

Finally insertion of the expansions into Eq. (14) 

and termination at N terms implies that 

Note that the expansion in spherical harmonics o 

f/-e---^')-l Yr^-'}Y.7^) (22 
"VT) - -VI 

For a given direction -0~ the magnitude of the coeffi 

Y:^(--Y is 
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_'/2 
and these coefficients tend to diverge as T? . Then 

the function whose expansion is Z_ ^* I v\ (-Or J 

is highly nonisotropic but not quite as nonisotropic 

as a delta function. 

Now-A is the uncollided (with nuclei) flux due to a 

source at 2l' ̂ nd -£}- in a cell with reflecting boundaries 

and a medium characterized by T^t. . The function <̂  is 

similar but for a medium characterized by ^7- . Now if 

either the h or o. are for an infinite or very large cell 

they become / ,̂  ^ ^ S (-C^ ~ ^ ) ^ (^ - iCf]) 

If we place a reflecting boundary around the source the 

dependence of ^^ and <̂  on JCJ~^ will be more isotropic 

than given by Eq. (23). In fact, the ^L with its low 

Z^Y ' i°n.g mean free path and many reflections should 

be considerably more isotropic than the corresponding -^' 

which will have regions of high -c-tv̂  due to fuel lumps 

or other absorbers. 

If, then, due to the reflecting boundaries the —Â -

and the <\ are reasonably isotropic, then the coefficients 
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^vx^ t,-rvj i:') a n d ^ ^ ^i:,-n-; 2^'^ will form a de

creasing series for increasing y? . The coefficients 

of the expansion of the G can be written'^' as: 

C,:(i, -r^;f) - C. (Is -r-l) Yy(^ J ,,,, 

for an infinite one speed homogeneous cell. 

These coefficients have been evaluated and it can be 

seen that G-^ is very small compared to G Q and higher 

order terms decrease rapidly as "Vl increases. 

Based on the increasing isotropy from ^ ^ to ^ to 

G one can conclude that for a fixed N^h order spherical 

harmonic expansion 

1 i'," > h. ^^^ > 
(25) 

and the solution defined by Eqs.(13) and (14) is more 

accurate than that defined by Eqs. (7) and (8) which is 

better than that of Eqs. (10) and (11) v^iich is finally 

better than the conventional Pj^ or Yjj approximation to 

the differential Eq. (4) for the finite cell. 

There is, however, one important exception to 

this set of conclusions. For the special case of an 

isotropic initial flux ^ , isotropic scatter S and 

isotropic sources ^ then Eqs. (10) and (11) can be 
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integrated over all -H- and all -r2_ to give: 

r 

r ' t H P 

4 {X (t:£')s (c-)Q^(t')Jj:' 

4 (j.(t;C')[^(f)-f'Ul]cir' 

vJV\<? k-(f?̂  

4-
-TL. 
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and ^J^it:, t ' } is defined as the solution of Eq. (27). 

However, it can be noted that 

-G-/ -Or' 

So Eq. (28) is the integral equation for root four pi 

times the zeroth harmonic coefficient (i.e. the neutron 

scalar flux disturbance). This Eq. (27) for the 

disturbed flux KU (jr J is not coupled to any of the other 

harmonics and so no assumptions nor approximations 

(by cutting off the sum at N) need be made. Equation 

(28) is exact. 

By way of demonstration of the value and accuracy 

of the integral equation method consider the calculation 

of the flux depression caused by a highly absorbing 

foil placed in a thermal neutron flux in a diffusing 

(K) 

medium. It is well known^—' that diffusion theory 

(i.e. the |^ differential equations) is not adequate 

to treat this problem and in the typical case P3 or P5 

calculations have been found to be necessary. Using the 
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method of Eqs. (26) and (27) which is exact, Ritche's (i) 

has obtained very accurate solutions to this problem. 

o 
Using only the Yo terms (i.e. a zeroth order spherical 

harmonic approximation) the integral Eq. (14) has been 

f 3 6 ̂  

evaluated numerically using computers ^—'—* and by 

hand(—' . A comparison(—' with Ritchie's results shows 

that there is essentially no difference between the two 

methods over a wide range of parameters. 

Thus one is led to the conclusion, incongruous 

though it sounds, that the zeroth spherical harmonic 

form of an integral form of the neutron transport 

equation gives results which can be obtained only with 

much higher order spherical harmonic approximations to 

the differential form of the same transport equation. 

In view of these advantages of integral forms of 

the transport equation a number of forms of this pro

blem are being developed. The analytic work has been 

completed to extend the integral equation using the 

transport kernel (Eqs. (13) and (14)) to the multi-

speed case.(^) Monte Carlo techniques are being 

applied to the numerical calculation of the Green's 

function J^ for a series of specific finite geometries. 

The energy dependent version of integral method of 

Eqs. (8) and (9) is being developed. 
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Neutron Spectra in Heterogeneous Assemblies, 

a Summary of the Work of the Karlsruhe Group ^ 

by 

Wolf Hafele 

Institut fiir Neutronenphysik und Reaktortechnik 

des Kernforschungszentrums Karlsruhe 

1. Introduction 

The investigation of neutron spectra in nuclear reactors and assemblies 

is of considerable interest. The real precise prediction of the neutron 

balance in a thermal reactor depends on the knowledge of the neutron 

spectra particularly at lower energies. Strongly dependent is especially 

2 58 
the long time behaviour of a thermal reactor where U is largely 

2 39 
converted into Pu with its important fission resonance at 0.3 eV. 

The spectra are mostly used to produce properly averaged cross section 

data for a more simple multigroup calculation. But the interaction of 

slow neutrons with the scattering atoms of, say, hydrogen is also of 

interest for pure physical reasons. Therefore the theory of neutron 

Submitted to the Conference on Neutron Thermalization, Brookhaven 

National Laboratory, April 30 - May 2, 1962 
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thermalization is a link between reactor theory and pure physics. 

There are two main influences on neutron spectra. The first is the 

mechanism of the single process, where a neutron is scattered by a 

moderating atom. The second is the superposed net diffusion process 

which transports the slow neutrons to the absorbing materials like 

fuel rods etc. The second process, of course, is cf interest only, 

if the reactor is a heterogeneous one. But this is true for almost 

all existing reactors. The investigation of the first influence suggests 

the picture of an infinite homogeneous assembly where no net diffusion 

process takes place and the interest is focussed on the single scattering 

process. The investigation of the influence of the heterogeneity suggests 

a picture where the single scattering process is as simple as possible 

but typical and the heterogeneity is idealized into the cT function type 

sink and source model, which allows for a simple mathematical description 

The investigation of the influence of the single scattering process on 

neutron spectra has found a v/idespread interest during the last years 

because of the more physical background. The Karlsruhe grouj,'lowever, has 

also emphasized the study of the influence of heterogeneity on neutron 

spectra. This paper summarizes the work on this second aspect. 
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2. The heterogeneous reactor model 

H. Hurwitz jr., M.S. Nelkin and G.J. Habetler derive in their early 

paper [̂ll the equations for space dependent neutron spectra . They start 

from the Boltzmann equation, use the spherical harmonics method and 

arrive finally at an equation of the diffusion type. 

The equation is the following one: 

(1) (Z - D4) ̂ (?,E) - L({2J(?,E)) 

= fdfi' 2^(S' (2) L(0(r,E)) = dS' 2 (S'-..E) iif(r,E') - IJE) • ^{T,E) 
9q 

(3) ^^(B) =f2^(E-*E>) dE' 

(4) D = ^ 
5 ^S 

2 is the absorption cross section, in principle space and energy dependent 

q is the slowing down density defined by (2) 

A is the Laplace Operator 

r is the spatial vector 

E is the energy of the neutron 
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2 (E'->E) is the energy transport cross section which gives in case 

of a scattering process the neutron from E' to E. 

The other quantities are defined in the equations (2) - (4)-

V/e deal now with (l) and explain the Meetz model of heterogeneity [2^ • 

In the simplest case we have a one dimensional model, r is to be 

replaced by the simple coordinate x. We consider a finite reactor 

configuration of thickness 2-̂  with 

(5) N = 2K+1 

that is, with an odd number of fuel elements of thickness 2a and spacing 

d (Pig. 1). 

We further require that there shall be moderator to such an extent that 

the reactor consists of N tVigner Seitz cells only, that is 

(6) 2 ̂ = N d 
^ o 

If we describe the fuel plates by /functions,this model leads to the 

following equation: 

2 
(7) D - ^ + L(l2f) + f - 0 , 
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where 

+N 
(8) f = - 2a 2 {€) 2 (/"(x-kd) 0(kd,£;) . 

^ k=-N 

?/e use here and in the following the normalized energy 

(9) £ = j | 

where k is the Boltzmann constant and T the temperature of the moderator. 

2 (£.) is now an effective cross section adapted to the absorption strength 

in the real,finite plates. In the case of no self shielding 2 (E) is 

simply the absorption cross section of the fuel: In case of such a self 

shielding the value and energy dependence of 2 (£.) must be taken from 

a transport calculation inside the fuel. In the simple but artificial 

case of the validity of an diffusion equation 

^ - K^ Ĵ  = 0 
dx 

we have 

V (c\ - (v \ sinh K a 
^a^^^ - ^̂ a-'fuel ' T T ^ 
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The boundary conditions which determine together with (7) the problem 

are the following: 

(10) j!f(+ e,e) = 0 

(11) (l(x,0) = 0 

i 
f 

+N [ „ ~ ^ 
(12) q(x,e ) = V . 2a • 2 c/(x-kd) • SiJ(kd,6;) 2„(£) di 

k=-N J 
o 

In (12) we assume that all fission neutrons appear at a discrete energy £ 

2„ is the fission cross section,v the number of neutrons per fission. 

We now introduce two abbreviations: 

/'-lz^ D 2 

(14) 
2a 2 (£) 

d^2g = P(e) 

§ is the logarithmic energy decrement for scattering down processes at 

high energy that is: a constant value. 

We now make the following ansatz: 

(15) ^ -f' 2 ^AO V (x) 
p=o •'̂  
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V are the orthonormalized eigenfunctions of the d operator and the 

boundary conditions (9): 

(16) V = —== cos a x 

(17) % =T?- (2P + 1) 

Inserting this into (7) leads to the following equation 

(18) - x/ â 2 ^^ + ̂  - p(£) 2 f^(€) d[vp,vj 

d V ,v 7 is Meetz's matrix for heterogeneous plate type assemblies 

(19) ^[''p'\]= } ^ ' ^^^^^^ \(^^) 

T h i s m a t r i x h a s a " o n e " i n t h e d i a g o n a l t e r m s ; 

1 + p + q = N n n = 1 , 2 , 3 

( 2 0 ) 

p - q = N^m m = 0 , + 1 , + 2 , + 3 

All other terms are zero. (20) implies the fact, that the system (18) 
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splits into N+1 different sets of equations, where only the quantities 

'̂ N m + s ' '̂N m - s - 1 o o 

appear. 

We obey the fact that 

2 ^ 2 
" N m - s - l " N m + s o o 

and rearrange the indices: 

^̂ ^̂  % m - s - 1 ^ '̂- (N m + s) 
o *• 0 ' 

(21) implies that now m goes from - oo to + oo and covers then all index 

constellations in question. 

Therefore we have 

(22) - -o "N^r . 3 '̂N r + s " ?2: ̂ ('̂ N r + ŝ  " P(^) ^ V'j, , , 3 ^ ̂  0 0 J S 0 m=̂ -oo o 

r = -00 .... +00 

s = 0,1 ,2 N 
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The boundary condition (12) obeys the same symmetry. The exitation 

strength of the q mode shall be C . I'le have 

I 
•e 

-re 

(25) P̂ 

'o 

<Pp(£) 2^(e) dC 

We have the same matrix djv ,v land the same conclusions, therefore it 
P' q-

obeys the same frequency selection 

(24) q = N r + s 

That means 

+00 
(25) C =n^^T^ ^ -̂TM u. for all values of r •̂̂ ^ s ' d N m + s d N m + s m=-oo 0 

By means of this boundary condition our problem becomes an eigenvalue 

problem with v as eit:,envalue. Therefore only one of the N + 1 sets of 

equations can have a non trivial solution. Prom (16) one concludes that 

the term cos a x must be among the components. Therefore only the set 

s = 0 is here of interest because the reactor is regular and undisturbed 

(see [2]). 
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The frequency selection (24) has an immediate consequence for our 

ansatz (15)« 

It happens that 

cos a„ kd = cos a kd N m o 
0 

and 

A A m 
°os (x^ ^ (kd + ̂ ) = cos ac^(ki + -) • (-1) 

o 

Applying this result to (15) it follows that at the fuel plates (x=kd) 

and in the middle of the moderator volume (x=kd + •5-) the spectra are the 

same for all the different Wigner Seits cells. This is the analog to the 

fact that in the homogeneous case the problem is separable that means, 

the spectrum there is space independent. L. Dresner []3j has shown that 

this result is generally true, the only assumptions to be made are the 

following : 

The fuel arrangement in the reactor must be periodical and the outer 

boundary must be such that the image method can be applied. This 

immediately shows that this method fails in the case of a cylindrical 

core boundary, it can be true there only approximately. 
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3. A principal classification of neutron spectra 

The classification in question is a principal one. But it can be 

demonstrated in the easiest way, if the heavy gas model is choosen 

for the scattering of the neutron by the moderator. There we have £lJ 

(26) L(i/) = 5 2 g ( e ^ + £||+'/) +0 Ufp' 

(27) q(Ŝ ) - - % i i § ^ (6- 1) ?f) + 0 |(f)'l 

V m i^^^i 

J 
m is the neutron mass and M the mass of the moderator atom. In order to 

be consistent we must put: 

3 - ^ 1 

2 = 2Q = constant 

(26) inserted into (7) gives an elliptical differential equation. This 

is true in principle for all energies. One can recognize the character 

of the possible solutions of (7) if one asks for the solutions of 

L{^) = 0 (for example in the sense of a perturbation ansatz). 

V/e have two solutions. First: 
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(28) 0 = J2f̂  = e r ^ 

(28) is a Maxwell distribution and refers in it's character entirely to 

the elliptic character of the equation (7)» (26). The general implication 

is that we have a spectrum which refers to an equilibrium or near 

equilibrium state. Spectra of this type obey the following rule: 

(29) q(e)~0((f~ ) for large values oft 

Spectra of this type shall be called type A spectra. 

Besides of (28) there is another solution for which we can give the 

asymptotic expansion 

. N n-1 
(50) j2f = i2f2=e ^^'-(p + 0(<f~') N = 1,2,3... 

n=1 

For values sufficiently large ĵf approximates the solution of the 

equation 

(31) L(/) = ̂ 2^(6 If + <^) - 0 

But the equation (7), (3I) is 01 a completely different character. It is 

4 

4 
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of parabolic nature and describes slowing down processes (Ausgleichs-

problerae). 

Spectra of this type shall be called type B spectra. 

The reactor spectra are of the mixed type in the region of interest 

and this is the reason why the mathematical treatment is so difficult: 

Mathematical tools are developed for either the type B or the type A 

solution, in the first for example the Laplace transformation, in the 

second for example the expansion into eigenfunctions of L(^) = 0 with 

q(6) = 0 for large values of 6, because these eigenfunctions belong 

to the type B. 

Reactor spectra for low energies are close to type A, for high energies 

close to type B and the change tankes place gradually and has no turning 

point which is physically meaningful. 
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4. Slowing down spectra in a plate type reactor (type B) 

In the following we will concentrate on the heavy gas model which leads 

to (26) and (27) although the procedure presented here is not restricted 

to that model. 

This chapter refers to a first paper of the author [A]' The details can 

be seen there. 

It is assumed there that only the slowing down case is of interest, where 

L given by (26) can be replaced by L (3I). In that case our problem is as 

follows: 

(52) --o'^N^Nr^^H ^i^-P(^) ^"^Nm=° 
+00 
2 < 

o " o " " m=-oo "o" 

and accord ing to (25) 

+00 

o "̂  S m=-oo 0 

but t h i s means 

(53) Vjj ^ (£p) = S^ = cons tant * f ( r ) 

4 
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In addition we assume a simple absorption law 

(34) p{C) - p, ' 
° ^ 

In order to obtain the solution we make the following ansatz, where B is 

a constant still to be determined. 

00 N r 

(55) f^ M = I 
V v^o 1 - 6 + ^ 

(35) leads to the equation 

(56) (a„ X - B + •̂ ) f., = - p 2; f„ •̂̂  •' '̂  N r o 2' N r ^o N m o o m=-oo o 

2 2 From here we conclude, that fi has to be one of the values a„ x in N r o o 
0 

order to let f„ • 0. For very high energies that is for the fission 
o 

0 
energy t the term f in (35) alone survives and represents the mode 

0 

for which (35) is to be applied. So the absorption p(6) at lower energies 

intermingles the modes, a pure mode at i= ^ ^its into all other modes. 

The second conclusinn is that in (56) the term on the right is independent 

V 
of r. But this means that the way in which f„ depends on r is given in 

0 (56). Using the abbreviation 

V +00 V 

(57) P = 2 f„ 
m=-oo o 
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we obtain 

(38) f 

v-1 
V - p F ^o 
N r 2 2 o ̂  V o a„ X - 6 + TT N r 0 2 o 

V 
Summation over r gives the final formula for obtaining the F and from 

V 
this by means of (38) the f̂ . . 

o 

(39) P = - p^ . 2 —^ ^̂  — ' ^ F 

^ «N r ̂ 0 - ^ ̂  2 
0 

The Fourier series (15) becomes a real result only in the case where all 

the summation can be performed. Using (55) in (15) leads to the more 

general series (40), which can be summed up by means of the residue 

calculus [2J : 

cos a,. X 
+00 N m 

(40) 2 — ^ 2 = h(s) • P(x,s) 
m=-oo a„ X • + s N m o 

0 

sinh ~ ^ ^ 

(40a) h(s) = ^ ° 
2x ^~s' ( c o ^ — Is' - cos —-) 

. , x' ,f~-i k+1 r- . , x' -d .1—1 k _ 

smh — vs cos —— ); - smh Vs cos •=— ii 
(40b) F(x,s) = 2 o 0 o _ 

sinh -^ fs" 
^0 ' 

X = x'+kd 

k = 0,+1 ,+2, . . . ,± N 

O^x' ^d 
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From here on the c a l c u l a t i o n i s s t r a i g h t fi\oyWard and l e ads to the 

fo l lowing r e s u l t : 

2 2 
S +00 , "'N m ^o 

m = f z (f) ° Â  
m=-oo P 

00 V - 1̂  V (m) ? 2 V 
(41 ) A = 2 ( - 1 ) ( r ^ ) p • B • F ( x , - a , / x "̂  + | ) 
^^ •' m ^ ' ^C' ^0 V ^ ' N m o 2 ' 

v=o P o 

^B^ = I h ( - oc 2 . 2 ^ f ) 
V \\ ^ N m o 2 ' 

a=1 ° 

(41) is convergent for all values of ^ ^^„ and is the solution of our 

slowing down problem. It has tv/o significant features: 

For sufficiently large values of t only the first term of the series A 

is to be taken into account and a simple series remains which describes the 

smoothing out process of the (f functions acting as sources of £ - t The 

smoothing out process is of the 0 function type. On the other hand: 

for sufficiently small values of t only the term A is significant in the 

main series. .'e have again a siuple series which describes the flux peaks 

between the fuel elements in its energy and space dependence. There is a 

region in betv;een where only one term in both series is significant: 

S 
(42) / ' 2_ _ . cog ^^y. 

1 - X X 

503 



The smoothing out process of the source ©function produced the ground 

mode cos a x and the absorption of the fuel plates is not yet significant. 

?or reasonable absorption strengths of the fuel plates this pure ground 

^F 
mode takes over somewhere in the neighborhood of -j- ~100, that means 

6 •» 20 keV" if heavy water is used. 

The main conclusion we draw from this is the following: 

It is possible (at least for heavy water and graphite) to separate the 

smoothing out process of the heterogeneous fission neutron distribution 

from the formiation of fLux peaks in the moderator at low energies. 

Details of this calculation can be seen in paper [A'J • 
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5. .Jquilibrium spectra in a plate type reactor (type A ) 

As indicated in chapter 4. we will use the heavy gas model. 

The physical conditions for spectra of the equilibrium type are given 

in experiments 7;hich use pulsed neutrons. Sometime after the shot which 

injects the neutrons into a non multiplying assembly there are no more 

fast neutrons to be slowed down and the existing neutrons, although 

decaying in time, have a sort of equilibrium with the moJerctor. Jhis 

type of experiment is investigated in a second paper of the author to

gether with L. Dresner f5l' 

In the analysis of the pulsed neutron experiments we have to add a term 

in (7) which cares for the time dependence. 

<'ve have : 

(45) . g . . ( ^ ) - r » ^ . ^ . , _ = l | ^ 

V is the neutron velocity and 2" allows for an absorption in the modera-
a 

tor. r'lease note that we have not yet taken into account an absorption in 

the moderator up to now. 

\/e make the following ansatz: 

, , 00 

(44) ^ = e- ^*/?2 ^ (E) vjx) 
P P p=o ^ 
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with the same notation as in (15). Kome time after the pulse the frequency 

selection (24) must hold and we obtain the following equations for the 

Y (e) with p = N r 

(45) 

P „ ^N r ^^W r - -̂  +00 

- -o «N r ^N r ^^ T " ^ - g T " ^ ^N r ^ ^ («1̂ N r " ^t ^ ''N m) = ^ 
o o (P £ o o ra=-oo 0 

(46) 

.J.ioD 
\ - 2 V 

a 
a = 

-• & ^ m ' 

2a 2^(^=1) -, 

^46a) Pt = —afr 7f 

Addi t iona l l j ' ' we have : 

ii{±e) = 0 

(47) q ( x , 0 ) = 0 

^(^>t) ~ 0 for large values of C . 

Me nov; make use of the fact that we look for spectra of the type A. 

'./e expand the f,, (£) into eigenfunctions of the heavy gas operator 
o 

4 

4 
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I 

I 

I 

1 
•r—— L. These eigenfunctions are as follows; 
*^S 

(48) ji- L(a;p) - - O^ O^ 

_ a (cj ) = 0 for 6 = 0 and £ = oo 

H ^̂  P"̂  

For the case of the heavy gas model we have 

(49) u)p =ee-^ L(')(e) 

(50) ^p " P ' P " 0,1,2,3... 

(1) L^ {£.) are the Laguerre polynomials of order one, which we use in the 

normalized form 

(5') 4'^® - ^ , f „ (-'' . i M ) r ' ( p - . ) i £ 

The operator is not self adjoint. The adjoints of (49) are: 

(52) W / = L^^)(£) 
k k̂ 

We now consider the following expansion; 
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(53) 'PN r = ^ ^,P ^p(^> 
o p=o '-̂  ^ 

Inserting (53) into (45) leads to a cumbersome but straight forward 

calculation, where the matrix elements V are to be considered. 

pq 

(54) 

V 
00 1 
' - 2 p f(p-^T)r(<i-^+^)-r(/+^) 

'-'''' <''''"-Ji^^^^)i^clo ^^-eWeV.e. 

It should be emphasized that the formalism outlined in ["sj does not use 

in principle a special model for the thermalization. However, if the 

heavy gas model is used all expressions can be given explicitly as in (54) • 

The problem (45) - (47) is a homogeneous one and constitutes an eigen

value problem for a. Because of the two dimensions in question (x,£) a 

has a two dimensional set of possible values, one degree of freedom refers 

to the space dependence the other to the energy dependence. Kote that only 

in case of type A spectra the eigenvalue of the problem is double indexed. 

For type B spectra the condition (12) establishes a source which makes the 

problem not homogeneous in the £ direction, we have only a one dimensional 

set for the v's there. 

The calculation following the insertion of (53) in (43) is cumbersome 

although straight forward. Under certain conditions it is enough to 

508 

4 
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consider in (55) only two terms p=0 and p=1. If,for example, the structure 

of the diffusion cooling effect in heterogeneous non multiplying assemblies 

is the point of interest, it is enough to have these two terms, because they 

can indicate a spectrum cooling or heating. The result of this investigation 

of the diffusion cooling effect is given in L S ] * But the several expansions 

are not driven to the latest stage there. If one does so, the result is as 

simple as follows: 

(55) X = (zf°^ v) ̂  

o o Jl 8 

^ 2a „ r2a /„ J^ 1 ,'1 , / d ̂  ̂  1 d̂  >, ^ 

*- -/ J^o v o x 

° ((%'^j'• (f v)"h "^x*' 

We used the following abbreviations: 

X 
o . , a 

(56) k(f) = 2 . i = _ J _ ^ 
o 2x„'̂  ^ 12 X -̂  

(cosh — - 1) o 
d o 

V is the Maxwellian average velocity of a neutron gas at temperature T; 
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(57) V = @ 

2 2 2 2 It is also assumed, that not only a x but also a d « 1 
' "̂  O O 0 

Prom the investigation of the diffusion cooling effect in homogeneous 

assemblies,which is presented in [57 » one can argue that at least in 

4 1 1 
the term a -Q has to be replaced by -r if not only the first two terms 

i" (53) T̂ ut all of them are taken into account. 

The discussion of (55) is interesting: 

There are three first order terms. The first is the contribution to the 

decay constant coming from the homogeneous absorption of the moderator, 

2 — 
the second is the leakage term a D v and the third comes from the ^ o 

2a homogenized heterogeneous absorption in the plates -— 2 v. In the ci a 

second order to which the formalism is given here there are two diffusion 

4 2 cooling effects. The first is the well known leakage effect a D due 

to the diffusion of the neutrons, the second refers to the diffusion 

process into the lumped absorbers. This second diffusion cooling effect 

disappears if — ->0 because this implies that for a neutron the assembly 
o 

is no longer heterogeneous. 

It should be mentioned that the energy dependent Milne problem was 
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investigated for type A spectra by E. Kiefhaber (6 j in his master'sjthesis. 

Instead of the heavy gas operator the Nelkin kernel was used in (2) and 

(43) • •i'he mathematical procedure was again the expansion into eigen-

functions of the operator L as in (55)• But the eigenfunctions are here 

no longer simply the Laguerre functions. It is necessary to express the 

eigenfunctions in itself as an expansion into Laguerre functions. The 

experimental group of K. Beckurts did a lot of measurements using pulsed 

neutrons in light water and it was very useful and successful to have 

this comparison. 
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6. Reactor spectra in the thermal ran^e< type A and type 3 

As pointed out in chapter 3« "the neutron spectrum in an actual thermal 

reactor is not purely a type A or type B spectrum and this establishes the 

mathematical difficulty. In the case of a plate type reactor a solution of 

the spectrum problem was given by the author of this paper [jl» But it was 

necessary to restrict the application of the method outlined there to small 

absorption strengths of the plates, because it was not possible to perform 

the summation of all Fourier series. However, it wastpossible to give the 

asymptotic expansion of the problem in question, which goes parallel to 

the procedure given in chapter 4» of this paper and there it was possible 

to perform all the Fourier summations. It is an asymptotic solution only 

because of the essential singularity at oo of the heavy gas operator (26). 

From here on the way to handle the problem was rather obivous: 

Suppose that ̂  is a function with the following features 

^(0 - $2(̂ 3(0 £ > f 

?(e) = p(e) e ^ c 
o 

^ {€) is the asymptotic expansion valid for large values of £ and P(C) 

is an arbitray but smooth function which fullfills the boundary condition 

at £ = 0 and fits smoothly into ^ at £ = 6 . Then the function 

^Diff(f) = î (̂ ) -"^(e) 
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where (̂€.) is the solution of the problem, is clearly a function which 

represents a spectrum of type A. But this means that we can apply for 

^js-ffiO an expansion into eigenfunctions of the operator L as given in 

(53)• As long as there is no absorption in the moderator, strong enough 

to influence the neutron spectra there, all Fourier summations can be 

performed. And this is true even for the two dimensional case. 

H. Kunze used this procedure in his masterbthesis [8J. 

The method shall be described here a little bit in more detail, u'e look 

into the most simple case of a homogeneous infinite medium. Here we have 

2 ^ 

(58) H^^ft^^-^t -̂^ î  = 0 
d£ 

In the homogeneous case we have to put 2a=d, (I4) therefore tends to the 

following: 

(59) P, = 
^je=l) 
a 
I 2. 

fie have the following boundary conditions: 

(60) q(0) = 0 

Q(£) ~ constant at high energies 
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In the first step we look into the asymptotic expansion 

(61) î  l^e) = i 
as ^ ' 1 . v 

v=o 1 + — 
£ 2 

Inserting (61) into (58) we obtain 

(62) 

that is 

Sv+2 = - ^ (^' ^f) (2 +|) g^-p^ =v+1 

Si = - 2 Pt go ' §2 == 2 (1 + Pt^)go' 

Besides of (61) there is a second asymptotic expansion: 

(9) i ^^ S_ 
(63) i2f(2)(e) =£ e-' Z -^ 

v=o^-

^̂  ' and î^ ' are the asymptotic expansion of ŷ^ ' and ^^ , functions 

which have logarithmic singularities at £ = 0. Yve look into the linear 

combination which cancels the logarithmic terms at £ = 0 

(64) !̂ (£) - /^^(£) + X 0^^\O 
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(1 ) Because of the contribution ^̂  (£) !> does not belong to the Hilbert spac 

of the eijjenfunctions of L, (49). 

It is possible to expand the wanted, regular function ^(£) at £ = 0 into 
^_ 

a power series of £ 

00 1 + -1̂  
(65) 5̂  = 2 a^ £ 

v=o 

•„e now consider an auxiliary function ]?(£) of the following properties; 

?(0 = (̂ 3̂̂ 6) for £>£^ 

(66) 

"^(C) = a £ + b £ ^ + c C ^ + d £ ^ for C ^C 

The notation^ indicates that the asymptotic expansion (61) shall be 

taken up to v=N. The form of ̂  for £ ̂ £ is suggested by (65). a, b, 

-7IT and d are determined by the conditions, that f and its first three 

derivatives at G = £ shall be continuous. 
o 

iVe now def ine a q u a n t i t y 

(67) 3 - -

0 I'f w - 1 

[ 
,^Ll^.,^^^(l)-.,-c-^ic 0 , i ^i 

d£'- " ̂  >- ' ' - ° 

1 For values £ >£ S has the order 0 ( TTT) • 
o M+1 

£ ^ 
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As an aj.proximation to this we define, that 

(68) 3 = 0 £ > £ Q 

.'Ve put now: 

(69) î jj.ff. = Ŝ  - ? 

Then we o b t a i n 

^7^') ^ ——2 •*• ^ d £ -̂  J^Mff - P t • ^ 
dt 

The function l̂ o-f̂  now lies in the Hilbert sps 

of the operator L. V/e therefore put 

00 

(71) /^iff = ^ a CO (e) 
p=̂ o ^ -̂  

cj i s g i v e n i n ( 4 9 ) . Using (71) i n (70) we ob t 

00 

(72 ) - p ' a ^ - p , 2 V a - C 
P ^ 0=0 P^ ^ P 

00 

(73) Cp - j " / o (c) d£ 
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This equation set determines the a and we find in the order p the result; 

N Po 
(74) Ĵ (£) =?(e) + 2 a CJ (£) 

p=o ^ ^ 

This method has been applied to the example p, = 0.25. 

iVe have c h o s e n £ = 1 6 , N=10 and p =5-o ^o 

Fig. 2 shows the result of this calculation here. There is complete 

agreement with the solution of Hurwitz, Nelkin and Hebetler [̂ lj. The 

10 
figure shows t^((.) in its dependence onrt. Furthermore £^(€) has been 

N 
drawn, too. ̂ (£) represents qualitativly the neutrons which are slowed 

down, where as Z a W represents qualitativly the neutrons being in a 
ir ir 

sort of equilibrium with the moderator. 

The significance of this method outlined here is, that it allows to handle 

the problem of two dimensional heterogeneous spectra. For this case we use 

the following model: 

A reactor of rectangular shape is considerd, for reasons of simplicity it 

2 
shall be quadratic ,that means, the reactor has now N rods of diameter 2a 

and consists of an integer number of 'iVigner Seits cells. The absorption in 

the moderator is again neglected. 

In the chapter 4. we saw that it is possible in most of the cases to se

parate the smooth out process of the fission neutrons into the ground mode 

from the formation of the flux peaks between the fuel rods at lower energies, 

V/e therefore concentrate our attention on the thermal and epithermal part 
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of the spectrum and do not care for the slowing down part at higher ener

gies. This is possible because we ask for the shape of the spectra only 

and we do not ask for a proper criticality condition. 

Therefore we have the following problem: 

d 

(75) 

,2^ o2^ ^ - ^ +N +N 
2^QJ +9_^) ^ 1_ ĵ(̂) - p .£" 2 2 2 d^cnx-kd)cfij-ed)'fikd,ede) = 0 
° 5x̂  9/ ^h ^ k=-N(f=-N 

There we have redefined p. in the following way: 

2 (6=1) . Ta^ 
(76) Pt = . 2 

I23 d^ 

2 is again an effective cross section as described in chapter 2. 

Additionally we have 

(77) ^(i^y,^) = 0 ; 5if(x,+ ̂,e) = 0 

(78) q(x,y,o) = 0 

(79) q ( x , y , £ ) = c o n s f c o s a x«cos a y fo r l a r g e va lues of£ 

J 
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In (75) 4 (kd,^d,€) is not the flux at x=kd, y=kd which would be the ana

log to the one dimensional case. This analog does not work because there 

is a logarithmic singularity of the flux at x=kd, y=kd. Therefore / is th 

flux average over the surface of the rod approximated by the following 

expression: 

(80) 

5̂ (̂kd,̂ d,€) ^(kd.<fd+a.€) + C^(kd.gd-a.e) + Cf(kd+a.gd,£) + gffkd-a.fd.O 

We now make again a Fourier ansatz. For the same symmetry reasons as in 

chapter 2. we have a frequency selection. Making use of it we have 

+00 +00 

(81) /(x,y,0 = 2 ^ ^N r N m^^^ * °°s a x • cos â ^ ̂  y 
o ' o o o 

m=-oo r=-oo 

Inserting (81) in (75) and using (80) we obtain the following: 

(82) 

2 
d V d V 

^N r,N s ^N r,K s o n o 
r O ' 0 , f. 0 ' 0 , I. / 2 . 2 X 2s ,„ 

•1̂2 d£ '' *• K r N s'̂  o ' f N r,N s 
d£ ^ 0 0 o ' o 

- -1 +00 ^o ^o 

- Pt -^ . ^ "̂ N m,N t • °°« ("N m ^) • °°^ K t y) = 0 m,t=-oo o ' 0 o o 
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The index R of the cos in the sum means that the average is to be taken ^ H 

at the central fuel element f2j. The reduction of taking the average at 

the central fuel element only is a consequence of the special syJimetry of 

the reactor considered here. 

We now apply the same calculus to (82) as in the homogeneous case and 

obtain the result in the following form: 

(83) 

+00 [ _u ^o 
S;J(x,y,£) = 2 J f ^ ^(e) + 2 a^ s,p'^p(^)y °°^ " N r ^'"^^ «N s ^ 

r,s=-ooj o ' o p=o o ' o ' ^ " 

Y = Polyn. , 0 <.£ ^£^ 

All the coefficients of the above Fourier series can be written as linear 

combinations of terms of the form 

(84) u. / 2 . 2 ^ 2 y + fa„ +a„ ) x ' ^ N r N s' 0 o o 

Thus evaluating (8 3) in order to obtain the final result a Fourier series 

of the type 

, cos a„ X • cos a„ y 
+0O N r N s *' (85) 2 °—, J—^ 

r,s=-OD V + (a„ +a„ ) x ' ' ^ N r N s' 0 o 0 4 
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has to be evaluated. 

But more than that: to establish the asymptotic solution analogous to (61) 

and (35) and the equation system for the a^ „ analogous to (72) made 

it already necessary to evaluate series of the type (85). This was done by 

K. Meetz (.2̂. One summation can be carried out by means of the calculus of 

residues, see (40). The remaining single series converges rather rapidly in

side the moderator, but its convergence is very poor at the boundary of the 

fuel rods, because of the logarithmic singularities of the flux in the 

lattice points of the reactor. But using a known Fourier series with the 

sa^e logarithmic singularities and looking for the difference between (85) 

and these known series one can improve the convergence considerably and 

therefore it is possible to evaluate (85)• For details see either [2joT [dj. 

The method explained here has been applied to twelve types of reactors in 

the limit N =aD. Besides the neutron spectra themselves the values of the 
o ^ 

yi factor and the thermal utilization have been ciculated. In determining the 

1 
latter quantity a — - absorption law in the moderator has been assumed. The 

mean values of the absorption and fission cross sections of the fuel ele

ments were taken in the energy interval 0^6616; in the moderator the spa

tial average of the absorption cross section has been calculated, too, by 

means of the spectrum determined neglecting the neutron absorption in the 

moderator. 

The parameter of the twelve reactors considered here are given in table 1. 
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Table 1 

R e a c t o r M o d e r a t o r 

I D^O ( 40°C) 

I I " 

I I I 

IV 

7 " 

71 " 

7 1 1 G r a p h i t e 

7 1 I I " (300°C) 

IX " 

X 

XI 

X I I " 

d [cm] 

10 

1 6 , 8 

20 

10 

1 6 , 8 

20 

10 

20 

30 

10 

20 

30 

a {cm} 

1,6 

1,2 

p i" 

0 , 7 1 1 5 
II 

tt 

2 
It 

It 

0 ,7115 
It 

•n 

2 

II 

It 

^ g/cm-\ 

1 8 , 4 
II 

It 

It 

It 

II 

•• 
It 

It 

10 

II 

It 

P t 

0 ,1046 

0 ,03705 

0 , 0 2 6 1 4 

0 , 2 2 7 4 

0 ,08058 

0 ,05686 

0 ,1791 

0 , 0 4 4 7 9 

0 ,01991 

0 ,212 

0 ,05299 

0 , 0 2 3 5 6 

=<„A 

0 , 1 8 6 

0 , 1 1 0 8 

0 , 0 9 3 

0 , 1 8 6 

0 , 1 1 0 8 

0 , 0 9 3 

0 , 3 9 2 5 

0 , 1 9 6 2 

0 , 1 3 0 9 

0 , 3 9 2 5 

0 , 1 9 6 2 

0 , 1 3 0 9 

M 

P t 

3 , 3 3 • 10"^ 

4 , 3 4 • 1 0 " ^ 

M a,d,p. — have the meaning defined in the text above, p' 
\(^=^) 

2.2° is the 

absorption parameter of the moderator, ^ is the density of the fuel. In the 

2 35 calculation of the f-factor the fuel was assumed to consist of p̂o U and 

(100-p)̂ 7̂  u^^^. 

The values p=0,7115> f=18,4 g/cm correspond to those of natural uranium; 

/ 5 2 35 
p=2 and f=10 g/cm are the data of uranium oxide enriched up to 2-fo U . 

The macroscopic absorption cross section of natural uranium at the moderator 

temperature of 40 G was assumed to be 2 (£=1) = 0,3467 cm" . At a fuel 
£1 
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enrichment of 2,o we have 2 (£=1) = 0,7541 cm for metallic uranium at 40 G 
3. 

moderator temperature and 2 (C =1) = 0,30 34 cm for enriched uranium oxide 

at 500 C moderator temperature. As absorption cross section in heavy water 

has been used 

2̂ ''̂ (£=1) = 7,736 • 10"^ cm"^ at 40°C and graphite of 300°G 

2^\e=l) = 2,58 . 10""̂  cm"'' 

Finally the Sachs-Teller-mass has been used for heavy water. 

Figures J - I4 show the neutron spectra in the reactor I - XII. The neutron 

flux ^ is plotted versus the energy £ in double logarithmic scale. There is 

drawn the flux ^ (C) at the boundary of the fuel rods and the spectrum 

^(—, •«»̂ ) in the middle of the moderator, respectively. 

For comparison a Maxwellian distribution has been fitted to the spectrum 

in the moderator at low energies. In the low energy range all the spectra 

have Maxwellian character, the maximum being usually shifted. One recognizes 

clearly the change from the Liaxwellian part of the spectrum to the 

1 
characteristic — slowing down spectrum. A decrease of the lattice parameter 

d results in a simultaneous, almost equal increase of the neutron tempera

ture in fuel and moderator. The neutron temperature is here defined as the 
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temperature of a jviaxwellian distribution fitted to the given spectrum in its 

maximum. An increase of the absorption cross section of the fuel at un

changed geometry to the contrary has af consequence a displacement of the 

maximum of the spectrum in the fuel, but almost none in the moderator. 

Figures 3-14 show that the spectra in fuel and moderator are far from 

being identical in the epithermal region. In an infinite reactor (N =0(̂  

they tend to meet asymptotically, of course. But this becomes true only 

at very high energies. H.C. Honeck f̂ J made in the numerical treatment of 

the problem in the Wigner Seitz cell the assumption, that the spectra in 

moderator and fuel are identical above £ = 9« This assumption was necessary 

because of the limited machine capacity. It seems to us to become dubious 

at least for strong absorption. According to our experience a small in

accuracy in the calculation of the high energy part of the spectrum results 

in serious deviations from the rigorous solution in the thermal energy 

range. 

4 

4 
32k 



Table 2 

Reac tor <."" ^ ["-"J ^a 
- 6 
^a n 

1 
I I 
I I I 
17 
V 
71 
711 
7 I I I 
IX 
X 
XI 
XII 

Reactor 

I 
I I 
I I I 
17 
7 
71 
711 
7 1 I I 
IX 
X 
XI 
XII 

Reactor 

0,99648 
0,98750 
0,98125 
0,99807 
0,9921? 
0,98786 
0,97453 
0,89185 
0,77493 
0,97801 
0,90395 
0,79586 

Maxwell 

^ . 

481,44 
I t 

I t 

It 

" 
I t 

341,01 
II 

It 

tt 

It 

I t 

0,99606 
0,98655 
0,97996 
0,99764 
0,99117 
0,98649 
0,97215 
0,88192 
0,75494 
0,97554 
0,89361 
0,77458 

ian di&t. a t 

^ . 

566,94 
II 

« 
I t 

It 

It 

403,86 
11 

It 

I t 

I t 

It 

Maxwellian d i s t , wi 

T°PC] ^ . 

415,96 
446,82 
452,11 
373,24 
422,12 
430,90 
271,48 
511,89 
320,73 
263,40 
507,96 
517,20 

moderator 

t 
2,316 

II 

It 

I t 

I t 

It 

1,730 
t t 

It 

It 

It 

I t 

491,09 
526,56 
532,65 
441,24 
497,82 
507,89 
322,74 
370,06 
380,41 
515,27 
365,49 
377,20 

2,057 
2,171 
2,194 
1,853 
2,067 
2,105 
1,427 
1,606 
1,645 
1,592 
1,589 
1,634 

- t empera tu re 

n 
1,52057 

t t 

I t 

1,72504 
It 

I t 

1,29026 
I t 

I t 

1,69962 
It 

t i 

th d i s p l a c e d tempera ture 

^ a K 'n 

1,50965 
1,51500 
1,51585 
1,70659 
1,71586 
1,71751 
1,27012 
1,28157 
1,28 575 
1,68171 
1,69160 
1,69551 

I 
I I 
I I I 
17 
7 
71 
711 
7 I I I 
IX 
X 
XI 
XII 

74 
65 
56 

154 
109 
105 
445 
572 
557 
472 
586 
546 

455,78 
460,74 
468,11 
414,12 
429,69 
455,59 
501,10 
519,22 
325,21 
294,68 
515,52 
526,56 

554,45 
542,62 
551,26 
488,16 
506,29 
510,85 
558,68 
579,16 
58 5,67 
551,42 
574,74 
387,47 

2 ,205 
2,251 
2,261 
2,040 
2,104 
2,120 
1,556 
1,656 
1,655 
1,527 
1,619 
1,668 

,51578 
,51700 
,51823 
,71469 
,71705 
,71757 
,27680 
,28506 
,28440 
,68571 
,69121 
,69502 
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Table 2 gives the values of the thermal utilization f calculated for our 

twelve reactors I - XII. For comparison these quantities have been deter

mined in a one group diffusion calculation for the corresponding Wigner 

Seitz cells. 

An estimate of the improvement in accuracy to be expected from a rigorous 

consideration of the enorgy dependence of the neutron density can be 

obtained from a comparison of the f-factor values in table 2. The 

difference between these quantities, determined by our method and the one 

group approximation, respectively, is negligeably small for D„0-moderated 

1 
reactors with natural uranium fuel elements (this is true only for a — -

absorption law). But this is not the case in reactors with enriched fuel 

elements, especially in graphite moderated reactors. In any case the 

accuracy of the monoenergetic, transporttheoretical calculation can be 

improved essentially, if the absorption cross sections used are averaged 

over the neutron spectra determined in the diffusion approximation. 

In table 2 the values of the -̂ factor determined by means of the neutron 

spectra shown in figures J - I4 and those calculated from J.'iaxwellian 

distribution at moderator temperature and the temperature T of the neutrons 

at the boundary of the fuel rods are also given for comparison. Finally the 

2 38 mean values of the fission and absorption cross section of U are given 

as obtained from the three types of spectra just specified. As expected the 

mean values of these cross sections, obtained from :.Iaxwellian distributions, 
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i are too large, because these functions decrease so rapidly, that the epi

thermal cross section values have no influence on the mean value. This has 

consequence, that the ^ factors determined with iiaxwellian distributions 

are too large. 

V 
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7. The representation of reactor spectra (type A and type B) 

by simple sets of functions 

The method outlined in chapter 6. made use of the concept of an auxiliary 

function ^ which represents the reactor spectra at high energies. In 

the case of chapter 6. a special energy £ was chosen where the asymptotic 

solution and a polynomial expression (66) were tied together. This has 

the taste of being artificial and reminds of the concept of a "cut off" 

although it has nothing to do with it. 

There are several possibilities to improve this procedure. One possibility 

is the following: 

Suppose that in (74) one wants to consider an approximation of the degree 

p . Then for ^ the following unique representation is possible 

4 

2 2 J p +1 V 
nT P a X - u ̂ o - — 

(86) /-*^'°=£ ° ° U a £ 2 V 
v-o 

_ J. 
€ 

e 

V is chosen arbitrarily and it co les out that for example y-^ is, for heavy 

gas model spectra, a reasonable choice in a sense to be described below. 

The a are now chosen in such a way, that for large values of £ the 

asymptotic representation up to the p +1 degree is fitted. For small values 

of £ the fanction ^ tends strongly toward zero. If one applies analog 

Po 
to (67) the full differential operator to it, the source term S has the 

- 528 -

J 



following order: 

(87) S (£) = 0 P +2 
- a + 1 + - ^ -V̂  

Because of (87) the first p +1 moments C are convergent: 

(88) C = 
^ ' P 

00 

f + 
S(£) • CJ (£) d^ = finite for p^p^ 

Now Y=3 makes the first p +1 values C not too large, the source term S 

is still behaving smoothly. Recent investigations have shown, that PQ=1, 

that is two terms a? (£) in (74), is already a good way to represent reactor 

spectra with an error of about 5)̂  provided that not highly enriched fuels 

are used. Now, two terms in (74) and three terms in (86) give the chance 

to do all calculations fully analytically, so that there is a way to make 

the whole question of reactor spectra an easy thing again. But it should 

be emphasized that there are also other ways to keep the function f siiiple 

and unique. 
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8. Iterated Multigroup Method 

A completely different approach to the problem in question has been given 

by K. Meetz, K. Ott and S. Sanatani L10J. It does not claim, however, to be 

a systematic method, because it is partially based on intuitive arguments. 

Let us recall that we have, roughly speaking, two categories of problems 

concerned with either the spatial distribution or the energy spectrum of 

neutrons in a heterogeneous assembly. In an analysis of the spatial 

distribution in the moderator one might well use diffusion theory, if the 

scattering mean free path is small compared with the fuel rod distance d. 

Introduction of point singularities instead of the boundary conditions at 

the fuel surface makes the solution of the diffusion problem in a regular 

lattice an easy task. This has been outlined in detail in Sect. II for a 

one-dimensional reactor model. The knowledge of the flux on the fuel rod 

surface is also sufficient for a good estimation of fuel reaction rates, 

if the absorption length of the fuel is large compared with the rod dia

meter. Hence, it is reasonable to keep the singularity method for the 

spatial distribution in any approach to the spectral problem. 

There a similarly simple and satisfactory entry does not seem to exist. 

The use of eigenfunctions of the monatomic gas scattering kernel has its 

difficulties, as we have seen in the previous section. It may, therefore. 
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be worthwhile to try a multigroup method. It was felt, however, by the 

authors of LlOj that one should improve the quality of such a method by 

incorporating an iteration procedure. 

Let us briefly outline the way this has been done in [lOl for the case of 

an infinite homogeneous medium. The basic idea is to use the n flux mean 

values ~^. , obtained from the solution of the multigroup equations for a 

n group theory, for an improvement of the flux distribution that has been 

used in calculating the group constants. To do this in a systematic way, 

one may choose a set of spectral functions 'fs.i^oS ' , , .aS , £ ) , which des-

i 
cribe the flux in the i-th interval and depend on arbitrary constants 

a^... a besides the energy 6: (£=E/KT)« 'Ĵhe choice of the Ĵ. is deter-
i 

mined by physical arguments. For groups in the slowing down region one may 

use the asymptotic expansion 

a- a_ a, 
(89) ^{C, = T + - l 7 2 + 4 + 

£ £ 

while in the thermal region the shape is iiaxwellian; 

(90) ^(£) = £e~^(a' + a'^C + a' £ ̂  + ...) 
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In the epithermal region a combination of (89) and (90) may be taken as 

the best description. Now the constants a .. are objects of the iteration: 

In zero order one starts with a convenient set of constants a .. for the 

calculation of zero order group constants. The resulting first order mean 

values ̂ : '̂  are then required from the functions ^. (. .a;.. : ,£) in combi

nation with a sufficient number of continuity conditions at the group 

1 (' \ 
boundaries. First order constants a .. are obtained by solving the 

corresponding linear equations and first order group constants from the 

1 (' ^ 
functions yS.(... a ... . ; £) etc. 

The results of this procedure have been compared with the numerical solution 

of Hurwitz, Nelkin and Habetleiî  [iT for the heavy gas model in heavy water. 

The agreement is quite good for both values of the absorption parameter 

4 p = 4 = 4 2 /^l {A- 0,1; 4 = 1). However, there is a characteristi 
t ^ ^ a' ' "S c 

difference, namely a minimum in £ŷ (£) in the epithermal region just above 

the Maxwell peak. This is probably due to the different scattering kernels 

used: heavy gas approximation in flT and Aigner--ilkins kernel in [loj. 

It may be mentioned that Corngold's correction of the heavy gas model [11J 

points in the same direction. 

There is no difficulty to combine the multigroup method with the singularity 

approach for the spatial distribution. As an example, the one dimensional 

model described in Sect. II has been studied in floJ. As has been mentioned 
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in Sect. II the flux spectra on the fuel boundaries and in the center 

between the fuel plates are independent of the cell position. It is 

reasonable to take the spectra at these positions as representative for 

the neutron spectrum in a heterogeneous assembly. This has the further 

advantage that the corresponding multigroup constants are likewise 

independent of the cell position. Spectra calculated this way are in 

very good agreement with those obtained by Kunze rsj in his more systematic 

but more tedious approach. 

Due to its extreme simplicity and the satisfactory results the iterated 

multigroup method promises to be useful for practical calaulations, al

though it is certainly unsatisfactory from a more systematic point of 

view. 

- 533 -



9. Final remark 

This summary presents the work of the theoretical group of Karlsruhe on 

the subject of neutron spectra. The goal was to investigate how strong 

the influence of the heterogeneity is and to predict the thermal and epi

thermal part of reactor spectra in order to obtain by this properly weighted 

therinal neutron cross sections. 

One siocessful first application of these spectra was the calculation of 

the critical experinsnt of the Karlsruhe reactor FH 2. It earae out that 

54 fuel elements were predicted ana criticality was reached with 52 ele

ments. 

It should be mentioned that it is felt that these procedure are not 

restricted to either the heavy gas model or the diffusion theory. These 

simple moaels were chosen only t .< develope in the most simple cases the 

general methods. 
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îl̂^nî
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T 1 ' 
i ' t ' I I ' ' ' 
t t , . . f t iM 

1 I 
' 1 '•^•' 1 1 ' 

• 1 • j .-t-^. 1 - j - l i 1 

4-111 '• ^ - l . 1 -
1 ' 1 ' 

tfti, h ,' 

• t4 ' f ' ^ r — ^ 

tj3 T ^ 

, 1 LJ- T 

T-1 i , , | 

2 
1 

I I I I 
3 4 5 6 

)Tt444 
t - ; ^ 4 [jaiVfc 
r Iriti I 

1' 1 '1 

il i j ' i;i'i|5 
' It 

1 iwHtH 
' 1 lui'i^ 

lli'lltti ] 

mt 
-t-i"iii' ' i-+ 

1 il r i r 3TitIirE t 
' '''-ml 
1 iW'ti 

VmnW 
.1 111 i'ift?' 

1 it^nj 1 f 
T Wi{ i 
t%tt|y=i 

1 ' ' ' | l ! ~ T 
1' 11 T ' i ' ' | - - | -

' ' 1 It J T 

t 4 1 

fV—ft} 
J 1^ ! 

1"" 4̂  "14 

1 

Mil 

3 4 5 6 
1 

M ! 
7 8 9 1 0 

1,1,1 
: : : : j j 

if-"n 
|--- | 

] 

""u 

---ti 

-p 

-M 
- iii 

; 

" T-i 

" ; . j 

;i|_ 
- r r i - : : 

v T 

t l f 
r^-il 

Ijl : 
t 

11 

111 

-^4^ 
', 

1 i , 1 

i l l ! 
i'lt 
1 I 

f^ 
p i ' 

r ^ 4 ' 1 - -
F 1 -• 

hi 
, Il 

1 ^' 
1 4 
111;.!-

V ^ 
1' '̂  

r-^=-

^ 

4 
I I ! : 

ij't 

ill 
t 

• | 

- U 4 T 

; 1 
: r 

V 
r t t t 
fntt 

'~E 

— 

1 

7 8 9l0^ 
, 1 e 

! 

V^ 
I ' t - * -

--*-{—-

j l ' 

1 

1 J 

Lt 

^ 
•II-

1 

"!, t 
L; i j j 

'' 1 

t ± ' 

- ^ 

2 

) 4 

4jJ 

4-̂ f+̂  

^*~ 

lit, 
1t 
tt 

,,t 
TTT; 

" t 

~ 

' 1 
5 6 / 

t t d - - ; : 
M\ 

ini 

4J - - - -

'' 
1 ' ' 

1 1 

, i| 

U--k liA— 

*n " TT 
~-U-l-U~ 

t 

r] 

^_ 

V T " 

- 1 4 

* 1 1 

4 5 6 7 

, 1 1 

111 
8 910 

_u iJ_ 10 
" - F 9 -
:::: 3 - 8 -. . , . 3 - 7 -
.... ] - 6 -

•""IT 

. . J - 4 - 1 0 

"+ J- 7 -
- f - f l - 6 -

ti: 

-t^ V-r J - 7 -
_^„g_ 5 

V+1-3 

4: 2 -
T i| 

i n 

4 T it- 7 -
V"H~" * ~ 

ffli 
III 

! -7 

It ' 
8910 

- 5 î̂  -
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I. INTRODUCTION AND SUMMARY. 

There have been a number of estimates of the type of error induced 

by errors in the scattering kernel of the slowing down equation. In the nature 

of the problem these estimates have to be qualitative or highly specific. 

We have chosen to investigate an approximation error which corresponds in 

many ways to the type of approximation error which can occur with experimental 

data. This error is that involved in approximating the Wigner-Willcina integral 

equation-"- (for a gas of mass M) by Wilkins' differential equation.^ In addition, 

we have compared some of solutions of the integral equation with solutions 

of Corngold's^ higher approximation equations. 

In making the comparison, it quickly became obvious that there are 

few uniform differences that can be displayed. In general, the integral 

equation solution is slightly harder than the solution of Wilkin's equation. 

The discrepancy in the solutions appears gratifyingly small, however, 

so what seem at first glance to be crude approximations, turn out to be 

surprisingly good. To check on this, reaction rates in a number of detectors 

were estimated for the various solutions. Here it was found that, in 

operational terms, it is possible to discriminate between the solutions. At 

the same time it is possible to find useful detectors which are insensitive 

to the fine structure of the spectrum. Thus we propose that the latter types 

of detectors be used to correlate experiments, while the former detectors be 

used to identify spectral structure in a single experiment. 

In Part II of this paper we outline the problems posed and the modes 

of solution, together with the resulting spectra. Part III is a summary and 

discussion of the data on detector response. Finally, in part IV we present 

some speculations about the influence of the assumed source on the propagation 

of error. 
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h II. PROBLEMS CONSIDERED AND THEIR MODE OF SOLUTION. 

The conventional slowing down equation is: 

[ vSg (v) + vS^ (v)] n(v) = p dv^ v^S (vi^v) n (v^) + S(v). (l) 

As usual we consider only the case vŜ ^ (v) = FXf where F is a constant and L, 

is the free atom scattering cross section. The velocity v is given by the dimen-

sionless variable v ="\/E/kT , Since we are concerned with the low energy 

behavior, we need not worry about the influence of the details of the fission 

process on the high energy spectrum. Thus the source term can be considered 

to be zero except at an indefinitely high energy, and dropped from the r.h.s, 

of equation (l). 

The scattering kernel rate per free atom scattering cross section 

is P (v—»v): 
^ 0 ^ 

P ( v-*v) = e^^- I exp (vo^ -v^) e (ev -Sv) ± 0 (ev + gv) 

^ e (ev + |v^)) v̂ -« V. 

+ e (ev -|v ) 

(2) 

Q = (M + l) /2"yM7 M = scattering mass (in neutron masses). 

I = (M - 1) /2-\J}r. 

e (x) = erf (x) = (2/V^ ) Wexp - y2)dy. 

V(v), is: 

The total scattering rate per free atom scattering cross section. 

V(v) = (v + (1/2 Mv)) e {^fM v) + (exp - Uv^) (l/0^). 
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Now we assert that N(v) is identical with its asymptotic form 

Nas (v) above some high but otherwise arbitrary velocity, vc. Form the 

slowing down density (per free atom scattering cross section) at some (high) 

velocity v: 

4 

V 
V 

(v + r) Nas (v) = r N (x̂ ) dx̂  

Differentiate with respect to v and obtain, for v=».v , 

2 , 2 
1 . - 1 - ^ 

N\S (V) +1 + I Nas (v) = 0 
V + r V-

(3) 

Our asymptotic solution is then: 

Nas (v) = (0/^2) 
V + r 

f - (̂ ) 

Expanding in powers of l/v we find 

Nas (v) r^ —^ 
V 

3- (1 + ̂ r— ; — + 
2 ^ 3M V (5a) 

A = ̂ Mr 

Corngold's (3) accurate asymptotic representation is: 

Nas (v) (5b) 

The close agreement between the two forms 5a and 5'b gives us 

confidence in the use of the closed form (Eq. k) for the asymptotic density. 

4 
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k Equation (l) is now replaced by: 

V (v) + r] N (v) = p dv^ P (v^—*v) N (vj 

+ Vdv P (v^-*v) Nas (v) ... ^ ̂  

In equation 6, the kernel P( v ^ v) is given its asymptotic fomi 

in the last term: 

V * v^, p (..̂ -̂ -v) = e^;^2 if v^ *v ^ v^ 

= 0 otherwise. 

Moreover, we introduce the maximum fractional velocity loss a = (M-l)/(Mfl). 

The equation for N then becomes: 

( I V 

V (v) +r N (v) = r dv^ P(v^—*v) N (v^) + 2e2v C 

^- 2 
.^/« C V ^ 

— T : d v -V—fc-Ofv 

(f . 1) ° 
(̂o-̂  r) 

'V dv^ P(v„—*v) N (v)^ v^O.^ __̂  (̂ ) 

If the interval (o,"v ) is divided into intervals (v., v. + ), and 
^ ' V J J 1 

the integrals approximated by the trapezoidal rule, then 

^("i^ = v(v,). r [ A P ( - i — i ) N(-j) H. . 2e^ V, f(v,) .... (8) 
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Here, f(v. ) = 0,if v.-^Oy 
' ^ ±' ' 1 c 

= ! 
Vi/a d-V̂  C VQ 5 

2 X ' ifv.^av^i 

(vp) 
(f+i) 

c' 

H. = V.., - V.I 

The constant C is evaluated by noting that at T = 0 (stationery scatterers) 

Nas (v) is the correct solution over the whole range. Then for neutrons to 

be conserved, 

r \ Nas (v) dv = S where S is the total volumetric source. This 

fixes 3 in terms of the normalization of Nas, We then set \ Nas (v) dv = 1, 

Jo 
and find C = 2r/4- Whence, S = p. Thus, at ajiy temperature T, to conserve 

neutrons (l/v absorption), \ N(V) dv = \ Nas (v) dv = 1. But for v 
Jo Jo 

N = Nasj so that: , 

\ N (V) dv= r Nas (v) dv = v +r I ••• *i9) 

Equations 8 and 9 are solved by an iteration process. 

Solutions of the integral equation and of Wilkins differential 

equation are compared in Figures 1-8. The maxwellian and asymptotic com

ponents are also plotted. As might be expected the differences are truly 

small. Nevertheless, the differences are consistent so that an error is 

being propagated in a systematic way. To verify this Corngold's (3) 

higher approximation to the Wilkin's equation was solved, using forward 

differencing. The equation is: 
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vN " + 
1 

2v^ 1 / 2 , 2A 111 ^,, f), ^ 1 k 2A A^ ,,| 
1 - — / —2 + —5" — I N' + 4v - A + — I—3 + —? +-5— - ^ M I v ^ ^ ^'J ^ M I v-^ v"̂  3 I V 

(10) 

We use t h e boundary c o n d i t i o n s : N ( 0 ) = N ' ( 0 ) = 0 

(A = 2Mr) 

By using the boundary conditions and forward differencing, the 

numerical troubles caused by the singularity were avoided; but this may lead 

to some inaccuracy near the origin. Over the range where validity is expected 

(v »l) the solution of Corngold's equation falls in between the integral 

equation solution and the differential equation solution. This reinforces the 

view that the observed error is that induced by the mathematical approximations 

made in going from the integral equation to the Wilkins equation. 

The approximation of the integral equation by differential equations 

of increasing order is reminiscient of Weirstrass' functional approximation 

theory. The analytic difficulties in formulating such a theory are formidable 

however, and we have contented ourselves with noting that the problem exists. 

Examining figures 1-8 we note that the discrepancy in the solutions 

t A 

169 

1 (-)P> 
is most noticeable in the region .1 to 1 ev. Yb has a resonance at .6 

ev which is distinct from other known l/v resonances; moreover the Yb 

half-life of 32 days is easily separated from the Yb '̂  half-life of U.5 

177 days or the Yb '' half-life of 2 hours. 
1 /TO 

Thus, we conclude that Yb activation is a good candidate to 

examine spectra where we expect them to be most sensitive to the details of 

the scattering process. 

- 555 -



III. DETECTOR RESPONSES 

In line with the observations just made we have calculated the 

expected activation rates of Yb with and without caAmium cover, the Lu 

235 239 176 

activation rate, and the U and Pu fission rates. Ihe Lu rate has 

been included because it is frequently used as a spectral index. The cad

mium thickness has been taken as 0.025^ cm (0.010"); the transmission of the 

cadmium filter for an isotropic flux has been used in computing the acti

vation rather than a sharp cutoff. Since the cadmium transmission varies 

sharply in the neighborhood of the Yb resonance, the cadmium ratio will 

be dependent on the cadmium thickness. In these calculations we have 

ignored any local flux depressions arising from the foils. 

In Table I we list the activation rates calculated in the various 

spectra. By Wigner-Wilkins (W.W.) we mean the spectrum yielded by the integral 

equation. Wilkins (W), then, refers to the spectrum from the Wilkins dif

ferential equation. Similarly, by Corngold (c) we mean the solution of 

equation 10. The latter must be taken with some reservations. Firstly, the 

solutions of equation 10 have only a limited validity at low velocities; and 

we suspect that our method of solving equation 10 may not have correctly 

included the effects of the singularities at the origin. The computed 

solutions of equation 10 dip below both the other two solutions forv «sl; 

if equation 10 yields a higher approximation than the Wilkins equation it 

should be intermediate to the two solutions, as it is above v = 1. 

As can be seen from Table I, the greatest deviation between the 
-1 r o 

various spectra is in the Yb cadmium ratio. The discrepancies are of 

the order of k to 10^, which are readily observed. 
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235 2 39 The U : I»u fission ratio also shows deviations of the order 

235 
of 3 to 6 percent. The U fission rate by itself is remarkably constant. 

So is the Lu activation. Thus the Lu /U (fission) ratio is a 

spectral indicator >rtiich is insensitive to the fine details of the scattering 

kernel. Unfortunately, the activities are incommensurable, so that the 

individual activities must be referred to a calibrating standard such as 

the activities in a thermal column. Indeed, if absolute counting methods 

could be relied on the epi-cadmiiim Yb rate is highly sensitive to fine 

details. 

If we ass\Ame that the discrepancy between the Wigner-Wilkins and 

the Wilkins spectra propagates in a characteristic way, then insensitive 

detectors are suitable for correlating experiments since they tend to 

correspond to lumped theoretical parameters. On the same basis, prediction 

of the Yb cadmium ratio is a sensitive test of the accuracy of an 

assumed scattering kernel. 

IV. SOME GENERAL COMMENTS ON THE PROPAGATION OF ERROR 

The Wigner-Wilkins equation can be symmetrized using the principle 

of detailed balancing; hence it is one of a large class of integral equations 

with well known properties. The general fonn is: 

f(x) = 4.Xx) - A f K{x,y) *(y) dy ... (ll) 

^(^JY) is real and symmetric. As usual when the eigenfunctions 

\ (x) = A. r K(x,y) ̂  . (y) dy are 

introduced the solution takes the form 
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Ai „. /„^ , (12) Hx) = s . ̂" , .̂ (x) f ... 
1=1 A. -A 1 1 

(^i = f*i (y) ^ ̂ y) ^n 

*** *,- (x) fc (y) 
In this representation, K (x,y) = S - ^ — ^ — \ '— '> 

1=1 ^1 

truncating the sum at i = N yields an approximation KN to K which yields 

in turn a uniform approximation to $, <|)N. (The series in equation 12 

also terminates at N.) 

Now take the eigenfunctions characteristic of the Wilkins differ

ential equation for zero absorption: 

^1 (E) = exp(-E/2) . L \ (E)/i ! , A _̂  = i 

Since the approximation is uniform we can estimate the error by computing 

(13) 

Now, let f = &(E - E ), E ••••O. 
' ^ 0 0 

Then f .= (-}^ Eo^ (i+l) exp (-Eo/2)... (l̂ l) 

Then the error <> - 4i is less than the last term in <t> 
N 

N-

N 
v 

Setting ^"Y = 1, we can estimate |e - Q-^^Y e = ° yj,"̂  exp (-Eo/2) 

...(16) 

Now € is not monotone with N; indeed N must be larger than Eo before e can 

begin to decrease with N. Hence the source energy and thus the source shape 

may well play a role in determining the size of errors propagated by truncating 
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^ ^ the kernel. Since e is only an upper bound we cannot say this definitely, 

but the suspicion is strong that this is so in general. 

CNK:dm 
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TABLE I 

1 

U l 
ON 

o 

Mass 2 , To .15310 

Wigner-Wilkins 

Wi lk ins 

R a t i o ("•"-"• ) 
W.W. 

Mass 9 , P 0 . 0 3 8 2 9 

Wigner-Wilkins 

Wilk ins 

Ratio (Y"^') 

Mass 1 2 , r 0.03829 

Wigner-Wllikins 

Wi lk ins 

Corngold 

R a t i o (W.H-d. 
> M.wT" 
/W.W.-C 

R a t i o 1 W.W. 

Bare 

10971 

9*^31 

O.1I+0I+ 

11389 

101U2 

0.1095 

13508 

11922 

122I+2 

0,11714-

0.0937 

168 

0.01 

A c t i v a t i o n 
-2k 

(Uni t NxlO ) 

." Cd-Shielded Cd R a t i o 

5071 

3957 

0.2196 

5319 

1*1431 

0,1667 

6868 

57^46 

5981 

0.1633 

0.1291 

2.1636 

2.3838 

( - ) . 1 0 l 8 

2.1I+I3 

2.2889 

(-)o.o689 

1.9670 

2.07U7 

2.0U71 

( - )o .05U8 

(-)o.oi407 

ACTIVATIOH 

176 
Lu A c t i v a t 

Bare (Uni t H x 

^538 

kkkl 

0.0213 

I4693 

1+556 

0.0292 

14912 

I47I48 

I475I 

O.O33I4-

0.0328 

RATES 

ion 

10-^S 

239 
Pu and 

U^35 (Uni t N25xlO~ 

82I49 

83I48 

( - ) 0 . 0 1 2 0 

8273 

8339 

( - ) 0 . 0 0 7 8 

8057 

8108 

8082 

(-)o.oo63 

( - ) 0 . 0 0 3 i 

„235 

214^ 

F i s s i o n 

Pu239 (Unit N, xlO' 

16021 

1531+3 

0.01+23 

16376 

1605I4 

0.0197 

17508 

16629 

16737 

0.0502 

0.0l4l+0 

R a t i o 

-^^) (Unit 2J 

^ 

O.51I49 

O.5I4IH 

( - )o .0567 

0.5052 

0.519I4 

( - ) 0 . 0 2 8 l 

0.I4602 

O.I4876 

0.1+829 

( - )o .0556 

(-)o.01+93 
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1 
I 
I 
I 

Use of the SPM Equation for Neutron Thermallzation Calculations 

Carl N. Klahr 
Fundamental Methods Associates 

31 Union Square West 
New York 3, N. Y. 

The purpose of this paper is to point out the applicability 

of a rather general method for calculating neutron distributions 

in space, energy and time to neutron thermallzation problems, 

in particular to multi-region or multi-temperature geometries. 
1,2,3 

The method is the SPM equation, which has been used for 

neutron attenuation calculations in shields, and for the spatial 

and time dependence of the slowing down distribution. 

The SPM equation is a second order partial differential 

equation in neutron space and energy variables which is elliptic 

in character. In addition to boimdary conditions in space it 

is necessary to impose a source condition at the higher energy 

limit of the desired energy range, and another boundary condition 

at the low energy end. For neutron thermallzation calculations 

the low energy boundary condition would be imposed at energies 

low enough to be v/ithout physical interest. The feasibility 

of numerical solutions of this type of equation has been demon-
2 

strated and digital computer codes have been v/ritten for it. 

The time independent form of this equation can be \-/ritten 

as follovjs, in slab geometry vxith spatial coordinate x and 
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2 

neutron energy E '. 

where CT is the total cross section, CQ the scattering cross 

section, <p is the flux per unit energy and Ĉ ,,, is a spatial 

and energy moment of the neutron collision probability which 

can be calculated from the energy transfer cross section. This 

equation can be shown to be equivalent to the Boltzmann equation. 

It has been used only in truncated form with derivatives higher 

than the second arbitrarily dropped. One can advance arguments 

that the solution to the second order equation represents an 

asymptotic ap-nroxiraation to the general equation. 

Brockhouse has reported that the neutron scattering 

properties of a liquid depend on the change of neutron momentum 

in scattering and on the change in neutron energy ^ , This 

is equivalent to ifriting a neutron cross section 0^(E, V, fe ) 

where E is the inJtial neutron energy and V is the cosine 

of the angle of deflection in the lab sj'-stera. We introduce 

tv/o other kinematic variables, /4 , the initial cosine of the 

neutron velocity v/ith the x axis and w, the cĥ inge in 

azimuthal ojigle of the neutron velocity vector in the collision. 

One can nov; eiooress C_.̂ (x, E) as follovrs: 

-1 
- e -I 
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M(//|x,E) is the angular distribution of the flux at x, E, 

which must be regarded as known. Negative values of € 

correspond to do^vmscattering, positive values to upscattering. 

^ (E) can be obtained by integrating CĴ  (E, V,€ ) over V 

and 6 , 

The coefficients C^^(x, E) can be obtained numerically 

from measured values of O^(E, V,£ ) and the SPM equation 

can then be solved as an elliptic equation on a digital computer. 

In general CT, (E, V, € ) i-Till depend on the moderator material 

and temperature, so it should be considered x dependent, ^mn 

\rlll therefore vary from region to region. It will also vary 

with energy. At high energies it will use stationary free 

atom cross sections. At epithermal energies (gaseous moderator 

model) the C^„ coefficients should have Wigner-V/ilkins character. 

At thermal energies e>q3erimental values of CTj (E, V,6) would 

be used. The same general equation describes each energy range 

and a continuous transition from range to range would be obtained, 

with no arbitrary joining of solutions required. No more than 

five Cr»,„ coefficients will be required and fewer may be sufficient. 

A number of investigators have obtained analytic solutions 

for a somewhat similar second order partial differential equation 

in both space and energy variables in the special case of a hevavy 
5 

gas iuoderator. Such an equation vras first derived by Hurwitz 
6 7 

ct al for a heavy gas moderator. Kottvatz and Michael have 

each obtained analytic solutions using this model for different 
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geometries. The SPK equation is somewhat more complete in 

that it contains correlation terms (mixed energy-space derivatives) 

between the transport and thermallzation processes. It can also 

be applied directly to measured energy transfer cross sections 

in liquids or solids, and is not restricted to the heavy gas 

moderator. The same differential equation v/ould apply to the 

thermal, epithermal, and high energy ranges with different 

cross section values in each range. Numerical methods are 
2 

available for solving the SPM equation to obtain the spatial 

variation of neutron spectra in a medium of varying composition 

or temperature, using experimental cross section input data. 
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UP SCATTIEING THERMALIZATIQN OF MOTHONS 

M. D. K06TIN 

Division of Engineering and Applied Physics 
Harvard University, Cambridge 38> Massachusetts 

ABSTRACT 

The Wigner-Wllkins integral equation describing the 

interaction of neutrons with a thermalizing meditun whose 

atcaas are in motion with a Maxwellian velocity distribution 

is used to investigate the neutron spectrum generated by a 

neutron source in the thermal or sub-thermal region. For 

very high energy neutrons (E » kT) this equation is 

reduced to a simplier one, the up scattering equation, which 

resembles the well known T = 0 slowring dov/n equation. The 

transformation from the slov;ing down equation to the up 

scattering equation by means of the principle 6f detailed 

balance is shown. The very high energy up scattering equation 

is used to obtain the leading term in the series solution 

for the neutron density in the high energy region when the 

source is in the thermal region, A new fona of the Wigner-

Wilkins integral equation is presented from which some 

addition terms in the series are easily obtained. The extension 

of this work to include binding effects by performing a 

double expansion in delta function derivatives using V/ick's 

expansion is briefly discussed, A method for obtaining 

approximate slov/ing down t^.ermalization solutions applicable 

to the high energy region and most of the thermal region for 

the v/eak absorption case is also outlined. 
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k I. INTRODUCTION 

1 
Since the time that Wigner and Wilkins formulated the 

neutron thermallzation problem many advances have been made 

in understanding and describing the neutron distribution 

produced by a very high energy source and influenced by 

absorption and the thermal activity of the moderator. Some 

aspects of the related problems that arise when the neutron 

source is confined to the thermal or sub-thermal region are 

examined here. 

In Sections II and III we return to the original Wigner-

Wilkins integral equation. By considering It* behavior in 

the very high energy region when the neutron source is in 

the thermal ref̂ ion we obtain an equation similar to the one 

governing the neutron distribution in a stationary moderator 

fed by a very high energy neutron source. Neutrons up 

scattered into the very high energy region experience absorption 

effects described by this equation. In Sec, IV we- investigate 

the relation between the up scattering and slowing down 

equations to the principle of detailed balance. Using a 

modified form of the Wigner-Wilkins integral equation, we 

obtain in Sec, V a series solution to the up scattering 

problem which, in Sec, VI, we relate to Wick's expansion of 

the energy change cross section. In the last section we 

consider briefly the differential equation forms of the 

thermallzation problem, their up scattering and slowing down 

facets, and related approximate solutions. 
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II, TRANSPORT EQUATION 

We begin by considering the space and time independent 

linearized Boltzmann transport equation 

(v ZjCv) + vZ3(v))N(v) ==]^dviN(v')v'IJv'-.-v) +-S(v) (2.1) 

where N(v)dv is the number of neutrons per cm3 with velocity 

between v and v + dv, S(v)dv is the niomber of neutrons per 

cm^ emitted with velocity between v and v + dv by neutron 

sources, dv v' Zs(v'-^v) Is the scattering rate per neutron 

from velocity vfinto a velocity interval dv at v , 

vrs(v) = v[ Z;(v-^v')dv' (2.2) 

and vZ'aCv) are the scattering and absorption rates per 

neutron at v. For a medium whose scatterijig nuclei are 

stationary the scattering rate becomes vZ^(v), where I?;(v) is 

the macroscopic cross section for the scattering of neutrons 

by nuclei at rest in the laboratory coordinate system. We 

will make the usual asstimption that 2?̂  is independent of the 

velocity of the neutron. 

It is convenient to introduce the normalized neutron 

velocity variable x ~ v/v-, where v = (2T/m)2 is the most 

probable neutron velocity (strictly speaking, speed) in 

the Maxwellian neutron distribution 

M(v) = (m/2T)V2v2 exp(-nnr2/2T) (2.3) 

where Boltzmann's constant is incorporated into the temperature 

T, The dependent va*iable N(v), is now replaced by N(x), the 

- 572 



number of neutrons per cm^, per normalized velocity interval, 

which is related to N(v) by the equation 

N(x)dx = N ( v ) d v (2.i|.) 

A similar relation, S(x)dx =S(v)dv, holds for the source 

term. 

For a medium whose scattering nuclei are in motion with 

a Maxwellian velocity distribution (Maxwellian moderator) 

the transport equation (2,1) becomes the well known Wigner-

Wilkins integral equation 

(V-^r)N(x) - £p(x,y)N(y)dy -t- S(x)/VpZ^: (2,^) 

where r = vZ^/vpFi = xT^/Tf (2,6) 

is the ratio of the absorption rate per neutron traveling 

at velocity v to the scattering rate per neutron traveling at 

velocity Vp in a stationary moderator, 

V = vr3(v)/vpl^ = (x -V- 1/2AX) erf(x/A) + (I/ZTTR) expC-x^A) 

(2.7) 

is the ratio of the scattering rate per neutron traveling 

at velocity v in a Maxv/ellian moderator to the scattering 

rate per neutron traveling at velocity v in a stationary 

moderator, and 

V ^(v'-^v)dv/VpX^ = dxP(x,y) 

dx26^(x/y) f (erfOy-fx) i erf(ey+Jx)) exp(y2-x2) 

+ erf(&x-Jy) + erf(6x^Jy)] (2.8) 

The upper sign in (2,8) refers to y < x and the lower 

sign to y > x, where y =^v'/v . In (2.7) and (2,8) we have 

- 573 -



used the symbols A = l/*< =• M/m, the scattering nucleus mass M ^ V 

divided by the neutron mass m, 

e=(A+-l)/2>/A J = (A-l)/2^ (2.9) 

and the error function 

erf(z) =%\ exp(-u2)du (2.10) 
\nrJo 

Now, by considering the behavior of (2.5) when x ';>y> 1, 

we will bring out explicitly some of its essential features. 
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III. \f6RY HIGH ENERGY REGION 

Several striking parallels can be established betv-.-een 

the slowing dov/n and up scattering thermalization problems 

in the very high energy (VhE) limit. In this region the V/igner-

Vv'ilkins integral equation approaches the form 

plus other terms which we will later consider in more detail. 

The symbol 

> = _b:.5̂  =. i-iL = X. (3.2) 

and is also equal to the minimum value of the neutron velocity 

after a collision with a scattering nucleus at rest divided by 

the neutron velocity before the collision. If the neutron 

source is at infinity, N(x) behaves like some inverse pov»er of 

X, the second term on the right hand side of (3.1) is small as 

compared to the first one, and v/e have the I'vell knov.n station

ary moderator equation 

^^]Hu) = ̂ . I -^'dy (3.3) 

If the neutron source is in the thermal rer;ion, N(x) in 

the VHE region exhibits Kaxwellian like behavior, the second 

term on the right hand side of (3<.l) dominates the first one, 

and we obtain the VHE up scattering equation 

b^^^h^W = ~ [J u.(y) Jy (3.^) 

v/here Nu) = X^e."^'^ (3.5) 
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The terms on the left of (3.4) are related to the removal of 

neutrons by scattering and absorption, and the integral on the 

right expresses the up scattering of neutrons fro« lower energies. 

Because the neutron density decreases in an exponential fashion, 

down scattering contributions are of secondary importance and 

do not enter into (3»4). 

Both (3.3) and (3.4) j due to their relatively simple fornj 

and close correspondence with the mtore comiplicated thermalization 

equations, are especially useful for guiding our work on 

thermalization effects. The behavior of N(x) in the slowing 

down and up scattering problems in the VHE region can easily 

be obtained from these equations. For the case of a l/v 

absorption cross section, V = xT^w/?^ is constant, and the \A/ell knovvn 

leading terms in the asymptotic series solution of (3.3) are 

The coefficient of the l/x-' terra, negative in sign, indicates 

the depletive effects of absorption which the neutrons 

experience as they slow down. 

The VHE up scatt ring equation (3.4) which resembles 

(3o3) has a similar solution for l/v absorption. 

N(x) = x^e"'^[| - ^ -̂  ^-- ] (3.7) 

The coefficient of the l/x term, now positive, reflects the 

consumptive effects of absorption. At very high neutron 

velocities when x •» V/^ , the influence of l/v absorption 
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becoffies unimportant and the Maxwellian distribution is restored. 

For the case of a constant absorption cross section, the 
2. 

slowing dovvn equation admits the solution 

H{K] - -^ (3.8) 

where p i s given implicitly by 

2- 1— \^ 

If Zi = 0 , then p = 2 satisfies (3.9), and we recover the 

N(x) = l/x solution. V»hen we turn on the absorption, p 

decreases, p <C 2, and once again we see how absorption 

attenuates the neutron density. The corresponding solution 

to the up scattering equation (3.4) in the presence of a 

constant absorption cross section is 

N(x) = x ' ' e~ '^ (3.10) 

where p is also given by (3.9). 
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IV. PRINCIPLE OF DETAILED BALANCE 

The slowing down and up scattering faci ts of the thermal

ization problem are closely related through the priniciple of 

detailed balance 

Miv) V r^Cv—V') = M6̂ J V' T^(v'-»-v] (4.1) 
Letting N(T) = M ( T ) ̂ (̂v) where "4'(v) represents the multiplicat

ive correction to the Maxwellian neutron distribution M(v), 

omitting the source term for convenience, and using the 

principle of detailed balance (4.1), we obtain 

[vTJvh v^.(vl j-iir(Y) - ^/XT,(y--^^/'} |(v') dy' (4.2) 

from the transport equation (2,1). The main difference bet'.veen 

expression (2.1) for N(v) and expression (4.2) for '̂ (v) is the 

interchange of v and v in the scattering rate kernal. '.'Jhile 

(2.1) is the fundamental equation for describing the slowing 

down distribution, (4.2) is the corresponding fundamental 

equation in the upscattering problem, 

A quick and simple derivation of (3.4) comes from the 

above application of the principle of detailed balance. 

It is well known that in the YdE limitfT<^W-^^) approaches 

the step kernal 

^M-^) = 7^. r , -^ [ H(v'-v) - H(v'- vA ] ] (4.3) 

which gives us the fami . ia r VHE slowing down equation 

NA/kc-e H(?:] = I -for 4 > 0 , and Ht4\ - 0 -fo*- ^ <0 . 
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Interchanging v and v'in (4.3), and substituting the result 

into (4.2), we immediately get the corresponding VHE up 

scattering equation 

[vi:. -vrjv)]f(v) - ^^, L'̂ 't̂ '̂  ^^' ^""-^^ 

k 
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V. Si.KIES SOLUTION 

In Section III we investigated the upscattering form 

of the transport equation in the VHE region and extracted 

the leading term in the series for N(x). Guided by these 

results, v;e are now ready to push aheijd ond find additional 

terms. 

'v.'e stc.rt with the \(.lgner-Wilkins integral equation 

(2.5), invoke the princî jle of detailed balancing (4.1), 

and obtain 

v - r CO (A) = O"" ,̂ -(P.] (3,1) 

where 

(P, = J^ er{($y-Jx) a:^)o|y + | erf (sytj^) a3(yt c/v " { erf(9yt/y) u)/y] dv 

I \ l ( y ) - Nt(>c) ^ ^ y ^ e " ^ ^ ^ 
This equation will be transforiiied into a form which resenbles 

the "^ilE up scattering equation 

X -̂ rjw(x^ = 2 9"[^(y^ -/5(XX) 

vhere p L-A = J w(-/̂  ck 

( 5 .4 ) 

(5 .5 ) 

i s the i n d e f i n i t e i n t e g r a l of u>(<) . Vte d i f f e r e n t i a t e ( 5 . 1 ) 

by 
- j _ e d e -L- J 

2.K dx 

and ge t 

9.x dX v^r W(K) = ^9^ [2/(CO)-QM + 0 M ] (5.6; 
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whe re 2/(u>) = ^jf e ^̂ ^̂ '̂* uxy] dy 

9 r -̂̂ ^r^^ î̂  
.... c rU 

(5-.-7) 

(5-. 8) 

(5-. 9} 

thus eliminating (P^ , and integrate 0| by parts 

(>? - Zlf^i^) erf(KlA) - 2/̂ j ^ Q^) + (B^)] (5.10) 
Equation (5.6), together with (5.10), is a restatement 

of the Ulgner-v/ilkins integral equation from which the high 

energy behavior of the neutron density in the presence of 

absorption is easily determined. For Jx. >> 1, the contri

butions from OL and (B are very small as compared to the 

other miembers of (5.6) and (5.10) and will be neglected, 

erf(xjA)^ t plus negligible terms, and we have 

[i~r.i][vtr]w(K^ - 2e [̂pf> ]̂-7/p^ ?) \i ^(^) (5 .11 ) 

\,here here V reduces t o 

V - X IAA) (5 .12) 

Since the kernal eyp[_-(0Y-|xf I in ZC becomes very narrow 

about y - U/9 =̂  >x for the condition yx V> 1, 2Z has 

the expansion 

U(^) =. ^(\t] ^ ^pM ^ ^^^(^^^ +--- 5̂.13) 

In the VHE reg ion \vhere x >>> 1, (5 .11) s i m p l i f i e s t o (5-4) as 

e x p e c t e d . 
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The principal terms in the series solution for N(x) in 

the high energy region for the upscattering therihaliztition 

problem vvith l/v absorption are found by substituting 

N(xl =x^e-^^^^ = ^e-"-' ao - ^ . ^ . (5.14) 

in (5,11), using (5.13), and equating corresponding 

coefficients of powers of x. \.e get 

3 =: I (arbitrary normalization) 

r 
^ . - x< 

^ . - '" 
T ^ ^ t -1 

^ r X 

a, 
^t 

— 

( 5 - , ! ^ ; 

To check these results, we go to the heavy gas m.odel limit 

^ ^ ^ 0 , y/'^ — ^ A/Z. . Here, (5.15) becomes 

a . - I 

3 A 

3, = A/^ 
is. 16] 

A/ ia 

which agrees with the results obtained directly from ''/ilkins' 

heavy gas equation 

xNU) + (ax'-O Kl(y| ^(4-x-A)H(v^ -- 0 (5.17) 

[>y de O o b r m o a<^d Clarli. , 
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VI, WICK'S EXPANSION 

In our treatment of neutrons interacting with a 

Maxwellian moderator, w© transformed (5»1) into an expression 

where the scattering term depended on the behavior of p 

at normalized velocity x and at Xx, one collision intejrval 

below X. A similar expression which also includes chemical 

binding effects can be obtained from the energy change 

cross section 

23(E-Eo) = 0^^^(Eo/E)*] dt]^ exp(it(Eo-E)/^) 

•X(»̂ ,̂t)sinB d& (6.1) 

with Wick's expansion 

)((K%t) = exp(itllR) Y_ (it)%(e)/nl (6.2) 

X. 

Here IŜ î S =2m(EQ4-E-- 2(EEQ)'^ COS9 ) is the square of the 

momentum transferred in the collision, 9 is the angle 

between the initial and final neutron momenta and R = K V 2 M = 

/{(EQ -4- E - 2(EEQ)« cos9)/h^ is the free atom recoil. 

The leading moments s^ in Nelkin*s notation are 

SQ - 1, Si = 0, S2 = R î <K>/3 

S3 = R <v2v)'V3M (6.3) 

s|̂  ==R2 l6 <K2)>/5 + R 2 < ( V V ) 2 ) / 3 M 

where K and V are the kinetic and potential energies of the 

scattering atom, and the average <̂ --')'is over the initial 

states and orientations of the scattering system. 
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By performing the integration over 0, and using the 

integral representation of the derivatives of the delta 

fimctlon, 

i^{x) - d"S(x)/dx?^ = (1/2TT) \ dt(it)^ exp(ixt) (6.ij.) 

wo obtain the desired form of the velocity change cross 

section 

"^.(x^y) = 2yTr3(E — EQ) (6.5) 

- JK±- ^ V V V r " ̂' f-f"^" 
- \~}^ x*- ̂  4- ^ ' m ^' 

v/here the factor 2yT = dEo/dy is a result of the change of 

the independent variable from energy to normalized velocity ; 

x^ ̂  E/T and y^ = E^/T, The symbol [n/2] is equal to the 

largest integer ^ n/2, e.g., [5/2^ ~ 2. The dimensionloss 

coefficients 

«•: 

- , ' 

= 1, r ; = 0 

» <V^V> h/3MT2 

-f = 

- . * = 

l t<K>/3T 

16 <K2yST2 (6.6) 

originate from the moments given by (6.3), and are closely 

related to Comgold's IS^ • 

The arguements of the first series of derivatives of 

delta functions in (6.5) are zero at y ==• Xx and those of the 

second are zero at y = x. When we use (6,5) v/ith the up 

scattering transport equation 

- 584 -



(r,(x) + T,(x))|(x) = [isCx-y) T[/'(y)dy (6.7) 

N(x) = x^ exp(-x2) Tb(x) 

we see that these terms give rise to a series of derivatives 

of if evaluated at x and >x. Thus, w© heve made contact 

with (5.11) and (5.13). 

We now obtain the leading terms in the series solution 

for N(x) with l/v absorption and the velocity change cross 

section (6,5), On substituting (5,1̂ 1-) into (6,7) and 

again equating corresponding coefficients of powers of x, 

we find thct the first three coefficients, a^, a-,, a^, are 

identical to f-ose given for a Maxwellian moderator in 

(5,l5); the fourth one depends explicitly on the mean kinetic 

energy of the scatterer 

a3 - (r/.<<)(A/(2A+l|-))((2<K>/3T) +- 2a2 ) (6.8) 

For a Maxwellian moderator, <^K'^ — 3T/2 and we recover the 

coefficient a, given in (5,l5). 

In a subsequent paper w© will treat binding phenomena 

in nore detail and extend the treatment to cover space and 

time dependent problems. 
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YII, UP SGAVTSRING AND SLOV/ING D07/TJ SOLUTIONS 

In Section IV we established a connection between the 

slowing dovim and up scattering thermalization cases tlirough 

the principle of detailed balance. Another connection can 

be obtained in the limiting situation of /^ - 1, for v/hich 

Wigner and Wilkins have shown that the integral equation 

(2,5) can be transformed into the differential form 

(d/dx)(l/p)(d/dx)(V(x,l) - r ) i)(x) 

4- (V^ - w(v(x,i) + D ) -J(x) = 0 

v.here N(x) = iJ (x) (M(x) )"2' - -J(x)x exp(-x2/2) 

P = exp(-x ) + xfif erf (x) 

W = x^/p - p-2 exp(-x2) 

and V(x,/^ ) = (x -̂- tl/Zx) erf(x/;;s: ) + (^//TT )'S exp(-x2//{ ) (7,5) 

is the dimensionless ratio of scattering rates mentioned in 

Section II, This second order linear ordinary differential 

equation posesses tv;o linearly independent solutions. In 

the absence of absorption (i.e., T = 0) and neutron sources, 

one solution is the Maxwellian 

N,(x) = M(x) = x^ exp(-x2) 

V(x) -- X exp(-xV2) 

This can be easily verified by substituting it into (7,1)o 

(7. 

(7. 

(7. 

.1) 

.2) 

.3) 

(7.li-) 
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We construct the other solution by rewriting (7«1) in the 

standard form 

J"(x) 4- p(x) )̂«(x) ̂  q(x) J(x) =-0 (7.7) 

v/here p(x) = 2V'/V - P'/P (7.8) 

q(x) = V"/V - V'P'/VP+ Ij-P/Ĵ V - WP (7.9) 

and employing the relation 

J,(x) - Ĵ (x)j J,(yf exp(-j pdy) dy (7.10) 

Simple i n t eg ra t i on gives us 

exp(- jpdy) -= P(y) /V(y , l )2 (7.11) 

so that the second solution independent of N-, is 

N2(x) -- J^(x) X exp(-x2/2) 

= 7^ exp(-x2) J (P(y)/V(y,l)V) exp(y2) dy (7.12) 

By noting that 

P/(Vx)2= -ia( (d/dx)(l/Vx) (7.13) 

ve can v/rite 1̂ 2̂ )̂ ̂ ^ the alternative form 

N2(x) - constant(2x2 exp(-x2)j exp(y2) dy/V(y,l) 

- x/V(x,l)) (7.Ill) 

For X /^ 1, we in t eg ra t e (7,12) or (7.ll,'-) by pa r t s and 

obta in an as^nnptotic s e r i e s in powers of l / x 2 , 

N2(x) - (constant /x2)( l -V l /x2 -^ x^/la^k-^ 29/2x^+--- ) ( 7 , l 5 
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This is the well known asymptotic series for the neutron 

density produced by neutrons slov;ing down from the very 

high energy region in a unit masa moderator v;ith neglegible 

absorption in the high energy region. 

The neutron density (7,li{.) was derived under the condition 

that /«. = 1» However, let ua replace V(y,l), the scattering 

rate ratio for .<{ = 1, in (7.lit) by V(y,>^ ) given in (7«5)» 

N2(x) =̂  constant(2x2 expC-x?) J exp(y2) dy/V(y,yft ) 

- x/V(x,^)) (7.l6) 

For X » 1 we integrate (7«l6) by parts and obtain the 

asymptotic series* 

NgCx) = (constant/x2)(l-h b2/x2 +-bj^x^ •*-b^/x^^ --- ) (7.17) 

where the coefficients 

\ -3b2+ 3^Vi^ (7.18) 

b£, = k-hi^ - ̂ V 2 

compare favorably with the exact results given by Comgold, 

Asymptotic Series Coefficients 
b2 bh b^ 

Deuterium M = 1/2 
Approximate l.^OOOO i(.»69 l8.7 
Exact 1,50000 Ii.,71 18,8 

Beryllium -«-l/9 
Approximate 1.88889 5.675 22.70 
Exact 1,88889 5.680 22.72 

Carbon M ^ l/l2 
Approximate 1,91667 5.755 23.02 
Exact 1.91667 5.759 23.0I1. 
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In the heavy moderator limit (x<:-*-0), V(x,0) =- x and 

(7,16) reduces to a form which is equivalent to the exact 

second solution for the heavy moderator 

lT2(x) - c o n s t a n t (x2 exp(-x2) Ei(x2) - 1) (7.19) 

9 
given by Cohen, Here, Ei(x2) i s the exponential I n t e g r a l 

Ei(x2) = J^exp(z) dz/z (7.20) 

An appoxinate solution for the neutron density generated 

by a very high energy neutron source and removed by weak 

absolution can be obtained from a superposition of the two 

zero absorption solutions discussed previously. For example, 

we assume that an approximate solution to the heavy gaseous 

moderator slowing down thermalization problem with l/v 

absorption can be expressed in the form 

N(x) = Ci x2 exp(-x2)4 C2 {x2 exp(-x2) Ei(x2) - 1) (7.21) 

The coefficient C2 is determined by the source condition 

which states that lir(x)-*-2S/f VpZ^x2 for x »•> 1, where S is 

the number of neutrons per cm3 per sec. emitted at very high 

energy. In this limit, (7.21) has the asymptotic expansion 

N(x) ^ C2/x2 (7,22) 

so that C2 =2S/S VpZ^ (7.23) 

The remaining coefficient c;̂  is found from the neutron 

conservation condition 

vZ^lKx) dx - S (7.2[|.) 
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v/hich for a l/v absorption cross section becomes 

£ N(x) dx - (I4./A ) S/S" Vp ̂ ^ (7.25) 

where A, ̂ = ^(Vp)/s2'^ is the familiar absorption parameter. 

On substituting (7.21) into (7.25), we find that 

ci ̂ (jt/AlTf) S/SVp^i (7.26) 

The methods used to derive this simple approximate 

solution valid for A « l can be extended to treat more 

complicated thermalization problems. 
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CALCULATION OF THERMAL iPECTRA. IN LATTICJ:: CELLS 

by 
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Atomic Energy J i s tab l i shment 

Win f r i t h , D o r c h e s t e r , England 

- A B S T k A C T -

The methods normally used in reactor physics calculations 
either ignore altogether the spatial dependence of the thermal 
spectrum in a lattice cell or grossly over-simplify it. This 
approach is not satisfactory for interpreting experiments and 
it is dubious for design work on reactors containing two moder
ators at widely differing temperatures such, for example, as the 
heavy water moderated organic cooled OCDHE. 

The most obvious method of studying the spatial variation 
of thermal spectrum is to use a multi-group transport code with 
no restrictions on the energy transfer matrix. The Carlson SN& 
programme is suitable for this work and the first part of the 
paper describes how it has been used, together with some results 
which have been obtained. This method is laborious and expensive 
in machine time and a simple method known as 3PECTR0X has been 
developed in parallel with this work. The 3PECTH0X method is 
based on a collision probability treatment of the flux in the 
fuel and it leads to a pair of simultaneous energy-dependent 
equations which determine the mean flux in the fuel and in the 
moderator. The second part of the paper describes the theory 
of this method, the computer programmes that have been written to 
exploit it and some results that have been obtained with it. It 
appears to give adequate accuracy for the thermal spectrum in 
normal systems. 
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1. Introduction 

In addition to its theoretical interest, the spatial distribution of the 
thermal neutron spectrum in a heterogeneous lattice cell is of considerable 
practical importance. It influences the buildup of plutonium isotopes and 
it also affects the power peaking factor in reactors, such as OCDRE (organic-
cooled, DpO moderated), which have two moderators at very different temperatures. 
This problem tends to be ignored or grossly oversimplified in most practical 
schemes for reactor physics calculations. This paper represents an attempt to 
solve the problem using only basic methods and basic cross-sections. 

The calculations reported in this paper are all purely thermal, and there
fore cover the energy range between 0 and some cutoff energy EQ above which 
tbermalisation effects are negligible. In the WAPD i«--group scheme. Eg is tsiken 
as 0.625 e.V. The same value of E^ has been used in much of the work at 
'rtinfrith; this makes it possible to combine the thermal calculation with a 
MUFT computation of fast effects. However, this value does seem rather low if 
there is much Pu-24.0 in the system. According to the heavy atom (Wilkins) 
model of tbermalisation, the asymptotic spectrum in a weakly absorbing system 
is of the form 

If RT = O0O7 e.V., which is a typical value for an H2O reactor, the tberma
lisation correction at 1 e.V. is about 15?^ A calculation which neglects 
thermalisation effects will therefore underestimate absorption in the 1.05 e.V. 
resonance of Pu-2i4X) by about the same amount (15%). This matter is discussed 
further in the following sections. 

^. Calculations using Carlson-type programmes 

The obvious tool for a frontal attack on this problem is a multigroup 
transport code: the use of diffusion theory is undesirable, since lattice 
cells cortfdn thin regions such as air gaps and pressure tubes. Carlson's 
codes are very suitable for tlvLs work, since they can accommodate large numbers 
of space points and energy groups, and have no restrictions on the group transfer 
matrix, ,<le in the U.K.A.EoA. began by using the SNG code, ^nd wc have so far 
f>een no roason to switch to Ĉ arlson's DoN. We normally use the SA approximation 
though we have done a few Sg CKloulations to convince ourselves that S4 is giving 
adequate accuracy: we find th-nt ̂ 2 is not sufficient. 

The principal drawback cf the SNG code is that it if one-dimensional (the 
cylindrical version is naturally used in this work). Thus in order to use it 
one must cylindricalise the whole lattice cell. The errors involved in cylin-
ciricalisinf: tne outer boundory will be insignificant, ^inoe the bulk moderatoT* 
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will be several mean free paths across and neutrons arriving at the fuel 
channel will not "remember" the precise shape of the outer boundary. In a 
magnox (Calder Hall) type of cell, no further cylindricalisation is required. 
In lattice cells of CANDU or OCDriE type, the fuel pins and the coolant must be 
smeared into a paste ring by ring, Hyperfine structure in the pins is allowed 
for by applying hyperfine weighting factors to the raw number densities, these 
factors being calculated by the RIPPLE collision-probability routine (1), If 
the number densities in the various rings of paste are not very different, these 
rings may be further smeared into a uniform rod. In gas-cooled cells of the 
AGR (ECCai) variety we find it convenient to use an equivalent uniform rod whose 
radius, deduced by collision probability considerations, varies with energy. 
However, more conventional smearing is also quite successful, Monte Carlo 
tests have convinced us that the errors involved in using either of these methods 
of cylindricalisation is small. 

Also, in its present form, the bNG code does not allow the scattering to be 
other than isotropic in the laboratory system. j.'he effect of this restriction 
is not known, but it is unlikely to be large. 

The method of using the SNG programme (and its successor, the vanfrith DSN 
code) is discussed by Macdougall (2) in another paper submitted to this Symposium, 
and need not be described here. A standard set of 42 groups has been devised 
for these calculations. This set extends up to 4 e.V., and groups are concen
trated near the 0,3 e.V. resonances of Pu-239 and Pu-241 and round the 1.05 e,V, 
resonance of Ri-240o There is a group cut at 0,625 e,V,, so that effective 
thermal cross-sections which are compatible with the WAFD 4-group scheme can be 
produced, A typical S^ calculation with 30 radial points will take about 2-^ hra, 
of 704 time, of vdiich 30 minutes is printing time. 

In our calculations on liquid-moderated reactors, we have so far only used 
the free gas model of thermalisation, (However, Egelstaff has recently supplied 
us with Scattering Laws for H2O at room temperature and 150*'C, and these are now 
being introduced into our work, work by Macdougall (2) has shown that the 
change from the free gas model of thermalisation to a more realistic model does 
not produce a large change in reaction rates). All gases are given their actual 
masses (l for H, 2 for D and so on). Devices such as that of Brown and St, John 
(3) lead to serious difficulties in matching the tail of the thermal spectrum to 
the epithermal sources, since they make J for H and D too small, 

A very extensive series of reaction rate measurements in a CANDU-type 
lattice has recently been reported by Bigham, Chidley and Turner (4), The 
measurements in which the coolant channel was filled with cold (23°C) D2O have 
been selected for analysis by the Carlson method. Figure 1 compares the measured 
and calculated distribution of the reaction rate of a bare manganese foil, while 
Figures 2 and 3 give similar comparisons for the variation across the lattice cell 
of the fission ratio of Pu-239 to U-235, and of the L^Mn reaction rate ratio. 
The agreement on fine structure and on the fission ratio is extremely good. 
The analysis of the Lu/Mn ratio is noL ûite so satisfactory, the î aximum discrep
ancy being 4.6% at the centre of the fuel cluster: the mean discrepancy in the 
fuel is 2o8%o However it must be remembered that the Lu cross-section is not 
nearly as well known as those for the fissile isotopes; the data used in these 
calculations may well be several per cent in error. Such an error would be 
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particularly important in the fuel, where the spectrum is markedly non-
Maxwellian. Also, errors in the model of theramlisation will probably have 
more effect on the Lu/Mn ratio than on the Pu/U ratio. 

The agreement may thus be considered satisfactory, and similsur results are 
obtained with other experiments of high accuracy. Thus there is every reason 
to suppose that the SNG method does represent faithfully the spatial variation 
of thermal spectra in lattice cells. However the method is fearfully expensive 
in machine time and quite laborious to use, in spite of the effort which has been 
put into mechanising it. There is a clear need for an alternative procedure 
which gives comparable results with much less computation. The SPEGTiiOX method, 
which is described in the remainder of this paper, has been developed to meet 
this need. 

3. The SraCTROX method; the SPECTAOX 1 approximation 

The SNG method consumes so much macliine time because it treats simultan
eously three different dimensions, namely, space, energy, and the direction of 
motion of the neutrons. The calculation can only be speeded ap by eliminating 
at least one, and preferably two, of these dimensions. The conventional method 
of doing this is to use one or two thermal groups in which the spectra and 
cross-sections are specified in advance, and to compute only the distribution of 
the thermal group or groups across the cell. Regarded a... a piece of fundamental 
theory, this method has been a failure. It is neaessurj' to "adjust" the cross-
sections in order to force afjreeaent with the experiments, and there is no oniiue 
prescription for this acijustment. 

The SPECTROX method is ths opposite of this few-group procedure. The 
space-dependence is eliaiinated eind attention is concentrated on the mean fluxes 
in fuel and moderator: the thermalisation equations determining the energy 
depemience of these fluxes are solved as accuz-ately as possible. The ultimate 
basis of tho method is the observation that the flux shape in the moderator is 
almost unaffected by the moderation there. In a 1-group diffusion pi'oblem, the 
flux shape in the moder^itor is given by 

whei*e a, b ai'e the inner and outer radii of the moderator. It is found that 
this equation is very noarly valid even in an energy-dependent problem in which 
energy transfers (modei-ation) in the moderator are tcken into account. 
Explicitly 

<̂ (0.)= ̂ (a,E)+^^M)f^. UC. . 0 - ] (3.,) 
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In physical terms, equation (3.1) states that the flux rise in the 
moderator at any energy is proportional to the current leaving the moderator at 
that energy, the constant of proportionality being taken from 1-group diffusion 
theory, Tliis equation was formulated independently by Dr. G. Vr. Schaefer of 
the English Electric Company Limited, by M. 0. Tretiakoff of C, £« A,, oaclay, 
and by myself. Schaefer (5) was the first to show its surprising accuracy by 
comparison with detailed computations. Tretiakoff (6) has provided a theoretical 
explanation by showing that (3.1) is the first term in an expansion of the flux 
in the moderator in a series of "buckling eigenfunctions," and that subsequent 
terms are small. 

Figure 4 shows a comparison between equation (3.1) and an SNG computation 
in the moderator of the CANDU lattice cell (cold D^O coolant) in the group 
lying between 0.0250 e.V. and 0.0300 e.V. The agreement is not perfect, but it 
is extremely good. This is particularly striking, since (3ol) is a aiffusion 
theory assumption, while the SNG code produces a more exact solution of the 
transport equation. It seems likely that (3.1) will be adequate in nost 
practical oases, though it may fail if the moderator is very thin. 

The equation of neutron balance in the moderator is 

where Xirv(^) ~ T^ I -2xr4>(r/^)^'" '̂^ ^^^ °'®̂ " •̂'•"̂  ^^ ̂ ^® 

moderator at energy £ ^Va being the modera:;or volume). 

-̂ Awv ^^ *^® moderator macroscopic absorption cross-section, 

T ^ E ) is the net current out of the moderator at energy E. 

is the moderator thermalisation operator. 

It also follows fro.-a (3.1) that 

m 
where D^CE) is the moderator diffusion coefficient 

(In order to keep this paper reasonably short, most of the mathematical detail 
has been omitted. The final published version will contain full deductions of 
(3,3) and other salient equations). 
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In the fuel region we use the method of successive collision probabilities. 
If the fuel is uniform and non-thermallsing (so that a neutron can neither gain 
nor lose energy at a collision within the fuel), the mean flux in the fuel V, 
and the current entering the fuel Jfuei are related by j" 

where ^. t ^^ ^^s macroscopic total cross-section in the fuel 

Vr is the volume of the fuel region 

C = ^st/^kC '^Sf being the macroscopic scattering 
*' ^ ^ cross-section in the fuel 

PQ is the non-escape probability for a neutron entering the fuel from outside, 
PQP^ is the probability that such a neutron will make at least two collisions 
before escaping, and so on. If the fuel has thermalising properties, equation 
(3.4) must be generalised to 

where 

Y = 
- ^s4 •«- Lj 

^H 
The definition of the fuel thermalisation operator Lf> is similar to that of the 
moderator thermalisation operator L . 

If the fuel region is uniform (as is assumed in the SPECTROX 1 approxi
mation), the successive collision probabilities, Po. P-j, P2, ••• depend only on 
the single variable sf.q • Stuart and vVoodruff (7) have tabulated the proba
bilities up to PK for 23yg ̂  a . (As explained below, there is no need to 
extend these tables to larger rod sizes). These tables are, in effect, a 
solution of the spatial part of the transport equation. Thus these tables 
remove the need for such a solution within the programme: the assumption (3£>l) 
plays a similar role in the moderator, (g is the radius of the fuel rod). 

Equation (3.5) is not usable as it stands, since it is of infinite order 
in the operator Y , However, figure 6 of Stuart and Woodruffs paper shows 
that for smallisn fuel regions t^k^ ^ ') ^^^ assumption 

P, = P̂  =r r^zr ... (3.4) 

is quite accurate. This assumption is fundamental to the SPECTROX 1 procedure, 
"e therefore expect this procedure to work for small fuel regions but not for 
large ones, f.nd thi£. expectation is confirmed by the results presented in the 
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next section. Combining (3.5) and (306), we find 

Since we have had to assume that the fuel and moderator regions are uniform, 
we cannot treat pressure (and calandria) tubes in the SPECTROX 1 approxirattiono 
However an air gap between the fuel and the moderator is allowed f^ < tX.j and 
the current flows through it are treated by the method of Newmarch (tt). 
Newmarch's arguments show that 

where X = 9 / ^ 

and rv^x) - " ^ ( ̂ "'>^ -H ̂  Vl-X*-) 

Combining (3»8) with {.i^'b)^ we find 

where X = ^ fv^x) - ^— \\,\M\ 

is a parameter which summarises the geometry of the lattice cell. We also note 
that the neutron balance equation in the fuel gives 

It may be shown that for a uniform circular rod the requirement of neutron 
conservation implies 

Po(i+ p,+ r,p^+ f ; ^ p 3 + - ) = ^2 ;^^ (3.11) 

Substituting from the assumption (3.t>) into this last equation, we find 

This equation is not, of course, exact but it is as accurate as (3.6).. If 
(3.6) is to be used (as it is in the SPECTROX 1 procedure) then it is important 
to ensure that (3.12) is satisfied. If this is not done, neutrons will not be 
conserved and seriously wrong results may be obtained. Combining equations 
(3«S), (3.9), (3olO) and (3,11), we arrive at the basic equations of the 
SPECTROX 1 approximation 
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The second term on the right hand sides of these equations represents the 
current of neutrons out of the moderator into the fuel. In the SPECTROX 1 
approximation the current at any energy is proportional to (y^-XiS » an 
interesting and rather unexpected result. Analytical examination of these 
equations suggests that this current term is equivalent to a l/'' absorber at 
high energies, and to an absorber of constant cross-section at low energies. 

4. The SPECTROX 1 programme: results 

Re rfo Taylor [̂ lately of the (British) General Electric Company LimitedJ has 
written a programme for the Ferranti Mercury computer to solve the SPECTROX 1 
equations. Experience has shown that it is desirable to use about 40 energy 
groups (as in the Carlson calculations). Since the capacity of the Mercury fast 
store is only 1024 words, it would be difficult to accommodate this calculation 
if Ljjj and L^ were represented as integral operators (that is, as 40 x 40 matrices). 
They are therefore represented as second-order differential operators, 
de Sobrino and Clark (9) have shown that the Wilkins operator represents the 
thermalising properties of H2O quite wwil (it is certairJ.y better than the .i/'igner-
idlkins or free hydrogen model). Unfortunately, this operator is not so satis
factory for graphite. Horowitz (10) has suggested that this difficulty could be 
overcome to some extent by usir^ instead of the wilkins ojjerator the more general 
form 

Ux) 'i^s-^[i(e){^^^%^(^-^•^'>^}] C*') 
This "Horowitz" operator is the moot general second-order differential operator 
which satisfies all the nfccessarj' conserv&tion conditions: the Wilkins operator 
ic obtE-ined by putting f(E) = 1, Griggs (11) has deduced the form of f for 
graphite at rciom tecipcrnturfc by analysir̂ g the experiments of Coates and Gayther 
(12); his result is shown in figure 5« The use of the form (4.3) is justified 
eb a progrfuHffiing convenience which has given good results in practice, but it 
nust be enphasiaed that the SFEGTHOX method is not tied to this form. Indeed, 
8 FGRTKiiN programme with unretitricted thermalisation operators is now projected. 

Using the form (4ol), the SrECTRCX equations (3.]3) and (3.14) reduce to a 
pair of simultaneous differential equations, and these are integi'ated by 
simultejieous forward elimination and backward substitution. The SFECTRCX 1 
progrftirme takes as input a stated geometry and fXjel compositicn, PQ is 
calculated from a formula due to Neumann (which is valid for all values of Sĵ g ) 
and P^ is then computed from (3,12), »«hen Y ^ and •)(/. have been calculated, 
the reaction rates of a variety of isotopes can be computed in these spectra from 
the rrogramme's built-in library of basic cross-sections compiled from the 
recommendations of Story and SjOstrand (13). 

An extensive series of fine structure measurements has been made in graphite 
lattice cells under the BICEP (British Industrial Collaborative Experimental 
Programme), and Griggs and Choules (14) have analysed these measurements using 
the SPECTROX method. These authors will be reporting their work in detail at 
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a later date: we are quoting a few of their results to establish the validity 
of the method. The Table below lists results for sir.gle bare natural uranium 
metal rods: 

TABLE I 

Lattice 
Pitch (in) 

7 

8 

7 / 2 

svT 

Channel 
Diam in ) 

4.5 

4,5 

4o5 

4.5 

Fuel 
Diam in ) 

loO 

l .C 

1,64 

1,64 

Experimental 
GCRS 

1.566 + .033 

1.572 + .055 

2.053 e r ro r 
not quoted 

2,371 + .094 

SPECTROX 
GCRS 

1.553 

1.602 

2.077 

2.334 

The experimental quantity GCRS is the ratio of the mean reaction rate of a Cd-
covered Mn foil in the moderator to the mean reaction rate of the same foil in 
the fuel. In the SPECTROX calculation, the Cd-covered Mn is represented as a 
jf - absorber below Ec = 0.5 e.V., with zero cross-section above E = E© (it has 
been shown that the calculated GCRS is insensitive to Ec, changing by «;bout 1% 
when Ec is increased to 0.75 e.V.), It will be seen that the agreement is 
extremely satisfactory, the difference between SPECTROX and the experimental 
value being less than the quoted error in the latter in alj esses. 

Griggs and Choules have also compared SPECTROX with fine structure experi
ments on 44 different AGR lattice cells, in which the fuel element is in the 
form of an air-cooled oxide cluster. The agreement is again verj- good. The 
discrepancy between SPECTROX and the experimental value is less than the standard 
deviation of th& latter (CT ) in 28 cecas, lies between ff and Zr in I4 c-sen, -nd 
exceeds ZF in only 2 cases; these proportions ai*e very similar to tiiose wnich 
would be found if the discrepancy wero all due to a Gaussian distribution of 
experimental errors. It is particularly gratifying that SPECTROX, which uses 
only basic data, fits the experiments at least as well as methods which rely on 
correlation (that is, adjustment of the basic data to force agreement with the 
experiments), 

SPECTROX 1 has also been tested against the fission chamber measurements 
reported by Campbell, Preemantle and Poole (15). Measurements were mado at the 
centres of single uranium metal rods of differing enrichments (these rods being 
bored out to accommodate the fission chambers), and also at various positions 
in the moderator. The interpretation oi' the measurements in the moderator is 
rather difficult because only one fuel rod was bored out and the lattice is not 
therefore homogeneous: this problem is still being studied. It is easier to 
calculate the spectrum at the centre of the fuel, since the geometry is uniform. 
It would not, however, be correct to treat the bored-out experimental rod as if 
it were uniform, Griggs (ll) has therefore used an extended version of SPECTROX 
1 which incorporates a collision probability routine and can treat non-uniform 
fuel regions. (This version, known as MINX, was written under the direction 
of J. G. Tyror). 
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TABLE II 

Reference no, 
of experiment 

36 

37 

44 

45 

46 

47 

48 

Experimental 

1.841 

1.915 

1.769 

1.885 

2.417 

2,063 

2,456 

MINX 

1.6^4 

3.909 

1.840 

1.880 

2.483 

2.104 

2.497 

difference 

- O.Afe 

- 0.3% 

+ U-oCfo 

- 0.3% 

+ 2.7fo 

+ 2.0% 

+ 1.7% 

The quantity quoted is the sub-cadmium atomic fission ratio of Pu-239 to U-235; 
in the MINX computations, the Cd cut-off has been taken as 0.5 e.V., and it has 
been shown that the fission ratio is not sensitive to the precise value. Since 
the quoted error on the experiments is ̂  2%, the agreement is satisfactory. 
However, there is a tendency, v/hich seems to be just significant, for the MINX 
values to be higher than the experimontal ones. 

The SP&]CTROX 1 procedure has also been applied to the calculation of 
burnup and of moderator temperature coefficients with equally encouraging results. 
It may be concluded that this is an accurate and convenient method for analysing 
thermal phenomena in magnox and AGR lattice cells. 

5. The extension to large fuel clusters 

The assumption (3.6), which underlies the SPECTROX 1 procedure is only valid 
if Ĵ <̂3 ̂  I . The Table below shows that the procedure does indeed cease to 
work if this condition is violated. 

Type of 
lattice 

13 rod AGR 

37 rod AGR 

Cold D2O core 
of ZEKP 

OCGR 

^.3 
0.72 

0.85 

1.89 

t.32 

V 
- -

- ' 

0.329 

0.546 

TABLE III 

Exptl, or 
oNG GCRS 

1.279 1 .022 

1,678 + .014 

1.77 

1.762 

SPECTROX 1 
GCRS 

1,289 

1.690 

1.568 

1.496 

Epithermal 
cutoff 

0.5 e.V, 

0.5 e.V. 

00 

0.625 e.V 
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All cross-sections are evaluated at the peak of the thermal spectrum in the fuel. 
The OCGR (Organic-Cooled Graphite Reactor) is a purely conceptual design, 
selected to give a large value of Î .g . The fuel cluster consists of 91 rods 
of uranium carbide 0.35" in diameter and enriched to 1.8 Co: the canning is 
SAP and the coolant is terphenyl at 400°C. The overall diameter of the fuel 
cluster, which is contained in a SAP tube, is 5.93". A 0.5" gas gap separ-ates 
this tube from the graphite bulk moderator, and the lattice pitch is 12". 

For the ZEEP core, the SPECTROX 1 calculation is not strictly comparable 
with experiment since the pressure and calandria tubes are perforce omitted from 
this calculation. These are believfcd to contribute 0.1 to 0.15 to GCRS. 
Subtracting this amount from the experimental value still leaves a discrepancy 
of over 5% in fine structure. SPECTROX 1 underestimates the fine structure in 
the OCGR by 15%, but this core has an exceptionally large fuel cluster. (The 
coolant containment tube does not increase the fine structure appreciably). 

Table III also shows that iŜ ĝ is quite small, even in the OCGR. This 
suggests a different type of approximation for simplifying equation (3.5). 
We assume that 

y - 1 = ^ *̂  • 

is small, and that terms of order (V — l) may be neglected. To this order, 
there are no commutation difficulties, With this assumption and a little 
rearrangement, equation (3o5) simplifies to 

H is a function of Sj.^ only. H(0) = ^ 3 , and it may be shown from diffusion 
theory that 

for 5^9 large. Values for %,<^^^ can be computed frou the Stuart and 
Woodruff tables, while values for Sl^^> 2/ can be inferred from (5.3). there 
is no need to compute PQ, Pi, P2, ... for T^yi^> Zi , Equation (5.1) is a 
replacement for, and generalisation of, equation (3.7). It embodies the 
SPECTROX 3 method for calculating ^» and ^ ^ . The remainder of the analysis 
for this method is tsken over unchanged from section 3. 

The SPECTROX 1 prograi.ime has been adopted to solve the SPECTROX 3 equations. 
This is done by substituting for the table of PQ ( the probability that an 
entrant neutron will make a collision) a table of 
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PQ is not a collision probability, and in fact it tends to zero as SjQ becomes 
large. 

The Table below compares total reaction rates averaged across the fuel and 
thtt HiOdei-ator in the cold D2O core of ZEEP. 

quanti ty 

GCHS 

Lu/Mn (fuel) 

Pu/U (fuel ) 

LiV̂ Mn (mod.) 

Pu/U (fuel) 

SPECTROX 1 

1.568 

286 

1.534 

265 

n . a . 

TABLE IV 

SPECTROX 3 

1.639 

287 

1.535 

264 

1.480 

SNG 

1.769 

291 

lo550 

265 

1.482 

Experiment 

1.77 

299 

1.56 

265 

1.50 

It has already been stated that the SPECTROX programmes make no allowance for 
the pressure ana calandria tubes, and tliat these are believed to contribute 
between C.l and 0,15 to GCiiS. Thus :>PECTROX 3 would seem to give good agree
ment on fine structure with expei-iment and with SNG, The change in method 
from SPECTROX 1 to SPECTROX 3 hardly affects the mean spectra in the fuel and 
in the moderator, and the SPECTROX values for the spectrum indices (Lti/Mn and 
Piv'U ratios) ere i;> good agreement with the SNG values. It has been noted 
that the SNG value for the Lu/Mn ratio in the fuel is slightly different from 
the experimental vtilue. Obviously SPECTROX cannot be expected to do better 
in this respect than SNG, since SPECTROX is solving approximately the equation 
which Carlson solves exactly. 

Table IV does not establish definitely that SPECTROX 3 is superior to 
SPECTROX 1 for large fuel clusters: this is because, in the cold D2O core of 
ZEEP, the fuel cluster is not really large. The OCGR fuel cluster is really 
large ( 2^^3- fe-S ) and the Table below does demonstrate conclusively the 
supei'iority of SPECTROX 3 (in this case there are no experiments, and the 
reaction rates are cut off at 0.625 e.V,). 

Quantity 

GCRS 

Lu/Mn ( f u e l ) 

Pu/U ( f u e l ) 

Lu/kn (mod,) 

Pu/U (mou.) 

The OCGR cluster has been "designed" to ensure that the coolant-containing tube 
does not contribute appreciably to the fine structure. It will be seen that 

SPECTROX 

1.496 

595 

2.338 

520 

2.303 

TABLE V 

j . SPECTROX } 

1.7¥) 

597 

2.354 

519 

2.221 

SNG 

1.762 

590 

2.732 

517 

2.212 
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SPECTROX 3 is now giving a very good value for the fine structure (1,2% low) 
while the SPECTROX value is poor (15.1% low). The comparison of spectrum indices 
is complicated by the fact that SPECTROX and SNG are using different moderation 
models (heavy gas and free gas respectively). These models are similar in the 
graphite moderator, and it will be seen that in the moderator the SPECTROX 3 
spectrum indices are nearer to the SNG values, though the discrepancies are all 
small. In the moderator, the model of hydrogen moderation used by SNG is 
considerably softer than that employed by the SPECTROX programmes; this is 
confirmed by the values of the spectrum indices listed in Table V. 

It may be concluded that, unlike SPECTROX 1, SPECTROX 3 will give good 
results even for large clusters. Its main defects are that it deals only with 
uniform clusters, that it cannot allow for pressure and calandria tubes, and that 
it gives only the mean flux in fuel and moderator and not the spatial distribution. 
These defects are all overcome by the MINX extension of the SPECTROX method. 
This extension, which is mentioned in section 4, was devised by J. G. Tyror and 
worked out in detail by C. F. Griggs. The basic assumption of MINX is that the 
fine structure in the fuel cluster (including pressure and calandria tubes, if 
these are incorporated) is unaffected by thermalisation: this is the precise 
analogue of the assumption (3.1) which is made in the moderator. The MINX pro
gramme incorporates the SPECTROX programme and a collision probability routine. 
This routine is used to compute the fine structure (in the absence of thermali
sation) at a number of different energies. From this fine structure an equation 
similar to (3*7) can be derived, whence quantities analogous to Po and Pi can be 
calculated. These are substituted into the SPECTROX equations (3.13) and (3.14), 

The MINX programme was primarily intended for the study of small non-uniform 
clusters, but the idea of generalising PQ is also used in SPECTROX 3. This 
suggests that the two methods must be basically similar. The writer has been 
able to show that SPECTROX 3 is actually the limiting form of MINX when the fuel 
cluster is uniform and the absorption weak, and that the MINX approximation is 
valid as long as 

Thus MINX should be just adequate even for the very largest clusters: its use 
for large fuel clusters is now being investigated. 
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Paper to be submitted to the Brookhaven Conference on 

Neutron Thermalization. April 30, 1962 

Radial Dependence of the Bump li.Tiere the Maxwellian Meets the l/E-Tail 

by R.M, Pearce and J.M, Kennedy 

In 1957 Galanin^ ' predicted theoretically that when the 

maxwellian component is subtracted from the spectrum in a homo

geneous reactor, that as well as the l/E-slowing down spectrum 

remaining there is a bump superim.posed at an energy of approximately 

6 to & kT. The bump reached 20 to ^0% of the l/E-tail in heavy gas 

theory, and 12 to 15';̂  for a mass one moderator. The presence of the 

(2) bump was later found experimentally by Johansson et al^ ' at the 
(r>) 

cell boimdary of a DpO-raoderated reactor, and by Poole^•^' in the 

moderator of a graphite-moderated reactor. There has been no report 

in the literature of the biomp inside the fuel. This paper predicts 

that the bump, as defined by subtracting the best fitting max

wellian, does not exist inside the fuel. 

The present v/ork on the biimp occurred in the course of calcu

lating the thermal spectrum in a lattice cell of CANDU, the Canadian 

power reactor under construction at Douglas Point, CANDU is D^O 

cooled and moderated and is fueled by zirconiusi-clad 19 element 

natural uranium oxide. In the calculations, the fuel, cladding, 

coolant and pressure tube were homogenized into a single central 

region and a tvrenty-energy-group diffusion code with tv;enty-one 

space points was used as described in more detail in reference (4)« 

The transfer cross sections betv/een groups v.'ere calculated for a 

free gas and v;ere spectrura-v.-eighted because of the relatively large 

- 610 -



energy v;idths. The weighting was maxwellian below 5 kT and l/E 

above 5 kT, 

At the cell boundary of CANDU the low energy spectrxim calcu

lated by the code ̂ f̂as found to be closely maxwellian with the 

result that the maxwellian ftmctions to be subtraced at '̂  8 kT, 

and therefore the biirap, were well defined. Fig, 1 shows 

E(0 - 0™„ ) versus energy, where 0pj„„ is the best fitting max

wellian and the energy E for a group with limits E^ and Ep was 

taken to be the effective energy (Ep-E-, )/log Ep/E-, to account for 

l/E-variation in the finite group width. The bump shown for free 

gases of mass 2 and 3*6 in Fig, 1 are approximately 20 - 25% of 

the slowing down spectrtmi. There may be some uncertainty in the 

magnitude of the bump because of the rather large group widths. 

The bump was also calculated at the centre of the oxide 

cluster and at the cluster surface in a similar manner by subtractin 

the maxwellian which fitted most closely at that position. (At 

these positions the bump is not as uniquely defined as it was in 

the moderator because the low energy spectrum is not exactly 

maxwellian.) The results shown in Fig. 1 show that the bump is 

smaller at the cluster surface, and almost zero inside the fuel 

cluster. 

The explanation of this radial dependence of the bump is as 

follows. The burap is caused by a loss of moderating power due to 

the thermal motion of the moderator atoms, and in order to properly 

display the excess neutrons as a bump the subtracted maxwellian 

should therefore be at the moderator temperature. It is known 

experimentally and theoretically^^' that the neutron temperature 
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at the cell boundary is only slightly above the moderator tempera

ture with the result that the btunp is properly displayed, but in the 

fuel the neutron temperature is considerably higher because of 

absorption and the bump is largely removed in the subtraction 

process. 

Compilations of effective cross sections conventionally divide 

the contributions into a maxwellian plus a slov/ing down term. These 

calculations suggest that no single convention will suffice for all 

points in the cell, because of the radial change of the bump and 

therefore of the slowing-down term. 
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CHEMICAL BINDING EPPKCTS IN TIIR GENERALIZED 

HEAVY FREE GAS APPROXIf.lATION 

by 

G. W. SCHAEFER. K. ALLSOPP 

Theoretical Physics Grov̂ ) 
Atomic Power Division 

English Electric Co. Ltd,, 
Whetstone, Leicestershire, England, 

A B S T R A C T 

It is shown that the integral Boltzmann scattering operator may 
be replaced by a second order differential operator of the heavy free 
gas (iS?ilkins) form, by letting 52 be an arbitrary function of energy. 
This variable is detennined b.̂^ the moderating, properties of a medium, 
but it also depends on the solution of each particular problem. How
ever, it is shown that for a wide class of renctor problems the variable 
is insensitive to the problem. In these cases it may be obtained 
simply from the neutron'bcattering law" at high and low energies. For 
heavy moderators this is tr\ie to a good approximation at all energies. 

Some properties of this generalized equation are discussed. 
Criteria aire derived for deciding which problens raaj' ''-•e solved by this 
theory. Then the sensitivity of slowing down spectra, of thermal 
reactivity rjf and its temperature coefficients^ and of eigenvalues to 
the "scattering law" is studied and illustrated. Theoretical values 
of 52 ( E ) , calculated from various scattering models of graphite and 
water, are compared with experimentally deduced values. 

Submitted to Brookhaven Thermalization Conference - April, I962, 
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Introduction 

In many problems of interest to the reactor pliysicist the neutron 

thermalization process is governed by the Boltzmann integral operator L, 

defined by 

to 

o ^ ' 

using conventional grmbols. Such problems include the calculation of 

the neutron spcctrtm in an infinite medium, the solution of the Boltz

mann equation in tlie diffusion approximation, and the solution of the 

integral Boltzmann eqimtion in the isotropic scattering approximation 

(soluble by the method of first collision probabilities). It would be 

most desirable to be able to replace L by a lov; order differential opera

tor, having the properties of L and making due allowance for the chemical 

binding of the scattering nuclei. It is the purpose of this paper to 

show that this may be done, to determine the range of usefulness of the 

resulting second order operator, to show its limitations and accuracy, 

and to use the new operator to study the sensitivity of various reactor 

calculations to the neutron "scattering law". 

Several authors hi.ve investigated differential representations of 

L, but none liave been successful in finding an operfitoi- which allo'vvs for 

chemical binding and is valid (or sufriciently accurate) at all neutron 

energies. On the one hand there are two second oi-der differential 

equations valid over a vdde range of energy, but only for f]?ee f̂ ases. 

These are the V/igner Wilkins equation for hydrogen gas, and the heavy 

free gas (H.F.G,) .'/ilkins equation, valid for snail ft, the ratio of 

neutron mass to the atomic mass of the gas. On the other hand, there 
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are those differential operators which include atomic binding, are good 

appiX)ximation3 for high neutron energies E >> kT, but r/hich fall badly 

in the "Maxwellian" region E < kT, These include Comgold's^ modifi

cation to the H»P,G, theory, in wMch the moderator temperature is 

replaced by an effective temperature v/hich makes allov;ance for atomic 

binding effects; the third order equation of Comgold* and the fourth 

order eqxiation of Sobrino and Clark*, derived by adding terms of order 

/i* to the H.F.G. theory; and the accurate first order equation of Parks 

for light or heavy "bound" moderators. 

In Sections 1 and 2 it is shown that a second order operator can 

be chosen "ad hoc", which obeys detailed balance, conserves neutrons, 

and includes chenical binding. It has the foiTn of the H*F*G. equation, 

but the moderating power P = S2 is now energy dependent. This general 
s 

ization was first suggested by Horowitz , but was never developed as far 

as the authors are aware. Aror solution of the Boltzmann equation in the 

diffusion approximation can be written as a solution of this generalized 

heavy free gas (G.H.P.G.) equation by suitable choice of P(3)• The new 

operator will be useful only when P(E) is a function of the moderator 

scattering law, and is otherwise independent of the problem in hand, 

that is, independent of absorption and leakage. It ̂ vill turn out that 

to a good approximation this is the case in those problems in which the 

flux deviates only slightly from a "Maxwellian". This condition is 

consistent with the diffusion approximation (and the H.F.G. theory), in 

which abso3ri)tion and leakage are assumed small relative to scattering. 

In Section 3 the high energy values of P(E) are determined 

analytically in terms of the scattering law. At low energies, E < 5kT, 
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the first energy transfer moment of the scattering kernel, M (E)» deter

mines P(E), as is shown in Section 4, For intermediate energies it is 

not possible to find P(E) analytically, Ho;vever, Section 5 contains an 

approximate method, in terms of M ( E ) , Several models of graphite, bery

llium, and water are used for illustration. These three sections give 

criteria for determining whether a problem " s smtable for solution by 

the differential representation. For the heavier moderators, siich as 

graphite and beryllium, P(E) may be found with sufficient accxiracy from 

M (E) at all energies, and it is for these moderators that the G,H,P,G, 
1 

theory is best suited. The theory may be used for water systems, but 

only in a very limited range of problems. 

Section 6 gives the generalized equation in integral form, suit

able for interative methods of solution. 

In Section 7 the sensitivity of infinite medivn spectra to the 

scattering law (and hence to P(E)) is investigated. It is shown that 

these spectra are insensitive to P(E) at intermediate energies. 

Egelstaff' has recommended a "sensitivity function" for these spectra. 

The generalized theory throws considerably light on this function. A 

Debye model of graploite is used in illustration. For those spectra for 

which an effective neutron temperature T applies, a simple new relation 

is given between T amd M (kT). 

In Section 8 the experimental t' rae-of-fligiit measurements of Coatcs 

and Gayther* on graphite assemblies, and of Beyster et al, on water 

systems; are used to determine P(E) for these mclerators. The results 

are compared with various theoretical models. 

In numerical applications, the use of the &,n,F,G, equation elininat 
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much of the labour involved in solving the integral equation. Solutions 

may be obtained on small computers, even for space-energy calculations 

involving as many as a thousand mesh points. For several years the authors 

have been using a machine code for the spectrum in a (cylindrioalized) 

lattice cell, v/hich combined the differential energj' operator ?ri.th diffusion 

theory in the main moderator and collision probability methods in the fuel 

region. The resulting coiipled finite difference equations are of "band" 

form, and may be solved readily by triangularization and back substitution. 

Leslie (this conference) ha.s used a simplified model of this method in 

the Spectrox codes. In Sections 9 and 10 a few numerical results are 

presented to illustrate the sensitivity of a lattice cell thermal reacti

vity Tjf and its toraperat\ire coefficients to the scattering law and to the 

inaccuracies in the experimental fission cross sections. 

Section 11 deals with the determination of eigenvalues and eigen-

functions on the G,H.F.G. theory, and the limitations of this theory for 

tills type of problem. 

1. The Generalized Heavy Free Gas Operator 

The Boltzmann equation in the P approximation is 

[P/.^ - Y. D(x,r)2 •^:Sj^,T)](fj^,-r,i:) = Lkt) </>(xr;t) +S(x.r f) , ( 2) 

or, symbolicaTly, 

L is defined in (l). Energy is measured in dimensionless vinits x = TTn* 

q (x, r, t) is the nuiiber of neutrons per unit volume at position r 
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slowing do\vn past x per second at time t. The other symbols have their 

usual definition. In the following, position and time co-ordinates idll 

be omitted when not essential. 

It will be useful to review some of the properties of tliis equation. 

If q is widtten as Q0, it follows from (l) and (2) that the integral opera

tor Q is defined by 

QCx) ̂(x) = j \ j l n [r, (Z - J) i>(i) - Z, & -*) ̂ (f )J . (4) 

The scattering kernel 2 (x •• y) obeys the detailed balance relation 
s 

2/x^^)/V\(x) =: ^,('i-^^)ML^), (5) 

-X with M(X) the Maxwellian distribution xe . It follows that LM and QM 

are identically zero, and that the flux 0 becomes proportional to M as 

A and S vanish. Equation (2) conseinres neutrons, since by definition 

0 

Also, when neutrons slow down from a constant source at infinite energy 

in a infinite non-absorbing medium, then x0(x) becomes constant for 

large x, and q(x) tends to &Jxf6{x), 2 is the free atom macroscopic 

scatteirlng cross section. 

It is desired to replace L and Q Tijy low order differential operators 

L. and 0. respectively. From the above summary it is clear tliat the new 

operators will obey detailed balance and conserve neutrons if Q is chosen 

such that Q.M vanishes Identically, and 0 0 tends to CS when x0(x) tends 

to unity for large x in the slowing down problem. 
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Q. will be chosen "ad hoc" as the lowest order differential opera

tor satisfying these two conditions. It is easy to verify that 

QpSP«[x^*x-lJ ^ 
(7) 

with P(x) arbitrary except for the condition 

^^);T:? ^^f • (8) 

Q. is a generalized H.F.G, operator, and P(x) is an effective moderating 

power. Substituting (?) into (5) gives the Generalized Heavy Free Gas 

equation: 

The H.F.G. equation is the special case for which Fix) = €2 (the value 

used in this paper in place of the usxial 2 A'2^ , 

2, Determination of P(x) 

Any solution of the transport equation (2), found theoretically or 

experimentally (time-of-flight techniques), is also a solution of the 

G.H.F.G. e.iuation (9) by a suitable choice of P(x) . This is possible 

because P possesses an infinity of degirees of freedom. Let jB be a 

solution of (2). Then the corresponding P is 

Pfxr.t) = r J^"'""'*];^. .̂  ' ''°' 
with q g ven by (6) . Clearly, each P is a fxinction of A and S, as well 

as the moderrtin^, properties of the medium. Thus the G.H.F.G. theory 

will be useful only for the class of problems for v;hich P is independent 
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of A and S to a good approximation. 

Problems involving only heav̂ ' free ̂ :ases, in which tlie absorption 

(A) to scattering ratio is of order <i, are contained in the class . In 

the following three sections, P{x) will be determined analytically, as 

far as possible, in terms of the scattering law. A, and S. Criteria 

will emerge for deciding which problems are members of the class. At 

high energies the asjnnptotic solution of Corngold will be used to calcu

late P(x). At low energies, P(x) will be determined from the "moments 

expansion"* of (2). Section 5 discusses the joining of the high and 

low values. 

3. P(x) at High Energies (x > lO) 

An analytical solution of the transport equation for neutrons 

slowing down in an Infinite absorbing medium has been given for x > 10 

hy two authors. Corngold* has treated the special case of rp absorption, 

and has foiond an a83nnptotio expansion in powers of x ^. Parks' derived 

a very accurate first order differential equation for the flux at high 

energies, with general (small) absorption, P may be determined from 

either of these theoides. The former will be used, since it contains 

the chemical binding exactly, and is easier to handle. Although it 

applies only to a particular type of absorption, this should not be 

serious when considering the sensitivity of P to absorption, 
_1 

Let a (x) =0" X ^ and A = 2<T /W-. Then Corngold*s solution is 
a ao ao f 

(11) 
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The coefficients a...f are rational functions of |i, given explicitly in 

Appendix A. Chemical binding effects enter through the quantities f, 

(K*) , B . These are simple averages over the phonon frequerxsy spec

trum of the moderator. Their propeirties, and numerical veilues for 

several models of graphite, beryllium, and ?ra,ter, are given in Appendix 

B. For a free gas f = T, (K*) = ^ T*, and B^^ » 0. For x > 10, 

f 
the dominant chemical binding effects are given by the (2 - ^ s term. 

The effective moderating power, P.(x), corresponding to the above 

solution can be fo\ind readily by expanding PA(X) in powers of x , and 

identifying the asymptotic solution of (9) with (ll). Define p(x) by 

P(x) =C2^(x). Then 

(12) 

The 0, /9, y are functions of li» Their dependence on the coefficients 

of (ll) is given in Appendix A. In writing (12), the terms which 

vanish for a free gas have been separated. Several important features 

of P.(x) should be noted. 

In the heavy free gas limit all coefficients vanish, leaving 

p.(x) = 1 as expected. Thus the terms of (12) represent corrections 

to the H.F.G. theory. These are of three tjrpes: (a) for free gases 
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of finite ̂ , (b) for absorption, (c) for chemical binding. In all cases 

-i -1 
considered the dominant corrections are given by the x ^ and x terms, 

and these only vd.ll be discussed. Kxplicitly, 

while a_^ is negligible for all ^, 

(a) For a non-absorbing free gas, the change in p from unity is 

n/x. At X =10, this is small for graphite (~l̂'w) , and is a maximum for 

hydrogen (IĈ ô) . Since a decrease in P is similar to increased atomic 

binding, the H.F.G. theory effectively adds some binding relative to the 

exact free gas theory, and increases the flux at high energies. This 

has been observed by Sobrino and Clark*. It accounts in part for the 

greater success in calculating spectra in water by the V/ilkins theory 

rather then the Wigner Wilkins theory at these energies**. These effect? 

are shown in Figures 1 and 2 for graphite and vrater (h^vdrogen) . 

(b) For an absorbing free gas there is an additional term, 

A 1 ^a(x) °a(x) a. . r* —uB a. . • • ~ '̂  * . This term gives a direct estimate of the 1A 2 x*» 1A ficu <Tf 

sensitivity of p. to absorption. It will be taken tliat p/v is independent 

of absorption when this term is less than a few per cent for x > 10. 

Alternatively, the criterion is, A < 2 (grapliite) and A < 0.2 (hydrogen). 

This condition is not too stingent, since it allows most problems of 

practical interest to be solved by the G.H.P.G. theory,, The class of 

acceptable problems is much wider for the heavier moderators. The above 

criterion probably applies to general absorption (including equivalent 

leakage). In the derivation of the H.F.G, theory by Horowitz et al.*, 

it was assumed that a ~ /i ff., which is equivalent to the above. The 

- 623 -

http://vd.ll


same condition is implied in the use of the diffusion approximation. 

As in (a), this term effectively adds binding when the H.F.G. theory 

is used. Figures 1 and 2 illustrate the effect of this term. 

(c) The leading chemical binding term decreases the effective 

moderating power in the proportion that the mean kinetic energy of the 

moderator nuclei exceeds the mean kinetic energy of a free gas of the 

same atoms at the same temperature. 

The complete expansion (l2) is shown graphically in Figures 1 and 

2, with and without absorption, using for graphite at room temperature 

a phonon spectrun derived by Egelstaff (see Section 2̂ (11)), and for 

water the Nelkin model* . 

In summary, when the above criterion is satisfied, p(x) is given 

at high energies by p (x), the value of (12) when A = 0. p is a 

function only of the moderating propeirties of the medium. 

It should be noted that P (x) is not related to the asymptotic 

expansion of 52 (x). The latter is 
s 

with 

C,W = t 1. i^i^A.(l^)] 

Not only does this differ in form from P (x), but also in numerical value 

(C. "• -1 in the H.F.G, limit, rather than zero). 

4. P(x) at Lov/ Energies (x ̂  3) 

Two methods for determin.ing P(x) will be discussed. These are 
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• based on (a) a solution of the Boltzmann equation (2) by a power series 

expansion about the origin, (b) the reduction of L to a differential 

operator by a "moments expansion"' »**, 

It is in general useful to remove a Maxwellian distribution from 

the flux at these energies, and to work with the more slowly varying 

flvix Ip defined by 0(x) = M ( X ) X (x) . Using (5)» the operator L becomes 

• (a) Origin Expansion 

This method of solution is ein analogue at low energies of Corn-

gold's asjnnptotic metliod at high energies. It is not useful in practice, 

but a brief summary is instructive. 

The solution of (2) is sought in the form 

This is possible when A(x) may be expanded as 

A(x) =iv.[/lo +/], X'^^^ •••] . 

The expansion coefficients may be functions of r and t. Substituting 

(14) into (13) gives rise to energy weighted moments of the form 

„(x,T)= J 2 , (x-^T)^"''^ , M, 

which have expansions of the form (see Appendix C) 

M„ (^T)= •^.[M.o(r)+A/i«xer)x-H...] ^̂ ^̂  
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Using the above expansions in (2), the t^ may be detennined as 

the solution of an infinite set of coupled linear equations. •. is 

given exactly as 

Ao -i-Moo 

It appears that the values of the higher ̂ ^ converge slowly with the 

order of truncation of the set of equations, thus requiring many ff • 

which are very laborious to calculate. When found, the solution (14) 

will not show clearly its relation to the scattering law. Finally, 

(15) is essentially an expansion in x/fi (this is true exactly for a 

free gas), and thus will be useful only for very small energies, 

especially for the heavier moderators. For these reasons, method (a) 

was abandoned, 

(b) Moments Expansion 

L may be expressed as a differential operator by expanding f(y) 

in (13) in a Taj'̂ lor series about x. This gives rise to the "moments 

expansion" •***^ 

L(M4')=MwZ-i!^H(x,T)?%) , 
««i (16) 

where 

M 

ao 

These energy transfer moments have power series expansions similar to 

(15). 

It can be proved that the series (I6) gives rise to the same 

origin expansion as in (a) whenever A , = 0, 1 odd. When even values 
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J. 
of i occur, (l6) should be replaced by a Taylor expansion in V = x^, 

and (17) by velocity transfer moments. However, (I6) is a proper 

expansion for values of x away from the origin, whatever the A^, sjn.d 

the possible error made near the origin will have little consequence on 

the flux at important energies. Therefore (I6) will be used in all 

cases. 

The convergence of the series in (l6), of great importance in the 

present context, has been little discussed**. For a free gas with 

small fi, U and M are of order /i, while higher moments are of order ^*, 

Thus (16) converges over a wide energy range for a heavy free gas. Rut 

in general the (nl) * M (x,T) are all comparable in magnitude for x < 3, 

n ~ 
and are proportional to x for large x. The convergence then depends 

on the • , which have to be assessed in each particular problem. 

"1 " (n) 
For example, for fluxes having a /E tail , the • ^̂  ... 

the "tail", so that (16) fails at these energies, independently of the 

magnitude of the "tail". If the flux may be fitted accurately at ther

mal energies by a Maxwellian distribution with effective temperature T , 

then 

^ % - (• 
T^~T ?tx) , 

T« / (18) 

and the requirement for rapid convergence is that T - T << T . In 

( n) 
general, one may expect the * to converge at thermal energies when 

the flux deviates little from a Maxwellian at moderator temperature, 

that is, when leakage and absorption are small in slovdng down problems 

or when an eigenfunction expansion converges rapidly. 

P(x) may be computed from (I6), but a more direct method is to 
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apply the "moments expansion" to q, equation (4)» giving 

n = i 

with 

(19) 

F. (x,T) = /-̂  p ' 2s (- *3'T) M«)[(* -x)"- (> - «r] . 

The P are connected by the recurrence relation P (x) » 0, 
n o ' 

0 

For large x, P (x,T) oe(-x)"*^e"^. Equating (19) to Qji gives immediately 

where 

R(x,T)= -jfrx-'^ ^F„«<,T) . 
Thus P(x) is independent of the problem whenever the summation In 

(20) is negligible. It is unfortunate that this criterion for the 

applicability of the G.H.P.G, theory depends on the particular problem. 

All that can be said in general is that the convergence of (20) is 

similar to that of (I6), since the P (x,T) have properties similar to the 

(ni)' M^(X,T), (For a heavy free gas, P̂  = g2 , P^ =r 0, and the higher 

P are proportional to /i*), Thus one may expect the criterion to be 

satisfied for x < 3 whenever A(x) is small relative to 2 . In general, 
s 

the criterion in more restrictive than that at high energies. However, 

the examples in later sections will show that many problems of practical 
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interest may be solved sufficiently accurately by using only the first 

term of (20). 

For this class of problems and x < 3» 

(21) 

The scattering law enters the problem only through tiie first moment. 

For a free gas both M, and P̂  are ana]^tic functions (Appendix C). The 

evaluation of M, for a bound system is very laborious. The "incoherent 

gaussian" approximation*' for the calculation of S (x •»y) is generally 
s 

accurate enough for this purpose. Then M|(x) and P<(x) are given by a 

single integration over a rational function of ii^t), the width function, 

which is related to the phonon spectrum p(/9) by 

XAT 

J (3 ^4; ^ '""' 

(See Appendix C.) Thus there is a direct connection between p{fi) and 

P^(x). Because of the double integration, details of p(fi) are less 

unimportant, and an approximate form of the phonon spectrum suffices. 

Figures 1 and 2 illustrate p.(x) for graphite and water, using for 

each a free gas and a bovmd model. The first moments for the latter v̂ ere 

calculated****• by a combination of the "phonon expansion" and "short 

collision time" methods, rather tiian via the vddth function (22). 

Several important features should be noted. 

(i) For a free gas p (x) differs from unity, reflecting the approxi-

a 
mations of the H.F.G. theory. Hurwitz et al. shovrad that this theory 

is incorrect for x < /i, with errors of order i/( or u in the present con

text) for other x. This is clear in Figures 1 and 2. In fact, for small ::, 
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p (x)«c {•x/ii) . Equation (C,5) shows that p,(x) becomes unity as W 

vanishes, for all x. Relative to a free gas, the H.F.G. theory gives 

more bindiru; at very low x and less at higher x. Generally the effect 

is to harden the thermal ne\itron specti*um, as observed by Sobrino and 

Clark for hydrocen *. 

(ii) The effect of ctieraical binding is simply to reduce the magni

tude of the effective moderating power. This is illustrated in Figure 3» 

wiiich shows the "p ratio", the ratio of the bound p to the free p , for 

graphite, using several Debye models (Q/T = 1.1, 2,7» 4,0)** and the 

Egelstaff model (at 300 iC) . The latter is dicussed by Macdougall (this 

confe>'ence) . Assuming graphite to be isotropic, Egelstaff fitted the 

data f i-orn the Chalk River scattering law experiment approximately by the 

use of a phonon spectrum p(^0) proportional to /9 for 0 < /9 < 0.0253 ev, 

and constant for 0,0255 < /5 < 0.1771 ev = 2050°K. 

Figure 3 shows th"t the effects of chemical binding on the neutron 

spectrum should be negligible vmen the moderator physical temperature 

T > 9, even though the free ^as spectrum p(/9) = 6(/9) differs greatly from 

the bound p(/9) . In the presence of strong binding, T << 9, the form of 

p(^) may be more important. For example, it is seen that for T = 300T( 

the Egelstaff model and Debye model (9 = 4T = 1200 K) give nearly the same 

p ratio at thermal energies, but differ at higher energies (the Egelstaff 

values being less becnu!'e of the relatively harder phonon spectrxom) . How

ever, the main difference between the models is in the temperature dependence 

of p^(x) (Section 8 (i)) . 

The influence of absorption on p(x) is shown in Figure 1 (short 

dashes), wtiere the p term of (20) has been added. This term was 
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evaluated for a Debye (© = 4T) model, t^*y^^*^ being taken from the 

293°K Calder Hall spectrum measured by Coates et al.* . The effective A 

in this case is approximately 0.75, and the correction is about 12̂'c.. 

Thus P(x) Is more sensitive to absorption at low energies than at high. 

5. P(x) at Intermediate Energies 

In considering the joining of p, and p it is of interest to 

examine the high energy expansion of p , derived from the asyinptotic 

form of M (x) in Appendix C. 

Its limiting value varies from 0.50 for l^y^ogen to 0,90 for graphite 

and linity for a heavy moderator. The first two terms within brackets 

are identical to the leading terms of p (x), The third term differs in 

form but little in value (less than 0.015 at x • 10 for all models con

sidered) • Thus, for a heavy moderator, p (x) is a good approximation 

for p(x) at high and low energies, and may be used as a generalization 

of the H.F.G. theory to include chemical binding at all energies. 

For raary practical moderators this is too approximate. However, 

no analytical method for determining P(x) at intermediate energies has 

been found. Fortunately, these are the very energies for which the 

flux in slov/ing down problems is insensitive to P(x) (Section 7 (i))» 

although this is not true for many eigenvalue problems (Section 11). 

If p(x) can be determined for a free gas, then the p. ratio, 

which is correct at high and low energies, may be used for interpolating 
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approximately between p and p for bound moderators. Using (lO),p(x) 

for a firee gas may be calculated from the numerical solution of the 

infinite medium Boltzmann equation for small ;=, absorption, for example. 

No resvilts are yet available. It is expected that the calculated p(x) 

will be insensitive to small absorption, as are p^ and p , A rough 

estimate of p(x) for graphite and hydrogen is shown in Figures 1 and 2 

(long dashes). Using these values and the p^ ratio, the p(x) curves 

for the Egelstaff and Nelkin models were Interpolated and are shown in 

the same Figures, 

The criteria used at high and low energies for determining which 

problems may be solved by the G.H.F.G. theory, now completely specified, 

may be used also as a guide at intermediate energies, 

6, The Integral Equation 

The G.H.P.G. equation (9) may be rewritten as the integral equation 

with q given by (6). This form is well suited for iterative methods of 

solution, and for qualitative discussions of the sensitivity of neutiron 

spectra to P(x). It is a generalization to include chemical binding of 

the H.F.G. integral equation derived by Hurwitz et al.". 

7. Sensitivity of Infinite Medium Spectra to Scattering Law 

(i) Sensitivity Function 

Egelstaff' has discussed the use of "sensitivity functions" to 

display the sensitivity of neutron spectra to the scattering law. For 

a weakly absorbing infinite medium he has recommended a function first 
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proposed by Horowitz and Tretiakoff*'. The spectrum is written as a 

Maxwellian plus perturbation. 

<f>Oi) - N\Oc) + S.TE()i) . 
(25) 

E(X) is a function tending to — for large x, and r measures the strength 

of the "tail", Egelstaff determines E(X) by requiring that the total 

neutron density should be accounted for by the Msixwellian. In general, 

this means that for the saune number of neutrons slowing down, but 

different scattering laws, r assumes different values. The authors 

believe that E(X) would be a more genuine sensitivity function if the 

Maxwellian accoxinted instead for the total absorption, giving equal r 

values for all laws. For— absorbers the prescriptions are identical. 

For weak absorption, the relationship between E(X) and P(x), or 

the scattering law, may be derived readily by solving the integral 

eqvjation (2/f) by interation. The first interate is sufficient, and is 

obtained by setting 0 equal to M in q on the R.H.S. Hurwitz et al.* 

have discussed this solution in the special case P(x) = 2/i£̂  (H.F.G.) 
_i 

and cr Ix) - (y x ^, Using their notation, and the same cross section 
â  ' ao ' 

for the purpose of illustration, the flux may be written 

</>Cx)= M(x) + A ^ ^ ^ > (26) 

where 

O 

A is inserted to conserve neutrons, and has the value 
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where 

=̂(̂ - mr. 

This is a valid renormalization only for small AW. The sensitivity 

function for the solution (26) is easily found to be 

a.f*) = i [ f ' - ^ . M*,J . (28) 

An inspection of (27) shows that H(x) is sensitive to P(x), and 

hence lî j(x), at low xj becomes insensitive to P(x) at intermediate 

energies 4 < x ^ 8; and is sensitive to P(x) at high energies because 

of the e factor, W is most sensitive to P(x) for low x. E(x) is 

detei*mined by W at small x, and by H(x) at intermediate and high x. One 

may conclude that the most important aspects of the scattering law for 

slowing down spectra in media of weak absorption (or leakage) are T and 

the low X values of M j[x) . 

As an example, a comparison is made between the H,F.G. theory and 

a Debye theory, taking P(X)/2MIL as unity, and as the p x^tio for a 

Debye solid of mass 12 and 9 a 4T (see Figure 3), respectively. The 

latter is an approximate model for graphite at room temperature, Figiore 

4 shows H(x) in each case, the H,F,G. result being taken from reference 8. 

A was chosen as 0,1. The two values of W are 2,83 and 7.63. The large 

differences in H are reflected also in 2rE(x), plotted in Figure 5, which 

demonstrates the importance of chemical binding to spectra in graphite. 

Each model gives the same flux at x ~ ^ a result observed also by 
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Clendenin** for spectra in free gases over a wide range of atomic mass. 

The present results are in great contrast to the two examples of K(X) 

shown by Egelstaff*. 

(ii) AbsoiT)tion Heating 

In many problems the flux may be fitted to a good approximation 

at thermal energies by a displaced "axwellian of effective temperature 

T . A simple relationship may be found between T , absoiTDtion, and 

scattering law. 

Using (16) and (l8) 

For small absorption one finds 

'« ' l̂  ~MM) • (29) 

As noted earlier, the coefficients in the above series are of order 

unity. If they were exactly unity, the series may be summed, and (29) 

is obtained exactly. Thus (29) is also valid for stronger absorption. 

This useful approximation has been confirmed for many calculated spectra 

fitted in the range i jS x < 3. It is clear tliat the shift in effective 

temperature is sensitive to chemical binding, being for example two and 

a half times as large for a Debye model (9 = 4T) as for a free gas model 

for graphite at room temperature. 

For a H,F,G. (29) gives 
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Cohen , using an approximate analytical method, found a coefficient of 

0.60, while Coveyou et al. , using Monte Carlo techniques, found a value 

1.1 over a wide range of a. (An inspection of their results for the 

he&vier gases only. Table I of reference 12, shows the coefficient is 

closer to 0.8. This result is probably too high as the flux was fitted 

over the range 0 ̂  x ̂  3.6, which is too long in view of the strong 

absorfition used.) 

8, Experimental Determination of P(x) 

Using a time-of-flight technique, Coates and Gayther* have measured 

the neutron spectrum in a graphite moderated (Calder Hall) lattice, and 

Beyster et al.' the spectrum in a homogeneous "poisoned" water assembly. 

Their results will be used in (lO) to find an experimental P(x), which is 

then compared ivith theory, 

(i) Graphite 

The spectrum was measured at the boundary of the lattice pitch. 

This flux was converted into a mean moderator flux 0(x) by multiplying it 

by the ratio of mean to boundary flux derived numerically from a multi-

group heterogeneous calculation for the same cell using the machine code 

mentioned in the Introduction. (This ratio is Insensitive to scattering 

model.) q was found from (6) using Z (x) + D B* for A(x) , Here the 
ae g m 

effective absorption is 

which i? rigoî ou."̂  when diffusion theory is used in the moderator, 2 
^ •' ago 

is the 720''' m./r,ec. absorption cross-section for graphite, V is volume, 

f St' ndR for fuel. The fuel absorption was taken fron BNL 325. DB* 
m 
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has the value 0.0002 cm *. An aprjroximate value of 0J0 was found from 

the machine calculation mentioned above. It .Yas found that the calculated 

q at 5 ev was within l̂c' of the number of neutrons slowing down at 5 ev in 

the measured spectrum, both at 293 î  and 594T^. This shows that the 

problem has been reduced satisfactorily to an infinite medium problem. 

The experinentally determined values of p(x) at 293*^ and 594 it are 

illustrated in Figure 6. Estimated errors are indicated. Very little 

value can be attached to the results at intermediate energies because of 

the insensitivity of the flux at these energies to p(x) (Section 7 (i)), 

resulting in a large cancellation in the denominator of (lO), which 

magnifies the experimental errors. The theoretical (Egelstaff) curve at 

300IK is also shô -m, reproduced from Figure 1. 

At high energies 20 < x < 200 it was found by a least squares fit to 

the experimental data that 

f 2.07, 293°K 
T " 1.24, 594°K 

with a standard deviation of - 0.5. The Egelstaff phonon spectrum gives 

2.06 and 1.29 respectively, in good agreement. If a Debye model were 

used, the corresponding effective temperature would be 9 = 5.18T = 1518TC 

and 9 = 2,24T = 1330°K. The Krumhansl Brooks model gives' 2.36 and 1.43, 

thus predicting too much binding. 

At thermal energies the Egelstaff model again gives good agreement 

at room temperature, particxilarly when absorption corrections are made to 

p(x), A Debye model would fit the experimental results with 9 = 4T = 1172nK 

for room temperature, and 9 = 2.2T = 1307 t̂  for the higher temperature. 

The Krumhansl Brooks model predicts nearly twice too much binding (not 

illustrated) . 
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It is clear that a single Debye temperature will not fit all the 

experimental results. 

The two converted experimental spectra jj may be fitted accxirately 
T 

by displaced Maxwellian fluxes, with -=• = 1,191 at 293^^ and 1,079 at 

594^. These values may be compared with the formula (29) , S'or a 

free gas of mass 12, the corresponding values are 1,080 and 1.06/4.> while 

the Egelstaff model gives 1.203 and 1,081 respectively. The latter is 

again in good agreeraent, 

Macdougall (this conference) has calculated these two spectra using 

the Sgelstaff model and finds a good fit with experiment, in confinnation 

of the above analysis. 

(ii) Water 

» 1 

The experimental spectrum', with 3.15 bams of— absorber per hydro 

gen atom, was used to calculate p(x). The result is shown in Figure 2. 

Again the sensitivity of p(x) to the experimental errors at intermediate 

energies is apparent. Nelkin's theory is in agreement, within experi

mental error, for x > 1. At smaller x it is evident that M (x) is over

estimated by the Nelkin theory. Since the experimental •(x) was linear 

for 0.1 < X <1, this discrepancy cannot be accounted for by absorption 

corrections to the theoretical p (x), Rather, it is probably due to the 

neglect of molecular translational impedance in the model. Using the 

linearity of*(x), M (x) may be deduced directly from the experimental 

results. It is fo\and that for x < 1, 
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Nelkin gives 

for X < 0,1, while for free hydrogen, 

for X < 0.5. 

It is clear from Figure 2 why the H,F,G, model gives a better 

description of water spectra than the free gas model. At both hi^h 

and low energies it effectively accounts for some binding. The research 

of Sobrino and Clark*" confirms this conclusion, 

9, Lattice Calculations - T?f 

A quantity of importance in reactor calculations is nf, the number 

of fission neutrons produced at thermal energies per neutron slowing 

down in a reactor lattice cell past some reference energy. It is of 

interest to know the sensitivity of rjf to the moderator scatteririt law. 

To illustrate this, the neutron spectrum in a graphite moderated 

(Calder Hall) lattice cell was computed using the &,H,P,G, theory, 

diffusion theory in the moderator, and a "blackness" boundary condition 

on the fuel surface. Three models of graphite were used; the H,F,&, 

of mass 12, and the experimental P(x) for 293^^ and 505 K (characteristic 

operating moderator temperature). The latter P(x) was derived by inter

polation from the (smoothed) experimental curves. Irradiations of 0 and 

400 MTO/Te were considered. The threshold energy was 0.9 ev. Sixty-

four energj' mesh points were used. 
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The standard fuel absorption cross-sections were taken from BNL 325 

(Second Edition, July, 1958) , To test the sensitivity of nf to experi

mental inaccuracies in the fission CITOBS-sections, three sets of these 

were used: (*)» as computed from the measured a-ratios (of capture to 

fission) given in BNL 325, Supplement No, 1 to Second Kdition, January 

I960, and the standard capture cross-section; (/9) , the same, but «-

ratios taken from the 1958 edition; (y), as read directly from the 

fission cross-section curves of the 1958 edition. 

The results are shown in Table 1 below. They may be compared 

TABLE 1 

rjf 

Model MTO/Te T K /9 

Temperature 
Coefficient 

fflr/°C 
« /g y 

&as 0 

0 

400 

P(x) 
Experimental 0 

0 

400 

293 - - 1.2222 - - -5.12 

505 1.2359 1.2210 1.2106 -3.63 -3.13 -2.65 

505 1.2570 1.2439 1.2394 +2.01 +2.57 +3.00 

293 - -

505 - -

505 - -

1.2211 

1,2098 

1.2314 

-

-

_ 

- -5.64 

- -2.49 

+3.24 +3.91 

directly with the calculations of Macdougall (this confeirence) on the 

same system, but using the Winfrith DSN code. In absolute valvie the 

nf differ by a few per cent, reflecting the absence of the canning 

material in the present calculations. In passing from a gas to a 

bound model at zero irradiation, Tjf drops by 0.09?t at 293 î  and by 

0,06?? at 505 K, in good agreement with Macdougall. This change is 

negligible for reactor calculations. However, at the hi^er irradiation, 

the drop is 0.65/'» which is important to this type of reactor. The 
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explanation is that the a-ratio of U * " has nearly a zero energy gradient, 

but that for Pu*" a steep positive gradient. Thus, hardening of the 

spectrum due to the influence of chemical binding is important when Pu is 

present, but not in virgin fuel. 

The Table showo that uncertainties in cross-sections may affect rjf 

by about -^f, which is as large as the binding effects, 

10, Temperature Coefficients of nf 

The above cases were recalciilated with the moderator temperature 

raised by 100 C . —r - ^ was estimated from the difference in rjf (and 

strictly refers to a temperatiire 50 C above the temperature shown in 

the Table). The results are given in Table 1, in units of mr/ C 

(10 V C). At zero irradiation the coefficients agree very well .vith 

Macdougall's (when calculated over the same temperature range), and the 

difference in the coefficient due to binding is also comparable. It 

is seen that chemical binding can change the coefficient by up to 1 mr/ C, 

which is not serious for reactor control. The uncertainties in the 

coefficient due to possible inaccuracies in the cross-section data are 

about the same size. As with rjf, the latest data gives the most opti

mistic estimate. 

Temperature coefficients associated with the minor moderators in 

the lattice, such as the fuel and canning material, are very sensitive 

to the scattering lav/ of these materials, especially if they are closely 

associated with the fuel. It has been found in many calculations that 

these temperature coefficients are roughly proportional to the average 

value of P(x) in the thermal region. 
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11. Eigenfuncti ons 

The G,H,P,G, operator L. has been detennined in terms of the 

scattering law in previous Sections, The eigenfunctions f6 and 

eigenvalues X 52„ of this operator are defined by the eouation 
n I 

d_ p(x) (x A + X - l)<̂ Ĉx) = - X , (Ŝ „Cx) . (30) 

It is of interest to know whether these will be good approximations to 

the eigenfunctions and eigenvalues of L. 

For a H,F,&, (p = 1) the 0 are the generalized Laguerre functions 

M(X)L^ '^(X) and X = n. The solution of (30) may be expanded over the 

complete set M(X)L^ (X) , 

t^^)= S -̂ C(x)M(x) . (31) 

(i) fi = M ( X ) . The L]'*'(X) are polynomials of degree m in x. Referring 
m 

to eqiiation (20) it is clear that the solutions of (30) will be good 

approximations only when the a for m > 2 are negligible. Thus second 
m 

and higher eigenfunctions of L are likely to be fiven inaccurately by 

(50), In fact, (30) will be useful only for those first eigenfunctions 

which have a predominant L̂  component. Now, for free hydrogen, | aJ | 

is about one-half of a*. Therefore (50) must be restricted to heavy 

moderators. Also, chemical binding must be "weak", since it increases 
|a*| , In practice it lias been found that j6. and X- may be obtained with 
2 

sufficient accuracy from (30) for the heavier practical moderators, such 

as beryllium and frajihite. For other eigenvalue problems the G.H.F.G, 

theory has not been found useful. 

A few remarks should be made about the sensitivity of X to the 
1 

- 61+2 -



scat ter ing law. In general the X are solutions of the determinantal 

equation 

(32) 

obtained from (31) and (30) . Here 

oH 

t„,= ^--^^/.V^[^Lrc«]pO<)[AC..]^ . (3,) 
o 

Restricting attention to the heavier moderators, it is sufficient to 

truncate (52) to 

^i( ^ i i ~ ^ 

= 0 (34) 

For these moderators b is generally small so that X^ has the approxi

mate value 

X. "^"" -T^, • (35) 

It can easily be shown that b^^ is one quarter of the Maxwellian 

averaged second moment. b^^ and b^^ are more complicated averages over 

M (x) and M (x). 

Table 2 gives values of X calculated from (34) and (35) for several 

models of graphite and beryllium. The b. . were derived from (33), using 

the appropriate p(x) curves from Figures 1 and 6 for graphite, and similar 

curves for beryllium, b,^ is also tabulated. It is seen that b^, 

generally overestimatesX^ by only a few per cent. X, is very sensitive 

to the scattering law. 

The G.H.F.G, has been quite successful in solving problems 
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Model 

Be, free gas 

Be, Debye (» = 2.7T) 

Graphite, free f̂as 

Graphite, Experimental 

Graphite, Experimental 

(293°K) 

594°K) 

TABLE 

^ 1 

0,961 

0,689 

0,969 

0,491 

0,747 

2 

Exact (34) 

0,960 

0,657 

0,969 

0,452 

0.740 

\ 

- Approximate (35) 

0.960 

0.656 

0.969 

0.450 

0.740 

involving non-absorbing differentially heated media (Kottwitz type of 

problem). \ is then the rethermalization cross section. This work 

will be reported elsewhere, 

Acknowle dgment s 

The authors are gratefxil to H, Pitcher, J, Macdougall, H, Honeck, 

and M. S, Coates for communicating their results; and to D, Butler for 

supplying the information in Appendix C, They have had helpful dis

cussions with D, C, Leslie of the A.E.A., Winfrith, in the early stages 

of this study. The English Electric Company have generously provided 

facilities and encouragement. 

- 61+1+ _ 



Appendix A 

The coefficients in equation (11) are the following functions of 

1^, derived from equations (2) and (3) of reference 1, 

-J^^ 
M »lrSL±!t}L 

%.(-) 

^A( ' ' ) 

v^*^) 
« „fc 

d( / i ) 

e(/i) 
3 (/ t - ^ ^ ^ ^ ^ ) 

The a, p , and y of equation (12) are derived from the above 

functions by the following relations} 

• a iA-f^ 

r a . Ai cA 
,AL iA I â ^ J 

aA iL \L tA 3A 3 sA ̂  

(1) 

(2) 

(3) 

- 61+5 -



^,L • -(2-/i) (â ^ ̂  «,A * f I > * ̂ ,A (̂> 

V " 2(â /̂  * %A) - I V (5) 

V " \ t \ A - «aA ̂ .A - %A * %A («,A * 2 |> (̂> 

^A - '̂.A %A * (2-.) (â ^ - a J - b^^ . b^^ (â ^ . 1 | ) (7) 

Appendix B 

The quantities f, B , (K*) introduced in equation (11) are 

related to the phonon frequency spectrum p(x) of an isotropic "solid" 

by* 

^ ^ J [/>(x)xcot/.(t)^x , ^̂ ^ 

0 

B = T" 
av 

X̂ f(x)'iX , (2) 

o 

(K-),, = f (T) • (3) 

Examples of these quantities for some moderators of interest in 

this paper are given in Table 3 below. 

TABLE 3 

Model 
f 
f 

2.063 

4.345 

1.065 

1.33 

1.68 

B av 

T* 

4.394 

126.09 

0.726 

4.574 

9.60 

Graphite (Sgelstaff, 300°K) 2.065 4.594 15.96 

Water (Nelkin, 293°K) 4.545 126.09 55.65 

Debye (© = I.IT) 1.065 0.726 4.253 

Debye (» = 2.7T) 1.33 4.574 6.633 

Debye (©= 4.0T) 1,68 9.60 10,58 
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Appendix C 

D, Butler *» has shown how to calculate M (x) directly from the 

width function w(t), equation (22), The basic equations are given in 

reference 13, hereafter called I. The differential cross section I (2.1) 

is substituted into (l7) for MJ[x), For S(a,^) we use the "gaussian" 

approximation I (3,2). The angxilar integration is performed readily, 

followed by a laborious but straightforward energy integration. This 

leaves a single time integration, and gives finally the desired result, 

where 

For a free gas w(t) = t* +4:, With this simplification it is 

possible to integrate (1) by contour integration to Rive 

where ̂  = TJ» and 

R(/?) = 4 [4 - /i (1 + ?^) ] , 

SO?) = 2 [4+ 8^* /i (1 - A^ - ^ * ) ] . 

The asymptotic expansion of M,(x) is * 

-(H-/^)^^f^^^t^|^- ^^^(^I]|.-](3) 
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P, (x) is related to M,(x) by (21), Using the form (0,1 

the integration in (2l) may be done, giving 

with 

* •̂  w#) 

This simplifies great ly for a free gas, becoming 

PCX,- - ^ . [ ^ .«')^^'-* ^ (^i%^...l)e,f6t)/± , 

with t = ( f )^ . 
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The asymptotic thermal neutron spectrum in a graphite 

moderated lattice at four different moderator temperatures, 

has been measured at Harwell by Poole et. al. (_1) . This 

paper contains the results of a comparison of the measured 

data, with a calculation utilizing Corngold's asymptotic ex

pansion for an infinite homogeneous medium (2^,2) • 

The flux was calculated (using seven terms in the ex

pansion) with three different models for the phonon frequency 

distribution in graphite. These include the Debye, Kriomhansl-

Brooks, and the free gas models. The Debye model utilized a 

Debye temperature of - 9, + r 9_ = 2000 K. The Krumhansl-Brooks 

2 w model is given essentially by p . (uu) = r-g- i= 1,2 where i = l 
1 9 . 

1 

corresponds to the longitudinal vibrations and i = 2 to the 

transverse vibrations. Here, B = 1000 K. and 62=2500 K. (4). 

In comparing the infinite medium calculations with an 

experiment performed with a finite lattice, consideration 

must be given to the effects of absorption and leakage. An 

effective macroscopic absorption coefficient was defined as 
I V 1 " -I 

J 0 0 0 J U 1 1 0^1 7 „ 
0 0 

a eff. r X ,., r X ,.. ^, V 
I *0'̂ ^ * I ̂ l"*̂ ! I ̂  =i -i 

$ V 
0 0 
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where subscripts 0 refers to the fuel region, 1 to the moder

ator region, and ^-,/^f. is the disadvantage factor. Using 

monoenergetic diffusion theory to calculate the disadvantage 
21; (T) 

- — _ j vas calculated 

1 

to be .18 for a moderator temperature T = 293 K., a - de

pendence in A was assximed for the other temperatures. Leakage 

was also estimated using monoenergetic diffusion theory. 

DB 
Here, the ratio of leakage to absorption is given by — 

a eff. 
which was determined to be .667. Since the E ^^ is small, 

a eff. 
the leakage affects the asymptotic flux only slightly and 

can be neglected. Leakage will also cause a deviation in 

the flux from - in the high energy region (see Corngold and 
E 

Zamick (5_)) . To a first order of approximation, the devia-

•> 1 D B 

tion from £ is given by rra" • In this case —7- 1^ .025, 
E ^^£|i ^r^ 

E " ̂  

which is also small enough to be neglected in the calculation. 

The values of the y^ (which are the parameters in the 

calculation that contain detailed information about the scat

tering process and vary with model and temperature) are pre

sented in Table I for the Debye and gas models. These 

parameters are defined in (3,) (y for example is - d(up(a))(ju coth 
U) 

(_, ) and is simply related to the average kinetic energy of 
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the oscillators^. For the anisotropic Krumhansl-Brooks model, 

2 
the values of T -̂ , <K > (the mean of the square of the 

eff. av. 2 

kinetic energy, and B [= — - — , where V is the potential 
av o V o 

energy of the nucleus in the inter-atoraic force field of all 

its neighborsj are presented in Table II. 

Because some of the E~̂  have never appeared explicitly 
\. 

in print, these are presented for convenience in Appendix A. 

The results are displayed in the graphs, which are 

drawn up in the same manner as the data is presented in {1). 

There, a best fit Maxwellian, and a cutoff energy between 

the Maxwellian and the joining region are determined. The 

Maxwellian is subtracted from the measured flux, leaving 

what is essentially the joining region. The theoretical 

curves are obtained by using the same cutoff energies and 

Maxwellian temperatures as Poole. The Maxwellian was 

normalized so that its magnitude equaled that of the calcu

lated flux at the cutoff energy. The values of N (the 
- E/T E n^ 

normalization factor in M(E) = N —5- e j are listed 
n 

on the graphs. 

The results seem to be in good agreement with experi

ment, and Poole's observation that the asymptotic region is 

relatively insensitive to temperature when the curves are 
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displayed in the above manner, seems to be justified by the ^ ^ 

theory. Use of the Krumhansl-Brooks model (which is obtained 

through the use of specific heat data) gives slightly better 

agreement than the Debye model (which does not agree with 

the specific heat data). An appropriate choice of the Debye 

temperature would yield the experimental value for the specific 

heat integral. 

From the slope of the data points, it would appear 

that the 1/E region had not been reached in determining the 

normalization. If this is true, a change in the normalization 

would improve the agreement with the two crystal models, and 

increase the difference between the free gas model and the 

data. 
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TABLE I - DEBYE MODEL 

p+t 
T = 293 K. 

5.20 

2.78x10 

1.59x10 

8.11x10 

1.45x10" 

2.11x10" 

T = 434 K. 

3.73 

1.27x10 

5.16x10 

4.17x10 

4.76x10 

7. :!0xl0 

T = 519 K. 

3.26 

S.91 

3.11x10^ 

3.19x10^ 

2.92x10^ 

5.27x10^ 

T = 573 K. 

3.09 

7.32 

2.31x10''" 

2.36X10''' 

2.17x10^ 

4.42x10^ 

2p (2p): 
For gas case Y = ' '^'— , all others = 0 ( P ) : 

Tî BLE I I KRIWIHANSL-BROOKS MODEL 

T = 293°K. T = 434°K. T = 519°K. T = 573°K 

^eff/"^ 

a v . 

B 

2.42 

1.94x10^ 

2.25x10^ 

1.77 

2.27x10^ 

2.25x10^ 

1.55 

2.43x10^ 

2.25x10^ 

1.49 

2 .75xlo ' 

2.25x10* 
av . 

1 2 Here T = - T + - T e f f . 3 1 3 2 

J . 

T. = i J a,p.( . i ; )coth(^- |f) duu 

61 ^2 

\v. = 5 J *\<*)^-"' + I J ^\(^)^^' 

<^ '>av . = I ^ l ' ^ ^1^2 -̂  2T2 ' 
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Appendix A 

(s) = 
(1+M)2 ( l . , ) 2 - p - ^ 

i + 1 

,p+' 

3 y p t i / 

^ 2 1 / 
d:[[(^;7+x) - (l->i) (y-t^)J 

(/7+x) 2 (s-p)+l 

y = 1 

neutron mass 

moderator mass 

>2 
(1-tx)' 

(1+n)' 

1-3." 

( l -a)s 
(x - 1) ^ 

(1-x) 

I f g . l s 1 1 
(l-|i) + (2s-3) - (2s-3) X - (1+^) a 

2(l-a) ^ J 

U(l-x) 

2tj(l-x) 

U(l-x) 

s J 
[3(1+!')^ + 3(2s-5) (l+Ji) + (2s-5) (2s-l*) ] X 2+ 3(1-^)^ + 3(2s-5) (1-tx) + (2s-5) (2s-lt) 

(2s-l) 
.s-1 B? = 

2ii(l-x) 
(2s-2) x^-2 - (2s-2) + (2s-3) (2s-2) x''"^ 

^ 

6(l-n) +• 
3(2s-5) (2s-5) (2s-U) 6(2s-5) (2s-U) 3(l+ki) 3(2s-5) (l+»i) (2s-5) (2s-lt) 

(2s-5) (2s-lt) (2s-3) g.2 3(l-t ') 

(1-li) 
x ' -2 . 6(1+^) + 9(2s-5) X s-2 

8n lHi(l-x) 

1 

(1-a) 
1-a ' 2 + (2s-3) - (2s-3) a 

s-2 (2s-3) (1-n) x"^-" + (2s-3) (2s-2) x" "̂  - (2s-3) (2s-2) (2s-l)n 

(l+li)^ 

,s-2 

2(l-x) 

S-i ^ s-2 9 , . ; ; 
3a '^+—(1+H) X + - (2s -5 ) X + 

2 3(H•^')^ 3 3(2s-5) (1+n) s- I (26-5) (25-U) 3 6(1-^) 3(2s-5) 3(l-n)^ 
X 2 + r X + - x=- 2 - 3 -

3(2s-5) (1-ti) (2s-5) (2s-lt) 6(2s-5) s - F 
a 

8n 
(2s-lt) + (1+n) 

(2s-5) (2s-lt) 

8n 

s-2 U(2s-3) 6(1+11) 2(2s-3) 

(1-li) 11 

2(2s-5). . . (2a-2) 

2^ (1-x) 
9 - 9x^ ^ + 9(2s-5) - 9(2s-5) x^" + 3(2s-5) (26-1+) ( l - x ^ ' 2 ) 

9x^" 2 

irn" 
(2s-5) (l+n) + (2s-5) (2s-lt) + 

siid-ii)'^ 

(2s-5) (2s-lt) (2s-3) 

3 (2s-5) . . . (2s-2) s- -2. (2s-5) (2s-l) s-3 
= 3. 2 _ ; T. 

kifiCi-nf 2li(l+n)^ 
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Abstract 

The energy dependent eq.uation in the heavy gas model with the first 

order correction of |i is considered for the case of a non-absorbing 

homogeneously mixed medium, whose components have the absolute temperatures 

T. and T^, the mass ratio y.^, \ir, (neutron mass to the mass of the moderator 

atom) and the macroscopic cross section Z ., 5 Z p* ^^ '^^^ heavy gas approxi

mation, the distribution of the neutron spectrum is the maxwellian distri

bution with the effective temperature defined by t 

^^Z T̂  ̂ ta^Z^Tg 

eff " |i.,Ẑ  + l^2^2~~ 

If the mass ratio y. approaches 1, the distribution deviates from the 

maxwellian distribution. 

By means of the perturbation method, the simple expression for the 

deviated flux distribution is obtained. The more rigorous calculation is 

carried out by expanding the flux in terms of Laguerre polynomials of 

first order of energy. This expansion method was used for the study of 

time and space dependent problem (3). The generating functions for the 

matrix element of scattering kernel expanded by the Laguerre polynomials, 

whose variable 'JH is normalized by a temperature other than the components 

temperature are calculated for the free gas and the crystalline material. 

The results obtained from the above two methods show that when the 

moderator components have the some mass, the neutron spectra are shifted 

to lower energy than the Maxwellian distribution calculated by the hea'vy 

gas approximation. 
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Introduction 

In the reactor analysis of a power reactor, the neutron spectrum is 

important to determinate a reactivity and a long term reactivity change, etc. 

The ORGEL type reactor which is plained in our laboratory is composed 

of a hot fuel assembly and a cold heavy water moderator. As preliminary 

study of the neutron spectrum in this reactor type, we studied the neutron 

spectrum in a homogeneous medium whose components have two different 

temperatures. 

Vfhen neutrons are put into a non-absorbing infinite medium with 

temperature T, the neutron spectrum approaches the maxwellian distribution 

with temperature T. In the case of a non-absorbing homogeneous medium, 

whose components have two different temperatures T^, Tp, the neutron 

spectrum approaches some distribution which is between the two maxwellian 

distributions with T. and T_, 

By measuring the neutron spectriim in the homogeneous medium^ the 

effect of chemical binding of moderator atom on the neutron spectrum 

will be studied. The neutron spectrum which is deviated from the maxwellian 

distribution by putting an additional absorber has been measured for this 

kind of study. Using the homogeneous medium whose components have two 

different temperatures, this effect will be studied without to sacrifice 

the neutron intensity. 

In this paper, a medium composed of free gases is studied by using 

a heavy gas approximation with a first order correction of the mass ratio ^. 

If a perturbation method is used, a simple expression for a neutron spectrum 

distribution can be obtained as a function of mass ratios, scattering cross 

sections and temperatures of components. The more accurate formalism is 

obtained in the cases of free gas and a crystalline material. The case of 

free gas with mass 1 is numerically calculated and is compared with the 

result obtained by the perturbation method. 
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I 

I 

2, Formalism 

In the non-absorbing medium which is composed of two atoms component, 

the neutron balance equation is expreseod by 

[Z^^(E) +Z^/E)] 0(B) 

• where Zt,(̂ ) Z (E'»-^E) are the scattering cross section and the differenxial 

* cross section respectively. 

In the heavy gas approximation corrected in the first order of [i, 

the neutron balance equation is a medium whose components have two different 

temperatures T, and T^, the mass ratios of a neutron to the composing atom 

-»- !_! ̂  and [ip is expressed in the following equation 

2 ? 

i=1 " -̂  " dE' 

^ ^ . j i B V i ^ + |(T. E^ + T^E) ^ •̂ i' 3 i .,̂.4 3^1 1 ' ,„3 
dE^ -" dE" 

(2) 

where 0 is the neutron flvix per unit energy interval. 
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The first terms proportional to y. represent the so-called heavy gas 
2 

approximation, and the second terms proportional to y represent the 

correction for it. In order to solve this aquation by a perturbation 
2 

method, let us consider the terms proportional to y as perturbation, 
and write t 

^(E) = ^^°\Ti) + j^^^^E) (3) 

where 0 (S), 0 (E) arc an unperturbed solution and the perturbed 

term of the 1st order, respectively. From the usual perturbation theory, 

we get the following equations : 

2 .2^(0) -, ,^(0) / N 

. ^ , 1 1 1 ^^d dB 

Z .̂ Z [ . T — ^ - + E ̂ —^— + 0̂  M 
i-1. ^ dS 

^ ^ ^ dE^ ^ ^ ^ dE^ 

. (4E2.6ET. .T2)ii^°^ 
3 i i' dE^ 

T'. .^(0) . o T? 

The equation (3) is rewritten as follows s 

2 
Z u. Z. T. 
i=1 1 1 i' ^2^(0) .̂.(o) 

i 2 ; ^„2 dE 
> Z |i. Z. , 
1=1 

0 

(4) 

(IfE.T,.^)i^.(f.-i)0(°)n.O (5) 
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and the unperturbed solution 0 is given by the following maxwellian 

distribution 
E 

'*"' • 7i~ -T- '-• '"" (̂ ) T eff 

where 

Z y, Z, T. 
T „„ = — 
off 2 

. . 1 1 1 
1=1 

Z y. Z, 
1=1 

Prom now on this effective temperature T ̂  is expressed by T 

throughout this paper. 

In the heavy gas approximation, tho noutron spectrum becomes tho 

Maxwell distribution with T. And, if one of the moderator components 

has infinite mass, that is jd = 0 and the energy change by scattering is 

zero, the effective temperature T becomes the temperature of another 

moderator component. 

By substituting equation (6) to equation (5) and rearranging it, 

W9 get : 

( , ^ 1 1 1 , .Mi l l , / D ) 
dE 

.Z Z^yl if (T. - T ) ^ - 2 (4T. - 3 T ) ^ 
I Z.̂  H, i=1 " • " • -̂  " T-̂  " T 
i=1 

M9T,-4T)|-TJ (^ -1) 1;; -1 O "^ (7) 

Now, in order to solve equation (7)> let us expand 0 ' and one 

term of the right hand side of equation (7) by the Laguorro Polynomial of 

1 »4r ordar as follows j 
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E 

/1)(E) = Z „(̂ ) .(1)(|)^I, P."^ (B) 
m=U i 

3 2 
I (T. - -) S_. - 2 (4 T. - 3 T) ^ + (9 T. - 4 T) | - T. 

= [T. Z a L^^^(|) + T Z t L^^^ (|)] (I) (9) ^ 1 '̂^ m m ^T' ^„ m m -T'^ ̂ T"̂  ' m=0 m='j 

where a and b ,obtained by using tho generating function for tho 

series of tho Laguerre polynomials : 

xt, 

! ^ ^ i l i s l . z LO) (X) t^-' ' t < i ) 
(1-t)^ m=0 "" 

(10) 

Let us consider the following integration : 

xt 

r —- e (4 x̂  - 8 x̂  H- 9 X - 1 ) dx 
^ ( i - t ) 2 ^ 

. 8 (1 - t)2 - 16 (1 - t) + 9 - (., I ̂ ) 

= - t + 7 t^ - t^ - t^ - t̂  - . . . . . . (11) 

On the other hand, from aquation (8) this expression is equal to 

(1) f . T.d) (^\ ^J"" .. .k (12) '̂  a " L̂""̂  (x) L̂ '̂' (x) x e . ^ t^ CO CD ^ 00 

lrf=0 

00 a (m+1) t 

z "• 
m=o 
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We get I a 
0 

^ 

^2 

^3 

^ 

= 0 

1 
2 

= f 
1 

="4 

5 

(13) 

but the convergence of tho summation of the "a " terms is very slow. 

Similarly, we get the b as follows j 

b =b-, = b. = . . . = 0 
o 3 4 

b., = 1/2 (14) 

^2 = - 3 

By substituting equation (8) and (9) to (7) ̂•'̂i using the ortho— 
( 1) 

gonality relation of the Laguerre polynomialB, 0~ 'is obtained as 

follows ! 

>'*''(̂ ' • a / , , 2 I , t i V :̂ i \ - ^ V (|̂  -1) 
^ l \ ) in=o 1=1 

i=1 

_ Ji 

• m \ T̂-* T T 2̂ 

The convergence of the sum of the a terms in this equation is also 

very slow. Therefore the same technique which was used for obteining 

a and b is applied for obtaining their summation. 

Now, we assTime that the sum of the a terms is obtained as follows 
m 

2 ^ L (x) X = f (x) (16) 
m=o m m ^ ' ^ ' ' 
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By using equations (l6) and (10) j we get : 

.oc 
-̂-xt/(l-t) o-x 

! f (x) dx 
(1 - t )2 

cc (m4-1) ̂m 
V a ^ •̂' t A m m m=o 

3 4 5 7 4.2 t-̂  t^ t^ 

4 - 8 (1 - t) + 4 (1 - t)^ - log (1 - t) 

Prom this equation, f (x) is easily obtained by an inverse 

transformation, that is s 

f (x) = 4 X - 4 x^ + f x^ - xt (2) - X log X 

wheroij; (x) is'the Euler's Psi function. 

In a similar way, we get for the b torms ; 

L (x) Q o 1 
g (x) = V b X = 2 X - -T X 
° ' Z m m 3 m=o 

Thus, the neutron spectrum distribution is : 

_ E 

T y 1̂-
. \ i ' 1=1 

T, T, f(|) g(|) 
• y 2 / i .s (/is ''T-' '̂•T' n 

i=1 
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w Now, if we substitute the following ratio for values of two compo

nents into equation : 

1 = — , m = -^ , n - ̂  (21) 
•1 -^. - 1 ^ 

we get J 

Hi 

0(E) ^ -^ -^ e. "^ [ 1 -^ ^^ {1 - 1) u^ n 

„/Es /EN 

' ., ̂  ,_.2 E ^ (1 + lmn)(1+mn) E ^^^^ 
(1 + Imn)' 

T 

where 

M M + mn -* ^^^ 

In the case of 1 = 1, that is, the two components have tho same 

temperature, and in the case of m or n equal to zero or infinite, the 

correction factor vanished and tho noutron spectrum becomes maxwellian. 

In tho case whon m equals zero or infinite, the energy change due to neutron 

scattering by either component is negligible, and in the case when n 

equals zero or infinite, the neutron scattering by either component is 

negligible. Thus, the distribution of neutron spectrum becomes the 

maxwellian distribution of other components. 

In the caso of m = 1 that is, the masses of the two components are 
/E\ 

the same, the correction term proportional to g(m} vanishes, and if 
E 

Im = 1 is satisfied the correction term proportional to f(m-) vanishes. 

These correction torms proportional to f(Tî ) and g(7r) have maximum 
1 1 

coefficients in the case of n = •;— and n = — T — , respectively, for 
Im m V 1 

fixed values of 1 and m. 
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So far, tho neutron spectrum for the f,ree gas has been calculated 

in the heavy gas model corrected in a first order of by a perturbation 

method. However, this is not a good solution for tho light atom. 

A more accurate spectrum is obtained in this section by using the expan

sion of scattering kernel in terms of a orthogonal set of Laguerre poly-

nomial of energy in the •»* order, which was used in the analysis of 

the space dependent problem in paper I (3), i.e. it is ass\imed that 

tho fluxes 0 in the equation (l) are expanded in tho following way : 

m - Z -4^ L, (f) ̂  O" ̂  (24) 
i=o /Ti+1) ^ 1! 

substituting eq(24) into eq(l) and multiplying the resulting equation 

by .. L. (̂ ) and integrating over B, we get 
vtj+1) 

S. . . + S. .-•~~ A. = 0 (25 ) 
lOl 1^2 1 ^ -^^ 

where 

S. ., 

V""( i+I ) ( j+1) 

[ ;ydB' dEZ^̂ (E'->E) L^ )̂(fi L(.^)(|) ^ e 
T 

L I - ^' 
~ T 

o b " ' ^ -̂  -̂  J -̂  iji 
- rr dE dE. z ,̂(E->E) L(^) (f5 L^'hf} ^ e i ^'-'^ 

In this case, although the temperature uaod in the expansion of flux 

oq(26) is different from the temperatures of components, since the gene

rating function S can calculate in tho same way as the case of space 

dependent problem in the paper I. The results are shown in the 

following. In the case of free gas, we get_s . . 
/ mT 

T .̂ T .„., , \ ; .|+ . ^ 

M T 

,• '^ F,T„ ^̂  1-.P ^ 1-1 -' 

T a ' ' - T ' - r ^ ] i ' „ .y m_ _2k _̂; "k. "k '-^ 

r •ij./t l i i £*. K > a P I 
'•^"^^ T M / , m x2 / . m s2 

*t (1+ f - ) (1+ M" ^ 
Vv K 
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The generating function S in the case of crystalline material is 

obtained by the method is mass expansion as follows 

\ 
o ? ( l - P ) " V l - l ) " ^ fco , ra „ vl "^ 1 

sinh ( ( ^ + 1 - | - ) ! ^ ) s i nh ( : j ^S )G^(s)S^'"^ K ( (1+ ~ p + ~ - ) S )<ico 
k ^ 

(28) 

and by the Phonon expansion method, we get s 

<5 OZ (1-P)"''(1-1)"'' ~ /m NQ 1 r"''"\ ^ f / ^ ^ ^ '^ \ y \ 
q=1 k 

-* (î d -', <^"'''"Ai>'^'" "̂ '̂ " 
'%ti 

In these equations the same notation are used as in paper I, 

We can also get the generating function by using the two Phonon dividing 

models. The matrix elements S. .' are obtained as the coofficients of 

/(i+l)(j+l) P^ I'' terms. 

Let us consider the case of heavy gas, that is jT-̂ Oj the generating 

function of equation (27) becomes 

2 2 m L V "* m / ̂  m -̂  J X 

k=i ^ k=i -̂ ^ \ ^ (1 - pi)-^ 

If we choose the temperature T in such a way that 

ẑ ^ ( r - )̂ = ° (^^) 

we get 

2 2 

L'^--^ i. ^B.t ^ <-> 
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which is the generating function in the case of heavy gas with 

Z T -~ 
1=1 ^ ^ \ 

instead of 

Z — 
B M 

and its matrix is diagonalizcd. Thus, the lowest eigenfunction becomes 

the Maxwellian distribution with the effective temperature 

2 

,2, ^Mk^k \ ^ 
T = ^̂ 1̂  (33) 

Z (fikZi,) 
k=1 

This is tho result obtained in the last section. 

3, Numerical results 

In figureal,2and 3, the noutron spectrum is calculated using eq.(22) 

for the cases where 1 = 2.0 and 3.0 and y. = 1.0, m = 1, n = 1 for 

both cases. Also the case ofl=-r, (Ĵ  = 1.0, m = 2.0, n = 1 is shown. 

In all casGS an neutron spectra with effective temperature T, which are 

calculated from the heavy gas approximation also aro shown as Maxwellian 

distribution. 

In tho first two cases, the deviation from the maxwellian distribution 

is due to tho term proportional to f (̂7) and tho peak of the noutron 

spectrum is shifted to the lower energies. In the third case, the deviation 
/E\ is only due to tho term proportional to g\i^) and the peak of tho noutron 

spectrum does not shift approciably. Furthermore, tho case of |a. = 1, 

1=2.0, m=-r, n=1.0 are added in figure 3 where both correction 

terms (f and g) aro included. Those deviations decrease as tho mass of 

moderator atom is increased. 

4 
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w Ex/E 
In table 1, the coefficients of proportional to f (Tn)/m aJ^ 

S \t^J/'m 

r j / / ^ 

(l - 1) mn (ml ~ 1) 

(1+lmn)^ 

(1 - 1) mn (m ~ l) 
(l + lmn7"(l + mn) 

are tabulated for the several typical cases. 

Table I 

The value of G, and Cp 

W 

^1 

'2 

1 

1 
2 

1 
3 

1 

1 
2 

1 
3 

1 

2 

1 
9 

0 

1 
25 

0 

1 
12 

1 
10 

3 

1 
4 

2 
25 

0 

0 

2 
15 

1 

2 

2 

1 
8 

0 

1 
~ 32 

0 

1 
15 

1 
14 

3 

8 
25 

4 
49 

0 

0 

4 
35 

8 
" 63 

3 

2 

3 
25 

0 

3 
121 

0 

3 
- 5^ 

3 
" 55 

3 

1 
3 

2 
9 

0 

0 

2 
21 

1 
10 

679 



In order to comparo the spoctrum obtained by the expansion method 

with the iaBtr. spectrum obtained by an approximate method, the neutron 

spectra in the medium of the free gas with mass 1 are calculated in the 

case of T^/T. = 2 and 3. Their spectra are shown in figure 1,2 with 

the numerical results calculated by the perturbation mothod. 

Their deviations from the Maxwellian distribution of the heavy 

gas approximation are smaller than the deviation which result from 

the perturbation method. In tho medium which is composed of the same 

mass atoms, we find that the energies where the maximum of neutron 

spectrum is located are deviated to an energy lower than the one calcu

lated by tho heavy gas approximation, 
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Corrections to subject papers 

On Po3» equation (6) should read: 

On P,^, the paragraph immediately below the list of notations should read: 

That the boundary condition (6) at E = E is correct can be seen 
o 

most readily from the neutron conservation equation in the case 

D = 0, obtained by integration of equation (2) with respect to 

energy: 

On P.6, equation (8) should have a factor (1-kT/E ) multiplying <^(r,E ); 

ou 

h 

equation (11) should have in the numerator an additional term 

On P.7t equation (1^) should read: T y ^ "~ £^ ~ '' t- - Z-^c'i 
equation (l8) should have a factor (l-kT/E ) multiplying (̂ (p »E ) 
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Corrections to "Simple Expansions for Thermal 
Neutron Flux and Importance in 
A Cylindrical Cell" 

4 

On P.IO, equation (29) should have in the square bracket of the denominator 

a factor (1-1/^ ) multiplying H(k , £ )o 

On P.11, the denominator of equation (32), the numerator of equation (33)» 

and the denominator of equation (3^) should each have a factor 

(1-1/ 6^) multiplying H(k^^, £^) , 

On P.12, equation (36) should have a factor (1-1/ £ ) multiplying 

H ( ^ . F^). 

On P. 15, the equation at the top of the page and equation (̂ 5) should 

have factors (1-1/ ̂  ) multiplying H(k »<£")• Two terms of 

ikk) put factor /"/— ~J-~Zl:J 1 on right of (̂ 5) . 
h'i J 

On P,l6, near the top of the page, the statement about the probability 
that one or the other of the power-series and asymptotic 

2 
representations of H(k , f ) converges is too optimistic, 

except for H(k , S ) • o o 

The succeeding two paragraphs, extending on to P,17 and including equation 

(48), are largely superfluous, since the change in equation (36) makes 

J/ = 0 an exact eigenvalue for every value of £ , 

On P,17, equation (48) should read /̂  = 0. 

equation (50) should read // rr: — ^ XT) 

April, 1962 

- 686 

i 



I INTRODUCTION 

The investigation reported here deals with neutron 

thermalization in a lattice of parallel cylindrical fuel rods. 

A cell of the lattice is supposed to have cylindrical symmetry, 

and to consist of two regions, of which the inner region contains 

fuel (and possibly other materials) but no moderator, while the 

outer region contains a homogeneous moderator but no fuel. The 

most important approximation is the use of diffusion theory in 

the moderator region; this requires the dimensions of that region 

to be considerably greater than a moderator mean-free-path. The 

physical system thus described commonly occurs in reactors having 

metallic fuel, graphite or heavy-water moderator, and heavy-water 

or liquid-metal coolant. Hydrogenous moderators are excluded 

because they require either consistent P̂  or transport theory 

rather than diffusion theory. 

Since diffusion theory cannot be applied in the fuel 

region, the fuel and moderator regions require separate treatment. 

A transport-theory calculation in the fuel and adjacent moderator 

provides an evaluation of the logarithmic derivative, at the fuel-

moderator interface, of the asymptotic (diffusion-theoretical) 

neutron flux in the moderator. The absence of moderator from 

the fuel permits making this calculation independently for each 

neutron energy using one-group transport theory; the calculation 

is relatively easy because the neutron will not make many col

lisions in the fuel. The resulting energy-dependent values of 
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the logarithmic derivative impose an energy-dependent boundary 

condition on the neutron flux in the moderator. The effective 

inner boundary of the moderator region is taken at the fuel-

moderator interface, rather than approximately a mean-free-path 

into the moderator, because it is desired that all sources of 

thermal neutrons be included in the effective moderator region, 

and such sources exist wherever there is moderator. Consequently, 

the region includes the moderator near the fuel in which diffusion 

theory is not satisfactory; this is only a small part of the 

moderator, however, and the error in its treatment - namely, use 

of the asymptotic flux instead of the correct flux - is expected 

to affect the thermal utilization but slightly. 

The heavy-gas model of thermalization is employed because 

it is simple, common, and valuable for illustrative purposes; 

some of the results obtained will hold for more general models, 

however. The way to combine this model with diffusion theory has 

been indicated by Hurwitz, Nelkin and Habetler . The source of 

the thermalizing neutrons is the slowing down density at some 

cutoff energy E above which thermalization effects are not 

important. If this energy is taken as 0.5 ev, near the cadmium 

cutoff, then for a reactor whose moderator temperature is not 

above 500°C, the relation 

E Q > 7.5 kT (1) 

will hold. This relation probably holds in most cases, and 

will be used occasionally to test the validity of approximations. 
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I 

The problem described above is expressed mathematically 

as a boundary-value problem, consisting of the partial dif

ferential equation 

and the boundary conditions 

jjr ^ c^{E)f of r-q^ (3) 

1 ^ = 0 at r.J,^ (,, 

<P(r, E) =: 0 at E - 0^ (5) 

where 

^(f)E) = neutron fliix as function of energy E and 

radial coordinate r, 

f = mean logarithmic energy loss per collision of 

moderator, 

^^ = macroscopic bound scattering cross-section of 

moderator, 

rXI = characteristic thermal energy, 

J) = diffusion constant of moderator, 
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^^/£j= macroscopic absorption cross section of moderator, 

^ f£ ) = logarithmic derivative of moderator neutron flux 

at fuel surface, determined in previous transport-

theory calculations in and near fuel, 

{^ = radius of fuel-moderator interface, 

D = radius of outer cell boundary, 

(Of/jrj = slowing down density at E = E^. 

That the boundary condition at E = E^ is correct can be 

seen most readily by introducing on the left side of equation (2) 

a source term concentrated at energy E , 

S{r,E)^ qirJSilz-Ej 
and integrating over a small energy range about E = E,., assuming 

that (P{^^£jyan±shes for all E > E . 

The solution of this problem would enable all the questions 

about thermal neutrons to be answered. It may be somewhat diffi

cult to solve, however, unless further restrictions axe introduced, 

such as requiring some of the functions 2iq[B)j o<(£j^ ^ (^) *° ̂ ® 

constants. Such restrictions can be introduced as approximations, 

and the necessary corrections treated as perturbations of the 

resulting approximate solutions. Since the most importsuit result 

of a thermal neutron calculation is the thermal multiplication 

factor ?̂-/ , the perturbation theory should be based on a varia

tional expression for this factor. The following discussion will 

accordingly set up such a variational expression, and then consider 

various approximate solutions related to it. Since the problem 
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b 

is not self-adjoint, the treatment of the adjoint function, or 

importance, will be conducted separately, 

II VARIATIONAL FORMULATION of the PROBLEM 

The thermal multiplication factor is brought into the 

problem by writing the slowing down density (j(i^J in the form 

qW= d f(r) yVm, 
where 

W. = area of moderator transverse to fuel rods 

(i.e., volume per unit length) 

Q = 2rr j rdh qct)^ 

and consequently, 

{ tdir fir) = \ 4 /zn = r {b^- a 2j, (7) 

When the system is just critical, the non-thermal neutron balance 

will demand that 

where '){cjxs the fuel multiplication factor at energy E; while 

the criticality condition will be 

/= Â  = pe^tif. 
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Then, equation (6) can be written in the form 

f/^,f,J + / r ^ f f / _ ^A-fMh/£ if£M£J<Pfci,S)^ (8) 

2 a ^ 

in which equation (3) has been used to eliminate A^W^'^VrT* 

Equation (8), which replaces equation (6), is homogeneous 

in ^P/f'j E) « and since equations (2) through (5) are similarily 

homogeneous, there will be solutions only for certain values of 

the parameter /i • For one of these values, the corresponding 

solution will never change sign in the relevant range of r and E; 

this is the required solution, and the value of J( yields a value 

of '^ t>y means of equation (9)» 

Instead of the usual importance function 

an adjoint function will be employed that is related to it through 

the equation 

In terms of this function, the eigenvalue /\ can be expressed in the 

variational form 

,6 

/ ! = 
i J£5____--—— -̂ " ^—'^' 
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The conditions that this expression be stationary with respect to 

variations of T(<^/£/that satisfy equation (5)t or variations of 

'/M'' '̂. such that 

'IJ 'r L] T 0 ai C - Q (12) 

are that I'^lr^ll satisfy equations (2), (3), (̂ ) and (8), and that 

(// r Cj satisfy the partial differential equation 

ij-f:^-^hrF-^]h-i:>7 K>̂  ^.^-V^ (13) 

and the further boundary conditions 

0 «^ t--t^ (1̂ ) 

'-̂  JZ (7 ^^ ^ ^ i , (15) 

^1 
) r 

'/ • i-

Equations (12) through (l6) constitute the adjoint problem. 

Equation (11) is homogeneous of order zero in <p/r£jBnd also 

in Yjl^j C'l^ and consequently independent of the normalization of 

these functions. If the special normalization condition 

* ^ tj 

is introduced, equation (8) simplifies to 

Cptr^Ej-hT ̂ 1^-j^ :z: f frj^ (18) 
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Conversely, a function ^E'f" Z that satisfies equations (2) ^ H 

through (5) and (l8), together with a value of A chosen to satisfy 

(17), will satisfy (8) and constitute a solution of the eigenvalue 

problem. The thermal multiplication factor determined by (9) and 

(17) is ^ 

?_ ^ •? InE /̂'5 uiL ^ "̂  ft £ '. 
7 f "• r-f r ' 7 " 

Similarly, the special normalization 

simplifies equation (l6) to 

(21) 

and the system (12) through (l6) is solved by solving (12) through 

(15) and (21), and calculating X from (20). The resulting thermal 

multiplication is 

Thus, the above special normalizations lead to replacement 

of the eigenvalue problems by inhomogeneous systems, thus avoiding 

the search for eigenvalues. The associated expressions for /) , 

equations (17) and (20), naturally do not have the variational 

property of equation (11). 

As an example of a perturbation, a change from C\(E) to 

C></£ l+oĈ /̂may be considered. The change o A ^^ in yi may be estimated 

i 
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from equation (11), without recomputing '"f ('',£., and 'fli^^-J', the 

result is 

^ liL oEt) "jEJ E'A,E) \rclt fir) '4'ir^^] (23) 

III SOLUTIONS In The CASE of CONSTANT FUEL BLACKNESS 

Specification of the logarithmic derivative 0<(E) is 

equivalent to specification of the energy-dependent blackness of 

the fuel element, /3(E). The blackness varies between the limits 

zero and one, and must tend toward the upper limit over much of 

the thermal range of energy if the thermal utilization is not to 

fall too low. Thus the blackness, and with it c><(E), is expected 

to vary over a limited range; it is then permissible to replace it 

by a suitable constant value in computing trial functions for the 

variational principle. Of course, the blackness will decrease at 

higher energies; the use of the constant-blackness approximation 

therefore imposes an upper limit on the value of the cutoff energy 

^0-

If CX/E) does not depend on energy, the flux can be expanded 

in terms of a well-known complete set of Bessel functions: 
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in which the sum is over all the values A/jjo()for which /^(h'r.Ek.l^] 

satisfies the boundary condition of equation (3)j 

g^ R(hr,b^h„ aj-z=: c< R (E, lo^ k^a), (26) 

The advantage of a constant ex. is that the values of K^, Hjare not 

functions of the energy, and consequently that the operators on 

energy in the differential equation (2) do not operate on the 

functions E • Because of the orthogonality of these functions, 

the conditions (2) and (5) on -^(t'Ejare satisfied if the function 

Hi'^^-i ^) satisfies the conditions 

£ H''iC, f ) -<• fH '(/< f j ^[j - ii^;-" '^"^'^j^/fc-, f)^q (27) 

I-IIK.^. CJ c: -J (28) 

where primes denote differentiation with respect to f'^iZ/'fTm 

These equations are merely a case of the problem of thermalization 

in an infinite homogeneous moderator with heavy-gas slowing down 

model. 

The remaining condition (l8) on Cp fixes the coefficients /!/-, 5 

•t 

I rc/r f(rj Rih.b.knE] 

4 

J 
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It is customary to take f (r) ~ I, in which case the theory of Bessel 

functions leads to analytic expressions for the integrals in (29). 

A still simpler procedure is to take f(r) proportional to the first 

eigenfunction, 

fir) ' C R[kob, k.r-]^ (31) 

since all A except A will then vanish because of the orthogonality n o a o 

of the R . There seems to be no reason to think (31) inferior physi-n 

cally to f(r) = 1 . If equation (7) is used to evaluate the constant 

C, the resulting expression for (f is 

' ^ ^ - ^̂  ^ EkE fo) -f- H '(k;E.) R f/'.> .̂ A. a) ' 
while the value of A from equation (17) is 

. __ _£̂ « Hik.'j'J + H'il^EEl— ^ (33) 

from which and equation (9) follows 

"̂^ '' E?:. tfiEEEEEEE^ ' ''" 
This simple result is not enough unless C5̂ (E) is really a 

constant to a sufficient approximation. If the difference between 

the actual function and an approximating constant is to be treated 

as a perturbation, using equation (23), it will also be necessary 
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to evaluate '/'(r,E). For this purpose an expansion of the type 

used for the flux will not succeed because of the difference 

between the flux problem and its adjoint. This difference does 

not arise mainly from the difference between the differential 

equations (2) and (13) i since the function exp(-E/kT) ^(r,E) 

satisfies equation (2), and could be used instead of y itself. 

The essential difference is that the source f(r) of the flux 

appears in the condition at E = E , equation (l8), whereas the 

source CX(E) ^ (E) of the importance appears in the condition at 

r = a, equation (21). 

The appropriate expansion is 

<A(n E.]^ e ^ IlBf H{EIJ E^/EE)R[\<Ef /E Ihh r ) , (35) 
ho • 

where the function Ri'-J.E is still defined by equation (25), and 

the function n{M^Ej by equations {27) and (28). But now the 

separation constants ^4, are not fixed by an equation like (26), 

but by the condition (l4)at E = E applied to the function Q JJUJI. £j 

which takes the form 

H{M^/.)+ HypEfo)- 0. (36) 

The numbers ^t thus do not depend on the value of cK, but rather 

on the function Xfj/^)/^Xj and the values of kT, E , and D/J£|^, . 

2 They are therefore entirely unrelated to the numbers k determined 
J J n 

by equation (26), and there is no indication that they are all 

2 
positive, as the values of k are, nor even that they all have the 

same sign. For negative values of y^j , equation (25) may be 
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rewritten in terms of the hyperbolic Bessel functions I , I,, K , 

and 2̂.* with arguments /̂ /A» b and \/-/Ai » • 

Since the operator 

is self-adjoint, and the conditions at £ = 0 and £ = €^ are homo

geneous, the functions iliMi/ ^) must be orthogonal with respect 

to the weight function £ S in the range 0 < c < C^. 

With the usual normalization, there holds 

f dE H(HI/J H (M^. . f)e'f"' - ^irr. ' (37) 

Moreover, the set Hl/Jj fj is expected to be complete in the range 

0 <r c <" Cp , thus ensuring the validity of the expansion (35) o 

The coefficients B̂  are found from equation (21) to be 

A T ^ / ^ y ' r '1Rn) REUij-) 

K — EE' '— " T - /~~- " ' ^^^^ 
^ ex R (///̂  h, //V '^] - jE, r< &E} R -//'if a) 

It may seem that, since the values of the //^ do not depend 

on 0< , it would be possible to carry through the above solution for 

UJi^y^^t) even if O^E) were not constant. The procedure would fail, 

however, at the point where the coefficients B^ are evaluated. 

because a sum of the form 

E £;. RIKJ.R'^ «i 1 df c^tE'ER'^'Hli^,^, cj~R.^E-i 
appears in the equation for B^ , and does not reduce to the single 

term having m =/ unless cx(E) is a constant. 

- 699 -



IV THE CASE of CONSTANT MODERATOR ABSORPTION 

If not only 0<(E) is independent of energy, but also X. (E) 
a 

has this property, the situation is especially simple. Since X (E) 
8. 

is small for the moderators being considered, the latter approximation 

is probably better-justified than the former. In this case, the 

equations (27) and (28) that define the spectral function B-ijU fi) 

take the form 

e//'>.E) -/• ^ RV^' f^J-(V-t) H(/^.r) = 0, (39) 

R />. 0) ^ 0^ (1,0) 

where 

-]}^ {DM^^J/^^s (̂ 1̂  
2 

is a constant. This is a confluent hypergeometric equation , and 

the required solution may be represented in terms of the confluent 

hypergeometric series 

which satisfies the equation 

in the alternative forms 

// JM, «•; - f F(z-VlZ I- 6} CS*) 

2 
In the expansion of the flux, where yW = k is positive, 

•p will be positive, and equation (A-3b) shows that H{^•> ^/ will be 

positive for all positive (T. Moreover, the series approaches unity, 
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and the solution approaches the Maxwellian £ Q , as y approaches 

aero. In order to evaluate the quantity 

that appears in equations (29) and (32) through (3'+)» an asymptotic 

approximation may suffice because of the large value of S^ (> 7.5)» 
2 

provided the reactor is thermal. Thus the expression 

H{R\ ^J'^fiS [i-i- ^—j—- -̂  — -2?" f '• j ^^^^ 

may be used. If a single term is enough, the result is 

In addition to the other approximations, it is usually 

possible to take A'̂  (E) to be a constant. In this case, the quantity 

RRE)- / df ilkro Hfl^^'R'J (46) 
•3 

that appears in the expressions (33) and (3^) for the eigenvalue, 

will satisfy the confluent hypergeometric equation 

and the initial conditions 

Consequently, it can be represented by confluent hypergeometric 

functions as 

— "J 
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i t n tne asymptotic lorm 

HN ̂ W^'R '^'^ ~z7'7/' ' ^E„ 
agreeing with term-by-term integration of equation (44), the constant 

of integration vanishing. 

2 

It is probable that, for the relevant values of k , one or 

the other of the power series (43b) and the asymptotic series (44) will 

converge rapidly to a close approximation of /7fA^^£J, which would 

accordingly be well represented for all values of C. 

The expansion of the importance involves a new and unfamiliar 

set of energy eigenfunctions, for which the distribution of eigen

values Mil has not yet been determined. The discussion of these 

functions may be initiated by noting that, if (5o were infinite, 

-p/ = 0 would be an eigenvalue, since equations (43b) and (42) show 

that the corresponding eigenfunction would be a Maxwellian, c (2 

which satisfies equation (36) for €(.—*• 00 . Of course, f̂ ,̂ is not 

infinite, but its value ( >• 7.5) is substantially larger than the 

values (̂ 1 or 2) for which the Maxwellian is large. It may accordingly 

be expected that there will be an eigenvalue "J differing only 

slightly from zero, with an eigenfunction differing only slightly 

from a Maxwelliain. 

The asymptotic behavior indicated in equation (44) is quite 

different from the Maxwellian unless ^ actually vanishes. As p 

departs from zero, the Maxwellian will be only slightly modified, 

while the principal change will be the introduction of the asymptotic 
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behavior (44), The value of V may then be estimated by using 
o 

the sum of (44) and the Maxwellian to represent H(^% ^J 

and substituting this expression in condition (36). The result 

V. 7. ^ E, e ' (48) 

which gives the value Ĵ  /v - 0.0042 when So = 7.5 — a value that is 

indeed very close to zero. Improving this estimate by using more 

terms of the asymptotic expression will not change its order of 

magnitude. 

If 'w (E) is nearly constant, the integral in the expression 

(38) for the expansion coefficients B^ is approximately 

I Rr RRTfRRM^R) 7E^ 'j\ Rf Hf^ifj 

s.. 
^ 1 dnmh'Hl.K.fje"?" 

-< "1R /^' 

by virtue of the orthogonality condition (37)• The expansion (35) 

is thus reduced, to a good approximation, to the single term 

R £ /? {'JK R 'M r] 

c^ RRJE h^ JR. ^) ~ f^ R E'^'^ R i'̂ -̂ ' "^J 
where from equations (4l) and (48), 

iRREJ^ — , _ , ;_ , -3 ,.RnR'L:r7rR^ ^ (̂ 9) 

/̂.̂  ^-^[sE.s^oE:''-i-Ir^] (50) 
'" ̂ ~ a I 
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This shows that the importance, F(r,E) = ^(r,E)/E, is 

insensitive to the energy, and has a radial dependence well repre

sented by a hyperbolic Bessel function. In the usual case of a 

cell much smaller than the moderator diffusion length, the radial 

factor also will be nearly constant. The near-constancy of the 

importance explains the success of the usual non-variational 

thermalization calculations, which are often equivalent to the use 

of a constant importance. 

If the higher members of the set of eigenfunctions M ' ''} C ) 

are required, it is natural to attempt to repeat the argument made 

for the lowest member. Imposition of condition (36) at c^r' ^ '-'^ 

leads to integer eigenvalues yO(„ c: —^, the corresponding eigen

functions being products of the Maxwellian by Laguerre polynominals. 

These functions will approximate the correct functions only if £ 

is effectively large—which must mean that it exceeds all values of 

£ where the functions show such structures as zeros and maxima. 

For £ = 7.5» this condition already fails for /= 1, while for 

£ = 10 it is satisfied for / = 1 but fails for J = 2. These 

results, as well as improved estimates of the functions when £ 

is not large enough to justify the preceding treatment, may be 

established by the WKB approximation method. The significance of 

these higher eigenfunctions seems insufficient to justify more 

extended treatment, however, except to note that the successive 

eigenfunctions belong to successively larger negative values of 

/'if , and the corresponding radial functions are successively more 

rapidly attenuated with increasing radius. 
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G. I. Marchuk, V. G. Turchin, V. V, Smelov, 

G. A. Il'yasova 

METHODS OP CALCULATING SLOW-NEUTRON SPECTRA. 

INTRODUCTION 

The question of formation of the slow-neutron spec

trum is of appreciable interest in connection with the 

development of the reactor building technology. The most 

complete solution to this problem was obtained within the 

framework of the theoretical model of neutron scattering 

by monatomic gas nuclei. The main results of this theory 

were presented in a paper delivered to the first and second 

Geneva Conferences on Peaceful Use of Atomic Energy (E. 

Cohen [1], J. (Jhernick [2], A. McReynolds, M. Nelkin, M. 

Rosenbluth, and W. Whittemore [3]» M. V. Kazamovskii , 

A. V. Stapanov, F. L. Shapiro [4], and others). As our 

knowledge concerning thermalization of neutrons became fur

ther developed, it became quite clear that a deeper phy-
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sical analysis is necessary for the mechanism of neutron 

scattering in matter, with an account of the crystal effect 

and molecular bonds. The main efforts of the scientists 

have been aimed in recent years towards further improvement 

of the theoretical models for interaction between slow neu

trons with matter, free of the serious limitations of the 

monatomic-gas moderator model. The work carried out in 

this direction has been presented in the previously cited 

Geneva Conference papers, and also in a large number of 

journal articles. The initial theory of slow-neutron scat

tering in crystalline matter was proposed by R. ¥einstock 

[5]. Since then, many papers have been devoted to this 

question (A. I. Akhiezer and I. Ya. Pomeranchuk [6], J. M. 

Oassels [1], G. Placzek and P, Van Hove [8], Pinkelstein 

[9]. A, Zemach and R. Glauber [10] and others). At present 

the most general and most finitful method of calculating 

the differential cross section for the interaction between 

slow neutrons and matter is apparently the Van Hove method 

[11], which was further developed in recent investigations. 

Since the purpose of our paper is essentially a dis

cussion of the mathematical problems arising in the analy

sis of various aspects of thermalization of neutrons in 

nuclear reactors, we shall not delve into the principal 

theoretical problems concerning the interaction between 

slow neutrons and matter, and will base ourselves on the 
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mathematical formalism developed in references [12] and 

[13]. within the framework of the Van Hove formalism, for 

the calculation of the differential scattering cross sec

tions of slow neutrons in matter. 

Using the adopted theoretical model for the scatter

ing of slow neutrons, the subsequent problem consists of 

developing effective mathematical algorithms for solving 

the integro-differential transport equation of the neutrons 

in the medium. This problem appears to be mathematically 

the most complicated and most interesting problem in com

putational mathematics. The complexity of the problem 

lies primarily in the fact that the integral operator in 

the neutron transport equation is a Predholm-type operator 

in the region of thermal energies. Consequently, the in

tegro-differential transport equation cannot be solved in 

this case step by step, starting with the higher neutron 

energies and dropping into the region of the lower ener

gies, as was done for the neutron slowing-down interval. 

When determining the spectrum of the slow neutrons with 

account of thermal motion of the nuclei of the medium, the 

molecular bonds, and crystal effects it becomes necessary 

to find simultaneous solutions for all the energies com

patible with the neutron transitions from all possible 

energy intervals to the given energy interval. These sing

ularities of the problem have necessitated the development 
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of a new mathematical apparatus, A very convenient mathe

matical apparatus was foimd to be the method of spherical 

harmonics in the P approximation. The system of integro-

differential equations for the Fourier coefficients of the 

series in spherical harmonics is written in the many-group 

approximation. The problem is then reduced by the finite-

difference method to a system of linear equations, repre

sented in the form of three-point Jacobian matrix systems, 

the solution of which is obtained with the aid of an itera

tion process by groups, combined with matrix factorization. 

This method is quite effective when applied to the calcula

tion of the slow-neutron spectrum in regions of one-dimen

sional geometry. The basic ideas of the method were dev

eloped in the paper by G. I. Marchuk and V. V. Smelov at 

the second Geneva Conference [14], and also in references 

[15], [16], and [1?]. 

A, D. Galanin [15] and P, P. Blagovolin [16] made an eff

ort to solve the slow-neutron transport equation for the 

cell of a heterogeneous reactor in the diffusion approxi

mation using analytic methods. The calculation was based 

on the monatomic-gas moderator model. The calculations 

made by the above methods, however, are more qualitative 

than quantitative. Apparently only effective methods can 

lead to quantitative results of practical significance 

concerning the spectrum of slow neutrons. 

- 709 -



Although we do not plan to discuss in detail theoret

ical problems involved in the scattering of low-energy 

neutrons, we note that there is great need at present in 

fundamental experimental data on inelastic scattering of 

neutrons in matter, data which can help estimate the deg

ree to which calculations based on the continuously arising 

theoretical models are approximate. Of course, experiments 

on the spectrum of slow neutrons in various reactor systems 

are also of great interest. The information highlighted by 

these experiments is essential primarily for the design of 

reactor systems. We do not propose to discuss in this paper 

experimental work on thermalization of neutrons, since a 

special paper by V. I. Mostovoi and others [18] will deal 

with the subject, and note only the special importance of 

setting up such experiments, in which the shortcomings of 

the theory are particularly clearly pronounced. 

1. DIFFERENTIAL SCATTERING CROSS SECTIONS OP SLOW NEUTRONS 

1, The first to formulate the problem of scattering 

of slow neutrons on free atoms were H. Hurwitz and E. Cohen. 

[19]. The given theoretical model does not take into acc

ount the crystal effects and molecular bonds, which are of 

great importance in the calculation for neutrons in real 

media. However, the results obtained in the approximation 

of the monatomic gas moderator model make it possible to 
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examine the features governing the establishment of the 

neutron spectrum in the medium under the influence of ther

mal motion of the atoms of the matter and in many cases 

yield more or less reliable quantitative estimates. An 

exact expression for the cross section for scattering of 

slow neutrons on the nuclei of a monatomic moderator, ob

tained by V, V. Smelov and L. V. Maiorov (see [20]), has 

the following; form: 

?~i \ 

4-TT ^f^ X. ^fxU>.'•-^xv,Vc 

X &>• ^̂ - f^-~Er {xT^^HvoCvir '̂  . '̂ ^ x^^^ 

^^ ^ {xF+>^-^>^ 

where 

?" •^XT ^'-{^ >^-i^'^(>-^)' - P y 

XQ — neutron velocity prior to collision, x — neutron 

velocity after collision, ^^ — cosine of the scatter

ing angle in the laboratory system. In the derivation of 

formula (1) it was also assumed that the elastic-scatter

ing cross section has the form 

^£(>^R) -̂  ^,i e" 
-€X, 

Where Xĵ  — velocity of the neutron relative to the moving 

nucleus and ^ is a specified constant. 
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Of greatest interest from the point of view of prac

tical applications are the first two moments of the cross 

section 6'Q(XQ -r x, J^Q) with respect to the cosine of 

the scattering angle. 

These have the following form [1], [21], [22]: 

£T^^2 

i i. I 

where 

1 ^"^^o <e^^^*^..ia,V-^^e 

:-xQ -»->o'V̂  

-iXoO^^'^ [ I T 

r 

" ^ -

1 ^ONT y <."x 

- 1 V " ^ "^>''< J 

4 
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1,2. The differential cross section for the scatter

ing of slow neutrons with account of crystalline effet 

and chemical bonds will be considered in the form [3]»[12], 

[22] <r(..-...K) -̂ , ^ , ± ^^<^'^--R^ tJJt 

where Y ("t) Is a certain function having the meaning of 

dispersion in the Gaussian representation of the auto

correlation function. The first two moments of the slow-

neutron scattering function are determined from the formu

las 

-=C^»-)-'^% e ^ 
>^-< ^ 

fer< -ISk -̂)̂  
^(t) 

-€ cos 

^ 2. 

.0^-.^ -

^ 
-S'(^-? 

(0 

M I^C^o.X)' .•i -I 

ir) 

The function Jf (t) is the dispersion of the autocorrela

tion function in the incoherent approximation [23] 
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G(E,•i)-^^^Tr)i(^:)J e nw 
( « ) 

This is the form that the autocorrelation function has for 

an ideal gas, a cubic crystal, and a liquid in the model 

of continuously diffusing nuclei. 

In the case of the scattering of neutrons by a mon

atomic gas, the function y(t) has the same form as (8) with 

a dispersion 

)̂ W = t(Tt-\V^) n (3) 

where T is the temperature of the medium, 

For a cubic crystal we have [8] 

^i^)~-R[-E 
" ê '̂  "iO^O. -^t^^-

ushx ( - ) 

where £=hCO, g(£,)df = g(cO )dt>j , and g{cc> ) -- spectrum 

of normal oscillations of the crystal. 

As follows from formulas (9) and (lO), V (*) ̂ °^ 

a gas moderator increases as t when t «>, while for a 

crystal it tends to a definite limit Y^ = h co/M. 

For a liquid the situation is intermediate and the 

dispersion )\^'^'^ as t —^ «» can be connected with the 

self-diffusion coefficient D by the formula 
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w 
The motion of an atom in a liquid consists of relatively 

rapid oscillations about an instantaneous equilibrium posi

tion and relatively slow random displacements of the in

stantaneous equilibrium position, leading to diffusion. 

Consequently when t is small the function )('('*') should 

behave as in the case of the crystal, while for large t, 

when diffusion comes into play, it should increase in acc

ord with (10). 

References [24] and [35] derived interpolation for

mulas for y (t), in which these requirements are satis

fied. For a liquid and a cubic crystal we have 

where we must put ^ = 0 for a crystal. Formula (11) can 

be used, in particular, to calculate the differential 

cross section for scattering on water. 

In the case of graphite, in which the spectrum of 

the normal oscillations is broader, we can assume 
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This formula can also be used to calculate the differential 

cross section of scattering in water. We note that in the 

case of a graphite crystal we must put in this formula ft> 

= 0. 

The parameters <̂  and o in (11) and (12) are chosen 

such as to obtain best agreement between the calculated 

values of the total scattering cross section with the ex

perimental values over the entire energy interval below 

the end point. 

For a temperature T = 300° K the following values 

were assumed in the calculations for the effective para

meters: 

For beryllium — o = 0 , £= O.OI276, 

For graphite — p = 0, <̂  = 0.0154?. 

For water — (̂  = 0.00884, o< = 0.05200. 

The total scattering cross sections calculated for the given 

parameters are in good agreement with experiment. 

The method of computation and the program for cal

culating the differential cross sections for the scatt

ering of slow neutrons, in accord with the scheme devel

oped above, were devised by V, V. Smelov and G. A. II-

yasova. Appendix II lists tables of the differential 

cross sections for the scattering of neutrons on beryl-

liim, graphite, and water. These tables can be used to 
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calculate the space-energy distribution of slow neutrons in 

the physical design of reactors. 

2. CALCULATION OF THE SLOW-NEUTRON SPECTRUM 

2.1. The spectrum of slow-neutrons is usually calcu

lated with the aid of the many-group representation of the 

neutron transport equation. These problems, depending on 

their specific features, can be arbitrarily subdivided into 

those involving the calculation of the microstructure of 

neutron fields, with which one deals in the calculation of 

cells of heterogeneous reactors and in the problem involv

ing the determination of the average neutron spectrum in 

the reactor. From this point of view the fundamental prob

lem is that of the neutron spectnim within a cell of the 

heterogeneous reactor, since the physical indices of a 

nuclear reactor are very closely related with the coeffi

cient of thermal utilization, with the aid of which one 

determines not only the critical parameters of the reactor, 

but also the conversion ratio of the nuclear fuel in the 

reactor during the reactor lifetime. The calculation of 

the spectrum of the slow neutrons entails many mathemati

cal difficulties, which in general reduce to the need of 

solving as accurately as possible the transport equa

tion, both in space and in energy. Problems involving 

the calculation of the averaged neutron spectrvim in the 
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reaction, on the basis of information concerning the neu

tron spectrum in individual reactor cells, can as a rule 

be solved by using simpler methods, such as the P,-approxi

mation of the spherical-harmonics method. Even the 

latter case may involve the need for more accurate cal

culations if the gradients of the neutron fields, due to 

the physical or thermal inhomogeneities, turn out to be 

appreciable. By now there have been developed more or less 

satisfactory programs for solving one-dimensional problems, 

and we are at the threshold of solving the many-dimensional 

problems that must be solved if more justified recommendation 

are to be made for the design of nuclear-power installa

tions. 

2.2. We proceed now to formulate the main problems 

entailed in the calculation of the spectrum of slow neu

trons. In order not to complicate the mathematical as

pect of the matter, we start with the simplest P^-approxi-

mation, and will discuss the necessary refinements as we 

proceed in the solution of the problem. We shall first 

discuss the many-group representation of the fundamental 

neutron diffusion equations. Although this appears to 

be a trivial problem, there is still no unified point of 

view concerning the methods used to realize the group 

representations. Some general principles in this direc

tion have been advanced in [l6] and [22], 
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The gist of these principles is that the initial neu

tron transport equations are replaced by a system of many-

group equations in such a way that the chosen basic func-

tionals of the problem retain in this transition their 

initial value. Let us consider by way of an example the 

system of basic slow-neutron diffusion equations in the 

P,-approximation: 

d-) 

J 

subject to the condition 

X<^ y\ — 
\ If OVJ S 6.) 

where n is the outward normal to the surface S. The 

remaining need no special exi^lanatlon. 

We set the problem (13). (l4) in correspondence with 

the following many-group problems: 

60 

subject to the condition 
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where 4) Q . 4^i' "̂ O' ̂ '̂̂  '̂l ̂•'̂® *^® integral values 

over the groups (x. ^ , x.) and the coefficients cx^l, << T , 

o<-̂ , and °̂., are unknown quantities, vjhich must be chosen 

to satisfy the condition that on going from the problem 

(13). (14) to the problem (15), (l6) the chosen functional 

of the problem remains unchanged. In order to find these 

coefficients, we introduce formally the many-group prob

lem which is adjoint to the problem (15), (l6) 

^ -.-f •. ^, 

0^) 

subject to the condition 

Integrating further the equations of the system 

(13), (14) within the limits (x^, x. . -,) > "we arrive at 

the system 
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Xe„ -Xivv 

subject to the condition (l6). 

We now multiply the equations of (19) by (4? X and 

3d)^, add the products, and sum the resultant expressions 

over J. Me then multiply the system (1?) by (p^ and 
—^ 

3C|̂ ,̂ add, and sum the resultant expressions also with 

respect to J. The final results are subtracted from each 

other and integrated over the volume of the domain G. As 

a result we can readily obtain the following functional 

equation 

Eq. (20) will be satisfied if we put 

^ 1 
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•Ket, Xj»> ^ev. ^>+' 

^ ^ • ' 

where G — partial domains, into which the entire domain 

G of the solution breaks up. 

i "* 1 
So far we have left the quantities Q*Q and Q't-î  ar

bitrary, and consequently the solution of the adjoint 

equations is likewise not fixed. The choice of the func-

1 1 tions Q-'̂Q and Q*î  is dictated by the physical meaning of 

the problem. Let us assume that the most important func

tional of the problem is the total number of the neutrons 

captured every second in the subdomain G , i.e., 

7=Z[A?o<icvj (J2) 

In this case we must put 
_ •-> 

:^\ (" ̂ c ) when r belongs to G 

(_ when r does not belong to G . 

2.3. Formulas (21) can be used to determine the co

efficients by successive approximation, using the approxi-
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matesolutions <^o^^' ̂ ^ ^̂ *̂  ^l^^' ^^' obtained during the 

process of going over from the integral fluxes <b ^ and 

? i ^° f 0^^' ̂ J -H 1/2^ ^""^ fl^^' ^j+ 1/2̂  ^^^ ^^-

constituting these functions v?ith the aid of the inter-

polation formulas. After the coefficients o(i,<:x^ ^, c< . 
l - . j 0 1 0 

and c< are obtained, we arrive at the many-group problem 

(15), (16). This problem can be solved by finite differ

ences. To obtain the corresponding difference system of 

equations, we rewrite theproblem (15). (16) in vector mat

rix form 

( « ) 

subject to the condition 

where (P », Cp ,, Q^, and Q, are vectors whose components 

are respectively (pQ^ d>^. <1Q » and q^, while ^ ^ and ^ ^ 

are the following matrices: 

c 
where C.y — Kronecker symbol. 

In case of one-dimensional geometry, the system (23) 
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assumes the form 

^t(^'+,)^^°^" ^ Q< (as) 
j _ J.+. + 

Where the parameter v? takes on the values 0. 1. and 2 res

pectively for plane, cylindrical, and spherical geometry. 

By using the methods developed in [15] and [22], the 

system (25) can be reduced to the form 

subject to the following condition at the center 

and the following condition on the outer boundary 

Here <^ i, =4^ok' ^\ ^°"^ ^ ^^® vectors, while B^, ̂ j ^ . 
1—1 

and ]_ are matrices. 

The system (26) — (28) is solved by matrix factori

zation 
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(^^) 

subject to the conditions 

(.o) 

This method of solution is stable from the computa

tional point of view and is readily set up for computers. 

However, if the number of groups is large this method en

tails operations on vectors and matrices of high order. 

It is preferable apparently to use in this case the it

eration method. 

The argiiments presented above can be extended in 

natural fashion to include the calculation of the neutron 

spectrum in a cell of a heterogeneous reactor. 

2.4. However, the calculation of the slow-neutron 

spectrum in the P,-approximation, particularly for cells 

of a heterogeneous reactor, does not lead to results of 

sufficient accuracy. It is necessary in this case to 

solve the problem in a higher approximation than the P,-
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approximation. The corresponding mathematical apparatus 

can be the numerical methods of Vladimirov [26] and Carl

son [27] or the method of spherical harmonics. To solve 

problems in one-dimensional geometry it is apparently most 

effective to use spherical harmonics, a method which we 

chose as the basis for programming the corresponding prob

lems. The gist of the method consists of the following. 

We consider a many-group system of transport equa

tions for slow neutrons in a certain domain G: 

Q v 4 t=^=\.^-|jjLQ'cJ-'\Q'-^Q)4>'(?,Q') = S'C^-S ) (•̂ 0 

subject to suitable boundary conditions. 

The system of equations is written formally in the 

form 

in ^ \ / 

where 

L! 4=' = Q v<̂ > + o '̂V -J ia ' r=f^ (33) 

We seek the solution of (32) by using successive approxi

mations in a fashion similar to that of Seidel 
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where n is the number of the iteration. 

To improve the convergence of the successive approxi

mation method, it is convenient to employ the ideas of H. 

Takahashi [28] concerning the advisability of normalization 

of iterations. It is proposed to normalize the iterations 

in the following manner. 

We assume that in the n-th cycle of iteration we 

have found approximate values of the solution in the groups 

/ = 1, . . . , ( J - l ) . We calculate the function Cp'^ "bj 

solving (34). We then examine the exact equation (32), in

tegrated over all solid angles in the domain G, and sum 

the result over all the groups. If we assume, for example, 

that the domain G is a reactor cell, we arrive at the for

mula 

X[dL^f x^cx^ 4^ = i : [ d ? 1 .[Q. s' (35) 

where the left half of the equation describes the total num

ber of slow neutrons captured every second in the reactor 

cell, while the right half describes the total number of 

generated external sources. We stipulate that (35) be sat

isfied in each cycle of iteration when calculating each 

value of (1) . Thus, after we obtain the value of the 
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flux S^ with the aid of (34) in the n-th iteration, we 

must require that the balance equation (35) be satisfied. 

This is most conveniently done by renormalizing the sources 

1 1 1 

s" , i.e., by assuming that all the s"̂  are replaced by cs*', 

where c is a constant calculated with the aid of the re

lation 

c = -^^ ^-^^— (̂ t) 

Of course, the values of s'' are constantly replaced by new 

ones on going from group to group. 

2.5. Once the iteration process is formulated, the 

solution of the problem reduces to a successive solution 

of the single-velocity transport equations. 

The solution of the single-velocity equations is 

carried out by the method of spherical harmonics on the 

basis of the finite-difference method. We Illustrate this 

method using a Wigner-Seitz cylindrical cell as an ex

ample. In this case we shall have the following equation 

^i,e[co.^^^ - '^ ^ ^ ] + o<(.)4.j«LVj<Aeo<,c.^,B)<^^gr e'vv), <^[;^,B,^) (37) 

O 0 

where 6 — angle between the vectorri^ and _i7,' , subject 

to the condition that in the center of the region the neu-
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tron flux is isotropic, while on the outer boundary of the 

cell R we have 

We seek a solution of (37) with the aid of a series in 

spherical functions 

^(^^®.^)^r7:T 
IH-VI 

^.OWPMO"^)^ 

(̂ S) 

(,v>~Wl)! 

W 

In the P,-approximation for the Fourier coefficients: 

we arrive at a system of six ordinary differential equa

tions, which can be represented in matrix form by means of 

the system of two equations 

a . 
cJLvr 

^T7.^.^^^. 

- ^ ^ ^ T T ? ^I=.T-^. . Jcr J 

where 
^OO 

c^Cr) •= 7 -̂  
42 

A 1 

^^3 

( ^ 
0 
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with 

'^c'^^-'^o ,X.^^=c<-c.^, ^'Z^=^o<-o<^ ^ ^^^o<.<X^ 

Here cxf are the coefficients of expansion of the scatter

ing indicatrix 0(̂  (T. 0 ) in Legendre polynomials P (cos 

It is necessary to add to the system (4o) the bound

ary conditions 

oL^- "• ^ > 

d L ^ \ 

^ o V V~"= o 

(M) 
_ J_ Q <jp — O ^ ^O'f V~=^ 

where 
O c -f 

J o 2. 

Eliminating from the system (4o) the vector function I, we 

arrive at an equation for the vector flux (p . This equa

tion coincides formally with the corresponding equation 

for the scalar quantities in the P^-approximation. Using 

the conventional methods we can arrive at a finite-differ

ence system of matrix equations in the following form 

*K., - If 4>, + C, <t^„ = - I M 

- 731 -



subject to the condition that 

where B̂ ,̂ C, . <̂  , and P are certain functions while j ^, 

y. and g are vectors. It must be noted that in the vi

cinity of the center of the system the connection between 

the solution at the points k = 0 and k = 1 is obtained with 

the aid of the first condition in (41) in combination with 

the Initial equation, which for this case is transformed 

with account of approximate equations of the form 

These equations are valid by virtue of the analytic pro

perties of the solutions in the spherical-harmonic method. 

The problem (42), (43) coincides in its structure 

with the previously considered problem (26) — (28), the 

only difference being that the condition regarding the 

center of the system has been modified somewhat, and it 

becomes necessary to deal with third-order matrices. The 

solution of the system (42), (43) is with the aid of mat

rix factorization, on the basis of formulas (29) and (30), 

where the initial conditions for , and z, must be re

placed by the conditions 
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2.6. From the point of view of numerical calculations 

it remains to discuss the question of obtaining single-

group effective constants for the homogenized reactor cell. 

Such constants are essential for further calculations of 

the critical parameters of the reactors. 

We shall assume that many-group methods were used to 

calculate the slow-neutron spectrum in the reactor cell. 

The effective single-group constants are determined from 

the condition that the chosen functional of the problem re

main unchanged as we go from the many-group problem to the 

single-group one. Since the most important characteristic 

in the calculation of the cell is the thermal utilization 

coefficient, it is advantageous to choose for the main 

functional of the problem the number of neutrons captured 

in the block. 

We consider further a system of many-group equations, 

which we shall write for the sake of simplicity in the P,-

approximatlon: 
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subject to the condition 

J ~~ ĉ J X IM S AT) 

4 

We now introduce the effective single-group equation 

(̂ .) 

subject to the condition 

< ^ ; ^ ^ • = Ow) J J 

iH.) 

where 

0 ( , r . 
Hl̂ ^ol"^ iv^^'ioLe. 

Vb4. 

V^ o i.ti'iti.< ovAXiidle 

We then arrive by the methods developed in item 2,2 to 

the following formulas for the effective homogenized con

stants 
i 7 cx̂ ĉ ^̂  ĉ ^ 

o 10 

CT 
5<^^^o^* 

; 
(̂ o) 

73̂ ^ 



^ 
I ' 1 

where the integration is over the entire volume of the cell. 

3. RESULTS OF NUMERICAL CALCULATIONS 

3.1. The methods developed in the present paper 

were used in calculations of slow-neutron spectra in homo

geneous media as well as in heterogeneous on'es. The simp

lest problems solved were those for the determination of 

the neutron spectrum in graphite, beryllium, and water. 

Calculations were also made for homogeneous mixtures of 

the foregoing substances with an absorber having a capture 

cross section that varies as l/v. For the sake of conven

ience, we choose as the parameter the number of absorber 

capture barns at E = 0.026 ev per nucleus of graphite, 

beryllium, and hydrogen respectively. The graphite density 

was taken to be I.67 g/cm-̂ , the beryllium density 1.85 

g/cm , and the water density Ig/cm . The calculation was 
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carried out for T = 300° K. 

All the calculations were made in the 15-group 

approximation, with the group numbered J = 0 introduced 

to specify the external sources. We shall henceforth elimi

nate the group J = 0 from consideration, starting the ana

lysis each time with the group J = 1 . The Interval of the 

zero group is chosen to be ^ x^ = 0.9. while in all others 

/ix, = 0.3. Thus, X = 5.1. By way of the center points 

of the intervals we choose the centers of the intervals 

in all groups, with the exception of some of the last groups 

where we find the center points by considering the mathe-

matic expectation of the quantity X within the limits 

of the group, with account of the neutron spectrum. Such an 

analysis provided a certain correction of negative sign to 

the coordinate of the center of the corresponding inter

val. 

The physical constants at energy E = 0.026 ev were 

chosen in accord with Table I. 

Table I 

w? 

\ 

2 

I 

moderator 

beryllium 

graphite 

water 

G ^ Cbo.>rv,s) 

G.o 

k.% 

kl.% 

6^^ (V»a>rvvj) 

0 .ovo 

0 . 0 0 3 

0 .fefeO 
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The necessary constants for U-235 and U-238 were chosen in 

accord with the data of [30] and [31]. It was assumed that 

the cross sections for capture by beryllium, graphite, and 

water obey the l/v law. Of course, this assiimptlon was 

not made for the uranium isotopes. 

The results of calculation of the slow-neutron spec

tra in infinite volumes of beryllium, graphite, and water 

are plotted in Figs. 1, 2, and 3. The function employed 

here is not the neutron flux CP - nv, but the quantity nv , 

in accord with [18], The abscissas are plotted in the 

variable l/x. A recalculation of the corresponding quan

tities to other variables entails no difficulty. The func-
2 

tion nv has been normalized in the figures in arbitrary 

fashion. Tables 1, 2, and 3 of Appendix l contain integral 

group neutron fluxes in beryllium, graphite, and water as 

functions of the absorber capture cross section, which obeys 

a l/v law. 

Fig. 4 shows the dependence of the neutron-gas tem

perature in different homogeneous media on the absorber 

capture cross section. The temperature of the neutron gas 

was arbitrarily calculated from the maximum of the function 
2 

nv . 
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3.2. The greatest interest is attached to the calcu

lations of heterogeneous cells. The reason for it is that 

in such calculations one uses information not only concern

ing the zero moment of the scattering kernel, as occurs 

in the calculations of the neutron spectrum in an infinite 

homogeneous medium, but also higher terms of the expansion 

of the scattering kernel in Legendre polynomials. It is 

usually assumed that the greatest contribution to the scatt

ering of slow neutrons is made by the zero and first mom

ents, and therefore the remaining terms of the expansion 

of the scattering kernel, starting with the second, can 

be neglected. Such an assumption is Justified apparently 

at least for cases when the spatial inhomogeneities of the 

physical properties of the medium are commensurate with the 

mean free path, although it does call for a separate analy

sis. 

The theory and methods of calculation of the neutron 

spectrum in a heterogeneous reactor lattice, with account 

of thermalizatlon, were Investigated by many researchers. 

Mention should be made in this connection of the work by 

A. D. Galanin [16], P. P. Blagovolin [17]. H. Takahashi 

[28], L. de Sobrino[31], and also the authors of the present 

paper [15]. [32]. The Interest in such calculations has 

particularly increased in recent years, since progress has 

been made in the theory of the slowing down of neutrons. 
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in computation methods, and also in the experiments. 

In the present article we made an attempt to investi

gate more or less systematically the neutron spectra in 

heterogeneous cells with account of the latest information 

on the mechanism governing the scattering of neutrons in 

substances and the latest accomplishments in computational 

mathematics. 

For the sake of being definite, we considered a two-

zone cylindrical Wigner-Seitz cell, consisting of a center 

block made of natural uranium, surrounded with a modera

tor. In all the calculations the diameter of the uranium 

block was taken to be d = 35 mm. The choice of the block 

thickness was determined essentially by the experiments 

made by V. I. Mostovoi [18], [32], which will be used later 

on to compare the theoretical results with the experimental 

ones. The moderators used were beryllium, graphite and 

water. The parameter in the calculations was the external 

radius of the Wigner-Seitz cell. As in the case of homo

geneous media, the calculations were made at a temperature 

T = 300° K. 

The calculation of the space-energy distribution of 

slow neutrons over the cell was made in the five-group 

representation of the velocity Interval 0 < x < 5.1 in the 

P^-approximation of the spherical-harmonic method. The 

spectra of the integral group fluxes in uranium-beryllium 
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cells over the radius are listed in Table 4 of Appendix I. 

The analogous results for graphite and water are listed in 

Tables 5 and 6 of Appendix I, Figs. 5. 6, and 7 give the 

total fluxes of thermal neutrons, obtained as a result of 

summing the group fluxes at the corresponding points. 

Normalization of the cuirves is made in such a fashion that 

the total flux on the boundary of the Wigner-Seitz cell is 

equal to unity. An analysis of Figs. 5 — 7 shows that 

the neutron flux in the block decreases with increasing 

amount of moderator in the cell. One can note simultane

ously that the maximum gradients of the flux correspond to 

the case of minimum amoimt of moderator. At first glance it 

may appear strange that the derivative of the neutron flux 

does not vanish on the outer boundaries of small cells, a 

condition essential in diffusion theory. This apparent 

paradox is simply due to the fact that the absence of a 

neutron flux through the outer boundary of the cell in 

the P -approximation is not equivalent to the aforemen

tioned condition. However, as the dimensions of the cell 

increase the diffusion condition is satisfied all the more 

accurately. The fact that the diffusion condition does 

not hold time on the outer boundary of the cell makes 

doubtful the possibility of using diffusion theory for 

approximate calculations of heterogeneous-reactor cells 

of analogous dimensions. The position is all the more 
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aggravated in the calculation of multi-zone cells, which 

are essentially inhomogeneous radially. Fig. 8 shows plots 

of the coefficient of thermal utilization for uranium-beryl

lium, uranium-graphite, and uranium-water cells. Fig. 9 

shows the temperatures of the neutron gas for certain cells. 

We proceed to an analysis of the results of the cal

culation from the point of view of comparing these results 

with the experimental data. We had at our disposal the 

paper by V. I. Mostovoi et al. [18], presented to the se

cond Geneva Conference of 1958, and also the results of the 

latest researches of V. I. Mostovoi and his co-workers on 

neutron spectra in uranium-water lattices, reported to the 

Brookhaven Conference [33]. Calculations of the experi-

ments by V. I. Mostovoi and his co-workers were undertaken 

by L. de Sobrinoand by M. Clark [31], and also by L. V. 

Malorov, The authors used as the theoretical basis the 

model of monatomic gas moderator with effective mass of 

the water molecules. We shall not go on to discussions of 

the results of these investigations, since we do not have 

enough information on the algorithms used in the calcula

tions and other essential details, which frequently deter

mine the success or failure of the results, but will 

attempt to make as careful a comparison of the results 

as possible based on the methods formulated in the present 

article. 
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The initial lattice considered was a triangular latt

ice of blocks made of natural uranium, placed in water [18], 

[33]. In the experiments the uranium block was clad in 

aluminum 2 mm thick. Thus, a three-zone cell was consid

ered, consisting of the uranium block, with diameter d = 35 

mm, an aluminum layer 2 mm thick, and a layer of water 

6,6, 9.2, and 11.8 mm thick, corresponding to the lattice 

periods of 50, 55, and 6o mm. The mean temperature in the 

cells was taken to be 3230 K in all the variants. 

Figs. 10 — 11 show plots of the neutron spectrum in 

the uranium block and water in a cell with pitch 35 mm. 

The solid lines denote the results of theoretical calcula

tion of the neutron spectrum at the center of the uranium 

block and on the outer boundary of the cell. The points 

represent the data obtained in [33]. We note that [18] 

gives spectra averaged over the block and over the water, 

and therefore do not correspond fully to the calculation 

conditions. 

Fig. 12 shows the calculated values of the curves 

for the spatial distribution of the thermal-neutron flux 

over the cells, corresponding to K = 50 mm, 55 mm, and 60 

mm. 

An analysis of the results shows that the theoreti

cal spectra are in general in satisfactory agreement with 

experiment. One can conclude, in particular, that the 
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calculated and experimental values are in satisfactory 

agreement in the position of the maximum of the neutron 

spectrum both in the uranium block and in the water. If we 

assume that the point of the maximum of the spectrum char

acterizes the temperature of the neutron gas, we can state 

that the calculated and experimental temperatures of the 

neutron gas are in good agreement. Also in agreement are 

the differences of the neutron-gas temperatures in the block 

and in the water. Plots showing the dependence of the neu

tron-gas temperature on the lattice pitch are shown in 

Fig. 14. It follows from Fig. 14 that the difference in 

temperature in the indicated interval of variation of the 

lattice pitch remains almost constant, having a certain 

tendency towards decreasing when the lattice pitch in

creases. This difference is approximately 80°, as con

firmed by experiment [18]. A slight difference in the 

theoretical and experimental results shown in Figs. 10 and 

11 occurred in the region of transition energies, where 

the Fermi spectrum goes into a Maxv;ellian spectrum. Un

fortunately, we have not as yet a sufficient variety of 

experiments for an all-out theoretical study of this prob

lem on the basis of detailed calculations. It appears to 

us, however, that the probable cause of the discrepancies 

lies in the mathematical model which we choose as the 

basis. In fact, in all the calculations it was assumed 
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that the neutron sources are distributed in a sufficiently 

narrow group with number 3 = 0 . Apparently in the future 

calculations the neutron sources must be shifted as far 

as possible towards the higher energies. Then the slowing 

down of the neutrons to energies at which the effect of 

thermalizations become noticeable will cause the neutron 

spectrum to be close to a Fermi spectrum, and in this case 

the comparison of the spectra in the region of the transi

tion energies will become more Justified. We note inci-
2 

dentally that a certain rise in the nv curves in Figs. 9 

— 14 towards the larger energies (decreasing values of 

l/x) is the consequence of precisely the factors noted above 

4. DIFFUSION OF SLOW NEUTRONS IN INHOMOGENEOUS MEDIUM 

4.1, The numerical computation methods developed in 

the preceding sections of this paper make it possible to 

determine with sufficient accuracy the spectrum of the slow 

neutrons in the medium, provided the scattering kernel 

has been detennined completely rigorously. However, in 

many cases there is no reliable basis for satisfactory cal

culation of the kernel, and the assumptions of the gas 

model turn out to be insufficiently ;5ustified. In such 

cases it is possible to use the method of calculating the 

spatial determination of the slow-neutron field, developed 

by I. P. Stakhanov and A. S. Stepanov. This method is valid 
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in those cases, when the neutron distribution function is 

nearly Maxwellian. In addition to a general approach to 

the solution of the problem, interest is attached also to 

the possibility of calculating; the neutron distribution 

not with the aid of the scattering kernel, but on the 

basis of determination of certain effective constants from 

the fundamental experiments. This method consists of the 

following. For a rather extensive group of problems the 

average kinetic energy of the neutrons differs from 3/2 

kT' (T' is the temperature of the medium). This is due, 

first of all, to the presence of absorption, and second, 

to the weak exchange of energy between the neutrons and 

the moderator. The question arises of generalizing the 

diffusion theory to include the case when there is no ther

modynamic equilibrium between the diffusing components. 

We shall start from the following premises: a) we 

investigate only thermal neutrons, i.e., the spectrum has 

no Fermi component; b) there are no sources in the inves-

tin;ated medium; c) the absorption is small. Following [29], 

we seek the solutions of the kinetic equation 

->>t "•.̂ 4ui-
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in the form of an expansion in symmetrized Hermlte poly

nomials 

l(y)^0:i.^^.2k 4-CX^^li^ V--- isz) 

where Y is the absorption coefficient, j - (v', v) is a 

function determining the probability that the neutron with 

velocity v' prior to collision will have a velocity v 

after collision . and f» is defined by the relationship 

The expansion coefficients in (52) are functions of r and 

t, and are simply related with the moments of the distribu

tion function: 

^ 4 ^ ^ - , 7i....s-i^i--^sH"^ (f^) 

Usually the distribution function differs little from iso-
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I 

(2) 
tropic, and therefore a., is close to zero when i -^ k. 

In order to make the third term of the expansions small, 

it is necessary to cause the trace of the tensor a., to 

vanish. This is accomplished by choosing the parameter T(x, 

i) -- the temperature of the neutron gas: 

^^ = ~rt^r- îi (̂ 0 

with such a choice of the parameter T, we can confine our

selves in the expansion (52) to the first two terms (diffu

sion approximation): 

Integrating (51) with account of (56) we obtain a system 

of equations for n, I, and T: 

"^^--' "̂  XT M-T-^-^. + 
l>t 3 ^y, 

71̂ 7 



where "TT — relaxation time of the neutron temperature , 

/I — kinetic coefficient determining the diffusion and the 

thermal diffusion of the neutrons. Since A and '^ are gen

erally speaking dependent on T(x, t) and T', it is possible 

to solve (57) in general form only by numerical means. For 

the gas model of a heavy moderator ( X = v M/m » l) we ob

tain the follo'̂ iing relationships: 

^-^-•fri>-M^^'-TT 
^1 2. 0̂*̂  'Wl 

[s.) 

where G" ̂  is the scattering cross section of the neutrons 

on the moderator atom, and n' is the density of the moder

ator atoms. 

It must be noted that the theory developed here is 

applicable at distances of several free paths from the 

boundaries and the discontinuity points of the medium 

parameters. It was assumed in addition that the fourth 

term of the expansion (52) is small, meaning that the 

energy isotropy of the neutron distribution is small, i.e. 

the theory is not exact near the neutron sources when the 

neutrons have a temperature differing from the temperature 
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of the medium. 

Using (57) and (58), we calculate the field T(x) in 

the stationary case (spherical source of neutrons of tem

perature T and of radius T in an infinite space), when 

there is no absorption. \Je obtain the following values: 

where L is the relaxation length (for water, 0.7 — 0.8 

cm). The corresponding experimental value obtained by 

E. Ya. Dol'nitsyn, turned out to be 1 + 0.2 cm. 

For a planar problem with a temperature gradient T' 

= TQ(1 -OCx) in the case when (1 - oC a) « 1 (a — charac. 

teristic scale of the medium), we have 

At the point x = 0 the neutrons are in equilibrium with 

the medium and have a temperature T = TQ. AS can be seen 

T - T M tends to TQ«>C Lg with 

increasing x. 

In the case where absorption exists ( V ::̂  0 ) we 

can obtain from (57) the effective neutron temperature 

- Ih9 -



T,,,.^'(u^)iT) -

1 C(T:; jfi^w. i i <r. -^K-^K''^^^ 

The method developed makes it possible, in particular, 

to determine on the basis of an analysis of experimental 

data the two constants A and T in the system (57). The 

system of equations can then be employed to solve specific 

problems. Naturally, depending on the circumstances, the 

method developed here can be used to solve both non-sta

tionary and stationary problems. 
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Figure 1. Neutron spectra in a homogeneous mixture of beryllium and 

(1/v) absorber in relation to absorption cross section in 

barns per nucleus of beryllium. Temperature of medium, 

300°K. 
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Figure 2. Neutron spectra in a homogeneous mixture of graphite and 

(1/v) absorber in relation to absorption cross section in 

barns per nucleus of graphite. Temperature of medium, 

300°K. 
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Figure 3. Neutron spectra in a homogeneous mixture of water and (1/v) 

absorber in relation to absorption cross section in barns per 

nucleus of hydrogen. Temperature of medium, 300°K. 
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Figure 4. Calculated values of the temperature of neutron gas, T, in homo

geneous moderating medium with absorber in relation to absorp

tion cross section per nucleus of moderator. Temperature of 

medium, 300°K. 1, water; 2, beryllium; 3, graphite. 
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Figure 5. Distribution of flux of slow neutrons in uranium-beryllium cell 

with medium temperature of 300°K for different thicknesses of 

beryllium layers - a. 
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Figure 6. Distribution of flux of slow neutrons in uranium-graphite cell 

with medium temperature of 300°K for different thickness of 

graphite layers - a. 

* I 

Figure 7. Distribution of flux of slow neutrons in uranium-water cell 

with medium temperature of 300°K for different thicknesses of 

water layers - a. i 
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Figure 8. Relation of thermal utilization coefficient 9 to lattice spacing 

for medium temperature of 300°K. 1, uranium-water lattice; 

2, uranium-beryllium lattice; 3, uranium-graphite lattice. 
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Figure 9. Calculated values of temperature of neutron gas Tĵ  as a func

tion of the distance from the center of uranium block to the 

location under consideration in an infinite homogeneous medi

um. 1, water; 2, beryllium; 3, graphite. 
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Figure 10. Neutron spectra in the center of a uranium block-water lat

tice with spacing H = 55 mm for temperature 323°K. Full 

line = calculated; points = experimental. 
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4 

Figure 11. Spectra of neutrons in water at the boundary of a cell of 

uranium-water lattice with a spacing of H = 55 mm for tem

perature 323°K. Full line = calculated; points = experimental. 
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Figiure 12. Distribution of slow neutron flux in uranium-water lattices 

corresponding to experiment of Mostovoi et al. [18] [33] for 

temperature of 323°K. 1, in a lattice with spacing of H = 

60 mm; 2, in a lattice with spacing of H = 55 mm; 3, in a 

lattice with spacing of H = 50 mm. 
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Figure 13. Calculated values of the temperature of neutron gas -T, in 

uranium-water lattices in relation to the lattice spacing H, 

for medium temperature of 323°K. 1, in the center of urani

um block; 2, in water at the boundary of cell. 
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APPENDIX I 

Table 1 Spectra of slow neutrons cp. in an infinite homogeneous mix

ture of beryllium and an absorber which follows 1/v law. The 

(f^ corresponding to velocity groups 1 to 14 are given for var i 

ous values of the parameter C. C is the capture cross section 

of absorber for energy E = 0.026 ev per one nucleus of beryllium. 

»\c 
pynnus 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

1.14 
1.47 
1.96 
3 .23 
7 .06 

18 .05 
44.74 
95.33 

0.05 

1.0992 

1.3281 
I .5641 
1.9901 
2.9215 
5.1232 
9.9148 

O.I 

1.0902 
1.3034 
1.5084 
1.8444 
2.4921 
3.8598 
6.6025 

18.3550 I I . I 4 4 0 
163.49 28.9930 16.5210 
215.23 
205.34 

128.32 
41 .64 

3 .31 

36.0970 19.6240 
32.7830 17.0610 
19.3410 

5.8632 
0 .44 I I 

9 .5775 
2.7514 
0 . I 9 9 I 

0 .3 

1.0628 
1.2469 
1.4077 
1.6402 
2.0105 
2.6361 
3.6549 
5.0457 
6.3312 
6.5343 
4 .9530 
2 .3990 

0.6009 
0.0399 

0.5 

1.0367 

1.2026 
I . 3 4 I 2 

1.5297 
1.8003 
2,1991 
2.7594 

3.4076 
3.8426 
3.5888 
2 . 4 6 I I 
1.0803 

0.2505 
0.0160 

I 

0.9768 
I .0951 
I . 1 8 0 8 
1.2855 
I .4152 
1.5692 
1.7269 
1.8219 
1.7362 
1.3665 
0.7903 

0.2987 
0.0626 
0.0038 

1.5 

0.9223 

1.0028 
1.0509 
1.1026 
I .1555 
I . 1997 
I . 2 I 2 8 
I . 1 5 6 0 
0.9851 
0.6905 
0.3577 
0.1239 
0,0247 
0.00X5 

3 ,5 

0,7482 

0,7327 
0,7002 
0,6563 
0,5984 
0.5235 
0,4306 
0.3238 
0.2133 

0 . I I 5 5 
0.0477 
0 .0 I4 I 
0.0026 
0.0002 

5 

0.6517 

0.5975 
0.5403 
0.4747 
0.4015 
0.3220 
0.2401 
0 . I62 I 
0.0955 
0.0465 
0,0177 
0,0049 
0.0009 
0.0000 

7 . 5 

0,5322 
0,4444 
0,3726 
0,3004 
0.2306 
0,1661 
0,1102 
0,0657 
0.0342 

0.0149 
0.0052 
0.0014 
0.0002 
0,0000 

10 

0,4464 

0.3448 
0.2718 
0.2047 
0.1459 
0.0970 
0.0591 
0.0324 
0.0155 
0.0063 
0.0C2I 

0.0005 
O.OOOI 
0,0000 

20 

0,2625 
0.1627 
0.1085 
0,0683 
0,0403 
0.0220 
O.OIIO 
0.0050 
0.0020 
0.0007 
0.0002 
0.0000 
0.0000 
0.0000 
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Table 2 Spectra of slow neutrons cp. in an infinite homogeneous mix

ture of graphite and an absorber following 1/v law. See Table 1. 

rpynnu^ 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

3 .18 
4 . 5 5 
6 .78 

X2.85 
30.99 
82 .21 

0.05 

2.8921 
3.5257 
4.205X 
5.3377 
7.5143 

12.0450 

O.I 

2.8561 
3.4364 
4.0254 
4.9359 
6.4980 
9.3506 

205 .31 20.9560 14.32X0 
437.71 35.3690 21.4850 
751.15 51.8780 28.5420 
990.22 
946.91 

60.6100 30.5730 
51.7930 23.9800 

593.74 28.5730 12.0490 
193.32 

15.39 
8.0033 

0.5646 

3.0791 

0.2052 

0,3 

2,7296 
3.2007 
3.6377 
4.2345 
5,0773 
6,2646 
7.7971 
9.3031 
9,8675 
8.4'-39 
5.341.6 
2.1072 

0.469b 
0.0290 

0.5 

2 .6128 
2.9832 
3.3009 
3.7025 
4 . 2 I I 9 
4.8242 
5.4394 
5.7650 
5.3732 
4.0472 

2,2365 
0,8140 
0.1657 

0,0100 

I .O 

2.3515 
2.5349 
2 .6576 
2.7784 
2.8796 
2.9186 
2 .8213 
2.4951 
X.9099 
I . I 7 9 I 
0.5455 
0.1753 

0.0336 
0.0020 

1.5 

2.1305 
2.1829 
2 .1876 
2.1622 
2.0895 
1.9430 
1.6954 
1.3356 
0.9546 
0.4982 
0 .2I0I 

0.0639 
0 . 0 I I 9 

0.0007 

3 .5 

I . 5 1 5 8 
I .3173 
I . 1525 
0.9713 
0.7795 
0.5861 
0.4043 
0.2484 
0.1325 
0.0592 
0.0215 
0.0060 
O.OOII 

O.OOOI 

5 

1.2256 
0.9670 
0.7855 
0.6095 
0.4467 
0.3049 
0.1903 
0.1059 
0.0518 
0.0216 
0.0075 
0.0C2I 
0.0004 

0.0000 

7 .5 

0.9099 
0.63X1 
0.4669 
0.3275 
0.2158 
0.X32I 
0.0741 

0.0372 
0,0X67 
0.0065 
0.0022 
0.0006 
O.OOOI 

O.OOOC 

10 

0.7103 
0.4452 
0.3070 
0.2002 
0.1224 
0.0696 
0.0365 
0.0I7I 
0.0073 
0.0027 
0.0009 
0.0002 
0.0000 
C.OOOO 

20 

0,3534 
0.17X0 
0.0998 
0.0550 
0.0286 
0.0X39 
0.0064 
0,0025 
0.00X0 
0.0003 
0,0001 
0,0000 
0.0000 
0.0000 

Table 3 Spectra of slow neutrons (p. in an infinite homogeneous mix

ture of water and an absorber which follows 1/v law. See 

Table 1. 

rpynnu 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

0.125 
0.I5I 
0.187 
0.274 
0.5X6 
1,164 
2.681 
5.478 
9.195 

11.982 
11.373 
7.098 
2.312 
0.185 

0.5 

0.1370 
0.1464 
0.1736 
0.2265 
0.3459 
0.6269 
1.2480 
2.3465 
3,7502 
4,7321 
4,3852 
2.6830 
0.8580 
0.0676 

1.0 

0.I2I4 
0.1438 
0.1684 
0.2120 
0.2994 
0.4875 
0.8839 
1.5588 
2.3894 
.2.9293 
2.6554 
1.5946 
0.5014 
0.0389 

1.5 

0.1202 
0.I4I8 
0.1647 
0.2036 
0.2756 
0,4203 
0.7I3I 
I.1948 
1.7664 
2.1094 
1.8734 
1.1058 
0.3423 
0.0262 

3 .5 

O.I158 
0.1349 
0.1542 
0.1840 
0.23II 
0.3X06 
0.4536 
0.6630 
0.8790 
0.9640 
0.7991 
0.4445 
0.1306 
0.0096 

5 .0 

0.II29 
0.X303 
0.1477 
0.1739 
0.2124 
0.2721 
0.3734 
0.5112 
0.6390 
0.6669 
0.5302 
0.2845 
0.0810 
0.0058 

7 .5 

0.I07I 
0.1222 
0.1369 
0.1583 
0.1875 
0.2281 
0.2921 
0.3702 
0.4298 
0.4202 
0.3157 
0.I6I3 
0.M4I 
0.0031 

20.0 

0.0897 
0.0976 
0.1048 
O.I145 
0.1249 
0.1340 
0.1460 
0.1535 
0.1467 
0.II96 
0.0766 
0.0342 
0.0085 
0.0006 
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Table 4 Neutron spectrum in uranium-beryllium cell in relation to the 

distance from center of uranium block. Temperature of medi

um is equal to 300°K. Thickness of beryllium layer = 2 cm. 

See Table 1. 

]l\IJ' 
2pynnw\ 

I 
2 
3 
4 

5 
6 
7 

8 

9 
10 
I I 
12 
13 
14 

0 

0.4818 
0.5122 
0.5232 
0.5787 
0.6798 
0.8065 
0.9506 
1.1058 
I . I4 I3 
0.9596 
0.5799 
0.2203 
0.0409 
n.ooio 

0.457 

0.4882 
0.5203 
0.5330 
0.5896 
0.6921 
0.8214 
0.970e 
I . I3I4 
I.1730 
0.9925 
0.6053 
0,2332 
0.0444 
0.0012 

0.913 

0.5061 
0.5454 
0.5635 
0.6239 
0.7303 
0.8680 
I.0317 
I .2I2I 
1.2737 
1.0982 
0.6885 
0.2766 
0.0568 
0.0019 

1.370 

0.5434 
0.5907 
0.6188 
0.6861 
0.7995 
0.9523 
1.1440 
1.3608 
1.4625 
I .30II 
0.8537 
0.3678 
0.0855 
0.0042 

1.674 

0.5774 
0.6346 
0.6732 
0.7473 
0.8674 
I.0351 
1.2553 
1.5096 
I.6551 
I.5138 
1.0343 
0.4740 
0.1232 
0.0087 

1.800 

0.5964 
0.6590 
0.7032 
0.7810 
0.9049 
I.0810 
I.3168 
1.5920 
1.7620 
1.6332 
I . I -
o.yjc-' 
, i . ' - ' i t ' " 

0.0120 

2.000 

0.6238 
0.6946 
0.7465 
0.8301 
0.9605 
1,1492 
1.4075 
I.7128 
1,9164 
1,8030 
-.,^i^{ 

0.6220 
0.1758 
0.0I5I 

2.300 

0.6528 
0.7333 
0,7941 
0.8851 
1.0237 
1.2273 
I .5I I5 
I.85I6 
2.0937 
1.9977 
I.4481 
\ 7 I 9 I 
0.2091 
0.0186 

2.700 

0.6770 
0.7667 
0.8357 
0.9343 
I.0815 
1.2994 
1.6078 
1.9805 
2.2582 
2,1775 
1,6001 
0,8078 
0,2392 
o.ceiB 

3.200 

0.6964 
0.7910 
0.8666 
0.9716 
I . I25I 
1.3556 
1.6829 
2.0813 
2.3864 
2.3165 
I.7162 
0,8745 
0,2616 
0,0240 

3.750 

0.7042 
0.8056 
0.8850 
0.9939 
I.1527 
I.3891 
1.7275 
2.1406 
2.4608 
2.3953 
1.7792 
0.9090 
0.2726 
0.0251 

Table 4a Neutron spectrum in uranium-beryllium cell in relation to the 

distance from center of uranium block. Temperature of medi

um is equal to 300°K. Thickness of beryllium layer = 5 cm. 

See Table 1. 

ipynnits 
I 
2 
3 
4 

5 

6 
7 
8 

9 
10 

I I 
12 
13 
14 

0 

0.5848 
0.6426 
0.6854 
0.8187 
I.I099 
1.6696 
2.6710 
4.2017 
5.5933 
5.7541 
4.1070 
1.7674 
0.3409 
0.0070 

0.457 

0.5922 
0.6523 
0.6976 
0.8334 
1.1288 
1.6986 
2.7228 
4.2932 
5.7400 
5.9416 
4.2794 
1.8676 
0.3695 
0.0084 

0.913 

0.6154 
0.6825 
0.7357 
0.6793 
I.1876 
1.7890 
2.8848 
4.5808 
6.2043 
6.5419 
4.8404 
2.2020 
0.4696 
0.0139 

1.370 

0.6564 
0.7366 
0.8046 
0.9624 
1.2934 
1.9520 
3.1788 
5.1076 
7.0688 
7.6860 
5.9473 
2.8989 
0.6993 
0.0306 

1.674 

0.6958 
0.7889 
0.8720 
1.0437 
1.3968 
2 . I I I2 
3.4683 
5.6317 
7.9450 
8.8774 
7.1476 
3.7044 
0.9979 
0.0626 

1.875 

0.7326 
0.8374 
0.9335 
I . I I78 
I.4914 
2.2570 
3.7322 
6.1082 
8.7394 
9.9634 
8.2582 
4.4638 
I . 0 , . 
0.0950 

2.375 

0.7930 
0.9203 
1.0397 
I.i;502 
1.6674 
2.5343 
4.2356 
7.0182 

10.2352 
II.9731 
10.2795 
5.8143 
I.76C5 
0.I4I7 

3.125 

0.8362 
0.9845 
I.1252 
1.3630 
1.8269 
2.7964 
4.7213 
7.9066 

11.6886 
13.9057 
12.2054 
7.0941 
2.2193 
0.1828 

4.125 

0.8600 
I.0231 
I.1797 
1.4402 
1.9443 
3.0008 
5 . I I I8 
8.6317 

12.8733 
15.4676 
13.7512 
8.II75 
2.5785 
0.2143 

5.375 

0.8710 
1.0424 
I .2 I I J 
1.4838 
2.0155 
3.I3I4 
5.3697 
9.II76 

13.6670 
16,5102 
14.7747 
8.7916 
2.8132 
0.2343 

6.750 

0.8744 
1.0486 
I.2I80 
1.4986 
^.0406 
3.1792 
5.4653 
S.2984 

13,9618 
16,8917 
15.1435 
9.0290 
2.8943 
0.24II 
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Table 4b Neutron spectrum in uranium-beryllium cell in relation to the 

distance from center of uranium block. Temperature of medi

um is equal to 300°K. Thickness of beryllium layer = 10 cm. 

See Table 1. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 0.457 0.913 1.370 1.674 2.000 3.000 4.500 6.500 9.000 11.750 

0.6476 0.6556 0.6806 0.7250 0.7674 0.8340 0.9212 0.9594 0.9725 0.9762 0.9769 
0.7260 0.7367 0.7701 0.8297 0.8873 0.9764 I.I043 I.I687 1.1945 1.2028 1.2045 
0.8033 0.8173 0.8610 0.9397 I.0166 I.I332 1.3075 1.4043 1.4483 1.4649 1.4685 
I.0419 1.0602 I . I I72 1.2202 I.32C7 1.4728 I.7182 1.8736 1.9566 1.9935 2.0029 
1.6526 1.6800 I.765I I.9I82 2.0671 2.2938 2.6932 2.9849 3.1684 3.2638 3.2907 
3.0749 3.1268 3.2886 3.5798 3.8634 4.2952 5.0995 5.7487 6.2067 6.4702 6.5493 
5.9788 6.1928 6.4443 7.0822 7.7093 8.6560 10.4502 11.9640 13.0929 13.7780 13.9913 

10.7714 11,0004 II.7177 13.0288 14.3294 16.2847 20.0068 23.2001 25.6378 27.1546 27.6351 
15.6183 16.0175 17.2802 19.6249 21.9936 24.7825 32.1357 37.7461 42.0376 44.7324 45.5907 
16.9728 17.5136 I9.24II 22.5229 25.9298 31.0278 40.2985 48.0269 53.8775 57.5393 58.7124 
I2.6Cf72 13.1247 14,8068 I8.II22 21.6826 27.0890 36.7000 44.5637 50.4143 54.0462 55.2043 
5.5793 5.8892 6.1730 9.0638 11.5273 15.3012 21.8617 27.1599 31.0372 33.4097 34.1578 
1.0828 1.1723 1.4840 2.1946 3.II23 4.5152 6.8491 8.6999 IO.0255 10.8220 11.0705 
O.02I5 0.0258 0.0425 0.0931 0.1888 0.3376 0.6103 0.7018 0.8063 0.8706 0.8898 

Table 4c Neutron spectrum in uranium-beryllium cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of beryllium layer = 

15 cm. See Table 1. 

apynnbK 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

0.6781 
0.7720 
0.8774 
1.2049 
2.0985 
4.3062 
8.9509 

16.7078 
24.6571 

0.457 

0.6864 
0.7830 
0,8923 
1.2255 
2.1324 
4.3774 
9.II60 

17.0554 

0,913 1,370 1,674 2,125 3,625 5,875 8,675 12.625 

0.7II8 0.7568 0.7999 0.8946 0.9898 1.0184 1.0250 I.C26I 
0.8175 0.8791 0.9385 1,0671 1.2146 1.2685 1,^836 1,^870 
0.9387 1.0223 1.1037 1,2762 1.4889 1.5794 1,6105 1,6188 
1,2897 1,4053 1,5180 1.7562 2.0862 2.2574 2.3316 2,3568 
2.2378 2.4269 2.6104 3.0012 3.6I7I 4.0066 4.2137 4.2987 
4.5988 4.9964 5.3830 6.<^056 7,6092 8,6171 9,2269 9,5090 
9,6317 10.5648 11.4786 13.4065 16.7750 19.3295 20.9833 21.8043 

18.1442 20.1299 22.0945 26.2162 33.4604 39.0689 '(2,8280 44,7796 
25.2750 27,2253 30,8374 34.4770 42.0482 55.0442 65.0359 71.8254 75,4'̂ )69 

27.0440 27.8874 
20.2097 21.0232 

8.9858 
1.7487 
0.0348 

9.4754 
I.8910 
0.0416 

30,5802 35,6798 40.9575 51.9341 70.1935 83.9656 93.3214 98.4166 
23.6592 28.8217 34.3761 46.0447 64.9425 78.8641 88.2k;6I 93.3588 
II.1036 14.4610 18.3036 26.4392 40.5614 48.6228 54.7682 58,1219 
2.3843 3.5009 4.9324 7.9269 12.4796 15.6844 17.7449 18.8530 
0.0683 0.1480 0.2970 0.6024 0.9991 1.2596 1.4203 1.5052 

16.750 

1.02 6? 
1.2875 
1.62 a:' 
;d.36l8 
4.3178 
9.5782 

<^2.0I79 
45.30'(O 
76.4597 
99.8555 
94.8225 
59.0830 
19,1694 
1,5^93 
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Table 5 Neutron spectrum in uranium-graphite cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of graphite layer = 

2 cm. See Table 1. 

I 
2 
3 
4 

5 
6 

7 
8 
9 

10 
I I 
12 

13 
14 

0 

1.0694 
I .0512 
1.0028 
1.0225 
1.0822 
1.1042 

I .0502 
0.9312 
0.7016 
0.4282 

0.1945 
0.0602 

o.oioe 
0.0003 

0.457 

1.0844 
1.0687 
1.0228 
I .0431 
I . IQ3I 
1.1260 
1.0734 
0.9542 

0.7225 
0.4439 
0.2036 
0.0640 
0 . 0 I I 2 

0,0003 

0.913 

1.1308 
1.1235 
I .0851 
1.1079 
I .1685 
I .1944 

I .1462 
1.0270 

0.768R 
0.4940 
0.2334 
O.Cf767 

0.0145 

0.0006 

1.370 

1.2136 
1.2224 
I .1985 
1.2260 
1.2873 
I . 3 I 9 I 
1.2801 
1.1620 

0.9138 
0.5916 
0.2931 
0.1036 

0.0223 

0.0013 

1.674 

1.2935 
I .3188 
1.3104 
1.3428 
1.4044 
I .4421 

I .4135 
1.2979 
1.0423 

0.6946 
0.3591 
0.1354 

0.0327 

0.0026 

1.800 

1.3308 
1.3637 
1.3624 
1.3972 

I .4591 
1.5996 
1.4760 
I .3618 
1.1030 
0.7437 

0.3911 
0 . I 5 I 2 

0.0381 

0.0035 

2 .000 

1.3760 

I .4169 
1.4230 
1.4607 
1.5238 
1.5679 
1.5495 
1.4364 

I .1726 
0.7985 
0.4254 

O.I 671 

0.0429 
0.C04I 

2 . 3 0 0 

1.4308 
1.4822 
1.4975 
1.5393 
1.6042 
1.6529 
1.6407 
1.5288 
1.2586 
0.8662 

0.4676 
0.1866 
0.0490 

0.0048 

2 . 7 0 0 

1.4870 

1.5501 
1.5752 
I . 6 2 1 8 
I . 6891 
1.7426 
1.7369 
I .6261 
1.3486 
0.9365 
0 . 5 I I I 
0,2066 
0.0550 

0.0055 

3 .200 

I .5414 

I .6164 

I . 6 5 I I 
1.7027 
1.7727 
1.8303 
I . 8310 
1.7207 

1.4356 
1.0038 
0.5522 
0.2252 

0.0606 

0.0061 

3 .750 

1.5882 

1.6732 
I .7162 
I . 7 7 I 8 
1.8437 
1.9055 
1.9103 
1.7998 
1.5074 

1.0585 
0.5850 
0.2396 
0.0648 

0.0067 

Table 5a Neutron spectrum in uranium-graphite cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of graphite layer = 

5 cm. See Table 1. 

I 
2 
3 
4 

5 
6 
7 

8 
9 

10 

I I 
12 

13 

14 

0 

I .5126 
1.6546 
1.7540 
2 .0350 

2.5502 
3.2857 
4.2304 

5.2933 

5.7207 
4.9289 
3.0407 

1.1730 
0,2171 

0.0050 

0.457 

I .5314 
1.7685 

1.7866 
2.0716 

2.5939 
3.3435 
4.3137 
5. 'H08 
5.8736 
5.0927 
3.1709 

I . 2 4 I 0 

0.2358 

0.0060 

0.913 

1.5900 
I .7561 
I .8819 
2.1859 
2.7301 
3.5239 

4 .5748 
5.7804 
6.3584 
5.6172 

3.5958 
1.4688 
0.3013 

0.0099 

1.370 

1.6939 
1.8936 
2.0569 
2.3926 
2.9759 
3.8498 
5.0498 
6.4587 
7 .2630 

6.6198 
4.4368 

1.9458 
0.4530 

0.0221 

1.674 

1.7934 
2.0264 

2.2281 
2 .5950 
3.2157 
4.1685 
5.5183 

7.1349 
8.1820 
7.6666 
5.3523 

2.5000 

0.6521 

0.0459 

1.875 

1.8627 
2 . I I 7 7 

2.3446 
2.7329 
3.3800 
4.3875 
5.8402 

7.5999 
8.8139 
8.3872 
5.9838 

2.b;wJ 
0,7?22 

0,0649 

2.375 3.125 4.125 5.375 6.750 

1.9750 

2.2653 

2.5308 
2.9557 
3.6500 
4.7492 

6.3686 
8.3605 
9.8337 
9.5294 
6.9590 

3.45:^5 

0.9826 

0.0846 

2.0772 

2.4091 
2.7067 
3.1696 
3.9138 
5.1050 
6.8888 

9 . I I 0 8 
10,8395 
10,6547 

7,9178 

4.0106 
1.1690 

0.1037 

2.1504 

2 .5060 
2.8394 
3.3348 
4 . I 2 I 9 
5.3883 
7.3043 

9.7123 

11.6435 
11.5534 

B.6837 

4 ,4560 

I .3175 

0 . I I 8 8 

2 .1948 

2.5V09 
2.9247 
3.4434 

4.i^6I5 
5,5S06 
7,5868 

2.2176 

2.6046 
2.9691 
3.5002 
4.3346 
5.6809 
7.7332 

I 0 . I 2 I 0 10.3308 
12.1897 
I 2 . I 6 I I 

9.1992 

4 .7545 

I .4166 
0.1287 

12.4655 
12.4610 

9,4464 

4.8937 
I .4615 

0 . I33I 
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Table 5b Neutron spectrum in uranium-graphite cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of graphite layer = 

10 cm. See Table 1. 

2P*iii^ 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

1.7002 
I.9188 
2.I2I5 
2.6523 
3.7833 
5.9436 
9.7407 

0.457 0.913 

I.7210 1.7856 
1.9469 2.0341 
2.1584 2.2729 
2.6988 2.8441 
3.8468 4.0437 
6.0461 6.3641 
9.9282 10.5149 

1.370 1.674 

1.8999 2.0092 

2.1898 2.3403 
2.4798 2.6816 
3.1067 3.3633 
4.3984 4.7435 
6.9378 7.4973 

11.5793 12.6272 

2.000 3.000 

2.1280 2.3158 

2.5002 2.7589 
2.8928 3.2354 
3.6319 4.0784 
5.1084 5.7321 
8.0903 9.II79 

12.2804 15.6504 

4.500 6.500 9.000 11.750 

2.4382 2.5026 2,5320 2.5406 

2.9391 3.0423 3.0934 3.1094 
3.4812 3.6021 3.7058 3.7307 
4.4126 4.6256 4.7438 4.7830 
6.2205 6.5504 6.7437 6.8106 
9.9442 10.5251 10.8792 11.0042 

17.2068 18.3213 18.9185 19,2607 
15.4096 15.7441 16.7947 18.7193 20.6330 22.6533 26.1498 29.0034 31.0649 32.6225 32.8187 
20.3881 20.9215 22.6095 25.7525 28.9380 32.2833 37.9566 42.6609 46.0208 48.1282 48.8743 
20.7924 21.4692 23.6361 27.7655 32.0653 36.5637 44.1361 50.2745 54.6881 57.4472 58.4138 
14.8200 15.4433 17.4723 21.4768 25.8204 30.3333 37.7846 43.8043 48.1307 50.8244 51.7570 
6.4II4 
1.2429 
0.0257 

6.7771 7.9976 
1.3483 I.7177 
0.0308 0.05II 

10.5508 13.5044 
2.5687 3.6796 
0.II4I 0.2357 

16.5423 21.4038 25.3335 28.1580 29.9142 30.5174 
4.8077 6.5083 
0.3655 0.5252 

7.8793 8.8633 9.474u 9.68II 
0.6514 0.7403 0.7945 0.3125 

Table 5c Neutron spectrum in uranium-graphite cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of graphite layer = 

15 cm. See Table 1. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

1.7846 
2.0538 
2.34X2 
3.1042 
4.90II 
8.8088 

0.457 

1.8064 
2.0634 
2.3806 
3.1579 
4.9817 
8.9577 

I6.'+I30 16.7241 

0.913 1.370 1.674 2.125 

1.8730 1.9906 2.1034 2.2691 
2.1753 2.3389 2.4972 2.7234 
2.5057 2.7295 2.9482 3.2559 
3.3252 3.6268 3.9214 4.3361 
5.2324 5.6834 6.I2I7 6.7451 
9.4219 10.2565 11.0699 I2.23II 

17.6958 19.4579 21.1888 23.6502 

3.625 

2.4977 
3.0519 
3.7079 
4.9690 
7.2682 

I4.I25I 
27.6757 

28.5890 29.1997 3I . I I78 34.6254 38.1075 43.0510 5I . I3I7 
40.4530 41.4949 
43.2947 

44.7900 50.9149 57.1073 65.8397 
44.6839 49.1241 57.5738 66.3534 78.6344 

79.9351 
98.1493 

5.875 

2.6132 
3.2338 
3.9732 
5.3695 
8.4200 

15.4884 
30.6295 
57.1026 
90.2840 

112.3531 
32.0579 33.3869 37.7093 46.2179 55.4249 68.1630 88.0408 102.4331 
14.2905 
2.8042 
0.0566 

15.0949 
3.0396 
0.0679 

17.7816 23.3674 29.8157 38.5755 
3.8620 5.7489 8.2018 11.4408 
0.II22 0.2484 0.5099 0.8577 

51.9187 
I6.I49I 
1.2856 

61.5607 
19.5399 
1.5839 

8.875 

2.6626 
3.3214 
4 . I I I7 
5.6014 
8.8550 

I6.42II 
32.7120 
61.3628 

12.625 

2.6791 
3.3582 
4.1758 
5.7197 
9.0996 

16.9795 
33.9991 
64.0301 

97.6356 102.2304 
122.3674 
112.5039 
68.2809 
21.8867 

1.7847 

128.5692 

16.750 

2,6838 
3.3672 
4.1928 
5.7542 
9.1745 

17.1586 
34.4194 
64.9066 

103.7715 
I30.595P 

II8.70T0 120.6991 
7;i.3806 
23.3057 

1.9034 

73.7004 
23.7572 

1.9402 
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Table 5d Neutron spec t rum in uran ium-graphi te cel l in relat ion to 

the dis tance from cente r of uranium block. T e m p e r a t u r e of 

medium is equal to 300°K. Thickness of graphi te layer = 

20 cm. See Table 1. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 0.457 0.913 

1.8430 1.8650 1.9306 
2.I62I 2.1928 2.2877 
2.5362 2.5788 2.7II3 
3.5426 3.6030 3i7907 
6.0645 6.1626 6.4677 

11.9285 I2.I27I 12.7453 

1.370 

2.0522 
2.4571 
2.9498 
4.1285 
7.0152 

13.8563 
23.8435 24.2885 25.6780 28.1935 
43.4207 44.3353 47.2017 52.4372 
63.1621 64.7644 69.8282 
68.8658 71.0430 77.9951 
51.7219 53.8357 60.7019 

79.2196 

1.674 

2.1662 
2.6202 
3.1820 
4.4577 
7.5471 

14.9367 
30.6612 
57.6250 

2.250 

2.3773 
2.9139 
3.5916 
5.0392 
8.4961 

16.8720 
35.0604 
66.8573 

88.7020 105.4419 
91.1958 104.8894 
74.1856 

23.3149 24.6III 28.9290 37.8805 
4.5969 4.9802 6.3II0 
0.0919 O.IIOe 0.1820 

9.3503 
0.4004 

88.7394 
48.1791 
13.2822 
0.8I7I 

128.8046 
113.7969 

65.5036 
I5,b5U 
1,4747 

4.250 

2.6286 
3.2881 
4.1272 
5.8406 
9.8834 

19.7929 
41.7295 
83.1514 

7.250 

2.7303 
3.4620 
4.3980 
6.2926 

10.7547 
21.7596 
46.3364 
90.5910 

130.4398 147.7023 
163.9419 187.9243 

11.250 

2.7660 
3.5340 
4.5470 
6.5357 

II .290I 
23.0745 
49.5402 
97.4677 

159.8428 

16.250 

2.7767 
3.5594 
+.5759 
6.6497 

11.5753 
23.8338 
51.4651 

I01.6713 
167.2795 

21.750 

2.7787 
3.5647 
4.5881 
6.6798 

11.6574 
24.0638 
52.0647 

103.0004 
169.6687 

204.6194 214.7813 217.9919 
150.0020 174.5070 191.3515 201.5059 
90.0236 
28..182 
2.247b 

106.5544 
34.1264 
2.7480 

117.8064 
38.C29I 
3.0719 

I24.5II4 
40.3243 
3.2570 

204.6941 
126.6020 
41.0344 
3.3133 

Table 6 Neutron spec t rum in u ran ium-wate r cel l in relat ion to 

the dis tance from center of uranium block. Tempera tu r e of 

medium is equal to 300°K. Thickness of water l ayers = 0.5 

cm. See Table 1. 

ilfjnnbi 
0.457 0.913 1.370 1.674 1,762 I.812 1.888 1.988 2.112 2.25 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0,0763 
0,0815 
0.0853 
0.0987 
0.1224 
0.1547 
0.2033 
0.2670 
0,3087 
0.2898 
0.1974 
0.0841 
0.0162 
0.0003 

0.0775 
0.0830 
0.0871 
0.1009 
0.1249 
0.1578 
0.2078 
0.2734 
0.3175 
0.2995 
0.2057 
0.0887 
0.0175 
0.0004 

0.0812 
0.0876 
0.0928 
0.1074 
0.1326 
0.1676 
0.2218 
0.2935 
0.3448 
0.3295 
0.2326 
0.1042 
0.0221 
0.0007 

0.0877 
0.0959 
O.I 031 
0.II96 
0.1466 
0.1828 
0.2474 
0.3307 
0.3959 
0.3950 
0.2855 
0.1364 
0.0326 
0.0014 

0,0941 
0.1042 
O.I134 
0,1315 
0.1603 
0.2030 
0.2730 
0.3681 
0.4481 
0.4518 
0.3428 
0.1733 
0.0460 
0.0029 

0,0S68 
0,1077 
0,1179 
0,1368 
0,1664 
0,2108 
0.2815 
0.3856 
0.4737 
0.4883 
0.3752 
0.1963 
0.0553 

0.0994 
O.IIII 
0.1222 
0.I4I9 
0.1727 
0.2192 
0.2978 
0.3960 
0.5058 
0.5273 
0.4215 
0.2308 
0.0693 
0.0056 

JD.I024 
0.II52 
0.1274 
0,1482 
0.1804 
0,2296 
0.3124 
0.4324 
0.5456 
0,5783 
0.4773 
0.2713 
0.0850 
0.00/1 

0,1053 
0,1191 
0,1324 
0.1542 
0.1879 
0.2088 
0.33Ce 
0.4584 
0.5854 
0.6327 
0.5314 
0.3094 
0.0992 
0,0064 

0,1076 
0,1224 
0.1364 
0.11^92 
0.1940 
0.2485 
0,3434 
0,4795 
0,6172 
0,6737 
0,5729 
0,3380 
0.1096 
0.0094 

0.1052 
0.1243 
0.1388 
0.1620 
0.1974 
0.2375 
0.3504 
0.4902 
0.6324 
0.6922 
0.5903 
0.3494 
0.II35 
0.0097 
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Table 6a Neutron spectrum in uranium-water cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of water layers = 1 

cm. See Table 1. 

2 p « n n b i \ 

I 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

0.0845 

0.0925 
0.0996 
0.1204 
0 . I 6 I 3 
0.2324 
0.3573 

0.5408 
0.6985 
0.7032 
0.4960 
0.2123 
0.0401 
0.0006 

0.457 

0.0654 

0.0939 
O.I 015 

0.1226 
0 . I64 I 

0.2365 
0.3641 
0.5523 
0,7160 
0.7248 
0.5155 
0.2236 
0.0434 
0.0009 

0.913 

0.0692 

0.0985 
0.1074 

0.1297 
0.1729 
0.2491 
0.3854 
0.5880 
0.7709 
0.7936 
0.5787 

0.2612 
0.0545 
0.0016 

1.370 

0.0955 

0.1068 
0 . I I 8 0 
0.1424 

0.1888 
0.2721 
0.4243 
0.6534 
0.8728 
0.9235 
0.7020 
0.3383 
0.0796 
0.0034 

1.674 

0 . I 0 I 6 

O.I149 
0.1284 
0 . I55I 
0.2044 

0.2946 
0.4624 

0.7180 
0.9754 

1.0576 
0.8342 
0.4263 
0 . I I I 6 
0.0066 

1.775 

0.1048 

O.I 194 
0.1342 
0.1623 
0.2134 

0.3079 
0.4856 
0.7590 
1.0442 

I .1549 
0.9403 
0.5056 
0 . I44I 

0.0106 

1.875 

0.1094 

0.1256 
0.1423 
0.1725 
0.2270 
0.3292 
0.5248 
0.8320 
1.1707 
1.3387 

I . 1447 
0.6577 
0.2035 
0.0165 

2 .025 

0 . I I 3 8 

0 . I3 I9 
0.1506 
0.1832 

0.2420 

0.3536 
0.5710 
0.9194 
1.3213 
1.5533 

1.3750 
0.8214 
0.2632 

0.C2I6 

2 225 

0,1173 

0.1368 
O.I571 
0.1920 

0.2548 
0.3759 
0.6146 
1.0032 

1.4657 
1.7560 
1.5874 
0.9670 
0 .3 I4 I 

0.0258 

2 .475 

0 . I I94 

0.1400 

0 . I 6 I 5 
0.1978 
0.2638 
0.3920 
0.6470 
1.0662 

1.5738 
1.9063 
I .7421 
1.070 
0.3492 
0.0287 

2 .75 

O.Tc'-^ 

0 . I 4 I 5 
0,1634 

0.2005 
0.2678 
0,3991 
0.6609 
1.0925 
I . 6 I 7 I 
I . 9 6 4 I 
1.7994 

1.1078 
0,3615 
0.0296 

Table 6b Neutron spectrum in uranium-water cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of water layers = 2 

cm. See Table 1. 

2pyinbi\ 
I 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I I 
12 

13 
14 

0 

0.0582 
0.0639 

0,0695 
0,0869 
0,1282 
0.2168 
0.3930 
0.6708 
0.9283 
0.9642 
0.6871 
0.2938 

0.0551 
O.OOIO 

0.457 

0.0597 
0.0649 
0.0707 
0.0884 
0.1354 
0.2204 
0.4000 
0.6842 
0.9503 
0,9927 
0.7134 
0.3092 

0.0596 
0.0012 

0.913 

0.0613 
0.0680 

0,0748 
0.0934 

0.1369 
0.2315 
0.'+2I9 
0.7256 
I .0197 
1.0833 
0.7986 
0.3603 

0.0746 
0.0020 

1.370 

0.0655 
0.0734 

0.0818 
0,1023 
0,1489 
0.2513 
0,4613 
0,8008 
I .1472 
1.2539 
0,9640 
0.4644 

0.1082 
0.0044 

1.674 

0.0696 
0.0789 
0.0888 

a. I no 
0.1605 
0.2706 
0.4998 
0.8747 
1.2749 
I.'+2 89 
1.1404 
0.5824 

0.1508 
0.0087 

1.800 

0.0728 
0.0832 

0.0946 
0 . I I 8 2 
0.1704 
0.2875 
0.5351 
0.9466 
1.4072 
1.6280 
1,3663 
0,7548 
0.2214 

0.0169 

2 .000 

0.0775 
0.0900 

0,1035 
0 . I 3 0 I 
0,1888 
0,3227 
0,6131 
I , I I I 2 

1.7108 
2,0764 
1,8580 
1,1098 
0.3533 
0.0287 

2 .300 

0.0810 

0.0951 
0 . I I 0 5 
0.1402 
0.2062 
0.3604 
0 .70 I I 
1.3002 
2 .0628 
2 .5630 
2.3642 

1.4525 

0.4712 
0.0382 

2 .700 

0 0830 

0.0980 
0 . I I 4 6 
0.1468 
0.2197 
0.3927 
0.7799 
I .4714 
2.3596 
2 .9890 
2.7921 
1.7304 

0.5633 
0.0454 

3 .200 

0.0838 

0.0994 
0 . I I 6 8 
0.1506 
0.2279 
0.4140 
0.8339 
1.5894 
2,5693 
3.2751 

3,0728 
1,9089 
0.62T" 

O.OSuO 

3.75 

0.0842 

0.0997 

o.ii?: 
o.i5ir 
0.2308 
0.4216 
0,852'7 
1.6301 
2.6402 
3.3701 
3.1647 

1,9666 

0.64W 

0.0516 
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Table 6c Neutron spectrum in uranium-water cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K Thickness of water layers = 5 

cm. See Table 1. 

zpuhnK 

I 

2 
3 

4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 

0 

0.0677 

0.0743 
0.0621 

0.1070 
0.1759 
0.3416 
0.6898 
1.2520 
1.7886 
1.8843 
1.3493 
0.5766 
0.1078 
0.0019 

0.457 

0.0685 

0.0755 
0.0633 

0.1089 
0.1786 
0.3471 
0.7015 
I .2761 
1.6302 
1.9387 
1.3999 
0.6058 
0 . I I 5 9 
0.0023 

0.913 

0.O7I2 

0.0790 
0.0679 

0 . I I 4 8 
0.1875 
0.3634 
0.7388 
I .3516 
1.9605 
2 . I I I 5 
I .5613 
0.7019 
0.1440 
0.0039 

1.370 

0.0759 
0.0852 

0.0961 
0.1257 
0.2031 
0.3941 
0.8058 
1.4886 
2.1998 
2.4348 
1.8738 
0.8956 
0.2050 
0.0082 

1.674 

0.0605 
0.0914 
0.1039 

0.1358 
0.2187 
0.4233 
0.8707 
1.6224 
2.4387 
2.7651 
2.2045 
I . I I 2 4 
0.2809 
0.0156 

1.875 

0.0873 
O.I 124 
0 . I I 6 7 
0.1525 
0.2440 
0.4743 
0.9906 
1.8862 
2.9464 
3.5483 
3.1040 
1.7983 

0.5 .c 
O.Ci-.' 

2 .375 

0.0949 
O.I 121 

0 . I 3 I 9 
0.1759 
0.2699 
0.5859 
1.2734 
2.5192 

4 . I I 9 5 
5.2408 
4.8817 
3.0^X4 

u,976b 
0.0786 

3 .125 

0.0977 
0 . I I 6 3 

0.1385 
0.1883 
0.3214 
0.6747 
1.5084 
3.0468 
5.0704 
6.5519 
6 . I 8 I 5 
3.8456 
1.2509 
O.T004 

4 .125 

0.0973 
O.I175 
0.1404 

0.1930 
0.3366 
0.6038 
I . 6 3 1 8 
3.3219 
5.5575 
7.2075 
6.8165 
4.2471 
1.3824 
0 . I I 0 9 

5.375 

0.0986 
O.I175 
0 . I 1 I 2 

0.1945 
0.3416 
0.7353 
1.6722 
3 . 4 I I 4 
5.7143 
7.4157 
7.0169 
4.3743 
I .4?44 
0 . I I 4 4 

6 .75 

0.0986 
0 . I I 7 9 
0 . I 4 I 2 
0.1949 
0.3424 
0.7381 
1.6792 
3.4;.^65 
5.7407 
7.450* 
7.0503 
4.3953 
1.4314 
0.1 Pit! 

Table 6d Neutron spectrum in uranium-water cell in relation to 

the distance from center of uranium block. Temperature of 

medium is equal to 300°K. Thickness of water layers = 10 

cm. See Table 1. 

zpynntK 
I 
2 

3 
4 

5 
6 
7 

8 
Q 

10 
I I 
12 
13 
14 

0 

0.0738 
0.0823 

0.O777 
0,1274 

0,2226 
0,4499 
0.9195 
1.6724 
2,3921 
2,5^51 
1,8018 
0,7606 
0.1382 
0,0026 

0,457 

0,0748 
0.0839 

0.0948 

0.1300 

0.2226 
0.4572 
0,9351 

1.7039 
2,4464 
2 ,5950 
1,8660 
0,7968 
0,1538 
0,0031 

0,913 

0,0774 
0.0875 

0.0994 

0.1362 

0.2366 
0.4784 

0,9837 

1,8028 
2.6157 
2,8176 
2,0716 
0,9164 

0.1828 
0.0047 

1.370 

0.0623 
0.0537 

0.1082 

0,1401 

0.2558 
n,5I72 
1.0712 

1.5809 
2,9259 
3,^313 
2.4640 
1,1541 
0,^553 
0,0098 

1,674 

0,0870 

0. (A'9S 

0,1165 

0.1595 
0,2739 
0.5545 
1.1556 
P..L5bO 
3.^334 
i ,h518 

.'.Glbl 
1.4156 
0,3438 
0,0176 

2,(X)0 

0,0996 

0 , I I « 0 

'.1408 
0.1931 

0,3298 
0.6736 

1.4409 

^-.7866 
'*.u^e5 
i>.'")157 
4,S955 
2,9595 
0,9547 
0,0771 

3,000 

0,1077 

0,1300 

0.1590 

0,2252 
0,4033 
0.8667 

1,5385 
3.8961 
6."736 
8.3831 
7.9/33 
4,9311 

1.6035 
0.ic;89 

' ' , 500 

11.1088 

0,1320 
0.162r 

0,2340 

0,''i;77 
0,9382 

2,1259 

4.3098 
7.^072 
5.3761 
8.e5^5 

5,5488 
1,8070 
0,1450 

6 ,500 

0,1090 

0,1325 

• .1631 
0.i;35I 
0.43ia 
0.5491 
^.1554 

4 .3740 

7,3175 
9.5226 
9.0344 

5.6385 
1.8370 
0.1476 

9,000 

0,1090 

0.1325 
0,1531 

0,2351 
0 . ' i : : 8 
o."-oi 
2 . 1 ' 5 
4 , 1 
7,3 . ' -
e ^ y^ 

i-.oa 
5,64 

I.e3Sx 
0 . 1 4 ' 0 

: : . " 
0,1050 

0.13? 
^ r 

0.2 '. 
0. ' , . 
0 . 5 . 'i 

^.ir75 
4,3 ' , -2 
7. 'v-f3 
S.J ..1 

Sh..2 

s.e'̂ si 
l . o 3 9 I 
i 1, ; ' , 7 f 
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APPENDIX II 

Tables for the scattering cross sections of slow neutrons. 

The differential scattering cross sections are repre

sented In the form of a power expansion In Legendre poly

nomials. The appendix lists the zero and first moments 

of the scattering kernel, which we shall denote res

pectively by GQ(X' —f x) and G,(x' —?• x). The functions 

G»(x' —? x) ajid G, (x' —y x) are normalized in the follow

ing fashion: 
X 

U JG.(x'->)̂ >=i 

V 

wh ere A-^ — average cosine of the scattering angle. 

The functions GQ(X' —» x) and 6,(x' •—• x) are 

connected with the scattering cross sections ^n^^'l "^ ^̂  

and <^-(x' —» x) by the relation 

where 6' — scattering cross section at energy E = 0.026 
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ev. 

Here x — dlmenslonless velocity of the neutron 

The functions GQ(XQ —^ x) and G,(XQ —* x) are best 

resolved Into an elastic and inelastic component, i.e., 

The attached tables show the values of the function 

GQ. (XQ —> x) and G,̂ ^ (XQ —^ x). In addition, the values 

of the function f^(x, x^) are also given 

I 
o 

This function is needed to calculate the cross section for 

the escape of neutrons. 
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0.C20QS 

0 , 0 1 3 7 7 

0 . 0 0 6 8 9 

0 , 0 0 3 3 * 

0 ,00217 

0 ,00101 

0 . 0 0 0 1 5 

0 . 0 0 0 2 8 

0 . 0 0 0 1 2 

0 . 0 0 0 0 5 

0 , 0 0 0 0 0 

0 ,00009 

0 .00101 

0 .00598 

0 .00966 

0 .01655 

0 . 0 0 1 2 0 

0 .01049 

0 .05989 

o . a e i 5 

0 .09789 

O . I 2 I I 6 

0 . I 4 6 6 I 

0 . 1 6 6 7 1 

0 . 1 6 5 5 0 

0 .161*1 

0 . 1 5 i * * 

O.LfBOb 

0 . 0 9 6 9 2 

0 .07638 

0 .04997 

0 , 0 2 6 7 2 

0 .01995 

0 . 0 1 0 1 0 

0 , 0 0 * 6 9 

0 . 0 0 3 1 7 

0 . 0 0 1 * 6 

O.0UU67 

0 . 0 0 0 4 1 

O.00OI7 

0 . 0 0 0 0 7 

0.0COOt 
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0.033BI 
0.15000 
0.i66I9 
0.3J36I 
C.15000 
0.56619 
0.633f; 
0.75C<'. 
0.e66IE 
0.93 lel 
1.0500--^ 
I.I66I5 
i .233e: 
1.36000 
I.166!5 
1.53381 
1.65000 
1.76619 
1.63381 
1.95000 
2.06619 
2,13381 
2.25000 
2.36619 
2.13381 
2.55000 
2.66619 
2.73381 
i.85000 
^.96619 
3.03381 
3.15000 
3.i66I9 
3.33381 

C. 00009 
0.00186 
0.00605 
0.00678 
0.01860 
0.03170 
0.0MI<;3 

' . b.- -

C.OfS-
r - - r j 

'-.,; > 
0. :,•;.,6 
o.l6i/a' 
0.1 'Wc 
0.17915 
0.I7I67 
0.1*755 
0.111*0 
C.093fc5 
0.06131 
0.03585 
0.02517 
0.0I2B6 
0.0062* 
0.00403 
0.00186 
0.00065 
0.00063 
O.OO022 
0.00009 
0. 00006 
0.00002 
0.00001 
0.00000 

0,00009 
0.00181 
0.00592 
0.00S.5'. 
C.OISU 
r.03:>.7 
o . r u m 

.•>=".-5 

. O f ' ' -

" , 1 ^ ! - ; 
f .1-^7^3 
h.iii^c 
'..SAe^ 
•.ei^^: 

O.iljS* 
O.-JOSJS 
C.18776 
O.IS.!t5 
0.12650 
0.ep'/€8 
0.05365 
0.03831 
0.02005 
0.00982 
0.00636 
0.00296 
0.00:31 
0.0008* 
0.00O36 
0.00015 
0.00009 
0.000O3 
0.00001 
0.00000 

0.00006 
0.00167 
0.005*8 
'-.0(890 
o.oir«7 
C.ai9<6 
-.03909 
.'5977 

' . ' « ' f 
' . f5 * 
-.I'.OVS 
'.. • /--A 

r.^Vi-'j 

0 . « j l j t f 

l.^Httkt 
a25CkV 
0.23550 
0.20113 
0.17511 
0.126(1: 
0.06064 
O.0S94I 
0.(0212 
0.01603 
0.010*2 
n.tXMM 
0.00220 
0.00137 
0.00059 
O.OO02* 
O.OOM* 
0.00006 
CVKHS 
O.OOOOO 

0,00006 
0.0015* 
0.00S06 
o.ooe^i 
0.01616 
0 . 1 7 ' 6 
iCJCfr.: 
:.C57','? 
" . " H j ; ( 

' . ' t t . 
C.:.:il6 
'/.:;'>-i 
C/..:(»9e 
';.<rv5(/ 
0..!tV7S 
0.^7i65 
0.26587 
0.^3*7* 
o.i'Oeie 
0.15*95 
O,I02T2 
0.W668 
0. 04259 
0.02159 
O.OIlIO 
0.00656 
0.00196 
0.00166 
0.000BO 
0.00033 
0.00020 
0.00006 
0.00003 
0.00000 

0,00006 
0,00127 
0.00*il 
0.00688 
C. 01360 
O.Ci383 
r.C3Ia6 
i.0'..a:8 
(.07V36 
J. 09367 
C.I3I56 
0.:7660 
0..;0*87 
0..;5^97 
0.<'9301 
0.30916 
0.31752 
0.29773 
0.27367 
0.21739 
0.15356 
U.1I869 
0.06962 
O.0J657 
0.01;*1» 
0.01136 
0.00516 
0.003^.; 
0.001*0 
0.00069 
0.00095 
0.0001* 
0.00005 
o . o o o o 

0.(X)005 
O.OC0S6 
0.00327 
0.00537 
0.01072 
0.01906 
0.(V572 
0.0*132 
0.06358 
0.08043 
0.116J1 
0.16206 
0.19262 
0.2*903 
0.30969 
0.33101 
0.36109 
0.36135 
0.3*528 
0.29*67 
0.22363 
0.16020 
0.I12S2 
0.0625* 
U. 04222 
o.o-o;* 
0.00922 
0.00576 
O.00f5I 
U.00106 
0.00063 
O.OO025 
0.00009 
0.00000 

0,00004 
0.00062 
0.0027* 
0.00*62 
0. 00907 
0.0162* 
O.«2«'0S 
0.03560 
0.0558* 
o.mni 
0.10521 
0.1*939 
0.18008 
0.2392* 
0.3011) 
0.33*51 
OL 37820 
0.39390 
0,38659 
0,3***0 
0.27359 
0,22628 
0.1*758 
0.06*96 
0.(6858 
0.01860 
0.01311 
0.00616 
0.00358 
0.00152 
O.0OC9O 
0.00036 
0.0001* 
0.00000 

0.00009 
0.00058 
0.00196 
0.00323 
0.0065* 
c i a i e j 
0.0I6I6 
0.02670 
0.0*252 
0. 05*96 
0,063*5 
0.1229* 
0,15193 
0.21072 
0.27970 
0.321*9 
0.36761 
0.43352 
0.***58 
O.*2900 
0.3S96* 
0.32202 
0.226*2 
).I4X9I 
0.101*0 
0.06214 
0.02*49 
0.0153* 
0.00671 
0.00266 
0.00171 
0. 00069 
Q.00CB1 
0.00015 

ccoooe 
0,00(»I 
0,00137 
0 .0026 
0.00499 
0,00633 
0 ,«1*5 
0. 01909 
0.09061 
0.04022 
0.062*9 
0.06*71 
0.11917 
0.1728* 
0.2«(BI 
0.2896* 
0,36725 
0,<«I*I 
o.*rj*i 
0.«99»9 
0,46999 
0,«30H 
a33525 
0.22SII 
0,17105 
Q.C9399 
0.01623 
0.flE93« 
0.01292 
0.00992 
0.00932 
0.00135 
0.00063 
Ow00090 

0.00002 
0,00093 
COOIll 
0.0(883 
O.O0Br2 
01,00676 
0,00932 
0.01556 
0.02520 
0.(030! 
0.05170 
O.0TO33 
CIOQBI 
0,1*88* 
0.21320 
0,29717 
Ol3«233 
01*2860 
0L*7Z29 

0.92063 
OL5ISM 
0.*92I3 
0.*a939 
0,29286 
0.22891 
0;I3<98 

aoece* 
0,04298 
a 01913 
0,00618 
0.00493 
0.0a>02 
o.aoow 
0.000*5 

0,00001 
O,O00B3 
O.00O7B 
0.00130 
0.0(S'63 
0.00176 
0.00657 
0.01097 
0.01778 
0.0237* 
0,03678 
0 .057« 
0,07312 
0.IKB9 
a i « 3 e 3 
0.3027* 
0.98509 
0.77969 
Q.*372t 
0,92*20 
0.57*03 
0.575** 
0.92869 
0.*238I 
0.3*992 
0,22327 
0.12332 
0.(0231 
Q,CD797 
o.(a«*2 
0.00(91 
0.00*06 
0.00162 
0.00093 

0.0000! 
0.0OO17 
0.00056 
0.OO0S3 
0.00189 
0.0(0*3 
0.00170 
0,00783 
0,01269 
0,01663 
0.(k61* 
0.0*060 
0.05218 
0.67966 
0,12000 
0:19107 
0.22(80 
0.310*2 
0.37008 
0.»7e77 
0.97*10 
0.61II2 
0. 62306 
0.56218 
0.*6692 
0.355.;B 
0.dI795 
0.15307 
0.075^2 
0.03352 
0.0203* 
0.006*0 
0.00936 
0.00195 
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Table 7 (continued) 

2.13381 2.55000 2.68619 2.73381 2.85000 2.96619 ' 3.03381 3.15000 3,26619 3,33381 3.15000 3.56619 

0.33361 
0.15000 
0.56619 
0.63381 
C'SOOC 
0.86619 
0.53381 
1.05000 
1.I66I9 
I.23381 
1.35000 
1.16619 
I.53381 
1.650OO 
1.76619 
1.83381 
1.95000 
2.06619 
2.I33BI 
2.25000 
2.36619 
2.13381 
2.55000 
2.66619 
2.73361 
2.85000 
2.96619 
3.03361 
3.15000 
3.26619 
3.33381 
3.15000 
3.56619 
3.63381 
3.75000 
3.86619 
3.93381 
1.05000 
1.16619 
1.23381 

0.000/7 
0.00156 
0. 00263 
0.00389 
0.00648 
O.OIO16 
0.01373 
O.OBI68 
0.03315 
0.0*298 
0.06555 
0.09917 
0.12541 
C.IB512 
0.26638 
0.32135 
0.13192 
0.54730 
0.60195 
0.65396 
0.61902 
0.58013 
O.I16I6 
0.29397 
0.21122 
0.II073 
0.05096 
0.03117 
0.01292 
0.00521 
0.00303 
0.00II5 
0.00012 
0.00023 
0.00006 
0.00003 
0.00000 

- " -
- " -
- " -

0.00055 
0.00112 
0.00203 
0. 00280 
0.00167 
0.00757 
0.00992 
0.01559 
0.02118 
0.03106 
0.0*735 
0. (77154 
0.09060 
0.13*87 
0.19613 
0.21568 
0.31696 
0.16656 
0.53906 
0.64736 
0.70073 
0.69218 
0.60623 
0.15609 
0.35812 
0.20689 
0.10^80 
0.06487 
O.0B715 
0.0I1I3 
0.00650 
0.00251 
0.00093 
0.00051 
C4 00018 
0:00006 
0.00000 

- • -

., . _ 
- • -

0.00039 
0.00(779 
0.00111 
0.00198 
0.00333 
0.00512 
0.00713 
0.01126 
0.01753 
0.!E255 
0.09115 
0.05211 
0.06591 
0.09811 
0.11172 
0.18061 
0.26131 
0.36809 
0.11II9 
0.57311 
0.68913 
0.73115 
0.73116 
0.63280 
0.53179 
0.35671 
0.19865 
0.13112 
0.05879 
0.02119 
0.01417 
0.00552 
o.ooioe 
0.00115 
0.000*1 
0.00014 
0.00000 

- " -
. • -
_ . _ 

0.00031 
0.00064 
0.00117 
0.00161 
0.00271 
0.00*4* 
0.00685 
0.00927 
0.01119 
0.01866 
0.02663 
0.01337 
0.05196 
0.06190 
0.1^078 
0.15066 
0.21875 
0.3121* 
0.37911 
0.51151 
0.6171I 
0.71236 
0.76761 
O.7I07I 
0.61516 
0.16613 
O.ZeidB 
0.19353 
0.09063 
0.03830 
0.02218 
0.00680 
0.00334 
0.00186 
0.00066 
0.00023 
0.00012 
0.00001 
O.OOOOI 
0.00000 

0.00022 
0.00011 
0.00061 
0. 00112 
C.0OI9O 
0.00312 
0.00*12 
0.00657 
0.0109* 
0.01339 
C. 02 069 
0.03157 
0.01015 
0.06012 
0.08896 
0 . I I I I 8 
0.I6I51 
0.23215 
0.28197 
0.39819 
0.53696 
0.62178 
0.71882 
0.80506 
0.78712 
0.66116 
0.16819 
0.35020 
0.16136 
0.06331 
0.05010 
0.01980 
0.00758 
0.001,:7 
0.00151 
0.00054 
O.OOCKO 

0 .00009 

0 . 0 0 0 0 3 

0.00000 

0.00015 
0.00030 
0.00056 
0.00077 
0.00131 
0.00217 
0.00287 
0.00161 
0.00730 
0.00919 
0.01477 
0.(C273 
0.02907 
0.01392 
0.06550 
0.08215 
0.12000 
0.17288 
0.21239 
0.30036 
0.1I72I 
0.19890 
0.61872 
0.78161 
0.82813 
0.81683 
0.68006 
0.56053 
0.31392 
0.17186 
0.10962 
J3.01519 
0.017*1 
0.00989 
0.00363 
0.0012a 
0.00066 
0.00023 
0.00007 
O.(l()000 

0.00012 
0.00021 
0.00045 
0.00062 
0.00106 
0.00175 
0.00232 
0.00373 
0.00593 
0.0077* 
0.01209 
0.01868 
0.02395 
0.03639 
0.05161 
0.06872 
0.10066 
0.11596 
0.17972 
0.25120 
0.35507 
0.12''86 
0.57106 
0.72509 
0.79901 
0.85620 
0.78603 
0.68768 
0.16621 
0.25953 
0.16926 
0.C7259 
0.02850 
0.01620 
0.00599 
0.0C2I3 
0.00115 
0.00038 
0.00012 
C. 00000 

0.00006 
0.00016 
0.00030 
0.00012 
0.00072 
0.00120 
0.00160 
0.00259 
0.0011* 
0.005*1 
0.00650 
0.01325 
0.01707 
0.02613 
O.0B96O 
O.OSOll 
0.(77140 
0.10672 
0.13160 
0.I9I80 
0.26858 
0.3<;5I6 
0.11512 
0.59118 
0.68571 
0.82603 
0.68382 
0.85415 
0.69832 
0.46289 
0.33121 
0.l5'.>61 
0.06633 
0.13829 
0.01126 
0.00516 
0.00280 
0.00095 
0.00031 
0.00016 

0.00000 
0.00000 
0.00000 
0.00028 
0.00019 
0.00062 
0.00109 
0.00178 
0.00266 
0.00376 
0.00695 
0.00932 
0.01205 
0.01863 
0.02615 
0.03619 
0.06428 
0.06027 
0.10008 
0.I11I9 
0.20118 
0.21781 
0.31111 
0.1621* 
0.51785 
0.70590 
0.81951 
0.89915 
0.87507 
0.70609 
0.56418 
0.32185 
0.15005 
0.06960 
0.03110 
0.01254 
0.00688 
0.00238 
0.00(779 
0.00011 

0.00000 
0.00000 
0.00000 
0.00022 
0.00039 
0.00065 
0.00067 
0.00142 
0.00230 
O.OC902 
0.00461 
0.0(7/57 
0.00961 
0.01522 
0.02336 
0.02985 
0.01197 
0.06693 
0.06378 
0.12165 
0.17317 
O.2II16 
0.29261 
0.39791 
0.17238 
0.62357 
0.78253 
0.86161 
0.92011 
0.S<:898 
0.70910 
0.15102 
0.233II 
0.11155 
0.05731 
O.CKIII 
0.0II61 
0.00106 
0.00136 
0.00070 

o.(xia(i(i 
0.00000 
0.00000 
0.00015 
0.00026 
0.00013 
0.00068 
0.00096 
0.<fel56 
0.00207 
0.00331 
0.00625 
0.00685 
0.01071 
0.01656 
0.02126 
0.03236 
0.CW864 
0.06121 
0.09001 
0.13012 
0.15987 
0.22115 
0.30791 
0.36698 
0.18917 
0.64022 
0.73333 
0.87993 
0.-9J855 
''.90105 
0.713:7 
0.11656 
0.30550 
0.13535 
0.05215 
0.(K90I 
0.01023 
O.0C319 
0.00183 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00038 
0.00061 
0.00105 
0.00140 
0.0(K26 
3.00361 
0.00473 
0.0(7716 
0.01166 
0.01503 
0.02308 
0.03501 
0.04142 
0.06597 
0.09650 
0.11951 
0.17005 
0.23700 
0.28168 
0.38321 
0.50563 
0.58902 
0.71617 
0.S95IS 
0.91651 
C.9I362 
0.71172 
0.55l.r7 
0.29*50 
0.1<r613 
0.07220 
0.(1;60I 

o.ooesg 
0.00.77 

3.75000 3.86619 3.93361 1.05000 4.16619 4,23381 1.35000 1.16619 1.53381 1.65000 1.76c:i 

I.23361 
1.35000 
1.16619 
1.53381 
1.65000 
1.76619 
l.e3381 
1.95000 
2.06619 
<:.13381 
2.25000 
2.Ji;oI9 
2.»-'3ei 
t .?5000 

2.•'J ; : 
. . - 5 'C 
<:.9-.':9 
3 .033; ; 
3.:500c 
3.^6619 
3.33361 
J.15C00 
3.566:9 
3 .{3*1 
J."5GOO 
3 . c t - l r 

u.05ore 
. .166:9 
•..«J3d: 
••.35000 
-..le-ii? 
•..53381 
..CSOOO 
1.766:9 
i . e j j a i 
-•.!r5000 
5.060:9 
5.:336I 

c.oc: : : 
0.00179 
O.CiSi 
O.QCJi-C 

O.O.'^I: 
C.0C9-' 

0 . 0 : Eĉ ? 
M l S f 2 
^. C>6* " 

r. ».'•. 
i-.Cc n 
' .1C0J5 
c . :«in5 
c.;o2 9 
C e l l 56 
0.33^':9 
0.1.. 066 
o.; ;5oo 
p.»6i :5 
•.822;= 
C.SCk72 
o.fti:3i 
0.85219 
0.71170 
0.13210 
0.20525 
0.12139 
0.OIIBO 
0.01561 
0.00632 
0.00271 
O.OOOEi 
0.000.3 
0.000:3 
0.0000. 
C.OCOOO 

0.OOOT3 

c.oo:<:o 
-.00:95 
0.nC258 
0. 'WI3 

c. y».% 
".00851 
: . 01328 

c.a;oi6 
-.(k620 
0.03956 
0.059W 
0.07391 
0.10733 
0.I53I1 
0.16661 
0.25750 
0.31731 
0.10872 
0.53075 
0.67737 
0.76601 
0.91391 
0.97195 
0.92783 
0.71385 
0...2229 
0.27617 
0.11302 
0.01071 
0.(Vle5 
C.00730 
".00235 
J.00II9 
0.00036 
0.000:0 
% 00000 

0.00019 

o.oooeo 
0.00129 
0.00172 
C,O0K79 
0,00418 
0.00586 
0.00924 
0.01*39 
0.01853 
0.Cfc832 
0.04269 
0.05381 
0. (77921 
O.II153 
0.11068 
0.19736 
0.27050 
0.32173 
0.12152 
0.51596 
'J.t«.b13 
' . 7e«7 
0.92219 
0.57368 
0.93361 
0.710B7 
0.53500 
0.26492 
0.10505 
0.06756 
0.01951 
0.00639 
0.003<;7 
0.00100 

o.ooa;9 
coodi 
0.00001 

0.00001 

0.00000 

0.00037 
J. 00063 
0.00101 
0.00135 
0.00221 
0.00357 
0.00170 
0.00745 
0.01167 
0.01506 
'..CE320 
0.03520 
0.01156 
0.06606 
0.09626 
0.11885 
0.16803 
0.23275 
0.27830 
0.37103 
0.18203 
0.55186 
0.69665 
0.61738 
0.9^613 
0.98331 
0.86065 
0.70648 
0.10507 
0.17796 
0.10060 
0.03462 
C.01145 
0.00591 
0.00183 
0,00051 
0.00026 
O.OOOCr? 
0.0OOQ2 
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Table 7a Table of the function t (x,x ) for beryllium, T 300°K. 
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Table 7a (continued) 
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Table 8 Table of the function g . (x -x) for beryllium, T 300°K. 
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Table 9 Table of the function f (x,x ) for beryllium, T = 300°K. 4 
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Table 10 Table of the function g . (x -x) for graphite, T = 300°K. 
ois o 

> 
0.09361 
0.15000 
0,26619 
0,33361 
0,45000 
0.56619 
0.63381 
0.75000 
0.86619 
0.93361 
1.06000 
I . I66I9 
I.23381 
1.35000 
I.46619 
1.53361 
1.65000 
1.76619 
1.83381 
I.55000 
2.066'5 
2,13361 
2 .2JO0(1 

2.36019 
2.43361 
2.55000 
2.66619 
2.73381 
2.85000 
2.96619 
3.03381 
3.16000 
3.26619 
3.33381 

0.03361 

0.00001 
0.00099 
0.00878 
0.02038 
0.0678* 
0.11996 
0.165*5 
0.15101 

'0.J3216 
0.37036 
0.*1216 
0.41915 
0.40781 
0.36666 
0.30655 
0.27069 
0.20569 

-0.I477I 
0.II86* 
0.C7850 
0.04929 
0.03679 
0,02146 
0.0II97 
0.0083* 
0.00434 
0.00217 
0,00142 
0.00067 
0.00030 
0.00019 
0.00008 
0.00003 
0.00000 

0.15000 

O.OOOOI 

0 .00044 

0 / 0 0 2 6 6 

0 .00564 

0 .01487 

0 .02954 

0 . 0 4 0 6 0 

0 . 0 6 0 4 3 

0 .07939 

0 . 0 6 8 1 5 

0 , 0 9 7 5 8 

•0 .09689 

0 .09609 

0 . 0 6 6 3 0 

0 .072*4 

0 .06351 

0 . 0 4 8 1 8 

O.G3458 

0 .02782 

0 , 0 1 8 3 6 

0.0II63 
0.00860 
0.005QI 
0,00280 
0.00195 
0.00101 
0.00051 
0.00033 
0.00016 
0.00007 
0.00004 
0.00002 
0,00001 
0.00000 

0.26619 

0.00002 
0.00050 
0.00246 
0.00464 
0.01063 
0.02023 
0.02732 
O.0B966 
0.06093 
0.06610 
0.06151 
0.06167 
0.05989 
0.06361 
0.04*76 
0.03917 
0.02965 
0.0212* 
0.01707 
0.01125 
0.00706 
0.00626 
0.00307 
O.0OI7I 
0.00119 
0.00062 
0.00031 
0.00020 
O.OOOIO 
0.00004 
0.00009 
0.00001 
0.(10(100 

_ . _ 

0.33381 

O.OOOOR 

0 .00066 

0.00245 
0.00180 
0.01065 
0.OI92I 
0.02491 
0.03564 
0.04617 
0.04947 
0.05379 
0.06379 
0.06192 
0.04621 
0.09864 
0.03366 
0.02545 
0.01820 
0.01462 
0.00962 
0.00603 
0.00*60 
0.00262 
0.00146 
O.OOI02 
0.00053 
0. 00026 
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O.ooooe 
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0,00000 

^ . _ 

0.*5000 

0.00003 
0.00066 
0.00256 
0.00476 
0,01161 
0.01957 
0.02464 
0.03420 
0.04217 
0.04569 
0.04889 
0.04630 
0.04636 
0.04093 
0.03389 
0.02956 
0.02230 
0.01586 
0.01271 
0.00635 
0.00622 
0.009B9 
0.00226 
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0.00046 
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0.00009 
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0.00001 
0.(X)(KKI 

— * — 
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0,(2610 
0.03717 
0.04480 
0.04762 
0.06017 
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0.04061 
0.(»364 
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0.01240 
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0.0(EI9 
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— " — 
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0.00282 
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0.04837 
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0.04263 
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0.01097 
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0.02123 
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0.09331 
0.08689 
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0.02418 
0.01921 
O.0I24I 
0.00767 
0.00666 
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0.O0O32 
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loooio 
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O.OOOOJ 
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0.00000 

1.05000 

0.00004 
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0.00281 
0.00466 
0,009*7 
0,01719 
0.Q236I 
0.03919 
0.06332 
0.06265 
0.12846 
0.11677 
O.IOS55 
0.09198 
0.07297 
0,06222 
0.04542 
0.03156 
O.C2502 
O.0I6II 
0.00993 
0.00734 
0.00422 
0.00233 
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0.00064 
0.00041 
0. 00027 
0.00013 
0.00006 
0.00000 

- " -
- " -
- " -

1.16619 

"0 .00004 

O.OOOHO 

0 . 0 0 2 6 7 

0 , 0 0 1 1 0 

0 , 0 0 6 8 3 

0 . 0 1 5 8 3 

0 , 0 2 1 5 5 

0 , 0 3 6 3 0 

0 .05606 

0 . 0 7 2 6 6 

O.II026 
0.16956 
0.15581 
0.12991 
0.10214 
0,06673 
0,06291 
0,043*7 
0.03430 
0.02208 
0.01353 
0.00998 
0.00673 
0.00315 
0.0C2I8 
O.0OII3 
0.00066 
0.00037 
0.00017 
0.00006 
0.00005 
0.00002 
O.OOOOI 
0.00000 

M 
0.03381 
O.I500O 
0.26619 
0.33381 
0.45000 
0.56619 
0.63381 
0.76000 
0.86619 
0.93381 
1.05000 
:.16619 
I.23381 
1.35000 
1.46619 
1.63381 
1.65000 
1.76619 
1.63381 
1.950OO 
2.06619 
2.13381 
2.26000 
2.36619 
2.43361 
2.55000 
2.66619 
2.73381 
2.85000 
2.96619 
3,03381 
3.15000 
3.26619 
3.33361 

I.2330I 

0.00004 
0.00077 
0.00257 
0.00422 
0.00842 
0.01500 
0.02033 
0.03309 
0,05217 
0,06730 
0.10275 
0.15176 
0.19617 
0.16113 
0.12695 

.•.0754 
0.C7776 
3.05355 
0.01220 
0.027C7 
0.01667 
0.01221 
0.00699 
0.00364 
0.00266 
0.00137 
0.00066 
0.00046 
0.00021 
0.00009 
0.00006 
O.U0O02 
O.OOOOI 
0.00000 

I.35C0O 

0.00004 
0.00(772 
0.00236 
0.00387 
C.C0766 
0.01352 
0.01822 
0.02936 
0.0)681 
0.05875 
0.06891 
0.13298 
0.16608 
0.24620 
0.19033 
0.16119 
0.11607 
0.C795I 
0,06245 
0.03983 
0.02436 
0.01795 
0.01023 
0.00561 
0.00388 
0;0C200 
0.00099 
0,00066 
0.00030 
0.00014 
0.00008 
0.00004 
0.00001 
0.00000 

1.46619 

0.00003 
0.00066 
0.00214 
0.000*9 
0.00687 
0.01203 
0,0161* 
0.02577 
0,03987 
0.05089 
0,07637 
0,11321 
0.14168 
0.20608 
0.30114 
0.25331 
0.18063 
0.12330 
0.09660 
0,06133 
0,03732 
0.C2746 
0.01563 
0.00655 
0.00692 
0.00304 
O.0O16I 
0.00098 
0.00046 
0.00021 
0.00013 
0.00005 
O.0OOC2 
0.00000 

I.5338I 

0.00003 
0.00061 
0.00200 
0.00926 
0.00641 
0.01118 
0.01495 
0.02378 
0.03663 
0.04662 
0.06967 
0.10286 
0.12640 
0.18674 
0.27102 
0.33509 
0.23664 
0.16221 
0.12692 
0.06039 
0.04881 
0.03587 
O.0204* 
0.01115 
0.00/771 
0.00396 
0.00196 
0.00126 
0.00060 
0.00027 
0.00017 
0.00007 
0.00003 
0.00000 

I.650C0 

O.OOOCB 

0.0005* 
0.00176 
0.00287 
0.00662 
0.00976 
0.0I30I 
0.02057 
0.Q3I43 
0.03986 
0.06916 
0.08675 
0,10797 
0.16636 
0.22474 
0.27760 
0.39625 
0.26612 
0.20918 
0.13210 
0.07992 
0,05856 
0,03328 
0,01814 
0,01252 
0,00643 
0.00318 
0.002 07 
0.00097 
0.00044 
O.O0027 
O.OOBII 
0.00005 
0.00000 

I.766I9 

0.00002 
0.00047 
0.00153 
0.00249 
0.00*86 
0.00B39 
0.0III6 
0.01760 
0.02676 
0.03382 
0.04984 
0.C7269 
0,09017 
0.12986 
0.18602 
0.22874 
0.32512 
8.46020 
0.36921 
0.22641 
0.13602 
0,09945 
0,05631 
0.03072 
0.02121 
0,01065 
0.00536 
0.00350 
0.00163 
o.ooaD 
0.00045 
0.00019 
0.00008 
0,00000 

I.8338I 

0.0OO02 
0.00043 
0.00140 
0.00226 
0.004*3 
0.00765 
0.01016 
0.0159* 
0.02*25 
0.03062 
0.04503 
0.06538 
0.06097 
0.II627 
0.16608 
0,20395 
0,28908 
0,10937 
0,19833 
0,31300 
0,16640 
0.13772 
0.C77S5 
0.04240 
0.02925 
0.01497 
0.00739 
0.00482 
0.00225 
O.OOI01 
0.00062 
O.0O027 
0,00011 
0.00000 

1.95000 

0.00002 
0.00037 
0.0OII9 
0.00153 
0.00376 
0.00647 
0.00667 
0.01340 
0.02026 
0.C2553 
0.03743 
0.05433 
0.06706 
0,09672 
0,1,3613 
0.16676 
0.23567 
0.33161 
0,10)05 
0,56176 
0,33858 
0,24768 
0,13972 
0.(7/585 
0.05226 
0.02682 
0.01321 
0.00861 
0,00401 
0,00181 
0,00112 
0,00018 
0.00020 
0,00000 

2.06619 

0.00002 
0.00031 
0.00100 
0.00163 
0.00315 
0,00511 
0.0C7I6 
0.01117 
0.01684 
0.02116 
0.03092 
0,01462 
0.05500 
0.07849 
O.IllOB 
0.13671 
0.19112 
0.26823 
0,32600 
0,45385 
0.63150 
0.15465 
0.25939 
0.11062 
0.09678 
0.01949 
0.02448 
0,01592 
0.00742 
0,00334 
0,00207 
0,00068 
0,00036 
0,00(21 

2.I338I 

O.OOOOI 
0.00028 
0.00050 
0,00146 
0.00283 
0.00485 
0.00642 
O.OI 000 
0.01506 
0.01890 
0.(2757 
0.03971 
0.04890 
0.069'/1 
0.09856 
0.12030 
0.16869 
0.23665 
0.28713 
0,10013 
0,51836 
0,67011 
1,37755 
0,20115 
0.11066 
0.C7190 
0.03552 
0.02318 
0,01078 
0,00485 
0,00300 
0,00128 
0,00053 
0,00031 

2.25000 

O.OOOOI 
0.00023 
0.00(175 
-0.00121 
0.00233 
0.00100 
0,00528 
0.00821 
0.01233 
0.01516 
0,02250 
0,03231 
0.03976 
0.05611 
0.(77960 
0.05731 
0,13626 
0,19010 
0,23062 
0,32065 
0,11108 
0,53552 
0,73552 
0,39867 
0.27109 
0.11004 
0,06503 
0.04507 
0,02100 
0,00916 
0.005B5 
0.0(250 
0.00103 
1,00060 

2,36619 

0.00001 
0,00019 
0.00061 
0,00099 
0,00191 
0.00326 
0.00131 
0.00669 
0.01003 
0.01256 
0.01821 
0,02616 

•0.03212 
0,01550 
0,06106 
0.07802 
0.I09I6 
0,15/15 
0.18165 
0,255B9 
0.35352 
0.12661 
0,58006 
0,79897 
1,51110 
0.28100 
0.13855 
0.09031 
0.04223 
0.01902 
0.01177 
0.001503 
i.OC.:(77 
0.0012/ 
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Table 10 (continued) 

2.133B1 2.55000 2.6(619 2.73381 2.65000 2.96619 3.03381 3.I500X) 3.26619 3.33381 3,15000 3,56619 

0 ,03381 

0 , 1 5 0 0 0 

0 . 2 6 6 1 9 

0 . 3 3 3 6 1 

O.150O0 

0 , 5 6 ' , I S 

0 , 6 3 3 f l 

0 , 7 5 0 0 0 

0,P66IO 

0 . ' . J .Bl 

1 .05000 

I . 1 6 6 1 9 

! . . l l f ! 

; . 150W 

l . - ' . r i o 
I . 5 ) 1- i 

I.(.5{.'«-' 

! . 7 6 b I 5 

! .B-I)BI 

I . 5 5 0 0 0 

2 . 0 . 6 1 9 

2 , 1 3 3 8 1 

/ . 2 5 0 0 0 

2 , 3 6 6 1 9 

2 . 1 3 3 8 1 

2 , 5 5 0 0 0 

2 . 6 6 6 1 9 

2 . 7 3 3 6 1 

2 . 8 5 0 0 0 

2 . 9 6 6 1 9 

3 . 0 3 3 8 1 

3 . 1 5 0 0 0 

3 . 2 6 6 1 9 

3 . 3 3 3 8 1 
3 . 4 5 0 0 0 

3 . 5 6 6 1 9 

3 . 6 3 3 8 1 

3 . 7 5 0 0 0 

3 . 6 6 6 1 9 

3 . 9 3 3 8 1 

4 . 0 5 0 0 0 

4 . 1 6 6 1 9 

4 . 2 3 3 6 1 

O.OOOOI 

0 .0O?I7 

0 .00051 

0 .00088 

0 ,00169 

0 .00269 

0 , 0 0 ) 6 2 

0 .00552 

0 , 0 0 6 6 6 

0 .01109 

0 ,01609 

0 . 0 2 3 0 5 

O.CtB-iO 
0 , 0 ) 0 0 2 

0 ,05632 
0 ,06B55 
0 ,09582 

(1.I33B1 

(1.16151 

0 . 2 / 1 1 6 
0 , 10567 

0 , 3 7 3 2 0 

0 . 5 1 2 2 1 

0 . 6 9 2 1 0 

0 ,83559 

0 ,12619 

0 ,21063 

0 , 1 3 7 3 5 

0 , 0 6 1 1 3 

0 ,02899 

0 . 0 1 7 9 3 

0 . 0 0 7 6 7 

0 .00317 

0 . 0 0 1 8 6 

0 . 0 0 0 7 3 

0 . 0 0 0 2 8 

0 . 0 0 0 0 0 

- " _ 
- " -
- " -
- " -
- - -
- • -

O.OOOOI 

0 .00013 

0 , 0 0 0 ) 1 

O.OOor/1 

0 .00136 

0 , 0 0 2 3 3 

1.003(7/ 

0 . 0 0 ) 7 6 

0,0(7713 

0,0OB9I 

1,01291 

1,01816 

1 , (2265 

0 ,03199 

1 .04191 
0 .05169 
0 , (7 /6 )1 
0 ,10622 

0,12B56 
0 ,17817 

0 .24566 

0 . 2 9 5 9 0 

0 ,10603 

0 ,55122 

0 ,66119 

0 . 8 9 3 6 5 

0 ,11(7/0 

0 , 2 8 6 2 0 

1 ,13178 
0 . 0 6 0 9 0 

0 . 0 ) 7 8 3 

0 , 0 1 6 1 8 

0 , 0 0 6 7 0 

0 . 0 0 3 9 5 

0 . 0 0 1 5 5 

0 .00059 

0 . 0 0 0 3 3 

0 .00012 

0 .00004 

0 . 0 0 0 0 0 

- " -
- " -
- " -

0 .00001 

O.OOOII 

0.00O33 

0 .00057 

0 .00109 

0 .00186 

0 .0C246 

0 . 0 0 3 6 0 

0 .00669 

0 . 0 0 7 1 1 

0 .01029 

0 .01471 

0 . 0 1 6 0 3 

0 ,025*4 

0 . 0 3 5 7 0 
0 . 0 4 3 4 0 
0 .06052 

0 . 0 6 1 I B 

0 , 1 0 1 6 1 
0 ,11053 

0 , 1 9 1 9 3 

0 . 2 3 1 1 6 
0 .32102 

0 .13826 

0 . 5 2 1 0 8 

0 . 7 0 6 8 1 

0 ,91899 

0 ,61652 

0 ,29069 

0 . 1 3 1 6 5 

0 . 0 0 1 7 1 

0 ,03515 

0 . 0 1 1 5 7 

0 . 0 0 6 6 0 

0 . 0 0 3 3 8 

0 .00129 

0 .00072 

0 .00C26 

0 . 0 0 0 0 9 

0 . 0 0 0 0 0 

- " -
- " -
„ . „ 

0 . 0 0 0 0 0 

0 .00009 

0 .00031 

0 , 0 0 0 5 0 

0 .00096 

0 . 0 0 1 6 3 

0 .0C215 

0 . 0 0 3 3 3 

0.0O497 

0 .00621 

0 .00699 

0 . 0 1 / 8 1 

0 , 0 1 5 7 1 

0 .02221 

0 , 0 3 1 1 1 

0 .037B6 
0.0527B 

0 ,07336 
0 , 0 8 6 7 7 

0 ,12279 

0 .16912 

0 . 2 0 ) 5 0 

P,2BCI2 
0 ,38192 

0 , 1 5 6 7 ) 

0 ,61773 

0 . 8 2 3 9 1 

0 . 9 7 9 3 8 

0 . 1 5 9 2 0 

0 . 2 0 8 6 3 

0 . I 2 9 6 I 

0 .05572 

0 . 0 2 3 1 8 

0 .01369 
0 , 0 0 5 4 0 

0 , 0 0 2 0 6 

0 . 0 0 1 1 6 

0 .00042 

0 . 0 0 0 1 5 

0 . 0 0 0 0 0 

- " -
- " -
- " _ 

0 , 0 0 0 0 0 

0.000(77 

0 .00024 

0.00OJ9 

0 .00076 

0 .00129 

0 . 0 0 1 7 0 

0 .00263 

0 . 0 0 3 9 3 

0 . 0 0 4 9 1 

0 . 0 0 7 1 0 

0 .01013 

0 .01242 

0 . 0 1 7 6 0 

0 .02466 
0 . ( 2 9 8 1 

0 , 0 ) 1 5 8 

0 ,05777 

0,069B7 

0 ,05666 

0 .13339 

O. I606I 

0 . 2 / 0 3 6 

0 ,30119 

0 .36012 

0 , 1 6 7 8 1 

0 .65601 

0 .77511 

1 .02816 

0 . 1 6 6 9 6 

0 . 2 9 1 6 8 

0 , 1 2 5 6 1 

0 . 0 5 2 5 5 

O.Q3I13 

0 .01229 

0 . 0 0 1 7 0 

0 . 0 0 2 6 5 

0 .00096 
0 .00034 

0 . 0 0 0 0 0 

- • -
- " -
- " -

0 . 0 0 0 0 0 

0 . 0 0 0 0 6 

0 . 0 0 0 1 9 

0 . 0 0 0 3 1 

0 ,00059 

0 .00101 

0 .00134 

0 . 0 ( 2 0 7 

0 , 0 0 3 0 6 

0 . 0 0 3 8 6 

0 .00557 

O.OUBi 

0.(K1974 

C. 01-373 

0 .01925 
0 . ( 2 3 3 9 

0 . 0 3 / 6 1 
O.0U531 

0 , 0 5 1 6 0 

0 ,07582 

0 , 1 0 ) 6 3 

0 , 1 / 6 0 7 

0 , 1 7 1 0 6 
0 .23669 

0.2B3B6 
0 .38132 

0 .51802 

0 .61122 
0 . 8 1 4 1 5 

1 .07219 

0 . 6 7 0 4 8 

0 . 2 9 0 4 6 

0 . I 2 I 6 5 

0 .07219 

0 . 0 2 6 7 3 

0 .01102 

0 .00622 

0 .00226 

0 . 0 0 0 6 0 

0 . 0 0 0 1 3 

0 .00014 

0 . 0 0 0 0 5 

0 . 0 0 0 0 0 1 

0 . 0 0 0 0 0 

0 .00006 

0 .00017 

0 .00027 

0 .00052 

0 .00068 

0 . 0 0 1 1 6 

O.OOI'/9 

0 . 0 0 2 6 7 

0 .00331 

0.101S2 

1.006B9 

o,o(m3 
0 ,01189 

0 .QI667 

0 . O ' ( i ' 6 
0 , ( 2 B 2 1 

0 . 0 3 9 2 6 

1 .0( ' /19 

1.065T,: 

o.o;.(7/2 

0 . 1 0 9 3 0 
0 , 1 5 0 1 9 

0 .20551 

( 3 . / 1 6 I 6 

0 . 3 3 1 8 0 

0 . 1 5 1 0 0 

0 .53511 

0 , 7 I 3 I 1 

0 , 9 1 0 2 1 
1 ,06611 

0 . 1 7 6 4 5 

0 .20042 

0 . 1 1 9 1 1 

0 . 0 4 7 6 3 

0 . 0 1 6 2 8 
O.OI 031 

0 .00377 

0 . 0 0 1 3 3 

0 .00072 

0 . 0 0 0 2 * 

0 . 0 0 0 0 8 

0.00(X)0 

0 ,00000 

0 ,00001 

0 ,00013 

0.00C21 

0 . 0 0 0 1 0 

0 . 0 0 0 6 8 

0 . 0 0 0 9 0 

0 ,00135 

0 ,00208 

0 . 0 0 2 6 0 

0 , 0 0 3 7 5 

0.0O536 

0 . 0 0 6 5 6 

0 ,00925 

0 . 0 1 / 5 7 

0 ,01577 

0 , 0 2 1 9 8 

0 .03057 

0 . 0 ) 6 9 9 

0 ,05126 

0 .07076 

0.065-34 

0 . 1 1 7 3 5 

0 ,16087 

0 . 1 9 2 8 5 

0 . 2 6 2 3 6 

0.-355*5 
0 . 1 2 1 6 0 

0 ,56369 

0 . 7 1 6 1 3 

0 . 8 7 3 1 5 

I . I T J C 7 

0 . 1 7 9 1 8 
0 .28612 

0 , 1 1 * 6 0 

0 .0***7 

0 . 0 2 5 2 1 

0 .00924 

0 , 0 0 3 2 8 

0 . 0 0 1 7 7 

0 .00059 

0 . 0 0 0 1 9 

0 . 0 0 0 0 0 

O.OOOOO 

O.0OOO3 

1 .00010 

0 .00016 

0 .00031 

0.0OO53 

U.OOO/O 

O.OOIOH 

0.00161 

0.OC201 

P .0(V51 

01.00(15 

0 . 0 0 5 0 8 

0 .0C7I6 

0 . 0 1 0 0 5 
0 . 0 1 / / ! 
0 . 0 1 7 0 1 

0 .02371 

0 . 0 : 6 7 0 

(1.03979 

0 . 0 5 5 0 6 
0 . 0 6 6 * 0 

0 .09112 
0 .12517 

0 .15059 

0 . 2 0 5 3 1 

0 . 2 7 6 1 5 
0 . 3 3 1 1 6 

0 . 1 1 5 1 5 
0 .59099 

0 . 6 9 1 3 6 

0 . 9 0 5 8 8 

1 .16531 

0 .69859 

0 . 2 8 2 0 6 

0 . 1 0 9 9 1 

0 . 0 6 2 5 6 

0 . 0 2 3 1 5 

0 . 0 0 6 2 5 

0 . 0 0 1 4 6 

0 . 0 0 1 5 1 

0 . 0 0 0 4 9 

0 . 0 0 0 2 5 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0.00(XX) 

O.OOIOO 

0 . 1 0 1 0 0 

0 . 0 0 0 6 0 

0 .00093 

0 . 0 0 1 3 8 

0 .00173 

o.oaso 
0.001357 

{' .00)37 

0 . 0 0 6 1 6 

0 .00864 

o.o:o5i 
0 ,01166 

0 , 0 - 0 ) 0 

(I. (21-/2 

0 .03129 

0 . 0 ( 7 1 5 
0 .05729 

0 .C78S1 

0 . 1 0 6 1 3 

0 ,13022 

0 . 1 7 7 d 1 

0 ,21119 
0 .20776 

0 . 3 8 7 1 0 

0 , 5 1 5 3 3 

0 . 6 0 6 3 6 

0 .79477 

1 . ( 2 6 4 8 

I . I 8 I 9 5 

0 .47952 

0 . 1 8 7 9 5 

0 ,10719 

0 .03984 

0 . 0 1 4 2 5 

o.oom 
0 .00262 

0 . 0 0 0 6 6 

0 .00044 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

O.OOOOO 

0 . 0 0 0 0 0 

0 , 0 0 0 0 0 

0 ,00016 
0,00(7/1 

0 . a l l 06 

0 . 0 0 1 3 3 

0 .00192 

0.0C271 

0.O1336 

0 . 0 0 4 7 3 

0 . 0 0 6 6 5 

o.oa>oi' 
0 . 0 I 1 2 B 

0 .01571 

1 .1190) 

1 . ' 2 6 1 4 

0 . 0 3 6 6 5 

0 . 0 1 1 2 8 

0 .06112 

0 ,08116 

0 ,10119 

0 , 1 3 6 1 5 

0 , 1 8 8 5 1 
0.22510, 

0 .30366 

0 ,10709 
O,1B0t3 

0 . 6 3 1 7 8 

0 . 8 2 / 5 2 

0 . 9 5 1 6 7 

1 .20696 

0 .17717 

0 .27392 

0 . 1 0 2 1 3 

0 , 0 3 7 ( 7 

0 . 0 2 0 1 3 

0 , 0 0 6 8 8 

0 ,00227 

0.0O117 

O.OOOOO 

0 . 0 0 0 0 0 

0 . 0 0 ) 0 0 

O.OOOOI 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0 . 1 0 0 3 5 

0 . 0 0 0 5 1 

0 .00061 

O.OOI 01 

O.OOI16 

0 . 0 ( 2 0 9 

O.O0257 

0 .00362 

0.0O5O9 
1.0161'J 

0 .00065 

O.OL/O, 

0 . ( ) I16I 

C.Q2C32 

0 . ( 2 B I B 

0 . 0 3 1 1 0 

0 . 0 1 7 1 5 

0 .06506 

0 . (7/B37 

0 . 1 0 7 1 5 

0 . 1 1 6 7 5 
0 .17551 

0 . / 3 7 5 6 
0 . 3 I S 1 0 

0 . 3 7 7 9 3 

0 .50155 
0 .65594 

0 .76313 

0 . 5 7 6 8 5 

1 .22761 

0 . 7 0 8 6 8 

0 . / 6 7 8 7 

0 .05762 

0 . 0 5 3 3 8 

0 . 0 1 8 1 1 

0 , 0 0 6 1 3 

0 . 0 0 3 1 6 

I 

:.23381 
1.35000 
1.16619 
1.53381 
1.65^- 1 
1.76619 
I.83381 
1.96000 
2.06619 
2.13381 
2,25000 
2,36619 
2,13381 
2,55000 
2.66619 
2.73381 
2.89000 
2.96619 
3.03381 
3.15000 
3.26619 
3.33381 
3.46000 
3.66619 
3.63361 
3.75000 
3.86619 
3.93381 
4,05000 
4.16619 
4.23381 
4,35000 
1,16619 
1,53381 
4,65000 
1.76619 

3.63381 3.75000 3.86619 3.933BI 1.05000 1.16619 

4,83381 
1,95000 
5.06619 
5,13381 

0.00219 
0.00305 
0.C0131 
0.00529 
0,00739 
0.01031 
0.0I25I 
0.01739 
0,02115 
0,02921 
0.04047 
0.05591 
0.06736 
0.09259 
0.12663 
0,15162 
0.20567 
0.27719 
0.^32850 
0.43736 
0,57101 
0,66910 
0.86191 
1.09000 
1,23772 
0,17113 
0.17287 
0,09184 
0,03294 
0,01100 
0.00572 
0,00161 
0,00055 
0,00027 
0,00008 
0.00002 
0.00000 
0.00000 
0.00000 
0.00000 

0.00166 
0 . 0 * 3 * 
O.QCDiQ 

0.00402 
0.00562 
0.00786 
0.00953 
0.01328 
0.01816 
0.02236 
0.Q3I0I 
0.04295 
0.05181 
0.07139 
0.098C2 
0.11767 
0.16001 
0.21655 
0.25715 
0.34:-8 
0.45591 
0.53384 
0.69159 
0.86405 
1.01093 
1.25196 
0.465*1 
0.25720 
0.09009 
0.03051 
0,01593 
0,00509 
0,00157 
0.00078 
0.00023 
0,00006 
0.00000 
0.00000 
0.00000 
O.OOOOO 

0.00125 
0.00177 
0.00249 
0.00304 
0,00426 
0,00695 
0.00723 
0,01009 
0,01106 
0.01701 
0.02367 
0.03283 
0.03968 
0,06161 
0.C755I 
0,09076 
0,12109 
0,16657 
0,20086 
0.26993 
0.35929 
0.12227 
0.55332 
0,71227 
0.82 Oil 
1.02896 
1.26250 
0.70111 
0.21968 
0.08512 
0.01506 
0,01152 
0.00152 
0,00225 
0.00066 
0.00019 
0.00000 
0,00000 
0,000X1 
0,00000 

C.00106 
0.00150 
o.oceii 
access 
0.00361 
0.00506 
0.00615 
0.00858 
0.011197 
0.01152 
0,02020 
0.02801 
0,03392 
0.016S2 
0,06471 
0.07791 
0.10682 
0,11511 
0.17357 
0,2338* 
0.31216 
0.36811 
0.18310 
0.62658 
0.72376 
0.91475 
1.13271 
1.26704 
0.45415 
0.15650 
0.08276 
0,02691 
0,00812 
0,00421 
0,00125 
0,00036 
0.00000 
0.00000 
0.00000 
0.00000 

0.00079 
0.00II2 
0.00158 
0.00193 
0.00271 
0.00380 
0.00163 
0.006*8 
0.00905 
0.01098 
0.01532 
0.02132 
0.02582 
0,03582 
0.01953 
0.05977 
0,08211 
0.11212 
0.13161 
0,18223 
0.214'8I 
0,26950 
0,38309 
0.50064 
0,58257 
0,74215 
0,93142 
1.05230 
1.27231 
0.44560 
0.23771 
0.07823 
0.02485 
0.01250 
0.0O374 
0.00108 
0,00051 
0.00014 
O.OOOO) 
0,00000 

0.00059 
0.00084 
O.OOlIB 
0,0014* 
0.00203 
0.00285 
0.00347 
0.00186 
0.00681 
0.00827 
0,01166 
0,01613 
0.01957 
0,02722 
0,03775 
0,01561 
0.06294 
0,0B65I 
O.I 0384 
0.11110 
0.19098 
0.22661 
0,30189 
0.39785 
0,16131 
0.60006 
0.75983 
0.86538 
1.06366 
1.27165 
0.68667 
0.22975 
0.07385 
0.03756 
O.OI 135 
0.00331 

0.00159 
0.0001* 
0.00012 
O.OOOOO 

1 . 2 3 3 8 1 1 . 3 5 0 0 0 

0 . 0 0 0 1 9 

0 .00C70 

0 .00099 

0 . 0 0 1 2 1 

0.0OI7I 
0.002*0 
0.00292 
0.00111 
0.00575 
0.0(7700 
0.00980 
0,01369 
0.01662 
0.02315 
0,03218 
0,03891 
0,05380 
0,(77111 
0,06908 
0,12162 
0,16193 
0,19611 
0,26222 
0,31711 
0.10638 
0.52695 
0,67395 
0,76917 
0,95388 
1,15466 
1,27177 
0,13113 
0.13988 
0.C7I36 
0.02181 
0.00640 
0.00306 
0,00085 
0,00(23 
0,00000 

o.ooom 
O.0OCK)O 

0 . 0 0 0 0 0 

0 . 0 0 0 9 0 

0 .00127 

0 . 0 0 1 7 8 

0 . 0 0 2 1 8 

0 , 0 0 3 0 6 

O.0O43O 

0 , 0 0 5 2 3 

0 .00734 

0.01(28 
0.01250 
0.01747 
0.02436 
0.02952 
0.04094 
0,06660 
0.06819 
0.09359 
0.12758 
0,15237 
0.20493 
0.27325 
0.32139 
0.42(771 
0.51280 
0,62610 
0,78167 
0,96566 
1,07761 
1,27305 
0,12111 
0.21692 
0.06719 
0.02 006 
0.00972 
0.00273 
0.00074 
0.00034 

0.00000 
0.00000 
0.00000 
0,00066 
0.00093 
0.00132 
0.00161 
0.0(827 
0.00319 
0.00389 
0.00547 
0.00769 
0.00936 
0.01312 
0.01834 
6. .(32226 
o.o3lra 
O.O4306 
0.05199 
0.07161 
0,09822 
0.lf7'55 
0.15933 
0, 21397 
1,252'/9 
0,33363 
0.13161 
0.50376 
0.61152 
0.79880 
0.899B3 
1.0B3'/1 
1.26911 
0.65961 
0.20875 
0.06318 
0.03101 
0.00660 
0.00211 
O.OQIII 

0.00000 
0.00000 
0.00000 
0.00066 
0.00078 
0.00II0 
0.00135 
0.00190 
0.00268 
0.00327 
0.00460 
0.00647 
0.0C789 
0.01108 
0.01553 
0.01B87 
0.0:631 
0.03663 
0.0)131 
0.06120 
0.rt->109 
0.10096 
0.13728 
0.I850I 
0.2IE21 
0.29165 
O.3B(107 
0.11277 
0.56669 
0,71370 
0.80610 

1.155/2 
1.26596 
0,10110 
0.12369 
0.0609? 
0.01751 
0,00182 
0.00221 

A(XXX)0 
0.00000 
O.OOOX) 
0,00010 
0.00057 

c.oooei 
0.00099 
o,,X)lio 
0.00198 
0.0(S41 
0.00341 
0,00)80 
0,00586 
0,00825 
0,01160 
0.01111 
0,01979 
0,02765 
0,03352 
0.0)652 
0,06121 
0,07728 
0,10576 
0,11155 
0.17071 
0.22B21 
0,30173 
0.352'/7 
0.15653 
0,5B103 
0.6(>121 
O.B1819 
0.58811 
1.06957 
1.25910 
0.39313 
0.19586 
0.06717 
0.01602 
0.00750 

0.00000 
O.OOOOO 

O.OOOOO 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0 . 0 0 0 0 0 

0.00C72 

O.OOI 02 

0 . 0 0 1 1 5 

'1.00177 

O.Oa.51 

0 .00354 

0 . 0 0 1 3 3 

0 .00612 

0 .00863 

0 .01053 

O.OIIBI 

0.020/6 
0.025/2 
0.W517 
0.01880 
0,05890 

o.oeo«;9 
11.11(10.8 
0.I321B 
0.17BI1 
1./3710 
0.27919 
0.361B1 
0.16586 
1.51015 
0.67753 
1.82937 
0.92121 
I.09KB 
1.25070 
0.62927 
0.IB784 
0.05358 
0.02539 



Table 11 Table of the function f (x,x ) for graphite, T 300°K. 
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Table 11 (continued) 
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Table 12 Table of the function g . (x -x) for graphite, T 300°K. 
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Table 13 Table of the function f (x,x ) for graphite, T 300°K. 
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Table 13 (continued) 

w 

\^„ 
'N 

0 . 0 

U.3 

o.e 
P . S 

l u 

. . 5 

: . 8 

c . l 

<;.1 
, r . 7 
3 . 0 

3 . 

. 6 

.' 

, • . ( S t ! 

r.oootxxioc 
- 0 . 0 0 0 0 0 1 5 7 

- 0 . 0 0 0 0 7 8 7 6 

-O.0OO(5.f03 

-C.0C:!;<'395 
- 0 . 0 ^ , r r - 7 I 

- ( . O I 3 3 5 0 : 8 
-0.0313'-!)P7 

- 0 . 0 6 5 7 0 1 3 3 

0 .05835511 
O.0E3IO»,:3 
0.05^331.^9 

0 .05 .S '1285 

0.05,r23193 

- " -
- • -

2 . 5 5 0 * 

O.OOOOCflOO 

-aCC<-U036S 

- 0 . 0 ) 0 0 6 3 1 5 

-Ota tW36278 

- a o « D 6 1 3 7 

- O . 0 O l l I t t J S 

-0 .01(779250 

- 0 . 0 6 5 5 9 8 1 6 

- 0 . 0 5 1 1 1 5 2 1 

0 .06178109 
0 .06192671 
0 . 0 5 3 1 OBI 6 
0 .0532^873 

0 . 0 6 3 , r l 2 2 8 

- • -
- • -

^.U^6V 

0 . 0 0 0 0 0 0 0 0 

-C.0O0O0tS2 

- 0 . 0 0 0 0 6 51 

- 0 . 0 0 0 2 9 0 5 3 

- 0 . 0 0 1 0 9 1 6 2 

- 0 . 0 0 3 2 9 7 2 5 

- 0 . 0 0 8 7 1 1 9 6 

- 0 . C t 0 b I 5 6 1 

- 0 . 0 ' ( i ' 2 / 6 0 

0.(77t9SI^'( 
0.057^^ir/05 
o . r ' i . o i / , - ' 

.* t )('(f*-f 
0 . a J 6 I 3 3 f 

. • _ 

2.96519 

0.00000000 
-0.00000:56 
-(ft. 0000(127 
-0.00025185 
-0.00095888 
-0.00^90069 
-3.0076M361 
-0.0181(339 
-11.01015223 
-0.0 r^it'r 

. W<-'..3'( 

l.'»4532'46 

n.0^i96(!00 

O.Cf,)9I3b5 

o.05J'.if u; 

0.00000000 

-.,.CO00C2Q3 

-0. '»XX)3521 

-o.or«;03C5 

-0.00076566 

-r.00232261 

-i\oof>i7e<=i 
- .0'-(93996 
- 1.0(300060 
- 1.06463)32 

0.16115128 
O.oiievco 
D. 0615 0662 
' ' 0'11'<859 
0.06137'% 

0.00000000 
-0.O0000I6I 
-0.00002798 
-O.OOOI6I32 
-0.00060911 
-0,00185110 
-0.00195551 

-0.01207239 
-0.027CtI33 
-0.05133652 

(^.Cr2ii6950 
".067t36IE 
0.05i&3-(T' 
0.05167595 
r.ir455630 

O.OO0CO0O0 
0.00000000 

-0.00002296 
-0.000I3WI 
- a 00053150 
-aOQI 62229 
-o.om3i9es 
-0.13 061710 
-O.0B10OI31 
-0.01B953I3 
-O.OW 32166 

0.06B79667 
0.(5518595 
0.05l77bj3 
O,0*^7'(l9'^ 

COOOITTTO 
0.00000000 

- a o o o t a e i o 
- a o a s n o o r 
-0.00012023 
- a 00123711 
- a . 0 0 . £082 
-a.00t651BI 
-u . 01952189 
-U'K(T725* 
-^ .07 J-31II 

.Ob- ' ' . DO. 
a£E6'-«i3I 
0.05S:0<«I 
C.056032(.C 
C.065 

> 
0 . 0 
0 . 3 

0 . 6 

0."= 

1.2 

1.5 

1 .8 

2 . 1 

2 . 1 
2 . 7 

).̂  
3 . 3 

3 . 6 
T^q 

1 . 2 

1 .5 

1 .P 

5 . 1 

3 .26019 

0 . 0 0 0 0 0 JOO 

0 .00000000 

- 0 . 0 0 0 0 1 1 2 3 

-O.C00Od659 

- 0 . 0 0 0 3 3 1 D 

- ' . • ^0101772 

- P . 0(V75572 

-O.O0C81567 

- 0 . n l 5 e a / 6 5 
- 0 . 0 3 3 6 3 9 6 7 

- 0 . 0 6 3 1 1 1 5 0 

0 .06689785 

0 .06720P10 

0 .056 1665 

0 .05513715 

0 .O55I2509 

- • -

3 . 3 3 3 8 1 

0 . 0 0 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 0 0 

-O.00OOI2J6 

- 0 . 0 0 0 0 7 5 1 7 

-O .O00 t8775 
-0.000fc,°5e7 

- 0 . 0 0 ^ ( 0 5 9 1 

- o . o o 6 0 ( i r o o 

- O . O I 3 0 1 9 I I 

- 0 . 0 3 0 0 0 1 5 6 

- 0 . 0 5 7 7 2 1 3 1 

- 0 . 0 8 9 8 9 2 9 7 

0 .05P3H0I2 

0 . 0 5 5 5 0 9 5 0 

0 .05521696 

0 . 0 5 5 1 9 6 5 8 

- " -
- • -

3 . 1 5 0 0 0 

0 .00000000 

O.OOOOO'iOO 

- 0 . 0 0 0 0 0 9 6 1 

- 0 . 0 0 0 0 5 8 7 6 

-O.OO022627 

- 0 . 0 0 0 6 9 5 6 7 

- 0 . 0 0 1 8 9 8 1 6 

- 0 . 0 0 1 7 7 0 1 1 

- 0 . 0 I I 2 0 6 I 1 
- 0 . ( E 1 5 I 7 6 I 

- 0 . 0 1 8 7 3 1 2 2 

- 0 . ( » I 6 0 5 7 0 

0 .06132076 

0 .05592IOI 

0 .05525371 

0 .06520337 

0 .06620066 

- " -

3.56619 

O-OO^XXXJOO 

- 0 . 0 0 0 0 0 0 1 1 

-0.0000<r/B9 
- 0 . 0 0 0 0 ) 6 0 1 

- 0 . 0 0 0 1 7 5 9 6 
- 0 . 0 0 0 6 1 1 1 1 

- 0 . 0 0 1 1 9 1 0 0 

-o.mjTi'.n: 

- 0 . 0 0 8 9 5 1 3 2 

- 0 . 0 1 9 9 0 0 1 " 

- 0 . 0 1 0 6 2 8 2 2 

- 0 . 0 7 2 0 1 2 3 6 

o . o e i e s o ' - ' " 

0 .05691916 

0 .05515867 

0 .06533151 

0 .05532715 

- " -

3.633HI 

p.noomooo 

-o.mimxno 

- 0 . o a s n o PI 

-11.00001975 

- n . 0 O 0 ) 6 i « o 
- 0 . 0 0 0 1 /fG7 

- 0 . o c j l , ! n U 7 

- r . f K i ' 2 H i r o 
-n.O(T7"i05b 

- 0 . 0 ' 7 5 6 1 3 6 

- 0 . 0 ) 6 3 7 5 5 9 

- 0 . 0 6 6 3 2 7 ™ 

-n .0O31hr» 

O.057B8265 

0.055661OU 

0 .05615306 

0 .055110 ' - " 

^ 0 5 J 1 1 0 0 6 

) . 7 5 0 0 0 

O.POCKXXXIO 
0 .00000000 

- 0 . 0 0 0 0 0 1 1 0 

- 0 . 0 0 0 0 3 n-)5 

- ' 1 . 0 0 0 1 1 . n p 

- 0 . 0 0 0 ) f l 0 6 

- 0 . 0 0 1 0 . ^ n 

- n . o a f 5 7 ^ o i 
- 0 . 0 0 6 1 ' - 11 

-O.OI ' i IO ' 2 

(1. (V > R 7 ( J 6 1 

- n . 0 6 6 7 8 )5 

-O.0Be2(XV7 

0.06<"-i4^-''( 

n.055<:^ J 5 

0.066'(8f C 

0 .06645^ 6 

p . P 6 ' - 4 ' r 7 

• • . e i n i s 

o . c o r o o o o o 
p . o a i o o o o o 

- 0 . 0 0 0 0 0 0 8 0 

-O.OOOOflSI 
-o.oooon<-76 

-\"Xf^\i* 
-1 n (X7 '^0 ' i 

- .002CX3'«, 

-o.mtMyjO 

-xoiici'V't 

- D . a i IL 36 

- r . )4"8"f>L4 

-11, G«0 ^ 5 ' 8 
".lyri^liS 

f . o ' e ' - s - ' i " 

0 . 0 6 5 4 S I 5 

r .T6640662 
' » 5 4 0 2 1 3 

^ ' • l l ' - I 

n . n c x r t x w 
0 . 0 0 0 i > \ < \ 

o .o ixx» \y»3 

-C.CKVO'btl 
- 0 . 0 ( X \ ^ 4 l 6 

- 0 . 0 0 ( t ' i . i 5 
.IXXV. 44 . 

- D . O O I - ' . I I J 

- n . ( f x . . , , < i t 

-1 . 0 0 1 N ' I 7 

- o . a i i 6 r ; r 

- l \ 0 4 " l t ) I l -

- 0 . n ' /4/04t J 

- 0 . 0 5 4 5 8 , . 72 

0 .06727301 

0 . 0 6 5 6 0 3 3 ) 

0 .06546685 
n ^ ' b ^ r , ; ; 

\ < 0 

0 . 0 

C.3 

0 . 6 

0 . 9 

1 .2 

1 .5 

I . B 

2 . 1 

2 . 1 

2 . 7 

) . o 

3 . 3 

3 . 6 
3.t) 

4 . 2 

1 .5 

1 . 8 

5 . 1 

5 . 1 
K n 

1 . 0 5 0 0 0 

0 .00000000 

0 .00000000 

0 . 0 0 0 0 0 0 0 0 

- 0 . 0 0 0 0 0 9 6 0 

- 0 . 0 0 0 0 6 6 6 3 

- 0 . 0 0 0 1 7 5 9 9 

- 0 . 0 0 0 5 0 1 8 1 

- 0 . 0 0 1 3 2 8 6 8 

-0 .00-328150 

- 0 . 0 0 7 , 2 9 9 1 

- 0 . 0 1 7 2 3 3 9 1 

- 0 . 0 3 5 5 6 8 1 7 

- 0 . 0 6 1 9 7 1 9 6 

- 0 . 0 9 3 7 3 5 2 6 

0 .05853179 

0 .05587333 

0 . 0 5 5 5 I I 3 9 

0 .05519026 

- " -
- • -

1 . I 6 6 I 9 

0 . 0 0 0 0 0 0 0 0 

0 . 0 0 0 0 0 0 0 0 

0 . 0 0 0 0 0 0 0 0 

0 . 0 0 0 0 0 0 0 0 

- 0 . 0 0 0 0 2 0 1 3 

- 0 . 0 0 0 X 1 3 8 0 

- 0 . 0 0 0 3 7 1 6 3 

- 0 . 0 0 0 9 9 9 6 0 

- 0 . 0 0 : 6 0 1 3 1 

- 0 . 0 0 6 0 1 5 2 8 

- 0 . 0 I J 7 2 0 6 2 

- 0 . 0 2 9 0 2 3 7 1 

- 0 . 0 5 5 1 1 2 8 1 

- 0 . 0 8 ' r 7 2 9 3 5 

0 .05627911 

0 .05631577 

0 .05552613 

0 .05516813 

0 .05516597 
- • -

1 .23381 

0 .00000000 

O.OOOOOOOO 

0 . 0 0 0 0 0 0 0 0 

0 . 0 0 0 0 0 0 0 0 

- 0 . 0 0 0 0 5 7 3 9 

- 0 . 0 0 0 1 1 1 9 5 

-0 .000-36711 

-0.OOCB96I8 

-O.O0t; lR72I 

- 0 . 0 0 5 2 7 1 8 5 

- 0 . 0 H 9 5 8 8 9 

- 0 . 0 2 5 6 3 8 2 2 

- 0 . 0 5 0 0 3 0 8 7 

- 0 . 0 8 2 7 6 6 2 1 

- 0 . 0 9 1 3 1 7 1 8 

0 . 0 5 6 8 5 1 1 0 

0 .05563832 

0 .05553602 

0 .06553112 

- • -

1 . 3 5 0 0 0 

0 .00000000 

0 . 0 0 0 0 0 0 0 0 

0 .00000000 

0 . 0 0 0 0 0 0 0 0 

- 0 . 0 0 0 0 2 8 5 5 

- 0 . 0 0 0 1 0 0 7 7 

- 0 . 0 0 0 : 3 5 0 8 

- 0 . 0 0 0 6 2 6 0 1 

- 0 . 0 0 1 6 2 8 3 5 

- 0 . 0 0 1 0 9 9 6 8 

- 0 . 0 0 9 4 6 8 7 3 

- 0 . 0 2 0 0 8 0 3 2 

- 0 . 0 1 1 6 6 1 6 5 

-0 , (77321313 

- 0 . 0 9 8 2 6 9 7 6 

0 . 0 6 7 2 1 6 3 1 

0 . 0 5 5 7 I I 3 2 

0 . 0 5 5 1 5 0 1 5 

0 . 0 5 5 1 3 6 6 6 

- " -

1.46619 

0 .00000000 
O.OTOOnoOO 

0 . 0 0 0 0 0 0 0 0 

0 .00000000 

0 ,00000000 

- 0 . 0 0 0 0 0 1 1 6 

- 0 . 0 0 0 0 7 9 9 2 

- 0 . 0 0 0 3 8 5 0 9 

- 0 . 0 0 1 2 0 5 9 7 

- 0 . 0 0 3 1 1 5 5 5 

-0.0C73868X 

- 0 . 0 1 6 1 5 8 3 0 

- 0 . 0 3 1 0 8 6 6 3 

- 0 . 0 6 3 X 2 5 2 6 

- 0 . 0 9 1 7 1 6 5 0 

0 . 0 5 2 5 3 6 7 8 

0 .05610517 

0 .05551282 

0 .05517396 
- • -

1 . 5 3 3 M , 

0 . 0 0 0 0 0 3 0 0 

0 .00000000 

0 .00000000 

0 . 0 0 0 0 0 0 0 0 

0 .00000000 

0 .00000000 

- 0 . 0 0 0 0 1 I B S 

- 0 . 0 0 0 3 6 5 9 3 

-0 .00X06799 

- 0 . 0 0 2 7 9 0 2 0 

- 0 . 0 0 6 3 7 3 X 8 

- 0 . 0 I 1 3 7 B 8 8 

-0 .030203X9 

- 0 . 0 5 7 3 2 0 5 6 

- 0 , 0 9 0 5 0 9 0 2 

- 0 . 0 9 2 9 1 3 3 9 

0 . 0 5 6 1 5 1 1 0 

0.0556X019 

0 .05553953 

- " -

4 . 6 6 0 0 0 

0 .00000000 

0 .00000000 

0 . 0 0 0 0 0 0 0 0 

0 . 0 0 0 0 0 0 0 0 

0 .00000000 

- 0 . 0 0 0 0 . 1 3 0 

- 0 . 0 0 0 2 2 0 9 0 

- 0 . 0 0 0 5 7 9 5 6 

-0.0OXI786X 

- 0 . 0 0 2 1 X 2 1 3 

-O .0O5I1667 

-0 .0X138862 

- 0 . 0 2 1 3 7 7 6 6 

-0 .0181X159 

- 0 . 0 6 1 5 0 6 1 9 
0.I0X8C6X6 

0 .05615662 

0 . 0 5 5 5 5 7 9 5 

0 .05537227 
0 . 0 5 5 3 6 3 7 0 

4 . 7 6 6 1 9 

O.OOOOOOOO 

0 . 0 0 0 0 0 0 0 0 

0 .00000000 
O.OOOOOOOO 

0.00011X23 

-0 .00Of417E 

- 0 . 0 0 C t ) I 1 f 5 

- ( ) . o o n n ^ 3 ' -

-0.00171<J' '2 

- 0 . 0 0 2 1 6 2 1 " 

- 0 . 0 0 1 5 0 ) 7 1 

- 0 . 0 0 9 3 5 2 8 6 

- 0 . 0 X 9 8 5 2 5 0 

- 0 . 0 1 0 0 X 5 1 1 

-0.(77X17X69 
JO.X0X51927 

0 . 0 1 8 7 8 3 3 0 

0 . 0 5 5 1 0 6 5 5 

0 . 0 5 1 9 9 0 2 0 

0 .06196126 

789 -



Table 14 Table of the function g . (x -x) for water, T = SOCK. 
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Table 14 (continued) 
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Table 15 Table of the function f (x,x ) for water, T = 300°K. 
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Table 15 (continued) 
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Table 16 Table of the function g , . (x -x) for water, T = 300"K. 
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Table 17 Table of the function t (x,x ) for water, T = 300°K. 
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PREFACE 

A conference on the subject of neutron thermalization was held at 
the Brookhaven National Laboratory from April 30 to May 2, 1962, 
precisely four years after the close of the last thermalization conference, 
the Gatlinburg conference of April 28-30, 1958. The subject of thermal
ization, which concerns the approach to thermal equilibrium and the 
manner of the equilibrium distribution of neutrons in matter, has elicited 
a great deal of interest in the meantime. While the seventeen papers 
contributed at Gatlinburg could be assembled into a single, convenient 
volume, presenting the seventy Brookhaven papers has required four 
weighty books. 

The Brookhaven conference was conducted as a "reporter" confer
ence. The technical papers which were submitted were sorted into six 
categories, viz., the experimental and theoretical aspects of the "scat
tering law," of spectra in infinite media, and of transient phenomena. 
A reporter was chosen for each of the six topics, and was asked to pre
pare a talk which would contain an appreciation of the technical papers. 
The reporter talk, followed by a general discussion constituted each 
session. Thus, the individual papers were not presented, though copies 
were available to all who attended, and are presented in these proceed
ings. (While the papers from our Soviet colleagues were received too late 
for discussion at the conference, translated versions will also be found in 
these volumes.) 

The success of a technical conference is always due to the efforts 
of many people. We must first thank the reporters and authors for the 
fine quality of their contributions. Mr. Robert Brown of Brookhaven's 
Graphic Arts Division was resfwnsible for the prompt publication of the 
proceedings and for having more than ten thousand copies of the tech
nical papers ready in time for the conference. Mrs. Mariette Kuper and 
Mr. Edward Bergin and their staff's directed the mechanics of the con
ference with skill and aplomb, while several members of the Theoretical 
Reactor Physics Group made important contributions to its planning 
and execution. In particular, we should thank Drs. Paul Michael and 
Henry Honeck, and for his kind encouragement throughout, Mr. Jack 
Chernick, the Group's Director. 

NOEL CORNGOLD 
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ABSTRACT 

A review of 16 papers (1 - 16) submitted to the Brookhaven con

ference and dealing with the experimental aspects of "asymptotics" or 

"transients" in space, time, and energy is given. Most of these papers 

deal with diffusion parameter measurements usir^ pulsed or stationary 

methods; numerous new data have been reported and are critically com

pared. A number of new techniques for the investigation of space- and 

time-dependent thermalization phenomena are reviewed. 
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1. Introduction 

About four years ago, the whole field of "transients" or "asymptotics" 

research appeared to be in a very good state; measurements by different 

authors using either pulsed or stationary methods were in reasonable agree

ment. Attempts to interpret the data theoretically were in general quite suc

cessful. There seemed to be not much incentive for further research work. 

However, with the arr ival of more advanced experimental techniques and of 

more sophisticated analysis methods, the situation has almost completely 

changed. Today, there exists a considerable amount of discrepant data on 

almost any moderator. Reported data for thermalization times and diffu

sion cooling coefficients diverge by up to a factor of three and even for one 

of the most fundamental constants of neutron physics, the diffusion length of 

thermal neutrons in water, data differing to up to 6% have been found. Only 

in very few cases the data can be calculated theoretically with sufficient 

accuracy. The author hopes that discussions at this conference will con

tribute towards a better understanding of all these problems and clarify 

some discrepancies. 

In order to give a formal classification of the problems which will be 

discussed in this paper, let us start from the space- t ime- and energy 
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i dependent diffusion equation for the neutron flux 0(r,E,t) in a nonmulti-

plying scattering medium: 

^ ^ = - S^0 + DA0 + H0 + S(r,E,t) (1) 

Here H is the thermalization operator 

H0 = /SgCE' ^ E)0(E')dE' - S g 0 (2) 

while S(r,E,t) represents the neutron sources. 

At large distance from the source (in the stationary case) or at large 

times after the injection of a source neutron burst (in the time-dependent 

case) there may be asymptotic solutions of Eq. (1). In a pulsed medium, 

they can be written 

-a t 
0(r,E,t) - R(r)0^(E)e (3) 

where a is the lowest eigenvalue of 

[ - - +i:^+ D B 2 ] 0 ( E ) = H0(E) (4) 
V "• 

2 

and 0 (E) the corresponding eigenfunction. B is the geometrical buck

ling, i.e., the lowest eigenvalue of 

AR+B^R = 0 (5) 
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with adequate boundary conditions on the surface of the moderator. R is ^K 

the corresponding spatial eigenfunction. 

In an infinite source-free stationary moderator, the asymptotic 

solution of Eq. (1) is 

0(r,E) = e"' '^^ (E) (6) 
A. 

where K is the lowest eigenvalue of 

[S^ - D K 2 ] 0 ( E ) = H0 (7) 

and 0^ the corresponding eigenfunction. Apparently, both asymptotic solu

tions are closely related and it is for this reason that we will discuss the 

experiments for the determination of K and a and their evaluation together 

in section 2. Eleven papers dealing with related subjects have been sub

mitted (1,2,3,4,6,9,10,11,14,15,16) and the main part of this paper deals 

with these "asymptotics." 

Non-asymptotic solutions of Eq. (1) are important: 

a) to describe the neutron flux and spectrum during the thermaliza

tion process in the time-dependent case. From the behavior of 

the energy transients, a "thermalization t ime" can be derived 

which is closely connected with other thermalization properties 

I 
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of a moderator. Four papers dealing with related subjects have 

been submitted (5,7,8,16) and will be discussed in section 3. 

b) to describe neutron flux and spectrum transients near medium 

discontinuities. There may be different moderators in contact 

or different temperature regions of the same moderator. Two 

papers have been submitted dealing with this question; they will 

be discussed in section 4. 

Other non-asymptotic solutions of Eq. (1) may be important near 

sources and absorbers, these problems are however not dealt with in this 

paper. Our interest is in general not in spectra, but rather in basic inte

gral constants describing asymptotic decay or transient phenomena. 

2. The Measurement of Thermal Neutron Diffusion Parameters ("Asymp

tot ics" in space and time) 

2.1 Pulsed Source Measurements 

The principle of the pulsed source method is simple. The asymptotic 

decay constants of moderator blocks with different bucklings a re measured; 

2 

the resulting a vs. B curve is plotted and, using a least squares method, 

fitted by 

a^ a^ + DQB^ - CB^ (8) 
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In this way, the absorption probability a = v Sg^(v^), the thermal neutron 

diffusion coefficient D^, and the diffusion cooling coefficient C are deter

mined. The procedure appears quite straightforward; it involves however 

three very difficult problems: 

a) The exact determination of the fundamental mode decay constant a. 

b) The exact calculation of the buckling B^. 

2 

c) The fitting of the a vs. B curve by only three te rms . 

2.1.1 The determination of the asymptotic decay constant. Let us 

assume that the experimenter has an ideal neutron detection equipment, i.e., 

no deadtime effects exist which may affect a measurements considerably. 

Then, the following causes for e r ro r s in the a determination still a re 

present: background neutrons from the source, backscattering of neutrons, 

presence of higher spatial modes, and presence of higher energy modes. 

In addition, there may be physical effects which prevent the establishment 

of the pure fundamental mode. An excellent example for this is the "trapping 

effect" report by E. G. Silver (9). Figure 1 shows the observed decay con

stant of a beryllium block at various temperatures as a function of the 

"waiting t ime," i.e., the time elapsed between the injection of the neutron 

burst into the beryllium block and the beginning of the data analyzing interval. 
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The size of the block was 12 x 14 3/8 x 14 3/8 in.; data were taken at 0° 

and at -96°C. While there is almost no dependency of the decay constant 

on the waiting time at 0°C, a strong dependency exists at -96°C. The ex

planation of this effect is probably the following one: at low temperatures, 

the cross section for energy gain scattering processes of very slow neu

trons becomes extremely small. Therefore a neutron which once has been 

scattered into the very low energy region will remain there for very long 

times; returning into the "thermal" group it acts as a source with a slower 

decay time than that of the fundamental mode. 

For graphite at room temperature, fortunately no such effect exists. 

In order to suppress higher spatial harmonics and especially higher energy 

modes, a certain minimum waiting time is required. This problem is in

vestigated in two papers submitted to this conference (10,15). Both experi-

2 -4 -2 

menters find that for large bucklings (B > 70 x 10 cm ) the waiting time 

has to be about 2 millisec due to the appearance of higher energy modes. 

If measurements are started too early, larger values of a a re observed 

though the decay curve might look like a good exponential. At smaller 

bucklings, the waiting time is dependent on the way in which the higher 

harmonics are suppressed; this was different in the Brookhaven (15) and 
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the Karlsruhe (10) experiments. Klose et al. (10) used two detectors to 

suppress the most pronounced harmonics and found that a waiting time of 

3 fundamental mode decay periods was sufficient. 

In water, especially at very large geometries, higher spatial modes 

a re important and a considerable waiting time may be required. This prob

lem has been dealt with carefully in a recent paper by Lopez and Beyster (17) 

who show that waiting times up to 50 x the fundamental mode decay period 

are required in large geometries. These authors also show that a Fourier 

analysis technique can be used to isolate the fundamental mode, thus el imi

nating the need for a long waiting iime. Fourier analysis techniques were also 

used by H. Meister (18) for the determination of the fundamental and higher 

modes' a on a subcritical D20-natural U pile. 

Since long waiting times have to be used and the neutron decay has 

to be observed over a large interval, any background neutrons from the 

source can do great harm to a measurement. The background intensity of 

_5 
neutrons should be less than 10 the "normal" intensity; the Brookhaven 

group reports a modification (15) of their van de Graaff which leads to a 

—fi 
remarkably low background ratio of <10 . 

Finally, backscattering of neutrons from the walls of the laboratory 
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may lead to a time-dependent background which can influence a measure

ments. It should be possible to protect the moderator block against stray 

neutrons by appropriate shielding. This needs however careful investiga

tions in each case; for instance a 0.5 mm cadmium lining may be insufficient 

due to large amounts of epicadmium neutrons entering the pile. 

2.1.2 The determination of the buckling. In order to determine the 

geometrical buckling of the moderator blocks, most authors use the "classi

cal" prescription, i.e., all linear dimensions are increased by twice the 

extrapolation length 

Do 
d = 0.7lX = 2 . 1 3 - ^ (9) 

t r V 

This is certainly correct as long as a moderator is large so that e r rors in 

2 

the extrapolation length do not affect B . However, if small assemblies 

with linear dimensions of only a few transport mean free paths are used, 

this procedure may be incorrect. Due to the energy dependency of the mean 

free paths, space-energy transients may arise near the surfaces which lead 

to a different "effective extrapolation length." The latter may also depend 

on the shape of the moderator. 

In graphite, even the smallest assemblies investigated have linear 

dimensions exceeding 15 mean free paths. Also, the transport mean free 
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path of graphite is not very dependent on the neutron energy. Therefore 

Eq. (9) should be a reasonable approximation. This was checked experi-

2 

mentally by Klose et al. (10) who evaluated a vs. B curves in a three-

and four-parameter fit with d as an open parameter. It was found that the 

minimum fluctuation of the experimental points around the a(B ) curve 

was obtained when the above equation (9) was used for the calculation of d. 

The situation is quite different, however, for water. Gelbard (19) has 

computed extrapolation lengths for slabs as a function of bucklir^ in var i 

ous approximations. While he finds d = 0.76 X. for zero buckling, the ex

trapolation length decreases steadily with increasing buckling. This is 

due to the strong energy dependency of the transport mean free path and 

the diffusion cooling effect. In a more recent paper (20), Gelbard has shown 

that a very different result applies for the extrapolation length in cylindrical 

systems. Lopez and Beyster (17) and Kuchle (21) have investigated the in

fluence of the change of extrapolation length reported in (19) on the 

evaluation of their measurements in water; both find a very small effect. 

It will certainly be worthwhile to continue theoretical studies on effective 

extrapolation lengths in small water geometries. 

I. A. de Juren et al. (1) have submitted a paper to this conference 
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describing an attempt to measure extrapolation lengths directly by the 

investigation of space-dependent neutron fluxes in pulsed water geome-

tr ies using a small Li I counter. Their preliminary results on a 16.4 cm 

diameter cylinder and a 11.28 cm cube indicate extrapolation lengths in 

the region 0.402 to 0.475 cm, i.e., much greater than one would anticipate. 

The continuation of this work deserves great interest. Evidence for a 

very strong effect of extrapolation lengths in small water geometries is 

contained in a recent paper by R. S. Hall et al. (22) who did pulsed meas

urements on a set of "square" and of "flat" systems, yielding quite differ

ent results. 

Since the buckling of higher modes depends considerably less on the 

extrapolation lengths than the fundamental mode buckling, decay meas

urements on higher modes using the aforementioned Fourier analysis 

technique seem worthwhile. Meister (18) could determine the decay con

stant of the fundamental mode and the next three higher modes of his syste 

with reasonably accuracy. This may be difficult to achieve with small 

water systems. 

2 
2.1.3 The evaluation of a vs. B curves. Physically, there is no â  

2 
priori reason for only three terms describing the a vs. B curve, Eq. (8). 
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i In fact, various theories show that higher order terms exist in order to 

describe the diffusion cooling effect and the transport theory corrections 

to elementary diffusion theory. The accuracy of the measured data how

ever does not permit to determine more than three parameters in most 

cases. The problem ar ises how to extract these three parameters in the 

presence of higher order te rms . A useful method, originally proposed by 

the Brookhaven group, is discussed in three papers submitted to this meet

ing (2,4,15): 

2 

The relation Eq. (8) between a and B can be written 

a - QfQ - DQB^ - CB^ + . . . (8a) 

We can also use the inverse ser ies 

DQ and C can now be determined using either fit (8a) or the fit (8b), each 

trunctuated after two terms. Due to the neglect of higher order te rms, 

these two fits will yield different results for D^ and C. One can now plot 

D and C as a function of the buckling range. When the points of maximum 

2 
B are dropped successively, D and C from both evaluations approach 

I 
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continuously. This is shown in Figure 2 for D^ in one of the Brookhaven 

measurements on graphite-bismuth systems (15). One gets a good indica

tion in this way over which buckling range a three-parameter fit can be 

2 

reasonably applied. Unfortunately, with a decreasing length of the B in

terval the statistical accuracy of the diffusion parameters , in particular of 

C, decreases. 

A somewhat different technique for the indication of the "reasonable" 

B was employed by the Karlsruhe group (10); we shall discuss it to

gether with the results on graphite in section 2.3.4. In general, there is 

2 
agreement among most authors that it is more useful to compare a vs. B 

curves directly instead of comparing parameters derived by a least-squared 

2 

fit of the a vs. B curves. 

2.2 Diffusion Length Measurements 

A number of papers were submitted to this conference (2,6,11,14) deal

ing with diffusion length measurements, mainly in light water. While for 

solid moderators like graphite and beryllium the "S-pi le" method seems 

to be generally accepted now, various methods are in use in order to meas

ure the diffusion length in light water: 

a) The "cadmium-difference" method (23). A thermal point source 
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in an infinite medium is obtained by measuring the neutron flux around a 

Ra + Be source with and without a concentric Cd shell and taking the dif

ference. The method does not yield extremely accurate results since the 

differences may be small. 

b) The "Sb + Be source" method (11,24,25,26). A Sb + Be photoneu-

tron source emits ~25 kev neutrons which become thermalized quite close 

to the source. The resulting thermal flux is therefore due to almost a 

"thermal point source." However, as Reier and de Juren have shown (24), 

at source distances <30 cm corrections for slowed-down neutrons, though 

small, have to be applied. These corrections should be checked using the 

Cd-difference method. 

c) The ' thermal column" method (2,6,27,28). Neutrons from a ther

mal column are fed into a water column of cylindrical or square cross sec

tion. The axial relaxation length is measured and converted into a diffusion 

length, using the well-known geometric corrections. 

While the two latter methods are certainly superior to the first one, 

it is not clear which of them is the more reliable one. The results which 

are discussed in section 2.3.1 show discrepancies but no systematical de

pendency on the experimental methods. 
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The technique of poisoning a moderator in order to measure inde

pendently the diffusion coefficient and the absorption cross section has 

been used extensively on D2O (14,29), on graphite (30), and on H2O (11, 

23,31). Several authors have discussed the importance of "Diffusion 

Hardening" in such experiments (23,32) and have corrected their data for 

this effect (14,23). That the poisoning technique can also be used to de

termine C and is therefore entirely equivalent or even superior to pulsed 

source measurements is demonstrated in a paper by Starr and Koppel (2) 

submitted to this conference. These authors have measured diffusion 

lengths in water and in aqueous boric acid solutions over a great range of 

boron concentrations with extreme precision. From Eqs. (1), (4), (7), and 

(8) the diffusion length in a poisoned system can be derived to obey 

2 1 vo^a VQS^ ^ 
" --^= T T " [ 1 - — 2 ~ C + • • • (10) 

L"̂  ^o D 
o 

2 

Plotting K vs. S yields D and C like in a pulsed source experiment. 

While this has been well-known for many years , the experiment by Starr 

and Koppel is the first which yields data sufficiently accurate to determine 

the C term. 
*We restr ict ourselves to 1/v poisons. 
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2.3 A Discussion of Recent Experimental Results 

2.3.1 The diffusion length of thermal neutrons in water. Table 1 

shows some more recent results on diffusion lengths in H2O. The conver

sion to 22°C was done using dL/dT = 0.006 cm/°C. While the first seven 

values were derived from direct (stationary) measurements, the last three 

were inferred from pulsed neutron measurements using the formula 

and the respective values of D^, Q!Q, and C. The following comments apply 

to the different results: The value of Beckurts and Kliiber, though one of 

the lowest, does not contradict other due to the large e r ror limits given. 

The next three determinations are in a very reasonable agreement. How

ever Rohr's measurement is not quite an independent one since the source 

neutron correction factors given by Reier and de Juren (24) were used. 

The result of Rockey and Skolnik's measurement seems very high; this 

might possibly be due to the neglect of source neutron corrections at 

source distances <30 cm. There is also a very high value reported by 

Ballowe which is very difficult to explain. Miller 's experiment cannot be 

compared since the water temperature was not stated in his publication. 
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Table 1: Diffusion Length Measurements in II„0 

Author 

lieckurts und 
Kluber 

Starr and 
Koppel 

de Juren 
and Keier 

Uohr 

Hockey and 
Skolnik 

Ballowe 

Miller 

Kiichle 

Lopez and 
Deyater 

Dio 

Year 

19d8 

1'J61 

1961 

1S62 

1961 

1962 

1061 

I960 

1962 

1938 

lief. 

23 

2 

11 

26 

25 

6 

28 

21 

17 

33 

Method 

Cd difference 

Thermal Col. 

Sb - Be 

Sb - De 

Sb - Be 

Thermal Col. 

Thermal Col, 

Pulsed source 

Pulsed source 

I'ulsed source 

Measured at 

15° 

21° 

23° 

16° 

26° 

24° 

? 

22° 

26,7° 

22° 

L (cm) 

2,70 - 0,03 

2,754^0,008 

2,781-0,006 

2,742-0,011 

2,839^0,018 

2,870-0,008 

2,81 

2,744-0,080 

2,749-0,016 

2,730-0,06 

L at 22°C (cm) 

2,742 - 0,030 

2,760 - 0,008 

2,773 - 0,006 

2,778 - 0,011 

2,335 - 0,018 

2,858 - 0,012 

2,744 - 0,080 

2,795 t 0,016 

2,739 - 0,060 



The author would tend to consider the Reier-de Juren and the Starr-

Koppel experiments as the most reliable ones; the average is 2.767 ± 0.008 

at 22°C. The weighted average of all six stationary measurements is 2.785 

± 0.012 at 22°C. 

The pulsed measurements of Dio and of Kiichle lead to lower values 

of the diffusion length; however the limits of e r ror in both cases are large, 

so no genuine discrepancy exists. The pulsed source result of Lopez and 

Beyster is high and slightly discrepant to the above "best value." We shall 

discuss pulsed source results more extensively in the next session. 

The temperature dependency of the diffusion length in HgO is plotted 

in Figure 3. It is seen that the various results are in a good agreement. 

2.3.2 D and C for HoO from pulsed and from poisoning experiments. 

2 

(a) Poisoning experiments. Figure 4 shows K / S ^ as a function of S 

for aqueous boric acid solutions as measured by Starr and Koppel (2). At 

low boron concentrations, some results of Beckurts and Kluber (23) and of 

Reier and de Juren (11) are also plotted.* With the exception of Reier 's 

*The values of Miller (28) and of Ballowe (27) were not plotted here since 

no numerical results were available to the author; extracting numbers from 

diagrams seemed to be inaccurate. 
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point at the highest boron concentration, all measurements are in reason

able agreement. 

Evaluating their data with the method outlined in section 2.1.3, Starr 

and Koppel (2) find for HgO at 21°C 

D = 35,800 ± 100 cmVsec , C = 2,900 ± 350 cmVsec , and 

a^ = 326.9 ± 1.6 mb. 

The experiment of Beckurts and Kluber is not sufficiently accurate 

to yield a value for C. Correcting for diffusion hardening using published 

values of C, the following diffusion parameters are derived: 

D = 35,500 ± 1100 cmVsec and a^ = 327 ± 12 mb. 
O 3-

Within the limits of er ror , these are in good agreement with the above r e 

sults. 

Reier and de Juren have derived a value of 37,618 cm / sec for D 

from their measurement. However, if one corrects their measurements 

for diffusion hardening a DQ of about 36,000 cmVsec can be derived. One 

can therefore state that all poisoning experiments on H^O are in good agree

ment; due to their high accuracy the Starr and Koppel results should be 

considered as representative. 
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(b) Pulsed experiments. Figure 5 shows a vs. B curves for H2O 

as observed by Kiichle* (21) and by Lopez and Beyster (17). It is seen that 

there is a systematic discrepancy between the two curves. Ktichle's curve 

is similar to previous a vs. B curves (33,34,35); therefore background, 

backscattering, or even higher spatial modes cannot be the reason for the 

discrepancies. Lopez and Beyster used their Fourier analysis technique 

2 

only for the first few low B points, i.e., in the region where the discrep

ancy exists they use the same technique as Kiichle and previous experi

menters. The reason for the discrepancy can only be that Lopez used near-

cubical systems while Kiichle and many others preferred rather flat cylindri 

cal assemblies. Therefore, the discrepancy is similar to the afore-men

tioned observation of Hall et al. (22). Until the problems of shape-depen

dency of the buckling on small water systems are cleared, the accuracy 

of pulsed measurements in water is subject to some doubts; more confi

dence should be put into the poisoning experiment. 

A three-parameter analysis of the Lopez-Beyster data using the 

methods outlined in section 2.1.3 yields the following diffusion parameters 

at 26.7°C (4,17): 

*Kiichle's data were taken at 22°C and are corrected to 26.9°C here. 
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D = 37,426 ± 368 cmVsec , â  = 325.5 ± 1.6 mb, and o ' ' a 

C - 4852 ± 763 cmVsec . 

Ktichle's data yield the following diffusion parameters at 22°C: 

D = 35,400 ± 700 c m ^ s e c , C = 4200 ± 800 cmVsec , and o 

a = 326 ± 6 mb. 

This evaluation was performed by a three-parameter analysis in the 

2 -2 fi 

region B = 0 to 0.7 cm ; Kuchle (21) discussed the role of a B term and 

showed that it is probably very small. While the absorption cross sections 

agree well, there are discrepancies in D^ and C: 

DQ cm / sec C cm^/sec 
Starr and Koppel 35,800 ± 100 2900 ± 350 

Lopez and Beyster* 36,700 ± 370 4852 ± 800 

Kuchle* 35,300 ± 700 4200 ± 800 

Within the limits of er ror , Ktichle's data agree with the Starr-Koppel data 

whereas the Lopez-Beyster data agree worse. Apparently, a very careful 

investigation of the "buckling" problem would be very helpful. 

2.3.3 The diffusion parameters in D2O. As a most valuable contribu 

tion to this conference. Brown and Henelly (14) have reported the diffusion 

*DQ was corrected to 21°C using dD^/dT - 130 cm^/sec °C. No attempt to 

correct C was made since this would shift C only by a fraction of the error 

limits. 
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coefficient of D2O in the temperature range 20° to 220°C. This has been 

a long-standing "Priority I" - request of the European-American Nuclear 

Data Committee. The experiment to determine D was done by a poisoning 

technique (heterogeneous poisoning with copper) in the "pressurized sub-

critical facility" at Savannah River (36). Unfortunately, not many details 

of the experiment are described in reference (14). Some more details about 

the hardening correction might be of interest. The resulting values for 

D = D Q / ^ ' together with some other data, a re plotted in Figure 6. Within 

their limits of error , the different results agree. The temperature de

pendency of D is well described by a simple calculation based on the 

"Radkowsky prescription" (41). 

Ganguly and Waltner (40) have recently reported the first complete 

study of D2O diffusion parameters by the pulsed source method. Their 

results for the diffusion coefficient were shown in Figure 6. For the dif

fusion cooling coefficient at room temperature, they obtained C = 3.72 

± 0.50 X 10 cmVsec in agreement with Sjostrand's preliminary value 

3.5 ± 0.8 X 10^ cmVsec (42). 

2.3.4 The diffusion parameters of graphite. Pulsed measurements 

on graphite had been performed previously by Antonov (46), Beckurts (47), 
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and by Starr and Price (45). These early investigations yielded values of 

C in the region 12 to 16 X 10 cm / sec (at 1.6 g/cm^ density). Since later 

French (44) and German* investigations seemed to indicate a considerably 

stronger diffusion cooling, the question was carefully re-examined. Three 

papers dealing with this subject were submitted to this conference (10,15,16). 

2 

Figure 7 shows a vs. B curves for graphite as obtained by Klose et 

al. (10) and by Starr and Price (15).** It is seen that both experimenters ' 

data are in reasonably good agreement. Compared to previously published 

curves, the a values in the high B'̂  region are much lower. Most previous 

authors measured too high a ' s at small block sizes due to contribution of 

higher energy modes (see section 2.1.1). 

Starr and Price (15) made a three-parameter fit of their data using 

the method outlined in section 2.1.3. They derived the following diffusion 

parameters for a GBF graphite of 1.697 g/crcfi density: 

X^ = 79.2 ± 0.6 sec~ , D^ = 2.02 ± 0.01 x 10^ cmVsec , and 

C = 34 ± 3 X 10^ cmVsec . 

Klose et al. (10) tried a three- and a four-para meter fit of their 

*Quoted in reference (61). 

**Referring to a density of 1.6 g/cm*^. 
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data. Figures 8a and 8b show C and X = (3DQ/7r)/2vQ as a function of the 

2 

B region used for the least square fitting. It is seen that in the three-

parameter fit there is a considerable dependency of the diffusion parame-
2 

ters on the B used; it seems not reasonable to extend the three-parame-
max 

9 -4 -2 
ter fit above B = 60 x 10 cm . Then, the following parameters are 
found (at 1.6 density): 

X = 88.3 ± 1.2 sec" , D = 2.13 ± 0.02 x 10^ cm^/sec , and o o 

C = 26 ± 5 X 10 cm^/sec . 

For a four-parameter fit, the dependency of the diffusion parameters 

2 

from the B region used for the fit is apparently less critical. The follow

ing parameters were found: 

XQ = 88.6 ± 1.6 sec"""", D^ = 2.11 ± 0.02 x 10^ c m ^ s e c , 

C = 16 ± 5 X 10^ cm^/sec , and F = -20 ± 10 x lo'^ cmVsec . 

The large size and the negative sign of the B term are most su r 

prising since previous theoretical estimations predicted a small positive 

value for F. However, Honeck (3) has done calculations based on the 

Parks (48) model of graphite which indicate clearly the existence of a 

B term of the same sign and order of magnitude as observed here (see 

section 2.3.5). The physical explanation of this effect may be related to 
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the fact that the thermalization power of graphite decreases strongly with 

decreasing neutron "temperature." 

The fact that different interpretations of data so similar as those r e 

ported in (10) and (15) lead to so discrepant results is astonishir^. More 

2 

and more accurate Q!(B ) measurements on graphite have to be made in 

order to derive diffusion parameters independent of evaluation schemes. 

Variations in density and purity and anisotropy effects tend to complicate 

the evaluation of a measurements on graphite. However, there is agree

ment now that the diffusion cooling effect in graphite is considerably higher 

than was found in the early measurements. 

Starr and de Villiers (16) have reported a direct observation of dif

fusion cooling in graphite. Combining a black and a 1/v neutron detector, 

they measured the average velocity of neutrons leaking from various graph

ite blocks. This decreases during the thermalization process and reaches 

an asymptotic value. The observed asymptotic value of v as a function of 
2 

B is shown in Figure 9. Using the formula 

V = V Q ( 1 - ^ B 2 ) (12) 

5 4 a value of C = 38 ± 5 x 10 cm / sec was derived by Starr and de Villiers, 
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in good agreement with the C value found by Starr and Price (15). 

2.3.5 A direct comparison of experimental and theoretical diffusion 

data. H. Honeck (3) has made extensive calculations of diffusion parame

ters in graphite, D2O, and H2O. Since theoretical methods are dealt with 

elsewhere in this conference, only a very brief summary of his work will 

be given here. 

Honeck star ts directly from the eigenvalue Eq. (4) resp. (7) (in a 

transport theory formulation rather than the diffusion theory approximation 

chosen here). He solves the eigenvalue problem numerically for different 

bucklings resp. different amounts of poison. For HgO, he uses the Nelkin 

(47) scattering kernel, for graphite a scattering law derived by Parks (48), 

and for D2O a modified kernel which takes into account incoherent scat ter

ing effects (49). For H2O, calculated and measured eigenvalues are com

pared in Figure 11. 

Honeck has also made a power ser ies expansion of his calculated 

eigenvalues in order to obtain values of D , C, and F. These are com

pared with some experimental data in Table 2. 

For H2O, the agreement between the calculated diffusion parameters 

and those observed by Starr and Koppel (2) is good. Note that for graphite 
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Table 2: A Comparison of Theoretical and Experimental Diffusion Parameters 

(from n,Honeck (3) ) 

HgO: Theory (Nelkin Kernel) 

Experiment (Starrand 
Koppel) 

D O : Theory (Honeck Kernel) 

Experiment (Ganguly 
and Waltner) 

Graphite (density 1.6) 
Theory (Parks model) 

Experiment Starr and 
Price (GBF-graphite) 

Experiment Klose et al. 
(4-I'arameter fit) 

D j c m % ) 

3,746 X 10^ 

3,585 i 0,010 X 10'' 

2,11 X 10^ 

2,08 - 0,05 X 10*̂  

j.iit i 0.01 X10^ 

2.11 - 0.02 X 10^ 

C (cm'̂ /s) 

2,878 X lO-' 

2,900 - 0,350 X lO-' 

3,65 X 10'̂  

3,72 - 0,5 X lo'' 

-slesx 10̂  

H-.Oo - 0.30 X 10 

1.6 - 0,5 X 10 

F (cmVs) 

-

-

-?-HHt-x iO' 

-20 i 10 X 10^ 

i 
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a negative F term is predicted. In general, the prediction of the Pa rks -

Honeck calculations compare better with the four-parameter fit of Klose 

et al. (10) than with any other set of parameters . However the experimental 

F term is very inaccurate. 

In heavy water, very good agreement with the experimental results 

of Ganguly and Waltner (40) is obtained when the fitting of the theoretical 

Of vs. B curve is restricted to the same region where the experiments 

2 -2 

were performed, i.e., B = 0 to 0.1 cm 

3. Investigations on the Time Dependency of Neutron Thermalization 

Early investigations (50,51,43) defined the "thermalization t ime" by 

the rate of approach of the average neutron energy to equilibrium, putting 

E - |/cT - const, e"^^"^ (14) 

The average neutron energy was determined by transmission meas

urements through silver or boron absorbers. These early measurements 

can now be criticized for several reasons-. In order to calculate the average 

neutron energy from the transmission, it must be assumed that the neutrons 

have a Maxwellian energy distribution which is certainly not true far from 

equilibrium. The transmission measurement is affected by changes in the 
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angular distribution of the neutrons and by time-of-flight effects. The 

most serious e r ro r in this procedure may be due to the fact that for many 

moderators r a s defined by Eq. (14) is not constant but increases with de

creasing E . Since the accuracy of a transmission measurement permits 

normally only one exponential to be fitted, the observed thermalization 

time will come out as some kind of an 'Average," depending on the length 

of the observation interval. 

More advanced theoretical treatments (52,53) make use of the "energy 

mode" concept. In an infinite medium, the decay of a neutron burst can 

be described by 

0(E,t) = S a^(p^(E)e'^i^^ (15) 

Here u = 0 is the fundamental mode where (pA^) is a Maxwellian and 

\ - v^Sjv^) (16) 

For the next mode, we have 

\ - \ + ( l / r ) (17) 

where r now represents the "thermalization t ime." It is easy to show that 

the old definition of the thermalization time, Eq. (14), is identical to the 

— 3 
new one in the limit E - - /cT, i.e., very close to equilibrium. Thermaliza-

tion times measured far away from equilibrium are mostly too low since 
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the thermalization process in that region is influenced by still higher 

energy modes. 

3.1 Thermalization Studies in Water 

Moller and Sjostrand (7) have submitted a paper wherein the decay 

of a short (0.2 jusec) nuetron burst in an essentially infinite water geome

try is studied. Very small amounts of cadmium resp. gadolinium were 

dissolved in a large water vessel. After the injection of the neutron burst 

capture y-rays were detected using a fast scintillation counter. In this 

way, a space integration was performed which partially eliminates effects 

of neutron diffusion. Since the gadolinium and cadmium cross sections 

vary with energy in a quite different manner, information on the t ime-

dependent neutron spectrum can be gained. From about 7 iisec after the 

injection of the burst, the cadmium as well as the gadolinium capture rate 

can be described as the sum of two exponentials, one "fast" with about 4 

jUsec, the other "slow" with about 200 jusec decay time. Apparently the 

slow decay is caused by the absorption of neutrons in water whilst the 

fast one represents the "first higher energy mode." The thermalization 

time for water would therefore be 4 /isec instead of 7 [isec which were 

found in a transmission measurement by von Dardel (50). Purohit (52) 
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has predicted 9 jusec for l/X-^; it is however not clear whether the assump

tions of this theory apply in water.* A quite different conclusion could be 

drawn from a paper submitted by Crouch and Holzer (8). These authors 

investigated the thermal neutron decay in a large water vessel, using a 

special network of sources to suppress the higher harmonic excitations. 

They observed an increase of the thermal neutron intensity during the first 

35 /isec after the start - quite in contradiction with SjSstrand and Moller 

who, for their gadolinium detector, pass over the maximum at 10 jusec. 

Holzer and Crouch discuss several explications of this phenomena and found 

it most probable that the thermalization time is much longer than was 

anticipated. Unfortunately, the paper (8) contains no information on further 

details, especially on the experimental procedure. It is therefore impossi

ble to draw any further conclusions. 

3.2 On the Thermalization Time of Graphite 

Early measurements of the thermalization time were performed by 

a Russian group (51) and by the author (43). Transmission through silver 

was used to determine the average neutron energy; the data were analyzed 

with Eq. (14). A thermalization time of about 200 /isec was found by both 

*Recently, Purohit (personal communication) has shown that the theoretical 

value is 4.7 /isec. 
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experimenters.* In graphite, the "thermalization t ime" as defined by 

Eq. (14) increases very strongly with decreasing E(59); therefore the 

results of these early measurements are probably too low for the reasons 

discussed above. It is however possible to re-evaluate these old measure

ments using the "energy mode" formalism; assume that no spatial har 

monics are present. The counting rate of a boron counter will then be 

given by 

z(t) ~ a e~ o + a e" 1 + . . . (18a) 

The counting rate of the same counter covered with an absorber is given by 

z*(t) ~ aQ*e"^o^ + a^*e"^l^ + . . . (18b) 

aj^*/a * is different from a.,/a due to the energy dependency of the t r ans 

mission through the absorber. Therefore both measurements can be com

bined to yield X and X-^ separately, even in the presence of higher (^2, Ao) 

energy modes. In this way, a value of l/X-^ = 240 ± 60 jusec can be derived 

from the old measurement of the author on a 80 x 80 x 80 cm cube. More 

recently, Kuchle and Schweikert (54) have obtained l/A., = 300 ± 30 jUsec on 

a 60 X 60 X 60 cm graphite stack using the same method. This is in agree

ment with values reported by Starr and de Villiers (16) which were obtained 

*Beckurts (43) found 185 ± 45 jUsec on a graphite stack of 80 x 80 x 80 cm^. 

Correcting this value to infinite geometry would raise it to about 200 jUsec. 
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by a similar technique (partly outlined in section 2.3.4). Unfortunately, 

it is not quite clear how a thermalization time can be extracted from the 

first energy mode decay constant X-^ in a small moderator block. If we 

put just 

l / r « X^ - DQB^ (19) 

we arr ive at thermalization times in the 500 |U.sec region, i.e., about twice 

as high as was previously accepted! Eq. (19) seems to be justified from 

the measurements of Starr and de Villiers (16) who observed X-, ~ ^Q 3-S a 

function of buckling and found it was not very dependent. A more accurate 

experimental investigation and a thorough theoretical analysis would be 

of greatest value here. 

In the case of constant transport mean free path, the diffusion cool

ing coefficient C can be calculated from the thermalization time, using 

the well-known relation 

C = -~- (20) 

With T - 500 jusec, C ~ 30 x 10 cm / s ec is found which is in rough agree

ment with the results of section 2.3.4. Due to the large uncertainties of T 

and C, Eq. (20) has no great meaning for the time being. 
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Let us note finally that in order to explain a thermalization time of 

500 jusec, an effective mass 80 must be attributed to each carbon nucleus 

if the "Heavy Gas" model is used. 

3.3 The Neutron Life History Experiment 

The Harwell linac group (5) has submitted a paper describing the 

measurement of time-dependent neutron spectra in graphite. After the 

injection of a neutron burst into a 60 x 60 x 60 cm^ graphite stack, neu

tron spectra from the center of the cube are measured as a function of 

time, using a synchronized chopper and the time-of-flight method. The 

details of this experiment a re described in the Harwell paper (5) and were 

discussed in the session on neutron spectra; we shall discuss here some 

of the more important results. Figure 12 shows the observed neutron 

spectrum at 300, 450, 600, 800, and 1000 iisec after the source burst. 

Though the 1000 jusec spectrum is already "cooler" than the equilibrium 

Maxwellian, it is not yet the asymptotic spectrum which will be reached 

about i t o 1 msec later. Unfortunately, due to intensity limitations the 

asymptotic spectrum could not be observed. From the spectra in Figure 

12, it is possible to extract the time behavior of the average neutron en

ergy which is plotted in Figure 13, together with theoretical curves based 
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on 185 or 400 iisec thermalization time. It is seen that the 400 ixsec curve 

describes the measured values well, thus indicating a 400 jisec thermaliza

tion time. 

The time-dependent neutron spectrum in graphite was also calculated 

by a numerical solution of the transport equation. For the scattering kernel 

of graphite, the results of the Egelstaff scattering law experiment were 

used (56). Comparison between measured and calculated spectra shows 

good agreement at 300, 450, 600, and 800 jusec. At 1000 /isec, the agree

ment becomes worse but the experimental data are less accurate there. 

Surprisingly, a calculation based on a heavy gas model with an effective 

mass of only 33 also yields very satisfactory agreement! 

It might be worthwhile to search for some intermediate ways to 

evaluate the neutron life history experiment. Instead of comparing meas

ured and computed spectra, one should try to extract certain important 

parameters which have a well-defined physical meaning and compare them. 

For instance it should be tried to decompose the observed spectra into 

various energy modes. 

In conclusion, it should be stressed that the measurement of t ime-

dependent neutron spectra is probably the most powerful tool for studies 
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of the thermalization process. The completion of the first experiment of 

this kind marks an important progress; further work will contribute much 

more to the solution of the problems discussed in this section. 

4. Studies of Space-Energy-Transients 

On first view, the experiments to be discussed now have no direct 

connection with the thermalization experiments described in the previous 

sections. Suppose two different media are in contact and that there a re 

(slowed down) thermal neutron sources existing throughout the media. Then, 

far away from the interface, and 'Asymptotic" spectrum characteristic 

for each region exists which in case of weak absorption can be approxi

mated by the superposition of a l / E spectrum and a moderator temperature 

Maxwellian. However, close to the interface transients appear in order to 

match the spectra from both sides. These transients are related to the 

thermalization properties of the respective moderator; their analysis may 

yield data which can be compared to pulsed neutron experiments, at least 

in some cases. 

4.1 Neutron "Rethermalization" Studies in Graphite and Water 

Bennett (13) has submitted a paper describing extensive studies of 

transients near temperature discontinuities in graphite and water. The 
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work is an extension of previous experiments (57). The experiment in pr in

ciple consists in a measurement of reaction rates of Cu°^ detectors (Lu 

was also used as a check) in various annular zones of the PCTR reactor 

consisting of graphite at different temperatures or of water and graphite. 

Figure 14 shows the measured radial Cu"'^-traverses. While the outer 

graphite annulus was nearly at room temperature during all experiments, 

the temperature of the central zone was varied between 144° and 828°K. 

Lampblack was used as heat insulation at the temperature discontinuity. 

The measured flux t raverses were analyzed using a multithermal 

group model proposed by Selengut (58). The epithermal flux is regarded 

as being one group <^Q(r) with a l /E spectrum. The diffusion parameters 

for this group were determined by measurements with epicadmium gold 

detectors. An equilibrium group of neutrons with a Maxwellian energy 

distribution M(E,Tj) is defined for each region with a different physical 

temperature T^. Since two thermal groups exist in the experiments, the 

thermal flux is written 

(/)(r,E) - (p^{r)M{E,T^) + (p2{r)M{E,T2) (21) 

Neutron balance equations are established which connect <;PQ(r), (p-i{r), 

and (P2M with the diffusion parameters . The most important parameters 
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are the cross sections S and S which describe the transfer of a 

neutron from thermal group 1 into group 2 and vice versa. They are 

called "rethermalization cross sections." In the analysis of the Cu" -

t raverses (Figure 14) all diffusion parameters a re known except the r e 

thermalization cross sections; these are determined during the analysis by 

a trial-and-f it method. Figure 15a shows the observed rethermalization 

cross section for the ~ 300°K neutrons from the outer annular zone at 

different temperatures of the central zone; Figure 15b shows the re ther

malization cross sections for neutrons with different temperatures (from 

the inner zone) in the ~300°K outer graphite zone. With increasing tem

perature, both cross sections approach the "free gas limit" value of the 

rethermalization cross section 

S = S —• 

RTF so A (22) 

From this equation and Figure 15b, the following values of the "effective 

mass" of 300°K graphite can be deduced: 

T„ = 828°K : A , = 22 ± 1 T„ = 523°K : A , = 20 ± 1 
n eff n eff 

T„ = 300°K : A , = 30 (extrapolated) T„ = 144°K : A , =46 ± 2 n eff n eff 

The effective masses appear very low compared to those which can be 
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i derived from the pulsed integral experiments; this may be due to the 

specific model which is used here to analyze the data. However, the way 

in which the effective mass of graphite changes with temperature is clearly 

seen; this might lead to a physical understanding of a possibly existing 

positive B term in graphite. 

Bennett tried to compare the measured rethermalization cross sec 

tions (or rather the related "relaxation lengths") with predictions based 

on the theoretical model of graphite given by Kothari and Khubchandani (59). 

It was found that this model slightly underestimates the rethermalization 

cross section. This is very surprising since the same theoretical model 

yields a thermalization time of 170 jusec which seems too low by a factor 

of two. 

For water, the following values of the rethermalization cross sec 

tion were found: 

Water temperature: 293° ± 5°K 

Neutron temperature: 410°K: S = 1,25 ± 0.12 cm 
RT 

558° ± 5°K: 1.27 ± 0.12 cm""^ 

720° ± 5°K: 0.83 ± 0.08 cm""^ 

The strong decrease of the rethermalization cross section at 720°K is 
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difficult to explain. No attempt was made to compare these rethermaliza

tion cross sections with predictions of a theoretical model; the "effective 

mass" as deduced from the above cross sections using Eq. (22) is about 

5. The rethermalization cross section for '~400°K neutrons as found in 

these experiments is much larger than the value reported by Springer (63). 

4.2 Flux Transients Near Medium Discontinuities 

Let us finally discuss very briefly a paper submitted by Feiner et al. 

(12) dealing with spatial transients near medium discontinuities. These 

authors introduced disturbances into a quasihomogeneous hydrogen-mod

erated critical assembly and investigated the resulting flux distortion near 

the perturbation by using foil activation techniques. For the perturbation 

they used either absorbers (cadmium, boron glass) or moderators (poly

ethylene slabs). It was found that within the limits of experimental e r ror 

the spatial transients could be represented by single exponentials, i.e., by 

A(x) = ^e'""^^ (23) 

where x is the distance from the lattice-perturbation interface. The peak

ing factor AQ and the relaxation ler^th L depend strongly on the kind of 

perturbation. A simple one-group diffusion model was employed to ca l 

culate the relaxation length. It was assumed that the spectrum of the 
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transient is a pure Maxwellian in the case of a moderating perturbation 

and a transmission-hardened Wigner-Wilkins spectrum for absorbing 

perturbations. Diffusion lengths calculated by averaging over these 

spectra are in agreement with the observed relaxation lengths. It was 

also possible to calculate the flux peaking factors by essentially this 

simple method with reasonable accuracy. These results a re definitely 

of great importance for the design physics of hydrogen-moderated r e 

actors . 

5. Conclusions 

This review shows that very relevant progress has been made in 

the field of "asymptotics" research, especially by the contributions to 

the present Brookhaven conference on neutron thermalization. 

In water, most measurements now seem to be in a reasonable agree

ment. The main problem to be solved is the shape dependency of the buck

ling at small assemblies and the resulting uncertainty of D and C. It 

appears that using the Nelkin scattering kernel for HoO all experimental 

results can be calculated theoretically with reasonable accuracy. 

The situation is less favorable in graphite. Here, there exists 

still considerable uncertainty about the size of the diffusion cooling effect 
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and about the thermalization time. Before further experiments can be 

done in order to remove existing discrepancies, theory must be devel

oped showing how these experiments can be evaluated. The experimental 

technique of the 'life history experiment" appears most promising for 

further studies. 

In heavy water, the few experimental data existing so far agree 

good among themselves and with theories. More experimental data should 

be taken, especially the "thermalization t ime" should be measured and the 

pulsed source experiments extended. The same may be true for other 

moderators like beryllium, and the multitude of "organic moderators" 

now becoming available. 

The rethermalization experiments yield a great amount of data and 

appear to be well-consistent among themselves. This is probably suffi

ciently accurate for the design physics of reactors where these problems 

may ar ise . However, since the physics of these experiments is so closely 

related to the pulsed experiments, a theoretical treatment of these r e 

thermalization experiments by the same models as used for the pulsed 

experiments might be of great value. 

The author is indebted to M. Kiichle and to W. Reichardt for valuable 

discussions on most of the subjects treated. 
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MEASUREMENT OF TKE DIFFUSION LENGTH OF 

THERMAL NEUTRONS IN LIGHT WATER 

By 

W. C. Ballowe* 

General Electric Company, Vallecitos Atomic Laboratory 
Pleasanton, California 

I. INTRODUCTION 

Various experimental techniques have been used to measure the diffusion 

length of thermal neutrons in light water, but they all fall into three 

distinct groups based on the source of thennal neutrons: 

(1) Thermal neutrons from a thermal column 

(2) A point source of low energy neutrons such as the 25 kev 
12ij-

neutrons from the Sb -Be source 

(3) The pulsed neutron source. 

The experiment described in this paper is of the first type. The results 

are compared to those of other experiments of all three classes. A 

theoretical comparison is made between the first and last types. 

II. EXPERIMENT 

The neutrons from the Nuclear Test Reactor are allowed to impinge on the 

face of the experimental apparatus called the "Water Gun" which is depicted 

schematically in Figure 1. Reference to the figure shows that the water gun 

consists of a right-circular cylinder of graphite 58-5 cm in diameter and 

29.3 cm long. This graphite cylinder is an extension of the thermal column 

* William C. Ballowe died on March ik, I962, from injuries sustained in an 

automobile accident of the previous week. His paper entitled "Measurement 

of the Diffusion Length of Thermal Neutrons in Light Water" was not completed. 

The most significant information which was to be included is in this summary. 

We would appreciate inclusion of this information in the Proceedings as 

recognition of one of Mr. Ballowe's contributions to the field of reactor 

physics. 

B. Kerr 
J. Russell 
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and serves the purpose of matching the radial flux shape of the square thermal 

column to the smaller (in diameter) water column. A slot is provided in the 

graphite for insertion of a cadmi-um sheet for the background measurements. 

The procedures employed are straightforward and consist of four runs per 

measurement. A run is a series of count rates at several positions over the 

travel range of the piston (approximately 25 cm) from the full "in" to the 

full "out" positions. The direction of travel is reversed and another series 

of counting rates versus position are obtained. The cadmium sheet is inserted 

and the count rate versus position is again determined in both directions. 

These latter runs serve to establish the background for the measurement. The 

water temperature is measured and recorded throughout each run and is held 

constant to within ±0.5 C. 

The power level of the NTR is 10 kw during a run and does not vary by more 

than 0.05^. The thermal neutron flux at the face of the thermal column is 
5 nv 

10 
sec-cm -watt 

III. RESULTS 

The measured diffusion length, L , was corrected for radial leakage: 
m' 

L 
m 

71A, " ^ ^m ^R + 71X '' 

The results are shown in Figure 2. For purposes of comparison,"the results 
(l 2 3) (2) 

of other investigators^ ' ' ' are shown. The data of Wilson et al. have 

been corrected by using O.7I X for the extrapolation distance in the 

buckling correction, rather than 7-5 cm as was used in the original paper. 

This change was only for purposes of comparison of their data with ours since 

the geometries are very similar and we had used O.7I A. as the extrapolation 

distance. 

Calculational models of diffusion length experiments were designed at the 

laboratory in order to investigate the difference in L's measured with 

\ 
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different methods. The results of pulsed neutron measurements have been 

consistently lower than the results from thermal colixmn measurements. 

In a thermal column^ if the leakage is small compared to the absorption, 
(̂ ) 

then the flux at any given energy is attenuated as* ': 

$(X,E) = $(0,E)'^/^ ( 

where L is a parameter of the system and not dependent on a particular 

energy. The flux in such a column is "diffusion heated", that is, the 

spatial source of the higher energy neutrons is relatively greater than 

that prescribed by a pure Maxwellian. A multigroup treatment of the flux 

in a thermal column results in a system of simultaneous equations which 

can be solved for the eigenvalues (I/L ) ^ . The Nelkin model ^ ^ for 

neutron scattering in light water was used as a basis for the calculations. 

The results of the pulsed neutron source experiments are diffusion lengths 

for a pure Maxwellian flux in an infinite medium. These results are 

extrapolations from measurements in finite media with diffusion-cooled 

spectra. Calculations of D/E for pure Maxwellian spectra in water were 

done for various temperatures. These values were also calculated from 

the Nelkin kernels. 

The results of the calculations are compared with experimental values in 

Figure 2. Because of cross-section uncertainties, the absolute value of 

the calculated curves is considered to be good to about two per cent. The 

calculated curves were normalized to the experimental L by adjusting the 

oxygen scattering. The difference between the curves is independent of the 

normalization. 

No attempt was made to analyze the point source method. These experiments 

are complicated by a neutron spectinim dependence on radius. The spect2nun 

at small radius is colder than a Maxwellian, and hotter at large radius. 
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Introduction 

With the growth of practical reactors there has been an increasing 

interest in the details of the neutron spectrum set up in a system 

containing absorbers and moderators. This steitis very largely from the 

need to predict temperature coefficients throughout the life of the 

reactor, and is particularly pressing when problems of plutonium fuelled 

reactors are considered, because of the resonance at 0.3 eV in the fission 

cross section. The problem of predicting the neutron spectrum in a 

reactor can to some extent be considered in two parts. First we can try 

to calculate the spectrum in an infinite homogeneous medium, and only when 

this aspect is fully understood is there any sense in considering the 

effect of heteiigeneities. The equation governing the steady state neutron 

spectrum in an infinite homogeneous medium is 

where / +(E) is the total neutron cross-section for the medium ̂ ( E ' ^ B ) is 

the inelastic scattering cross section for scattering from energy E* to 

energy E and 3(E) the so\irce density at energy E, (Normally S(E) is 

assumed to have the form SS(E ) vvhere S(EQ) is the iCronecker delta function) 

Mathematical methods exist ( ) for solving this equation once Z^ ^(E) 

a n d ^ (E'-^E) are known. In general _, +(E) is available but until 

recently little has been known about *^ (E'-^E), Various models have been 

developed which enable ̂^ (E*-^E) to be calculated in a few cases, (e,g. 

Nelkin's model for water "'', Park's model for graphite >̂ and more recently 

the , \ 
data is becoming available fron/Chalk River Scattering Project '. In 
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principle this latter should give all the required information, but mainly 

due to intensity considerations, regions of^(E-^E) involving Isirge 

energy changes* are inaccessable to the experiment, and resort has once 

again to be made to theoretical models to fill in the gaps in the 

experiment. It is to test the validity of such models that neutron 

spectrum measurements are made. 

Now, if in equation (l) we write ^.-^ =Z?s + ZJ a» where 2̂  g = 

_^ (E-^E*)dE* and applyjthe principle of detailed balance, we obtain 

^(i;?a(E) = M(E)J'?(E->E^) j ̂  _ 0 } ] " ^ ^ * "̂ ^̂ ô  '' 
where ^ â -̂ ^ ^^ *^® macroscopic absorption cross section while M(E) and 

M(E') are the intensities of a Maxwellian energy distribution at E and E" 

respectively. 
— K 

Equation II shows immediately that for Z a" ^ ^® distribution 

must become an equilibrium Maxwellian dmatrtibution and no information is 

given about the scattering kernel^ (E-^E*); as ^ a increases then the 

spectra become progressively more sensitive to the forms of<_j (E-^E*) and 

progressively more distorted from the Maxwellian fory. It is consideeeilion 

of this nature that have lead to the wealth of experiments made in poisoned 

homogeneous media ( " ), and substantial agreement, theoretical calcul

ations is shown in these papers. However poisoned moderator experiments 

suffer from the disadvaJitage that as the poison concentration is increased, 

so the neutron intensity available decreases, and there is thus a oonpftti" 

The quantity measured in the Scattering Project is not simply 

A (E'-^E) but is Î  (E*,E,6) where 6 is the scattering angle and 

2^ (E -̂>E) = 2Tr 2A (E^s ,e) Sen e de 
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tion between accuracy of the measurement and sensitivity to the quantity 

of interest. An alternative approach therefore is to distort the 

equilibriiim Maxwellian obtained in a pure moderator, not by introducing 

poison but by using a pulsed neutron source and studying the variation 

of the spectrum with time after the pulse,* 

Equation H is then replaced bv 

,.«.-;«,„,,jV..Ojf,,-S;)' ^ - - - lli_ 

Again thd" asymptotic solution for long times â ci jcuj af>i>c.pfi..'i i<, 

but now the principal distortion accurs at times after the pulse 

when the neutron intensity is A further advantage of this 

type of experiment is seen when working with solid moderator (e.g. graphite) 

when it is in practice extremely difficult to obtain a completely homogen

eous distribution of poison of knowflintensity. In the time dependent 

experiment only pure moderatoi* is used and this difficulty vanishes. 

Time dependent spectrum measurements repoî ted in the literatixre are 

mostly confined to studies of the diffusion cooling effect by measuring 

the relaxation time of moderator assemblies of different sizes / and to 

studies of the mean temperature of neutrons in an assembly as a function 

of time after a neutron pulse by measuring the variation v/ith time of the 

* It can be formally demonstrated that the time dependent spectra and 
the l/v poison spectra are related through the Laplace transformation, 
but this is of little practical value. 
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absorption coefficient of e.g. silver '''»M» J, Beckurts ' has used 

a time of flight method to measure the infinite time asymptotic spectrum 

in water in small geometry. However this ejqjeriment depends on distortion 

of the Maxwellian by leakage of neutrons and is thus less general than the 

c 

work to be described. In the following paper experiments will be described 

which measure the spectnim of neutrons existing in a graphite block at times 

ranging from 300 usee to 1000 usee, after :̂ he introduction of a fast neutron 

pulse. Theoretical spectra, obtained by inserting the scattering kernel 

for graphite deduced by Egelstaff into equation III and solving numerically 

arafalso presented. 

Experimental method 

The experiment is best understood by reference to Figs, 1 and 2 which 

show the layout of the experiment and a schematic diagram of the electronics 

respectively. The Harwell 28 MeV 14nac provided a piilsed electron beam 

which was stopped in a mercury target to produce X-rays which then liberated 

neutrons by the y-n and y-t reactions from a natural uranium target placed 
11 

at A. In this way, pulses of neutrons 1 yusec long and containing ^ 1 0 

neutrons per pulse, were obtained. A proportion of these neutrons enter 

and are thermalized in the graphite block B of size 60 cm by 62,2 cm by 

71.1 cm. This is positioned so that the neutron source lies in the centre 

of the face in order to minimise the effect of spatial harmonics on the 

flux at the centre of the block. 

Fast neutrons enetering the block will first of all be slowed down 

to near thermal energies by elastic collisions with individual carbon 

atoms. At this stage their spectrum will be approximately Maxwellian but 

with a mean energy above that of the atoms in the block. This "hot" 

- 809 -



neutron population will then proceed to exchange energy with the graphite 

crystals and will graduily achieve - in the case of an infinite graphite 

block - true thermal equilib.ium with the graphite lattice. The effect of 

leakage from the graphite will be to cause the magnitude of the neutron 

flux to decay with time after the pulse, and also by virtue of the 

"diffusion cooling" effect the thermalisation proceeds more rapidly and 

the asymptotic spectrum achieved at long times will have a lower mean 

energy than would an equilibrium spectrum. The relaxation time for the 

flux calculated from the block size, the diffusion coefficf^t and diffusion 

cooling coefficient of graphite is /Ij'Su- -Ŝ<-. in reasonable agreement 

with our measured value of ( 7 ^ ^ -^/y^'^' 

A beam of neutrons is extracted from the centre of this block by 
by 6 cm %t^ -tf.* ce.,v+rt. 

cutting a channel 5 cnj/to one face. In this beam is placed a slow 

neutron chopper C, flight tube D, and boron trifluoride proportional 

counters E, If now the choppwr is rotated in synchronism with the pulses 

from the accelerator it serves two purposes; firstly it isolate^ a "bunch" 

of neutrons leaving the block at a definite moment after the fast neution 

pulse from the accelerator and secondly it provides a neutron pulse for 

a time of flight experiment to measure the spectrum of neutrons present 

at this instant. How this is done in detail can be seen by reference to 

Fig 2. A pulse is generated, b\'' a mirror and photcell system ^ounted 

on the chopper, coincident with moment of opening. This pulse is 

then fed to an adjustable delay circuit where it is delayed by a time 

T. and the delayed pulse used to trigger the electron pulse from the 

accelerator. If nov/ the period of rotation of the chopper is 2T (it 

transmits neutrons twice per revolution), then the accelerator pulse will 
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occur at time (TQ ~ T^) befpi-e the next time of opening of the chopper. 

The pulse is now fed through a second delay T2 and used to initiate the 

first channel of a multichannel time spectrometer. Pulses from the HP, 

counters are analysed in time by this spectrometer, whose first channel 

will then open at a time (T. ^ Tp - T ) also after the next chopper 

opening from the one initiating the sequence. Thus by suitably choosing 

T^ and T_ it is possible to select neutrons passing through the chopper 

ay aany desired time after the fast neutron burst into the block, and then 

to measure any desired part of the neutron spectrum by time-of-flight, 

subject to the limitations that 

W T i < T ^ 

(b) T̂  + T2 - TQ + nA ^ To i,e, T̂  + Tg + nZl ̂  2TQ 

where A is the width of a timing channel and A the number of channels in 

use, 

(c) The flight time of the slowest neutron measured from the block 

to the chopper must hot be greater than (TQ - T ^ ) , 

(d) TQ \\ 'V where V is the relaxation time of thermal neutrons in 

the block, 

(e) The flight time to the counters of the slowest neutron trans

mitted by the chopper must be less than (2TQ - T^ ~ -̂ 2̂  

Details of Equipment 

The graphite block was 60 cm by 62.2 cm by 71.1 cm in size and was 

completely surrounded by cadmium sheet to absorb stray neutrons, A 

channel 5 cm by 6 cm was cut to the centre of the block and a conventional 

multiplate "Fermi" chopper whose rotor was constructed of K-monel alloy, 

was located in front of this channel; the distance from the block centre 

- 811 -



to the chopper centre being 57.9 cm. This chopper had five slits 0,45 cm 

high by 1,3 cm long and v/as normally rotated at a speed of 80 r.p.s, to 

give l60 neutronjl bursts per second. Thus the turst width was 136/isec, 

Neutrons passing through the chopper travelled a 2.81 metre flight distance 

before impinging on the boton trifuoride counters used as a neutron 

detector. This detector consisted of a bank of ten counters each 2 in. 

in diameter, mounted in tliree rows behind one another, and filled to a 

pressure of 70 cm. mercuiy with ^Ofo enriched boron trifuoride. The 

variation of sensitivity with neutron energy of these counters was 

determined by experimental comparison with the sensitivity of boron 

trifuoride counters "thin" enough to have a l/v sensitivity lav/. This 

comparison was done on an independent chopper spectrometer using the 

LIDO reactor as the neutron source. The chopper flight path and counter 

were all completely surrounded by a cadmium shield and in addition a lead 

wall 10 cm thick v/as built to shield the counters as far as possible 

from the intense X-ray flash from t'.je linac target. A cadmium shutter 

could be lowered into the beam immediately before the chopper in order 

to make background measurements. 

As times taken for neutrons from the centre of the block to the 

chopper dependeof on their energy, the spectrum as measured did not 

represent the spectrum of neutrons in the block at one definite time, and 

to derive this it was necessary to make use of a v/hole family of spectra 

measured for different delay times (TQ - T>|), Thus the absolute inten

sities of different spectra must be related, and to do this neutron 

monitors were mouni-ed at F a^d G, These each consisted of a small 

ionisation chamber containing U-235. Amplified fission pulses flaflm these 
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were fed through a time "gate" which allowed them to pass during a 

definite interval after the accelerator pulse, to standard scaling units. 

Determination of the Transmission ftmction of the Chopper 

Before spectra can be calculated from the data it is necessary to 

know the transmission function of the chopper and collimator assembly as 

a fxinction of neutron velocity (energy). Stone and Slovacek *TP and 

Mostovoi " ' have calculated the transmission of a rotatin̂ ĝ slit in a 

parallel beam of neutrons. However in our ease collimators were used 

to determine the area viewed in the graphite and the beam was considerably 

divergent,( (Fig 3 shows the beam geometry). Thus the calculations 

given in the above references are not applicable. To calculate the 

cut-off fxinction the effect of collimators and rotor was 

separated. If a neutron passes through the complete system, it does 

so because it would both 

(a) be acceptable by the fixed slits in the absence of the rotating 

slits 

(b) be accepted by the rotating silts in the absence of the fixed 

slits 

Using thJ s pi-inciple ag IBM 7090 programne was written by M.S. M^rlow of 

The Theoretical Physics Division, Harwell, and the results of these 

computations are shown in Fig.4, together with the cut-off function for the 

same rotor in a parallel neutron beam calculated according to the method 

of Stone and Slovacek. By making use of the fact that the transmission 

is always a function of ^̂  (.(ô  angular velocity of rotor, 

Y = velocity of neutrons), and by taking measurements with different 

values or ̂  it is possible to verify these calculations experimentally. 
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The results of such an experira.jnt are also shown in Fig.4. The calcula

tions do not tal<:e account of the ex̂ .onential decay of the neutron density 

which is itself not negligible during the time the chooser is open. 

However it is easy to show that the effect of this on the overall cut-off 

function is less than L.l/c so that this has been neglected and a constant 

source assumed. 

5, Calculation of Neutron Spectra from Experimental data 

Experimental î uns were taken for a raxî -e of (T ~ T^ ) from 300 usee 

to 2000 usee. The counts obtained were corrected fciT counting losses 

due to the fact that the analyser could only accept one pulse per chopper 

burst, for neutron bac-.ground (cadmium shutter closed), for variation of 

countei" sensitivity ..ith energy, and for attenuation by air and quartz 

windows in neutron beam. The finite resolution of the soectrometer was 

then allowed for using the formula given by btone and Slovacei-: '^ 

X^,,)4IJX^.A)^.|^| 

w 

and the transmission function of the chopper put in using the curve 

shown in Fig.4 above. At this stage it is possible to plot the data 

as a series of decay curves of neuti'on intensity for each neutron energy 

(Fig,5). From these decay curves it is possible to read off the neutron 

intensity for each energy for neutrons leaving the source block at a 

fixed time and so to construct a series of neutron spectra for neutrons 

present in the block at different times after the accelerator pulse. 

Such spectra are shoz/n in Fin. 6. 
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Discussion of the results 

Before making detailed comparisons with computed spectra, it is 

useful to look at this data in the light of the elementary therraalisar-

tion theory suggested inter alia, by Beckurtŝ -'•"̂ . By considering the 

energy balance per neutron in unit volume of the moderator at any given 

moment in the thermalisation process, we have 
3 

Mean rate of energy loss to moderator = -kyCT-TQ) 

Mean rate of loss of energy by escape '̂ tr̂  R rr ^ ^ rn^, 
of neutrons 3 ^ 2 

where 

T = effective temperature of neutron population 

TQ = moderator temperature 

Ej) = mean energy of escaping neutrons 

Y = "heat transfer coefficient" between neutrons and moderator 

k = Boltzman's constaint 

X-t̂j, = transport mean free path for neutrons 

V = mean velocity of neutron population 

B2 = the geometric buckling 

Then 
3 dT 3 , ^ hv - , 3 , 
_ k jj- = - kY(T-To) - — V B M E D - - kT) V 

and as in graphite, Eĵ  is very nearly equal to 2kT, 

- _ ( , . v B = ) ( T - - ^ I - ^ T , ) VI 

9 

So that 

(T _I TQ) = K exp{-(Y+ ̂  AtrvB=)^> VII 

Y+ - Xtr^B-
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vAere K is an arbitrary constant, from which it is immediately 

obvious that the asymptotic neutron temperature at infinite time is. 

Tas - i ' TQ VIII 

and the re laxa t ionLt ime for neutron temperature i s 

1 

9 T = Y + - Xtr ^B« IX 

It can also be easily shown that if the asymptotic time dependence of 

the total flux is given by 

1̂  = 4>Qex^ - at 

with _ 
a = Ŝ v + DB2 - CB* 

Then C is the diffusion cooling coefficient, given by 

(^v)2 

C - — X 
6Y 

Using these relations, values of C, T^s, - and x have been cal-
1 1 ^ 

culated for - = 185 usee and - * 400 jisec, and B'ig. 7 shows 
Y _ Y 

corresponding graphs of E against time (E is the mean neutron energy 
— 3 

in the distribution and is related to T by E * « kT). On fig. 7 are 

also plotted experimental values of E obtained by integrating the 

measured energy distribution and it will be immediately obvious that the 

data are in better agreement with the assumption of - = 400Lisec than the 
Y 

presently accepted value of 185 |j,sec. This of course also implies that 

the diffusion cooling coefficients as published are also too small by 

about a factor two*. Unfortunately the shape of the E versus t curves 

becomes rather insensitive to - for values of - greater than 400 usee: 
Y Y 

*Beckurts (private communication) has also suggested that the published 

values for C are too small by a factor two. 

- 8l6 -



so it is not possible to give from these experiments amy reliable upper 
1 

limit to -; what is clear is that no value less than about 350 usee 
Y 

will give acceptable fit to the data, 
1 

A further check on the most appropriate value for - is given from 
the measurement of the relaxation time a for the total flux and the 

1 
value of 775,5 usee computed from the assumption — * 400 usee is in 

r-e.ctsooe.blc / \Y 1 
agreement with the measured value of 1754 ± 9)|jsec, whereas if -

^ ' Ẑ *".. Y 
were 185 usee then a relaxation time for this block of 708.7 would 

A 
be predicted. Table I summarises the parameters obtained. 

Comparison of the spectra with detailed theoretical computations are 

given in the next section. 

Table I 

Assumed 

M̂  sec. 

185 

400 

T (for 
B= = 6.43.10"'' 

cm-=) 
ti sec. 

170.4 

339.7 

C 

cm* sec" 

14.4.10^ 

28.5.10^ 

%s 

eV 

0.0353 

0.0325 

Computed 
relaxation 
time ^ , 
for overall 
decay of 
neutron 
flux 

H-sec. 

708.7 

775.5 

Observed 1 
relaxation 
time % 

for overall 
decay of 
neutron 
flux 

M,-sec. 

754. ±9. 

7. Theory of time dependent spectra 

Equations 

In this section we describe calculations of the time dependent 

neutron spectra in a slab. We restrict ourselves to the diffusion 
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approximation and consider the equation 

1 9<^(E,r,t) 
= - [2a(E)+Es(E)-D(E)V2]<^(E,x,t) 

, (E') .P(E'-E).<^(E' ,x, t) .dE' + S ( E , r , t ) . XI fv 
Here 0 ( E , r , t ) i s the flux of neutrons at the point £ in the slab having 

energy E at time t ; 

2g (̂E) and 2g(E) are the macroscopic absorption and scat ter ing cross sections 

at energy E respectively; D(E) is the diffusion coefficient which i s equal 
^ (E) 

to ^r—T", , where <2^(E) is the t o t a l mean free path and b i s the average of 
3(1—b) 

the Cosine of the angle of sca t te r ; 

F(E'-E)dE is the probabil i ty that a neutron which undergoes a sca t ter ing 

col l i s ion at energy E' is scattered into the energy in terval dE at E; 

S(E , r , t ) is the number of neutrons of energy E coming d i rec t ly from the 

sources at the posit ion r and at time t , EQ is the energy .258 eV. (lOKT) 

In the derivation of (1) from the Boltzmann transport equation i t i s 

assumed that the d is t r ibut ion i s almost i so t ropic . This i s a valid 

assumption at most points in the slab because the dimensions of the l a t t e r 

(60 cm X 62 cm X 71 cm) are many neutron mean free paths. 

A further assumption i s made in the derivation of XI. A terra 
3D 92c?!. . , 1 ^ 
—- —— is neglected in comparison with - . —- . We can test the 
v2 9t2 ^ ^ v 9t 
va l id i ty of th i s assumption by an examination of the experimental r e s u l t s . 
At a time 100 ^isecs. af ter the introduction of the source the magnitude 

, , 3D 92gi. 1 'd4> 
of the terra — . -— is 10% of the term - . — at the energy 0.135 e.v. 

v2 9t2 v 9t 

at later times the ratio of the two terms becomes smaller. 

We now expand ^(E.j:, t) and S(E,i:, t) as follows 
cc 

</.(E,r,t) = 2 (̂  (!)</.„ (E,t), XII 
n=0 
00 

S(E,£,t) = 2 <^(x).Sn(E,t), XIII 
n=0 
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where ^iz) satisfies the equation 

V2<̂ (i:) = -B2 cP^iz), 

and <^(l) = 0 at the extrapolated boundary. Substituting (2) and (3) 

into equation (1) we find that <?bĵ (E,t) satisfies the equation 

i , ^^liilil = _ [2a(E)+2s(E)+D(E).B=].<^(E,t) 
V O w 

+ r° 2g(E')F(E'-E).c^(E',t)dE' + S^CE.t). XIV L s 
0 

In the experiment neutrons enter one face of the block cind the 

spectruin is examined at its centre. This means that the second mode does 

not contribute to the measured spectrum as 02d) is zero at this point. 

The third mode is quite negligible compared with the first for energies 

near to thermal, because the ratio of the fast non leakage probabilities 

during slowing down exp[-B^-B^T] is of the order of 10"'̂ . We therefore 

solve equation XIV for the first mode <^Q(I:). 

S(E,t) is the source term for neutrons being scattered to energies 

below Erp = .285 e.v. We assume that this is given by Fermi age theory. 

SQ(E,tg) is given by 

E/ 
r'« 2g.exp[-B§x(E').S(EQ)dE' 

'^J^^^ £.2g.E'.(l-a) ^̂  

where B, is the mean logarithmic energy loss in a collision with an atom 

of carbon; 

(1-a) is the maximum fractional energy change in a collision; S(EQ) is 

the source strength at energy EQ; 

T(E') is the Fermi age for the energy interval EQ to E'; 

exp[-B2.x(E')] is the non escape probability factor; 

tg is the slowing down time of neutrons having a final energy in the 
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interval between Eij and Eij/a. Assuming that exp[-B^T(E')] does not change 

in the energy interval Bj to E/a then, V 
S(E,t, 6(t-tg). 

S(-EQ).exp[-B§T].(l-^) 

£. (l-o).Erji. 
XVI 

Numerical solution of the equations. 

XVII 

The slowing-down scat ter ing in tegra l , the source terra of the equation, is 

approxiraated by a (2n+l) point Simpson rule quadrature formula. Taking 

(2n+l) i n i t i a l values of (i>Q{E,i) we get a se t of (2n+l) l inear 

d i f fe ren t i a l equations with consteuit coeff icients in the (2n+l) 

unknowns <^Q(Ej^,t), i=l , 2, . . . . , 2n+l. These equations may be writ ten 

where A i s the (2n+l) x (2n+l) matrix with i th column Aĵ  

given by 

2(Ei-Pi)<^Q(EjV(Ei). ^ 

42(E2-Ei)<^o(E2)V(Ei).AE/g 

22(E3-^i)</)o(E3)V(Ei).AE/g 

f • • • • » • • • • • • • •v 

| (4^(K9[i ] ))2(Ei^i)0Q(Ei)~ -2(Ei )-&MEi )|v(Ei] 

2(Egn+r^i)^o(E2n-n)V(Ei) 
AE 

Here D(Ej_! 

3^s(Ei)(l-3f^) 

The solution of (7) i< 
<^Q(t) = Be^^ , 

A.At i . e . (̂ „ (t+At) = e^-^^ 0o ( t ) , XVIII 
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where the exponential of the matrix AAt is given by 

gAAt = I + A At + A2At2 + A^Ata 

W IT " '" ' 
To calcula te e-^^ we f i r s t use Gersgorin's theorem to estimate the 

absolutely largest eigenvalue, Xĵ , of the matrix A. A maximum step 

length, hj^, i s then found from 

where e is a small constant- and the smallest value of S is found 

for v/hich 
At 

h = — ^ hw, s ^ 0. 

2s 

The matrix e-^ is calculated from 

.Ah = [(k-'f-lf -)^-] 
4 

Finally e ^ ^ is given by 
gAAt = (eAh)2S^ 

For p X p matrix A, approximately 2(3 + s)p3 + p^ multiplications 

are required to evaluate e^^, with p^ multiplications for each step. 

In the cases we have considered s has been found to be about 

8(e = .02, At = 50 |is) so that 20 steps require 22p3 + 21p2 multiplica

tions which take approximately .000034,(82p3 + 21p2) seconds on an 

IBM 7090. 

Data used in the calcula'cions 

Calculations were carried out using cross sections for the energy 

transfer in the thermal region obtained from the heavy gas model and 

also from the data obtained from the scattering law experiments at 

Chalk River. In these latter experiments the differential scattering 

cross section a(E-E',9) for scattering from energy E to energy E' 

through an angle 9 is measured. This data is augmented by theoretical 
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estimates to obtain a complete sca t ter ing law in the thermal region, a 

paper by J.D. Macdougall^-^'^ describes a programme PIXSE which produces 

multigroup cross sections from the scat ter ing law. 

The programme PIXSE also gives the cross sections for sca t ter ing 

by a monatoraic gsis. In th is case a(E-E') is evaluated d i rec t ly from 

the formulae 

a(E-E') = -^— [exp(x2-x'^){erf(r^x-px')+erf(nx+px')} 

+ erf(Tix'-px)-erf(nx'+px)] for E < E' 

[exp(x2-x' ){erf (r^x-px' )-erf(Tix+px')} 

+ erf(nx'-px)+erf(nx'+px)] for E > E' , 

where Og is the free atom cross section, x^ = E/kT, x' = E'/kT, 

T\ = (A+l)/2/A, p = (A-l)/2vT[, A is the mass of the scatterer in 

units of neutron raass, T is the temperature of the scatterer in ̂'K and 

k is Boltzmann's constant. 

Comparison with experimental data 

Fig. 8 shows the results of this theory for times of 300 lisec to 

1000 >isec, and these are further compared with the experimental data in 

Figs, 9 to 13, The theoretical and experimental spectra have been nor

malised to give the best fit on t'le intensity scale for the 300 iisees 

spectrum, but apart from this no normalisation has been carried out. It 

will be seen that reasonable agreement is obtained with the exception of 

the 1000 ̂isecs spectrum where the accuracy of the experimental data is 

in any case not very good. For comparison a spectrum calculated from 

the heavy gas model (A = 12) is shown in the 300 usee ease, and the lack 

of agreement with experiment is obvious, the free gas calculation giving 

far too rapid progress of thermalisation. Figs, 9 to 13 also show heavy 

a(E-E') 
Og.TI^ 

2E 
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gas calculat ions made with an "effective raass" of 33 and i t i s c lear that 

these resu l t s are rauch closer to those obtained using the true sca t te r ing 

law. However s ignif icant differences are seen for "medium" times a f te r 

the neutron pulse, and i t i s in te res t ing that these differences are 

qua l i t a t ive ly similar to those obtained between heavy gas and c rys ta l 

model ca lcula t ions for poisoned systems ( i . e . heavy gas gives too many 

low energy neutrons) . The experimental data are as yet not suf f ic ient ly 

accurate to give a c lear decision between the merits of the two calcular-

t ions , but i t can be seen that in the 450 jisec and 600 usee spectra they 

do appear to l i e closer to the calculat ions using the Egelstaff s c a t t e r 

ing law. 
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ABSTRACT 

S p a t i a l d i s t r i b u t i o n s of r a d i o a c t i v i t i e s of Cu '̂''' and Lu''-''"'' 

induced by thermal neut rons near tempera ture d i s c o n t i n u i t i e s in 

g r a p h i t e and i n g r a p h i t e and water systems have been analyzed with 

a mul t i the rmal -group d i f f u s i o n model of the space-energy d i s t r i b u 

t i o n of the themia l n e u t r o n s . RethciTnalizat ion c ross s e c t i o n s for 

g r a p h i t e and water have been I n f e r r e d from the Cu^* d a t a . For 

g r a p h i t e a t a p h y s i c a l temperature of ^OCPK t he c ross s e c t i o n s vary 

from 0.009 t o 0.069 cm~^ for neut ron s p e c t r a wi th c h a r a c t e r i s t i c 

temporatuj-'cs in the ran';c from l':-':- t o 020°K, r e s p e c t i v e l y . For 

;ji'a_Lhite ab p h y s i c a l t empera tures i n the range from ikk t o 828°K 

the c ro s s s e c t i o n s vary from O.OI6 to O.OMi- cm"^ r e s p e c t i v e l y for 

a neut ron sjcctri im iJith a c h a i a c t e r i s t l c tempera ture of appiroxlmabe-

l y 3OCPK. For water a t a p h y s i c a l tempera ture of approximate ly 300"K 

the c ro s s s e c t i o n s vary from 1.25 t o 0.75 cm'"^ for neut ron s p e c t r a 

c h a r a c t e r i z e d by tempera tures i n the range from 4lO t o 720°K, 

r e s p e c t i v e l y . Ca lcu l a t ed t r a v e r s e s of the the rmal a c t i v i t i e s of 

Lu^'^''^-^Aiich were made wi^h the mult i therraal-[ ; roup model us ing 

those rcthc'LTnalization c ro s s s e c t i o n s , agree t o w i t h i n + W/o wi th 

the obsexvcd t i a v e r s e s . E f f e c t i v e masses of g r a p h i t e i n f e r r e d from 

the c ro s s s e c t i o n s agree t o w i t h i n + 20^ with those ob ta ined from 

d i f f e r e n t i a l measurements of the energy d i s t r i b u t i o n s of neut rons 

from the g raph i t e of a g raphi te -uran ium l a t t i c e . Re laxa t ion l e n g t h s 

a l s o i n f e r r e d from the c ro s s s e c t i o n s agree t o -^^ithin 30^ wi th 

those c a l c u l a t e d from the r e s u l t s of a t h e o r e t i c a l i n v e s t i g a t i o n 

of e l a s t i c and one phonon i n e l a s t i c s c a t t e r i n g of ho t neut rons i n 

3OOPK g r a p h i t e . 
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IHTRODUCTION 

Precise specification of the space-energy distribution of 

neutrons in reactor media is essential to good design and optlmiza 

tion of reactors. Specifically this information is required for 

calculations of neutron reaction rates and hence determinations 

of neutron economy. A fundimental difficulty encountered is the 

deviation of the energy disti*ibutions of neutrons from equilibrium 

Maxwellian distributions caused by preferential absorption in 

strongly absorbing media or by variations in scattering properties 

of the media. Near physical boundaries between dissimilar media 

spatial transients are then induced. Temperature gradients and 

discontinuities further complicate the problem in heterogeneous 

reactors that operate at high power levels. Ideally in studies 

of this problem one would measure these spatial variations of the 

energy distributions of neutrons. However, extreme difficulties 

are encountered in obtaining adequate spatial detail while main

taining sufficient neutron intensity, in say, chopper measurement 

techniques. An alternative is, of course, the measurement of 

spatial variations of neutron reaction rates in combination with 

subsequent comparisons with theoretical models of space-energy 

distributions of neutrons. 

The latter approach has been used in this work. Traverses of 

the reaction rates of thermal neutrons with Cu^^, Lû ''̂ , and Au?-^'' 

have been measured near temperature discontinuities in graphite 

systems and in graphite and water systems. This work extends the 

work on neutron rethermalizatlon reported earlier^ -'. The 
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experiments were done in the core of the Physical Constants Test-

(2) 

ing Reactor^ in cylindrical geometry rather than the slab 

geometry used in the earlier work. This change constitutes an 

improvement in the sense that the experimental geometry in this 

work was more consistent with the cylindrical shell array of fuel 

in the PCTR. The temperature range of the experiments extended 

from Ikk to 828°K with temperature discontinuities up to 500°C. 

The analysis consisted of comparisons of calculated and observed 

traverses of the Cu^* and Lû''"'' data. 

The calculations were made with the multithermal group model 
(o) 

proposed by Selengut •̂ '. The variations in the energy distribu

tion of neutrons near interfaces are accounted for in the multi-

thermal group model by defining the total thermal spectrum as a 

weighted sum of equilibrium spectra. An equilibrium spectrum is 

defined for each region having different physical properties and 

each equilibrium spectrum is assumed to exist in all regions. 

After a mean number of collisions in a region neutrons that are in 

non-equilibrium spectra are assumed to transfer to the equilibriimi 

spectrum of that region. Rethermalizatlon cross sections defined 

in the model specify the probabilities for neutron transfer. 

Values of the cross sections for rethermalization have been in

ferred in the analyses of these experiments. A simplified version 

of this model was used in the earlier report. The overlapping 

thermal group model, which is quite similar, has been used in 

analyses of neutron flux peaking in water gaps^ '. 

The model, the experimental apparatus and techniques, the 

analysis procedures, and the results are presented in subsequent 
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sections. The model, as used in this work, allows for the depend

ence of the diffusion coefficient of graphite upon the neutron 

and physical temperatures and for the possibilities of unequal 

probabilities for neutron rethermalization to higher or lower 

energies, which were not accounted for in the earlier work. The 

cylindrical nature of the experimental geometry and PCTR fuel 

loading are illustrated in the discussion of the experimental 

apparatus. The discussion of the analysis includes a description 

of the bivariate statistical procedures used in inferring re

thermalization cross sections from the Cu®* data. The results 

include values of the cross sections, effective masses, and relaxa

tion lengths for rethermalization and comparisons of calculated 

and observed traverses of the activities of Cu^* and Lû ''"' . The 

values of the effective masses and relaxation lengths for graphite 

are compared with results obtained from the work of others^^'''. 

MULTITHERMAL GROUP MODEL 

The multithermal group model is used in the diffusion approxima 

tion. An equilibrium group of neutrons, with a Maxwellian energy 

distribution, M(E, T . ) , is defined for each region with a different 

physical temperature, T.. To a first approximation, only two 

distinct physical temperatures exist in these experiments. The 

magnitude of each equilibrium group is given by a spatial weight-

ing function, cp.(x), the integrated group flux for the i group. 

The total space-energy distribution of the thermal neutron flux 

is given by 

1) f(E,r) - cp, (r) M(E,Ti ) + cfeCr) U{S,T^ ) 
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The epithermal component of the spectrum is assumed to have 

the form 

/\ = 0 for E<:p,kTjj 
2) cp (E,r) = c(:t)(r)A/E where A = 1 ^or Es^kTj^ 

and |j, ~ 5 - 1 ^ ' ' ^ and T^ is the physical temperature of the region 

of concern. 

The neutron balance equations are derived by conservin,g 

neutrons and neutron energy through calcula t ion of the zero and 

f i r s t energy moments of the Williins heavy gas equation^^; or with 

the va r ia t iona l principle^"- ' . For these experiments, which have 

five o^ seven regions and only two physical temperatures, the 

neutron balance equations for regions k a t temperature T̂^ a re ; 

Coi7^cpo-S aoi%"S 0 ^ % = '"VS f i i9i "US jv^^q^ 

3) EiiT'cpi-S aii^Pi + S 3^1% = -T. 0 -1% 

D3i.7^cp3-E asi'fe"S 2-n% = 0 

where the subscript for the region (k) i s understood for a l l 

quan t i t i e s . For regions k a t temperature Tg the balance equations 

a r e ; 

''•) ^isT^^ft-S a i2%-S 1-2^Pi= 0 

1^337^%-S a s s ^ + S 1- S 9 M - £ 1-. 2% 

where the subscript for the region (k) is understood for all 

quantities. The quantities D̂ ^̂jĵ., •£ Q^^AI^, and s f ijk .̂re the group 

diffusion coefficients, absorption cross sections, and fission 

cross sections, respectively, for groups i in regions k that are 

at a physical temperature T^. The quantity v is the mean nvmiber 

of fast neutrons per fission. The quantities SJ:_,^ V ^̂ "̂  "the cross 
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sections for rethermalization of neutrons from groups i to groups 

j in regions k. All quantities are flux averaged over the appro

priate equilibrium spectrum. The quantities D_. ., of regions k at 

temperature T . for the thermal neutrons are 
J 
CO 00 

5) ^ijk = Jo V^^^j) M(E,Ti)dE/Jo M(E,T.)dE 

irherc T. i s the charac te r i s t i c temperature of the i'^^ thermal 

g-roux .̂ The thermal cross sections are s imilar ly given by 

6) S ,, . , , , = . S ,^,, (E)M(E,T )dE/ Jo M(E,T.)dE 

irherc the suljGcrlxjt x refers to a, f, or s for abGorx)tion, f i ss ion , 

or sca t te r ing , respect ively. The fast group constants ( i = O) 

DQ^J,, S ^Q-n .̂; and 2 o->j,k were obtained from calculat ions made A7ith 

a modified age theoi-y^ '^'' and were subsequently adjusted empirically 

as necessary to give the observed spa t i a l var ia t ion of the ep l -

cadmium a c t i v i t y of Au^^^. 

The cross Sections T, g-^i ]^ and S j _ , j> j , are those for r c -

thennallzatlon of neutrons from group two to one and from group 

one to t^fo, respect ively. In the l imit of high neutron and 

moderator temperatures the rethermalization cross section i s ex

pected to be given by the heavy gas model as 

2n 
7) E reth ~ ^^ s ~ M~ •̂  - where the quant i t ies n and M are the 

masses of the neutron and moderator respectively and X] ̂  i s the 

macroscopic cross section for sca t te r ing . For lower temperatures 

Eqn. 7 defJncs an effective mass for the moderator of region k for 

tx^.nsfer of neutrons from group 1 to group j as 

8) M 
e i-o,k %-.j,k 
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The quant i t ies d i rec t ly inferred from the f o i l counting data are 

the relaxat ion lengths for neutron rethermalizat ion. These lengths 

are defined as 

1 \ 1 

^i-j,k j 

The s o l u t i o n s of the neut ron balance equa t ions cp^Cr), cpj(r) 

and cfjg(r) for the exper imenta l cond i t i ons i n t h e s e experiments 

a re found by numerical methods us ing e s t ima ted va lues of the r e -

thexraa l l za t ion c ross s e c t i o n s . The fluices a re t hen used t o 

c a l c u l a t e the t r a v e r s e s of t h e a c t i v i t i e s of Cu®^ for comparison 

with the observed t r a v e r s e s . On the b a s i s of t h i s comi)arlson 

b e t t e r va lues of S-,- i; n. a r e e s t ima ted and ag-ain the calculxi ted 

a c t i v i t i e s a re compared t o the observed t r a v e r s e s . 

EXPERBEWTAL APPAR'VTUS AND PROCEDURES 

The i r r a d i a t i o n s r e q u i r e d t o ob t a in t r a v e r s e s of the a c t i v i t i e s 

of Cu®*, Lu-'-''"̂  and Au'-®® near tempera ture d i s c o n t i n u i t i e s in 

g r a p h i t e , and in g r a p h i t e and water media \/ere made wi th the Phys ica l 

Constants Tes t ing Reactor . Nine i r r a d i a t i o n s were made, f ive i n the 

a l l g r a p h i t e system and four i n the g raph i t e and water system. The 

e s s e n t i a l geomet r ica l f e a t u r e s of each s e t of experiments were 

s lml l a i ' . A c ross s e c t i o n a l Yiev of the r e a c t o r and exper imenta l 

media t aken normal t o the l o n g i t u d i n a l a x i s of symmetry i s shown 

in Figure 1 for t h e g raph i t e and water system. Progress ing 

r a d i a l l y outward from the c e n t r a l a x i s t h e r e s p e c t i v e reg ions a re 

a column of water , and a n n u l i of Z i r c a l o y I I , g r a p h i t e , i n s u l a t i o n , 

g r a p h i t e , f u e l , and g r a p h i t e . In the a l l g r aph i t e experiments the 
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Outside Radii of Regions 

Water 
Zircaloy-2 
Hot Graphite 
Insulation 

3.400 cm 
4.254 cm 

^ 19. 050 cm 
20. 955 cm 

Room Temp.Graph i te = 49 . 530 cm 
Fuel = 50. 750 cm 
Reflector =110.750cm 

Figure 1 Caption: 

Schematic equivalent of the cross section of the Physical 

Constants Testing Reactor and experimental regions. The ring of 

PCTR fuel rods and lucite is shown as a homogeneous annulus of 

fuel, lucite, and lead. The PCTR reflector, which is actually 

rectangular, is shown as an annulus of equivalent cross section. 

This geometry was assumed in the analysis of the experiments. 

The quantities T,̂  and Tg are the physical temperatures of the 

regions. 
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region occupied by the column of water and annulus of Zircaloy I I 

was f i l l e d with a graphite cyl inder . 

The annulus of insula t ion was lampblack tamped between an 

inner and outer she l l of aluminum, each O.O625 of an inch th ick . 

The layer of lampblack was 0.625 of an inch th ick . The annulus 

of fuel , sho-vjn in Figure 1, simulates a r ing of 32 standard PCTR 

fuel tubes . The metal i s a Pb-U^^^ a l loy in the form of a tube 

1.170 inches inside diameter and 1.235 outside diameter. Each 

tube 1/as f i l l e d with a luc i t e rod 0.75 of an inch in diameter in 

an attempt to local ize neutron moderation and decrease the fast 

to slow flux r a t i o in the inner regions. The decrease in the flux 

r a t i o vns approximately 1+0 .̂ 

The temperature d iscont inui t ies occurred in a O.O625 of an 

inch a i r gap between the Zircal loy I I and the inner graphite 

region or in the annulus of lampblack. The inner region of 

graphite was e i the r heated -tjith calrods or cooled with l iqu id 

nitrogen. The water -v/as held near room temperature by adjustment 

of the flo-s7 r a t e . The lampblack insulated the outer regions from 

the hot or cold inner region of graphi te . The water temperature 

was monitored with mercury thermometers a t the in l e t and ou t l e t . 

The ax ia l and r ad ia l d i s t r ibu t ions of temperature in the graphite 

regions inside and outside the lampblack insulat ion were monitored 

\7lth iron-constantan thennocouples. Prior to i r rad ia t ions the 

calrods were removed and the vacancies irere f i l l e d with pre-heated 

giraphite f i l l e r bars . In the cold experiments the res idual l iquid 

nitrogen \^s allowed to evaporate pr ior to i r r ad i a t i ons . 
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The Cu, Au, and Lu neutron detec tors , both bare and cadmium 

covered, were i r rad ia ted simultaneously in each experiment. The 

bare detectors were centered in a plane tha t was normal to the axis 

of symmetry a t a posi t ion three inches from the midpoint of the axis 

The cadmium covered detectors were centered in a mirror image plane. 

The six inch separation between the planes was sufficient to reduce 

to a negligible amount the flu;c perturbations a t the bare detector 

positions caused by the cadmium. The l a t t e r fact was established 

experimentally by comparing spa t i a l variat ions of the a c t i v i t i e s of 

Cu^* taken a t room temperature with and without the cadmium present . 

Copper fo i l s used in the water regions were s t r i p s 0.25 of an inch 

A.'lde and O.OO3 of an inch th ick . They ^/ere positioned along a 

diameter of the column of i/ater by peening the ends in the wall of 

0.020 of an inch thick aluminum sleeve tha t f i t inside the Zircaloy 

I I tube. The copper used in the graphite was in the form of pins 

0.0625 of an inch in diameter and O.5OO of an inch in length. 

These pins were positioned on O.635 cm centers rad ia l ly outxrard to 

a radius of 1+2.5 cm. The gold was in the foarm of disks O.OO5 of 

an inch thick and O.5OO of an inch in diameter. The lutetium 

detectors were ceramic disks of ALjOg-Lu^Og weighing approximately 

1+50 mg and containing 10 mg of LugO,^ . The disks were O.OI+5 o:̂  

an inch thick and O.I+5O of an inch in diameter. The gold and 

lutetium disks were positioned rad ia l ly outward to a radius of 

1+2.5 cm with a spacing of approximately 2 cm. The cadmium covered 

detectors were spaced approximately 5 cm apar t . The cadmiiffii 

covers f i t each type of detector snugly and the walls vers O.OUO 

of an inch thick. 
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The a c t i v a t e d d e t e c t o r s were y-counted on a Nal (Tl ) c r y s t a l 

p h o t o m u l t i p l l e r system. Only the Cu^*, Lu'-''"' and Au^^^ a c t i v i t i e s 

were counted The a c t i v i t i e s of CvP^ and Lu^'^''' had decayed t o a 

n e g l i g i b l e amount p r i o r t o the s t a r t of the count ing 

ANALYSIS, RESULTS, AND DISCUSSION 

The c ross s e c t i o n s , e f f e c t i v e masses , and r e l a x a t i o n l eng ths 

for neut ron r e t h e r m a l i z a t i o n were i n f e r r e d in making comparisons 

of c a l c u l a t e d and observed t r a v e r s e s of the thermal a c t i v i t i e s of 

Cu®*. The ana lyses inc luded the r educ t i on of bare and cadmium 

covered a c t i v i t y da ta t o thermal a c t i v i t i e s , c a l c u l a t i o n s and 

empi r i ca l de te rmina t ions of the group cons t an t s for the neutron 

balance e q u a t i o n s , and i t e r a t i v e adjustment of the r e t h e r m a l i z a t i o n 

c ross s e c t i o n t o minimize the va r iance of the f i t of the c a l c u l a t e d 

curves t o the observed t r a v e r s e s . 

The thermal a c t i v i t i e s A.y^ were c a l c u l a t e d from the bare A-g 

and the cadmium covered A^^ a c t i v i t i e s under the assumption t h a t 

in every reg ion the spectrum of ep i the rma l neut rons was 1 / E , as 

given by Eqn. 2 . The e f f e c t i v e cadmium cu tof f energy was c a l c u l a t e d 

t o be 0.61+ e v . A c t i v i t i e s of bare f o i l s due t o epithermal-subcadmium 

neu t rons , r e l a t i v e t o t h e i r a c t i v i t i e s due t o epicadmiimi n e u t r o n s , 

were e s t ima ted from the r e s p e c t i v e resonance i n t e g r a l s of Cu^^. 

The c a l c u l a t i o n s were made with the exp re s s ion 

10) A,, = AT, - a^3 A ' t h B ^ ec 

where a^^ = RI^^/RI |^ and R I | | i s the t o t a l resonance i n t e g r a l 

of Cu^^and RI |^ i s the epicadmium resonance i n t e g r a l of Cu^^. 
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The self shielding effects of the thick detectors were accounted 

for by using effective resonance integrals measured in previous 

work.̂ -̂ ^̂  

The fast group constants were estimated initially with a 

modified age theory of slowing down^ '. Subsequently, the diffu

sion coefficients and absorption cross sections were empirically 

adjusted to yield a minimum variance of the fit between the cal

culated and observed traverses of the epithermal activity of Au^®^ . 

The slowing down cross sections were not adjusted in order to 

maintain the correct rate of thermalizatlon. The epicadmium 

activity of Au^^^, due primarily to the absorption resonance at 

I+.9 ev, was assumed to be an adequate measure of the source of 

thermal neutrons and was assumed to be proportional to the fast 

group flux, cfi3 . The observed traverses and the calculated curves 

that fit the data best are shown in Figures 2 and 3 for the graphite 

experiment and for the graphite and water experiment, respectively. 

These spatial variations were not affected by heating or cooling the 

inner region of graphite within the temperature range of II+I+ to 523°K 

(below the melting point of cadmium). Therefore, the assumption was 

made that the data in Figures 2 and 3 would adequately describe the 

spatial variations in the experiments at higher temperatures, also. 

The thermal group constants were, in general, calculated from 

microscopic cross section datâ -'-̂ .', using Eqn. 5 and 6. The fuel 

absorption cross sections for the room temperature experiments were 

determined empirically by adjusting their values to minimize the 

variances of the fits of the calculated and observed traverses of 

the thermal activities of Cû '* observed in the room temperature 
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0 5 10 20 30 40 50 

Radius (cm) 

Figure 2 Caption 

Graphite Experiment-Room Temperature. The comparison of 

calculated curves of the epicadmium activity of Au^^^ and thermal 

activity of Cu^* with the obseî red traverses. The group constants 

used to obtain these calculated curves were used as the basis for 

calculating the group constants for experiments lA, IC, ID, and IE. 
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Fif;ure 3 Caption 

Graphite and Water Experiment-Room Temperatui-e. The compari

son of the calculated curves of the epicadmium activity of Au^^^ 

and the thermal activity of Cu^* with the observed traverses. 

The group constants used to obtain these calculated curves were 

used as the basis for calculating the group constants for experi

ments 2B, 2E, and 2D. 
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experiments. The calculated curves that best fit the traverses 

are also shown in Figures 2 and 3- Values of the fuel absorption 

cross sections for the equilibrium groups with different character 

istic temperatures were calculated from the empirical values obtained 

from the room temperature experiments under the assumption that the 

absorption cross section of the U®^^ fuel of the PCTR varied as l/v. 

In the manner described, the room temperature experiments were used 

as normalizing experiments. The changes in reaction rates observed 

in subsequent experiments were due primarily to rethermalization 

and were accounted for with the introduction of the cross sections 

for rethermalization. 

Rethermalization Cross Section of Graphite 

The Iterative adjustment of the two rethermalization cross 

sections in each graphite experiment was a bivariate analysis per

formed with the IBM-7090 computer code "Fit-l" .̂ "̂ ^̂  Values for 

each cross section were estimated initially to be less than those 

predicted by the heavy gas model, given by Eqn. 7- One value was 

varied while the other was held fixed in repeated calculations of 

the variance of the fit of the traverses of the thermal activity 

of Cu®*. With the variance minimized with respect to one variable, 

the fitting was repeated for the other variable. This method 

ultimately yielded a crude map of the isovariance lines in the 

cross section field. A typical map is shown in Figure k for experi

ment lA. The straight lines on the cross section field indicate 

lines of iteration, the values of cross sections that were held 

fixed. The points on the iteration lines indicate the values of 
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Figure k Caption 

Isovariances of the rethermalization cross section field for 

the graphite Exp. lA.. The numerical values of the isovariances 

are proportional to the sum of the deviations of the experimental 

data from the calculated curve of thermal activity of Cu®*. The 

critical point at (O.OI67, O.OO92) is the minimum of the field 

and its coordinates are the rethermalization cross sections for 

the experimental conditions, see Tables I and II, Exp. lA. The 

point (0.0098, 0.0098) is a pseudo-critical point obtained under 

the assumption of equal probabilities of neutron rethennalization. 
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the cross section iterated upon. The isovariance curves are visual 

estimates based upon the field points indicated. The precise loca

tion of the critical point (minimum at O.OI67, O.OO92) of the field 

has been verified by least squares analysis under the assumption 

that the variance near the critical point is a quadradic function 

of the two cross sections for rethermalization. The point (O.OIO, 

0.010) is the pseudo-critical point one would obtain under the 

assumption that the cross sections for rethermalization were equal. 

This Iteration procedure was repeated for each graphite experi

ment. The respective coordinates of the critical points, the pairs 

of cross sections for retheimallzation in graphite, are listed in 

Tables I and II. The values for rethermalization of non-equilibrium 

neutrons in graphite at approximately SOCK are given in Table I; 

and values for the rethermalization of groups of thermal neutrons 

with characteristic temperatures near 300°K In graphite at various 

temperatures are given in Table II. The graphic presentation of 

these results in Figure 5 illustrates that the cross section for 

rethermalization of 300°K neutrons in graphite asymtotically 

approaches the heavy-gas value of O.065 cm"'- at graphite tempera

tures near 800°K. The experimental results shown in Figure 6 

illustiate a similar saturation behavior of the cross section of 

300°K graphite for hot neutrons at a value significantly lower 

than 0.065 cm"-'- . One would not expect the latter to saturate as 

the data indicate. A behavior similar to the curve in Figure 6, 

a visual estimate, is to be expected since the chemical binding 

energy becomes small relative to the neutron energy at high neutron 

temperatures. 
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RETHERMALEATION PROEERTIES OF GRAPHITE 

TABIE I 

RETHERMALnZATION OF NEUTRONS WITH A MAXWELLIAN ENERGY DISTRIBUTION, 

M(E,TJ ) , IN GRAPHITE HAVING A PHYSICAL TEMPERATURE, Tg 

Exper i 
ment 

lA 

IC 

ID 

IE 

Character 
i s t i c Temp
e r a t u r e of 
Thermal 
Group 

Ti 

°K 

lij-i+ + 5 

523 1 5 

690 + 5 

828 + 5 

Phys ica l 
Temperature 
of Graph
i t e 

\ 

°K 

283 + 5 

299 1 5 

308 + 5 

315 ± 5 

Average^'^ 
Diffusion 
Coef f i c ien t 

^12.3 

cm 

0.900 

0.79^ 

0.782 

0.776 

Rethermaliza-
tion<i^e 

Cross Sec t ion 

S 1-. s ,~ 

cm"^ 

0.017 1 .001 

O.Oi+4 + .002 

0.0i<-5 + .002 

0 .04 l + .002 

Relaxat ion 
Length 

^ - . 3 , 3 

cm 

7-3 ± 0.3 

i|-.3 1 0.2 

4 .2 + 0.2 

k.k + 0.2 

Effec t ive 
Ifess 

M 

amu 

1̂6 + 2 

20 + 1 

20 + 1 

22 + 1 

Average sf 
Sca t t e r ing 
Cross 
Sect ion 

^ S133 

cm"^ 

- 0 . 3 9 2 

~ 0.i)-i4-5 

~ 0.1+51 

- 0 . 4 5 5 

.) Average d i f fus ion c o e f f i c i e n t s a re normalized t o a value of D ( 2 9 3 ° K , 2 9 3 ° K ) = O.832 cm, 0^̂ ., = 4.95 t n 

3(l-IIo)Di 
•; Mo = o-°56 

S3 

b) Average s c a t t e r i n g cross sec t ions a re assumed t o "be given by Y. gisa 

c) Graphite dens i ty =1.614 gm/cm^ 

d) Free gas v a l u e s : 

S 8-1,3 = 0-0665 cm-i 
1^-1,3 = 3-53 cm 
M = 12.011 amu 

es->i , 3 

e) The u n c e r t a i n t i e s a re s tandard e r r o r l i m i t s based upon the va r i ances of the c a l c u l a t e d f i t s t o the 

exper imenta l Cu '̂* da t a , see F ig . 6 . The es t imated u n c e r t a i n t i e s due t o spectrum u n c e r t a i n t i e s are + 25^-



TABIE I I 

RETHERMALIZATION OF NEUTRONS WITH A MAKI'BELLI&N ENERGY DISTRIBUTION, 

M ( E , T 3 ) IN GRAPHITE HAVING A PHYSICAL TEMPERATURE, T̂  

Exper i 
ment 

Ik 

IC 

ID 

IE 

Charac te r 
i s t i c Temp
e r a t u r e of 
Thermal 
Group 

Ts 

OK 

283 + 5 

299 ± 5 

308 + 5 

315 1 5 

Phys ica l 
Temperature 
of Graph
i t e 

* T i 

°K 

144 + 5 

523 ± 5 

690 + 5 

828 + 5 

Average^^*^ 
Diffusion 
Coef f ic ien t 

h^^ 
cm 

0.849 

0.828 

0.828 

0.825 

Rethermallza-
t ion^^e 
Cross Sect ion 

^ 3 - 1 ,1 

cm"^ 

0.0092 + .0005 

0.047 + .002 

0.066 + .003 

0.069 i -00^ 

Relaxa-
t i o n ^ ^ 
Length 

h-n ,1 

cm 

9.6 + 0.5 

4 .2 + 0.2 

3.5 ± 0.2 

3.5 i 0 .2 

Effec t ive 
Mass 

Mea-1 ,1 

amu 

90 + 4 

18 + 1 

13 + 1 

12 + 1 

Average^ 
S c a t t e r i n g 
Cross 
Sec t ion 

S s a i l 

cm"^ 

0 .4 l6 

0.426 

0.426 

0.428 

a ) Average d i f fu s ion c o e f f i c i e n t s a re nonnallzed t o a value of D ( 2 9 3 ° K , 2 9 3 ° K ) = O.832 cm, a^^ = 4.95 'bn 

1 • 77 = 0.056 b) Average s c a t t e r i n g cross s ec t ions a r e assumed t o be given by 2 gg^^ 

c ) Graphite d e n s i t y = 1.6l4 gm/cm° 

d) Free gas v a l u e s : 
E 3-n , i = 0.0665 cm-i 

L 3-1 1 = 3-53 cm 

es-n 1 ~ 12.011 amu 

3(1-Tlb) I^ i i 
> Mo 

M 

e) The u n c e r t a i n t i e s a re s tandard e r r o r l i m i t s based upon the var iances of the ca lc i i la ted f i t s t o the ex

per imenta l Cu^* d a t a , see F ig . 6. The es t imated t m c e r t a l n t l e s due t o spectrum u n c e r t a i n t i e s a r e + 25'^. 
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Retheiraallzation cross sections of graphite a t physical 

temperatures T̂  for neutrons in Majarellian energy d is t r ibu t ions 

MCE^T^), vhere the values of Tg in Table I I have been assumed 

equal. 
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Figure 6 Caption 

Eethermalization cross sections of graphite a t a physical 

temperature Tg(»:(300°K) for neutrons in Maxwellian energy d i s t r ibu

t ions M ( E , T ^ ) . See Table I . 
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The calculated curves of the thermal activities of Cu^* that 

best fit the traverses observed in the graphite experiments are 

shown in Figure 7- The tendency of the experimental data near the 

axis of symmetry to fall below the curves that fit best is due to an 

increase in the fl\xx perturbation caused by the relative Increase in 

the concentration of detectors near the axis of symmetry. However, 

dropping the data points out to a radius of 5 cm. has a 

negligible influence upon the best values of the rethermalization 

cross sections. 

Effective Masses of Graphite 

Coates and Gayther^^-' have inferred effective masses of 

graphite from differential measurements of the neutron spectrum in 

the graphite of a graphite-natural uranium lattice. The measure

ments were made with a fast chopper in the energy range from 0.01 

ev to 50 ev for lattice temperatures of 293^ ^33, 51?, and 594°K. 

Values of the effective neutron temperatures, T , were found by 

determining the Maxwellian spectra that best fit the low energy 

regions of the observed spectra. Those effective neutron tempera-

tiires and the moderator temperatures, Tm^ were then used to calcu-

late effective masses with the approximate Coveyou^ ' expression 

Tn 

2 ŝ r 
n ) M = —^ r. (T - T ) 

^ n / 

where Og is the microscopic scattering cross section of 

graphite of 4.8 b a m s . The quantity aa(kT^) is the effective 

microscopic absorption cross section of the l a t t i c e c e l l , and for 

E = kT^, T^ = 3470K aJkT^) = 0.0512 barns. 
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Figure 7 Caption 

Graphite Experiments - Comparisons of calculated and observed 

t raverses of the thermal a c t i v i t i e s of Cu^* near temperature d i s 

cont inui t ies . The t raverses are a r b i t r a r i l y normalized a t a 

radius of 42.5 cm. The calculated curves are normalized to the 

experimental data in a manner tha t minimizes the variance of the 

f i t . The s t a t i s t i c a l uncer ta int ies in the data points are 

standard deviations of approximately + l/o. The physical tempera

tures of the gi^phite cylinder are indicated for each experiment 

and those of the graphite annulus are approximately 300°K and are 

given in d e t a i l in Table I . 
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It is somê /hat difficult to compare their results with those 

given in Tables I and II. The primary difficulty is that their 

neutron temperatures are a.l\ia.js only slightly higher than their 

graphite temperatures, whereas the tempeiutures given in Tables I 

and II are, in general, quite different. From the latter data 

estimates have been made of the values of M. . -̂  for neutrons in 

spectra that are in equilibrium with the graphite . The estimates 

are compared in Figure 8 to the values found from Eqn. 11. The 

shaded area is an area of uncertainty based upon the uncertainties 

of the measured values given in Tables I and II. 

Relaxation Lengths in Graphite 

The thermalization or rethermalization of non-equilibrium 

neutrons may be considered in at least two approximations; the con

tinuous slowing do-vm or Fermi age theory approximation and the 

multithermal group approximation presented in this paper. The mean 

square distance that neutrons travel in therraalizing to a tempera

ture, T, is detennined by an age T (T) in the age theory. In the 

two group approximation the mean square distance that neutrons 

travel to reach an equilibrium temperature is determined by an L^. 

If the two approximations describe the thermalization process 

reasonably well T should be approximately equal to L̂  for the same 

mean temperature. The problem chosen to illustrate the methods of 

finding the mean temperatures for a given L and T is that of the 

thermalization of near-equilibrium neutrons in graphite at physical 

temperature T^ = 300°K. 

To illustrate the continuous 3lowing down approximation the 

results of a theoretical study^ ' of the elastic and one phonon 
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Figure 8 Caption 

Effective mass of graphite for neutrons near equilibriimi. 

For the Coates and Gayther data the characteristic neutron 

temperature is approximately 50^C greater than the moderator 

temperature. The neutron and moderator temperatures are assxjmed 

equal in determining the confidence zone shown. 
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inelastic scattering of neutrons in graphite are used. In the 

study, neutrons near equilibrium in graphite at a physical tempera

ture TQ are assumed to have attained a Maxwellian energy distribu

tion M(E,T.^ ), where T^ ^ IQ . In thermalizing to the equilibrium 

temperature TQ the neutrons are assumed to remain in a Maxwellian 

energy distribution with a characteristic temperature that changes 

with time. The time rate of change of the characteristic tempera-

tuî e T given in the paper may be approximated by 

12) ^ = -a(T-To), 

Equation 12 is analagous to the Fermi age equation for the 

time rate of change of neutron energy during slowing dowm-'•̂ .̂ The 

Fermi age analogy leads to the expression 

„T, 
13) T(T,-.T,T,) =]D r ^ J _ T 1 _ ^^ 

a V TT m T (T-TQ) 

for the age to thermallze from T̂^ to T in graphite at TQ, where k 

is the Boltzmann Constant, D is the diffusion coefficient of 

graphite and m is the mass of a neutron. 

For the thermal group problem, consider a plane source of 

M(E,T.^ ) neutrons in an infinite region of graphite at a physical 

temperature T^. The source neutrons thermallze exponentially with 

a relaxation length L; where L is given by Eqn. £ for this case of a 

cross section for absorption that is small with respect to the 

cross section for rethermalization. The equilibrium group M(E,TQ) 

builds up exponentially also, with the same relaxation length. 

The mean neutron temperature of the two groups is taken as the 
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spa t i a l ly weighted sum of the respective charac te r i s t i c tempera

tures and is given by 

14) T(x) = T.e" ' ' /^ + Tod-e"""/^). 

Equation l4 is used to calculate the mean temperature T(L) at X = 

L. The quantity T(L) is then used as the lower limit of the 

integration in Eqn. 13. Equation 13 is integrable and yields 

values of T{T^-»T(L), TQ } whose square roots are compared to L in 

Table III. It can be seen thatVT is greater than L by approximate

ly "V2 for all temperatures T. . An increase in the qimntity a 

by a factor of t'l/o would improve the agreement significantly. 

Rethermalization Cross Sections of Water 

The analyses of the graphite and water experiments and the 

determination of the rethermalization cross sections of water 

were similar to that described for the graphite experiments. The 

only significant difference was in the use of fixed values of the 

cross sections for rethermalization in the graphite regions, which 

•\7ere inferred from the results of the graphite experiments. This 

of course, introduces dependence of the values of the cross 

sections for water upon those found for the graphite. The values 

of the cross sections for rethermalization of hot neutrons in 

ambient water inferred in the analyses and corresponding values for 

the graphite region are given in Table IV. The calculated curves 

of the thermal activity of Cu®* that best fit the observed traverses 

are shown in Figure 9- ^ e water portion of Figure 9 is enlarged in 

Figure 10 for clarity. The agreemen' between the calculated and 

observed traverses in the graphite regions is relatively poor. No 

systematic error has been found that ̂ /ould improve the fit. 
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TABIE I I I 

REIAXATION LENGTHS OF GRAPHITE AT EiYSICAL TEI-ffiERATURE OF ~ 300°K FOR NON-EQUILIBRIUM 

NEUTRONS IN MAXWELLIAN ElffiRGY DISTRIBUTIONS M ( E , T ^ ) 

INITIAL GROUP 
TF t̂PRRATITRR 

Tx 

°K 

260 

305 

350 

4oo 

500 

600 

SLOPE OF 
THEORETICAL 
CURVE 

a 

10+=3 s e c - i 

3 . ^ 

4 .8 

6.6 

7-7 

8.8 

8.8 

DIFFUSION CO
EFFICIENT OF 
GRAPHl'lE 

D 

cm 

0.820 

0.810 

0-795 

0.780 

0-775 

0-775 

TEMIERATURE 
REACHED Br 
ONE REIAXA
TION DISTANCE 

T(L) 

°K 

285-3 

301.8 

318.4 

336.8 

373-6 

410.4 

AGE TO REIAX 
TO 'TEMPERATURE 
T 

T{T,-.f(L),To} 

cnî  

58.2 

42.4 

31.9 

28 .1 

26.4 

28.3 

CALCULATED 
REIAXATION 
DISTANCE 

V ^ 
cm 

7-63 

6.52 

5-65 

5.30 

5-14 

5-32 

MEASURED 
REIAXATION 
DISTANCE 

L 

cm 

5-3 

4 .8 

4-5 

4-3 

4 .2 

4 .2 



TABIE IV 

RETHERMALEATION OF Tg NEUTRONS IN WAOER W3IH A PHYSICAL OEMIERATURE T̂  

2B 

2E 

2D 

P
h
y
s
i
c
a
l̂
 

Te
mp
er
at
ur
e
 

of
 W
a
t
e
r
 

Ti 

°K 

2 9 2 + 5 

293 ± 5 

295 1 5 

Ch
ar
ac
te
ri
st
ic
 

Te
mp
er
at
ur
e
 
of
 

Ne
ut
ro
n
 
G
r
o
u
p
 

% 

°K 

410 + 5 

558 + 5 

720 + 5 

C! 0 
0 -H fn 
•H 0 0 

2 r' -R 
a =-i d 
•^ tH ^ 
<^ OJ 
•H 0 I5H 
fi 0 0 

^ E 3 1 

cm 

0.1749 

0.2112 

0.2290 

R
e
t
h
e
r
m
a
l
i
z
a
t
i
o
n
 

Cr
os
s
 
S
e
c
t
i
o
n
 o
f
 

W
a
t
e
r
 

S a-»i,x 

cm"^ 

1.25 + .12 

1.27 1 -12 

O-83 + .08 
Re
la
xa
ti
on
 

Le
ng
th
 
of
 

W
a
t
e
r
 

^ - n , i 

cm 

0.37 + 0.04 

0 . 4 l + 0.04 

0.53 1 0.05 

E
f
f
e
c
t
i
v
e
 

M
a
s
s
 
of
 

W
a
t
e
r
 

Me3-n,i 

amu 

5.0 + 0.5 

4 .5 + 0-5 

6.5 1 0-6 

Sc
at
te
ri
ng
"̂
 

C
r
o
s
s
 S
e
c
t
i
o
n
 

of
 W
a
t
e
r
 

^ P 2 1 

cm~^ 

3.10 

2.88 

2-70 

P
h
y
s
i
c
a
l̂
 

Te
mp
er
at
ur
e
 
of
 

Ou
te
r
 A
n
n
u
l
u
s
 

of
 
Gr
ap
hi
te
 

T3 

OK 

305 i 5 

310 1 5 

325 ± 5 

Retheimaliza-
t i o n ( b ) Cross 
Sect ion for 
Graphite 

01 

s § 

^ 1 - ^ , 3 

cm~^ 

0.038 

0.052 

0.063 

SI SI 
S s -n ,e 

cm"^ 

0.037 

0.043 

0-043 

a ) Water dens i t y assvuned = 1.0 gm/cm^ 

b ) Rethermal iza t ion cross s ec t i ons of g raph i t e found from F ig . 5 and 6 

c ) Macroscopic s c a t t e r i n g c ross s e c t i o n of water assumed t o be E s s s i ~ 3-38 - \ /To/Tg cm 

d ) In the a n a l y s i s of these \rater experiments the phys ica l tempera tures of the water and the outer 

annulus of g raphi te i/here averaged. 
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Figure 9 Caption 

Graphite and Water Experiments. Comparisons of calculated 

and observed traverses of the thermal activities of Cu^* near 

temperature discontinuities. The calculated curves are normal

ized to the experimental data in a manner that minimizes the 

variance of the fit to the data in all regions. The statistical 

uncertainties in the data points are standard deviations of 

approximately + IPJo. The physical temperatures of the inner 

annulus of graphite are indicated while nomiiml values of 300°K 

are indicated for the water and outer annulus of graphite. De

tailed temperatures for the latter are given for each experiment 

in Tahle IV. 
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Figure 10 Caption 

Graphite and Water Experiments. Enlargement of the water 

region of Figure 9- l̂ e graî hlte temperatures on the figure are 

also the characteristic temperatures of the rethermalizing neutrons. 
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Lutetium Traverses 

The traverses of the hare and cadmiimi covered activities of 

Lu-'-''"'' were obtained for testing the multithermal group diffusion 

model, the assumptions of Maxwellian energy distributions for the 

equilibrium spectra and a 1/E spectrum for the epithermal neutrons, 

and the values of the rethermalization cross sections inferred 

from the analyses of traverses of the activities of Cu^*. The 

experimental data were reduced to thermal activities in the manner 

described previously for Cu®* . Values of a for Lû''"'' were ob-

(18) 

talned from the work of Schmid. 

The equilibrium fluxes obtained in the Cu^* analyses and the 

thermal cross sections of Lu-'-''̂  were used t o compute the expected 

spa t i a l d i s t r ibu t ions of the thermal a c t i v i t i e s of Lu^''"''. These 

calculated curves were normalized to the experimental t raverses 

of the thermal a c t i v i t i e s in a manner tha t minimized the variance 

of the f i t . Varying degrees of success were achieved, but the 

f i t s a t higher temperatures tended to be poorer. These are 

i l l u s t r a t e d for the graphite experiments in Figures 11 and 12. 

Additional comparisons have been made for the other experiments.^ -̂ ^ 

The agreement between the calculated curves and experimental 

t raverses a t high temperature can be improved but i t i s done a t 

the expense of destroying the agreement a t the low temperatures. 

This has been done in the form of a f i r s t -o rde r approximation. 

The Lu-'-''''' data were reduced to thermal a c t i v i t i e s using a Hurwitz 

epithermal spectrum*'^ ' ra ther than the 1/E spectrum of Eqn. 2. 

This change of spectrum increased the epithermal correction to 

the bare a c t i v i t y . For the experiments i l l u s t r a t e d in Figures 
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Figure 11 Caption 

Comparison of calculated and observed t raverses of the thermal 

a c t i v i t i e s of Cu®* and Lu^''"' near a temperature discontinui ty in 

g3raphite. Hie experimental t raverses are a r b i t r a r i l y normalized 

t o unity a t a radius of 42.5 cm. The calculated curves are normal

ized to the experimental data in a manner tha t minimizes the 

variance of f i t . The s t a t i s t i c a l uncer ta int ies in the experi

mental data are standard deviations of approximately + I/3. 
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Figure 12 Caption 

Comparison of calculated and observed traverses of the thermal 

activities of Cu^* and Lû"'"'' near a temperature discontinuity in 

graphite. The experimental traverses are arbitrarily normalized 

to unity at a radius of 42-5 cm. The calculated cui-ves are normal

ized to the experimental data in a manner that minimizes the 

variance of fit. The statistical uncertainties in the experi

mental data are standard deviations of appro:2::ljiiately + 1",J. 
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11 and 12 the relative thermal activities of IJJ?-'^'' in the inner 

graphite regions are increased. However, the overall goodness-of— 

fit for all experiments was not improved significantly. This 

aixilysis does indicate that perhaps some spect-rum intennediate 

between Westcott and Hurwitz spectra could improve the goodness-

of -fit with respect to the Lû''"'' data. 

Model Comparisons 

The significance of the transients interpreted by the use of 

the multithemial group model of the space -energy distribution of 

neutrons has been illustrated by comparing its results to two 

extreme assumptions. In the first, two equilibrium thermal 

roups are assumed but transfer between groups is not allowed. 

This is equivalent to settii\g the retheimalization cross sections 

to zero. If the thermal activity of Gv^^ is then calculated and 

normalized to the observed traverse by minimizing the variance of 

the fit the calculation over estimates the reaction rate in warm 

regions and under estimates in cold region. In the second, the 

rethermalization cross sections are assumed to be infinite, forc

ing the energy distribution of thennal neutrons to change abruptly 

at discontinuities in physical temperatures. Treating the thermal 

activity of Cû '* as before the error in the estimates are reversed 

from those found for the above extreme case. These results are 

compared in Figures I3 and l4 for a typical graphite experiment 

and a typical graphite and water experiment, respectively. Figure 

l4 is of particular interest in that the peak of the activity in 

the iTater is so poorly reproduced for the extreme approximations. 
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Figure 13 Caption 

Comparisons of the observed traverse of the thermal activity 

of Cu®* near a temperature discontinuity in the all graphite 

system with the spatial variation predicted by the multithermal 

group model (l) and the two approximations (ll) J. . , = 0 and 

(ill) Y,- • V = "'• IT̂ e calculated curves are nonnalized to the 

experimental data in a maimer that minimizes the variances of the 

fits. 
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Radius, cm 

Figure l4 Caption 

Comparisons of the observed t raverses of the thermal a c t i v i t y 

of Cu^* near temperature d iscont inui t ies in the graphite and water 

system with the spa t i a l var ia t ion predicted by the multithermal 

group model ( l ) and the two approximations ( l l ) T. . , = 0 and 

( i l l ) JL . , =00. The calculated curves are normalized to the 
^ - • J , k 

experimental data in a manner tha t minimizes the variances of the 

f i t s . 
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Conclusions 

The res-ults of this work illustrate the rather strong depend

ence of the effective mass of graphite upon both neutron and 

moderator temperatures. The results agree approximately with 

those of Coates and Gayther and with the relaication lengths cal

culated from a simplified theoi-y of neutron thermalization in 

graphite. The cross section for rethermalization of 300°K 

neutrons in graphite asymptotically approaches the value for a 

heavy gas, at a j)hysical tempcratui'e of about 800"K. One •̂ /ould 

expect the asymptotic behavior to occur above or at least near 

the Debye temperatures (1200 and/or 2000°K) where chemical bind

ing energy is small relative to the neutron ener,,y. 

The values of the cross sections for retheimalization of hot 

neutrons in 300°K water indicate a surprising decrease with in

creasing temperature. This might be expected, however, in view 

of the rapid decline of the scattering cross section of water with 

increasing neutron energy. The indicated increase in the effective 

mass •t;ith temperature is unexpected and, in vlev of the rather 

large uncertainties in the rethermalization cross sections, may 

not be real. 

The uncertainties in the results obtained from these experi

ments due to statistics are acceptable . Hov/ever, those uncertain

ties attributed to the assumed energy distributions of neutrons 

are not. If a satisfactory model of the spectra in the epithermal— 

subcadmium region were available, the resolution of the neutron 

and moderator temperature dependence of the i^thermalization 

properties could be improved significantly. 
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NEUTRON THERMALIZATION STUDIES AT SAVANNAH RIVER* 

by 

H. Dean Brown and E. J. Hennelly 

E. I. du Pont de Nemours & Co. 
Savannah River Laboratory 
Aiken, South Carolina 

SUMMARY 

Recent experimental work on neutron thermalization at 

Savannah River has centered on the thermal neutron diffusion 

coefficient In D2O as a function of temperature and on neutron 

spectra in D2O lattices. The diffusion coefficient measurements 

were made by poisoning techniques in the Pressurized Subcrltlcal 

Experiment (PSE) at temperatures up to 220°C. Excellent agreement 

was obtained with theoretical predictions. In addition an analysis 

of all the earlier room-temperature measurements In terms of more 

recent cross sections and spectral hardening corrections brought 

the old and new results into agreement, within experimental errors. 

Spectrum measurements have dealt both with high tempera

ture lattices and with flux hardening in heavy fuel assemblies. As 

an extreme example of the latter case, foil activation measurements 

have been made in lattices of 3-inch-dlameter uranium metal rods 

containing 3 wt ̂  U^5 ^^ a triangular pitch of 18 inches In DgO. 

Similar measurements were made at temperatures up to 215°C for 

lattices of 2-lnch-diameter uranium metal tubes in D2O. Extensive 

use has been made of the THERMOS code for analysis. 

*The information contained in this article was developed during the 
course of work under contract AT(07-2)-l with the U. S. Atomic 
Energy Commission. 
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THE NEUTRON DIFFUSION COEFFICIENT IN D2O BETWEEN 20°C AND 220°C 

Measurements of the thermal neutron diffusion coefficient 

for D2O have been made at temperatures from 20°C to 220°C and 

compared to theory and other measurements. The method was to measure 

the relaxation length of the neutrons in D2O to which known amounts 

of neutron poison had been added. A heterogeneous absorber was 

selected because of design features of the Pressurized Subcrltlcal 

Experiment (PSE) ̂  '', the facility used for the experiments. Copper 

tubes with a nominal OD of I.I25 inches and a wall thickness of 

0.050 inch were used at square lattice pitches ranging from 4.55 

to 12.87 inches. Tube weights and measured Intracell flux profiles 
(2) 

were combined with a copper cross section of 3'79 ±0.04 barns^ ' to 

give effective macroscopic absorption cross sections. The purity 

of the copper was established by chemical analyses and neutron 

absorption tests. Relaxation lengths were measured by gamma 

counting of activated manganese foils. 

The measurements were corrected for the volume displace

ment and scattering of the copper as well as for the thermal 

expansion of components. Table I gives values of the diffusion 

coefficient at the experimental moderator purity and at the 

calculated extrapolation to 100^ D2O. The values D'(TQ) are 

obtained by direct extrapolation of the data without correction 

for the fact that the effective neutron temperaturê -̂ '', Tj,, is 

greater than the moderator temperature, TQ, in the poisoned 

lattices. The values D(TO) are corrected for this effect. Table I 

also gives values of the diffusion coefficient as obtained by other 

experimenters using comparable techniques. These latter values 

have been corrected by use of the latest boron cross section of 

762 ±3 barns to put them on the same basis as the current experi

ments. Figure 1 shows the measurements of D(TQ) and the equivalent 

curve calculated by Radkowsky's method^^) plotted against temperature. 
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If the diffusion coefficient is in cm and the temperatures 

are in °K, the experimental data as well as the calculations by 

Radkowsky's method can be fitted very closely by the formula 

D(T^,T^) = 0.8395 0.69 + 0.3l(%/293)^/2^ £ ^ ^ (1) 

where the p's are D2O densities. 

The agreement among the experimental measurements and 

with the calculations is remarkable in that the m.easurem.ents were 

made by such diversemethods as boron poisoning^ ' , measurement of 

extrapolation distance , pulsed sources , and pile oscillators '̂  

LATTICE SPECTRUM MEASUREMENTS WITH FLUX HARDENING 

IN HEAVY FUEL ASSEMBLIES(^°) 

Experimental Arrangement 

Neutron spectrum measurements were miade on D2O lattices 

of uranium rods 5.O Inches in diameter and about 48 inches long. 

The uranium metal was enriched to 3. 00 ±0.005 wt % u'^^^. All 

measurements were carried out in the Savannah River Subcritical 

Experiment (SE), a cyllndlrcal tank 5 ft in diameter and 7 ft tall. 

The tank rests on a graphite pedestal, which forms a thermal 

column above the Standard Pile (SP) ^ . The uranium rods were 

suspended vertically in the SE tank In a triangular lattice at an 

18-lnch pitch. The moderator purity was 99-3 mol ̂  D2O throughout 

the experiments. The lattice cells contained only fuel rods and 

moderator; however, the rods were coated with a thin layer of 

lacquer to prevent chemical reaction with the moderator. 

Experimental Measurement of Thermal Flux Distributions 

The experimental value of the disadvantage factor was 

obtained from measurement of the activation ratios of manganese 

foils placed throughout a unit cell of the lattice. 

Bare Mn foils, 1/2 inch in diameter and 0.010 inch thick, 

and cadmiiom-covered Mn foils, 1/4 Inch in diam.eter and 0,010 inch 
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thick, were loaded into a diametral hole, 1/2 inch in diameter, in 

one of the uraniiim rods, hereinafter referred to as the "traverse 

rod". The Cd covers were O.O3O inch thick. Uranium metal spacers, 

0.48 Inch long, 1/2 inch in diameter, and made of 3.O wt ̂  U, 

occupied the space In the diametral hole not otherwise taken up by 

foils. Aliomlnum foils, 0.002 inch thick and 1/2 inch in diameter, 

were used to prevent contamination of the Mn foils by fission 

fragments escaping from adjacent U. 

Bare and Cd-covered Mn foils were also attached to three 

Al strips, which were fastened to the traverse rod and projected 

Into the moderator. Two of these strips were pointed at neighboring 

U rods and the third was pointed at the midpoint of the moderator 

between the two rods. 

The activity of each foil was determined after the 

56 

irradiation by counting the induced Mn activity with a scintil

lation detector. The activity of the foils was corrected for the 

radial flux shape in the SE by multiplying each foil activity at 

the radius, r, from the center of the tank by the quantity 

"jQ(0.0308r)]"^. 

The foil activation profiles in a unit cell are shown 

In Figure 2. There was very little azlmuthal variation (±1^) in 

the Mn foil activations in the moderator of the unit cell. 

Comparison of Experiment and Calculation 

A comparison between the thermal flux in the unit cell 
(12) 

as predicted by THERMOS ' and P-3 calculations, and the sub-

cadmiiom Mn foil activations is given in Figure 3. The curves are 

normalized so that the calculated values of the average fluxes in 

the fuel are equal to the average Mn foil activations In the fuel. 

Figure 4 compares the subcadmlum Mn foil activation in a 

unit cell as predicted by THERMOS and as measured. The data show 

that, because of spectral hardening, the Mn foil activation ratio. 
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A]y[̂ (Mod)/A]y[̂ (fuel), cannot be equated directly to the corresponding 

flux ratio *(Mod)/*(fuel). The agreement between the calculated 

and experimental Mn foil activation profiles within the fuel rod is 

good. However, in the moderator, the predicted foil activation is 

about 5^ greater than that which was observed experimentally. 

In a second experiment in the same lattice, Pu and Mn 

foils were irradiated In the traverse rod. The l/4-lnch-dlameter 
239 Pu foils were made of an alloy of 5 wt ̂  Pu in Al and were 

Nl-clad. Each foil was about O.OO6 inch thick and contained about 
239 1 mg Pu . The Mn foils were identical to those used in the first 

experiment. Both bare and Cd-covered foils were also mounted on 

thin Al spears projecting into the moderator from the U rod. Only 

bare foils were placed in the traverse rod, inasmuch as the Cd 

ratio of Mn In the fuel was already available from the previous 

experiment. Decay corrections on the Pu foils were obtained from 

a reference foil counted repeatedly during the counting period. 

Decay corrections for the Mn foils were made analytically using a 
-3 -1 decay constant of 4.48 x 10 mln 

The corrected foil activities as a function of radius 

in the cell are shown In Figure 5. The shapes of the curves shown 

for the Mn data agree very well with those obtained previously. 

A test of the validity of the calculated spectrum is 

available from the activation data on the Pu foils. The Pu 

activation data within the metal rod are compared to those calcu

lated by THERMOS in Figure 6. The calculated Pu foil activation 

data are normalized to the subcadmlum activity at a radius of 

about 3.6 cm (0.2 cm from the outer radius of the rod). Cd-covered 

Pu foil data were not obtained within the rod but were estimated 

as shown by the dashed part of the "Pu Eplcadmi\am" curve given in 

Figure 5. At the normalization point the Cd ratio of the Pu foils 

1B ^20, so that this normalization should be subject to little error. 
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The standard deviation shown on the experimental points in Figure 6 

includes a ±50^ uncertainty in the Cd-covered Pu activation estimates. 

The data of Figure 6 show that the Pu foil activations 

calculated from THERMOS agree very well with the measured activations 

within the fuel rod. This is an encouraging Indication that the 

neutron flux spectrum upon which the calculated activations are based 

is close to that which actually occurs in the rod. 

THERMOS Calculations of Spectral Hardening 

Figure 7 depicts the neutron flux as a function of 

energy, as predicted by THERMOS, for three different positions in 

the unit cell: at the cell boundary, at the first space region 

inside the rod (near the outer rod radius), and at the rod center. 

The dashed curve shows the relative absorption cross section of 
235 U as a function of energy. 

The Maxwellian shape is hardened by absorptions in the 
235 rod and is distorted severely by the capture resonance in U -̂̂  at 

239 0.3 ev. Since the low-energy fission resonance in Pu also 

occurs at O.3 ev, this depression in the flux at O.3 ev distorts 

neutron temperature measurements made with Pu foils. The activa

tions are less than would be expected if the foil were exposed to 

a thermal Maxwellian flux with a 1/E tail. 

The THERMOS calculations were made on the basis of a 

constant epithermal neutron source distribution. It Is believed 

that the agreement between calculated and measured activations 

in the moderator will be improved by changing to the epithermal 

source distribution suggested by the epithermal foil activations. 

Experiments of this type with 2-inch rather than 3-inch 

diameter rods are now under way. In these new experim.ents, foil 

activation profiles with a variety of different materials, e.g., 

Mn, Dy, U, Au, Cu, and Mo will be obtained in order to compare the 

results with calculation. 
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Temperature Dependent Studies 

Foil activations were obtained in the PSE^ ^ on lattices 

of uranium metal tubes that are 1.957 inches in OD, and I.387 Inches 

in ID and are clad with 0.030-Inch aluminum. The measurements were 

made at J- and 12-inch lattice pitches with D2O moderator tempera

tures between 20°C and 220°C. Detectors used were 0.25-inch 

diameter Pb-In foils and 0.25-inch diameter Mn foils. No measure

ments could be made inside the fuel tubes because the cladding had 

to be kept intact to prevent a rapid uranium water reaction at 

elevated temperatures. The foil activation measurements were 

compared with THERMOS and P-3 calculations as in the previous cases. 

The THERMOS calculation, normalized to the foil data adjacent to 

the fuel, gave values of the flux which were in good agreement with 

the measurements over the whole range of temperature. Epicadmium 

measurements showed that the epithermal flux was almost constant 

over the lattice cell. This may account for the much better agree

ment in these cases between the THERMOS calculation and the 

measurements when compared with the results for massive U rods at 

wide pitches. 

THERMOS was also useful in obtaining the "thermal" T] for 

comparison of traverses with buckling measurements as a function 

of temperature. 

FUTURE EXPERIMENTAL PROGRAM 

The Savannah River D2O critical reactor, the PDP, is 

ideally suited for making cell traverses at very wide lattice 

pitches -- e.g. 24 inches -- and we plan extensive activation 

experiments using a wide variety of foils in support of theoretical 

studies. In addition the PSE is well suited for making rethermali-

zation measurements in DgO similar to those that have been m.ade in 
(12) 

graphite at Hanford . These experiments are also being 
considered. 
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FUTURE THEORETICAL PROGRAM 

In addition to the interpretation of experimental eel 

traverses by THERMOS, extensive comparisons between THERMOS and 

Monte Carlo calculations are planned. New kernels will be 

generated to adapt THERMOS for use with organic moderators. 
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TABLE I 

DIFFUSION COEFFICIENTS FOR DpO FROM POISON ADDITION TECHNIQUES 

(D'(T ) is uncorrected, D(TQ) is corrected for spectral hardening 

100 mol % D2O DpO Temp,, 
To, °C 

20 

100 

165 

220 

23 

18 

18 

99.30 mol % D2O 
D'(To), cm 

0.827 ±0.010 

0.897 ±0.011 

0.974 ±0.012 

1.073 ±0.013 

— 

__ 

— — 

D'(To), cm D(Tn), cm Reference 

0.852 ±0.010 0.841 ±0.010 This experiment 

0.922 ±0.011 0.912 ±0.011 This experiment 

1.000 ±0.012 0.989 ±0.012 This experiment 

1.102 ±0.013 1.091 ±0.013 This experiment 

0.852 ±0,008 0.843 ±0.008 Kash and Woods^^^ 

0.84 ±0.03 0,83 ±0.03 Dexter, et al.^ ' 

0.96 ±0.02 0.83 ±0.02 Dexter, et al.^^ 
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FIG. 1 DIFFUSION COEFFICIENT OF DjO AS A FUNCTION OF TEMPERATURE 
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MEASUREMENTS OF EXTRAPOLATION LENGTHS IN PUISED WATER SYSTEMS 

J . A. DeJuren , R. Stooksberry, and E. E. Carrol l 

Moderator parameters such as diffusion length and t ranspor t mean free 

path can be derived from both s teady-s ta te and pulsed-neutron decay measurements. 

In general , both parameters have lower values f o r a given medium when derived 

from decay measurements of the fundamental mode of thermal neutrons. The 

discrepancy i s enhanced i n hydrogenous media where the s ca t t e r i ng cross sec

t ion i s not constant over the thermal spectrum. Following a neutron pulse 

the fundamental mode decays as e where a = v2 + D B - CB^. In past 

i n t e rp re t a t i on of pulsed da ta , a value of the ext rapola t ion length i s usua l ly 
2 

assumed and D i s obtained from a l e a s t squares f i t of the a versus B da ta . 
\r^ The transport mean free path, X , is obtained from D = — ^ — where V is 

the mean thermal neutron velocity. Then a new extrapolation length d is 

computed from d = 0.71 \ and iteration continues until values converge. 

2 3 

Recently both Nelkin and Gelbard have shown tha t i n the case of 

water, d = 0.76 X for the zero buckling l i m i t . 

We have measured ext rapola t ion lengths for cyl inders of t h r e e 

di f ferent diameters and for one cube. A Li I c r y s t a l mounted on a l u c i t e 

l i gh t pipe was used as a t raverse de tec to r . A black boron polyes ter c i y s t a l 

was also used with the 16.1;3 cm diameter cyl inder to inves t iga te the effect 

of neutron depression on the measurements. The cyl inders were made of l /32 

i n . Al and were f i l l e d with water t o a height equal the diameter. The 

surfaces were shielded with cadmium and indium and the smaller s i zes were 

a lso shielded with borax and paraff in t o minimize room re tu rn background. 

A 100 kev accelera tor was used as a source of pulsed llj. Mev neutrons. Decay 

curves were measured with the t raverse de tec tor ins ide the medium and a 

•?f- Now at Atomics In te rna t iona l , Canoga Park, Cal i fornia . 
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2 i n . diameter. Li I c rys t a l mounted outside the cylinder at half water 

he ight . 

A countin"- i n t e r v a l was selected in the re,^ion where the decays 

appeared to contain only the fundamentol s p a t i a l mode. The neutron d i s 

t r i b u t i o n p a r a l l e l t o the beam d i rec t ion Is more sens i t ive to the nresence 

of modes and was measured f i r s t t o determine the center . Then a more 

accurate measurement was made at r i r h t angles. Least square f i t s of the 

J function yielded the effect ive r a d i i . Successive points near the edge 

were eliminated and several f i t s were obtained T-ri-th the same data. Results 

are given for the I6.I4.3 cm diameter cylinder and a 11.28 cm edge cube. The 

boron polyester would cause a neutron depression of 16"̂  and the Li I , 3-5'^^ 

in an i n f i n i t e water medium. In a f i n i t e cylinder the depression i s 

g rea te r at the center than a t . the edge of the medium. I f no depression 

correct ion i s made, the l e a s t square f i t w i l l ;srLeld a value which is too 

high. This ef fect probably causes the va r i a t ion observed in the boron 

polyester case. 

A small modal impurity w i l l a lso cause Incorrect r e s u l t s . I t 

was not possible to increase the r a t i o of the fundamental t o the nearest 

( t h i rd ) harmonic by a large fac tor by delaying the counting in t e rva l because 

of source s trength l i m i t a t i o n s . Oiir r e s u l t s , Table I , are cons is ten t with 
I . 

an extrapolat ion length of O.I4. cm for a l l cases. Campbell and ote lson 

obtained a value of O.I46 - ,0$ cm for an 8 in . heipht by 8 i n . diameter 

cyl inder . Additional measurements u t i l i z i n g higher i n t e n s i t y sources are 

required and are current ly in progress . These measurements should determine 

the extent spa t i a l modes may have influenced nrevious r e s u l t s . Thermal 

neutron time decays at each s p a t i a l noint of the t raverse are now being 

obtained. The analysis then involves a l eas t square f i t of the fundamental 
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modal f u n c t i o n a t succes s ive t imes followinp- the neu t ron p u l s e . Recent 

d a t a i n d i c a t e t h e p resence of some modal c o n t a m i n a t i o n . I t would only 

r e q u i r e 3/U p e r c e n t of a t h i r d harmonic con tamina t ion t o i n c r e a s e t h e measured 

e x t r a p o l a t i o n l e n g t h by 1^%. However, i n d i c a t i o n s a r e t h a t t h i s method shou ld , 

a f t e r t h e accumulat ion of more d a t a , Five r i s e t o an unambiguous va lue f o r 

t h e asymptot ic e x t r a p o l a t i o n d i s t a n c e . 

TABLE I 

TRAVERSE TAJAS^'REI'IENT RESULTS 

Case Mo. 

(1) 16.U3 cm 
diam. c v l . 

(2) 16.U3 cm 
diam. c y l . 

:3) 11.28 cm 
cube 

Traverse 
D e t e c t o r 

Boron 
P o l y e s t e r 

U ' l 

Range of F i t 
(cm) 

i 7 cm 

i 6 . 5 

i 6.0 

i 5 . 5 

i ^ . o 

i 7 cm 

6.5 

6.0 

5.5 

i U.8 

i U . 6 

^ u . u 
±U.2 

i U.o 

d 
(cir 

UU6 i 

U67 -

i;3U-

U56 i 

U75 i 

518 ± 

U90 i 

U 7 l i 

U35 ± 

I402 i 

U23 ± 

U 3 6 i 

U33 i 

U25 i 

1) 

.023 

.028 

.037 

.01|8 

.066 

.022 

.027 

.033 

.0U8 

.oiu 

.016 

.019 

.023 

.028 

\ote: The standard de"viations l i s t e d for t he ext rapola t ion dis tance d, 

include only s t a t i s t i c a l e r rors due to counting. 
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FLUX TRANSIENTS NEAR MEDIUM DISCONTINUITIES 

F. Feiner*, S. Weinstein* and W. B. Wright•̂ •»(-

I. INTRODUCTION 

In this paper, we discuss a series of measurements, performed in simple 

geometry, which provide extensive data on the variation of the neutron flux 

near the interface bet̂ r̂een material regions of considerably different nuclear 

properties. These measurements and concurrent progress in the theoretical 

treatment of the results have led to the development of a quite powerful 

calculational method. 

The experiment is concerned with the behavior of the neutron fl-ux 

near medium discontinuities. Prior to the initiation of this program, 

calculations were generally performed by assiming that infinite medi\im 

spectra for a given region and the group constants obtained from these 

spectra applied up to the boundary of the region. It is clear physically 

that such an abrupt change in spectriam is not realistic, but no simple 

prescription for describing the transition near the boundary existed. In 

order to formulate a theory or even a prescription to describe the phenomena 

encountered a significant amount of data needed to be obtained. 

The Preliminary Pile Assembly (PPA), with its test lattice geometry, 

was considered to be well suited for a study of a number of lattices 

differing significantly in composition. The size of the test lattice 

region is just large enough that at its center spectra characteristic of 

a full size core of the lattice compositions are achieved. The reactivity 

effect of the lattice on the whole reactor, however, is small so that 

lattice changes can be made easily and safely. 

With this geometry, it is then possible to perform activation experiments 

and use the results to guide and check the development of calculational 

techniques. 

* Knolls Atomic Power Laboratory, operated by the General Electric Company 
for the Atomic Energy Commission. 

** Now at General Atomic, San Diego, California. 
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We will proceed to describe the experimental set-up and techniques 

used in seme detail, present the characteristics of the lattices studied, 

and then trace the development of the analytical models used to interpret 

the data. 

II. EXPERIMENTAL ARRANGEMENT 

As shô wn in Figure I, the PPA is a four-region assembly consisting 

of: 

(I) the central test lattice region, 

(II) "the main part of the core, 

(ill) a booster region, and 

(IV) a reflector. 

The central region is approximately 8.^" in diameter; in hydrogen 

moderator lattices, this is sufficient to achieve the infinite medium 

spectr-um of the lattice in question at the center provided a number of 

restrictions are kept in mind, (l) If the metal to moderator ratio 

is low, i.e. less than .5, the k of the test lattice region should be 
00 

between .9 and 1.2 . (2) If the metal to moderator ratio is greater 

than 1, k may be as great as 1.̂4- but care must be taken that no slabs 

of material are inserted into the test lattice region which would allow 

significant neutron streaming in from the core region, II. When these 

conditions are satisfied, one can show both experimentally and analytically 

that the lattice infinite medium spectrum is achieved. Experimentally, one 

can see this by performing a radial flux traverse and noting that the 

buckling near the axis of the lattice region is very small, indicating very 

slight leakage into or out of the region. Calculationally, one can compare 

the flux ratios obtained from calculations for an infinite medium of this 

composition with that for simple one-dimensional radial calculations of 

the experiment. Results so obtained are shown in Table I for a number of 

lattices studied. The limitation on k of the lattices studied means 
00 

that it is not possible to study directly all compositions of practical 

interest. However, since the neutron spectr̂ um is determined by the ratio 

of absorptions to scattering, it is possible to produce the spectra of 
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interest by replacing some fuel with poison materials and thus lower the 

k to acceptable values without affecting the physics of the problem. 

The core region (ll) of the PPA consists of slugs (Figure 2) held in a 

hexagonal matrix of steel tubes. Two inch diameter discs of enriched 

uranium- aluminum alloy, aluminum, and polyethylene are threaded on 

5/16" diameter steel rods to form a repeating array of cells each l.J" 

long. The atom densities of the elements in the core, both actual and 

effective, i.e. flux weighted, are presented in Table 2. 

The booster region (ill) is similarly constructed. The fuel density 

in this region is roughly twice as great as in the core and serves to 

flatten the radial flux shape. 

The reflector region (IV) is composed of polyethylene cylinders 

inserted into the matrix tubes. 

The control rods are located in the interstices between matrix tubes 

in the booster region (ill). In this region, cadmium slivers may also be 

inserted as reactivity shims so that activations may be performed with 

the control rods essentially all out of the reactor. 

We will now discuss the actual methods of performing the experiments. 

In Figure 3 are exhibited some of the component materials of the test 

lattice region. Hexagonal slabs of polyethylene, iron, fuel and aluminum 

form the building blocks from which the lattices are constructed. These 

are stacked into the test lattice region drawer in the fashion shown in 

Figure k. A repeating array of small unit cells of the order of .1 to .2" 

thick is placed in the drawer in this fashion. 

Medium discontinuities are introduced into the lattices by substituting 

moderator slabs and absorber plates for part of the lattice region. Pure 

polyethylene and polyethylene plus absorbers were used for the moderator 

gaps and hexagonal plates of cadmium and boron loaded glass for the absorber 

experiments. Activation profiles were measured by activating small foils 

of materials with different energy responses to neutrons. In Figure 5 are 

sho-wn the hex plates which are especially equipped to have foils mounted 

in them as well as an example of a detector foil. The foils, made of fuel, 

manganese, indium and gold, are 7/l6" in diameter and generally a few mils 

thick. They are mounted so as to minimize the perturbing effects which 
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they would impose on the lattice configuration. Measurements were also 

made with cadmî um covers surrounding the foils in order to separate the 

sub and epi-cadmium contribution to the activity. Figure 6 is a schematic 

representation of the arrangement of the foils for a measurement. 

III. CHARACTERISTICS OF LATTICES 

The characteristics and salient parameters of the lattices studied 

are presented in Table 3. The metal to water ratios listed refer to the 

effective ratios had the moderator been in the form of water. The attempt 

was made to span a sizable range both in metal-water ratio and in spectrimi 

hardness as characterized by 

2:JKT) 

In Figure 'J, the unit cell construction of the lattices studied is 

shown schematically as well as the construction of the moderator gaps. 

IV. EXPERIMENTAL RESULTS 

Figure 8 is a schematic representation of the results obtained. By 

performing suitable normalized measurements with and without the perturbing 

absorber or moderator in place, two types of quantities are obtained from 

the data: 

(1) The peaking or flux depression near or at the medium boundary, 

defined as the ratio of activity with perturbation present to that without, 

and 

(2) The shape of the spatial transient,defined as the activity with 

perturbation minus activity without the perturbation. 

These quantities may be obtained for a number of detectors with and 

without cadmium covers. 

A striking feature of the initial results was that within the 

experimental uncertainty, the spatial transients could be represented by 
-X/L single exponentials, i.e. A(x) = A e ' where A(x) is the position 
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dependent transient activity, AQ is an amplitude factor, x is the 

distance of the foil from the lattice-perturbation interface, and 

L is a characteristic length which ̂ we will call the relaxation length 

of the ti'ansient. Figure 9 is a graph of A(x) versus x for a 

representative case. Table k presents the relaxation length for the 

moderator gap measurements and Table 5 those fcr the absorber plates. 

It should be noted that for the 20 mil cadmixun plate measurement in 

lattice L-7> a simple exponential was not obtained so that no releucation 

length is listed. The measurements listed in Tables k and 5 were 

performed with 2 mil thick manganese foils. 

In Tables 6 and 7 are listed the experimental peaking values, 

again as determined with manganese foils and fuel foils (^t = .03 at 

.025 ev). It should be noted that the fuel values for (peaking - l) 

are from 25-^0^ higher than the manganese values. This is a consequence 

of the relatively smaller epithermal contribution to the fuel activity as 

compared with manganese. 

The exrors quoted in the tables are arrived at by analyzing the 

individual coinponents of error entering into the measurements such as 

counting statistics, foil weight and power level normalization un

certainties, as well as from reproducibility checks made in a fairly 

large n\imber of instsinces. 

In Figure 10 epi-cadmium traverse taken in lattice L-7 are plotted. 

Graphs are shown for a 1" moderator gap and the boron plate with T.^t = 1 

and indicate an epithermal source dip of 10 to 15^. For the case of 

a cadmium slab the dipping is less severe. 

V. AMLYSIS 

A. Spectrum-independent Model 

Initial comparison of the experiments was made with the then 

existing programs; SOFOCATE^ ' (Wigner-Wilklns spectrum) for thermal 

group constants, MJFT^^' for the fast group constants, and WANDA^^ -

a one-dimensional few group diffusion code. In Tables k and 5* the 
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fOPX)CATE diff\i3ion lengths, L •= ^ , are l i s t e d for two values of 
\^a 

the cut-off energy in the calculation. It is seen that L 

calculated with a O.625 ev cut-off agrees reasonably well 

with the measured cadmî um relaxation lengths. However, 

for the moderator gaps, a cut-off energy of about O.5 ev is 

required to give agreement - a rather unsatisfactory state 

of affairs. 

For the peaking values, MUFT-SOFOCATE group constants 

were obtained for the gap and lattice regions and four-

group WANDA calculations performed. From the results, the 

manganese peakings listed in Table 6 were calculated. 

It is clear that this procedure underestimates the 

peaking drastically. 

B. Space-energy Separable Transient Model - 7(E) 

(1) Relaxation Lengths 

As mentioned before, a striking feature of the 

initial experimental results was that within the 

accuracy of the experiments, the spatial transients 

measured could be represented by single exponentials. 

That such a simple behavior should be found in a region 

of rapidly changing spectr̂ um seemed quite surprising. 

The simplest form of diffusion theory of course predicts 

that there should only be one characteristic diffusion 

length, 

/ 0(E)D(E)dE 

/ 0(E)i:̂ (E)dE 

where D(E) is the energy dependent diffusion constant 

for the lattice composition and E„(E) the macroscopic 

absorption cross section. This picture, however, is clearly 

too simple since it was observed that the character

istic length, L, depended on whether the perturbation was 

a moderator or absorber. 
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In this attempt at analysis of the data, use vas made 

of the two striking experimental observations: 

(1) The transients are characterized by a single 

exponential. 

(2) Their characteristic length depends on the nature 

of the perturbation. 

Number (l) suggests that the analysis be made in terms of 

a spatially independent transient spectrum, 0.(E). Number 

(2) suggests that 0.(E) must be a function of the perturbation. 

Since the experiment emphasizes primarily the thermal 

region, we chose 0,(E) to be a Maxwellian in the case of the 

moderator gaps and a transmission modified Wigner-Wilkins 

spectrum for the absorbers. Thus we write 

2 ^00 D (E)0^(E)dE 

^t = J EjE)0^(E)dE ^̂ ) 

0,(E) = 0^„ (̂KT^^^ ) 

and 

meoĉ  ef f . 

K T „ „ = ( K T ) ( I + B T ) fo r the moderator s l a b s , 
' ^ e f f ^ ^ ^ gap'^ 

0 (E) 
0(E) = ^ (2) 

2D / 1 + T ( E ) j 
1 - T ( E ) / 

1 + for absorber plates 

where 0 (E) = Wigner-Wilkins spectriira for the lattice. 

D and L are averages taken over this Wigner-Wilkins spectrum 

where 

T ( E ) = 2E [^(E) 

?,(E) = 2:̂ (E)t for the plate. 
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The results obtained with this model are given in Tables 

h and 5 and indicated substantial agreement with the experiments. 

It should be noted that the value of L obtained from (l) is 

insensitive to the spectrum used to obtain in equation (2). 

L 

(2) Peaking Measurement 

In order to apply this simple model to the peaking 

measurement, it must be extended to provide the relative 

amplitudes of 0,(E) and 0 (E). To do this, we present a 

derivation based on the following assumptions: 

(a) There is an energy, E*, not too far above thermal 

such that for E > E* the flux, 0(E), is essentially 

unperturbed by the absorber plates and moderator gaps. 

(b) The spectrum, 0(E,x) for E < E*, in the gaps as 

well as in the lattice is a superposition of the infinite 

medium Wigner-Wilkins spectrum of the respective regions 

plus a spatially varying component separable in space and 

energy. 

These assumptions plus the physically reasonable 

requirement of flux and current continuity at all energies 

permit the calculation of the peaking. The derivation 

proceeds as follows: 

Consider an infinite medium A that has a well defined 

neutron spectrum 0.(E) everywhere. Insertion of a region B 

of different cross sections into A will result in a position 

dependent spectrtmi in A near the A-B boundary. In the 

diffusion theory approximation, this spectrum will satisfy 

the equation 

-D^(E)V^0^(E,r) + ̂ otal^^^V^'"") = ^^^'""^ 

(3) 
pE* 

+ / 0^(E',r)E^(E'-»E)dE' 

0 
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where S(E,r) is the source term: 

pco 
/ 0 ^ ( E ' , r ) E ^ ( E ' - . E ) d E ' 

E-̂  / \ 
Z (E) 

and E-**- i s some cu t -o f f energy. I f - — ^ / „ \ < < 1 fo r £>£•*<• 

^tot^^^ 

in both A and B, then the source will be independent of position 

and S(E,r) = S ( E ) . 

Asymptotically in A the spectrin becomes stationary and 

will satisfy the equation 

A r^* 

2:^o^al(E)0^(E) = S(E) + / 0^(E')Z^(E'-»E)dE' (k) 

0 

Defining 7(E,r) = 0 (E,r) - 0.(E) and subtracting (2) from (l): 

2 A r^* 

-D^(E)V 7(E,r) + E^^^^^(E)7(E,r) = / 7(E•,r)E^(E'^ E)dE' (5) 

0 

which is an equation for the transient introduced in A by the 

insertion of B. As pointed out before we observe experimentally 

in a large number of cases that the spatial transients were 

exponential, i.e. 

['7(E,x)a^^.^(E)dE ~ e " ^ 

A solution of equation (5) which would lead to this result is 

7(E,x) = 7(E)f(x). 

^ E * 
Noting that E, , ..(E) = E (E) + / E ( E -»E')dE' (since energies 

0 
above E* are not perturbed) the insertion of the separable 

solution into (5) yields: 

i 
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^|^D^(E)7(E) +EjE)7(E) = T [7(E')E^(E'^ E) 

7(E)E^(E ̂ E ' 

(6) 

dE' 

V^f 1 Letting —s— = — p and integrating equation (6) over energy: 

^7 

- - ^ [ D^(E)7(E)dE + r E*(E)r(E)dE 

"' ° ° (7) 

0 0 

7(E')E^(E'^E) - 7(E)E^(E -•£') dEdE' 

= 0 

so that >E* 
D^(E)7(E)dE 

S" = -TEi (8) 
/ E^(E)7(E)dE 

0 

To obtain 7(E), we consider the spectrimi equation in 

region B namely: 

-D3(E)v20^(E,r) + E^^^^^(E)0^(E,r) = S^(E) 

xp ^ 

+ r 0^(E;r)E^(E' -.E)dE' 

Again S_(E) is independent of position because of the choice 
B 

of E*. There exists an asymptotic spectrum characteristic of 

the cross sections of B and the source S^(E) satisfying the 
B 

equation 

:9) 
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E* 

^tot^^^S^B^^^ " ^B^^^ ̂ / 0B(E')E^(E'^E)dE' (lO) 
0 

If the dimensions of B are small, an asymptotic spectrum never obtains 

but one can be defined, as in equation (lO) and subtracted from 

equation (9) yielding: 

p(E,r) = 0g(E,r) - 0^(E) 

and 

E* 
-Dg(E)V^P(E,r) + E^^^^^(E)P(E,r) = F p(E ' ,r)Eĵ (E'-̂  E)dE' 

0 

We now assume that p(E,x) is separable in energy and position for the 

case of a slab gap. Then writing the energy dependent flux explicitly 

for the lattice (A) and the gap (B) as: 

I 

.(x-a)/L 

A"" •'^ r^ 

and 

0,(E,x) = 0,(E) + 7(E)e ' " ^ (ll) 

0g(E,x) = 0g(E) + 3(E)cosh x/Lp (12) 

we equate flux and current at the gap boundary (x = a) so that: 

0 (E) - 0 (E) 

1 ^ ETdT Î  -^^ VLp 

and 

D„(E) L 
P(E) = - 7(E) ^j^ ^ csch a/Lp {ik) 

where a is the half gap thickness and 0.(E) and 0-p(E) are normalized 

at energies E > E * and Lg is defined analogously to L . 
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For small gap thicknesses: 

lim 7(E) -> 0 
a -> 0 

lim 3(E) -» 0^-0^; 0^(E,X) -. 0^(E) 
a -» 0 

For large gap thickness 

-a/L D (E) L„ 
0^(E,x) = e P 7(E) ^ ^ |£ csch X/L^ + 0^(E) 

so that 0^(E, a/Lp > > 1) -̂  0^(E). 

These relations indicate that the spectrum in the gap varies 

in hardness between the spectr̂ um of the lattice and that of an 

infinite gap region, whereas the spectrum in the lattice is 

softened by the presence of the gap. In calculations of 7(E), 

0 ( E ) and 0„(E) were taken to be the Wigner-Wilkins spectra for 

the lattice and gap respectively, normalized in the I/E region. 

At high p7, a 2 ev cutoff is necessary in the Wigner-Wilkins 

calculation to insure 1/E behavior in the high energy tail. 

FigureH compares the 7(E) for a type B gap in L-7 with a 

1 + (p7) 
gap 

T and the L-7 Maxwellian spectrum at T „„ = 

Wigner-Wilkins spectrum. The comparison sliows t h a t Maxwellian 

averages will be in good agreement with averages taken over 7(E) 

From equations (ll) and (13)^ the experimental peaking 

measured by a foil of cross section a„ .-.(E) corresponds to: 

,00 

7(E)â .̂3_(E)dE (15) 

Peaking = 1 + 

E 
CO 
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Using the present terminology and applying transmission theory 

boundary conditions to the case of absorber plates leads to 

-0^ 
''̂ ^̂  " 2D^(E) |1 + T(E)\ 

1 + 1 . T(E) 

quite similar to equation (2). 

In Tables h through 7^ "the peakings and relaxation lengths 

calculated with the above model - called the 7(E) model - are 

presented. It is clear that this simple space-dependent spectrum 

model produces significantly better agreement with experiment 

than the space independent (MUPT-SOFOCATE-WANDA) model and that 

moreover agreement within lOfo in both the peaking and relaxation 

lengths is obtained for nearly all the cases studied. This good 

agreement is surprising in view of the crudity of the approxima

tions of the model in particular that of the spatially independent 

epithermal source and the strict space-energy separability of the 

transient spectrum. 

SWAKRAUM Variational Approach 

The next development in the analysis of the experiments was 

the formulation of the SWAKRAUM variational approach by G. P. 

) mod 

-X/L 

Calame and F. D. Federighi^ . In the 7(E) model, we set 

0(E,x) = 0(E) + 0,(E)e 
00 

where 0 (E) is the infinite medium Wigner-Wilkins lattice spectrum 
00 

and 0,(E) is a Maxwellian for the gap effective temperature. The 

SWAKRAUM approach generalizes this formulation to 0(E,x) = 
N 

\ •X_.{X)I}/.{E) N < U where the I^.(E) (base spectra) maybe 

î l̂ 

arbitrarily chosen and the X-(^) ^^^ found from a variational 

principle. 
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In its simplest form, we perform P-1 calculations using a 

flat epithermal source, the mass one scattering kernel and the 

Radkowsky-Escĥ -̂ '̂  prescription for D(E). The results of these 

calculations are also presented in Tables U-7. It is seen that 

the values obtained are quite similar to those fron the 7(E) 

model. 

D. Additional Effects 

Having obtained agreement to within about 10'̂  with experiment 

we may now turn to a mmber of less significant but still 

important and interesting effects. The SWAKRAUM program allows 

us to investigate them rather easily. We have chosen to 

investigate them for the case of a 1" polyethylene gap in lattice 

L-7 for two reasons: We have the most reliable data for this 

lattice and the lattice itself - being the hardest one studied -

exhibits the most pronounced spectrum-dependent effects. 

We have investigated the effect on the calculations of the 

following: 

(1) Choice of trial spectra, ̂ .(E) 

(2) Number of spectra used, - 2, 5, 4 

(3) Transport approximation used 

- P-1, Dp-1, P-5 

(̂4-) Spatial distribution of the epi-thermal source 

(5) Scattering kernel 

(a) Radkowsky - water I ^ 

(b) Radkowsky-Esch polyethylene j 

(c) Nelkin - water 

(d) Goldman - polyethylene 
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The results are tabulated in Table 8 and reflected in Figures 

12 and 13. Each of the effects is seen to be of a magnitude of a 

few percent and their relative importance will depend on the parti

cular case studied. 

Since SWAKRAUM is a thermal program, one may make the cleanest 

comparison with sub-cadmixun activations. Figures 12 and 13 show 

such a comparison for the case of the boron plate absorber and a 

polyethylene gap in lattice L-7. It is seen that for these two 

quite different cases agreement to within a few percent is now 

achievable for the sub-cadmium energy region. 

- 91^ -



i Table 1 

PPA L a t t i c e and I n f i n i t e Medium Epithermal to Thermal 
Flux Rat ios (F.R.) 

L a t t i c e 

L-3 

L-li 

L-5 

L-7 

HL-1 

( F . R . ) * 
PPA 

2.I453 

,725 

1.286 

U.27 

0.2U 

(F.R.) 
i n f i n i t e medium 

2.39 

0.68 

1.26 

U.32 

0.2U 

•"• (F.R.) =• Ratio of epi thermal to thermal f lux from a i^-group 
PPA WANDA c a l c u l a t i o n 

+ See Table 3 for c h a r a c t e r i s t i c s of the l a t t i c e s 

Table 2 

PPA Regional Atom D e n s i t i t e s - atoms/barn-cm 

Region Elements 

Core I I < 

Booster I I I ( 

Reflec tor IV < 

H 
C 
U-235 
U-238 
Al 

^Fe 

H 
C 
U-235 
U-238 
Al 
Fe 
Zr 

H 

c 
Fe 

Actual 
Atom 

D e n s i t i e s 

.05160 

.02580 , 

.782x10^"^ 

.56x10"^ 

.00902 

.00537 

.03958 

.01979 , 

. 223x l0V 

.163x10 ^ 

.OOU22 

.00360 

.0111 

.0696 

.03ii8 

.00297 

Ef fec t ive (Flux-weighted) 
Atom 

Dens i t i e s 

.05160 

.02580 _î  

. W 3 x l O / ' 

.35x10"^ 

.00556 

.OOU9U 

.03958 

.01979 0 

.183x10", 

.13lpcl0-'+ 

.00395 

.0033 

.0078 

.0696 

.03ii8 

.00297 
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Table 3 

Characteristics of the Lattices 

Lattice 
thermal 

00 
^^(KT) 

cm 

^ v ^ 
^a(KT) Hydrogen 

to U"̂ ^̂  
atom ratio 

Fractional Equivalent 
metal metal-to-
volume water ratio 

' 

1 

L-3 

L-U 

L-5 

L-7 

HL-1 

1.03 

1.13 

1,11 

1.02 

0.99 

•«• Maxwellian 

0.1U6 

0.062 

0.07ii 

0.30 

0.067 

averages 

0.U3 

0.096 

0.19 

0.78 

0.031 

0.119 

0.039 

0.069 

0.167 

0.0116 

0,213 

0.078 

0.133 

0.295 

0.031 

lUl 

632 

316 

79 

2200 

T = Fiacroscopic absorpt ion c ross sec t ion 

T~ • macroscopic t o t a l c ross 

Tig " macroscopic epi 
c ross s e c t i o n 

sec t ion 

.thermal s c a t t e r i n g 

0.71 

0,73 

0.57 

0.7U 

0 

? " logarj -thmic 
decrement 
2 

- A+2/3 

" 1 fo r 

for 

A = 

3.U 

2.3 

1.1 

2,7 

0.0006 

energy 

A > 1 0 

1 



Table h 

Relaxation Lengths from Moderator Gaps (Manganese F o i l s ) - in cm 

Gap 
Type 

CH2O+U 

CH2OU 

CH2O+U 

CH2O 

CH2O 

CH2+U 

CH2+U 

CH2 

CH2 

CHo 

Gap 
Thickness 

Cm 

0.828 

1.722 

2.616 

.381 

2.667 

2.037 

2.a90 

0.826 

1,638 

2.U51 

Experimental 
Relaxat ion Length 

1.71 + 

1.75 1 

1.78 + 

1.82 + 

1.6ii + 

2.1U + 

2.35 + 

1,23 + 

1.10 + 

1,00 + 

.10 

.06 

.05 

.16 

.oU 

.08 

.06 

.05 

.03 

.01 

SOFOCATE 
L - D 

. 3 ev ^ 2 ^ 
cu t -o f f 

2.08 

2.08 

2.08 

2.08 

2.08 

2.53 

2.89 

1.23 

1.23 

1.23 

.625 ev 
cu t -o f f 

2.28 

2.28 

2.28 

2.28 

2.28 

2.68 

3.15 

l.i*2 

IM 
1.U2 

Y ( E ) Model 

1.708 

1.703 

1.700 

1.689 

1.685 

2.360 

2.563 

0.998 

0.99li 

0.992 

SWAKRAUM 
F l a t Epi then 

1.590 

1.625 

I.6U0 

1.620 

1.575 

2.125 

2.330 

0.96 

0.935 

0.925 



Table 5 

I 

00 

I 

Relaxation Lengths 20 mil Cacimium Plates (Manganese Foils) in cm 

Lattice 

L-3 

L-U 

L-5 

Experimental 
Relaxation 

Length 

2.29 

2.75 

2.99 

.3 ev cut-

2.08 

2.53 

2.89 

SOFOCATE 

-off " ^. 625 ev cut-

2.26 

2.68 

3.15 

-off 
Y(E) 
Model 

2.26 

2.68 

3.18 

SWAKRAUM' 

2.lii 

2.U1 

2.78 

*Flat epi-thermal source 



Table 6 

Moderator Gap Peaking 

vo 

L a t t i c e 

L-3 

L-U 
L-5 
L-7 

Gap Type 

CH2O+U 
CH2O+U 
CH2O+U 
GHoO 
CH2O 
GH2+U 
CHo+U 
GH2 
CH2 
CH2 
CH2+U 
CH2+U 
CH2+U 
CH2+Fe 
CH2+Dy 
CH2+AI 

Gap T h i c k n e s s 
cm 

0.821 

i-Ff 2.616 
0.381 
2.667 
2.037 
2.U90 
0.826 
1.638 
2.U51 
0.889 
I.7U0 
2.629 
2.778 
1.968 
1.956 

Experimental 
Peaking 

Manganese 

1,3904-. 012 
1.6U67.O20 
1.852+.025 
I.209+.OI2 
2.U85^.025 
1 .37^ .0 lU 
1.750T.022 
2.090+.025 
3.0007.030 
3.65c>r.oUo 
1.8U7T.018 
2.186T.022 
2.56ar.o3o 
2.636T.030 
1.8987,025 
2 , 0 9 > . 0 2 5 

Fuel 

2.37+.OU 
3.6U7.0U 
U.18T.05 
2.07T.03 
2.66T.03 
3.02+.0U 

MUFT-SOFOCATE 
WANDA 

(Mn) 

1.260 
1.U82 
1.627 
1.227 
2.085 
1.292 
1.601 
1.600 
2.012 
2.350 
1.U52 
1.733 
1.901 
1.850 

1.597 

Y(] E) 
Model 

Mn 

I.3U0 
1.590 
1.7U9 
1.286 
2.758 
1.371 
1.796 
2.098 
3.061 
3.888 
1.702 
2.056 
2.236 
2.780 
1.88U 
2.076 

Fuel 

2.35 
3.5U 
U.5U 
1,86 
2.30 
2.52 

SWAKRAUM 
F l a t Epi-

Thermal Source 

1.389 
1.672 
1.820 
1.305 
2.881 
1.382 
1,819 
2.138 
3.1UI 
3.988 
1,770 
2:iU5 
2.320 

2.038 
2.135 



Table 7 

Absorber P l a t e A c t i v i t y Depression 

, a t t i c e 

L-3 

L-U 

L-5 

L-7 

Absorber 
Type 

Cd 

Cd 

Cd 

Cd 

Cd 

Cd 

Cd 

Cd 

Cd 

Boron 

Boron 

Absorber 
Thickness 

mil 

3 

20 

3 

20 

3 

20 

3 

3 

20 

r a t = l a t .025 

i:at=2 a t ,025 

Experimental 
A c t i v i t y Depression 

0,517 

0,U21 

0,312 

0.230 

0.396 

0.317 

0.632 

0.U20* 

0.615 

ev O.U55* 

ev 0.365^^ 

Y(E)^ 
Model 

0.522 

O.U02 

0.302 

0.209 

0.396 

0.285 

0.507 

SWAKRAUM"^ 
Blackness 

F l a t Epi-therm 

O.50U 

0.299 

0.389 

0.609 

O.U09* 

SVJAKRAUI 
D P - 1 

a l Sourc 

O.U6O 

0.397 

0.261 

0.202 

0.3U5 

0.28U 

0.569 

0.350* 

0.503 

O.U25^* 

0.305* 

-!s5ub-cadmiuir depression only 
•fThe epicadmium con t r i bu t i ons to the c a l c u l a t e d va lues have been determined r a t h e r c rude ly . 

Since they amount to 30-50^ of the t o t a l a c t i v i t y with absorber^ the quoted ca lcu la ted values 
are uncer ta in to l O - " " " 



Table 8 

Effect of Various Quantities on the Peaking (L-7) 

Quantity 

Experimental 
epithermal 
source 

Approximation 

DP-1 

Relative to 

Flat 
source 

P-1 

Case Effect 

P-3 

No. of Spectra 

3 spectra 

U spectra 

Kernel 

Radkowsky-water 

Goldm an-Federighi 
polyethylene 

P-1 

2 spectra 

2 spectra 

Radkowsky-Esch 
Polyethylene 

(5) 

(7) 

1" moderator gap 
B plate absorber 

1" moderator gap 
.1" moderator gap 

1" moderator gap 
,1" moderator gap 

-U,6^ 
-7.8^(thermal) 

+1,0^ 
+3.9^ 

0.7^ 
2,8^ 

1" moderator gap -0,U$ 
(thermal peaking) 

1" moderator gap +0,2^ 
(thermal peaking) 

1" moderator gap -1.6^ 

1" moderator gap -5,7^ 
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Large Delay Times Observed In Establishment of 

Single Mode Decay In Water Moderators 

Fred Holzer and Marshall P. Crouch 

Case Institute of Technology 

We have performed a measurement of the thermal neutron mean 

lifetime In a large cylindrical moderator In order to determine 

the neutron proton capture cross section. ^̂•'•̂  A network of sources 

was used to synthesize the fundamental mode of the neutron density 

distribution, so that higher modes would not be excited. Although 

better analyses can be made. It Is noted that the Perml age equation, 

which crudely describes conditions during the slowing down process, 

has the same elgenfunctions as the time dependent diffusion equatlon,^^^ 

and therefore It was expected that a simple exponential decay would 

be observed after -̂  10 microseconds, since the slowing down time 

In water to the cadmliim edge Is ̂  2 microseconds.^ 

Somewhat surprisingly, the simple exponential decay did not commence 

until after about 35 microseconds (See Fig. l) Thus the behavior 

was similar to that observed by von Dardel and Sjtistrand and by 

Stooksberry and Crouch In large moderators' using a point source of 

fast neutrons. 

There are several possible Interpretations of the long delay 

preceding the exponential decay. Analysis In terms of age theory 

may be too crude for present purposes, though this analysis has 

proved to be surprisingly good even for hydrogen. Or the slight 

differences In boundary conditions for the age equation and the 

diffusion equation may affect the distributions. The mode synthesis 

procedure may not be sufficiently precise, giving some admixture of 
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1 

higher modes, although several different assumptions regarding the 

point source distribution led to virtually the same mode synthesis 

network. Finally It Is possible that the long observed delay In

dicates that the time required for the neutrons to reach thermal 

equlllbrlvim with the moderating nuclei Is somewhat longer than 

expected. This latter explanation Is not completely unreasonable 

considering that measurements of slowing down time utilize detectors 

of eplthermal neutrons, and models for calculating the details of 

the slowing down process are not very satisfactory In the region where 

the neutron energy Is comparable to molecular binding energies. 

Ipred Holzer and Marshall P. Crouch, Bull. Am. Phys. Soc. 4, 415 (1959). 

iPred Holzer and Marshall P. Crouch, Nuclear Scl. and Eng. 6_, 545 (1959)^ 

3pred Holzer, Thesis, Case Institute of Technology, 196O (unpublished). 

^A.V. Antonov, A.I. Isakoff, I.D. Murln, B.A. Neupocoyev, I.M. Frank, 
F.L. Shapiro, and I.V. Shtranlch, Proc. Intern. Conf. Peaceful Uses 
of Atomic Energy, Geneva, 1955 (United Nations, New York, 1956), 
Vol. 5, p. 3. 

N.G. SJdstrand, private communication. 

^G. von Dardel and N.G. Sj5strand, Phys. Rev. 96, 1245 (195^). 

7R.W, Stooksberry and M.P. Crouch, Phys. Rev. 114, I561 (1959). 
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Pulsed. Neutron Measurements on Graphite 

by 

H.Klose, M.Kiichle and W.Reichardt 

Institut fur Neutronenphysik und Reaktortechnik 

des Kernforschungszentrums Karlsruhe 

Abstract 

2 
The oC vs. B curve for graphite has been carefully remeasured. 

2 
Lifetimes were observed on 45 different blocks with B ranging 

—4- —4- —2 
from 7 . "lo - 24-o , lo cm . The results are compared with 
all previous measurements on graphite. The validity of the power 

2 
serious expansion of <̂  (B ) is discussed. 

1, Introduction 

When a burst of fast neutrons is injected into a finite moderator 

the asymptotic thermal neutron flux dies away exponentially. Accor

ding to simple one-group theory the decay constant oC should be a 
2 

linear function of B , A deviation from this linear dependence was 

found by v. Dardel and attributed to the so-called diffusion coo]ing 

effect. In a power series expansion 

^ = .̂  + DB^ - CB^ o 

C should be a measure of the thermalization properties of the 

moderator; for this reason, pulsed neutron experiments could be a 

Submitted to the Conference on Neutron Thermalization, Brookhaven 

National Laboratory, April 3o - May 2, 1962 

935 



tool for testing thermalization theories, A lot of work has been 

done along these lines, but the agreement between theory and 
1") experiments was not always satisfactory ', 

2) 5") 
For graphite Antonov et al. ^ and Beckurts-^^ have made measure-

5 4 / ments obtaining a value of about 15 . ^o^ cm /sec for the diffusion 

cooling coefficient G, which agrees well with a theoretical value 
5 4-/ 4-") 

of C = 14 , 1o cm /sec as calculated by Nelkin ^ » However recent 

measurements showed a G value about twice as high-^'^ ^, and there 

also were discrepancies in other parajneters. Therefore, careful 

remeasurement seemed necessary to investigate all possible sources 

of error, 

45 piles were constructed out of blocks 2o x 2o cm square with 
2 -4 -4 -2 

different lengths, B ranging from 7 . I0 to 24-o , I0 cm , 

The measurements were performed with the apparatus described by 

Beckurts'̂ '̂ ; the T (d,n) He reaction was used. 

2, Measurements and analysis of decay constants, 

2,1 Waiting time for the asymptotic mode. 

After a burst of fast neutrons has been injected into a moderator, 

one has to wait for thermalization and the decay of harmonic modes, 

before one may start measuring the asymptotic mode. By varying the 

waiting time it was found to be sufficient to wait for about $ 

decay times of the asymptotic mode, provided source and detector 

had been arranged properly to suppress the most pronounced harmonic 
2 -4 

and B £ 7o , I0 , For larger bucklings thermalization time 
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exceeds decay time of the harmonics, and a waiting time of about 

2 msec was necessary, nearly indipendent of buckling. When measure

ments were started too early, larger values of <^ were obtained, 

though the decay looked like a good exponential, 

2.2 Background and backscattering. 

When using long waiting times background and backscattering become 

serious problems, particularly for large bucklings. Therefore, this 

point was investigated in a 4-o x 4o x 4o cm cube. 

Measurements were made with the pile covered with qadmium only, 

with Cd and 2o cm B^ 0^, and with Cd and 2o cm paraffine. The first 

two measurements agreed well enough, but the paraffine-covered pile 

yielded a higher value of «̂  . This may be due to backscattering of 

epicadmium neutrons from paraffine. 

Moreover, in one case with the pile covered by cadmi\im only and 

2 —ZL _2 
B = 6 o . 1 o cm , a waiting time of 15 decay times was used and 

the o<;-value agreed well with the other ones. 

2.3 Accuracy of o<r-measurements. 

Usually, the asymptotic mode was observed over three or four decay 
/T 

times and some 1o counts were taken giving an accuracy of about o,2% 
2 -4 -2 

for oC, For piles with B i loo . 1o cm the intensity was too 
low and only an accuracy of 1% or even worse could be achieved. 

2 _4 -2 

More^over, with B 2 150 . 1o cm waiting time was restricted to 

1 msec or less for background and intensity reasons, and one cannot 

very well rely on the < values in this region. 
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2 
3. Analysis of oCys, B 

2 
3.1 Determination of B 

2 

The values of B were calculated from geometry with an extrapola

tion length of 0,71 \-r.- "̂ î S cm."*"-̂  Corrections for density and 

temperature were applied, where necessary. 

The anisotropy of neutron diffusion in the graphite blocks was 

investigated by measuring <^ in extremely flat geometries, where 

one direction of diffusion is preferred. It was found that 
D 

— = 1,o1o - o,oo5» where D and D, are the diffusion coefficients 

parallel and perpendicular to the central axis of a single block. 

This gives a negligible effect for nearly cubical assemblies. 

3.2 Three and four-parameter analysis. 
2 

With a least squares fit of the decay constants -cT versus B to 

<<= (Z v) +DB^ - CB^ or 

a 

^= (Iĝ v) + DB^ - CB^ + FB^ 

the parameters (Z v), D, C,and F were obtained. The result of a 

diffusion length measurement was included as a point with o<r= 0 
2 1 and B = 5, The ITC values are weighted according to their relative 

L^ 

^ Other values for the extrapolation length were also tried, but 
2 

when the oCvs, B dependence was fitted to a parabola, a minimum 

fluctuation of the experimental points around the curve was 

achieved with the value given here. 
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accuracy. Fig.1 shows the experimental points and a three-para

meter fit. 

2 
The calculation was repeated; all points with B larger than an 

2 
arbitrarily fixed value B were successively omitted in order to 

2 
investigate the dependence of diffusion parameters on the B range 

used. The results are given in Fig.2 and 3. The case of the 3-para-

meter fit shows these features: 
2 

1) If the B range is small and includes only a few points - the 

graph starts with 11 points - low values for \^^ and C are obtained, 

This is due to the fact that the fluctuation of experimental points 

allows almost a straight line to fit them. 
2 —4- -2 

2) When B exeeds 6o . 1o cm X. and C grow continuously, 
indicating that a 3-parameter fit is no longer adequate. 
For the 4-parameter fit no definite tendencies can be recognized, 

but the /\^ and C values are somewhat lower in the whole B range, xr max 

Thus we obtain the following results; referred to the density 

l5 wn th A . = ^-~. 
V 

y = 1,6o g/cm^ with X^^ = - ^ 

3-parameter ana ly s i s 

â " '̂"̂ "̂  ~ '̂̂ "̂  ^^ \T " ^'^^ " °»°^ ^^ 

C = (26 i 5) . 10^ cmVsec 

4-parameter analysis 

6̂  = 4,8o i o,o7 mb X^^ = 2,56 - o,o2 cm 

C = (16 i 5) . 10^ cmVsec F = - (2o i 1o) . lo*̂  cm^sec 

The most striking feature is the value for P. A B -term was predicted 

by theory due to (1) non-applicability of diffusion theory ̂ '̂'-̂  

(2) more accurate description of the diffusion cooling effect, 
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but always it turned out that F should be positive, the order of 

magnitude being about -ir-, whereas the measurement yielded 

P = - 11 ̂  . 

4. Discussion of results. 

4.1 Comparison with other measurements. 

For comparison of our results with previous measurements, all data 

of pulsed neutron experiments on graphite available in literature 

and linpublished work of this institute were plotted in one diagram 
2 

of c<r versus B . The absorption term, different for different graphi-
was 

tes, subtracted and all values were reduced to the same density. 

The result is given in Pig,4, 

2 _4 
Satisfactory agreement exists for B ^ 6o . 1o , but then deviations 

start to become appreciable, higher values of -̂  often corresponding 

to lower waiting times used by the authors, as is to be expected 

from our statement in 2.1. 

2 
4.2 Validity of the power series expansion of «^vs. B , 

If a power series expansion 

^ = ^^v + DB^ - CB^ + FB^ + ,,, 

2 
is an appropriate description of the o<^vs. B dependence and the 

diffusion cooling coefficient C is a constant to be checked with 

2 6 4 
theory, there should be a range of B values for which FB <"< GB 
and from which C could be determined with reasonable accuracy. This 

6 4 is not the case for graphite, where,for instance,FB = o,1 GB 

2 -^ when B « 1o "̂  and no accurate value of C can be obtained from 

2 X —-5 4 

measurements with B - 1o '̂ , because then GB would always be less 

than 1% of <<;. 
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4 Moreover, careful inspection of the 4-parameter curve will reveal 

that it does not fit the points very well for low B , because A. 

is too small. The general impression is that a parabola does not 
2 

describe the dependence of °c on B very well. Nevertheless, it is 

reasonable to make a power series expansion for the determination 

of o and '̂. although the physical meaning of the G-value remains 

doubtful. 

4.3 Conclusions, 

When experimental results of pulsed neutron measurements on modera

tors are compared, c<̂ -values should be compared Instead of diffu-
2 

sion parameters which depend too much on the B -range and evaluation 

procedure used. 

Besides when thermalization theories are tested, a direct comparison 

between calculated and measured <<, values is to be preferred. 
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COMPARISON OF DIFFUSION PARAMETERS OBTAINED FOR WATER BY THE PULSED 

AND THE POISONING TECHiaQUES 

by J. U. Koppel and W. M. Lopez 

Introduction 

The measurement of neutron die-away times in pulsed assemblies of 

decreasing size and the measurement of diffusion lengths in media of 

increasing poison concentration are known — to be closely related experi

ments. This is most easily seen from the space-time-energy dependent 

Boltzmann equation in the diffusion theory approximation 

-Dv An(v,r,t) + ̂ "^^l""'^^ = -(S +2J n(v,r,t) v + /n(v^r,t) v'z (v%v)dv^ 

(1) 

The (asymptotic) solution corresponding to the experiment mentioned in first 

place is of the kind 

n(v,r,t) = e^^"'-°'^ N(v) (2) 

2 
where B is usually called the geometrical buckling of the assembly, a being 

2 
the decay constant measured for different valued of B . 

The (asymptotic) solution applying to the second experiment is 

n(v,r) = e''̂ '' N(V) (3) 

where K is the inverse of the diffusion length. Obviously eq. (3) is a 

special case of (2) with a = 0 and B = IK. Thus K is equivalent to a 

negative buckling. 

Now, replacing (2) in (l) yields 

(B^Dv-OfZ v) N(v) = -Z V N(V) + / W(v^) v's (v'_» v)dv' (k) 

2 
which is an eigenvalue problem with either B or a being the eigenvalue, 

- 9h7 -



It is seen that the time dependent problem can be reduced to a station

ary one just by introducing a fictitious l/v poison with cross section -a/v. 

Integrating eq. (h) over all energies and considering only l/v absorbers, it 

is found 

B D v + a - a = 0 (5) 
o 

with 

rr- rN(v)vDdv 
a = Z V ; Dv = ^ /̂ M/ L — 
o a ' /N(v)dv 

o 
For B = 0 (Pulsed infinite medium) the solution of eq. (h) is a Maxwellian 

o 

and a = a , For B > 0 the spectrum N(V) is shifted to lower energies 

(diffusion cooling) whereas for B < 0 it is shifted to higher energies 

(diffusion hardening). Thus Dv is a continuous function of B and can be 

expanded in the power series: 

D^ (B^) = D - C B^ + F B^ - ,,. (6) 

where C is known as the diffusion cooling constant. Substituting (6) into (5) 

a - a = B^ D - C B '+ F B - .,, (7) 
o o 

2 
of course the relation between a - a and B can also be expressed by the 

inverse series 

It is easily seen that: 

o \ o 

C = - ^ (9) 
D 
o 
2 

The shape of the function relating a, and B is shown in Figure 1, It 

follows from the foregoing discussion that the portion of the curve 
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lying in the first quadrant can be measured by the pulsed technique. The 

intercept a corresponds to the decay in an assembly of infinite dimensions. 

2 
The intercept K is the inverse of the diffusion length in the unpolsoned 

medium. If now a l/v poison is uniformly added to the medium the curve of 

Figure 1 will be shifted in the direction of positive OL without changing 

its shape. As the magnitude of the shift, l:^ = vA2 (where AS is the In-
a a 

crease in absorption) is known, the measurement of the diffusion length for 

increasing poison concentration yields points of the curve of Figure 1 lying 

in the third quadrant. Only the small segment between the intercepts cannot 

be measured by either one of the techniques mentioned above. 

Interpretation of Experimental Data 
P 

The parameters of the function o; = f(B ) which are of physical interest 

2 2 
are a = v Z (v ) (intercept at B = o), D (slope at B = O) and C (one-half 

times the second derivative at B = O), a and D can be obtained with good 
o o ° 

accuracy by both methods, and the values measured are in fair agreement with 

each other and with theory (2). Concerning C, however, there is a large 

discrepancy between different published values , We believe that this is 

largely due to different ways of analyzing data, and simply reflects the 

inherent difficulty of determining the curvature of an unknown function 

defined by a set of experimental points with finite standard deviation. 

The usual way to determine the two mentioned parameters is to fit the 

experimental points by a least squares technique to an expression like (7) 

or (8) truncated after two or three terms. As the higher order terms are 

obviously not zero, the result of the analysis will depend on the range 

For a complete list of references see (3) and {k) 
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covered by the experiment. It appears that for a given experimental error 

of the measured points there is an optimum range beyond which no further 

accuracy is gained in the determination of the three diffusion parameters, 

2 
In fact, as more terms have to be retained in order to fit larger B 

Intervals, the uncertainty in the first three coefficients remains roughly 

constant. Thus a three parameter fit of the optimum interval seems to be 

2 
as good as a fit to more parameters over a wider range of B , It is 

possible to get a feeling of the error involved in truncating the fit, by 

plotting the coefficients obtained for a decreasing number of points, thus 

dropping progressively those of maximum buckling. The plots obtained for 

the two ways of fitting, (7) and (8), should approach roughly the same limit, 

obviously with a continuously increasing uncertainty. On the other hand, in 

order to determine the number of terms of (7) or (8) to be retained for the best 

fit of given experimental data, a good criterion is to compute the empirical 

variance P 

n - m 

and to retain that number of teims which makes X minimum, y. and y ., 
"'i •'calc 
2 

are the measured and the calculated values of either a or K , n is the 

number of points and m the number of parameters. 

Comparison of Recent Measurements in Water 

We are going to show briefly how the foregoing considerations apply to 

Th< 

(̂ ) 

the results of two recent measurements of E , D and C for water (3, 4). The 

first is a pulsed experiment while the second uses the stationary method. 

•'̂The stationary experiment was first suggested by P. Michael (private 
communication). 
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l) Since the publication of paper (3) more data has been obtained by 

-2 its authors, extending the buckling range from 0,6 to 1.5cm . The results 

for the complete range are shown in Figure 2 and Table I, Case 1 and 2 refer 

to different ways of computing the bucklings. In Case 1 the extrapolation 

distance was supposed constant and given by 

D 
d = 2,131 — 

with 

V = —= 2,2 X 10 cm/sec 

2 
In Case 2, d was supposed to vary with B according to the formula 

/ r 
^ _ _ d̂  r being the radius of an equivalent sphere with the 

same buckling: 

r+d^l 

i2 / \2 
+ It 

a+2d' I b+2d') |c+2d̂  

The dropping points technique is illustrated by Table II and Figures 

3,4. From Table III it is seen that the three parameters fit of the 
_2 

0 - 0.6cm interval is in fair agreement with the four parameters fit 
_p 

of the 0 - 1,6cm interval (X is minimum for M = h), It is also seen 

that the uncertainties of E , D , and C are practically the same for 

those two fits, 

2) The experiment reported in (4) has already been analyzed the 

way we are suggesting in this note. The results are reproduced in 

Figures 5, 6, and 7., and Tables IV and V , The error bars of the 

* 
The figures of Table V are slightly different from those appearing 
in Ref, (4) because in the present analysis a was recalculated for 

each B^ interval. 
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least squares fitted coefficients have been recalculated using the correct 

statistical expression (5). It is seen that while E and D are in good 
a o 

agreement with the previous results, a large discrepancy seems to remain 

between the values found for C, That the uncertainty due to the extra

polation distance applying to the pulsed experiment may account at least 

for part of the discrepancy is seen from the following considerations. For 

the sake of simplicity let us take the case of spherical assemblies. Their 

buckling is given by 

J 

where R = r + d is the extrapolated radius. Suppose R = R +€ where e is 

the error of d, then 

2 rt^ B = — 
R 
o 

1 - 2 -i- . 3 (-̂  
R R 

0/ 

(10) 

Substituting this expression for B into the expansion (7) it follows 

with 

a - a = D B 
o 0 0 

B = ff/R 
o ' o 

2 T, 3 2^2 
— eB + - ^ € B -

o 2 o 
- CB + '•' 

o 

(20) 

Rearranging terms on the right side of (20) 

a - a = D B 
o 0 0 

C + 2 o 
B 

n o 
^2 o\ o 

For e = 0.1 cm and B = 1 cm the term in e introduces a correction of more 
o 

** 
The experiments reported in (2) and (h) were performed at 26.7 C. and 
21 C. respectively. 
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tlian 50'̂  of C. The term in c becomes significant only for much larger 

bucklings. 

Another source of discrepancies is the weighting of the experimental 

points. The figures of tables II and III were obtained assuming a constant 

relative error in the measurement of a = f(B ). The results listed in 

2 
Table V were obtained assuming a constant relative error of K . Figures 2 

and 5 seem to justify both assiimptions. 

Conclusions 

It appears that both the pvilsed and the poisoning method are suitable 

experiments for measuring E and the infinite medltmi diffusion constant D 

However, in view of the unavoidably increasing uncertainty in the determination 

of higher order coefficients of the series (7) or (8) it seems to be 
2 

preferable to compare the function a = f(B ) obtained with different 

experiments (and theoretical calculations) point by point rather than by 

the coefficients of their least square fits. 
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TABLE I 

Experimental Data From (3) 

44.5 
28.6 
31.1 
31.1 
31.1 
15.2 
15.2 
76.2 
17.6 
15.2 
17.6 
17.6 
76.2 
10.2 
10.2 
10.2 
10.2 
10.2 
10.2 
10.2 
7.62 
7.62 
10.2 
7.62 
6.84 
7.62 
7.62 
5.93 
4.91 
4.49 
3.82 

Size (cm) 

X 44,5 
X 31.1 
X 60,2 
X 60,2 
X 60.2 
X 29.7 
X 29.7 
X 76.2 
X 17.6 
X 29.7 
X 17.6 
X 17.6 
X 76.2 
X 10.2 
X 10.2 
X 10.2 
X 10.2 
X 10.2 
X 10.2 
X 10.2 
X 7.62 
X 7.62 
X 10,2 
X 7,62 
X 6,95 
X 7,62 
X 7.62 
X 6,00 
X 4.93 
X 4,49 
X 3.79 

X 48,9 
X 60,2 
X 26,4 
X 19.1 
X 16.5 
X 16.5 
X 16.5 
X 10.2 
X 17.7 
X 14.6 
X 12.6 
X 12.6 
X 7.62 
X 10,2 
X 9.5 
X 8.9 
X 8.26 
X 7.62 
X 6.35 
X 5.72 
X 7.62 
X 7.62 
X 5.08 
X 6.35 
X 6.95 
X 5.72 
X 5.08 
X 5.95 
X 4,92 
X 4,47 
X 3.82 

a (sec"^) 

5336 
5668 
5722 
6147 
6437 
7854 
7904 
7908 
8132 
8l4o 
8989 
9037 
10205 
13970 
14330 
14749 
15430 
16230 
18116 
19315 
19843 
20012 
21547 
21656 
23100 
23473 
25168 
28400 
36800 
42000 
53000 

B^ (cm'2) 
Case 1 

0.01372 
0.02400 
0,02598 
0,03769 
0,04599 
0.08341 
0,08341 
0,08795 
0.08871 
0.09232 
0.1156 
0.1156 
0.1478 
0.2538 
0,2647 
0.2YY9 
0.2940 
0.3139 
0.3712 
0,4136 
0.4340 
0.4340 
0.4709 
0.4913 
0.5192 
0.5338 
0.5910 
0.6798 
0.9576 
1.1292 
1.4935 

Case 2 

0.01370 
0.02399 
0.02594 
0.03775 
0,04599 
0,08346 
0,08346 
0,08702 
0,08847 
0.09231 
0.1153 
0.1153 
0.1471 
0.2503 
0.2621 
0.2744 
0.2903 
0.3099 
0.3660 
0.4069 
0.4288 
0.4288 
0.4626 
0.4846 
0.5117 
0.5252 
0.5807 
0.6667 
0.9308 
1.0913 
1.4251 
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TABLE I l a 

F i t (7) With 3 Parameter^ C T O I I s e d d a t a ) 

H 

(U 
ra 
s) 

0 

CVI 

(U 
10 
(0 

u 

2 
B max. 

-2 cm 

1.4935 
1.1292 

.95757 

.67977 

.5910 

.47090 

1.4251 
1.0913 

.93078 

.66668 

.58070 

.46265 

2 e a 0 

mb 

327.7 1.4 
326.8 1.4 
326.5 1.5 
326.1 1,6 
325.3 1.6 
325.3 1.7 

327.2 1.5 
326.1 1.5 
325.7 1.6 
325.3 1.8 
324.6 1.8 
324.8 1.8 

'^O 

sec-1 

48o6 20 
4793 20 
4788 22 
4782 24 
4771 24 
4771 25 

4798 22 
4783 22 
^777 23 
4771 26 
4761 26 
4764 27 

°o d̂ 

cm / sec 

36681 193 
36925 221 
37033 265 
37165 3̂ +7 
37^26 368 
3714.24 4l8 

36863 215 
37142 243 
37272 289 
37410 374 
37630 4o4 
37557 +̂58 

C € 

c 
4 , cm / sec 

3179 234 
3647 325 
3878 450 
4l8o 677 
4852 763 
4800 1024 

2420 272 
2971 367 
3255 501 
3576 7^1 
4153 852 
3869 1138 

TABLE lib 

Fit (8) With 3 Parameters (pulsed data) 

H 

0) 
CO 
cS 

0 

CVI 

0) 
(0 
05 

0 

B2 

-2 
cm 

1.4935 
1.1292 

.95757 

.67977 

.59100 

.47090 

1.4251 
1.0913 

.93078 

.666G& 

.58070 

.46265 

a a 

mb 

326.5 1.4 
325.9 1.4 
325.7 1.5 
325.7 1.6 
325.0 1.6 
325.1 1.7 

326.5 1.5 
325.6 1.5 
325.3 1.6 
325.1 1.8 
324.5 1.8 
324,8 1.8 

" 0 

sec 

4788 20 
4779 20 
4777 22 
4777 24 
4766 24 
4768 25 

4789 22 
4775 22 
4770 23 
4768 26 
4759 26 
4763 27 

^0 ^d 

2, cm / sec 

37078 193 
37271 221 
37309 265 
37310 3̂ +7 
37586 368 
37519 ^19 

37063 215 
37348 243 
37443 289 
37^93 37̂ ^ 
37718 4o4 
37589 458 

^ 
4 . 

cm / sec 

4461 308 
4933 433 
5028 587 
5030 839 
5890 976 
5578 1251 

3052 33^ 
3726 459 
3976 622 
4 l l4 891 
4805 1049 
4258 1338 

Temperature: 26.7°C 
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TABLE III 

Fit (7) With a Variable Number of Parameters (pulsed data) 

Clase 

1 

2 

2 
B max. 

-2 
cm 

1 > 9 3 5 
1 > 9 3 5 
1.^935 
0.5910 

l . '+251 
1.4251 
1.^251 
0.5807 

Paramete r s 

3 
It 

5 
3 

3 
1+ 
5 
3 

a =Z V 
0 a 

sec 

1+806 
1+770 
1+771+ 
1+771 

1+798 
1+760 
1+768 

i+761 

S 
. - 1 

21 
21+ 
29 
2k 

22 
26 
31 
26 

D 
0 

2 / 
cm /£ 

36681 
371+76 
37389 
37^26 

36863 
37715 
371+87 
37630 

^d 

3ec 

193 
367 
585 
368 

?15 
1+07 
61+1 
1+01+ 

c 
1+ 

cm 

3179 
5500 
5066 
1+852 

2i+20 
1+997 
3819 
^+153 

^c 

/ s e c 

23^+ 
961 

2I+23 

763 

272 
1103 
2760 

852 

F 

6 / cm / 

1354 
720 

-

1585 
-219 

^ f 

sec 

550 
3287 

660 
3923 

10'^X 

-2 
sec 

0.611+2 
0 .5201 
0 ,5393 

0 .6908 
0.5903 
0.6079 

Temperature" 26.7°C. 

TABLE IV 
Experimental Data From (1+) 

L 

cm 

2.75'+ 
2.1+59 
2 .166 
1.978 
1.639 
1.255 
1.063 
0 .9^29 
0,81+69 
0.7308 

5 

-2 
cm 

0 .1318 
0 .1653 
0 .2130 
0 .2556 
0 .3721 
O.63I+8 
0.881+8 
1.121+8 
1.39^+2 
I.872I+ 

AS 
a 

- 1 
cm 

_ 

O.OO52I+5 
0.013870 
O.O20I+7O 
0.01+0397 
O.O8731I+ 
O.I3I+27 
0.17895 
0.231+62 
0.3^655 

a=vA2 
a 

-1 
sec 

1153.9 
3051 . i+ 
^+503.4 
8887.3 

19209 
29539 
39369 
51616 
762I+I 

i 
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TABLE Va 

Fit (7) With 3 Parameters (poisoning data) 

p 
K Tiax. 

-2 
cm 

1.8724 
1.3942 
1.1248 
.8848 
.6348 

2 € a a 

mb 

317.5 2.1 
2Pk.9 1.4 
326.1 1.6 
323.2 1.7 
324.3 2.0 

% 

-1 
sec 

4663 31 
4771 21 
4790 24 
4747 25 
4763 30 

°o d̂ 

2/ cm /sec 

34833 170 
35609 129 
35751 148 
35405 169 
35541 229 

' 

4/ cm /sec 

4238 187 
3413 179 
3234 253 
3754 367 
3507 674 

TABLE Vb 

Fit (8) With 3 Parameters (poisoning data) 

2 
K max. 

-2 
cm 

1.8724 
1.3942 
1.1248 
.88481 
.63481 

2 6 
a ""CT 

mb 

326.6 1.4 
328.6 1.5 
328.6 1.7 
325.8 1.7 
326.2 2.0 

'̂o 

sec" 

4796 21 
4826 22 
4825 25 
4784 25 
4791 29 

\ 

2, 
cm /sec 

35874 105 
36079 120 
3607i+ lUj 
3575^ 156 
35808 213 

' 

4/ cm /sec 

2662 lOJ 
2481 150 
?499 223 
2878 310 
2797 596 

Notes 

1) Temperature : 21 C 

2) Tine large errors appearing In 
the first line of Table Va 
show the need of retaining 
one more term of expansion (7) 
in order to fit these data 
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The time scale of neutron slowing down in water 

"~~ ~ by 

E, Mbller, AB Atomenergi, Studsvik, Tystberga, Sweden 

and 

N.G, Sjostrand, CJhalmers University of Technology, Goteborg, Sweden 

Abstract. 

The time scale of neutron slowing down in water has been studied 

using the pulsed beam of the van de Graaff-accelerator at Studsvik 

for the production of neutron bursts in the moderator. The moderation 

process is followed by the measurement of the neutron capture rate 

in non-disturbing amounts of cadmium and gadolinium dissolved in the 

water, the time resolution being ten times better than in earlier 

studies. With both elements a thermallzation time constant of about 

4 Hsec was foimd. 

- 966 -



The time scale of neutron slowing down in water. 

by E. Mbller 

AB Atomenergi, Studsvik, Q^stberga, Sweden 

and 

N.G, Sjostrand 
Chalmers Univ. of Technology, Goteborg, Sweden 

Introduction 

The process of slowing down and thermallzation of fast neutrons in 

hydrogenous materials is of very short duration since the neutron may-

loose all its energy in one collision with a proton. The elementary 

theory (l_) predicts that on the average only l8 collisions are needed 

to make the neutron thermal, and this process can be estimated to take 

about 10 Msec in water. These figures, based as they are on assumptions 

which are valid only for heavier moderators, give a qualitative indication 

of the orders of magnitude Involved. Important parameters, which charac

terize the time behaviour of the neutrons in the moderator, are the 

slowing down time to the cadmivim limit, the thermallzation time constant, 

which describes the time rate of energy exchange between the thermalizlng 

flux and the moderator, and the life time of the thermal neutrons in the 

moderator. 

Earlier experimental Information about water 

The slowing down time to the cadmiiim cut-off energy may be obtained 

from steady state measurements as pointed out by DeJuren (2^). The 

reaction rate between a neutron flux and a 1/v-detector is Independent 

of the energy of the neutrons. Hence the counting rates of a bare l/v-

detector and a cadmium-covered one in a constant flux are proportional 

to the time the neutron can spend in the energy region for which the 

detector is sensitive, that is to the whole neutron life 

time and the slowing down time respectively. Prom available data a 

value of 1.54 + 0.13 Msec was found for the slowing down time to 0.35 eV. 
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A natural approach to the problem Is to apply the pulsed neutron 

source technique with time analysis of detector pulses. The first 

extensive use of this method was made by von Dardel (̂ ) using a time 

resolution of 2 |J*ec and boron counters. The measurements supported 

the assumption that the flux during the thermallzation is very like a 

Maxwell distribution, the temperature of which decreases exponentially 

during the energy exchange with the moderator. The thermallzation 

time constant was found to be about 7 Msec. 

A direct measurement of the slowing down time, combining the two 

principles now mentioned, was performed by Crouch (4), who made a time 

analysis of the neutron capture in a boron counter without and with a 

cadmium shield, using a weak Po-Be source, the time for neutron emission 

being given by the accompanying 4.4 MeV 7-ray. The difference between 

the two measurements gives the rate of arrival into the region below 

the cadmium cut-off. The result was a mean slowing down time of 5.2 Mfeec 

to 0.35 eV. 

Since the values of the slowing-down times presented are in disagree

ment, and as Monte Carlo calculations (5, 6) indicated a large error 

in the most direct measurement, we decided to make a more thorough 

investigation of the slowing down and thermallzation process using the 

pulsed source method. 

Principles of the present investigation 

With the low intensity of the available neutron source, onljt an integral 

measurement, similar to the earlier ones, could be made. However, to 

yield improved information, the experiment ought to be improved in 

several respects. 1. The neutron pulse must be short, 0.5 Mfiec being 

the maximum tolerable. 2, The time analyzer must have an equally short 

channel width. 3. The detector must be fast. 4. Time-of-flight effects 

in detectors and outside moderating assemblies must be reduced ot elimi

nated , 
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In connection with the choice of a suitable detector the limited value 

of the boron counter must be pointed out. Its l/v sensitivity makes 

it a neutron density detector, and to get energy selective information 

by the use of it, the sensitivity has to be modified for example by 

a shield, the neutron absorbing properties of which are energy 

dependent. The time resolution which can be achieved with a boron 

counter is also rather bad. To study the moderation in water it would 

therefore be advantageous to use a method without the mentioned limi

tations . 

In our investigation we have used the following method for the detection. 

A small amount of a neutron capturing element of known cross section 

is dissolved in water. Of the fast neutrons Injected in the medium, some 

are captured in the solute during the slowing-down process. The 

capture 7-rays are detected by a fast scintillation counter. The 

counting rate depends on the time-varying energy spectrum and the 

capture cross section of the solute. Thus the added element serves as 

a spectrum indicator for the slowing-down process. 

There are several advantages with this method of measurement, 1. The 

detector is fast, a time resolution of 10 mMsec being easily obtained. 

2, The measurement is made within the medium. 3- The medium is practi

cally undisturbed, since there is no tube for extraction of neutrons, 

and the amount of absorber added is very small. 4. Time-of-flight 

effects are completely absent. 5. The energy sensitivity can be chosen 

by the use of elements of suitable capture cross sections. 

In the experiments to be described here, cadmium and gadolinium are 

chosen for the neutron detection. Having large cross sections with 

strong deviations from the l/v-law in the thermal region (Pig. 1), 

they can be expected to give information about the state of affairs 

in the near-thermal region. It is also natural to get a connection 

with earlier work using cadmi\im. The two cross sections have quite 

different shapes, which should manifest itself in a large difference 

in the reaction rate curve for the two elements. 
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Experimental procedure 

Past neutrons are produced in bursts by the Li(p,n) reaction at the 

center of a tank of water, the volume being 1 m . The proton source 

is the 5.5 MV van de Graaff generator in Studsvik. The neutron absorber 
3 

solution is contained in a 250 cm plastic bottle which can be placed 

at a chosen position. The 7-rays are detected by a plastic scintilla

tor, linked to a photomultiplier above the water tank by a lucite 

light guide. The whole 7-ray detection arrangement has practically no 

disturbing effect in the water, the neutron cross sections for lucite 

and water being very similar. Before the time analysis the detector 

pulses pass through a discriminator, which is used to suppress the 

7-ray background from neutron capture in water. The time between 

successive neutron bursts is long enough to assure complete therma

llzation of each^uQrst Defore the next is injected. The time resolution 

is 0.30 Msec. 

Preliminary results of the measurements 

In Pig. 2 the first results of the measurements, the reaction rates 

between the changing flux and the cross sections of cadmium and 

gadolinium, are shown. The curves are corrected for overlap and dead-

time in the analyzer, and the contribution from neutron capture in 

water is subtracted. The curves have been normalized at the end of the 

time period for ease of comparison. The plastic bottle was placed 

10 cm from the neutron source. 

t is immediately evident that the peak in the cadmium curve at 4 MSec 

must depend on the cadmium resonance, which has the energy of 0.18 eV. 

The mean energy of the flux seems to pass the resonance at this time. 

Gadolinium has a low cross section at this energy, which explaines the 

low reaction rate in the gadolinium curve at this time. Later, both 

curves approach an almost horizontal line. Prom about 7 MSec the cadmium 

curve can be described as a sum of two exponentials, with time constants 

of about 4 and 200 Msec respectively. (More precise values will be 
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measured within short.) For gadolinium the same seems to be true in the 

same region, the fast exponential being smaller in amplitude and of 

opposite sign. 

The slow decay expresses the normal neutron absorption in water during 

the time when the neutrons are in thermal equilibrium with the slightly 

absorbing medium. In a separate measurement without any foreign element 

added to the water, this exponential decay law is found to be valid 

from the very beginning of the curve for the reaction between the flux 

and the protons. Hence no appreciable changes in the neutron density 

occur in the volimie of interest during the fast exponential. Therefore, 

the fast decay reflects mainly the effect of moderation. 

•̂t is reasonable to ass\ime that the neutron distribution is near 

Maxwellian with a higher temperature even some time before the 

thermallzation is finished. It is then of Interest to see how the 

effective cross sections of the chosen elements depend on the tempera

ture. Prom the tables of Westcott (7) the relative deviation from the 

room temperature value of the effective cross section may be calculated. 

Pig. 3- (The deviation is of interest here since In the exponential 

division, the subtraction of the slow decay implies both correction 

for absorption and subtraction of the effective cross section at 

room temperature.) The figure shows that the deviation is a linear 

function of temperature. In our experiment, we measure in fact the 

effective cross section if we have no effects of neutron density changes. 

Therefore an exponential decay of the reaction rate means an exponential

ly decreasing temperature. Thus the fast decay constant is the 

thermallzation time constant. 

The neutron temperature concept being somewhat obscure, the therma

llzation time constant may be defined in other ways, A popular method 

in the theorists' treatment of the time-dependent flux during therma

llzation is the following: 

9(E,t) = S9(E) • e" V* 
V V 

where -ĵ  is the decay constant for the equilibrium distribution 
o 
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(Maxwellian) and ̂ , =• n̂ "*" ^ '̂  1 if ̂ ^ is small, t being named 
t t th ''th 

the thermallzation time constant (8), Using this formalism, the reaction 

rate is 

R(t) = ̂  9 (E,t) • S (E) dE =j S y E ) -S (E) -K t -^-t 
e V dE = R e 0 + 

-^ t + R.e 1 + 

This means that the fast decay constant even in this respect should 

be considered as the thermallzation time constant if the higher terms 

can be neglected. The preliminary numerical value obtained here 

agrees rather well with recent theoretical predictions by Purohlt (9). 

Purther experimental and theoretical work is under way. Among other 

things it is important to study the space dependence of the time 

behaviour, 
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DIFFUSION LENGTH MEASUREMENTS OF THERMAL NEUTRONS IN WATER* 

M. Reier and J. A. DeJuren 
Bettis Atomic Power Laboratory 

Steady state diffusion measurements of thermal neutrons have been made 

in water at 25°, ̂ 9°, 70°, 165.6°, and 2l+kA° centigrade and at 25° with 

various amounts of boron poison and one cadmium poison. 

Because of the unavailability of an intense reactor source of thermal 

neutrons, an Sb -Be photoneutron source was used in all the measure

ments. The neutrons are emitted at an energy of about 2k kev and slow 

down into the thermal region. The diffusion equation, therefore, has a 

source term, q, which varies as e /1" at large distances from the 

source. The relaxation length of the fast neutrons, b, was measured to 

be 1,58 + 0,02 cm. The solution of the inhomogeneous diffusion equation, 

assuming spherical symmetry, varies as e ' j T multiplied by a slowly-

varying correction term which involves exponential integrals. Fortunately, 

it is not necessary to knov/ the absolute value of the source strength in 

order to evaluate the correction. It is sufficient to know the ratio of 

the thermal neutron density to the slowing down density. This is accom-

* This summarizes the v/ork reported in J. Hucl. Energy ]A, 18 (196I) and 
J. Nucl. Energy l4, 186 (1961). 

+ Now at xltomics International, Canoga Park, California. 
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plished by effectively measuring the cadmium ratio as a function of radius 

A r dr and the ratio of the integrals d-* Cd , where A^, and A^, are the -•^ — ' Cd th 
A,, r dr th T 

activities of Cd-covered foils and bare minus Cd-covered foils, respec

tively. The correction for the source term should be made if possible as 

it reduces the measured L by 0o8'/o for pure water at 23°C evaluated for 

r between 15 and 25 cm. Usually In (rA ) vs. r appears to be a 

straight line within statistics in the region where L is evaluated. In 

spite of this, the correction for the source term is not negligible and 

cannot be accurately inferred from the change in L from the region v/here 

the curve is obviously bending. This correction becomes progressively 

greater at a given radius as L approaches b and breaks down for L^b. 

As L approa,ches b, data should be taken farther from the source. 

Indium-tin foils were used except in some of the high temperature meas

urements v/here foils made of dysprosium oxide in an aluminum oxide 

matrix v/ere employed. All foils were counted in continuous gas-flow 

proportional counters on both sides and the results averaged. 

The data is shov/n in Table I. \ 1(1, is the specific gravity. 

\ 
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2-aB 

^ ' a B 

^ • a B 

^ a C d 

T°C 

23 

^9 
70 

90 

166* 

2kk* 
= 0. 

= 1. 

= 1. 

= 1. 

.5 ^ . H 

•°^aH 

• 5 

.5 

ZaH 

^ a H 

2.781 

2.895 
5.02^ 

3.162 

5.653 

^.328 

2.270 

1.951 

1.806 

I..762 

L (cm) 

i 0.006 

+ 0.011 

+ 0.015 

+ 0.006 

+ 0.017 

+ 0.025 

+ 0.011 

+ 0.011 

+ 0.006 

+ 0.00^ 

Lf//? (cm) 
2.775 ± 0.006 

2.862 + 0.011 

2o957 ± 0.013 

3.051 + 0.006 

5.502 + 0.016 

3.4-97 + 0.020 

* Uncorrected for the source term. 

The pure water measurements were compared with a theoretical model 

suggested by Radkowsky (AI'JL-4-4-76) . This model averages the flux-weighted 

diffusion constant and cross section over the Maxwellian spectrum to ob-

tain L . 
D 

D = o A sc 
V 3(1 - 60 sQ ) 

where cos 9 = 2/3A. A is the effective mass of the target and is assumed 

to be a free proton whose mass increases from a value of one when 

0 = 20b to a value determined by the energy dependence of the scatter-
s c 

ing cross section of neutrons in water as given by the Born approximation. 

0-;jE) = K^, 
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vhexeyty/ , the reduced mass of the neutrons, equals A/A+1. The calculated 

value is higher than the measured diffusion length by about one percent 

at 23°. This divergence increases to about six percent at 24-4°C. The 

Selengut-Goertzel approximation is implicit in the calculations and may 

cause the calculated value to be high by about one percent at 23°C. 

A plot of 1/L VS. 2 /^u -̂ -̂"̂  ̂ ®̂ poisoned cases shows a departure from 

linearity at Z. /^TT ~ 2*5, the highest poison used. Based on measure

ments by E. Starr (private communication) who used a thermal column on 

the Brookhaven reactor and consequently did not require a large source 

term correction, this departure may be spurious and the value reported 

here may be in error. A weighted average of L ^ for 2. /^TJ ~ 1.0, 

1.5, and 2.0 gives a value of D = vD = 57618 + 205 cm /sec. The boron 

cross section v«/as assumed to be 755 ± 2b. In addition, the ratio 

/ 2 
(j~ -n/(T" IT was calculated in terms of the ratio of L for the different 

amounts of poison assuming D is a constant and 0 ^ = 755 + 2b. A 
^ ^ 0 aB — 

value of (T", = 0.528 + O.OO6 is obtained, an ~ 

i 
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Experimental Investigation of Persisting Changes 

in the Thermal Neutron Decay Constant in Finite Media 

of Ice and Beryllium as a Function of Temperature and Buckling 

E. G. Silver 

Oak Ridge National Laboratory* 
Oak Ridge^ Tennessee 

ABSTRACT 

During investigations of the decay constant of 
the fundamental-mode neutrons in finite beryllium 
bodies, using the pulsed-neutron-source technique, 
it was observed that long-term changes in the decay 
"constant" occurred which were not expected on the 
basis of the approximate solutions of the transport 
equations usually applied to this experiment. 

More extensive experiments in both beryllium 
and water (ice) as a function of temperature from 
+ 25 C to - 100 C showed that in beryllitim such 
changes, which continue over the time span accessible 
to observation (approximately 10 half-lives), are 
a strong function of temperature and buckling, in
creasing with buckling, and decreasing with increas
ing temperature. In ice, on the other hand, it 
appears that, within the limits of experimental 
accuracy, an asymptotic value of the decay constant 
is attained a few thermal-neutron half-lives after 
the neutron burst at all temperatures down to - 100 C. 

These observations are in accord with the 
"trapping effect" postulated by G. de Saussure in 
another paper submitted to this Conference, 

1. Introduction 

For some time G. de Saussure and the author have been engaged 

in measurements of the diffusion parameters of beryllium metal by the 

pulsed-neutron source method at elevated temperatures up to 5OO C, at 

Operated by Union Carbide Nuclear Company for the U. S. Atomic 
Energy Commission. 
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room temperature, and more recently at low temperatures in the range 

down to - 100°C.-̂ '̂ '2 

We had long observed that measurements of the decay constants in 

small assemblies (large buckling) at room temperature, and on all bodies 

at very low temperatures, yielded results which appeared to continue to 

exhibit small changes for long periods after the neutron pulse which, 

by their duration, could not be ascribed to either spatial modes or 

"primary" thermalization effects. 

In a companion paper to this one, G. de Saussure describes a 

theoretical model which apparently accounts for the observed effects 

in beryllium. In this paper experimental evidence supporting this 

model will be presented. 

Since there existed the possibility that instrumental or analyti

cal difficulties might be the cause of a spurious effect, similar 

measurements to those performed in beryllium were also done in HpO (ice) 

It was expected that, if the theoretical model were Â alid and if a 

spurious effect did not exist, the HpO data would not exhibit changes 

in the decay constant, or that they would at least be at a very much 

reduced amplitude, since the ratio of incoherent to coherent scattering 

cross sections is much smaller in HpO (ice) than in beryllium. Thus, 

in HpO (ice) no significant trapping effect would be expected, and much 

less change in the decay constant should occur after thermalization has 

occurred. 

2, The Experiment 

The beryllium data were obtained with neutrons of about 1^ Mev 

incident on the beryllium assembly. Following a waiting period after 
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the end of the burst, some of the moderated neutrons leaking from the 

assembly were detected in a Li -I crystal-photomultiplier detector, 

and the counts stored in an l8-channel time analyzer with variable 

channel width. Immediately following the closing of the gate in the 

l8tb. channel the next burst was delivered to the assembly. 

The data from the l8 channels, or selected portions thereof, 

were then analyzed by means of the "Cornell Method" fitting to the equation 

C(t) = a + a exp(-Xt) 

where C(t) is the detector cotmt rate at time t, a and a are constants, 

and X is the presumed asymptotically constant value of the fundamental 

mode decay constant. 

That is to say, N., the number of coionts in the ith channel 

(of width (At)) is given by 

N^ = aQ(At) + a^ exp [-U(At)] . 

The variance of X was calculated from the deviations of the observed N. 

from the calculated values obtained by the best fit to the points 

analyzed. 

It is, therefore, apparent that deviations in the decay from 

the shape assxamed in the model will be reflected in an increased vari

ance associated with the values of the parameters. The analysis does 

not weight the data points by the counting statistics and is, therefore, 

strictly applicable only if all the data points have enough counts so 

as to make counting statistics a negligible source of error. In the 

data presented here this condition holds fairly well. The statistical 

uncertainties in the decay constants are of the order of fractions of 
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a percent, so that the large standard deviations shown are almost 

entirely due to the variation of X with time over the interval of 

analysis. 

In order to determine the change in decay constant with time, 

successive portions of the l8-channel data series were separately 

ajialyzed utilizing four overlapping series of 15 channels each (I-I5, 

2-l6, 3-17/ 3Ĵ<3. 4-l8), or seven overlapping series of 12 channels each 

(1-12, ..., 7-18). 

In order to facilitate comparisons between changes in decay 

curves observed in different materials and with different bucklings 

all curves of decay constant vs time are plotted in time units of the 

reciprocal decay period, T = l/X, using the "best" measured value of X. 

Further, the decay constants are in all cases normalized to unity for 

the value obtained in the analysis commencing as close as possible to 

t = T after the end of the neutron burst. All values of X are, there

fore, relative to this norm for each material and buckling. In several 

cases more than one run was made at a given condition, with varying 

waiting times to the beginning of data collection, in order to extend 

the time of observation. In such cases all the points from all the 

runs are normalized to the first point. 

Figure 1 shows the results for a beryllium block of dimensions 

8" X 8-5/8" X 8-5/8" whose buckling (fundamental mode buckling at room 

-2 o 

temperature is meant in all cases) is O.O5U cm" , both at 25 C and at 

- 98 C. Each point represents a value from an analysis extending over 

a time interval of about k-.^ T, i.e. the first point in each curve 

represents a value obtained in the interval from 1 1 to '^cj T, whereas 
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the last point is obtained from data covering the interval from 

about 1.9 T to 5-6 T. The relatively large errors, of the order of 

+ 2^ to + ki>, are due largely to the large variation in A over the 

course of each measurement, as discussed above. It will be noted that 

lower temperature leads to larger variation. At 175°K the variation 

per \jnit time is about J>.6 times as big as at 300°K in this case. VJhile 

the errors are large, as noted, there is no evidence, over the interval 

shown, of a diminution of the rate of decrease of A with time. 

Figure 2 shows the same information for a larger beryllium 

assembly of dimensions 12" x 1^-3/8" x lU-5/8" whose buckling is 

0.0256 cm , both at 0°C and at - 96°C. There is no evidence of change 

in the decay constant within experimental limits of accuracy at 0°C. 

Accordingly the errors in this case appear much smaller, being of the 

order of +_ 0.5^ to + 0.8^. At the low temperature in the same assembly 

the same linearly changing behavior is noted as in the two cases shown 

in the previous figure. 

Since these data all terminate with analyses beginning at 

approximately I.9 T (i.e. extending from I.9 T to about 6.6 T), 

further experimental data were obtained with still longer waiting times 

to determine whether the rate of change of slope would continue un

altered for longer times. Such data are diffic\ilt to obtain with the 

equipment available since it makes extreme demands on background 

suppression and source intensity. By long counting times and careful 

minimizing of background, it was possible to extend the observation 

time to about 8 T. 
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A beryllium assembly of dimensions 11,5" x 11.5" x 9" 

2 2 

(B = 0,0359 cm ) was pulsed, therefore, with extended waiting times 

at both 25 C and - 25 C, Figure 3 shows the result of 12-channel 

analyses from two runs at 25 C After an initial decrease in X, which 

extends to the 12-channel segment of data 2.k T to 5-7 T, there is no 

further evidence of change in X. as far as the data extend. The later 

values are all, within the probable errors, consistent with a constant 

value from 2,k T on. 

Figure k gives the data for the same beryllium assembly but at 

- 25 C. The difference is obvious. In this case there is no evidence 

of leveling out and the large probable errors associated with changing 

slope are observed. In this case, then, with data extending to 7-3 T 

(the last point represents an analysis from k-.2 T to 7-3 T) an almost 

constant rate of change of slope with time is observed. 

As a check on possible instr\imental sources of the observed 

change in X as well as to test the predictions of the theoretical model, 

similar measurements extending to long waiting timeriwere carried out 

on a right-cylindrical ice block with a buckling of O.3OO cm . Figure 

5 shows the results at - 5 0, and Figure 6 gives the results at - 90 C. 

In ice the familiar initial drop observed in all small bodies, 

ascribable to higher modes or slowing down, is seenj but thereafter 

the value of X levels out even at the very low temperature and remains 

constant within the limits of accuracy of the experiment. 

It should be observed that the H O data were obtained using 

2,k-M.ev neutrons from the D-D reaction, even though the yields from 

this reaction are much smaller than the yields from the D-T reaction. 
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This change was necessitated by the large neutron background observed 

in H O experiments with ll4--Mev neutrons. This large background was 

due to photoneutrons from the heavy hydrogen component of the water; 

the gammas initiating these photoneutron reactions arise from the 

decay of 7'^ sec N which, in turn, was produced by the primary 

16 16 
neutrons from the 0 (n,p)N reaction. In view of the long half-life 

of the N this reaction sequence caused a flat neutron background. 

The use of 2.i+-Mev D-D neutrons eliminated this source of background 

since the threshold for the (n,p) reaction is about 10.5 Mev. (The 

cross section at Ik Mev is 51-2 mb.) 

3. Conclusion 

In all the curves, except in the largest Be assembly, the 

analyses commencing prior to about 2 T after the end of the neutron 

burst show a decrease in X which is most likely associated with 

"primary" neutron thermalization or higher modes and which, therefore, 

is expected even if no long-term spectrum-change effects exist. Its 

absence in the case of the largest Be assembly may be ascribed to the 

fact that in this case T is large and, therefore, "primary" thermaliza 

tion is essentially complete at 1.1 T when the data analysis begins. 

The decrease in X, in the same assembly at low temperatures is thus to 

be ascribed to the long-term effect. Table I summarizes the decay 

constants and initial rates of change of X observed in all the cases 

presented here. 

At times greater than 2T the value of X became constant in 

the Be assembly at the high temperature, and in the H O block at both 

high and low temperatures, whereas in Be even at the relatively high 
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temperature of - 25 C no evidence of leveling out was observed over 

the time span accessible to observation. 

To the limited extent that these data permit, it may thus be 

concluded that a long-term spectrum-change effect does exist in Be 

which is absent or much reduced in magnitude in H O , and thus these 

data support the model discussed by de Saussure. 
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TABLE I 

Values of X and Initial Rate of Change 

of X in H^O and Be Bodies 

M a t e r i a l 

Be 

H^O 

Buckling 
cm" 

0.054 

0.0359 

0.0236 

0.300 

Temp. 
°C 

+25 

-98 

+25 

-25 

0 

-96 

-5 

-90 

\ a t t = 2T 
103 s e c - 1 

6.59 ± .11 

5.99 ± .21 

4.53 ± .02 

4.25 + .06 

2.90 + .02 

2.51+ + .Ok 

12.58 + .09 

11.34 + .08 

% Change i n 
X per t ime T 
from ~T _• ~2T 

2 .4 

6.6 

2 .0 

3.8 

0 

5.7 

1.8 

1.9 

F igure No. 

1 

1 

3 

4 

2 

2 

5 

6 
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AB;-)TRACT 

The diffusion cooling coefficient in graphite has been detemdned 

hj measuring tlie change in the asymptotic average velocity idth 

buckling, by pulsed neutron methods. The times necessary to establish 

equilibriuBi spectra in graphite and heavy water have been raoasured 

and are reported. 
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V Theory 

If a moderator has been injected with a burst of neutrons, th© 

asyngstotic decay constant is given by 

X = X^ + D T B^ I 1 - C'B^ + ] (1) 

which If D is constant can be rewritten 

X-X 

B=D 
V = v_ - C'B^ (2) 

Therefore a direct measurement of the averaije velocity as a function of 

buckling will yield the diffusion cooling coefficient. 

The average of a given neutron velocity distribution can be measured 

by comparing the response of two detectors with sensitivities which 

differ in behavior as a function of velocity. The measurements described 

below were done using BF- detectors: one in which every neutron is 

counted, and a second which has a 1/v neutron response sensitivity. 

The rate of absorption of neutrons in either detector is given as 

A) 

£ 0 = j r.(E) JlJ(E) dE 

where i: is the absorption cross section. 

The flux 0 can be expanded in a set of time eigenfunctions of the foim 

0(E,t)= A A2f e'^ 
n 

Equation (3) then becomes 

(3) 

U) 

ZfS^ ^k<Z0, 
n '̂ n 

> e 
-V 

(5) 
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where 

<E0^> = / 0^i:dE 

The absorption cross section E depends on the nature of tiie detector . 

The r a t i o T. of cotmt r a t e s of two different detectors wi l l be given from 

equation (5) as 

R 

i- A <J:,0 > « " n I'^n 
J i 

^ ^^^a^n^^""""" 
n 

(0) 

Rewriting the suraaation and factoring out the lowest eigenfunction 0 

leads to 

<L.0 > 
R« i J j ^ 

*o ^^X^ ' 

, . fi fiAi :^h'\^', 
L. 

AQ < S ^ „ > ^ 
, t 

(7) 

At suff ic ient ly long times, the suianation can be approximated by the 

expression involving the f i r s t order terms. I f the denominator i s sraall, 

i t can be expanded in a poiAsr seiries: 

- 7 ^ i - § C ^ - ^ ) e 
-ih-^n 

(8) 

This equation relates the eigenfunctions 0 and eigenvalues X to R, to the 

ratio of the covmting rates in the two detectors. At long times, R 

reduces to 

- 1000 -



R a '" ^ ^ (9) 

HTuation (?) ̂ d.11 then ^ive the value of the ratio R after equilibrium 

is rQache<-l for a ,iiven size of moderator. Since 2, is assuiaed to be 

constant for an energy range 0 -4 E, and Z^ varioc as l/v in this same 

interval, R is proportional to the density weighted average velocity v. 

If the lovrest eigenfunction 0 is a niaxwellian form, the error introduced 

tjy integrating firom 0 -4 oo instead of to the finite limit E- is in our 

case about 3j6. 

During the transient period after the burst of neutrons, the ratio 

R will change. The approach to equilibrium vdll be governed by the 

decay constant (X,-X )» 

The detectors were two physically Identical BF.̂  proportional counters, 

filled to 70 cm pressure. The black detector oontalnod 96^ enriched 

Boron 10, and the grey detector contained 11^ deplet«sd Boron 10. The 

coimters were placed in a sleeve of cadBii\3ia inside an annular cylinder 

of borated paraffin 3" in thickness. The leakage spectirum from a tiock 

of moderator was passed through a oollimator of cadmium in the end of the 

sleeve, and into the detector parallel to its length. 

The same pro-amplifier, anpliiier and voltage supply were used for 

the two detectors, so as to eliminate any error associated with different 

eloctrordcs. Both detectors wsi^ operated at the same voltage plateau 

and discriminator settings. The neutron pulses were fed into a 100 channel 

time analyser. To norraalizo runs with separata detectors, a aonltor BF- detector 
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was used to record the total number of neutron counts. The burst of 

neutrons was obtained from a 1 MEV Van da Qreiaff generator by means of 

the Be (d,n) Be reaction. 

The vajriations of detector sensitivitieB with energy were measured 

through use of neutrons from a crystal spectrometer. The variation 

of the ratio ^Ath energy is shown in figure 1. If R is assumed to be 

linear with volocity in the range 1.5 x 10 cm/sec to A x 10 cm/sec, 

the average value R for a maxwellian spectrum at 20 C differs by about 

5% from the value of !! obtained by using the general equation of the 

cusrvs in figure 1, and averaging over the same maxwellian. Therefore the 

approxiEiation of the linearity of ratio with velocity is jvistified for 

the range of this experiment. 

The average velocity was determined for the sizes of graphite 

nroderator listed in table 1. The £,"raphite stacks were placed in an 

enclosure of cadmiijsa covered boral to eliminate the effect of room 

return neutrons. The source was situated in the moderator. The collimator 

was aligned parallel to the graphite bars, so that the neutrons leaking 

out of a beam hole in one of the grapMte bars entered the end of the 

detector in a direction parallel to the detector axis. The data were 

accuniulated by the time analy^r, and the ratio was normalised by the 

ratio of total monitor counts obtained during the same time interval. 

The Value of the ratio ^ for one of tho stack sizes is shown in figure 2. 

Tvw different channel widths were used to record the data fJrom each 

detector, to substantiate that the asymptotic value of S was reached, 

and to test tho calibration of the time analyzer. 
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The value.s of the aayn^totlc ratio as a fUsotlon of buckling ara 

tabulated In table 1 and plotted in flgux^ 3* The value of the diffusion 

cooling ooefflolent for graphite was foxmd to be ̂  ^ 5 x ISr «B7b»e» 

The time neoessary fco* S to reach the equlUbrluiB value appears to 

be independent of buckling} and is approximately 2 billiseconds for 

gra^Mte. Hoace, this Is the minlmni waiting tlae In order to sMasuxM 

the fundamental decay constant In pulaed neutron ssperlnents with 

graphite. 

The time rate of ohanss of ff is shown In figure U» It was obtained 

by subtracting the asys^totlc value It from the curve of R as a function 

of tine. Since the accuracy of the measurement is not extreoeily good^ 

no attempt has been made to detemljM If ̂ e deoay constant associated 

with ̂  Is buckling dependant* The decay constant given in figure U 

Is an averags for the five stacks sboua. If the blade triangles of 

stack 6 are typical of the deoay constant, then tl^ value of 1905 see 

should represent (X^'X } at a buckling of .00959. This may be oomparBd 

with the values of X and X, obtained fron the deoay data of one of the 

detectors. We find tlie asymptotic decay constant X is 1690 see while 

Xr, is approximately 3500 sec* • The value of (^-^Q) is then 1300 sec 

idiich agrees very well with tiie value obtained f̂ ota the oueasureaent of 

time rate of change of fi. 

The time for equilibriXHia has also been determined In a tank of heavy 

vatar, with tlie measurement showing that approximately 600^ sec Is 

neoessary for the higher modes to die away* Fxxna the value of the ratio 

obtained for tliis one tank, wtilch had an equivalent buckling of tOCTjfbf 
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* 2 
and with the value of v at B » 0, an estimated value of the diffusion 

cooling coefficient of heavy water is 5 x 10 ca /sec. 

The teohniqp» of using the avex-age ratio of tho tiro detectors is 

ideally suited to pulsed neutzx̂ n measurements, if only to measure the 

time necessary to wait in order to determine the fundamental decay 

constant. The technique also yields inforcoation about thermalization 

beyond simply the equilibrium time. More information about the thermal!satlcm 

process can be obtained with improved systems of detectors. 

The authors wish to thank Robert Scherxaer for his assistance in the 

use of the crystal spectrcmeter, and to Henry Honeck for his valuable 

discussions. 
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Figure Captions 

Ratio F^ /B^' Vs Velocity era/sec - Neg. # 12-339-61. 

Ratio Vs Tiiae - Keg.# 12-198-61. 

Average Meutron Velocity as a Function of Buckling - Neg. # 12-197-61. 

Change of Average Velocity as a Function of Time - Neg. # 12-199-61. 
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TABLE I 

Tabulation of Measured Ratio 

Stack 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

R (v) 

6.20 ± .25 

5.77 ± .35 

5.85 ± .20 

5.87 ± .65 

5.00 ± .40 

4.75 ± .35 

5.54 ± .30 

4.50 ± .25 

3.00 ± .50 

4.20 ± .40 

B^ (cm-2) 

.001765 

.00220 

.00295 

.00366 

.00770 

.00959 

.00550 

.01139 

.01505 

.01320 

Stack Size (cm) 

128 X 128 X 122 

109 X 108 X 122 

89 X 89 X 122 

69 X 89 X 122 

49 X 49 X 122 

49 X 49 X 59 

69 X 89 X 59 

49 X 39 X 59 

29 X 49 X 59 

39 X 39 X 59 
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ABSTRACT 

Diffusion lengths have been measured in poisoned H-O of increasing 

concentration of boric acid. Values of Ea, I5v and diffusion hardening 

coefficient are therefrom determined. 
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IHTRODUCTION 

The one dimensional transport problem of thermal neutrons in a 

sovirce free infinite medium has the asymptotic solution 

N(r,v) = n(v) 0"''^^ (1) 

where l/X is usually called the diffusion length. n(v) represents 

the spectrum of this asymptotic solution which holds at large distance 

from any source. For very weak absorption n(T) is a maxwellian at 

room ten^erature but in general it deviates pirogreseively frcm a 

maxwellian and beoones hardened as the absorption In the medium is 

increased. The reason for this is that usually the average energy of 

the neuti*ons absorbed in any volume element is lower than the average 

energy of the neutrons leaking into the same element to compensate for 

the absorption losses. As a matter of faot in the case of l/r absorption 

the latter are proportional to the neutron density while the leakage 

is proportional to the flux. 

Let us write down the neutron balance equation in the diffusion 

theory approximation: 

-DV ^ N(v)v ••• £a R(v)v - / N(T')V« E„(V» -4 V) dv« - 1. H(v)v (2) 

Substituting (1) into (2) we have in abbreviated notation 

(Ea - D,f-^)n(v)v =« Ln(v) (3) 

This is a standard eigenvalue pro1:0.ani and v^ eire interested in the 

2 
lowest eigenvalue ,,r and lowest eigenfuncticm n (v). If the ratio 

ta/D were energy independent the simple relation X « Ea/D uotild 

hold and n^ (v) would be the maxwellian spectrum n^ (v) « v*«xp {- SL.). 
o o •»- * Skt' 
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However Ea/D is usually energy dependent and taking the most common 

case we shall assume a l/v absorption: 

^ 2 
Now the expression for ^' is found by integrating eq. (3) over all 

energies. The integral over the right side being »ero, it follows 

2 \ 
-̂ o • D ^ (5) 

where Dv(X ) is the average value 

r 

J n(v)dv 

Since OvĈ .̂) is a smooth function of X we can make the eocpansion 

2 '̂  

where now n 2 

; Dv^ exp (- ~ ^ ) dv 

57 « 5;̂ (o) = -: 5 (8) 

7 V exp (- • ^ ) dv 

because n(v) goes over into a Maxwellian at room temperature T as X 

goes to 0. H is the so called hardening coefficient, which we want to 

determine for H^O from the present experiment by measuring the diffusion 

lengths of solution of '^^BO, of increasing concentrations. 

We want to point out that this experiment is closely related to 

the well known pulsed neutron experiment where a burst of fast neutrons 

is produced in a finite medium and the asymptotic decay constant of the 

neutron population is measured for different aiaes of the moderator 

assembly. 
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As a matter of faot, inverting the series (?) it is 

X^- B v ^ ^ (1 + Hc^^ t ...) (9) 

Let us compare this expression with the familiar formula of the inverse 

decay constant X in the poised experiment: 

X - X^ - B^ 5v (1 - CB^ + ...) (10) 

2 
where B is the geometrical buckling of the stack* The simHittide is 

„ 2 
not fortuitous as <^ is equivalent to a negative buckling whereas 

the term ~ ^ " -X which appears in the time dependent balance equation 

can be correlated to a negative poison. Thus C and H are identical* 

EXPERIMEKTAL TECHNIQUE 

The diffusion length in poisoned demineralised water was measured 

in an existing cylindrical tank 5 1/2 feet in diameter and 5 feet h i ^ 

situated atop the Brookhaven Qraphlte Reactor. The available thermal 

flux from the graphite face of the reactor is approximately 

7 2 

10' neutrona/oa /sec* 

The relative flux was measiired 1;̂  situating bare indium foils 

•150 inches in diameter and .010 inches thick weighing approximately 

21 mg, along the direction perpendicular to the almost infinite plane 

source* Accurate spacing of the foils was accomplished with the use of 

a plexiglass holder, as shown in Figure 1, having dimensions .390 inches 

wide X •125 inches thick. The distanoe between adjacent foils was 

•375 inches for the slightly poisoned measurements and .250 inches for 

the heaviest poison measurements. All foils used for any given 

measurement were sorted into groups having a weight spread leas than 

.3% of each other. Figure 2 shows the experimental arrangement for the 

diffusion length measurement* 
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The activated foils were counted in each of four gas flow 

proportional counters with each side of the foil counted twice. To 

insure that the spacing between foils did not result in any large 

perturbation, activations were made at twice the normal spacing for 

each poison measurement. To determine the epi-cadmium component to the 

measured activity, bare indium foils were used with a cadmium sheet 

placed between the source and the water tank. 

With the addition of each poison, the tank was agitated for 1 hour 

and two poisoned water samples, one from the bottom of the tank and one 

from the top of the tank were chemically analysed for boric acid content. 

THE ANALYSIS OF DATA 

The presence of higher spacial modes to the radial flux was found 

to have no significant contribution to the foil positions nearest the 

source. Hence the fundamental flux in a cylindrical tank is than given ast 

jif(r, B) = J ( ̂ "L,~) e" where J is the sere order Bessel function O n O 

(̂  is the inverse relaxation length 

R is the extrapolated radius of the tank 

Since the total length of the equally spaced foils was small 

compared to the overall axial dimension, no end effect correction is 

required. With the medium being radially finite, the diffusion length 

L is then related to the relaxation length l/^ by the equation 

2 

L 

In the reduction of the data, the activities of the foils were 

corrected for dead time, background and the known inditn decay and finally 

- '.-'et'od ir.volved horic acid til.ration with marratol. 
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normalised to a given couiter by a standard source intercalibration of 

detectors* 

The relative foil activity was then least scpiare fitted to ein 

exponential, with all foils situated in a region vdiose epi-OEu3miua 

component exceeded *3% eliminated from the fit. Figures 3, 4, and 5 

show the normalised activity plotted as a function of axial distanoe 

for all poison measurements. The value of relaxation length was then 

corrected for the leakage effect by the data obtained from the J fit 

of the radial activity shown in Figure 6. This correction was greatest 

for the pure water data and amounted to .6%. Consideration was given 

to the effect of the foil holder on the diffusion length for the heavy 

poison measurements, but calculation of the upper limit of such an 

effect showed it was extremely anall* The tabulated values of the 

diffusion lengths in Table I were obtained by a weighted average of 

all the runs for a given poison* 

TABLE I 

Measured Diffusion Length at 21° C 

L (cm) 

2.7540 ±.0080 

2.4594 ± .0025 

2.1665 ±.0070 

1.9779 ± .0021 

1.6394 ±.0012 

1,2551 ±.0020 

1.0631 ±.0021 

.9429 ±.0019 

.8469 ±.0032 

.7308 ±.0015 

Boric Acid (mg/ml) 

-

.7160 

1.8935 

2.7945 

5.5150 

11.920 

18.330 

24.430 

32.030 

47.310 

Boron 

-

,005245 

.013870 

.020470 

.040397 

.087314 

.13427 

.17895 

.23462 

.34655 
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mmWiSM ftr Spi gy(al aai H: 

The set of experimental points (̂ *» Ea^} has been fitted ^ a 

least square method to the function 

Ca 
«• A^ + AjEa 

h * »2^' 

(13) 

(U) 

î iere £a ̂ ^ £„ ''' ^-a i* "̂ ^̂  total maorosooplo absorption cross section 

of the poisoned medium. The value of the absorption cross section of 

hydrogen was found hy varying the -nlvm of En in the expression 
" " 2 " 

Ea " £a Z \ 7T~ - ?T" (calculated) f , until the variance from a least squares 

fit to A., Aj was a mizdmum* Equal weights were attributed to all 

pointy which corresponds to the assumption of constant absolute en'ors 

of the values of ' ^ . The scattering of the experlBiental points with 

respect to the fit as shown in Fig. 9 has Justified this assuc^tlcm* 

Other weighting procedures were tried but the influence on all the 

coefficients was very small* The values obtained for constant weights 

are shown by the first line of table 11* 

iJr and H are determined either by (7) or by (9). If terns of 

2 A 
higher order than Ea in (7) or <̂  in (9) are at first neglected, these 

two equations become identical vdth (13) and (14), therefore yielding 

- - 1 
« r* « 35852 (K), i see 

and 

\ " 2 " .0764s m^ 

( W ) ^ « Bĵ v̂  a 35,506 OB^ see' 

r (15) 

-1 

(16) 

h » .11045 OB 
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It is seen that both values of Sv are in excellent agreement 

with each other, whereas the values obtained for U az>e qpoite dlffereont. 

This shows that the higher order terms cannot be neglected (î hich is not 

too surprising with a roughly 20^ spectral shift in the most heavily 

poiacHied medium), hence neither (15) nor (16) are correct. Hoiraver if 

one repeats fit (13) and (lA) with a decreasing number of points, 

dropping progressively those of maximum shift, the values yielded 

by (15) and (16) should asyicptotlocLlly approach tlie same limit. This 

is shown in H g . 8 and table II• It is seen that in fact the difference 

(SL̂ ifi.) deereases but obviously at the same time the uncertainty in both 

coefficients increases. As the trend of the change in H. and Kg is of 

opposite sign, we may assume that H satisfies the inequality 

max zsln 

^*®^^ '^BBU. *"^ Â««i '̂̂'̂  *^® endpoints of the error bars for the point 

of n.g* 8 yielding the minimum total uncertainty, 

^ °mx *Biin 

FTea this tedmique of analyzing the experimental data« our final 

results for <^-H QI ^ fa^ H (or C) aret 

*«H„0 * ^'^ i ̂ '̂  "* 

5r « 35,850 + 100 m^ seo"^ 

H « .081 + .010 Oft* 

ISfe « 2900 i 350 OBi'̂  seo"^ 

Trotn the foregoing discussion it follows that even for quite accurate 

•xperimectal data, the error in determining the diffusion hardening 

constant ni^^t be extremely large because of the uncertainty involved 
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in the Infltienoe of h l ^ r order terms. This faot is most easily 

realised by comparing the eactxwnsly small uncertainties of A^ or B2 

in obtaining the least square fit with the actual error bar quoted fbr 

H. It is also interesting to point out that H. changes much less than 

Hg >ftian points are dropped and that for the largest spectral shift H. 

has a much smaller uncertainty than HQ. This means that the data of 

the present experiment are better fit \jg- forsula (13) than by (14)* 

COMPARISON WITH PREVIOUS EXPERUdENTAL DATA 

The measurwaent of diffuidon length in poisoned water has been 

obtained by other investigators^^ . The experimental data obtained 

(3) 
by Beyster-Lopes^ ' for the pulsed neutron method have hetea ooî >ared 

in Fig. 7 and shows good agreement with the eoctrapolated least square 

fit of our data* Furthermore, table III compares our result of 

'̂slUO* ^ ^'^ ' ^ ^°^ ^^^ ^*^ other recently determined values* The 

^ ^ (4) 
theoretical calculation tabulated was obtained by Uoneok using the 

Helkin water model* 

TABLE III 

[ ^'aHzO^""''^ 

! 15? (en -aoo ) 

j CvC or DvH 

IT (OC) 

Present 
Results 

326*'5a:1.6 

35,85qfioo 

290Ca:350 

21 

Bayster-

Lopeẑ **"^ 

325*'ttl*6 

37,503tt366 

51ie!£776 

26.5 

Beokurtŝ *̂ ^ 

326 .^*2 

35,30QtllOO 

3650+400 

mm 

Kuchle^(o) 

32£i6 

35,4OQJ70O 

420Cifc800 

22 

Reier^(b) 

3 2 ^ 

37,61^205 

22 

Theoret
ical 

-

37,590 

3116 

20.5 

(a) Data analysed using .32 cm for extrapolation distanoe 

(b) Poisoned water data 

(c) Pulaad data 

(d) o and Dv measured by poison water; DvC by pulse measuremento 
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OOKCLUSION 

o Dv and H have been obtained with good accuracy from the 

meastirement of diffusion lengths in poisoned water. Since the same 

set of experimental data can be fitted very accurately by different 

expansions, large discrepancies vdth pi>evioualy quoted values of H 

are not surprising. The dropping points technique shows that higher 

order terms should be retained in the analysis of data and that tlie 

ustial 3 parameter fit yields values of H which are largely dependent 

upon the range of the variables covered by the measurement. However, 

in practice with a finite number of points and finite experimental 

errors, it has been found very difflctilt to reduce the •uncertainty 

in H by fitting the data to an expjression with more parameters. 

Therefore we feel it is preferable to compare different neasurements 

point by point rather than by the coefficients of their least square 

fits. 
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Abstract 

The pulsed neutron method was used to determine the 

absorption cross section, the diffusion coefficient and the 

diffusion cooling constant of high purity graphite, bismuth, 

and graphite-bismuth systems with volume ratios of 4:1, 2:1, 

and 1:1 by measuring the decay rate of thermal neutrons as 

a function of moderator geometry. Values of decay data are 

reported for each of the systems investigated, together with 

the geometric size. The measurements of the diffusion 

length by exponential methods have been included in the data 

reductions which resulted in a more accurate value of the 

diffusion parameters. 
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Introduction 

In connection with the investigation of the Liquid Metal 

Fuel Reactor systems, the diffusion length has been measured 

in graphite and various ratios of graphite-bismuth by 

exponential measurements — . The pulsed neutron technique 

was then used to measure the diffusion parameters of these 

same systems and the results were compared; and then they 

were combined to yield a more accurate set of diffusion 

parameters. 

Theory 

The transport equation for the angle dependent flux 

i2f(r,E,Q,t) is: 

V 3t — f f^ dE dn' E (E' - E, Q - fi')j2f (1) 
s 

where E is the total macroscopic cross section, E is the 

macroscopic scattering kernel and S is the source term given 

by a 6-function at time t = 0. 

We consider the solution of equation (1) in the form 

;2f(r,E,n,t) = ^ \n^kn^^'-^^ 

k,n 

-a, t i.̂ , -r 
kn ^k — 

(2) 

which s u b s t i t u t e d i n t o e q u a t i o n (1) y i e l d s 

a. 
i(g,, -Q) - - ^ + E1 i?, 

k — V J kn 
dE' I d n ' E (E' - E , n -> n')jzJ, + S, 

s jcn Jen 
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Equation (3) defines the eigenfunction 0 and the eigenvalues 

a, as a function of the buckling £3., . Generally, we are 
kn ^ ̂ k -̂  

interested mainly in the lowest value a (= A) as a function ^ oo 

o f | p | ( = B ) . I f A i s expanded in terms of B, the familiar 

form of the fundamental decay constant as a function of 

buckling is obtained for a 1/v absorption cross section 

A = A + D B 
o o 

2 4 
1 - CB + FB 

where 

I Dv exp(- Tr;r)dv 
2kT' 

D = Dv 
o 

•' ^ exp(- •^)dv 

The flux for times which are not long compared to the 

fundamental decay constant will contain terms of both higher 

space and energy modes as given by equation (2) 

(4) 

-A^t iBp.r -a^^t i^^-r 

Ac ĉo e e + ^01-^01^ ^ + A 10^10^ 

-a10^ i^-r 
+ 

Proper choice of the point r_ at which the flux is measured 

will eliminate certain spacial harmonics. If we choose T_ 

as the center of the moderating medium, the spacial mode given 

by K = 1 is zero. Then for large values of buckling the decay 

constant associated with the next possible spacial harmonic 
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will be large and it is possible for the first energy mode 

n = 1 to dominate all the higher modes« Hence, the value of 

the flux will be given by the first two terms dependent only 

on A, and A o 
1 o 

Experimentally, a burst of fast neutrons is injected 

(2) 

into a medium either multiplying ̂ - or non—multiplying, 

slowing down and thermalization of the fast neutrons occurs, 

and then after a sufficient time the neutron will be in 

equilibrium with the moderator materials At this time, the 

spacial flux and energy spectrum assume their fundamental 

valueo The neutron density then decays exponentially. If 

we measure the time rate of change of the neutron density in 

this asymptotic state, the relaxation time can be determined 
2 

as a function of the lowest eigenvalue B for various geometric 
2 

sizes. The inverse relaxation time A vs. B is fitted to the 

polynomial in equation (4) and the coefficients can be 

determined. The pulsed neutron technique then offers a method 

of measuring the absorption probability A , the average 

diffusion coefficient Dv, and diffusion cooling coefficient C 

The accurate determination of C depends on the measurement of 

the decay constant for small sizes of moderator; great effort 

(3) 

has been taken to eliminate effects due to spacial ̂  and in 

the present work energy harmonics, both of which if treated 

incorrectly could lead to erroneous results. 
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Van de Graaff Generator 

The neutron source was produced by the reaction of deuterons 

on beryllium, using a 1 Mev Van de Graaff generator. The 

accelerator has an extraction electrode ion chamber in which 

the ion bottle is normally biased to a cut-off condition with 

a positive potential on the extraction electrode. To pulse 

the system, a negative pulse of the duration desired is impressed 

on the extraction electrode, driving the positive potential to 

ground and allowing the positive ions to be accelerated. This 

system is in principle superior to magnetically deflecting the 

beam, but the extraction method has difficulty in that some 

ions will always leak out of the bottle and produce an inherent 

background. Since, in the pulsed neutron method it is not the 

total neutron intensity that is important but rather the number 

of decades that can be observed in the exponential decay, this 

background is quite undesirable. 

The Van de Graaff generator pulsing system was designed 

so that a given frequency and pulse width could be mechanically 

selected at the high voltage terminal. This proved to be 

undesirable, because of the limitation in the choice of pulse 

width and pulse duration. The pulsing system shown in Figure 1 

was therefore designed to satisfy the present operating 

requirements. The pulse is obtained from a standard pulse 

generator which operates from a 1 MC crystal oscillator. The 
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output of the pulse generator can be varied in frequency from 

1 cycle per second to 1 megacycle per second. Pulse shaping 

provides a pulse width from 1 |j,sec to 1 millisecond duration. 

This pulse is fed into the low voltage end of the Van de Graaff 

and used to drive a standard neon bulb (NE-2H). The output is 

relayed to the high voltage terminal of the Van de Graaff by 

means of a light pipe and a photomultiplier. The pulse at 

this point is again shaped and amplified to drive the extraction 

electrode as previously described. 

The background problem has been solved by placing two 

parallel plates, 24 in. long and 1/2 in. apart, inside the 

accelerating tube and electrostaticalfy' deflecting the beam in 

the off pulse condition. This is accomplished by maintaining 

one of the plates at approximately 500 volts and pulsing the 

other plate with a voltage synchronized with the signal driving 

the neon bulb in the Van de Graaff generator. This results in 

a potential on both plates of 5 00 volts when the deuterons 

were being accelerated toward the target, and a large deflecting 

potential, about 2000 volts/cm, when the beam is in a cut-off 

condition. The end result of this entire system is to 

improve the signal-to-noise ratio from approximately 500 to 1 

to the present 10 to 1. Figure 2 shows a comparison of 

decay data measured with and without the deflecting voltage. 
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Time Analyzer 

The neutron density as a function of time is recorded by 

a time analyzer. The time analyzer was designed with a channel 

selector to provide 10, 20, 40, or 100 total channels with any 

desired duration. The repetition rate is determined by the 

product of the channel width and the total number of channels 

selected. This means that the total time between pulses is a 

constant, with any error in time divided by the number of 

channels that have been selected. 

The basic system operates by means of a Burroughs magnetic 

beam switching tube triggered by the pulse generator. The 

amplified neutron pulses enter the time analyzer through a 

synchronizer which has a second input of 1 megacycle pulses. 

This circuit essentially "quantizes" the neutron pulses with 

the 1 megacycle frequency so that any single neutron can be 

counted in only one channel. This permits the Burroughs tube, 

which selects the channel into which the data is recorded, to 

have a switching dead time of about 1 p-sec without losing a 

neutron pulse or counting one pulse in two successive channels. 

The time analyzer can also be adjusted to permit a time delay 

between the start of the pulse generator and the opening of 

the first counting channel. 

Counting 

The counting system included an aluminum BF proportional 
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counter 1/2 in. diameter and 12 in. long. The output pulses 

were fed into a model 205B Atomic preamplifier which had been 

modified to permit a faster input time constant. These pulses 

were amplified by a model 204C Atomic linear amplifier, and 

then sent to the time analyzer to be counted. At intervals 

during the series of measurements, the detector and the time 

analyzer were both checked by a chi-square test for randomness 

and reproducibility. 

Procedure 

The moderating assemblies that were investigated consisted 

of GBF graphite and volume ratios of graphite to bismuth of 

4:1, 2:1, 1:1 and finally an attempt was made to measure the 

diffusion parameters of an all bismuth array. The stacks were 

pulsed with the neutron source on the central axis parallel 

to the direction of the graphite extrusion. The cubes of 

moderating material were placed in a box situated on a table 

movable in the vertical direction as shown by the 1:1 graphite-

bismuth array in figure 3. The base of the table was filled 

2 
with paraffin, and a sheet of 40 mil cadmium covered boral 

was placed between the stack and the table. After the stack 

was constructed, sheets of cadmium covered boral was placed 

around the remaining faces of the cube to prevent room return 

neutrons from affecting the decay data. 

In order to establish that the reflection of neutrons 

from the concrete confines of the room produced no appreciable 
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effect, measurements were performed for different experimental 

arrangements with a given size stack. The first experiment was 

to measure the decay of the fast neutron source produced by 

reflection from the walls of the room by pulsing the box of 

cadmium covered boral without a moderating stack. The decay 

data is shown in figure 4. A graphite stack was then placed 

in the box and surrounded on all sides with approximately 

5 inches of cadmium covered paraffin which served to reduce 

the time necessary for the leakage neutrons to return to the 

stack. Figure 5 shows the physical arrangement and the decay 

curves with and without the graphite stack. Finally an arrange

ment of nine stacks of graphite, all with the same dimensions, 

was constructed as shown in figure 6 with a sheet of cadmium 

placed between each adjacent array. The decay data was then 

measured in the central stack. Since each of the nine stacks 

has the same fundamental decay constant, any effect due to 

room return would only change the decay data for the stacks 

on the periphery. The decay measured for the nine stack array 

and the stack surrounded by paraffin was the same within the 

observed statistical error with approximately 2 milliseconds 

eliminated for higher harmonic content. The decay constant for 

the empty boral box and the paraffin pulsed without the central 

graphite region was also the same but decayed to background in 

approximately 1 millisecond. Therefore, the neutrons returned 
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from the wall in a time short compared to the predominance of 

the higher harmonics and their effects were eliminated in the 

reduction of data. 

The anisotropic structure of pressed graphite should cause 

the diffusion coefficient to be different in the direction 

perpendicular to the extrusion axis as compared to the diffusion 

coefficient parallel to the axis. With the leakage rate given by: 

.̂ 2 2 2 
( z + r)Dj. + D„ (5) 
(a + 2e) (b + 2e) (c + 2e) 

where a, b, and c are the dimensions of the graphite stack, and 

e is the extrapolation distance. The extrapolation distance is 

assumed to be independent of the stack dimensions and equal to 

2.13 D /v, where v is the mean neutron velocity at room 

temperature. 

For all stacks investigated, the graphite blocks were 

placed with their extrusion axis parallel to each other» A 

method to measure the anisotropy is to determine the change in 

decay constant as the sides of the two axial directions are 

varied while maintaining a constant value of buckling. Large 

changes in the dimensions of the stack are needed to measure 

the small difference between D̂^ and Djj since the anisotropy, 

in this method, is determined by the sum of the diffusion 

coefficients. This technique is not quite as accurate as the 

(4) 
exponential method ̂  , which measures the difference of the 

two diffusion coefficients. The results obtained by pulsed 
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neutron methods showed no appreciable difference between the 

parallel and perpendicular diffusion coefficients, within the 

accuracy of the measurement. 

The effect of spacial harmonics on the measured decay 

constant was determined for a combination of detector and 

source positions in both large and small size stacks. 

For the large size stacks of graphite, the source was 

situated at the center of one interface and the decay data 

was measured with the detector at the center of the stack and 

then at the center of each of two outside faces. This decay 

data is shown in figure 7, and it can be seen that the harmonics 

are most pronounced when the detector and source are both 

outside the moderator. The relaxation time for the individual 

curves appear to be slightly different, but if the decay data 

is corrected for the effect of the detector perturbation and 

if the harmonics are properly corrected for, all curves yield 

the same decay constant. 

The source was then placed 10 inches inside the moderator 

and the decay curves were obtained v\̂ ith the same detector 

locations as previously discussed. The movable table served 

to always maintain the source on the centerline as the size of 

the stack was being changed. Figure 8 shows the decay curves 

for the three conditions investigated. The location of the 

detector at the geometric center and the source inside the 
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stack yields the smallest content of higher spacial modes to 

the decay data. Therefore, in all pulsed measurements, the 

source was inserted in the moderating material as close to the 

center of the stack as was physically possible. The detector 

was placed in the center of the X-Y plane along the centerline 

of the Z axis such that the peak of the fundamental mode was 

in the center of the active length of the detector. With the 

detector located in this position all even harmonics are 

eliminated from the recorded data. To correct for the effect 

of the perturbing influence of the detector and source inside 

the stack, a dummy detector and source which were identical 

with the active detector and source were placed at a symmetrical 

location. The decay was then obtained with and without the 

dummy source and detector, and the data linearly extrapolated 

to the value of the decay constant without a perturbation. 

The experimental values of the difference in the decay constants 

was approximately 2.5% for the large stacks and about 4% for 

the small stacks. 

The measurement of the effect of harmonics for the small 

size stacks was obtained with the arrangement shown in figure 6. 

The source is situated inside one of the adjacent stacks to 

reduce the perturbating effects. The detector is located inside 

the stack and is progressively moved from a position near the 

source to a position near the opposite boundry with decay data 
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recorded at each position. The effect of spacial harmonics 

should cause a definite change at the beginning of the decay 

curve as was evident for the large size stacks. The detector 

was then situated outside the stack and the decay data measured. 

In all measurements there was no change in either the observed 

harmonic content or the measured decay constant^, therefore the 

effect cannot be due to spacial harmonics, but rather due to 

energy harmonics which must be taken into consideration. The 

measurement of the decay constant for the small size stacks 

is made more difficult when the background is high, since any 

finite region of the decay curve can be assumed to be a pure 

exponential. Figure 9 shows that the decay data with the 

electrostatic deflection will imply a different relaxation 

time than the data without deflectiono 

The decay measurements for the pure bismuth stacks were 

obtained by placing large cadmium covered paraffin blocks on 

all sides surrounding the array. With this technique the 

neutrons are slowed down in the paraffin, leading to a higher 

intensity of epi-cadmium neutrons in the bismuth, and thus 

allowing the diffusion of thermal neutrons in the bismuth to 

be investigated. 

Analysis of Data 

The decay data were first analyzed by graphic methods and 

then by analytical means. The data from each decay measurement 
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were plotted to determine the approximate number of points 

that contained significant harmonic content. These points 

were then eliminated from the decay data. The remaining 

points were then least square fitted to a linear function 

using an LGP-30o The program fitted the logarithmic of the 

difference of the counts in the two successive time channels. 

If the number of counts in a given channel is of the form: 

-at 
N = Ae "̂  + B (6) 
n 

where B is the background and assumed to be constant. Then 

the difference between the n channel and the (n + 1) channel 

will not contain the background. Hence the logarithm of the 

difference is: 

-tn (N - N , ) = -at , + tn 
n n+1' n+1 

A(e -1) (7) 

The result is a straight line independent of the background 

with a slope of a. The first points are then successively 

dropped in the least square fit until the value of the decay 

constant does not change. The decay constant for a given size 

moderator together with the associated values of buckling are 

tabulated in Tables I-V for the different graphite and graphite-
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bismuth ratios. The value of any relaxation time is the average 

of several individual decay measurements. 

Determination of the Diffusion Parameters 

The absorption cross section E , the diffusion coefficient 
a 

Dv and the diffusion cooling coefficient C were determined by 

2 
least squares fitting the data points (A, B ) to the linear 

function 

(̂  - ^o) 2 
A, + A„B (8) B 2 1 2 

where A and A are coefficients determined by varying the 

value of A until a minimum variance in the expression 

n 

A - A A - A 

1 L ̂  2 ^ " ^ 2~^ (calculated) 

is obtained for the values of A, and A . With the assumption 
A - A^ 

of constant per cent probable error in the value of (—^-2—) , 

all points were assigned equal weights. The effect of 

analyzing the data by equation (8) is to accentuate the 

influence of the higher coefficients and this is clearly 

shown in Figure 10 where the points have a much larger spread 

2 
than m a plot of A vs B . Since the value of C in equation (4) 

is the coefficient of the quadratic term in the polynomial 

2 
expansion about B = 0, the determination of the diffusion 
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cooling contains an error if the polynomial is terminated at 

three terms because the influence of the higher order terms 

is then relegated to the coefficients of the truncated form. 

On the other hand an attempt to fit the data to higher order 

terms only results in extremely large errors for the coefficients. 

The method used was to fit the data points to equation (8), 

and also to the inverted series. 

B 2 

' = F^ + F^ (A - A^) (9) 
' A - A 

o 

The two equations (8) and (9) then represent a bound on the 

values of the coefficients. It was found that the values of 

the diffusion cooling coefficient obtained from fitted values 

of A and F were quite different. This showed that the higher 

order terms could not be neglected, and neither equation (8) 

nor (9) are individually correct. However, if the least 

squares fit to equations (8) and (9) are repeated successively 

2 
dropping points of maximum B in equation (8) and maximum 

(A - A ) in equation (9), the values would asymptotically 

approach the same limit. Hence the values of the diffusion 

2 
parameters were found as B (or A - A ) approached zero as 

defined by equation (4). The values of the diffusion 

coefficients obtained in this way agree quite well with each 

other, except for the values obtained at maximum buckling as 

shown in Figure 11. 
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The difference between the values of diffusion cooling 

(C -C ) obtained from the coefficients A^ and F„ of equations 
^ A F 2 2 ^ 

(8) and (9) decrease as the points of maximum buckling are 

progressively dropped but at the same time the error associated 

with the least squares fit rapidly increases. As the diffusion 

cooling coefficients in each series approaches its asymptotic 

value, the difference (C -C ) approaches a minimum. The value 

of diffusion cooling coefficient reported is obtained when 

the maximum total error spread in the difference reaches a 

minimum value; and then the error associated with the diffusion 

parameters is not the statistical error obtained by fitting 

the data but a more realistic value determined by the bound 

of equations (8) and (9) given by: 

'=H - ̂A . J 
max m m 

The resulting diffusion parameters of graphite and graphite-

bismuth combinations are tabulated in Table VII. 

Measurements of the diffusion lengths were made of the 

graphite and all the graphite-bismuth volume ratios by 

exponential methods using the same material as the pulsed 

experiment. The values were determined in the directions 

parallel and transverse to the extrusion axis and then averaged 

in the manner given in equation (5). The results are plotted 
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in Figure 12 as a function of the volume of bismuth divided 

by the total volume; and are tabulated in Table VI. In all 

cases the diffusion length determined only from the pulsed 

experiment agreed with the average diffusion length from the 

exponential measurement, within the statistical error. The 

least squares fit to equation (8) and (9) were done with and 

without the inclusion of the diffusion length as a point at a 

negative buckling. Since the pulsed neutron technique yields 

an accurate value of the average diffusion constant, and the 

exponential method yields an accurate value of the diffusion 

length, the combined data results in greater accuracy for the 

determination of the thermal absorption cross sections. The 

values of the mean lifetime given in Table VII are the results 

of this analysis with the diffusion length included. The value 

of the absorption cross section of graphite is found to be 

3.83 ± .05 mb, corrected for nitrogen content and the value 

for bismuth is 33.8 ± .7 mb, where these values are obtained 

by combining the results measured with different volume ratios. 

Conclusion 

The value obtained for the diffusion cooling coefficient 

5 4 
of graphite is 33 ± 3 x 10 cm /sec; this is quite different 

in magnitude from the results of other measurements —'— 

(8) 
including those of the authors — . The large difference betwee 

the values can be explained by the incorrect measurement of the 
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fundamental decay constant for small size stacks of moderator. 

The analysis of the decay data depends on correctly eliminating 

not only the spacial harmonics but also the energy harmonics. 

A calculation of the decay constants for the higher 

spacial harmonics was made for a point thermal source located 

at the geometric center of the stack as a function of buckling. 

The results, even though it was a slight overestimation of the 

effect, agreed well with the harmonics obtained experimentally 

for the large size stacks. For the small size stacks, the 

calculation did not agree at all with the measured higher modes. 

The experimental results of the harmonic investigation showed 

that the effect is not due to spacial harmonics but rather to 

the energy harmonics which persists long after the spacial 

harmonics reach a fundamental value. 

If the ratio of maximum neutron yield to background is 

small, it is obvious that the presence of energy harmonics will 

produce an incorrect decay constant. This effect would lead to 

a wrong determination in the value of the diffusion cooling 

(9) 

coefficient. Recent measurements in graphite show that the 

time required to wait for equilibrium after the end of the 

burst of neutrons is approximately 2 milliseconds, and is 

apparently independent of buckling. This means that if the 

signal-to-background ratio is small, the observer would 

erroneously measure the decay constant of the higher energy 
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modes instead of the fundamental decay. The existence of a 

linear portion of the curve on a semi-log plot is real, but 

the decay constant is too short and the inferred value of the 

diffusion cooling coefficient is incorrect. 

Hence the combined requirements of the equilibrium time 

and the maximum signal-to-background ratio determine the 

smallest size moderator that can be measured. These recent 

measurements were made with a signal-to-noise ratio greater 

3 
by approximately 10 than the authors earliest measurements. 

The decay constant associated with small bucklings agreed 

quite well with the earlier measurements, but the decay 

constants at large bucklings were considerably different, 

and clearly showed the effect of the higher energy modes. 

The relaxation time of the next highest energy mode has 

been estimated to be approximately 300 [xsec as found by 

subtracting the fundamental decay from the decay data of some 

of the smallest size graphite stacks. If this value of T 

is used in an equation^— relating the diffusion cooling 

coefficient to the higher energy modes, reasonable agreement 

is obtained with the value of diffusion cooling reported. 

Furthermore, the method of analysis used is less dependent 

on the large buckling measurements, as the value of the diffusi 

2 
cooling coefficient is obtained in the limit as B -•0. This 

method also reduces the dependence of coefficients on knowing 
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an accurate value of the extrapolation distance, since the 

value of the buckling becomes less dependent on the extrapola

tion distance as the data points are successively dropped. 

The value of the extrapolation distance used in the determination 

of the buckling was obtained from an iteration of the diffusion 

coefficient calculation utilizing all the data points. The 

value was then kept constant as the successive points were 

droppedo 

The bismuth diffusion length, diffusion coefficient, and 

diffusion cooling coefficient were measured and are recorded 

in Tables VII and VIII. The bismuth diffusion length, as 

measured by the exponential method, is not consistent with the 

pulsed neutron data. Consequently, the bismuth diffusion 

coefficients were calculated entirely from pulsed neutron data. 

The bismuth errors are not tabulated because of the possibility 

of a systematic error in the measurements as may be inferred 

by the inconsistency of the pulsed and static neutron measure

ments. In all the other assemblies of graphite and graphite-

bismuth mixtures the exponential and pulsed neutron measurements 

are entirely consistent. 

The mixed stacks were composed of GBF graphite bars, 

approximately 3 7/8" x 3 7/8" x 24" each, and bismuth bars, 

approximately .985" x .985" x 24" each. The AA graphite, which 

is a selected lot of GBF graphite, had been machined into 

1" X 1" X 24" bars. The AA graphite and bismuth are the same 
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material which was used in earlier slowing down and diffusion 

length measurements. 
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Table of Results I 
GBF Graphite 

Stack Density = 1.697 

Height 
(cm) 

128.3 

108.5 

108.5 

88.8 

88.8 

69.1 

69.1 

49.3 

49.3 

49.3 

49.3 

39.4 

29.5 

49.3 

29.5 

39.4 

Width 
(cm) 

127.9 

127.9 

108.3 

108.3 

88.6 

88.6 

69.0 

69.0 

49.2 

49.2 

39.4 

39.4 

49.3 

49.3 

39.4 

49.2 

Length 
(cm) 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

59.1 

59.1 

59.1 

59.1 

29.5 

59.1 

29.5 

B* 
(cm-*x 10-') 

1.766 

1.985 

2.201 

2.575 

2.950 

3.662 

4.379 

6.042 

7.709 

9.599 

11.414 

13.225 

15.083 

16.143 

16.904 

17.972 

(sec-') 

429.2 

467.5 

507.0 

579.8 

630.4 

790.9 

919.5 

1225.7 

1436.0 

1691.5 

1960.4 

2162.3 

2292.2 

2502.1 

2585.0 

2693.0 

Table of Results II 
Volume Ratio 4:1 GBF Graphite to Bismuth 

Stack Density = 3. 303 

Height 
(cm) 

128.4 

108.6 

88.9 

69.1 

49.3 

69.1 

69.1 

49.4 

59.3 

69.1 

59.3 

49.4 

59.3 

49.4 

29.7 

39.5 

29.6 

29.6 

Width 
(cm) 

135.6 

135.6 

135.6 

135.6 

135.6 

61.6 

86.1 

61.6 

73.9 

61.5 

61.5 

61.5 

49.2 

49.2 

135.6 

49.2 

61.5 

61.5 

Length 
(cm) 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

61.0 

121.9 

61.0 

61.0 

61.0 

61.0 

61.0 

61.0 

121.9 

61.0 

121.9 

61.0 

B' 
(cm-*x 10-') 

1.639 

1.910 

2.277 

2.982 

4.610 

4.775 

5.416 

6.393 

6.447 

6.501 

7.119 

8.124 

8.309 

9.313 

9.887 

11.072 

11.698 

13.438 

(sec"') 

474.9 

509.7 

594. 1 

725.8 

1104.0 

1117.3 

1257.1 

1414.4 

1439.9 

1435.3 

1568.2 

1728.8 

1767.2 

1910.7 

2117.7 

2204.0 

2298.8 

2480.9 
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Table of Results III 
Volume Ratio 2:1 GBF Graphite to Bismuth 

Stack Density = 4. 378 

Height 
(cm) 

1 2 8 . 5 

128 .5 

108 .7 

108 .7 

8 8 . 8 

8 8 . 8 

6 9 . 2 

8 8 . 8 

6 9 . 0 

4 9 . 4 

4 9 . 3 

3 9 . 4 

3 9 . 4 

3 9 . 4 

4 9 . 3 

Width 
(cm) 

147 .6 

103 .9 

1 0 3 . 9 

8 8 . 6 

8 8 . 6 

7 3 . 9 

7 3 . 9 

7 3 . 8 

7 3 . 8 

5 9 . 0 

5 9 . 1 

7 3 . 8 

5 9 . 1 

4 4 . 3 

2 9 . 5 

Length 
(cm) 

121 .9 

121 .9 

1 2 1 . 9 

121 .9 

121 .9 

121 .9 

121 .9 

6 1 . 0 

6 1 . 0 

121 .9 

6 1 . 0 

6 1 . 0 

6 1 . 0 

6 1 . 0 

6 1 . 0 

B* 
( cm-* X 10- ' ) 

1.607 

2 . 0 3 3 

2 . 2 3 6 

2 . 5 3 6 

2 . 9 0 1 

3 .372 

4 . 0 6 5 

5 .072 

5 .769 

6 . 5 0 9 

8 .210 

9 . 0 9 5 

9 . 9 3 3 

1 1 . 6 5 3 

14 .382 

( s e c - ' ) 

5 1 2 . 0 

6 1 6 . 5 

6 5 8 . 0 

7 2 2 . 9 

7 9 6 . 6 

9 0 1 . 3 

1045 .5 

1275 .3 

1413 .3 

1607 .3 

1894 .4 

2 0 4 1 . 1 

2 1 7 7 . 5 

2 3 9 9 . 1 

2 5 9 8 . 7 

Table of Results IV 
Volume Ratio 1:1 GBF Graphite to Bismuth 

Stack Density = 5.715 

Height 
(cm) 

128.4 

128.5 

118.7 

98.7 

98.7 

88.8 

79.0 

69.1 

98.8 

59.2 

98 .8 

79.0 

79.0 

59.2 

69.0 

59.2 

59.2 

59.2 

49 .3 

Width 
(cm) 

128.2 

118.2 

98 .4 

98.4 

88.6 

78.7 

78 .7 

78.7 

98.4 

78.7 

68.9 

7 8 . 8 

68 .9 

78.8 

59 .1 

59 .1 

49 .3 

39.4 

39.4 

Length 
(cm) 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

121.9 

61 .0 

121.9 

61.0 

61.0 

61 .0 

61.0 

61.0 

61.0 

61 .0 

61.0 

61 .0 

B* 
(cm"* X 10"') 

1.730 

1.824 

2.189 

2.464 

2.671 

3.157 

3.438 

3.839 

4 .131 

4.444 

5.022 

5.106 

5.509 

6 . U 0 

6.513 

7.113 

8.074 

9.743 

10.722 

(sec" ' ) 

598.3 

623.9 

725.6 

800.9 

836.1 

932.7 

1019.3 

1108.4 

1183.7 

1259.4 

1400.1 

1424.8 

1516.6 

1620.7 

1737.3 

1867.2 

2035.5 

2319.3 

2449. 1 
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Table of Results V 
Bismuth 

Stack Density = 9.761 

Height 
(cm) 

1 1 3 . 4 

1 1 3 . 4 

1 0 3 . 5 

1 0 3 . 5 

9 4 . 0 

9 4 . 0 

8 3 . 9 

7 4 . 0 

Width 
(cm) 

1 1 5 . 7 

1 0 5 . 8 

1 0 5 . 8 

9 6 . 0 

96.0 

8 6 . 7 

7 6 . 3 

7 6 . 3 

Length 
(cm) 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

1 2 1 . 9 

B* 
( c m - * x 10"') 

1 .980 

2 . 1 0 6 

2 . 2 3 8 

2 . 4 0 0 

2 . 5 6 8 

2 . 8 2 4 

3 . 3 2 4 

3 . 6 5 2 

( sec" ' ) 

8 7 4 . 9 

8 9 3 . 4 

9 5 0 . 4 

1040 .6 

1 1 8 4 . 4 

1 2 2 9 . 4 

1420 .8 

1 5 3 2 . 5 

Height 

(cm) 

111 .9 

101 .7 

8 6 . 4 

7 1 . 2 

8 1 . 3 

7 1 . 1 

6 1 . 0 

5 5 . 9 

5 0 . 9 

4 5 . 8 

4 3 . 2 

4 0 . 6 

38. 1 

Width 

( cm) 

121. 8 

101 . 5 

86. 3 

7 1 . 0 

8 1 . 2 

7 1 . 0 

6 0 . 9 

5 5 . 8 

5 0 . 8 

45 . 7 

4 3 . 2 

4 0 . 6 

38. 1 

Table of R e s u l t s VI 

A A G r aph 

Stack Dens i ty 

Length 

(u-n) 

122. 1 

122. 1 

122. 1 

122. 1 

6 1 . 0 

6 1 . 0 

6 1 . 0 

6 1 . e 

6 1 . 0 

6 1 . 0 

6 1 . 0 

6 1 . 0 

6 1 . 0 

i t e 

= 1.674 

B^ 

( c m ^ X 10"') 

1.993 

2 . 4 1 0 

3 .065 

4. 160 

5. 106 

5 .904 

7. 101 

7 .949 

9 .030 

10.484 

11 . 390 

12 .461 

13. 726 

\ 
( s e c - ' ) 

477 . 7 

5 6 0 . 3 

6 8 3 . 5 

846. 1 

1025 .0 

1167. 0 

1349 .0 

1484 .0 

1654 .0 

1861 .0 

1932 .0 

1965 .0 

2 0 6 9 . 0 
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Table of R e s u l t s VII 

Exponent ia l Diffusion Length M e a s u r e m e n t 

M a t e r i a l 

A A Graphi te 

GBF Graphi te 

G r a p h i t e - B i s m u t h 4:1 

G r a p h i t e - B i s m u t h l:\ 

G r a p h i t e - B i s m u t h 1:1 

B i smuth 

T r a n s v e r s e 

L l 

53 . 8 ± 0. 3 

50 .0 ± 0 . 2 

4 7 . 4 ± 0 . 1 

44. 2 ± 0 . 1 

4 2 . 5 ± 0 . 1 

4 0 . 8 

P a r a l l e l 
L,i 

5 6 . 0 ± 0 . 3 

52. 3 ± 0 . 2 

49. 4 ± 0 . 1 

47. 1 ± 0 . 1 

45 . 5 ± 0 . 1 

4 1 . 0 

Average 

"Avg. 

54. 5 ± 0 . 5 
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ABSTRACT 

A review of 16 papers (1 - 16) submitted to the Brookhaven con

ference and dealing with the experimental aspects of "asymptotics" or 

"transients" in space, time, and energy is given. Most of these papers 

deal with diffusion parameter measurements usii^ pulsed or stationary 

methods; numerous new data have been reported and are critically com

pared. A number of new techniques for the investigation of space- and 

time-dependent thermalization phenomena are reviewed. 
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1. Introduction 

About four years ago, the whole field of "transients" or "asymptotics" 

research appeared to be in a very good state; measurements by different 

authors using either pulsed or stationary methods were in reasonable agree

ment. Attempts to interpret the data theoretically were in general quite suc

cessful. There seemed to be not much incentive for further research work. 

However, with the arr ival of more advanced experimental techniques and of 

more sophisticated analysis methods, the situation has almost completely 

changed. Today, there exists a considerable amount of discrepant data on 

almost any moderator. Reported data for thermalization times and diffu

sion cooling coefficients diverge by up to a factor of three and even for one 

of the most fundamental constants of neutron physics, the diffusion length of 

thermal neutrons in water, data differing to up to 6% have been found. Only 

in very few cases the data can be calculated theoretically with sufficient 

accuracy. The author hopes that discussions at this conference will con

tribute towards a better understanding of all these problems and clarify 

some discrepancies. 

In order to give a formal classification of the problems which will be 

discussed in this paper, let us start from the space- t ime- and energy 
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PREFACE 

A conference on the subject of neutron thermalization was held at 
the Brookhaven National Laboratory from April 30 to May 2, 1962, 
precisely four years after the close of the last thermalization conference, 
the Gatlinburg conference of April 28-30, 1958. The subject of thermal
ization, which concerns the approach to thermal equilibrium and the 
manner of the equilibrium distribution of neutrons in matter, has elicited 
a great deal of interest in the meantime. While the seventeen papers 
contributed at Gatlinburg could be assembled into a single, convenient 
volume, presenting the seventy Brookhaven papers has required four 
weighty books. 

The Brookhaven conference was conducted as a "reporter" confer
ence. The technical papers which were submitted were sorted into six 
categories, viz., the experimental and theoretical aspects of the "scat
tering law," of spectra in infinite media, and of transient phenomena. 
A reporter was chosen for each of the six topics, and was asked to pre
pare a talk which would contain an appreciation of the technical papers. 
The reporter talk, followed by a general discussion constituted each 
session. Thus, the individual papers were not presented, though copies 
were available to all who attended, and are presented in these proceed
ings. (While the papers from our Soviet colleagues were received too late 
for discussion at the conference, translated versions will also be found in 
these volumes.) 

The success of a technical conference is always due to the efforts 
of many people. We must first thank the reporters and authors for the 
fine quality of their contributions. Mr. Robert Brown of Brookhaven's 
Graphic Arts Division was responsible for the prompt publication of the 
proceedings and for having more than ten thousand copies of the tech
nical papers ready in time for the conference. Mrs. Mariette Kuper and 
Mr. Edward Bergin and their staffs directed the mechanics of the con
ference with skill and aplomb, while several members of the Theoretical 
Reactor Physics Group made important contributions to its planning 
and execution. In particular, we should thank Drs. Paul Michael and 
Henry Honeck, and for his kind encouragement throughout, Mr. Jack 
Chernick, the Group's Director. 

NOEL CORNGOLD 
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I. Introduction 

The theory of neutron thermalization has developed to a considerable 

extent toward its basic objective of the quantitative determination of the 

thermal neutron distribution function as determined from the transport 

equation. The two main channels of this development have been in the im

proved theoretical and experimental understanding of the "scattering law" 

for thermal neutrons in moderating materials , and in the improved ability 

to use this information in solving the transport equation. In this paper, the 

latter of these two subjects will be considered. The former is summarized 

in other papers for this conference. 

The transport equation for thermal neutrons can be considered from 

three levels of approach. The first level is the study of the basic mathe

matical properties of the transport equation for cross sections obeying 

the general constraints which apply to thermal neutron scattering from 

moderators. The objective of this study is to reach a level of understand

ing comparable to that which we now have for the one-velocity transport 

equation. Considerations in this area include the nature of asymptotic 

solutions as defined by eigenvalue problems, the modification of the Milne 

problem due to velocity dependence of the mean free path, and new physical 

phenomena peculiar to the thermalization problem, such as the thermal 

diffusion of neutrons in the presence of a temperature gradient. Investi-
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gations on this level a re essential to our fundamental understanding of the 

problem, and also have application to the interpretation of pulsed neutron 

measurements and diffusion length measurements. Recent developments 

in this area have been very interesting. In the author 's opinion, the study 

of the basic mathematical properties of the transport equation for thermal 

neutrons is a very important current area of research in neutron thermal i 

zation, and has considerable relevance also to an improved understanding 

of phenomena in kinetic theory and solid state physics which a r e described 

by linearized transport equations. It is in this area that most of the d i s 

cussion in the present paper will be concentrated. 

A second level of approach, which is advancing at an impressive rate , 

is the direct numerical solution of the transport equation using large digital 

computers. The comparison of theory and experiment, on which advance 

in our understanding is fundamentally based, depends in an essential manner 

on the intelligent use of large digital computers to analyze the actual ex

perimental situation in te rms of the best available input c ross sections. 

It should be emphasized that the advance in the technology in this area has 

been extremely rapid and will probably continue to be so for some t ime. 

It is the author 's opinion that the use of large digital computers will play 

an increasingly dominant role in our basic understanding of the complex 

phenomena with which we a re concerned. 
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There is also an intermediate level of approach which is concerned 

with simplified models for the thermalization process , and semi-analytical 

solutions to the transport equation. This general approach is illustrated 

by the modified heavy gas model, by eigenfunction expansions of the solu

tion to the transport equation, and by variational formulations of the space 

and energy dependent problem. This intermediate level has played an im

portant role in developing a semi-quantitative understanding of many com

plex phenomena. For some time it even appeared that this would be the 

best way to a quantitative understanding. In the last few years , however, 

progress in this direction has been much less rapid than through direct 

numerical solutions with digital computers. There a re several interesting 

papers for this conference on this level of approach. In order to maintain 

a somewhat coherent pattern to the presentation in this summary, it has 

been necessary to omit comment on these papers . Thus, this summary 

represents , to some extent, the approaches of greatest personal interest 

to the author. 

In Section 11 we discuss the definition of the thermal diffusion length 

as an eigenvalue problem, and the numerical solution of this equation with 

comparison to experiment. This particular problem is a good illustration 

of the use of digital computers in combination with an examination of the 

mathematical nature of the transport equation to reach a rather satisfactory 
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degree of understanding. Section III is devoted to the considerably less well 

understood area of time-dependent problems. The emphasis is on the 

question of existence of an eigenvalue representing an asymptotic exponen

tial decay. 

n . The Diffusion Length 

We define the thermal diffusion length K as the eigenvalue of the 

transport equation corresponding to a positive eigenf unction e f(E,ja) 

describing the exponential relaxation of the thermal flux in an infinite source 

free medium with no spatial variation in the y and z directions. This defi

nition was first given by Kuscer and Ribaric (1) who derived the integral 

equation defining the diffusion coefficient in the weak absorption limit, and 

gave a procedure for expansion of /c in a power ser ies in the absorption 

cross section. For the particular case of monatomic hydrogen moderation, 

the weak absorption limit corresponds to the calculation of the coefficient 

of self-diffusion for a gas of hard spheres. This very old problem in 

kinetic theory was first considered by Boltzmann and was first solved 

numerically by Pidduck (2) in 1916. For those with an interest in the 

history of the problem, the discussion given by Pekeris (3) is very inter

esting. 

The eigenvalue problem we wish to solve is defined by 
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OO 1 

(S(E) -Kii)t{E,ii) = f I S ( E ' , M ' - E,M)f(E',/i')dE'dM' (D 
0 -1 

The essential features of the problem can be illustrated by considering the 

special case of isotropic scattering. Dividing through by [2(E) -/c/j,] and 

integrating Eq. (1) over angles leads to an integral equation in the energy 

1 , rs(E) + K 
0(E) - - h. g|f^J/S^(E'^E)0(E')dE' (2) 

More generally, if the scattering kernel is expanded in a ser ies of Legendre 

polynomials terminating with the L'th term, Eq. (2) is replaced by the set 

of (L+1) integral equations considered by Honeck (4) in a paper for this 

conference (for L = 3). 

Firs t let us consider the case of constant cross sections. Use of the 

detailed balance property of the energy transfer c ross sections shows in 

this case that Eq. (1) is satisfied by a solution of the form f(/i)M(E), where 

M(E) is a Maxwellian distribution at the moderator temperature, and f(|Lt) 

is the solution of the one velocity problem 

1 
(S - K\i)i{ii) = / S ( M ' - M)f(M')dM' (3) 

-1 

which has been extensively studied. In particular, for isotropic scattering 

there is a single pair of eigenvalue ±K satisfying 

1 = -— In {- ) 4) 
2K T, - K 
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which determine the asymptotic solution far from a plane source. As the 

ratio of absorption to scattering increases, K approaches S, and one must 

go farther from the source in order for the asymptotic exponential behavior 

to dominate. For any finite amount of scattering, however, the asymptotic 

solution is e f(ju)M(E) with K determined by Eq. (4). 

Now consider the more general case. By the requirement that f(E,ju) 

be positive, we obtain the upper bound 

k l < minimum{S(E)} (5) 

0 < E < OO 

For noncrystalline moderators or incoherently scattering moderators with 

an absorption cross section which goes to zero at large energy, this bound 

is determined by the free atom scattering cross section. For crystalline 

moderators at low temperature it is determined by the total cross section 

just below the Bragg cutoff. 

The interest in the above formulation is not entirely academic as it 

applies quite well to the experimental situation in which the thermal diffu

sion length is measured by foil activation using the thermal column of a 

reactor as a source. Except for a small correction for t ransverse buckling, 

the formulation given is applicable to the analysis of experiments in which 

the diffusion length is measured as a function of 1/v poison concentration 

as has been done for water. (5) The previously mentioned paper by Honeck (4) 
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carr ied through this analysis in a way which to me i l lustrates very nicely 

the power of flexible use of a digital computer in advancing our understand

ing. The solving of four coupled integral equations in the energy was found 

to be well within the ability of the computer and allowed a direct compari

son of theory and experiment without the ambiguities due to uncertain e r ro r s 

in the usual power ser ies expansion. 

There is one interesting unresolved point in this analysis. As the 

absorber concentration is increased, it is not clear whether K approaches 

its bound in the limit of large absorber concentration or reaches it at some 

finite concentration. For a simple model discussed in Appendix A, the 

latter is the case. This would indicate that beyond a certain cri t ical a b 

sorber concentration, the asymptotic behavior of the flux far from a plane 

thermal source is not exponential, and one has only the transient solutions 

to the transport equation. This point can be checked by extension of 

Honeck's calculations to larger absorber concentrations. 

In demonstrating the upper bound Eq. (5) on the fundamental mode 

eigenvalue, we used the fact that the eigenf unction must be positive. If 

we merely require that the eigenfunction not be singular, then this upper 

bound also applies to the higher oscillatory eigenf unctions. It should be 

noted that many of the spatial eigenvalues which have been numerically 

calculated in diffusion theory (6) exceed this bound. The transients cor -
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responding to these eigenvalues will play an important role only in a heavy 

moderator with weak absorption. In this case the approach of the spectrum 

to its asymptotic value and the decay of the asymptotic flux will be on a 

spatial scale long compared to a mean free path. 

Two other problems which fall in the same category as the diffusion 

length problem a re the Milne problem for velocity dependent mean free 

path (8), and the thermal diffusion of neutrons (9) in the presence of a 

temperature gradient. These problems, which help to elucidate the basic 

properties of the transport equation for thermal neutrons, a r e discussed 

rather thoroughly in other papers for this conference (8,9), and will not 

be discussed further in the present paper. 

III. Time Dependent Problems 

The basic physical process of interest in neutron thermalization is 

the approach to equilibrium of a neutron distribution. This is illustrated 

in its simplest form by considering an isotropic space independent velocity 

distribution in an infinite non-absorbing medium. Even for this problem, 

our understanding of the mathematical properties of the governing equation 

has, until recently, been very poor. 

From the detailed balance condition on the energy transfer cross 

section, it follows that a Maxwellian distribution of neutron velocities at 

the moderator temperature is a time independent solution. It can also be 
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shown (10) that the entropy of the neutron distribution increases monotoni-

cally with time. If the kernel is sufficiently nonsingular (11), the entropy 

will approach its maximum value corresponding to an equilibrium Maxwellian, 

and the neutron distribution will therefore approach an equilibrium distr ibu

tion. 

Beyond this it has usually been assumed (12,13) that the approach 

to equilibrium can be described in terms of a complete set of discrete 

eigenf unctions. In an important recent paper (14), Corngold, Michael, and 

WoUman have given an explicit counterexample for the case of moderation 

by monatomic hydrogen. They showed that the discrete eigenvalue spectrum 

has a maximum decay constant 

X = minimum {vZ)(E)} (6) 

max ^ 

and that one must admit continuum eigenfunctions in the sense of Case (7) 

for a complete description of the approach to equilibrium. This approach 

has been developed more fully in a paper for this conference by Koppel (15). 

The conclusions for monatomic hydrogen appear to be applicable to 

the general problem, since for any actual moderator the scattering prob

ability vS (E) will have a minimum value at zero velocity, and increase in 

an unbounded (though not necessari ly monotonic) manner as the velocity 

increases. There a re two nonphysical cases where the discrete eigenvalues 

a re complete. The first is the case of a 1/v scattering cross section where 
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the bound still exists, but represents an actual upper limit on the decay rate 

at any energy. The second is the heavy monatomic gas in the limit of large 

mass ratio. If one considers this limit as one of a finite rate of slowing 

down, as is conventional, then the mean time between collisions goes to 

zero so that the bound on the decay constants goes to infinity. 

For the practical calculation of time dependent problems, the eigen

function expansion is still useful for heavy moderators at long t imes. For 

monatomic hydrogen, however, the distribution of eigenvalues is such that 

the expansion is of extremely limited utility. In looking toward the eventual 

objective of obtaining detailed solutions of the energy, space, and time de

pendent transport equation, it would be very helpful to have alternate p r o 

cedures for treating the time dependence. The use of the time moments 

of the distribution as suggested by Koppel (16) is deserving of further in

vestigation in this connection. 

The concept of an upper bound on the decay constant has an interest

ing application to the problem of the decay constants measured in pulsed 

neutron experiments. Corngold and Michael (17) have pointed out that the 

measured decay constants in small beryllium and graphite assemblies ex

ceed this bound. We note that the bound in these materials is quite low due 

to the small inelastic cross section below the Bragg cutoff, particularly at 
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low moderator temperatures. Their comment ra ises two interesting ques

tions. First , what is the physical origin of the boundedness of the decay 

constant in the space dependent case? Second, if the experimenter could 

wait long enough, would he see a true decay constant? The answers to 

both these questions a re quite subtle, and will be described in detail 

elsewhere (18), but a summary will be given below. 

The essential conclusion is that the existence of a bound on the decay 

constant of a fundamental mode depends on the possibility of an infinite 

transit time of a neutron across the medium in question. For infinite 

medium problems, one always has a bound even for one velocity. This is 

illustrated by the work of Lehner and Wing (19) on the eigenvalues for a 

slab in one velocity. In this case, however, as opposed to the infinite 

medium with an exp(ikx) spatial dependence (7), a fundamental mode de

cay constant exists no matter how thin the slab. When one goes from a 

slab to a bounded finite medium, Jorgens (20) has shown that a fundamental 

mode decay constant exists under rather general conditions. In particular, 

for the case of a sphere in one velocity transport theory, the decay con

stant is not bounded. More generally, if the velocity domain is bounded 

away from zero, Jorgens has proved that an eigenvalue exists for a wide 

class of scattering kernels. 

The problem is most easily understood by considering the integral 
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equation form of the transport equation (21) for a distribution which is 

decaying as exp(-A.t): 

Ro(r,n) 
f(E,r,n) = / d R / d E ' / d n ' S ( E ' , n ' - E , ? 2 ) (7) 

0 

X f(E',r-R?i,?2') exp{-R[S(E) - - ] } 

We see immediately that the integral on the right-hand side does not exist 

in an unbounded medium if Z(E) - - i s negative for any velocity. For a 

bounded medium, the integral exists except when E = 0. Since the cross 

section for scattering to zero energy vanishes only as some power of the 

energy, the right-hand side of Eq. (7) exists only if 

X < lim vS(E) (8) 
E - 0 

even for a finite medium. 

For any physical problem involving neutron moderation, the collision 

probability at zero energy will be the minimum value for all energies so 

that this bound is the same as Eq. (6). The origin of the bound in a finite 

medium is quite different, however, being explicitly associated with the 

behavior of the cross section in the limit of zero energy. This is most 

easily illustrated by considering the fictitious case of a c ross section 
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crystalline moderators, the discussions given (17,24) indicate that the 

difficulty in interpretation is closely connected with a lack of space-energy 

separability. It therefore seems preferable to give up the concept of an 

equivalent buckling even for fairly large samples. 

On the other hand, it seems to the author that the experiments a re 

important ones to understand precisely because their understanding r e 

quires giving up simplifying concepts and forces a detailed analysis of the 

experimental situation. Insofar as a decay constant eigenvalue exists, its 

computation for a finite sample is well within our present capabilities for 

solving space and energy dependent problems using a digital computer. Our 

ability to calculate the time dependent problem in detail when there is no 

fundamental mode remains an interesting challenge for the future. Our 

physical understanding of time dependent problems is clearly still quite 

limited, and we can still profitably use semi-quantitative calculations (25) 

to help bring us to the point where detailed computer calculations can be 

performed with confidence. 
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APPENDIX A 

Critical Absorption for the Existence of the Diffusion Length 

As a simple calculational model, we will consider the case of constant 

isotropic scattering cross section, 1/v absorption cross section, and a sep

arable scat ter ir^ kernel (14) obeying detailed balance. Measuring energies 

in units of kT, we have 

S(E) = a(l-f y E ' ^ ) (Al) 

S^(E'-E) = aM(E) (A2) 

where 

M(E) = E e ' . (A3) 

Integrating (A2) over energy and measuring K in units of a, we reduce the 

eigenvalue problem to 

, . f l n ( l ± J i J L Z E : i ) E e - ^ d E (A4) 
0 1 - K + yE 

• 2 

The right-hand side of (A4) is a monotonically increasing function of K, 

1+K 

and a monotonically decreasing function of y varying from zero to ln(:j—) 

as y goes from infinity to zero. For K equal to its upper bound of 1, the 

right-hand side becomes an unbounded function of y so that there exists a 

value y^ satisfying 
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1= / l n ( l - H ^ ^ ) E e " ^ d E . 
0 ^c 

The value of y will be of the order of one corresponding to roughly 

equal scattering and absorption at kT. For y > y , the right-hand side of 

(A4) will be less than K for all K between zero and one, so that no solution 

to the eigenvalue problem exists. It is not clear whether this feature will 

be found for more realistic thermalization models, but this can be easily 

checked numerically. Note that the important difference from the one 

velocity problem is that the upper bound for /c is 1 rather than 1 -ny. 
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INTRODUCTION 

The mathematical physicist faces two alternatives in the 

study of neutron thermalization. He may consider a scattering 

kernel which stems from a very simple physical model of the mod

erator, but which permits direct mathematical analysis of the 

Boltzmann equation, or he may use numerical schemes and large 

computing machines to solve the Boltzmann equation, incorporating 

into the equation as subtle a kernel as the capacity of his 

machine permits. Both types of study are necessary for the 

proper development of the subject. In this paper we take the 

first point of view and discuss phase integral (WKB) approxima

tions to solutions of the Boltzmann equation, for those models 

for which the scattering operator may be taken to be a differ

ential operator of second order. Of these, the heavy gas, or 

Wilkins' model (1.) is best known. In addition, there are 

Wilkins' equations of higher order (2.) , and the equations for 

bound systems considered by Kazarnovskii, et.al. (3_) and by 

Clark and deSobrino (4). The differential version of the proton 

gas model (5.) does not stem from a differential representation 

of the scattering kernel, but yields a second order differential 

equation in energy, nevertheless. We shall discuss the proton 

gas in a later note. 
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GENERAL 

i/Je consider a homogeneous system, and in it, the Boltzmann 

equation in the diffusion approximation, viz. 

•7- ~ ^ - D(e)7^$ + E^(e)$ = S$ + Q . (1) / e ot a 

In (1), $ = $(i,t,e) is the flux density of neutrons, a function 

of position, time, and energy. The energy is denoted by the 

dimensionless variable e, where e = E/k T = (~) • k is 

Boltzmann's constant. Q is the appropriate source density, 

and S, the scattering operator, is defined through: 

Sf(e) H r de' Ts (e'-e)f(e') - S (e-e')f(G)'| (2) 

0 

Most of this paper will be devoted to the transient, or 

modal solutions of (1). These are the solutions to the source-

free equation, which vanish exponentially as £-•«>. It is generally 

assumed that they form a complete and denumerable set, and it 

is common practice to use them as a basis for the expansion of 

the flux in interpreting the results of a pulsed neutron experi

ment (6_) , or an experiment in space-dependent theacmalization (J7) . 

To obtain them we write 
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f « exp I iB*£ + Av t n(e) (3) 

which gives, for S$5)-, the equation 

X+A f(e) 
+ D ( G ) B lc?(e) = Sep (e) (4) 

v G J 

where S (e) = 7- E (v )f(G) = — A f(e). The solution of (4) 
a / c a B y c 3. 

which we seek should be free from singularities and should de-

2 
crease exponentially at infinity. If we regard B and the 

absorption as given and seek eigenvalues A. and corresponding 

2 

eigenf unctions cp.(€;B ) we obtain quantities suitable for the 

interpretation of pulsed neutron experiments. Thus, an initial 

burst of neutrons having the distribution exp| iB.-r^} Q(e) at t=0 

evolves in time according to 

$ . (r,t, e) = expi iB,-r I > a.cD (G;B. )exprA, (B. )t1 (5) 
j - ~j ~-̂  /L k k j k j J 

k 

where the a. may be determined through use of the ortho-normali ty 

condition, 

0 0 + 2 2 

dG cp (e ;B ) a (e ;B ) = 6 , ^ (6) J T^ ^k' " " ' "̂  m' ̂  "̂  ' "km 
/ e 

9, IS the solution to the equation adjoint to (4), and the 

"detailed-balance" property of the scattering operator ensures 
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r "* + that G expj -G ! cp, (G) is proportional to c{x (e) (3) . The dependence 

2 

of A , the fundamental decay constant, upon B , the fiindcimental 

buckling, is the subject of considerable experimental effort (9). 

If, on the other hand, we take A=0 and ask for the modes 

$cc expln .-r rf . (*̂) , we find functions suitable for the analysis 

of a steady-state diffusion-length experiment. Thus, if the 

neutron velocity distribution is prescribed to be Q (G) on the 

plane 2=0, the distribution of neutrons in space, zso is given 

by; 

$(r,G) =yb.T.(G) expf-K.z^. ( K . ^ H K . ^ ) (7) 

3 

In (7) the b. may be determined through the use of 

CO 

J deD(c) <(c)T^(e) = 6,̂ ^ , (3) 

0 

where, once again G exp' -e Y, is proportional to Y (G). The 

dominant decay constant, K , is the inverse of the thermal dif

fusion length. 

Finally, the modal solutions may be used to represent 

steady-state slowing down spectra. If the source of neutrons 

leading to (5) is steady, rather than a burst, we find 
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) r~ cp̂  (G ; B . ) 
t A^(B. ) ^ ^ k k 3 

(9) 

= exp TiB.-r] r dc' G(G,e';B.^) Q (G') (10) 
L 1 _i J 3 

where G(G,G') is the Green's function corresponding to the 

, X 2 operator S - D ( G ) B . 

THE DIFFERENTIAL SCATTERING OPERATOR 

As we mentioned in the INTRODUCTION we are considering 

models of the thermalization process in which the scattering 

operator may be represented by a differential operator of second 

order. In essence, we are generalizing the heavy-gas operator 

to include effects of chemical binding. The extent to which the 

generalization is valuable can be determined only after a great 

deal of calculation. In this paper we shall show that it is 

easy to extract a great deal of information from this model and 

shall illustrate with heavy gas results. 

To begin, we state some properties of the scattering 

operator which are easily deduced (9̂) . S , the adjoint operator 

is the integral operator whose kernel is the transpose of the 
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kernel of S. The symbol M represents the Maxwellian, M.= e exp| -G I. 

•7e have 

dG Sf = 0 (Neutron Conservation) (11) 

0 

s'̂f = 0 if f=constant (12) 

MS'*'f = SMf (Detailed Balance) . (13) 

The true scattering operator is to be replaced by a dif

ferential operator of second order. Thus, 

S = p(e) - ^ + q(G) ~ + r(e) . (14) 
de 

Vfe see at once that condition (12) requires r(e)=0, while both 

(11) and (13) are satisfied if 

M(e)q(e) = j ^ M(G)P(G). (15) 

Thus, (14) contains but a single "free" function. To identify 

it, we recall that if S operates upon the function G, we obtain 

the first energy-transfer moment A (G), where 

00 

A (e) H f dG* E (G-G') (G'-G)'^. (16) 

0 
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Thus, the identification is q(e)<-> A (G), and q(e) should be 

taken to be the "exact" energy transfer moment. If we now con-

+ 2 

sider S to act upon G , we are led to the identification 

P(G) <-> r A (e). However, we are not free to use the A and A 

which result from a precise calculation, since they will generally 

violate (15). We must, instead, fix q(G) through q <-> A and 

P(G) through the integrated form of (15), namely 

P(G) = M"-^(G) -j dG q(e)M(G) = ^"^2"' "̂̂"̂^ 
e 

The fictitious A , which we denote by "A ", has reasonable 

properties, which we shall note ahead. Most important is that 

it yields the same M parameter, 

CO 

M^ = J de M(e)A2(G) (13) 

as does the true kernel. One sees this through multiplication 

of (17) by M(G) followed by a partial integration. Since M , 

which is a measure of the "v̂ idth" of a particular scattering 

kernel, governs the behaviour of neutron distributions close 

to equilibrium (10) we can be optimistic about the utility of 

(14) in such situations. The higher moments of the synthetic 

kernel may be analyzed in a similar manner. They are determined 
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by A (G) alone and so represent a rather special type of synthetic 

scattering kernel. 

We can use (15) and (17) to see the behaviour of "A " for 

large and small e. q(e) will be proportional to e, for e large, 

whence "A " also turns out to be proportional to G. This is not 

2 
quite right, since a proper A should be proportioned to G , but 

it is a fair approximation for heavy, bound moderators. As G 

decreases, "A " decreases. It approaches zero as e^, remaining 

positive throughout. The correct second moment should pass 

through a minimum in the thermal region, then rise as G ̂ . It 

v/ould appear, then, that "A " is "weaker" - by a factor of e -

than it should be, in both high and low energy limits. For 

moderators other than hydrogen, though, the ranges of energy in 

which "A " fails significantly are not of great importance. 

m M 

They are, roughly, E < - T and E > - T, where m is the neutron 

mass and M the mass of the moderator atom. 

The differential equation for the neutron flux which stems 

from (14) is 
A+A f(G) r a , „,^,„2 n . . . ." . .' I ̂  + D(e)B CP(G) = (pco) - (qcp) (19) 

As it stands, (19) refers to a source-free medium. We can esti

mate its accuracy in the case of slowing down in an infinite 
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system having 1/v capture, by comparing its asymptotic solution 

(E»T) with the exact solution (11J2) . If we use 

T 
q(G) = A. (G) = ^^ ^ Ŝ .G \-l + -(2-n) - ~ + 0(e"^)], (20) 

^ (1+H)2 sf L G T J 

where [i = m/M, S _ is the macroscopic free-atom scattering cross 

section, and T j . - the "effective temperature" (11,12) of the 
er r 

bound atom, v/e obtain the following l i rai t ing resul t s? 

tx - 0 
2 T 

, , I r , ,Av 1 ,̂ A ^ _ e f f \ 1 „ , - 3 /2 , -1 , . , , cp(G) ~ - ! l - (-) ^ +f^— + 2 - ^ ) - +0(G M J (21) 
G^ 

which is the correct result, and 

H - 1 

n(G) ~\ [l-4(^) - ^ + ( 2 A ' - ^ ^ ) - t ^0(^~ '^'>] (22) 
G' 

as against the exact result , 

T 
.,(e) ~ i [l-3(̂ .) J ^ . ( | , 2 ^ - p ) i .o(G- 3/2)-j, (23) 

G 

THE PHASE INTEGRAL METHOD 

The VJKB, or phase integral method is described in many 

places (13); we shall treat it superficially in this section. We 

begin by converting the equation adjoint to (4) to a Schrodinger 

• 
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equation, through the transformation: 

3"^(G)= exp [- I J - <ie] "Vie) oc (Mp)"'" Y(G). (24) CO 

vfe obtain 

where 

Y" + k^(e) V= 0 , (25) 

and 

- k^e)= I (q/p)^ + i -^ (q/p) + ̂  (26) 

A+A f(e) 
a(e) = 7 + D(e)B'̂ . (27) 

The neutron transport problem has now been replaced by the 

wave-mechanical analog, eq.(25), which describes the motion of 

a particle of energy vj, moving in a potential V(e) . The function 

2 
k (e) is proportional to V7-V(G) ; we shall take W to be zero, so 

that we are discussing the motion of a particle of zero energy 

2 

in a potential given byV(e) = - k (e). 

w/e may conclude from our earlier discussion of the be

haviour of q and p, that the potential becomes positively 
21 -2 infinite , V ~ -rr- e , as e-*0. As e increases V(e) decreases. 
±b 

There is a range of e for which V(e) is negative, after which 

V(e) increases. For cross sections f(e) such that a(e)/e is 

bounded as e-*°o, we find V(e) attaining a value of j ^s e-• •» . 
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Thus, V(e) has quite a reasonable graph (see Figure 1). The shape 

of the bottom of the well is sensitive to the scattering model 

2 

and to the value of X and B . Solving the eigenvalue problem 

to obtain modal solutions is equivalent to varying the shape of 

the potential well until it "binds" a particle having zero energy. 

It is known (13) that in order to apply the WKB method to 
-2 

a potential having a "centrifugal" component ~ e , one must 
1 -2 calculate with an effective potential V = V + - e . We 

shall denote the phase associated with the modified potential 

by w. Thus w = /j V J . Motion in the modified potential 

will have two "turning-points" ê  and e , at which V .^(e) = 0 . 

If we first consider the modal solutions, we find the following 

expressions for quantities of interest: 

a) eigenvalues 

f 2 1 
J de w(e,A,B ) = (n + -) TT 

(23) 

1̂ 

b) eigenfunctions 

Y (e) = C w ' ^ c o s F j w ( e ) d e - - 7 r ] e^<e< 
^2 

^1 (29) 

= ^ ^ n - " M - i Jw(e)de|] ^^ l 

^1 
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c) normalization 

2 
Here, corresponding to the case of B fixed, we have; 

f dG G"^ CP"*"(G)CP (e) = 1 (30) 

J n n 

0 

and i t s VflKB c o u n t e r p a r t 

i C^ j de G"* r w ( e ) p ( r ) T - ^ = 1 (31) 
2 n J J 

" l 

d) asymptotic behaviour, e.g. G-» » 

+ 
To obtain the limiting behaviour of cp (G) we note 

that the high energy behaviour of w(e) is just such as to can

cel the integrating factor in (24). The remaining portions of 

the phase integral readily lend themselves to numerical inte-

2 + 

gration. For B = 0 and 1/v absorption the co becomes constant 

at high energy. In most other cases it has a weak dependence 

on energy. A similar analysis may be made in the limit G-»0. 

At this point, some remarks about the accuracy of the 

VJKB solutions may be in order. One customarily says that they 

are accurate for the higher modes only? in practice they often 

turn out to be good for all modes (14). We shall see in the 

next section that the heavy gas model is one such case. Since 

V does not change drastically as we go from the heavy gas to 

other models, we may expect the accuracy found in that case to 
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be indicative of the accuracy to be expected in almost all 

models. 

In the usual derivation of the normalization formula, 

eq.(31), the square of the cosine in (29) is replaced by its 

average value, 1/2. The replacement would appear to be justi

fied only for those Y having many oscillations in e^<e<e2-

However, W. Furry (14) has shown that (31) holds for all modes 

with an error roughly equal to the error in Y (G) in the interior 

of the potential v/ell. In the heavy gas case, the error turns 

out to be less than ten percent. In fact, we can summarize the 

accuracy of the WKB formulas in our case as one percent or less 

for eigenvalues, and ten percent or less for eigenfunctions. 

e) the slowing down solutions 

One would not expect the WKB solutions to be good 

approximations in this case, since we are dealing with "nodeless' 

wave functions. In fact, the solutions turn out to be pretty 

good v/hen the absorption is moderate. The solution in this 

case is different from (29) only in the range e>G^, where 

M'(e) = C cos 6 w ^ exp j + w(G)de 

^2 (32) 
"2 

6 = j w(e)dG . 

^1 
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# 
The slowing-down solutions may be characterized by the 

ratio of the source strength to the "amount of Maxwellian 

component" present. In the case of slowing down in a system 

having 1/v capture, the ratio may be taken to be 

R = lim ec(G) / lim cp (c) (33) 
e-»oD e-«o 

following E. R. Cohen (1.) . The ratio may be computed easily, 

using the functions (32) . In the heavy gas case, v/e may com

pare with the exact values given by Cohen. We find an error 

that increases steadily with A, rising from zero to twenty 

percent as A increases from zero to two. 

NUMERICAL RESULTS 

We have done considerable calculation in the heavy-gas 

case (15) . Here, q(e) = 2|a.E (2-G) and P(G) = 2|J,S G. The 
s s 

quantity "A " is precisely the true second moment, A (e). 

The moments q and p have the high energy behaviour discussed 

earlier, but have a different low energy behaviour because 

q(e) lacks the typical 1/v behaviour there. The effective 
potential iss 

A 2 
1 ^ r A a -, .-N 1 /• DB ,N 1 1 

""eff = 77 "• Cinr ^ iiir ^̂ 0̂ "vi "*• Ciiir"v e "• 4 
(34) 
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and we have calculated only for f(€)=1 (1/v capture). 

a) Eigenvalues. 

2 
In Table I, we consider B =0, and list A , which is related 

n 
to the A through 

A„ = -|~ (Â  + A ) . (35) 
n LLi, a n 

s 

The "exact" values were obtained through numerical integration 

of the differential equation. 

It is a simple matter to estimate the dependence of A 

2 DB 
on n as n-»<». Under the change of variable G = X , 1- _ ̂  = v, 

3 ^^^ 
i • 1=6 , the eigenvalue equation (28) becomes 

(n+ h-rr = ^ H 2 3 4 ^ * (36) 
2 J ^ V4vx +6 x-x -1 

^1 

For large 6 we see that 

-3 -9 
x^ = 6 + 0(6 ) 

(37) 

x^ = 6 + 0(6"-^), 

-3 
and in this limit, the quartic approaches (x-6 )(8-x) 

2 2 
(x +6X+6 ), a result independent of v. Vfe may also neglect 

-3 
the term 6 in the l imi t , to obtain 
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^2 6 
I M j 3 i 2 I - ^ I 0 7" (v^\ 
J X V 4 V X + 6 X - X - 1 - J X V x ( 6 - x ) (x + 6 x + 6 ) " ^ ' 

1̂ ° 

Thus, for l a r g e n 

1 
2 nTT =:*. 6 J dx Jl-x^/x = 1 . 8 2 0 . . . 6 (39) 

o r , 

I A I - 2.269 n^^^ . ' n ' 

This asymptotic formula holds to within ten percent for n as 

low as 10. 

In Table II we give the dependence of the lower eigenvalues 

2 
ti and A- upon DB . Since the dependence of an eigenvalue 

2 
upon DB is small, and since we are discussing lower eigenvalues, 

we would expect the i-'i/KB predictions of the dependence to be 

poor. In fact, if we fit our vlKB results to a power series 

in B^ we find 

A = - 4 . 4 3 a p + 0 .767 p^ - 0 .036 p"̂  + . . . (VJKB) (40) 

to be compared with the "exact" value. 
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A = - 4.513 p + 0.667 p^ + 0 (p^) . (41) 

Here, p = DBV2^.Z . 
s 

Exact results for A, are absent from the literature. The 

WKB result is: 

Aĵ  = - 4.63 :i - 4.27P + 0.27p^ + (42) 

The space decay constants, H , form a second interesting 

set of eigenvalues. They may be obtained by setting A=0 and 

2 2 
B = -H in eq.(34). Just as the time decay constants are 

2 

often studied as power series in B , so are the space decay 

constants developed in a series in A , or A. The leading 

term, which is independent of A, is given correctly by the 

WKB calculation. In that limit, the eigenvalue integral is 
2 

s imple , and y i e l d s DK /2\i.Z = n . We f ind 

YY' = 0.225A(1 - 0.049A) + . . . 
s 

^ '^l^ 2 
~ r = 1 + 0.196A - 0.002 A +. 2^xZ^ 
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which may be compared with the following results, which stem 

from the diagonalization of some rather large matrices (16) 

„ 2 
DH 

•r-^ = 0.2216A(1 - 0.037A) + 0{^^) 

(exact) (44) 
rv 2 

'̂'l 2 3 
•r-r- = 1 + 0.194^ - 0.004A + 0 (A ) . 

Again, the reader should recall that the WKB approximation 

is at its worst for low eigenvalues, 

b) Eigenfunctions. 

Once the normalization constants, C are given, the WKB 

eigenfunctions (29) are specified at all points other than the 

turning points, e and e . In the vicinity of these points 

once can use the exact solution, which is a combination of 

Bessel functions of order one-third, (13), or one can join 

the I'JKB solutions "by eye." The uKB solutions, so constructed 

2 

were compared with the exact solutions for n=l and 2 and B =0. 

The solutions were compared at six points each, and found to 

differ by less than tv;elve percent. 

The behaviour of the eigenfunctions as G - <» is, as we 

have noted above, of particular importance. The quantity n (») 

gives the "importance" of each mode when a pulse of neutrons of 
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high energy is inserted into the system. To compute cp (0°) , 

we use (24) and (29). Thus 

'•ô'*'(e) = exp [-1 / ̂  (2-e)] Y^(G) (45) 

/ ̂ n IG ^ 1 G 
= AZ1_ C^ e__ î ^̂ g) J 8 exp[- J w(G')dG'J (46) 

'2 

with 

"<"^ = 27 7G2-4e(l - DBV2HI:3) + A/G 4. 1 ' ^̂ ^̂  

To go properly to the limit G -• », we write W(G)= ~ /s+b , 

2 2 
where a = (G-2V) and b = A/e - (4v -1). Then, w is split 

into two parts. 

w(G) = ~ /a (1+ - ) + - (- - 3 ^ ) — ^ 
43"' "' L b ,, b , 

Vl+ - + (1+ -r—) 

(48) 

2a' 

The first term in (4J) is dominant as G -• » and is integrable 

in terms of elementary functions. The second term mast be 

integrated numerically? the integration is rapid, for the 

-3 
integrand behaves as G for large G. We denote the latter 

integral by - 3 J, whence 
o 
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. 2 , 
_^ 4v -1 

*^2 /T^ - /2v ^^" e^ ^^ 
lim exp r. J w(G')d.'] = ̂  0 = 7 T 7 2 v ) (l^i^) 
e-*" Ĝ  2 2 

^2 2 

X e lim e e (49) 
g-fOO 

and 

ie - A _ 4v^-l 1 

c-»" e - 2 2 e 

The quantities cp («) are listed in Table I, for the case of 

no leakage, v = 1. 

+ 
The value of cp (G) at e=0 is another interesting quantity. 

It, too, may be calculated easily by splitting the phase 

integral. We find 

C<°' = v t : ^ <̂  ^ f ^ ^ >' ==<p [2(1 - yi * '^/'i>] 

X e""*̂  (51) 

where 

L = i I de '' ' -^" (52) 

0 ^/e - 4ve + A/e +1 + VA/e +1 
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may be calculated in a straightforward manner. 

c) Slowing-down solutions. 

The general form of the T̂ /̂KB slowing-down solution has 

been given earlier. One feature of the A > 0 solutions is 

2 
that the turning-points disappear when A exceeds (4v -l)//2v. 

The only case we have considered in some detail is v=l 

(infinite medium) , where the critical A is 3//̂ 1v. In that 

casQ the solutions are already rather poor (in error by 

twenty percent) when A = 2, so that we have not examined A's 

above the critical A. 

As noted earlier, v/e characterize the slowing down solu

tions by the ratio of ecp(e) at high energy to cp(e)/M(c) at 

low energy. The latter expression is given by eq.(51), 

while the former requires the use of eq.(49), along with a 

calculation of cos6. If the ratio is expanded in a power 

series in A, we find that the leading WKB term is 0.2208A, 

while the exact value is - /TT A = 0.2216A. The WKB terras of 

higher order are larger than they should be, so that for 

most values of A the WKB ratio is too high. When these values 

are compared with the correct ones quoted by Cohen (1), the 

error is found to increase with increasing A, over most of 

the range, achieving the value of + 20% at A = 2. 
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TABLE I 

EIGENFUNCTIONS AND EIGENVALUES FOR V = 1 (B = 0) 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Turning : 

^1 

0.263 

0.0346 

0.00916 

0.00362 

0.00178 

0.00100 

0.000621 

0.000411 

0.000286 

0.000207 

0.000154 

Points 

^2 

3.73 

5.76 

7.53 

9.27 

11.0 

12.7 

14.5 

16.2 

17.9 

19.6 

26.4 

i 

WKB 

0 

- 4.64 

-10.1 

-16.4 

-23.5 

-31.4 

-40.0 

-49.3 

-59.1 

-69.5 

-80.4 

'n 

exact 

0 

- 4.69 

-10.1 

-16.5 

-23.7 

C 
n 

0.841 

0.891 

0.969 

1.04 

1.09 

1.15 

1.19 

1.23 

1.27 

1.30 

1.34 

J 

0.253 

0.932 

1.60 

2.28 

2.97 

3.67 

4.36 

5.07 

5.77 

6.47 

7.18 

cp/( 

WKB 

1.00 

-5.51 

2.90X10"'' 

-1.56x10^ 

8.39x10^ 

-4.68x10^ 

2.6lxlo'* 

-1.48x10^ 

8.38x10^ 

-4.78x10^ 

2.76x10^ 

;») 

exact 

1, 

-5, 

.06 

.83 

L 

-0.633 

-0.131 

-0.0407 

-0.0172 

-0.00373 

-0.00504 

-0.00315 

-0.00212 

-0.00150 

-0.00110 

-0.000774 
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TABLE I I 

EIGENFUNCTIONS AND EIGENVALUES FOR VARIOUS V = 1 - ^ ^ -
2IJ.E5 

V 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

Turning 

^1 

0.268 

0.234 

0.204 

0.178 

0.155 

0.135 

0.118 

Points 

^2 

3.73 

3.55 

3.37 

3.19 

3.02 

2.35 

2.69 

A 

0 

-0.436 

-0.857 

-1.26 

-1.66 

-2.04 

-2.40 

C 
n 

0.841 

0.834 

0.823 

0.323 

0.821 

0.319 

0.819 

J 

0.258 

0.291 

0.330 

0.375 

0.426 

0.486 

0.556 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.0346 

0.0309 

0.0277 

0.0249 

0.0225 

0.0205 

0.0187 

5.76 

5.57 

5.38 

5.19 

5.02 

4.84 

4.67 

-4.64 

-5.06 

-5.48 

-5.89 

-6.30 

-6.71 

-7.11 

0.891 

0.893 

0.896 

0.899 

0.903 

0.907 

0.912 

0.932 

0.984 

1.04 

1.10 

1.17 

1.24 

1.32 
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TABLE I I I 

SLOWING-DOWN SPECTRA FOR V = 1 (B = 0 ) 

A 

0.25 

0.50 

0.75 

1.00 

2.00 

Turning 

^1 

0.309 

0.356 

0.413 

0.481 

1.00 

Points 

^2 

3.59 

3.44 

3.28 

3.11 

2.19 

6 

1.39 

1.21 

1.04 

0.788 

0.168 

J 

0.219 

0.180 

0.142 

0.105 

0.0738 

L 

-0.703 

-0.776 

-0.857 

-0.949 

-1.535 
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ABSTRACT 

We exzunine herein the decay constants, X, » which 

appear in the modal expansion of the neutron density in a 

study of the time-dependent thermalization of neutrons, 

A study of the proton gas moderator indicates the exist

ence of an infinite number of discrete A, in the range 

2 
0 < A<7=̂  r £ v„. The upper limit is a limit point for the 

XJTT SI B 

eigenvalue sequence. Consideration of more general models 

indicates the existence of a discrete spectrum in the 

range 0 s: A s (v r ) and A x (v v ) and a continuous 

^ min 3 max 
spectrum in (v r ) s A s (v r ) 

s min s max 
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This note contains some early results in a subject of 

consideratble interest, namely, the character of the decay 

constants, A, , which appear in the modal expansion of the 

neutron density 

in a study of the time-dependent thermalization of neutrons. 

Here x, defined through x" « E/k T » (v/v )' is a dimension-
B B 

less velocity variable, y is the macroscopic, free atom 

scattering cross section, and we neglect diffusive effects. 

The A and N may be viewed as the eigenvalues and corre-m m •' ^ 

spending eigenfunctions, respectively, of the scattering 

operator which appears in the Boltzmann equation. It is 

generally assumed (and hopedl) {!) that scattering operators 

representing physically "reasoneible" models of moderating 

materials will possess an infinite number of discrete eigen

values, extending from zero to +», with no limit point other 

than the point at infinity. To these eigenvalues, there cor

respond-so the assumption goes-eigenfunctions which form a 

complete set. In this note we show one model, the proton gas. 
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for which the assumption surely fails, and we shall indicate, 

in a rough way, how the assumption of a normal, point spectrum 
cL\[ 

fails in almost^roodels. 

In the case of the proton gas, the search for solutions 

of the form N (x,t) or N (X) exp - A T ,v^t leads to an intern m *̂L m sf B J 

gral equation in velocity, which may be transformed-and this 

is the special feature of the proton gas model-into a differ

ential equation, {2) 

^ O (2) 

= -1/2 
In eqn.(2), V (x) » ! -f= x» e~ 1 N (x) , while V(x) 

m I \JF J m 

is proportional to the reaction rate for scattering, 

V(x)F "XT (x), and T (x), the scattering cross section, 
S I. S 3 i s given by 

-V^ 

r/^J' li'^t;^)£A.i->-^% ]U 

-x^ 
Final ly , the function P(x) i s « \ [ T X Erf (X) + e 

(3) 
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A straightforward investigation of the differential 

equation for V » or for N shows that, 1) in the neighborhood 
m m 

(1 2) 

of the origin, the two independent solutions N ' are pro

portional to x" and to x respectively, while 2) in the 
(3/4) 

neighborhood of infinity, the two independent solutions N 
-X® -' 

behave as x^e an x respectively. The eigensolutions, 

N , will be taken to be those solutions of the differential 
m 

equation, with properties 

i) N -• ex" as X - 0 
m 

ii) N - « c ' x * e as x-»<» 
m 

iii) N is finite for all x >, 0. 
m -̂  

The conditions above are precisely those obeyed by the solu

tions to the integral equation, which equation has a unique 

solution. They might also te deduced, on the basis of a 

m.ore physical nijreenieCTt, by demanding that the importance 
+ -x* -1 

function -i.e. the adjoint function, N » N (x®e ) 
m m 

-belonging to each mode, be finite (indeed, constant) in the 

limits x -•0, X -» 00. 

To simplify further discussion of the eigensolutions, 

we make the transformation 
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which converts (2) into a Schrodinger equation. 

^ 

^ x 
*" +- ^>i:rvcj^^-o 

(5) 

where 

(b) 

and the boundary conditions on z are 1) z (x) ~ ax as x -•0 

3/2 

and 2) z (x) ~ x exp(-^x*) as x -•«>. The quantum mechanical 

euialog of our eigenvalue problem is the following: we seek 

values of the paraineter, A, present in a potential U(x,A) = 

-H^(x,A) for which there will be a bound state of zero energy 

having odd parity. (Note that U is an even function of x.) 

In discussing the potential, we will want to distinguish 

those values of A for which V(x) - A > 0 throughout, from those 

for which V(x) - A cem vanish for some x. Since V(x) is a 

positive, monotonic increasing function of x, having the 
2 2 

minimum value V . = V(0) = 7=. , we consider f i r s t Os A "̂7=̂  , 
mm vjTT \jir 

2 
then A > -;=::- . 

2 
In the case A <"!=: the potential well, as sketched in 

\)Tr 

figure 1, consists of a negative portion near the origin, which 
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joins with a well of harmonic oscillator type (U ~ ex") for 

2 
large x. Suppose that for some fixed ̂  < 7=, we find all 

of the energy levels (of odd parity) in our potential. It 

is clear that we will find a finite number of bound levels 

having energy < 0, and an infinite nvunber having energy > 0. 

Next, let us increase X, cind observe the change in the 

energy levels. As "K increases, the potential becomes deeper, 

and the levels descend into the well. Those values of X 

for which a level co-incides with the zero of energy are the 

eigenvalues of our thermalization problem. The niomber of 

levels which "pass through" E = 0 as A is varied from zero 

2 
to -^ is equal to the nvunber of decay constants, A which 

2 
lie between zero and "T= . 

\Jir 
At this point, the reader will opine that there are 

2 
"quite a few" X less than -pr . It is easy to see that there 

2 
are in fact an infinite number lying in 0 < X < -f=r , that 

\jir 

X » "rr. * V . is a limit point for the infinite sequence of 

decay constants. The key to the argument lies in the spectrum 

of bound states for the 1/x* potential, which is the limiting 

form of the negative portion of our potential. It is known 

(see, for example, (3)) that the spectrum of bound, ortho-

normal states extends to minus infinity for this potential. 
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whence an infinite number of levels "pass thru" E » 0, and 

our conjecture of a limit point is verified. 

2 
The modal solutions we have obtained, for X < 7= are 

oscillatory functions. Their oscillations are limited, how

ever, to a domain which we might roughly characterize as 

0 ^ X « X , where x , the "classical turning point," is the 

point at which U(x), the potential, is zero. (The turning point 

increases slowly, with X, approaching a limiting value of 2.5 

as X -• "p".) It is clear, then, that the modal solutions do 

not form a ccMnplete set for the representation of admissible 

functions on the full domain 0 < x < «». However, they are in 

practice quite useful for the representation of "sufficiently 

smooth" neutron distributions on 0 < x < «». As an example, they 
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describe the evolution of tlie distriiution after several col

lisions have intervened tetween time zero and time t, i.e. the 

quasi-asymptotic distributions considered by experimenters. 

2 

Consider, now, A > •p=̂  . In this case, we deal with a 

potential well of quite another sort (figure 2). For large 

x the potential is again harmonic, and as x decreases, the 

potential decreases, becoming negatively infinite as — when 
X—X" 

X approaches x*, the point at which V(x) « A. The potential 

below X* has the vmusual shape sketched in figure 2. 

Our condition iii) above, that N(x) be finite, ensures, 

in connection with eqn,(4)jthat z (x) must approach zero as 

X -• X* , Investigation of the differential equation shows that 

the regular solution about x = x* behaves as x - x*, so that 

our eigensolutions would appear (but see aheadI) to be those 

solutions of the equation, regular at x = x*, which join up 

with the exponentially decreasing solution in the neighborhood 

of infinity. Much of the argument goes as before; once more 

we are concerned with the number of bound states having energies 

less than zero, in a particular potential well. 

In this case, the potential, which, for x near x*, be

haves like a one-dimensional Coulomb potential, has only a 

finite number of negative energy levels - i.e., it is bounded 
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2 
from below. As X increases beyond -p:, x* increases, but the 

V IT 

separation between x* and the turning point lying above x* 

decreases. This "weakening" of the Coulomb potential forces 

the levels to ascend, rather than descend, and as X -• <», a 

finite number of levels will pass through the zero energy level. 

As before, each X for which a bound level coincides with zero 

energy, would apE>ear to be a proper eigenvalue. The corre

sponding eigenfunctions are quite curious, they oscillate ever 

more rapidly in a narrowing range of x, located farther and 

farther from the origin. 

We have said "would appear" to indicate that our argument 

is not finished. Indeed, we have neglected to impose condition 

i), which is equivalent to the vanishing of z at x = 0. This 

additional constraint, we believe, makes unlikely the existence 
2 

of more than a few "discrete" modes, having X > "rr. Their 

existence has little bearing upon questions of completeness. 

We shall have to add an additional, infinite set of functions 

to the discrete eigenfunctions in order to get a set which ap

pears complete. Such a set would be capable of representing 

delta function distributions of neutrons, for example. 

2 
We can find the additional functions, which have X > "pr, 

by removing condition iii), the condition of finiteness. If 
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the number density modes are permitted to have a singularity of 

delta-function type, new modes, characterized by a continuum of 

allowed values of X, may be constructed. The nature of these 

modes, their orthogonality, etc. is best seen from a study of 

the integral form of the Boltzmann equation (see ahead). We 

will indicate, briefly, how they might be constructed from the 

differential equation we have been studying. 

2 
Let us choose for X > "rr, the solution of (5) which has 

proper behaviour at x « 0, and continue it to x » x*. In the 

neighborhood of x* the two solutions of the differential 

equation behave as (x-x*) and b^+ba(x-x*)log(x-x*)+... respec

tively, so that our solution goes to some non-zero value as 

X -• x* from below. The solution for x > x* is defined as that 

solution-curve which originates at x* and has the required 

exponential behaviour at infinity. The solution for x > x* may 

be normalized so that our overall solution is continuous in 

0<x<» though its derivatives are not. 

The important feature of these solutions is that z need 

not vanish as x-»x*. Eqn. (4) then allows us to deduce that (4) 

N^(x) _ p j ^ ^ ^ + h(X) 6(v(x)-x) (6a) 
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when X is close to x*. P signifies that, upon integration, 

the principal value of the singular function is to be taken. 

Since V(x) increases monotonically in the range 0 4x<«», 

2 

singular eigenfunctions, with index X running from pr to 

infinity, will contain delta functions 6(x-x*) where x* runs 

from zero to infinity. It seems extremely likely that the set 

of functions consisting of the regular, discrete functions, and 

the singular eigenfunctions will be complete for the repre-

sentation of all "physical" solutions to the time dependent 

Boltzmann equation. 
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The General Case 

Results similar to those which we have obtained through 

the detailed consideration of the proton gas moderator seem 

to exist in the general case. We shall indicate, briefly, 

how they come a]->out. The approach we use is quite similar to 

that introduced by Case (4). 

We begin with the eigenvalue equation 

(7) 

where X , in accord with common usage, is equal to our earlier 

A , multiplied by r -. We represent the kernel in (7) through 

M 

whence 

(9) 

in an obvious no ta t ion . If X can never equal x l (x) , t h a t i s , 
m s 
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X < (x r ) , or X > (x T ) , eqn.(9) can be integrated 
^ ^ min "̂  ^ max 
to give the set of M equations, 

M 

hlml ^ Z /̂ m4 (X^L (10) 

where 

r ̂  r 

The vanishing of the determinant which appears in the solu

tion of the homogeneous system (10) is, of course, the 

eigenvalue condition. Should we obtain an infinity of eigen

values as M -. », (with 0 ̂r A < (x F ) and, possibly, 
® min 

A > (x V ) ) we shall have duplicated the limit point 
s max 

behaviour noted earlier. 

When we consider values of A which can equal some 

X V (x), the formal solution of (9) becomes (4) s / " 

where P denotes "principal value" and h(A) is a function to 
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be determined. Since the normalization of N (x) is arbitrary, 

we have, in fact, only M-1 components N for given X. Thus, 

when we multiply on the left by g (x) and integrate we have 

M linear algebraic equations for the determination of M-1 

components N , plus the unknown function h(A). The algebraic 
AJC 

system is, then, generally solvable for all A in the range 

(x T ) s A i (x r ) . We have a continuum of allowed 
^ min ® max 

A's, connected with orthogonal eigenfunctions having, in part, 

delta-function behaviour. There is the additional possibility 

that h(A) vanishes for some A in the continuous range. In 

these cases, the set (12) reduces to the homogeneous set (10) 

and we have the case of discrete eigenvalues lying inside the 
2 

continuous range. These are the A > ^— modes mentioned 

earlier. 

One might conjecture that the continuxim solutions, when 

augmented by the discrete modes will form a set that is com

plete in the range 0 <: x < «>. The conjecture is supixsrted by 

the "trivial" completeness of the delta-functions, and the 

presence of "frequencies," X, covering the entire range of 

possible reaction rates, and more. Of course, a proof of the 

completeness remains to be found. 

In appendix B we give a proof for a simple model of the scattering 

kernel. 
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APPENDIX A 

We shall discuss here some properties of a Boltzmann 

equation which possesses a very simple scattering kernel. 

The following may serve to illustrate some of the points made 

in the text. 

Consider the scattering kernel 

E (x' -* x) « p r (x') x V (x) M(x) 
S 9 9 

(Al) 

^ - J dx X r^(x) M(x) 
o 

where M(x) is x*exp(-x*) and I! (x) is a typical "incoherent" 
9 

scattering cross section. xT (x) is to be monotonic increasing 

in Osx<*, and proportional to x for large x. The kernel (Al) 

satisfies the requirement of detailed balance. 

The equation corresponding to (9) in the text ist 

X T (x) - x1 N(x) - p x r (x)M(x) f dx' x' r (x') N(x'). 
s J a J 8 

(A2) 

It indicates directly that the x-dependence of N(x) in the limits 

x-»0 and x-•» is the behaviour we required earlier. To discuss 
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the discrete spectrum, (X «̂  x v (x)) , we multiply by 

r 1-1 X T (x) X F - X and integrate. The eigenvalue condition s L s 

appears as: 

- » 00 X E 

- " f d x x E M = ("dxxTM — r - ~ . (A3) 
O 0 • 

Clearly (A3) has the solution X»=0. It is also easy to see 

that X « 0 is the only solution in the range 0 < X < (x r ) s m m 
The corresponding eigenfunction is the Maxwellian, M(x). 

The continuum eigenfunctions, N.̂ , (X«x*r (x*) > (x r ) ) 
A S S J 

min 
satisfy the equation 

N-(x) - p X T'̂ (x)M(x) P ̂ _ fl.—r + h(X) 6(X-x5:„(x)) 
A S xr \X/ - A S 

(A4) 

where the normalization of N. (x) has been chosen so that 
A 

f dx' X' y (x') N- (x') « 1 . (A5) 
J S A 

If we multiply on the left by x T and integrate, 
s 

• XT 
1 - p P J dxx TgM T^TT^ + h(X) J X v^ ^(X- X T^(x)^ dx 
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we can so lve for h (X) . Indeed, 

• xT. 
1-p P f dx X 7 M — - - ^ 

J s X r -
X s 

h(X) = . (A6) 
to 

I d x x F fifx-xF (x)"^ 
J S V 3 ,' 

The eigenfunction expansion of a solution N(x,t) to 

our Boltzmann equation will be of the form 

IB 

N(x,t) " Co M (x) + J dX C(X)exp [-Xv^t] N (x) . (A7) 

(xlg) 
min 

The single, discrete eigenfunction gives the steady state 

distribution of neutrons, while the continuum solutions, N. , 

are needed to represent the tremsient behaviour. 
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APPENDIX B 

Ccxnpleteness in the Simple Model 

We wish to show, in this section, that all "reasonable" 

solutions to the special transport equation discussed in 

Appendix A may be given a representation in terms of the 

eigenfunctions considered there. By "reasonable" solution, 

we mean one generated by the requirement that N(x,t) be 

equal to some prescribed N(x,0) at t = 0, and whose Laplace 

transform-with respect to time-exists. It will suffice to 

consider the case of the Green's function, g(x,y;t), gener

ated by N(x,0) ~ 6(x-y). We shall show that g(x,y;t) has 

the modal representation. 

where X* « (vr ) . Having shown (Bl) to be true, we infer 
3 min. 

that the solution stemming from arbitrary N(x,0) has the 

usual modal representation in terms of the N , with coeffi-
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cients given by the inner products of N(x«0) and N. , i.e.. 

o >' 
(Bla) 

Consider 

CD 

(B2) 5^ t xf fxy Mfx,rj . y^yi K' f(xU) N(y<'^r} 

where T ^ V ^ T -t, and v (x*,x) » 7 _p(x*,x). E _ is the 
B sf s sf^ sf 

macroscopic, free atom scattering cross section. Our 

"simple model" has the scattering kernel 

where v(x) sxp(x). We shall solve the initial-value 

problon* N(x,0) * 6 (x-y), by meems of the Laplace transform. 

If we define 

(B4) 
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calculations similar to those in Appendix A yield 

)H 
AS(^)M{y/ -vK'^) _ J OfX 'V j j 

^ . . . "̂  - r — - . . (B5) 
'^^^^(YJ y\-^n^f) \-^^ri%) >s + V ( x j 

CO 

with b(X)« J d? ~ x + v 7 r ) • The expression (B4) def ines 
0 

N(x,X) for the (X)> 0 where it is analytic; (B5) extends 

the definition throughout the X-plane. 

From its definition* we see that b(X), and hence N(X) 

are discontinuous across the portion of the real X-axis 

which extends from -v(0) to -• . To invert (B5) we con

sider T—r f dX e N(x,X), where the contour, r» is 

sketched in Figure 3. The sole points inside the contour 

which are singular points of N, are those at which l-pb(X)=0 

This is the eigen-value equation for the discrete X's, and 

a little consideration shows it is satisfied only at XsQ. 

The contribution to N(X,T) frĉ n this pole is the normalized 
4 

Maxwellian, -7- M(x). 
/IT 

The part of the integration extending from A to B 

yields N(X,T), when A and B are made to approach -• and +•, 
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respectively. In this limit, the portions BC and FA con

tribute nothing, because of the rapid decrease of expCXr). 

Thus, integration aroiind r yields 

hsi(K.T) . 1 H6cy - ^ . r ^ ^ e N(>'.^i (B6) 
^ 7TT( 3 • 

Cpff 

as C and F are made to approach infinity. 

We now evaluate the integral over CDEF. To begin, 

we note that the integral over DE, that is, over a small 

semicircle, of radius e, centered at -v(0), vanishes as 

e-«0. Next, we bring the lines CD and EF close to the real 

axis, so that (B6) becomes 

1j (n^J 

The quantity in square brackets is seen to be equal to: 

^ c)^ ^ •••̂ '̂  L s-ftf-v'vj r-fif-^n^> )-p;/-x-^f 

- dfy-'j} 
:A:2-^f(-j 5't>"^^^.^j J 

(B8) 
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and we shall rearrange it by making use of relation 

Then, the second term in (B8) becomes equal to 2)ri 6(x-y) 

6(s-v(x)), which, in turn, ia equal to 2iri|v*(x)| 6(8-v(x)) 

6(a-v(y)). 

To ccmtinue, we use (B9) to write 

V \ J ̂  — —-»« [ 
y-ucfj ^ '̂ '̂̂  J xcsy 

- l4^tjf)^iT< ,̂ ̂o(ry (BIO) 

The notation [>••1 aignifies that the function inaide 
^ -'x(a) 

the square brackets la to be evaluated at the value of its 

argument, x, for which v(x)«8. Thia ia the aame value of x 

which appear a In the term 2Tri|v*(x)| ... mentl^ied in the 

laat paragraph. The reat of the calculation la atralght-

forward. We uae (B9) In multiplying out (B8), to obtain 
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It? A 
^ H ( x , - s - i 

(BID 

'-̂ ^""^ o(5-^('-j); 
p. 

r-\/(v) 
fr-\ jf>f); 

Thua, 

C\{x,:'^X} 

^J(o) 

where N^(y) - ; ^ . N̂ , (x) - M(x), X,, - 0, 

hi 
f I-*-f ' o r-

+ 
k],ixj - M ^ i Aj ; f>; 

A ( s j -_ 1 r̂, (ry 

"̂  (MlV^y)^ ^frfi;fr^J^ 
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CAPTIONS 

FIGURE 1. The effective potential, U(x,X), for a value 

2 
of X less than -p . x is the classical turning 

point for a particle of zero energy. The arrow 

indicates the manner in which the potential 

changes, as X increases. 

FIGURE 2. The effective potential, U, for a value of X 

2 

greater than -p: . x* is the point at which the 

reaction rate, V(x), is equal to X. The arrows 

indicate the manner in which the potential changes, 

as X increases. 

FIGURE 3. Integration contour. Appendix B. 
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found by the usual expansions which start with a Maxwellian 

as the leading term. In addition, the method also applies to 

the double P-L approximations which allows one rather directly 

to obviate most of the uncertainty due to vacuum boundary con

ditions and the assignment of an equivalent buckling when mak

ing comparison with experiment. In general, the few group 

time dependent P-L approximation is quite flexible and allows 

one to introduce into the study of a wide variety of problems 

a minimum amount of complexity. 

GENERAL FORMULATION 

The basic equations for this study are the time depend

ent P-L equations in slab geometry with isotropic energy trans

fer: 

where, 

(1) 

k-hh-.^ 

superscripts stand for the group of which there are G in all, 

the j'th Legem 

the k'th group. 

F. is the j'th Legendre component of the directional flux in 

v^ is the average speed in the k'th group. 
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^y is the total cross section in the k'th group, 

^.: is the j'th Legendre component of the scattering cross 

section in the k'th group, 

<^ 
2-0, is the isotropic energy transfer cross section from 

the g'th to the k'th group. 

It should be noted that the time dependent P-1 approximation 

and diffusion theory are not the same; the time dependent 

diffusion equations are obtained from the P-1 equations by 

dropping the time derivative of the current. 

A solution of the above equations is assumed of the 

form, 

F^(x,t) = fĵ (x) e" , n = 1,2,...,L , ^2) 

The equations are then solved as in the static case except 

that the characteristic equation rather than determining the 

relaxation lengths in terms of the material parameters yields 

a relation between the relaxation lengths and the relaxation 

times. This relation between the relaxation lengths and the 

relaxation times must then be solved simultaneously with the 

boundary conditions to determine the eigenvalues, the A's. 

This is usually a rather transparent equation which is 

however transcendental; it is solved by standard numerical 

techniques. If a buckling type of dependence is assumed for 

the f (x) then the characteristic equation is simply a poly

nomial relationship between the A's and the buckling and 

yields the eigenvalues for any given buckling. 
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If a buckling is assumed for the spatial dependence, 

there are L times G eigenvalues for each buckling. The same 

number of eigenvalues appear when boundary conditions other 

than the zero flux condition are assumed except that the 

equations also simultaneously yield the eigenvalues for the 

higher spatial modes - that is those corresponding to the 

harmonic bucklings. In diffusion theory there are only G 

eigenvalues for each spatial mode. Except for diffusion 

theory, the number of eigenvalues and eigenfunctions is just 

enough to allow a match to the initial values of the first 

L components of the directional flux in each energy group 

for each spatial harmonic. Diffusion theory has only enough 

flexibility to match the initial values of the scalar flux 

in each energy group for each spatial harmonic. 

TIME TRANSIENTS 

The consideration of time transients may be naturally 

split into consideration of two types: current transients 

and energy transients. By a current transient is meant those 

eigenfunctions besides the fundamental which are present due 

to the matching of the initial flux and current and higher P-

components since the fundamental mode by itself does not have 

enough freedom to match all the P-L components of the initial 

conditions in general. By an energy transient is meant those 

eigenfunctions besides the fundamental which are present due 

to fact that the energy distribution of the fundamental mode 
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does not by itself necessarily match the initial energy dis

tribution. 

It is simplest to examine the current transients in the 

one group P-1 approximation with a spatial dependence given 

by a buckling. The eigenvalues for this case are given by 

X^- /,r(^. + i-^rR-«-l/^^T«)'-^^^) ; (3) 

where 

2 
In the case of no absorption and no leakage (B =0) these 

eigenvalues reduce to 

)v, = o J A i = ^ ^TR ' (4) 

The eigenvalue zero corresponds to a mode which persists in

definitely; the corresponding eigenfunction has an arbitrary 

amplitude to match the initial flux but has no current com

ponent. The eigenvalue ^Sf^^ has an eigenf unction which has 

a zero value of the flux but an arbitrary current amplitude 

which may be used to match the initial current. The neutrons 

in this second mode do not leak out of the system nor are 

they absorbed since in this particular example B = ^ = 0 . 

However, there is no net number of neutrons in this second 

mode since integration over the directional flux of this 

mode yields no contribution from the scalar flux component 

since it has zero amplitude and no contribution from the 
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current component because of the orthogonality of unity and 

P, Legendre functions. This second mode then is simply an 

angular transient which is due to the mismatch of the angu

lar distribution of the persisting mode with the initial 

angular distribution. The time for the angular distribution 

of the directional flux to rearrange itself into that of the 

persisting mode is on the order of (^-^TR^ 

As the leakage and absorption terms increase from zero, 

the net number of neutrons in the current transient becomes 

non-zero. The net number of neutrons in the transient is 

just the number of neutrons that will actually leak from and 

be absorbed in that mode. For large enough leakage or absorp

tion the net nxraiber of neutrons in the transient can be con

siderable, and the influence of the leakage is to make the 

properties of the transient more like that of the persisting 

mode. 

If the leakage is increased to the point where leakage 

becomes more probable than a transport collision, that is 

if"^ ^\-r^) then the character of the eigenfunctions in P-1 

approximation changes. In particular, the eigenvalues as 

given by Eq. (3) become complex. The corresponding eigen

functions describe damped travelling waves. The damping 

factor and phase velocity of these waves are given by 

^ (5) 
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If for a fixed odd order of P-L approximation and for 

a fixed number of groups the characteristic equation is writ

ten for a spatial dependence given by a buckling, one obtains 

the characteristic polynomial for the eigenvalues. The coef

ficients in the polynomial are functions of the cross sec

tions and of the buckling. If the buckling is increased to 

the point where the cross sections become negligible in com

parison with the buckling, it is easily seen that all the 

coefficients in the polynomial of degree 2/L ^ X become posi

tive. The roots of such a polynomial are complex. Hence, 

regardless of the order of P-L approximation (odd L) or the 

number of groups employed, as long as the cross sections are 

finite, only a finite number of buckling modes have real 

eigenvalues and an infinite number have complex eigenvalues. 

It also follows then that for a system with a large enough 

fundamental buckling all of the eigenvalues are complex. 

Note that this does not apply to the diffusion approximation 

or the even L approximations. 

This investigation then shows that travelling wave 

phenomena become important for systems where bucklings on 

the order of -̂j-R 3,re important. For such systems, time de

pendent diffusion theory breaks down; the eigenvalues yielded 

by diffusion remain real and constantly increase with buck

ling. In addition the usual expansions of the eigenvalue in 

2 
a power series in B obviously are beyond their radius of 

convergence at this point since they do not yield complex 

eigenvalues. 
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It is simplest to consider energy transients in the two 

group diffusion approximation with a spatial dependence given 

by a buckling. The eigenvalues for this case are given by 

(6) 

where 

' (7) 

2 In the case of no absorption and no leakage (B =0), the 

eigenvalues reduce to 

(8) 

The eigenvalue zero corresponds to a mode which persists in

definitely; the corresponding eigenfunction has an arbitrary 

amplitude to match the persisting energy spectrum (and cur

rent) . The eigenfunction corresponding to the eigenvalue 

/^J•.^^ +/v^^^x when summed over energy has no net number of 

neutrons. The meaning of this eigenfunction then is simply 

a distortion of the fundamental mode spectrum which has a 

reciprocal relaxation time given by the total probability 

per unit time for collision with change of energy. It is 

essentially an eigenvalue of the scattering matrix. 

As the leakage and absorption terms increase from zero 

the net number of neutrons in the energy transient becomes 

greater than zero. The net number of neutrons in the tran

sient is just the number of neutrons that will actually leak 
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from and be absorbed in that mode. 

The eigenvalues for the energy modes may be expanded in 
2 

powers of B . However, in certain cases caution must be 

observed. In the particular case where for very small buck

ling the smaller eigenvalue grows more rapidly with increas-
2 

ing B than the larger eigenvalue, there will arrive a point 

at which there is an "apparent crossing" of the eigenvalues. 

If the square root in Eq. (6) for the eigenvalues is expanded 

in terms of the difference of A,and A-^^ it must be remembered 

that the absolute difference of this quantity is needed in 

the expansion and this term has to be rearranged if absolute 

value signs are not employed after the "apparent crossing" 
2 

value of B . Also the expansion itself must be changed for 

values in the immediate vicinity of the apparent crossing 

where the coupling term is greater than the difference of 

the single group eigenvalues. It is certainly questionable 

whether the ordinary expansions of the eigenvalue in powers 

of B are valid for the lowest eigenvalue when the eigenvalue 

of the energy transient approaches the lowest eigenvalue and 

for larger bucklings. Even if the expansion is that for the 

lowest eigenvalue in that range, it must certainly be neces

sary to take a great many terms to obtain any accuracy in 

order to reproduce the requisite sharp change in the behavior 

of the lowest eigenvalue with buckling. 

It is apparent that there are large changes in the be

havior of the eigenvalues for very leaky systems. Consider

ing that these eigenvalues are then put back into the equations 
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to solve for the energy eigenfunctions it is apparent that 

large changes in the spectra may be expected for leaky sys

tems. In a spectrtom which is close to one dominated by a 

current transient or in a spectrum which is dominated by an 

energy transient, the approach of starting off with a 

Maxwellian as a first approximation is certainly question

able. 

WATER EXAMPLE 

Water has been chosen as an example to show up the cur

rent transients because of the large amount of important work 

that has been done on this medium. Also, the effects of vari 

ous boundary conditions has been estimated because of the 

extreme importance of the boundary in small assemblies. The 

isotropic energy transfer cross sections were obtained from 

Nelkin kernel. In the two group cases the groups were split 

at an energy corresponding to kT; this happens to give a 

fairly good fit to diffusion cooling experiments, but the 

main point is that the cross sections for water are consist

ently calculated in all cases. The results are given in the 

tables below. 

The eigenvalues for a water assembly described by buck

ling are given in Table 1. In this table, the values are 

calculated on the basis of one group theory using the various 

approximations listed. The effects of the current transients 
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B^ Diff Th P-1 P-3 

0 cm" 

.000987 

.003948 

.01579 

.02467 

.0987 

.2014 

.3948 

2.467 

9.870 

39.48 

.004296 

.004329 

.004430 

.004832 

.005134 

.007648 

.01114 

.01770 

.08809 

.3395 

1.345 

.004296 

.004330 

.004431 

.004838 

.005143 

.007703 

.01130 

.01824 

.1148 

.4750 

.4750 

.4749 

.4745 

.4742 

.4716 

.4680 

.4611 

.3645 

.2397 ±- i .3222 

.2397 ± i .7626 

.004296 

.004330 

.004431 

.004838 

.005142 

.007691 

.01125 

.01804 

.09944 

.3602 ± 

.4818 ± 

.4750 

.4750 

.4751 

.4751 

.4752 

.4755 

.4760 

.4766 

.4625 

i .2457 

i .5062 

.7996 

.7996 ± 

.7996 

.7993 

.7991 

.7977 

.7957 

.7920 

.7583 

.6791 

.5576 

± 

± 

± 

± 
d: 

± 

i 

± 

+: 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

.7996 

.003521 

.007022 

.01403 

.01755 

.03521 

.06343 

.07134 

.1925 

.4333 

1.083 

TABLE 1 

-1 

The tabular entries give the decay constants in (micro-seconds)- for a one-

group treatment of water using the bucklings and theories indicated. 



become dominant at a buckling of about B =3.5 cm" . This 

is beyond the range where pulsed work has been done on pure 

water assemblies; however, the range where current tran

sients are important may be reached by some of the largest 

pulsed sources now available. In addition, it is clear that 

the bucklings or Fourier components important in some pulsed 

water lattic experiments do reach into the range in question. 

It should be noted that the time dependence of the angular 

transient is markedly different from that of the flux, hence 

any spectrum measurements even in a moderate size assembly 

must take this into account when time dependent experiments 

and theory are compared. 

As is well known, the transport or non-diffusion cor

rections tend to be over-emphasized in P-1 theory and this 

shows up for small bucklings in the comparison of P-1 and 

P-3 calculations in Table 1. However, the dominance of the 

current transient in the range of interest for lattices is 

quite clear, and this physical phenomenon appears in all the 

odd order P-L approximations but does not appear at all in 

diffusion theory. 

Since the transport and energy corrections to the 

eigenvalue for small bucklings are known to be of opposite 

sign, the eigenvalues for the same water systems were cal

culated on the basis of two energy groups. These results 

are given in Table 2. The values given show clearly that 

the lowest eigenvalue becomes imaginary at about the same 
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B^ Diff Th P-1 

0 cm"^ 

.0009870 

.003948 

.01579 

.02467 

.09870 

.2014 

.3948 

2.467 

9.870 

39.48 

.004296 

.004329 

.004430 

.004832 

.005133 

.007631 

.01107 

.01744 

.07815 

.2305 

.6961 

.2238 

.2238 

.2238 

.2243 

.2246 

.2272 

.2309 

,2378 

.3201 

.6784 

2.255 

.004296 

.004329 

.004434 

.004844 

.005141 

.006979 

.01121 

.01789 

.09178 

.3388 ± i 

.3291 ± i 

.2238 

.2238 

.2240 

.2247 

.2253 

,2292 

.2368 

.2511 

.3611±i 

.4807 

1.040 

.4974 

.4974 

.4973 

.4970 

.4969 

.4952 

,4928 

.4870 

.1791 

.2913±i 

.3010±i 

.5348 

.5347 

.5345 

.5336 

.5329 

.5273 

.5194 

.5042 

.4463 

.1881 

.5104 

TABLE 2 

The tabular entries give the decay constants in (micro-seconds) using 

two groups and the bucklings and theories indicated. 



buckling as in one group theory. The basic physical phenome

non of traveling waves is not affected by multi-energy con

siderations although the magnitude of the eigenvalues is, 

of course, somewhat modified by the two group as opposed to 

the one group scheme. 

One apparent difficulty of working with small assemblies 

is the lack of a satisfactory boundary condition in the lower 

order approximations which will accurately portray the leak

age when it is the dominant effect. This is simply another 

way of stating that the low order approximations are usually 

unsatisfactory near boundaries. In order to investigate the 

magnitude of the breakdown of the low order approximations 

for small systems, the eigenvalues for water systems have 

been calculated on the basis of diffusion theory and P-1 the

ory using the double P-0 approximation with its natural 

vacuum boundary conditions. These results are given in 

Table 3. It is clear that the disagreement between the vari

ous theories is large. 

The three values in Table 3 noted with an asterisk were 

not calculated due to the numerical code used to obtain the 

results - they could readily be obtained by modifying the 

code in a minor way. However, the authors were not able to 

satisfy the Marshak type boundary conditions in a simple 

direct way when the eigenvalue became imaginary. 
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Slab 
Thickness Diff Th P-1 double P-0 

cm. 

99.4 

49.4 

24.4 

19.4 

9.4 

6.4 

4.4 

1.4 

.004296 

.004325 

.004411 

.004757 

.005017 

,007201 

,01027 

,01611 

.08383 

.004296 

.004328 

.004412 

.004837 

.005141 

.007236 

.01063 

.01805 

.09980 

.4750 

.4750 

.4745 

.4727 

.4712 

.4574 

.4323 

.3470 

* 

.004296 

.004318 

.004383 

.006480 

.004848 

,006558 

.009015 

.01384 

* 

.4750 

.4749 

.4746 

.4733 

.4722 

,4619 

,4439 

,3929 

* 

TABLE 3 

The tabular entries give the decay constants in (micro-seconds)" using the 

theories indicated. The diffusion theory and P-1 calculations employed Marshak 

boundary conditions, the double P-0 calculations employed the natural vacuum 

boundary conditions of this theory. The slab thicknesses if increased by 0.6 cm 

would yield fundamental bucklings of the examples listed in Tables 2 and 3. 



BERYLLIUM EXAMPLE 

Beryllium has been chosen as an example to show up the 

energy transients because of their importance in this and 

other crystalline moderator cases. G. de Saussure has al

ready pointed out the trapping effect in beryllium due to 

the large spike in the transport cross section at the Bragg 

cut-off. Some of the equations and cross sections used in 

the study of beryllium are the same as de Saussure s, and 

most of his results are essentially confirmed. However, 

the present work investigates the trapping from the point 

of view of a transient which leads to additional insight and 

suggests important further experimental approaches. 

The two groups for Beryllium are divided on a physical 

basis as done by de Saussure. The trapped group consists of 

those neutrons with energy between .00685 ev and .00739 ev. 

The second group consists of all other neutrons. The inelas

tic scattering in the trapped group is taken as 0.4 b. and 

detailed balance is used. The transport cross section for 

the trapped group is taken as 18 b. and for the other group 

as 4,95 b. The absorption is given by v.^^ = 288/sec. 

The solid lines in Fig. 1 show the two lowest eigen

values calculated on the basis of two group diffusion theory 

using Eq. 6. At low values of the buckling the second eigen

value corresponds to a transient which distorts the asymp

totic spectrum in order to fit the initial energy spectrum 

within the limits allowed by these two groups. As leakier 
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Figure 1. Eigenvalues for beryllium. The solid curves are based on the 

cross sections in the text; the dashed curves are based on an inelastic 

cross section increased by 25^. The dotted lines are due to de Saussure3, 
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systems, that is systems of increased buckling, are con

sidered, the number of neutrons in the mode which was a 

transient for small bucklings becomes such that it repre

sents a positive number of neutrons in every group. For 

such leaky systems, the as3raiptotic spectrum is that of the 

trapped mode. This trapped mode for very leaky systems has 

a lifetime governed mainly by the lifetime of the trapped 

energy group. 

The sharp bend in the curve of the lowest eigenvalue 
2 

vs. B comes when the eigenvalues of the separate energy 

groups are equal. The experimental values for beryllium 

lie close to the lowest eigenvalue up to the sharp bend; 

after the bend there is a great deal of scatter in the 

experimental measurements. The dashed curves in Fig. 1 

represent the same calculation as the solid curves except 

that the inelastic cross sections are all increased by 25% 

(from 0.4 b to 0.5 b in the trapped group). It is thus 

seen from the curves that the decay constant for large buck

lings is quite sensitive to the magnitude of the inelastic 

cross section. 

The dotted lines in Fig. 1 are those given by 

de Saussure. The more nearly horizontal of the two dotted 

lines is an upper limit to the lowest eigenvalue found by 

de Saussure by applying a variational principle due to 

Nelkin. It is seen from Fig. 1 that the lowest eigenvalue 

is actually less than this upper limit. Of course, if the 

cross sections which are used in obtaining the upper limit 
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are changed the limit will change and so the dashed curves 

do not violate the principle of the upper limit. The second 

dotted line in Fig. 1 is given by de Saussure and is essen

tially the one group diffusion theory result. Clearly the 

lowest eigenvalue over its entire range may be understood 

from the point of view presented here. 

Some eigenfunctions of the two group theory have also 

been constructed. They have been used to find the spectrum 

in the lowest geometrical mode as a function of time based 

on the condition that there are no neutrons in the trapped 

mode at t=0. These results, based on the higher two group 

cross sections, are listed in Table 4 where the amplitudes 

are given for the number density. Within the accuracy of 

the numbers presented it may be noted that there are no 

neutrons present at any time in the eigenfunction correspond-
2 

ing to the excited state for B = 0; if the calculations were 

carried to more significant digits, there would be a few net 

neutrons in this mode in this case to correspond to the small 

number of neutrons which actually get absorbed. For the 
2 

higher bucklings it is seen that in the range of B = .07 

2 

to B = .1 that 107o to 507o of the neutrons in the persist

ent mode are in the trapped group. It is thus suggested 

that a velocity selector such as a crystal spectrometer or 

a chopper might be used to obtain the decay constant of the 

persisting mode in this range of buckling. The contamina

tion in the trapped group from the higher eigenfunction is 
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B^=0cm"^ N(E , t ) = •005' - .000288 t ' - - 0 0 5 
e J 

995i ,005 

- .007197 t 

B^=.03 N(E, t ) = 

B^=.07 N(E, t ) = 

009 

983j 

030 

e 

1 e 

- .004005 

- .008161 

t 1 

t 

- . 009 

.017J 

- . 0 3 0 

- .007767 t e 

- .009326 t e 
225 I .775/ 

B^=0„1 N(E , t ) = 
^ 0 0 5 \ ^ . .008902 t [ " ' 0 0 5 \ .„01287 t 

.016/ ' ' ' I ,984/ 

Table 4 

This table gives the energy and time dependence for the 

number density of neutrons in a beryllium assembly of the 

buckling indicated calculated on the basis of two group 

theory. The upper entry in each mode refers to the number 

density of the trapped group, the lower entry to all other 

neutrons. The time is in micro-seconds. These distribu

tions all satisfy the condition that there are no neutrons 

in the trapped group at t=0. 
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obviously considerable unless one waits a rather long time; 

however, the experiment may be feasible with the large pulsed 

sources available such as the Rensselaer Polytechnic Institute 

Linac facility. The difficulty of measuring the as3nnptotic 

lifetime has been pointed out by de Saussure; the point that 

is added here is that energy discrimination is an additional 

help. It may also be noted that if the set of cross sections 

based on a lower inelastic scattering cross section are used, 

the predictions for these experiments are more optimistic. 
2 

By working with B on the order of 0.1 it may be possible 

to measure the lifetime of the second highest mode by utiliz

ing a velocity selector and by working at shorter times. 

This will be investigated by breaking the energy range above 

that of the trapped neutrons into a few groups and looking 

at their population as a function of time. By focusing atten

tion on a group of neutrons somewhat above the average energy 

transfer of a collision of a neutron in the trapped group, it 

may be possible to bias the counting strongly in favor of the 

second eigenvalue. 

It should be pointed out that the above split into two 

energy groups does not reflect the usual diffusion cooling 

phenomenon. The diffusion cooling could be accounted for in 

an average fashion by the choice of the parameters for the 

non-trapped group. The use of additional groups which would 

bring in such effects as diffusion cooling would probably 

2 
soften the bend in the eigenvalue vs. B curve. Some calcu
lations have been done using 3 groups: below the Bragg 
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cut-off, the trapped group, above the trapped group. These 

three group calculations show the sensitivity of the eigen-

2 2 
value vs. B curve to the scattering kernel at small B . 

CONCLUSIONS 

The role of transients in the interpretation of pulsed 

experiments has been investigated. These transients have 

been studied under two main classifications, namely, current 

and energy transients, and it has been shown that their role 

can be dominant in certain cases of interest. When there 

is a sharp change in the behavior of an eigenvalue with size 

of assembly being studied such as the eigenvalue becoming 

imaginary or the A vs. B curve bending sharply, the usual 

interpretation of the eigenvalue in terms of an expansion in 

2 
B becomes questionable. In these cases the decay with time 

of the assembly may depend strongly on the angle or energy 

of observation. In such cases, the authors would suggest 

that a different approach be attempted, namely, the measure

ment of angle and time dependent spectra. The angular depend 

ence may be only the total number of neutrons being emitted 

in a few directions as a function of time and the time de

pendent spectra may be only the number of neutrons being 

emitted at a few energies as a function of time or the ex

periments may be more elaborate. These measured phenomena 

may be then directly confronted with theoretical predictions 

rather than working through say the diffusion cooling para

meter. If carried far enough, such experiments offer very 
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sensitive tests of a scattering kernel and, in fact, actually 

allow one to infer elements of the scattering matrix from ex-

periment. 

Although transients have been studied here as either 

current or energy transients and mainly as they arise in 

small systems, the various transients do affect each other 

somewhat, and they may arise due to other causes. In parti

cular, a system which contains a high absorption cross sec

tion which is not (1/v) may also show a dominant transient 

behavior; such behavior is currently being studied in the 

theory of pulsed systems containing fissionable material and 

was not included in this study pertaining to moderators. 
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The Neutron Asymptotic Decay Constant in a 

Small Crystalline Moderator Assembly 

G. de Saussure 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 

ABSTRACT 

The effect of the narrow peak of the neutron transport cross 
section of crystalline materials at low energy is being investi
gated. It is shown that an upper bound can be fo;ind for the 
asymptotic decay constant in a small assembly. This upper bound 
is lover than the values usually measured by the piilsed-neutron 
source technique. This apparent discrepancy is discussed. 

1. Introduction 

The pulsed-neutron technique has been used extensively to measure diffusion 

parameters in a variety of moderators. A description of the technique and an ex

cellent summary of the present status of experiments may he found in a recent re

view hy K. H. Beckurts. It may be seen from Beckurts' review that the values of 

the absorption cross section and of the diffusion constants obtained by the pulsed-

neutron technique for the various moderators are quite consistent. However, some 

very puzzling discrepancies are observed between various measurements of the dif

fusion cooling constant, especially for crystalline moderators such as beryllitmi 

and graphite. 

Beckurts proposes the following possible causes for these discrepancies: 

(l) the role of B teirms, (2) the effect of higher harmonics, and (3) the importance 

of the data-evaluation schemes. For the case of berylli\jm, at least, different 

laboratories measure different decay constants for the same value of the buck-

2 3 6 
ling. '-^ Such discrepancies cannot he blacned on B terms. It is also difficult 

* 
Operated by Union Carbide Nuclear Company for the U.S. Atomic Energy Commission. 
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to see how the effect of space harmonics may not be properly accoxmted for since, 

for a small cube of a moderator with low absorption, the first spatial harmonic 

decays almost twice as rapidly as the fundamental mode. 

The purpose of this note is to propose another possible cause for the ob

served discrepancies in the measurements of decay constants. It appears that 

under certain conditions the decay of the neutron popiilation out of a moderating 

assembly may never be strictly exponential during the time available for measure

ment. In this case, the "asymptotic decay constant" is not directly measurable 

and the diffusion cooling constant is not a well defined concept. 

2. Determination of an Upper Bound for the Asymptotic Decay Constant 

An upper bound for the asymptotic value of the neutron decay constant in a 

k 
finite moderating assembly. A,, can be obtained from Nelkin's variational principle. 

For the case of — absorption, the principle may he expressed as: 

(1) X^vZ^aH-*^"-^ 
K 

(2) J I B ^ / X (E)rZlEl 
o 

2, 

00 CO r /_- \ /-ri \ 

W 1 = 1 ^ 1 dE. E(E-.E.)0(E) 0 4 - 0 1 
O O L \ ' ^ '. 

where the symbols have the same meaning as in Nelkin's article. 

2 2 
Using for a trial function the energy delta function 0(E) = 0(E ) 5(E - E ), 

we obtain: 

(5) X < V Ea + v(E ) Z. (E ) + i A.̂  (E ) v(E ) B^ ^ ' ^ o' m^ o' 3 tr^ o' ^ o' 

(6) E. (E ) H fdE' E(E ->E') - E(E -* E ). 
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The inequality (5) shows that the asymptotic decay constant is smaller or 

equal to the sum of the absorption, inelastic scattering, and leakage probabilities 

at any energy E . This luther obvious statement does not depend on the differential 

inelastic scattering law. In general, the upper boxind (5) is not very useful; how

ever, in the special case of a small crystalline moderating assembly, if the ref

erence energy E is suitably chosen, it may not be trivial. 

5 
The transport cross section of beryllivm, computed by Bhandari, is shown 

in Fig. 1. At low energy this cross section exhibits a series of sharp peaks 

occurring whenever the neutron wavelength is just eqvial to the distance between 

parallel planes of a Miller's index. The largest of these peaks, at 6.85 mev 

(milllelectronvolts) correspond to the Miller's index (1, 0, 1). At this energy 

the transport cross section is about 18 bams, whereas the inelastic scattering 

cross section at room temperature is about .h bams. 

If we choose E = 6.85 mev as a reference energy to evaluate the upper bound 

(5), we obtain for beryllium: 

(7) X.[msec"-̂ ] « 5.8 + I7.6 B^[cm"^] = X^. 

The numerical values of Eq. 7 "were obtained using a berylliimi density N = .12 

atom/bam-cm and an absorption probability v Ea = .29 msec . Fig. 2 shows the 

2 5 2 - 1 
right-hand side of (7), as well as X^ = v Ea + DB where D = 1.25 x 10^ cm sec 

1 2 
is the infinite meditmi diffusion constant, and some experimental values X (B ) 

1 2 3 
obtained at various laboratories. ' ' It may be seen from the figvire that the 

discrepancies between values obtained at various laboratories are mostly in the 

buckling region where X- > X, . In this region the asymptotic decay constant was 

not really obtained by the experimenters, since X -̂  X,. 
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The effects in graphite and BeO are analogous to that in berylliim. Fig. 3 

shows the transport cross section of graphite. It has a maximum value of about 

17 bams at an energy of I.89 mev. At this energy the inelastic scattering cross 

7 
section at room temperature is O.5 barns. Using this energy as a reference 

energy, a density p = 1.6 g/cm emd an absorption probability v Ea = 71.2 sec' , 

we obtain for the upper bo\ind (5): 

(8) XCmsec"-"-] < 2.1«8 + IU.77 B^[cm"^] = X^. 

2 2 8 5 2 - 1 
F ig . k shows X, vs B , Xp = v Ea + DB where D = 2.06 x 10'̂  cm sec i s the i n -

2 k 
f i n i t e medium diffusion constant and the parabola X̂  = v Ea + DB - CB idiere 
C = 12.If X 10 cm s e c ' i s the diffusion cooling constant obtained by E. S ta r r 

Q 

and G. A. Price by fitting their experimental data. The parabola X_ is larger 

2 - 2 8 
than the upper boxond X̂  for B > .OlU cm . Beckurts states that Starr and Price 

-2 2 -2 

carried their measxrrements over the buckling range .OOI6 cm < B < .0275 cm 

Hence it seems that for their smallest assembly Starr and Price have not measured 

the true asymptotic decay constant. 

3. Determination of a Lower Bound for the Diffusion Cooling Constant 

A lower bound for the diffusion cooling constant C may be obtained from the 

upper bound X^ (5) for the asymptotic decay constant. If this asymptotic decay 
2 

constant is expressed as a power series in B : 

(9) X = V Ea + DB^ - CB 

o 
and if (9) must satisfy the Inequality (5) for all values of B , we obtain a lower 

bound for C: 

(10) C > ^ ^^ ° . 

M E J Ê (̂Ê ) 
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Using the reference energies determined previously, the lower bound on the 

right-hand side of (lO) is 5.2 x 10 cm sec' for beryllium and U5 x lO'' cm sec 

for graphite. These values are much larger than all the diffusion cooling con

stants listed by Beckurts for these two moderators. Of course, if more terms 

are included in the expansion (9) of X in powers of B , the inequality (10) does 

not need to hold, yet it is usually assumed that the coefficient of B in the 

expansion of X is positive, in such case (10) must still hold. The coefficient 

2 
of the highest order of B in the expansion of X must be positive since the decay 

constant can never decrease with increasing buckling. 

The existence of the upper bound (5) sxiggests, however, that the expansion 

2 
of the asymptotic decay constant in powers of B is not very desirable. It would 

probably be better to fit X to the lower branch of a hyperbola which, for large 

2 
values of B , would asymptotically approach the upper bound X (5). 

it-. Can the asymptotic decay constant in a small crystalline moderating assembly 

be measured? 

An interesting problem that suggests itself is whether or not the asymptotic 

decay constant of the neutron popiilation in a small assembly of crystalline moder

ator is a measurable quantity. 

The "energy trap" corresponding to the peak in the transport cross section 

is very narrow: in beryllium, for instance, it is easy to compute that the trans

port cross section is larger than I5 barns only in the 0.5̂ + mev wide energy in

terval 6.85 mev < E < 7-39 mev. When fast neutrons are being pulsed in a small 

beryllium assembly, very few of them are slowed down in this low energy region. 

These few neutrons will eventually dominate the decay, but the study of their 

time behavior requires a very intense pulsed-neutron source and a detecting equip

ment almost free of background. The time after which the "trapped neutrons" will 
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dominate the decay is a sensitive function of the initial conditions and of the 

differential inelastic scattering cross section. A crude two-group computation 

(see Appendix) suggests that for beryllium this time is of the order of one milli

second or more. Many experimenters do not have the equipment necessary to measure 

accurately the decay constant after such a long time. 

A more fundamental question is whether or not the neutron decay ever becomes 

exponential. The transport cross section within the trap 6.85 mev < E Ŝ 7-39 ™ev 

is almost inversely proportional to the square of the energy so that a neutron of 
2 

7-39 mev has a leakage probability, D ( E ) B , about 20^ larger than a neutron of 

6.85 mev. On the average, a neutron of 7 mev that undergoes inelastic scattering 

increases its energy by about 2.5 mev. Hence one may perhaps consider an in

elastic scattering within the trap in a small assembly as equivalent to an ab

sorption, since after the inelastic scattering the neutron is usually outside the 

trap where it has a large transport mean free path and will leak out of the small 

assembly before being scattered back into the trap. Most of the neutrons remaining 

in such a small assembly a long time after the pulse will be "trapped neutrons." 

These neutrons diffuse according to: 

(11) - X(E) n(E, t) = Hl^ ^^ N(t) = /n(E, t) dE = / n (E) e'^^^' ^^ dE 

1/2 ^(g ) 32 5/2 

(12) X ( E ) . v E a . v ( E ^ ) ( f - ) E.^(E J . 3 ^ ^ ^ (^ ) 
o -̂  tr^ o' o 

where the inelastic scattering cross section E. (E ) is assumed to be constant over 
^ m ^ o' 

the trap region. The neutron density N(t) (ll) has no isolated asymptotic decay 

constant; it is not separable in time and energy and never decays exponentially. 

If an experimenter fits a finite number of measured points N.(t.) + S N. to a svtm 

of exponential, he will not determine unambiguously the asymptotic decay constant. 
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Of course it is not strictly correct to treat inelastic scattering within 

the trap as eq\ilvalent to absorption; nevertheless, before the asymptotic decay 

constant of a small assembly can be measured it must be proven that the flux is 

eventvially separable in time and energy and decays according to: 

-u) t -w t 
(13) N(t) = ae + be , for t -̂  a>̂  with cj - o) 5̂  e 

and a lower bound for e must be found, for if € is allowed to be arbitrarily small 

it is not possible to measure unambiguously u) . 

5. Remarks on the Calculations of the Diffusion Cooling Constant 

A few authors have computed the values of the diffusion cooling constants 

C of beryllium, BeO, and graphite. The results of most of these calculations 

give values for C much smaller than the lower bound defined in (10). This appears 

in direct contradiction to the argument presented to obtain (10). However, be

cause of mathematical difficulties, the numerical calculations are always per

formed under certain simplifying assumptions. 

First, the flux is usvially assumed to be separable in time and energy, 

k 10 
and the energy part is taken to be a Maxwellian, ' or the product of a Max-

E 9 11 

wellian, and a power expansion in (rr;) where kT is some reference energy; •* 

in the latter case only a finite, usually small, number of coefficients of the 

expansion are considered. If the true asymptotic energy distribution of the 

neutrons has a very large peak in the narrow interval where the transport cross 

section has a maximum, this distribution cannot be represented by the usual 

power expansion without using a very large nvmiber of terms. 

Second, C is often computed assuming a transport mean free path X, (E) 

9 a k 

constant or proportional to E , where a is a constant. Of course, such com

putations cannot display the effect of the narrow peak in the transport cross 

section. 
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Finally, the differential inelastic scattering cross section is us\ially 

obtained from a model that does not strictly apply to the case of a crystalline 

moderator—heavy gas model or incoherent approximation. 

12 
S. N. Pxirohlt has investigated the time-dependent energy spectr\mi of 

neutrons decaying in various assemblies of beryllium. His method consists of 

solving the appropriate differential equations on an analog computer. His re-

2 -2 

s\ilts show that even in a very small beryllium assembly (B = .O718 cm ) an 

equilibrium energy spectrum is established in about 0.5 milliseconds. This 

spectrum does not show any peak in the energy region 6.85 mev < E < 7-39 mev. 
5 h 

From the results of his investigation Purohit computes a value C = 1.13 x 10 cm 

sec for beryllium. These results appear to contradict the arguments presented 

in this paper. However, although Purohit's model uses the correct transport 

mean free path, as computed by Bhandari, it uses a heavy gas kernel. More im

portant, the model is based on a multigroup formalism; in the low-energy region 

Purohit uses 2.5 mev wide groups. If the beryllium transport cross section 

(Fig. 1) is averaged linearly in the energy region 5 mev < E < 7-5 mev, the 

value obtained is 6.3 barns. The strong peak of 18 barns at 6.85 mev is com

pletely "smoothed out" by the averaging over the group. It should be interesting 

to repeat Purohit's computation with groups .05 mev wide in the energy region 

between 6 and 7 mev. 

Recently, by a numerical iteration method and using the correct transport 

13 
cross section, S. S. Jha -̂  has investigated the equilibrium neutron energy 

spectrum in a few small assemblies of beryllium. This investigation showed that, 

indeed, in small assemblies the spectrimi exhibits sharp peaks where the trans

port cross section has maxima. Jha has also computed the decay constant of a 

few assemblies, and these decay constants are consistent with the upper bo\md (7). 
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6. Conclusions 

The argxmients presented in this paper seem to indicate that the true 

asymptotic decay constant of a small crystalline moderating assembly has not 

been measured. The experimental -values of the decay constants of small assemblies 

are larger than a theoretically determined upper bound; hence they must not refer 

to the asymptotic -value. This asymptotic -value may not be measiirable. 

Because the diffusion cooling constant must be determined from the measure

ments of the asymptotic decay constant in small assemblies, the difficulty in 

measuring these decay constants may explain the discrepancies between various 

experimental determinations of the diffusion cooling constant. 
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APPENDIX 

Two-Group Computation of the Trap Effect in Beryllitim 

It is interesting to investigate the effect of the peak of the beryllium 

transport cross section at 6.85 mev on the decay constant of a small assembly 

in a two-group model. The model is extremely crude and the results should have 

only qualitative significance. 

We shall di-vide the energy domain into two groups: the first group 

(group 0, index 0) comprises the neutrons of energy 6.85 mev < E < 7*39 mev; 

the second group (group 1, index l) comprises all the other neutrons. In group 0 

the average transport cross section is a, = I8 barns, the average inelastic 

scattering cross section is a. = .h barns, and the average velocity is 

V = 1.1̂ *2 X 10 cm/sec. In group 1 the diffusion coefficient is D̂  = 1.25 x 

2 -1 
cm /sec. The absorption probability v Ea = 288 sec is the same for both 

groups. The densi ty w i l l be taken as N = .12 atom/bam-cm. Hence 

^o 5 2 
D s -— = .176 X 10 cm /sec. The width of group 0 is very narrow com-

-̂  tr,o 
pared to the average energy gain of a neutron -undergoing inelastic scattering 

in that group so that the transfer probability from group 0 to group 1 -will be 

assumed to be P = 'VNCT. = 5500 sec" . The transfer probability from group 1 

to group 0 can be obtained from detailed balance as p = 7P where 

10' 

AE 
M(E) dE 

(A-1) 7 = ^ .005 

/ M(E) dE 
AE 

where M(E) i s the Maocwellian densi ty spectrum and the in tegra t ion i s car r ied 

over the energy -width of the group. 

- 1167 -



The neutron dens i t i e s n. in the two groups obey the coupled d i f f e r e n t i a l 

equations: 

( A - 2 ) - (a^ + P^) n^ + p^ n^ = ^ , 

(A-3) 

(A-1+) 

-which have 

/ A 1- \ 

t h e so lu t : 

- (°=o •" ^o^ % + ^1 " l = 

2 
a . = V Ea + D. B , 

ion 

/ . ^ _+ w+t . -

o 
6t 

co't 
t j = a. e + a. 

J. ' 1 1 
e 

2 2 — 
/ a ^ + a p + p ^ v r / a^ - a ^ / P + p ^ » . a , - a ^ / P P-,N1^ 

The detailed balance condition (A-l) can be used to simplify (A-6): since 

h « Po 

2 2 — 

(A-8) 0)+ ̂  - (a^ + PQ) <J" = - a^. 

P 2 V N cr. _p 
This result shows that for B < B = —^r =?*— = .051 cm' the decay con-

c D-, - D •' 
1 o 2 2 

stant of the "average neutron," a,, is the asymptotic decay constant. For B > B 

the sum a + P of the absorption probability, leakage probability, and transfer 

probability of the "trapped neutron" will be the asymptotic decay constant. 

2 -2 -1 
For a beiyIlium assembly of buckling B = .0718 cm , we obtain a, = 9263 sec 

and a + p = 7O5I sec . The "asymptotic" decay constant experimentally measured 

2 -1 
for this assembly is 85OO ± 3OO sec . 

- 1168 -



It is interesting to compute the time t at which the two modes on the 

right-hand side of (A-5) are equal. We have: 

( + + \ 
a + â  
^ ^} 
a + ar ( 

^A-9; . = ° ^^ 
^ U)' - U)+ 

a + â  o 1 

a' + â  o 1 

a^ + u' 

cc, + w"̂  

The argimient of the logarithm must be obtained from the initial conditions. 

If we assume that initially all the neutrons are in group 1, we obtain 

(A-10) 

The small quantity a, + w must be e-valuated using (A-6). For a beryllivmi 

2 -2 

assembly of buckling B = .O718 cm we find, using (A-IO) t =1.5 msec. For 

the same assembly, if we assume that initially the neutrons are in a Maxwellian 

distribution, we obtain t =1.3 msec. During these I.3 msec the neutron popu

lation in the assembly will have decayed by a factor of about 10 . 

Finally, it must be noted that the group constants, in this two-group 

model, should not really be taken as time constants. Indeed, because of the 

rapid -variation of the transport cross section with energy, the flux averaged 

diffusion constant D-, will decrease with time. This will result in a lower 
-value for a^ and hence a larger -value for t . 

1 c 
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ABSTRACT 

The authors have computed the coefficients w_, 

D^, C and E in the expansion 

2 k 6 
OJ = U)Q •* DQB - CB + EB + .. 

using the Radkowsky (Ref. 1) and Nelkin (Ref. 2) kernels. It has 

been found that both kernels give very similar pulse parameters. 

Extrapolation distsinces have been computed, using both kernels, 

for pulsed slabs of water. Again no significant differences were 

observed. Differences between the Nelkin and Radkowsky flux shapes 

in TRX lattices are quite small: they would be difficult to f̂ etect 

experimentally. In summary, it seems that thermal neutron flux 

shapes and decay rates are not very sensitive to details in the 

structure of the scattering kernel. Yet neither the Nelkin nor the 

Radkowsky kernels yield flux shapes and decay rates in good agree

ment with experiment. 
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I. INTRODUCTION 

Our knowledge of the differential scattering cross section of water 

in the thermal energy band is still somewhat sketchy. At first glance it may 

seem that any uncertainty regarding the bound hydrogen kernel is a great 

handicap to the reactor physicist. Ihis is not necessarily true. Often one 

is interested in the thermal neutron flux distribution in a narrowly limited 

range of geometries, temperatures, water densities fand fuel loeidings. Within 

this limited range of conditions the flux may not be very sensitive to details 

of the scattering kernel. 

How important, then, is the form of the scattering kernel? We attack 

this question, here, by comparing the results of coniputations based on the 

Nelkin and Radkowsky kernels. Both kernels incorporate chemical binding effects. 

The Nelkin and Radkowsky treatment of binding are very different^ yet, in the 

cases studied, confutations using both kernels give much the same results. 

II. DIFFUSION LENGTHS 

Diffusion lengths for the Nelkin and Radkowsky kernels have been 

computed via the SLOP-1 code (Ref. 1). At present results are available only 

for pure water at room temperature. One finds that the Radkowsky diffusion 

length 

L (Radkowsky) = 2.81 cm, while 

L (Nelkin) = 2.78 cm. 

li will be seen that the difference between the Nelkin and Radkowsky diffusion 

lengths is small. 

Nelkin's approach leads to a differential scattering cross section 

containing spherical harmonics components of all orders. However, it is some

times convenient to simplify the thermal scattering kernel through the use of 
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the Selengut-Goertzel approximation. When this is done it is assumed that the 

P, kernel is diagonal, while all higher P* components are ignored. Diagonal 

elements of the Selengut-Goertzel P̂  kernel are defined through the relations 

CD 

K^g^(E' — E) = 6(E' -* E) J Kĵ (E — E')dE' 

The introduction of the Selengut-Goertzel approximation has little effect on 

the Nelkin diffusion length. In fact, to three significant figures, one finds 

that 

L (Nelkin S.G.) = 2.78 

as in the case of the full Nelkin kernel. 

III. PULSED NEUTRON COMPUTATIONS 

In the analysis of pulsed neutron experiments it is usually assumed 

that, after a sufficiently long time has elapsed, the flux decays exponentially: 

<I)(E,x,t) = cp(E,x)B"'*'* . 

It is customary to expand the decay rate, U), in powers of the bucklingjj 

cu = (OQ + D B^ - CB + EB + .... (1) 

Again with the aid of SLOP-1 we have computed cu , D., C and E for the Radkowsky, 

Nelkin, and Nelkin S.G. kernels. As in Section II, results are available only 

for pure water at room temperature. Values of D^, and C appear in Table I. 

The spread between D and C values derived from the various kernels is small. 

As for the coefficient E, we find that 

E (Radkowsky) = 550 cm /sec, and 

E((Nelkin) = 200 cm /sec . 
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Clearly the E values appropriate to Nelkin and Radkowsky kernels are con-

siderably different, but it seems that the B term as a whole is unimportant. 

Suppose that w were given exactly by the four terms in Eq. (1). Suppose, 

2 
further, that one were to fit u), in the range 0 < B < 1, with a quadratic 

function of the buckling. Obviously the parameters aj„, DQ and C deduced from 

such a fit would be incorrect. If E = 600, this neglect of the B term in a least 

square fitting process would lead to an error of 259& in C. If E = 190, the 

corresponding error in C would be 10^. In either case errors introduced 

through neglect of the B term seem inconsequential at this time, in view of 

the uncertainties in the measured value of C. 

In the Selengut-Goertzel approximation one finds that 

E (Nelkin S.G.) = l6o cm /sec. 

Apparently the Selengut-Goertzel approximation is accurate even at fairly high 

bucklings. Now, the use of the Selengut-Goertzel approximation introduces 

considerable distortion into the differential scattering cross section. If 

the agreement between the Nelkin E and the Selengut-Goertzel E is not accidentil, 

then the decay rate, w, must depend only on gross features of the angular 

distribution of scattered neutrons. 

So far we have confined our attention to the behavior of neutrons in 

infinite homogeneous media. One might expect more complicated phenomena at 

interfaces, particularly at interfaces where the properties of the diffusing 

medium change sharply. 

The behavior of the flux at an interface is involved in the computa

tion of extrapolation distance at the surface of a pulsed moderator. We have 

computed multigroup extrapolation distances (in a P, approximation) for slabs 

at three bucklings. Results of these calculations are displayed in Table II. 

Again we find that details of the structure of the kernel are almost completely 

irrelevant. 
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This conclusion leads directly to an unresolved problem. The 

extrapolation distances in Table II lie in the range from .5 to .55 cm. 

Extrapolation distances have also been computed for cylinders and spheres with 

2 

0 < B < 1. These lie in the same range. On the other hand, direct measure

ments by Campbell et al in large rectangular boxes yield extrapolation distances 

near .k6 cm (Ref. 5)- It is difficult to believe that the extrapdMtinsn 

dlBtaae»-at low bucklings depends so strongly on geometry. If it does not, 

then there is a large discrepancy between theory and experiment, a discrepancy 

which might indicate gross inadequacies in both the Nelkin and Radkowsky kernels. 

IV. CELL CALCULATIONS 

We turn now to a problem configuration of more direct interest to 

the reactor analyst. Multigroup thermal neutron fluxes have been computed for 

a cylindrical cell containing a fuel rod, zirconium cladding, and an annulus of 

water. Bie rauiius of the rod is .762 cm, the cladding is .08528 cm thick and 

the outer radius of the cell is .897162 cm. Number densities are listed in 

Table III. 

TtilB asame problem has been treated by H. Honeck, whose work is 

discussed in Ref. k. Honeck, however, has used a computer code which contains 

BO provisions for anisotropic scattering. In contrast, the computations described 

here were carried out with the aid of a code, called EXCEL, which can handle 

any Selengut-Goertzel kernel. In view of the accuracy of the Selengut-Goertzel 

approximation in diffusion length and pulse calculations, one might expect it 

to be adequate in cell calculations also. Of course this is not necessarily 

t 

uren, Stooksberry and others at Bettis have recently measured extrapolation 
distances in pulsed water systems (private communication). Their results agree 
with Campbell's. Bettis work now in progress should determine whether existing 
measurements of extrapolation distemces have been affected substantially by the 
presence of harmonics in the flux. 

*DeJ 
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true. According to Nelkin's ansilysis (Ref. 5), the Selengut-Goertzel approxi

mation is satisfactory in pulse problems because pulsed neutron spectra are 

almost Majcwellian. In inhomogeneous problems, however, the spectrum will have 

a 1/E tail. It seems worthwhile, then, to test the accuracy of the Selengut-

Goertzel approximation in the presence of neutron sources. For this purpose 

we have made use, again, of the SLOP-1 code. 

SLOP-1 can handle slab problems in double-P,, and the code library 

contains P through P, scattering matrices. Problems in other geometries are, 

generally, treated in the P.. approximation. In order to take full advantage 

of the capabilities of SLOP-1, we digress to consider a cell problem in slab 

geometry. The cell, again, consists of a fuel region and a water channel. 

Cladding has been ignored. Number densities in the fuel and water are identical 

with those in the cylinder. The thickness of the fuel plate in the slab is 

taken to be equal to the radius of the fuel rod in the cylinder, while the 

thickness of water region is the same in botn the slab and cylinder problems. 

In the slab case we have computed the double-P, flux cdistrlbution 

using, first, the full Nelkin kernel and, then, a Selengut-Goertzel approxima

tion to it. At all points in the cell the computed absorption rates in a l/v 

detector are practically unaffected by the Selengut-Goertzel approximation. 

Nelkin and Nelkin S.G- activations differ by less than 1^. 

With some confidence in the accuracy of the Selengut-Goertzel approxi

mation we turn from the slab cell to the cylindrical lattice. The computed 

l/v activations in the cylinder are plotted in Fig. 1. Now, the lattice param

eters for the cylindrical cell correspond with those in one of the TRX experi

ments. Experimental thermal activations are available for this particular 

lattice, and the experimental activations are also plotted in Fig. 1. 

I II ••.•. • 

T n certain cases SLOP-1 can be used to solve the cylindrical and spherical P^ 
equations, but the cylindrical cell discussed above cem only be treated in P-,. 
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Again the differences between results obtained with the Radkowsky and 

Nelkin kernels are small although, in this case, these differences are not 

negligible. Again we note that the spread in computed results is not as large 

as the discrepancy between theory and experiment. 

V. CONCLUSIONS 

At this point we find ourselves in a disturbing position. An exami

nation of computations using different kernels indicates that even a crude 

treatment of binding should be adequate for the analysis of pulse and TRX experi

ments. On the other hand the experimental results themselves suggest that a 

much more refined treatment of binding is necessary. In view of the insensitivity 

of our computed results to details of the kernel, drastic changes in the kernel 

would be required in order to bring theory and experiment into agreement. It 

seems most important, then, that measurements of extrapolation distance should 

be reexamined and that activation measurements in lattices be repeated and 

refined. 
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Table I 

Range of Experimental Results 

"Best Value"'̂  

Radkowsky 

Nelkin 

Nelkin (S.G. ) 

°o 
(cm /sec) 

jifSoo to 38500 

35200 

38380 

37520 

37160 

c 
(cm /sec) 

0 to 7500 

kkOCAl^OQ 

3614 

3283 

3113 

/ 

See Ref. 6. 

See Ref. 7. 

Table II 

Buckling 

(cm-2) 

0.3 

0.5 

1.0 

Fuel 'I 

Rod J 

Clad 

Water 

Radkowsky Extrap. 
Distance (cm) 

0.338 

0.331 

0.316 

Table 

Element 

u235 

u238 

Al 

H 

0 

-

Ill 

Nelkin (S.G.) Extrap. 
Distance (cm) 

Number 

0.330 

0.324 

0.312 

-24 
Densities x 10 

0.0006288 

0.04719 

0.051164 

0.066749 

0.0333745 
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Introduction 

The pulsed neutron and diffusion length experiments both 

measure quantities related to the ability of neutrons to dif

fuse and thermalize in a moderator. The observed quantities 

are the asymptotic time and spatial decay constants, A and K. 

These decay constants and the neutron energy spectra associ

ated with them are eigenvalues and eigenvectors of the 

transport equation. The problem is then: Given the scattering 

law for a moderator, solve the transport equation (an inte

gral equation) and determine X(or H) and the neutron spectrum. 

Of course, the scattering law for a moderator is not accurately 

known. Indeed, the purpose of the experiment is to provide 

some integral properties of the scattering law so that 

theoretical scatterinc; laws can be tested. The emphasis in 

this paper is on the accurate solution of the eigenvalue 

problem and on the computation of quantities observed in the 

experiment rather than derived from the experiment. The 

quality of theoretical scattering models can then be judged 

more accurately. 

In the next section we will briefly review the theory 

of the two experiments and show how they are related. In the 
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third section a direct numerical method is developed for 

solving the eigenvalue problem. The decay constants and 

angular spectra are computed for light and heavy water and 

graphite. In the fourth section the series expansion method 

of Nelkin (1) is rederived and extended. The decay constants 

obtained from the expansion method are compared with those 

obtained in section 2, 

Theory of the Experiments 

The asymptotic flux in the pulsed neutron experiment 

can be written in the form 

f(z.E,n,t) = $(E,n)e"^^'^^^^ (1) 

where (2,E,M.,t) represent the position, energy, direction 

2 
and time coordinates of the flux, and B is the geometric 

buckling in the z direction. For simplicity, we have assumed 

here that the block is infinite in the x and y dimensions. 

When this flux is inserted in the transport equation, a homo

geneous integral equation is obtained. 

~ r,+ ̂ =,<E) + iB̂ i]$(E,|a)= SME,|a> (2) 
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S$(E,n) = 
CD 

dn' dE'E (E'-E,M. )§(E',|l')-i: (E)$(E,pL) 
s o s 

-1 ° (3) 

Here v is the neutron speed, F and r are the absorption and 
a s 

scattering cross sections, T. (E'-»E,M, ) is the scattering 

kernel, and jj, is the cosine of the angle between ^ and ^' . 

The eigenvalue, A, is usually expressed in the form 

2 4 6 
A = A + D B - CB +FB + (4) 

o o 

where A = vF (E) = constant (we assume 1/v absorption through

out the paper). The coefficients D , C, F, etc. are to he 
o 

determined. 

The asymptotic flux in the diffusion length experiment 

can be written in the form 

$(2,E,M.,t) = ME,|i)e"''^ (5) 

where H is the inverse diffusion length. The eigenvalue equa

tion is 

2:̂ (E) - HM.1$ (E,|X) = S§(E,M.) (6) 
. a J 
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2 
We will express the eigenvalue H by the expansion 

2 2 3 
K = a.a-a a + a.a .... (7) 

where a , , a_, a . , e t c . a r e t o be deteirmined, and a^S (kT) =A / v < 1 2 3 a o o 

Equations (2) and (6) are of the form 

k. 
ip/k^- ~ ] $(E.M.) = S$(E,n) (8) 

where 

2 
k, = B , k„ = A-A pulsed experiment 
i d o 

2 
k =-H , k = -v a diffusion length experiment, 

The power series expansion (7) is just the inverse of (4) with 

A=0. The coefficients are related by the expressions 

a, = V /D 
1 o o 

2 O O 

a- = V •'(2C^-D F)/D^^ 
3 o o o 

D = V /a, o o 1 

C = v̂ ct̂ /â ^ (10) 

2 5 
F = V (2a_ -a^a_)/a, . o 2 1 3 1 
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A schematic of these functions is shown in Figure 1, 

Here, A is v times the absorption cross section of the pure 

2 
moderator, and H is the square inverse diffusion length of 

the pure moderator. The regions accessible to the experimenter 

2 2 are shaded. The triangular area (x -*A -*0-H. ) is not acces-^ o o o 

sible to the experimenter. 

Rewrite equation (6) in the form 

E (E)+F (E)-K|J.1 f (E,n) = H(E,|̂ ) (11) s a J 

H(E,̂ i) H f d|j.' r dE'S (E'-E,|i )$ (E',|i') 
J J s o 
-' ° (12) 

Then, since $ and H must be everywhere real and positive 

H < F (E) + F (E) (13) 
s a 

Let K* = minimum value of F (E). (14) 

2 2 
Then K* is an upper bound on K » and is shown as a vertical 
line in Figure 1. Corngold and Michael {2) have shown that 

A-A is bounded by A*. 
o -̂  

A* = minimum value of vF (E) (15) 
s 
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This bound on A is shown as a horizontal line in Figure 1. 

The two experiments are equivalent. The diffusion 

length experiment, however, is inherently more accurate since 

2 extrapolation length corrections to B are unnecessary. We 

will then discuss only the diffusion length experiment and, 

when necessary, equations (10) will be used to compute the 

pulsed neutron parameters. We will also limit discussion 

to the case of 1/v absorbers. 

Direct Calculation of K 

2 
The expansion of K in powers of absorption is useful 

if only a few terms are required. In the case of large 

absorption, many terms are necessary and a direct calculation 

2 
of K is desirable. It is frequently difficult to extract 

the coefficients in the series expansion from the experimental 

data so that it is advantageous to compute directly the 

quantities observed in the experiment. We will therefore 

reduce equation (11) to a form in which it can be solved numer-

2 
ically and obtain H. for a given F . 

a 

Expand the flux and scattering kernel in Legendre poly

nomials. 

$(E,n) =Y -^^ $^(E)P^(H) (16) 
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00 

2n+l F^(E'-E,u ) = y ^ — ^ F^„(E'-E)P^(U ) (17) s o ZJ ^ sn n o 
n=0 

Insert these expansions in (12) and use the addition theorem 

for Legendre polynomials. The result is 

(E,n) =Y 2 " "n^^^^n^^"^ ^̂ ^̂  
n=0 

H^(E) = f dE'F„„(E'-.E)$^(E') (19) 
n J sn n 

0 

Divide eq. (11) by F(E)-KM,, insert (15) and (13), multiply 

by P (|x) and integrate over p.. The result is 

^ ô î I dM,P,(|x)P„(M,) 
2n+l 
2 

n=0 -1 
^<^> ' I 2 «„<E' -*- " (20) 

F(E) - K[i 

Define 

Q,„(K,E) = —^ J (21) 
F(E)- KM. 

-1 

The final set of integral equations to be solved is 

ra CD 

S.(E) = y Q. (K,E) f dE' F^„(E'-E)$ (E-) (22) 
-f L> -tn J sn n 

n=0 0 
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where N is the highest order of anisotropic scattering we wish 

to consider. If we include only isotropic scattering, N=0, 

and the set reduces to a single integral equation. We will 

consider terms to N=3. 

The numerical solution of (22) would be straightforward 

except for the fact that the eigenvalue K is implicit. We 

actually solve the equation 

N 

n=0 

*' CO 

$,.(E) = y Q,„(K,E) r dE'F^„(E'-E)$^(E') (23) t L, <-n J sn n 

for (D given a value of K. We then vary K until u)=l. At any 

given K eq.(23) is solved by power iteration until a con

verged value of u) is obtained. Details of the numerical 

method are given in the Appendix. 

The computation of Q proceeds as follows. Let 

C=C(E)=H/F(E) . 

^ t x̂ 2n+l p - ^(M-)PJ^(M>) (. 1 if ^+n is even ,_. 

Define 

1 m 
I = f d|̂  -rh-2 <25) 
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from which the following recursion formula is obtained 

and 

C^I = 1 ,,--—• (26) 
m m-2 m-1 

ô = * '" (j^ '"> 

For small values of C a series expansion is used. 

k 
I = 
m 

I ) ^ '28) 
k=0,2,4 

The product P (M,)P (p.) is expressed as a power series in \i, 
\. n 

and 0 (K,E) finally expressed as a sum of the I . -fn J c j ^ 

The $ (E) from a typical calculation are shown in Figure 2. 

The scattering model used was the Nelkin (3.) bound proton 

kernel with oxygen included. Details of the kernels used 

are given in the Appendix. Three anisotropic scattering terms 

were included. The absorption cross section was 5 barns/H atom 

and K was computed to be 1.299cm corresponding to a dif

fusion length L=0.770cm. The scalar flux in Figure 2 resembles 

a Maxwellian at a temperature of 0.035ev. The higher angular 

components are peaked at a higher energy because of the in

crease in anisotropic scattering with energy. The irregular 
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behavior of I and $ above O.OSev is probably caused by the 

0.06 ev oscillator in the Nelkin model. 

The angular flux was reconstructed from eqs.(11) and 

(13) and is shown in Figure 3. The flux is nearly isotropic 

at low energies since Z ( E ) » K and the F are small for n>0. 

The flux is strongly peaked forward (M,=1) at high energies 

since F(E)-H is minimum and the E are large for n>0. 
sn ' 

A series of these calculations were done for a range 
2 

of equally spaced values of a=F (kT). The values of H /a 
Si 

were arranged in a table and divided differences computed. 

From this table the coefficients a were obtained and are 
n 

given in Table I as a function of the number of anisotropic 
2 

scattering terms included. The values of H /a are plotted 

in Figure 4 along with many measured values (4-10). Pulsed 

neutron data are also included by using the relations 

2 2 
a=(A -A)/v and K =-B . The diffusion parameters for water 

predicted by the Nelkin kernel are in good agreement with 

measured values. The value of the diffusion coefficient is 

about 4% high while the cooling coefficient is within exper

imental uncertainty. Note that the coefficient a- is small 

and the curve in Figure 4 is nearly linear. 

An incoherent scattering kernel for heavy water has been 

proposed by Honeck (11). The diffusion parameters predicted 
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by this model are given in Table I along with the experi

mental values measured by Ganguly and Waltner (1_2) . In 

this case, the coefficient F is not negligible. Ganguly 

2 -2 

measured A for values of B in the range 0-0.1 cm and fit 

these data to a quadratic. If we analyze our calculated re

sults in the same way and in the same interval, we obtain 
5 4 

C= 3.65x10 cm /sec. compared to Ganguly's value of 3.72±0.50xl0 
5 

The correctly computed value of C from our data is 5.129x10 . 

Both the computed values of D and C are in surprisingly good 

agreement with the experimental values. 

An inelastic scattering kernel for graphite has been 

developed by Parks (13). An elastic isotropic scattering 

cross section selected to give the correct total cross section 

(14) was added to this kernel. The diffusion parameters com

puted are listed in Table I and plotted in Figure 5. Recent 

measurements by Starr and Price (15) are also included. The 

5 4 
computed value of C=24.6x10 cm /sec. lies between the older 

values of 12x10 (_16) and the recent values of 40-47x10 . 

Power Series Expansion 

Nelkin {!) has investigated (2) by expanding the flux in 

2 
a Legendre series in \i and a power series m B . The same 
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technique will now be applied to eq.(6). 

Expand the flux in Legendre polynomials in M- and a 

power series in a (a=F (kT) , g(E)=F (E)/a). 
cl 3i 

2n+l n k. 
§(E,M,) =Y " ^ '^''^^nk^^^^n^^^^ ^̂ ^̂  

n,k 

Also expand K in powers of a. 

K^ =1 "k ̂ ^ (-1)̂ "*"̂  ^30) 

Define 

S $ , H 
n nk , 

dE • F„„ (E ' -E) $ , (E') -F„„ (E) $ , (E) (31) 
sn nk sn nk 

Insert these expansions in (6) , multiply by P (|i) , integrate 

over [i, and collect terms in powers of a. The result is 

k-1 
n+1 Y f ix^'J+l 5 n . 
2n+l L ^~ ' °̂ -j n+l,j" 2n+l n-l,k •*" 

j=0 

^9*n,k-l •^^s<^-V*nk = V n k ^̂ 2) 

where b = F /F , and the argument E has been suppressed, 
n sn s 

Eq. (32) is a set of coupled integral equations which can be 
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solved recursively starting from ^p. The procedure has been 

illustrated in (_1) . The solution is greatly simplified if 

we assume (as in (_1)) that the anisotropic scattering is 

elastic. Then S f , =0 for n>0. The equations for nĵ O are 

then algebraic and only the integral equations for n=0 need 

be solved. We will spare the reader the tedious algebra 

and simply list our results. The expressions are complicated 

so that we will define the following quantities (all functions 

of energy) . 

D, = l / 3 F ^ ( l - b , ) (33) 
1 s X 

D_ = 2 / 5 F j ( l - b J (1 -bJ (34) 
2 s 1 2 

D3 = 2 / 3 5 F g ( l - b ^ ) ( l - b ^ ) ( l - b 3 ) (35) 

^ = 3D^(gD^ - I a.D^) (37) 

A3 = 5D2(gD2 - I a^D3) (38) 

The a coef f ic ien ts are given by 

D^a, 

^1^2 = -

dEMg (39) 

dE f^^A^ (40) 
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^l°'2t = - J dE M A2 (41) 

^l"3s = I ^^ ^02^ ^ J ^"^ ^01^°'A-°'2^1> 

- a23 J dE M(A2-2a^D^D2 

V 3 t = J <iE M [- a2t(A2-2a^D^D2)- ^ A^ 4-a^A3] (43) 

^ dE M ( A „ - 2 a , D , D - ) (42) 

°i = dE MD (44) 

where M=M(E) is the Maxwellian distribution and subscripts 

t and s denote quantities independent and dependent on the 

shape of the hardened spectrum. The § . and $ are solu

tions of the equations 

A.M = S^ $-, (45) 
1 o 01 

(a^A^ + a2D^)M + A^$Q^ = SJ^^ (46) 

The coefficients a computed from these equations are 

also given in Table I. In all cases they agree well with 

those computed directly from the integral equation, so that 

the approximation of elastic isotropic scattering is good for 
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these cases. It is apparent from eqs.(39-44) that the a 

depend on anisotropic scattering only up to order n. This 

result is also evident in Table I. 

The transport and spectrum parts of the a coefficients 

are compared in Table II. The transport parts are generally 

small and the spectrum effects are dominant. 
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Appendix 

The energy integrals were evaluated by first changing the 

energy variable to the dimensionless velocity variable 

v= /E/kT, evaluating all functions at 30 equally spaced inter

vals (Av = 0.1), and using trapezoidal rule integration. The 

high energy cutoff is then 9kT (0.23ev). The scattering kernels 

were computed from 

^5 dE(E.-»E. ,|j,, ) 
^^.(v.-^v.) = 47r(.0253)v.v. ^ W^P^(^^) - ^ ^ 

k=l 

where the \x, and W are Gauss quadrature angles and weights. 

The term i=j was treated separately by further dividing the 

interval Av. about v. into four subintervals and computing an 

average E (v.-»v.) . 
' sn 1 1 

The heavy water scattering kernel used here is identical 

to that for light water with the parameters given in Table III. 

This incoherent approximation for heavy water is justified by 

the fact that the interference scattering is small above = kT. 

A free gas kernel with mass 16 and a = 3.76 barns is added 
^ s 

to the water kernels to approximate the scattering from oxygen. 
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TABLE I 

DIFFUSION PARAMETER OF H O , D O , AND GRAPHITE 

M a t e r i a l 

H^O D^ 

D 

D 

D 

Method 

N=0 

N=l 

N=2 

N=3 

a i 

- 1 
cm 

7 .796 

5 .862 

5 .362 

5 .862 

a2 

- 2 
cm 

3 .259 

2 . 7 5 1 

2 .865 

2 .865 

°̂ 3 
- 3 

cm 

1.146 

1.403 

1.370 

1-353 

D 
o 

2 / cm / s e c 

2 .822x10^ 

3.753x10^^ 

3 .753x10^ 

3 .753x10^ 

cm / s e c . cm / s e c 

1.513x10" 

3 .004x10 ' 

3 .130x10 ' 

3 .130x10 ' 

0 .940x10 

2 .190x10 

2 .670x10 

2 .700x10 

N=3 5 .872 2 .649 1.418 3.746x10^^ 2 .378xlo '* 1 .800x10^ 

Exp. Starr (4.) 6.137 3.047 

±.017 ±.365 

3.535x10 

±.010x10 

2.900x10 

±.350x10 

DjO D 

D 

D 

N=0 

N=l 

N=2 

1.202 2.907 9.95 1.831x10^ 3.687x10^ 4.34 xlO^ 

1.062 2.764 10.50 2.072x10^ 5.079x10^ 6.72 xlO^ 

1.062 2.792 10.40 2.072x10^ 5.129x10^ 7.39 xlO^ 

N=2 1.063 2 .652 11 .06 2 .069x10^ 4 . 3 5 2 x 1 0 ^ 3 . 7 3 x lO^ 



TABLE I (Continued) 

o 

Material 

D^O 

Graphite 

Method 

2 
Exp. Ganguly (12) 

D N=2 

Quad, fit to B =0.1 

D,S N=0 

S N=l 

Exp.^ Starr (15) 

AA Graphite 

GBF Graphite 

ai 

-1 
cm 

-

0.988 

1.010 

— 

-

«2 
-2 

cm 

-

-

9.301 

11.507 

^ 

— 

^3 

-3 
cm 

-

498.0 

655.0 

— 

-

Do 

2/ cm /sec. 

2.08 xlO^ 

i.05 xlO^ 

2,11 xlO^ 

2.226x10^ 

2.178x10^ 

2.19 xlO^ 

±.03 xlO^ 

2.14 xlO^ 

±.01 xlO^ 

C 

4 , 
cm /sec. 

3.72 xlO^ 

i.50 xlO^ 

3.65 xlO^ 

2.120x10^ 

2.457x10^ 

4.70 xlO^ 

±.40 xlO^ 

4.06 xlO^ 

±.30 xlO^ 

1 . 2 
D denotes direct calculation of K , S denotes series expansion method. 
2 2 
A quadratic fit to the data in the range 0<B <0.1 was used. 
3 
Data corrected to a density p=1.60. 



TABLE II 

COMPARISON OF THE TRANSPORT AND SPECTRUM COEFFICIENTS 

M a t e r i a l 

H^O 

D.O 

N 

3 

2 

°^2s 

+2.810 

+2.960 

°^2t 

- 0 . 1 6 1 

-0 .307 

° '2t /«2s 

+0.057 

+0.104 

°'3s 

1.618 

12.08 

" 3 t 

- 0 . 2 0 1 

- 1 . 0 1 

'^3 t / °3s 

-0 .124 

-0 .084 

Graphite 0 +9.394 -0.593 +0.060 497.6 0.14 0.0003 

TABLE III 

SCATTERING KERNEL CONSTANTS FOR WATER 

Parameter 

^ r 

\ l 

\ 2 
A 

r 
\ l 

\ 2 

\ 

% 

H^O 

0,06 

0.205 

0.480 

0.431 

0.172 

0.342 

0.055 

81,6 

D^O 

0.05 

0.15 

0.35 

0.243 

0.069 

0.138 

0.050 

7.58 

Uni ts 

ev 

ev 

ev 

-

-

-

-

barns 
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K « 

VOO-XQ 

Figure 1. Schematic of the functions X(B^) and K (v a) 

E (ev) 

Figure 2. Angiilar components of the flux in a diffusion length 
experiment in water with 51"/H atom of boron poison. 

- 1208 -



.001 
001 01 01 

E (ev) 

Figure 3. Angular flux in a diffusion length experiment in 
water with 5b/H atom of boron poison. 
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Figure k. Computed and measured diffusion parameters of water. 
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Figure 5= Computed and measured diffusion parameters of graphite. 
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INTRODUCTION 

In Milne's problem, we calculate the stationary distribution of neutrons 

in a semi-infinite spectrum-regenerating medium. Neutrons are supplied to the 

medium from infinity only and they are of maxwellian velocity spectrum at a 

temperature of the medium. The other half of the space is filled up with vacuum 

that swollows all neutrons crossing the boundary. There are no neutrons entering 

the medium at the boundary. 

We will confine our problem to the case of a source-free nonmultiplying 

medium with anisotropic scattering-law and our main interest will be the determination 

of the linear extrapolation distance and of the velocity-angular distribution of 

neutrons streaming into vacuum. For this purpose, a variational method has been 

developed by Ku^^er and the author, the details of which have already been pub-

(1 2) 

lished^ ' '. Here, a short review of this method will be given and the numerical 

methods with results will be discussed in more detail. The differential neutron 

flux 0 \^f^j f^J satisfies under the above assumptions ̂ M ^ the following integro-

differential equation. 
oo I 

^ S ^ ^ + XM# r x , V , ^ ) = jd/J<*K4'(V>ffv'f.Vv,^)Jfr,V,/.-); 
0 -I 

(1) 

or, if we Write O(X^ViM) = V <LXp(-v)df ( Xi ̂ i M ) ^^'^ "^^ ^^^ detailed balance 

condition, 

\r\xp (-V »)^]^) f (v)^^^ V,fi)« v'exp{-v*}£](v)f (v,f*-> v; f*') ^ 

equation (1) becomes 

(2) 
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The quantities used, are; x is a spatial coordinate (x = o at the boundary), 

fX a cosine of an angle between the neutron velocity and the symmetry - jc axis, 

V neutron speed measured in units of the most probable velocity of the maxwellian 

spectrum ( = J 2kT/m, T = temperature of the medium), XeJ^l) ^^^/C(.Y) ^^^ ^^^ 

scattering and the total mean free paths for neutrons moving with a speed v, 

respectively, and f(v,U-^ —if*) ^^ *-'̂^ scattering function of an isotropic 

medium: 

^(v,(t^V^,(i1 =£i^f^(,^V)P„((.)?„((.-) . 

THE ASYMPTOTIC SOLUTION 

The solution of the Milne's problem asjnnptotically approaches to the solution 

of the corresponding infinite-medium problem if we go away from the boundary into 

the medium. Any solution in an infinite medium that does not slow down neutrons 

indefinitely (spectrum-regenerating medium) can be built up of plane waves of the 

form, say 

"»i^(x^v,f«)-> S'^^^^J^Pf-'^'''-), 

where L is some parameter and Ŝ (v,u ) is a function which satisfies the homogeneous 

integral equation (put (4) into (2)), 

00 * 

* o -• 

(3) 

(4) 

(5) 
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L is to be determined from this equation as some sort of an eigenvalue of the 

homogeneous integral equation \f- To assure that ĝ (v, jU) will not be trivial 

L must obey the condition 

Not much is known about the number and nature of the eigenvalues L of the equation 

(5). What we can see immediately, is that if £(v,u) corresponds to L then g.(v,-iU) 

is associated with -L. This statement can be verified from equation (5) if the 

reciprocity behavior of the scattering function, 

is taken into account. So, to each pair ;£ L there corresponds a solution 

or, if we define new integration constants x and C as 

C, = - O.SLC <iXp(-Xo/L) and Q ' 0.SLCdXpixJt)^ 

(6) 

with C-, (L) and C„(L) being arbitrary constants. The asymptotic solution for the 

flux would then be a linear combination of solutions like (6), 

where the summation goes over the number of pairs of "eigenvalues" + L of the 

equation (5). 

It is believed, though not yet proved, that in a nonmultiplying medium there 

exist only one pair of eigenvalues t L which satisfy the condition (5a), and that 

these are real. For our purpose, then the asymptotic flux would have the form; 

(6b) 
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^ § Cx,v,|u) = Cv^Qxp('V')[^,(^,r^Lsinh^ - ^w,f^)cosh^'] 
OS ' '« ' f^' 'L.'/ 'I ^ ^z ', ^ J (6^) 

with 

(7) 

g-. (v ,Ll) is, with respect to U , an even part of g(v,tt,) and g«(Vj/U.) the odd one. 

The newly chosen integration constant XQ has a descriptive meaning: it gives a 

int«.grataal ar . 
distance beyond the origin at which theVasymptotic flux M* V ^ Q^ would go to 

zero, l.e CS (-x_) = 0,where 

oo • «» 

-* O "I 

Xg is often referred to as being the extrapolated end point. Another way of des

cribing the boundary condition instead of using x would be the introduction of 

the linear extrapolation distance ̂ , defined by 

Having g.i(Y,U) and goCXiM) ^^ '̂ '̂̂  also determine the diffusion coefficient D. 

This quantity is defined as the ratio between the net current and the gradient 

of the integrated flux, 

If asymptotic solution (6c) is used, we get 

(8) 

Sdv. vaxpC-V*") Y^i^%^-^,^^ 
0 = - -1̂  î . 

jdiv. v*<ixp(-v»)y ̂  ̂  {H, j») 
(9) 
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Functions g-|(v,i*) and g (v, i<.) are solutions of the system of two homogeneous 

integral equations which are readily obtained by combining equations (5) and (7), 

•0 ' 

o -I 

We could evaluate ^ and g^ either from this system or directly by solving 

equation (5) for L and £(v,tl). Usually, f(Vj/tL —> Y_|_,A4') is approximated 

by a series (3) in which only a finite number of N-terms is taken into account: 

1̂  

f(y,(»^v>n = l:^?„(v-v7P„(t^)P„(K). 

(10) 

(11) 

s 
If this expression is used for J^Cz.'K'^i.'»K'^ ^^ ^^^ equation (rf), ^(v, U,) can 

be written in a more explicit form: 

where the functions 6n.(v) represent solutions of a system of homogeneous integral 

equations. 

with 
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In many practical cases N = 1 will do good. System (13) then reduces to two homo

geneous integral equations for G (v) and G, (v) with L as an eigenvalue. One would 

probably have to transform these two equations into a system of linear algebraic 

equations by replacing the integration with a suitable summation procedure. Although 

the upper limits of the integrals are infinitely large, the effective range of 

the integration variable v' is, due to the shape of the kernel f|.(v --̂  Z')' ^^~ 

duced to a relatively narrow interval around the value of v. Functions ©-(v) 

need not be determined for large values of v, say greater than 4, as they appear 

in integrals together with a maxwellian factor v-̂ e — that cuts down the high-

velocity portion of the Q (v). The determinant of the above mentioned system of 

homogeneous algebraic equations must be zero. This condition gives us trancen-

dental equation for L. Only the largest root of this equation is needed. Much 

numerical work on high-speed digital computers has yet to be done until the optimized 

numerical method will be found. Once L is obtained and introduced into F__«, the 

— -nm^ 

problem reduces to an ordinary problem of finding the eigen-vector corresponding 

to an eigen-value X =1. 

So far we have obtained numerical solutions for a nonabsorbing monatomic 

gaseous medium only. If /fe.(v)->^(v) then the diffusion length L-̂ ĴO and from 

equations (10) and (11) we get that 

where U(v) is a solution of the inhomogeneous integral equation, 

o 
(16) 
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The diffusion coefficient D (equation 9) for a nonabsorbing medium then is 

90 

D = J 5dv.v'<txp(-v*)tiCv) - ^ A j ^ 
(17) 

whereas the asymptotic flux (6c) simplifies into 

4>a$^''/^y^«)-^ Cv^(W(/o(-V*;Cx+Xo-f^tiCvjJ^ 
(18) 

and Q becomes identical with x . 
^ -o 

INTEGRALS OF TIE TRANSPORT EQUATION. 

In the vicinity of the boundary the asymptotic solution is not valid any

more. However, it can be used to obtain integral conditions that must be satisfied 

by the exact solution throughout the whole medium. If we multiply equation (1) 

by ĝ £(Vjtt) dVdju and integrate over v and u,we find that either of the two funct 

is a solution of the following second-order differential equation. 

ions 

£i<i(^)'-^\<iM=^<^ J i= ».2. 

The particular solutions of these two equations giving the correct description 

of K-1 (x) and K (x) in the asymptotic region, are 

K^U)^ - ZwCoi^^Cxish—^ (20) 

(21) 
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fjere, the notation 

OO 

o o 

has been used. 

For nonabsorbing media, ICĵ (x) reduces to the net current-integral which, 

according to equation (20) for L-^dO , must be constant throughout the medium, 

whereas K^(x), becomes equivalent to the so-called Chayldrasekhar' s K-integral'- ' , 

being a linear function in x. 

Equations (20\and (21) together with the definition (19) give us two useful con

ditions to be obeyed by the flux of neutrons evaporating from the medium into 

the vacuum (at x=o). As in our case (B (0»v, +l.t) = 0, these conditions take the 

form 

•0 » 

J 

o o 

A rough estimate for ̂  can be obtained from equations (23) and (24) if we write 

^(o,v, -<A) in the form 

where the second term on the right side expresses the influence of the boundary 

on the flux of neutrons. In the vicinity of the boundary, the actual flux of 

neutrons moving towards the boundary is smaller than in the asymptotic region, 

hence, h(o,v, -**•) will be a positive quantity for all values ofU. and v within 

the domain of our interest. If equation (23) is divided by C(X, • cosh (x^/L) 

- 1219 -
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and equation (24) by C 0C,-"Cosh (x / L) and the expression (8) is used for ̂ , 
11 

we get 

and-

'^mirj o(|, 

Neglecting the absorption of the medium, Q • becomes equal to 2D (17), whereas 

0 r^(l/2D) W v V CXPC-V'JIAC'JJ, or furthermore, in case of one-speed approximation 
o 

with i so t ropic sca t t e r ing , 0 . '•<i{2/3jj^ and 0 / ->^(3/4J^ . 

(25) 

(26) 

Integral equations (10) and (11) indicate gi(v,u) and g (v. (Lc ) will be positive 

-1 - r -2 ->r 

quantities for f*^ 0- (One starts with weakly absorbing medium where ^ —^ 1, 

g„-> (*'U(v_) and by iteration obtains that both functions remain positive). The 

integrals in the above equations are then positive and 

^ m a K - "^(^ J (25a) 

(26a) 
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THE VARIATIONAL SOLUTION OF MILNE'S PROBLEM 

To describe the flux near the boundary it will be more convenient if we 

use, instead of ^(XjV^U) , a function 9(^)Y)\*) defined by 

According to the above definition, ''' •' ^ i '-* 

X(0,V^(.)= a-^Cv,^), f^>0 (28) 

âŝ '̂ ^̂ f̂'̂  " ̂  [9l^^V^>^^5''r - ̂ "kV^^'^^-r ] . (29) 
P is equal to the linear extrapolation distance in case the medium does not 

absorb neutrons. It can be seen that the^i^tegro-differential equation for 

O ( X . ^ ^ M ) is the same as for Y^'^/^A*) ' '̂ ^̂ l̂y* 

For our purpose, the integral form of this equation is needed. Taking into 

account the boundary condition (28), equation (30) can be integrated and we get 

"" ^{%u,^.^^}^y^{^^^ (32) 

where tiki!^s,0 for <4<0 and £(M)S( if M'^0 ; VLv^ is equal to O or Oo when M ^ O 

or<0 , respectively. Integral equation (31) gives us some information about 

the range of the asymptotic region. To see, at what depth the asymptotic 

region is achieved, we take in Equs. (31), (32) ̂  to be large. Then, the 

exponential factor expj—j—Ji"TI j is different from zero only if x^ is close 

to ^. This is especially true when u. or V are small (small Z(y)\). In this 

case, 9iy(^\^\^^) can be replaced by ^ ^x'yV^**) (29) and the left side 
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with 

is I 
Aĵ  are the variational parameters, to be determined from 

It is well known that even a crude trial function gives a fairly good 

•»^JW=°. i=..^.- .H 

result for Igf '^^ benefit of the variational method is that it expresses 

Q. in terms of Igf ^^ S^^ from Equs. (24) and (27) 

oo I 

(33) 

(34) 

of Eqtt. (31), indeed, gives 0 (•^t^,h^ > providing X,»«tJWv). The asjrmptoti 

region is then closer to the boundary for neutrons of slower speeds and for 

direction of movement more parallel to the boundary (i4->0 ) . 

"We will solve Equ. (31) for O ̂ x.V.uN approximately using the variational 

method. The functional jT^Jti approaching a stationary form if O is close 

to the exact solution of the integral equation (31), can be written as 

00 00 ( 

•o ' 

As yet, we do not know much about the minimum- or maximum- behavior of the 

stationary value I of the functional l4|Jf if the scattering is anisotro-

fic. It is known, however, that Igj- is the maximum value of _I iii '̂'̂  case 

of an isotropic scattering. 

The stationary functional 1st has a relatively simple form 
00 00 I "" 

o o o 

whenever the trial function for 0 CXjVjfi) is chosen to be a linear combination 

of suitable functions 9. CijH) n) , i.e.. 

(36) 

(37) 
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and, furthermore, if we replace £**'j!f;A*) with the right side of the Equ.^3l) 

and use the expression (35) for 1^^, 

The surprisingly good, yet still simple trial function is ^i^j^jh)^ % vX^'^M) 

with Q replaced by a variable parameter A.. From Equs. (37) and (35) we get 

the optimized value for A. being equal to Ô ij/Ofn and for Jgt ** ̂ lo'*̂ *̂ *! ' 

so that 

(39) 

being equal to the arithmetic mean of the maximum and minimum value for Q. 

In the one-speed case with isotropic scattering and no absorption this value 

corresponds to 17/^^ ̂  • "70933*$^ which is rather close to the exact value 

To improve the trial function we will have to add terms describing the 

effect of the boundary on the flux distribution. According to our discussion, 

following the integral equation (31), these terms should have factors of the 

form, like. expl-X/ii^^vH • However, such functions do not enable us to evaluate 

parameters A^ and Igt analytically. For this reason we write our imporved 

trial function as 

where IQ is some suitably chosen fixed length, e.g. 'lo~'€(**)• Once the 

parameters A^ have been optimized, this trial function can furthermore be 

improved by one iteration of the integral equation (31). The iterated solution is 

(40) 

+^i,^y,,y^<if,,).'-^^^^!!^^ 
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It is not expected that this approximation will give a good description of 

the flux near the boundary. However, fortunately enough, the results are 

very good for x = o: 

As it should be, O (0» V /^^~^ fori4So . It can also be shown that O (o v it) 

given by (42) exactly satisfies conditions (23) and (24) which could be, 

for our purpose, rewritten in a form: 
00 » 

X O 
o 

providing parameters A^ are determined through Eqtl. (37) and Q is given by 

Eqtt. (38). 

The following formula for the flux »(0,y.-My should then give a fairly 

good description of the angular and velocity distributions for neutrons 

streaming into the vacuum: 

§(o,v,-^) = Cv"<2Ap(V)cosht*[?z<V>+A.V''̂ '*^-

(42) 

(23a) 

(24a) 

\^^ZM{Z, J. t*>o 

NUMERICAL RESULTS FOR N0N7ABS0RBING MONATOMIC GASEOUS MEDIA 

To get numerical results we have used gaseous model^ for the scattering 

function, having supposed that the scattering cross-section is independent of 

^ the relative speed between the neutron and the scattered nucleus. Integral 

equation for the function W,'Y' (16) has been solved numerically on the 

Argonne's IBM 704 digital computer. The results for the atomic masses 
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A = 1, 2, 3, 4, 6, and 20 are given by the Fig. 1. It can be deduced from the 

shape of the integral equation (16) that tX(v) goes to zero with a constant 

derivative as J/-VO and approaches asymptotically to the value 3A/(3A-2) for 

large values of V . Also, W(Ois close to "tg ( OO ) for all V if the moder

ator is very heavy. The approach to the asymptotic value is relatively slow, 

especially in the case of A = 1 moderator. 

Function U(v} was then used for the evaluation of the following integrals, 

\ =2jav.v3exp^v )̂U\v:)̂  
Q.min ~ "3" ̂ tr . 

Eqtt. (17) 

Q.max ~ 
2, A\r ^"^^ (2^^) 

A,^ /^2j ^ 3 ^ 

Eqtt. (25a) 

Eqtt. (37) 

extr ^tr^* • Eqtt. (38) 

The results of the numerical integration are given in Table I. The improved 

variational result for Q (38) is only slightly larger than the first esti-

mate6((39). Fig. 2 represents the dependence of the linear extrapolation 

distance Q and the transport mean free path A ̂ r °^ the atomic mass A of 

the gaseous monatomic moderator. A rough comparison between the measured 

extrapolating end point in D2O and the calculated values for Q (Fig. 2) 

indicates that gaseous monatomic moderator with A as3.5 - 3.7 would be a good 

representation for D2O, in agreement with the estimate made by H. D. Brown . 
mm 

In Fig. 3, a flux of neutrons leaving the medium in a perpendicular direction 

LI *-• I , is given for atomic masses A = 1, 2, and 20 (arbitrarily normalized 

to the same value 0.5 at V s | ) . A shift in the temperature of the flux-
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distribution has been estimated to be about 17% for ̂  •» 1, few per cents for 

A = 2, whereas a moderator with A ^ 20 emits neutrons of practically maxwellian 

velocity distribution. 

DISCUSSION 

The above results indicate that the velocity distribution of neutrons 

evaporating from the boundary of a non/absorbing medium is not appreciably 

influenced by the boundary. However, we expect the effect of the boundary 

upon the neutron spectrum be much more important if absorption is present in 

the medium. The linear extrapolation distance Q very slowly approaches the 

one-speed value .7104/v^*Vas the moderator is getting heavier. For practical 

cases, Q may be in the range 0.75 - 0.8 <v.Coo) . 

The above variational method can be successfully applied also to problems 

like determinatL on of the angular- and velocity- distribution of neutrons 

transmitted through-or reflected-from a thin layer of an absorbing medium. 
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Figure 1 Function U(v) for monatomic gaseous media. 

Figure 2 Linear extrapolation distance (2{, and average transport 
mean free path \ versus atomic mass number A. 

tr •" 

Figure 3 Velocity distribution of the flux of thermal neutrons 
streaming out of the moderator in perpendicular direction 
(tt= -1). (Flux has been arbitrarily normalized to 
0.5 at V = 1). 
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ON THE SOLUTION OF THE TIME DEPENDENT 

NEUTRON THERMAUZATION PROBLEM* 

fey 

Juan U. Koppel 

John Jay Hopkins Laboratory for Pure and Applied Science 
General Atomic Division of General Dynamics Corporation 

San Diego, California 

I. INTRODUCTION 

For a long time it has been assumed that the time dependent neutron 

thennalization problem can be solved by separating time and energy variables 

in the Boltzmann equation and then expressing the time dependent spectrum as 

a sum of discrete energy modes or eigenf\mctions, each decaying in time with 

a particular decay constant (or eigenvalue). Thus, In order to satisfy 

arbitrary initial conditions, implicitly it was assumed that this set of 

functions Is complete. However, as it will become apparent In the following, 

this assximption is generally not tnie. In fact it will be seen that the 

sequence of discrete eigenvalues X cannot exceed the limiting value X = (Zv) 

but that for X>\ it is possible to construct a continuum of singular solutions 

of a special kind, all orthogonal to the set of discrete energy modes, thus 

proving the Incompleteness of the latter. 

The physical interpretation of the existence of a limiting value X 
oo 

is simply the fact that no persistent neutron spectrum can possibly decay 

with a smaller time constant (l/x) than the maximum average time between 

collisions, which is / \ 
^ 'mln 

Work done under contract AT(0^-3)-167^ Project Agreement No. 2. 
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Only for the physically unrealistic assiomptlon of 7-=—r = 0 the set of discrete 
•"̂ V̂in 

eigenfunctions would be complete. This is the case of the heavy gas model. 

The approach used in Section II for treating the time dependent neutron 

thermalization was first suggested by Van Kampen in connection with a 

(2) (2) 

problem of plasma oscillations, and developed later on by Case and Mika 

in connection with a space dependent one velocity transport problem. Unfor

tunately in the present case the formulation becomes considerably more involved 

and most of the results are only given in the first order approximation of the 

scattering kernel,, However, it is believed that they can be extended to any 

higher order, matter which will be considered in a subsequent paper. 

In Section ITT a few numerical calculations are performed for the free 

hydrogen gas kernel. Finally, another approach to the problem is briefly 

outlined In the Appendix. 

II: APPROXIMATE SOLUTION OF THE TIME AND 

ENERGY DEPENDENT BOLTZMANN EQUATION 

We shall only consider the case of zero absorption, (l/v absorption can 

always be reduced to this case.) Hence the Boltzmann equation reads: 

^"^^> ^̂  = -n(x, t)x Ejx)+ / n(x^ t)x^z(x:; x)dx^+ Q(x, t) (l) 

o 

where n(x, t) is the neutron density' x = v/v is the ratio of neutron velocity 

to the most probable velocity of a maxwellian spectrum at room temperature' 
t is the time and E (x), E(X-» x) have their usual meanings. The time unit Is s 

;:; and the cross section unit is E the free atom scattering cross section E V so, ° so o ' 

(at some given energy). 

We want to express the solution of the homogeneous part of eq. (l) as a 

sum of functions of the kind; 

n(x, t) = n(x)e"^* (2) 
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Thus n(x) must be a solution of 

n(x) fx 2g(x)-\| = / n(xO X'E(X'-»X) dx' (3) 

It follows from the principle of detailed balance that the kernel of this 

equation can be symmetrized making 

n(x) = N(x)V M(x) 

xE(x%x)=S(x|x0V|ij 

with M(X) = X e" 

Then denoting x £ (x) = V(x), we have s 

N(x) V(x)-X / N(xO S ( x | x O dx ' W 

Now let us expand S(x' x) in a double series of functions which are orthogonal 

In the Interval (0,oo), and truncate this expansion after K+1 terms: 

K K 
S(x|x') = E S S.J n^(x) nj(x') 

o o 

K K 
E f.(x) |i,(x') with f,(x) = S S. . ti.(x) 

J=o 
^r 'y ' ilo '̂ J ̂ ^' 

(5) 

(6) 

Furthermore, let the \i, be the odd Hermlte polynomials times e 

V MHO VJ^ 

•x2/2 

Then .(x') 

and 

or 

oo 00 |i (x ) . 

V(x) = / X S(x -^x')dx' = / °/ I S(x x') dx' 

o "̂ o" 

V(x) = 
f,(x) 

(7) 

(8) 

(9) 
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Now expand N(x) In a series of [i. 

00 

N(x) = T.0^^^ (x) (10) 

(^^= ! N(x) n^(x) dx (11) 
o 

Then oo K 
/ N(xO S(x|x') dx' = S f,(x) 5̂  (12) 
O O "̂  "̂  

or 1 K 

If(x) = i E f.(x) (ji (13) 

V(x)-X -̂  "J 

Now let us suppose that 
0 < V(0) < V(x) for all x (Ik) 

This means that E goes like - for x ̂  0 and certainly holds for a gas 
S X 

model. Then the natiire of eq. (k) Is quite different for X < v(0) or 

X > V(0). In the first case eq. (k) is a homogeneous Fredholm equation of 

the second kind and has solutions only for particular values of X. When 

X > V(0) eq. (h) becomes singular. 

First let X < V(0) = V 

Because of the orthogonality of the \i. 

K 00 f (x) n (x) K 

k̂ =jf̂  ̂J I V(x)-X ^ -.% <J ĵ ^ = °'l K (15) 

With 4j = ̂  ̂ 1 Sij (16) 

and " M.i H^ 

ii-^-hr^- (IT) 
0 
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For the non trivial solution of (15) 

det Ki - ̂ kj) = ° (18) 

It is simple to show that there are at most K+1 values of X satisfying (l8) 

(See Appendix) 

The lowest one Is obviously X = 0 corresponding to N(x) = |JIQ(X) 

In fact: 

Ko = " ̂ k̂(̂ ) ^̂ o(̂ ) ^ = \o (̂ 9) 
o 

Thus X = o is a -solution of (l8) 

In the absence of degeneration the K+1 eigenfunctions will be orthogonal to 

each other. To prove it write eq. (k) for two different eigenvalues, X and 

N (x) 
n̂  ' 

V(x)-X 
n 

= / N^(x') S (x|xO dx' (20) 

KM 
m 

V(x)-X 
m 

= / Njx') S (x|x') dx (21) 

Multiply (20) by N (x) and (21) by N (x), then integrate over x and subtract: 

(X - X ) / N (x) N (x) dx = 0 ^ n m' •' n m̂  ' o 
(22) 

Having assumed X / X. it follows that N (x) and N (x) are orthogonal to each 

other. An Important consequence is the equation 

X Q( = 0 n ^o (23) 

which means that only N (x) has a I-IQ(X) component. Therefore, in order to 

find the eigenvalues X ĵ  0 we need only K of the K+1 eq. (15)> for instance 

k = 0, 1 .... K-1. The determinant of these K eq. must vanish for X = X ^ 0 

and the normalization of the corresponding eigenfunctions is arbitrary, for 

Instance ^^ = 1. Once ̂ J,, ̂ g .... <^ are known, the eigenf unction Nĵ (x) are 

given directly by eq. (13). 
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Now l e t X S V(0) = V and asstame V(x) i s non-decreasing in the i n t e r v a l (0 , oo). 

Then In general there are no regular solutions of eq. {k). However, there is 

(1-3) 
a continuiim of singular solutions^—-' (not strictly functions but distributions 

in the sense of Schwartz), which together with the discrete spectrum for X < V 

can be shown to be a complete set, at least in the first approximation K=l. 

These singular solutions are 

N(x, X) = P ̂  Z fj(x) 9(j(X) + 03 (X) 5 (x-x^) (21̂ ) 

where f.(x) and ̂ (.(X) have the same meanings as above and 
J J 

V(x^)-X = 0 (25) 

P r̂-T- indicates that when integrated, the Canchy principal value is meant. 

As V(x) is a constant for K = 0 from now on K S 1 

Multiplying eq. {2k) by V(x)-X, and using the same method as above, it is easy 

to prove that these singular solutions are orthogonal to each other and to the 

discrete elgenf\mctlon. Thus eq. (23) holds for the singular solutions too. 

In order to find the function 9̂ ĵ (X) and ca{X) multiply eq. (2k) by i-iî(x) and 

Integrate; it follows: 

K 
9(ĵ (x) = E <;i.(x) Kj^j(x) + a)(x) ^l^(x^) k = 0,1, .... K (26) 

with 
cc tlj^(x) f^(x) 

^J^")=i V(x)-X̂  ^ (27) 
o 

The K, .(x) are Canchy principal values. The system of K+1 equation (26) is 

homogeneous. In order to have non-trivial solutions its determinant (with 

^k(-x) = \ ) 
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K, 01 K, 02 

% 1 " ^ ^12 

K22-I "21 

ha. h& 

^0^ 

^llf 

^2k-

^ 

7̂ 0 

^ 1 

^ 2 

^ 1 . (28) 

should be zero. In fact, it follows from eq. (25) that 

K 

j^fjK^j -\j)Sok = ̂ Sj j=̂ 0;'.••'<' (29) 

and 

Thus 

K 
2 s ,7?, = x7? 
- oj M 'o J=o 

(30) 

A = 0 (31) 

and the system eq. (26) has a non-trivial solution which can be normalized 

arbitrarily. 

If the ̂ . (\) for j > K are required, they can be found with the recursion 

relations 

i+K K K 

^ n̂ ,^ Ŝ l ^ ̂ n̂ ̂ 1̂ iT "^ ̂ ."̂  Îd ^j -̂  ̂  ̂ i n=o 1=0 o ^o ,1=0*^^ 
(32) 

or else, using eq. (26), but now with k > K. The relation eq. (32) obviously 

also holds for X = X, < V . For i=o it yields the known result: 
n o •' 

\ ^ = 0 
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Completeness for K = 1 

This case is particularly simple because 0 and 0, are known a priori. 

f (x) ti.(x) 
We have V(x) = / ^ = S + S^. —T-y = b (x + a) (33) 

^ ' n^Cx) 00 ol n^(x) 

b and a being constants. 

For X, ^ 0 eq. (I8) and (3I) reduce to 

CO u (x) f (x) 

4 = / ̂(x) \ ^ - ° (3^.) 
o ^ ' 

K^^(\) + co(\) 7|Q = 0 (35) 

Eq- (3^) defines the only non zero eigenvalue of the discrete spectrijm, 

whereas eq. (35) gives a)(X,) for the singular solution. 

In order to prove completeness of the set, it is sufficient to show that 

an arbitrary function F ( X ) , orthogonal to the discrete spectrum, can be 

written as a linear combination of the singular solutions. 

2 
For simplicity let us change to the variable y = x and adopt the 

notation 

Now 

with 

h.(y) = Hi(Vy) 

gi(y) = fi(Vy) 

V(y) - X = b(y+a) - \ = b(y-a) (36) 

a = ̂  - « (37) 

The 2 discrete eigenfunctions are 

NQ(y) = h^(y) (38) 
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with 

% ( y ) 

« i = 

gi (y) 

a - _ 

(39) 

(40) 

Eq. {2k) and (35) can be written 

gT(y) r-
N(y, a) = P ^J::^ + 2 Va a)(a) 5(y<,!) (4i) 

-1 r^n(y) s-|(y) .-, a,(a) = ̂ :̂ . . d -° ± - 1 ^ (42) 
^ -̂ b h (a) J y - a 2Yy ^ 

o 

If the set of functions (strictly, distributions) eq. (38)^ (̂ 0) and 

(4l) is complete, it should be possible to express an arbitrary function 

F(y); obeying the conditions 
00 

/ F(y) N (y) - ^ = 0 n = 0, 1. (̂ 3) 
o Vy 

b-"- the integral 
00 

F(y) = / A(a) N(y, a) da (kk) 
o 

or 

F(y) = q(y) A(y) f ̂ M J A ^ i _ ^ (̂ 5) 
o 

with 

) da 

- y 

Q(y) = sVy "̂ (y) (̂ 5a) 

T(y) - - 4 gi(y) 

The singular integral eq. (̂ 5) is of the dominant type — and its solution 

reduces to the Hilbert problem of finding a function X(z), sectionally 

holomorphic In the finite plane cut along the positive real axis, with 

lowest degree at infinity and satisfying the equation 
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G(y) = X+(y) ^ X(y + Oi) 

X"(y) X(y - Oi) 
ih6) 

o(y) - ^V7^(y)..igi(y)A (,,,) 

This last equation is equivalent to 

G(y) = V ^ (̂ "̂^ 
e^ (y) 

with 1 " h^iy)e^(y) gy (1,8) 
e (z j = J —"— 

2 r t i b o y - z 2 Y y 

where z is not on the positive real axis. Comparing (48) and (34) it is 

seen that 

e(z) = 0 at z = - a 

this being the only zero of e(z) in the finite plane. Thus it is found 

that 

X(z) = (z + a^) ^j^ (49) 

is the solution of the Hilbert problem considered. The function n(z) 

defined as 

will then be given by 

n(z) = 1 ^ / - I ^ ^ 2 ^ (51) 
o X^(y) [Q(y) + T(y)] 

or 
^ z + a^ " F(y) h^(y) 

^ ^ ^ ^ - ^ ^IJT i (y . a^)(y-z) ^ ^ ^^la) 

As X(z) is of second degree at infinity, F(y) must obey the conditions 

7 F(y)h (y)y" 

/ ^ -M- = 0 n = 0, 1 52) 

y-^1 2V7 
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in order to make n(z) vanish at infinity as required by eq. (50). Finally 

A(y) can be obtained from 

A(y) = n'̂ (y) - n"(y) 

It is easily verified that condition (52) and (43) are equivalent. Hence no 

further conditions are imposed on F(y) and the completeness has been proved. 

Normalization integral - From the orthogonality properties already shown it 

follows that 

00 

/ F(y)N(y,a) — ^ = A(a)R(a) (53) 

o 2 Vy 

where F(y) and A(a) are related by eq. (44) and where R(a) depends on the 

normalization chosen for N(y^a), For 0 (a) = 1 and using the Bertrand-

Poincare formula it is found (K = l): 

E{a) =<^^ia)2^f^ + ^ g.2(a) - i — (54) 

b"̂  2ycc 

For the two discrete eigenfunction given by (38) and (39), the normaliza

tion integrals are 

RQ = / h^Hy) - ^ = 1 (55) 
o 2 V y 

•]_ " g-L (y) 
B. . ^ 7 ^ 2 1 1 _ , ^ (56) 

(y + a^) 2 V y 
1 ~ n.2 J , ^ x2 

Green function - As an application of the previous results let us find the 

Green function corresponding to eq. (l). With the variables defined above 

we have 

(57) 

aN^(y,yQ,t) 
N^(y,yo,t)v(y) + / N^(y ,yQ,t)S(y'|y) — ^ + 5(t)5(y-y^ 

2 Vy"' 
•yt = - ^^QKy,yQ,^J^Kyj + j ^^G^^ '^0 

o 

Integrating over t from -0 to +0, if N (y,y ,-0) = 0 
Q^JfjQ) 
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NQ(y,yQ,+0)= B(y-y^) (58) 

Because of the completeness of the N(y,a) we can make the expansion (K = l) 

NQ(y,y^,t) = E A^N^(y) e ' V + / A(a)N(y,a)e-^^°')* da (59) 

n=o 

A and A(a) can then be determined from the boundary condition (58). Making 
n 

1 
F(y) = 5(y-y^) - L A^Njy) (60) 

n=o 

it is seen that N(y a) 

*(< )̂ - T? i5y - («i> 

\ - -r^ («^) 
and "^n^^-^ 

n 

Finally 

1 W (y )N (y) CO N(y a)N(y,a)e"^^")* 

N,(y,y,,t) = z - V - ' ^ ^ - - / -^-T(^ ^^ (63) 
n=o n o 

Another case occurs when the source terra is of the form 

Then the boundary condition 

5(t) hjy) n jL o (64) 

NjjJy,+0) = h^(y) (65) 

applies and from 

A(a) R (a) = / N(y,a) h^ (y) - ^ . = 0 (a) (66) 
2^y n 

A^ R^ = / N^ (y) h^(y) - ^ = 0 ; A^ = 0 (67) 
o 2 Y y ^ 

it follows 

V ^ ' * ) = - ^ N̂ (y)e"̂ l'' + / -|r^ N(y,a) e'̂ ^̂ ^̂ da (68) 
1 o ' 
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Ill Numerical calculations for the monoatomic hydrogen gas kernel. 

For a monoatomic gas kernel the matrix elements can be computed analytically 

(2). The kernel for monoatomic hydrogen is particularly simple 

P P 
S(x|x') = 2 e"^^/^)^""' "'' ) erf (x) x<x' (69) 

= 2 e-(l/2)(^^"^'^) erf (x') x>x' 

With 
^A^) 2̂ ^̂ (21+1)1 V 7 ' 
1 

vP x"̂  d" -X 

1/2 -x^/2„ 
^2i+l (70) 

2 ,P 2 
H (x) = (-1)" e" - ^ e-^ (71) 
^ dx 

the matrix elements are 

c (.l)i-j-l £ ^ [(2i±aLl2itl)ll -'/' r(i+J+3/2) (72) 
Ĵ '̂  4(i-j)2-i 

It is interesrting to compare the values obtained for V(o) with the exact and 

the approximate kernels (see Fig. l). The exact function is 

2 

V(x) = (x + 2^) erf (x) + - 2 — (73) 

and its minimum value is V(o) = -7=- /„, v 

y F (74) 
With the approximate kernel it is found 

2 
For K = 1 

For K = 2 

\W = ̂ oo-^ol^ --\J^^hV (75) 

V^ (0) = 1.5 y/^ = 1.06 V(0) (76) 

\^^^-^^^i -if -' - i) (77) 

V2(0) = g y r = 1.016 V(0) (78) 
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The magnitude V(o) is important because it is equal to the value of \ 

which separates the discrete spectrum from the continuum. 

Next we are going to calculate a and m(a) for the case K = 1. Eq. (34) 

reduces to 

103^(0^) - llB^(a^) = 0 (79) 

where 
2 o 00 -X 2n 

B^(a^) = / ^ ^ dx (80) 
o X + a 

The B are related by the recursion relation 
n •' 

Bja^) = (-â ) B^_^(a^) + | r (n - |) (8l) 

and 

B o (a ) =|e°'l erfc ( V ^ ) - ^ (82) 

V«i 

Thus a is the root of the transcendental equation 

ai 0.6 + a 
V ^ V « ^ e -̂  erfc V ^ ^ = I X T ^ ^^3) 

It is found a = l.'?3 or 

X^ = (4.50 - 1.23) i y i = 0.77 ̂  (84) 

Now, in order to calculate a)(a), again it is preferable to use the variable 

o 
y = X . From eq. (42) it follows 

^a/2 «r g-L(y)dy 
a)(a) = - 5-—:_ / V ^ ' (85) 

For K = 1 
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y|gi(y) 
2-\fJ 

(lOy - 11) V y ' e y/2 

Consequently 

0)1 (a) = 
V5- V2 

10 B2(-a) - 11 B^(-a) 

(86) 

(87) 

(88) 

where now the B (-a) are p r inc ipa l values: 

T coyr- - y n - 1 - , / 

B (-a) = i / ^—^ ^ ^ 
V ' 2 J^ y - a 

dy (89) 

Again we have the recursion relation 

B^ (-a) = a B^_^ (-a) + I r (n - |) 

Let us calciilate B (-a) 

2B (-a) = 7 £5£|Z = J e^y ^ T ̂ ^ = I . V^ T 
1 ^ y - a ô ^/y +\f^ V ^ y - a i v 2 

(90) 

For Ip we have 

T- -a 7 e dt -a 
00 -t a 
/ 2-r^ -2 / Sh t dt 

a o t 

or 

^2 = ̂  
-a E^(a) - 2 Shi(a) 

The two integrals in the bracket are tabulated functions. 

I has to be evaluated numerically. 

Conclusions 

It has been shown that in general the time and energy dependent 

Boltzmann equation can be solved by separation of the variables only if a 

continuum of singular eigenvectors is introduced. Besides this continuum 

there also is a discrete spectrum of regular eigenfunctions. When the 

scattering kernel is approximated by K+1 terms of a double expansion in 
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OCT »>losT 
orthogonal functions the number of regular eigenfunctions is K+1. The 

value X = (S v) min separates the discrete spectrum from the continuum. The 

completeness of the whole set of eigenvectors has been proved for K=l. 

Concerning the accuracy of the present method, it should be emphasized 

that only the expansion of the scattering kernel is tiruncated after a finite 

number of terms. The solution corresponding to any truncated kernel is 

exact. 
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APPENDIX A 

Proof that eq. (l8) has at most K + 1 roots X. 

Let us assiome the symmetrized scattering kernel S(x|x') is positive 

definite and consider the eigenvalue problem 

i|f(x) = ^ / S(x|x') i|f(xO dx' (A-1) 

V(x)-\ 

where now X is just a parameter, y being the eigenvalue. Again, if S(x|x') 

is approximated by (5), eq. (A-l) is equivalent to the system: 
K 

T, = r 2 K. 
1=0 jl 1 J = 0,1,,.. K (A-2) 

with T. = / \|f(x) la (x)dx 
J J 

It is known that there are at most K+1 values x< which satisfy eq. (A-2) 

and that for X=0, the lowest one must be 

yielding 
r = 1 (A-3) 

X=o 

X=o 
no 

It follows that if we can show that the XJ decrease monotonically for increas-
oxh be ovily one 

ing values of X, for each y . there "'" ' \. such that r^ = 1 and the 

thesis would be proved. 

Now 
/Mfi^(x) [v(x) - x] dx 

^i ' //>|f^(xMr^(x')S(x|x') dxdx' 

and from the variational principle 

&r. = 0 

{A-^} 

r^-?; 
X= const 
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it follows that 
2 

^ /^^(x) ,|f^(xOs(x|x') dxdx' 

Hence the thesis is proved if S(x|x') is a positive definite kernel. 
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APPENDIX B 

Laplace transform method 

Taking the Laplace transform of 

^ ^ l l ^ = - N(x,t)v(x) + /N(x;t)S(x|xOdx + 6(t)Q(x) (B-1) 

it is found 

N(x,p) P + V(x) = /N (x;p)S(x|x')dx' + Q(x) (B-2) 

Using the same expansions as above, this eq. is equivalent to the system 

XT 

(̂  (D) - Z Qi (P) f ̂ i(''^ ^k^^^ ^(^^ ̂ 'k(^^ 

VP^ - z sa^iPUJ k— ^^^ ^ k— ^̂  (3_2) 
<J V(x) + p V(x) + p 

or 

K 

2 0.(p) 
J=o i 

Kj^.(-p)-\. + \ (p) = 0 k = 0,1,... K (B.4) 

This system can be solved yielding N (x,p). Then 

, a+ioo L, 

N(x,t) = oTT / eP'^N(x,p)dp 
2jti (B-5) 

a-loo 

where a is to the right of all singularities of N(x,p). These singularities are 

obviously poles at p= -X. and a cut from p = -V to p = -oo . Therefore the 

pass of integration can be deformed as shown in Fig. 2 (for K=() 
V 

p = u + iv 

^5 <^ 0- u 

-V 
o 

Fig. 2 

The integration around the poles yields the terms 

A N (x) e"V 
n n 
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which correspond to the discrete eigenfunctions, A N (x) being the residue 

of S(x,p) at p = -X 

The integration along the cut yields the contribution of the continuum of 

singular eigenfunctions. 
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THBHMA.L DIFFUSION OF IJEUTiiONS 

I . Ku§5er 

Institute of Physics, University of Ljubljana, 

Ljubljana, Yugoslavia 

ABSTRACT 

The influence of temperature differences upon 

stationary neutron distributions in extended nonabsorbing 

media is studied for two cases. In the case with a plane 

temperature discontinuity in an otherwise uniform medium 

soiie information is obtained by aid of an integral of the 

transport equation. A more general treatment by a sinrple P 

approximation is possible if the temperature is a slowly 

varying function of the coordinates. The general aspects 

of this case are known from the theory of thermal diffusion, 

and the results of this theory are easily taken over and 

adapted to the specific assumptions of neutron transport 

theory. Expressions are given, by which the thermal diffusion 

factor, along with the coefficient for ordinary diffusion 

of thermal neutrons, can be calculated for any given 

scattering law. 
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1. IIJTRODUCTION 

The influence of temperature differences upon 

stationary distributions of thermal neutrons in nonabsorbing 
a-5) 

media has been subject of several recent paper^ Kottwitz (1) 

consideredjinfinite heavy monatomic gaseous medium with a 

single plane temperature discontinuity. Using a modified age 

equation of Hurwitz et. al. (Z) he derived among others the 

interesD.ng result that the neutron flux y is constant 

throughout the medium, so that the neutron number density 

(n = V'/v, with V « VSkT/^ m) is greater on the colder side 

by a faetor of / T ^ / T I (where Tg^-T^). 

Kottwitz compares this effect to the thermal 

transpiration effect, associated with gas flow through a 

narrow hole (5). When carrying this comparison further, one 

XK should note that neutrons in a heavy mediiim only slowly 

accomodate to the temperature change after passing through 

the discontinuity, and hence have much chance to be reflected 

before accomodation - similarly as a gas molecule is likely 

to be reflected wh«n hitting a wall 

with a very small hole. Cpnsequently we may expect that the 

case with n»utrons in a medium with very light atoms should 

be comparable to the case of a gas flow through a leirge hole, 

where the pressure becomes equal on both sides, so that the 

ratio of the number densities is hg/n^ « T^/Tp7| ̂ eref ore 

Y*-/%. " V^-i/Tp* ̂ ^® general case should lie between both 
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with 0 < <̂  < ^ • 

Another promising comparison can be made if 

the thermal neutrons an<l the medium are considered as a 

mixture of two substances, in which a difference in 

concehtration is produced by the tenperature fiifference. This 

phenomenon is known as thermal diffusion. The theory of 

this effect in gases (9 - S) can be directly applied to 

the neutron case, if the temperature discontinuity is 

smeared out over an interval of at least several neutron 

mean free paths, so that the second approximation of Ejuskog 

and Chapman, or, to say 1* otheirwise, the P- or diffusion 

approximation, is applicable. For a gaseous medium under uni-

form pressure the relative neutron concentration, that is 

the ralio of the number densities of the neutrons and the 

atoms, is foundjto be proportional to T , where ocis the 

thermal diffusion factor. Hence the neutron number density 
-(1 '^) 

is proportional to T , and 

f ^ \ ^ (1) 

Chapman (g,y,y) derived a general formula for 

the first approximation to od . The case of neutrons in a 

noixabsorbing monatomic gas with the usual scattering 

properties (z) corresponds to a binary gaseous mixture with 

classical smooth hard spherical molecules, where one component 

is present in a very small concentration and the molecules 

of this component are much smaller in size than of the other. 

For this case Chapman's approximation reduces to 
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13 ir + 16 M + 30 

where M is the ratio of the atomic masses of the medium and 

the neutrons. With increasing M the approximate value of oo 

increases from ec** 10/59 - 0,1695 for M - 1 to ocs»s 5/13 » 

» 0,38^^for M= 00 .'Whereas the first value can be expected to 

be nearly correct, the second is known to be too low — 

- as in this case the exact value of the thermal 

diffusion factor is (,i)t ô  » ^^ ^ ^ ^ value applies to the 

case of Kottwitz, where, in agreement with equation (1), the 

neutron flux is constant. 

It seems worth while to exteiid both mentioned 

problems, that of Kottwitz and that with slowly varying 

temperature, to media with more general scattering properties, 

and to base the derivations as far as possible upon transport 

theory. oefore beginning]this task it seems useful 

to recall some general facts about the scattering characteristlos 

o£ the medium and the properties of kka a function which 

occurs in the theory of diffusion of thermal neutrons. 

One might that in case of equal masses (If - i) 

the factor oc, should vanish. However, this not <7rx^<^ 

because of the different mean free paths of the gas atoxos 

and the neutrons. 
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2. THE SCATTERING PROPERTIES OF THE MEDIUM 

The scattering properties of the medium, which is 

supposed to be nonabsorbing, are characterized by the mean 

free path t(u) and the scattering funtion f(u -•-u', cos & ). 

It is convenient to use here the dimensionless "reduced 

velocity" u lir « i^/2kT«v, where T is the temperature 

of the medium at the place considered. Tĵ e scattering 

function expresses the probability per unit interval du' 

and per unit solid angle that a neutron of initial reduced 

velocity u acquires the reduced velocity u* and is deviated 

through an angle & , when scattered. An important general 

property of the scattering function is expressed by the 

detailed balance relation 

I (u)û e"'̂  f(u-^u»,cos 0) ' I (u»)u»^e~^* f(u»-^u,cos^). 

Often we need the Legendre development of the scattering function 
oo 

f(u-*u»,cos 6)) - 2 ~ ^ ( 2 n + 1) f^(u-.-u») Pĵ (cos (9), 

and of its azimuthal integral, 

f (u -^ u' ,cos © )dy, -lZ(2n*1)f^(u^u*)P(^)'^^'j^ 

It may happen that for two media 

the functions t (u) differ only by a constant factor and 

that the scattering function is the same. Such is the case 

if both media consist of the same monatomic gas at different 

temperatures and pressures. We shall say in such cases that 
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both media have the same scattering characteristics. 

Let us briefly remember a few facts about ordinary 

diffusion of thermal neutrons. If the medium is uniform, 

a stationary neutron distribution with a linear gradient 

can be e^ressed by the following solution of the transport 

equation; 

5zi(z,v,u) -SVV^ ^ 1̂  0^ + 0^1 z - >i U(^3v)}j . (3) 

Herein ap is the neutron flvix per unit velocity interval 

and per \init solid angle, C , C are arbitrary constants, 

and U(u) is the solution of (-fO iV) 
oo 

U(u) - ^(u) + /f^(u -^u*)U(u*)du*. 
0 

In this case the net current 

and the gradient of the neutron flux 

*«0 1 

where 

and 

(4) 

oo 4 

^ ' 2x JJ^(z,v,u) u dv diî  

•^ - 2K J j ci(z,v,u) dv du, 

or of the number density n • V'/î  » are related through 

oo 

U - 2 J U(u)u"̂ e du^ (6) 
0 

D - ̂  Uv. (7) 
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We observe that U plays the role of an average transport 

mean free path. 

For the monatomic gas model the behaviour of the 

f\inction U(tt) is i>ougl-j<£nown (^), although numerical data 

exist only for the case M = 1 (^). U(u) is an odd monotonous 

function, a qualitative picture of which could be given 

by U(u) <=fc U(«')» ̂ (u)/f(«») or by U(u) ̂ lU(tx? )arctg(u/a), 

with U(oo) » ̂ (oo)[^i - 2/(3M)]"'' , and with a roughly 

proportional to MT^) 

As M increases U(u) approaches a step fxinctionj 

U(u) = t » const, for M = c» and u > 0. The 

has the value l,273jfor M = 1 (f, ̂ , ^ ) , and for large M 

is given by ^ ( ^ ^ U ^ \ -^ 1/(6M)]X(oo (̂l . 

3»Integrals of the transport equation 

The subsequent considerations will be restricted 

to the plane case where the composition and temperature of 

the medixam, as well as the neutron flux depend upon one 

coordinate only, z say. For a nonabsorbing medium with no 

sources and̂ /an axially symmetric/flux distribution the 

transport equation reads as follows; 

u 2^^^+i-\z,^v)^(z,v,p) 

= y y 6/(z,/3v*)r!̂ (z,v*,p*)f(z5/̂ v»,̂ *-̂ j8v,u)dv'du'. (8) 

0 -d 

Multiplying both sides of (0) by dvdu, and 

integrating, we verify that the net current J. is jA constant. 
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According to the problem under investigation we shall 

assume that J = 0. 

neither t nor f 

depend upon z, the so called K-integral ( 12), 

K(z) = 27tjj(lK2.,v,)i)U(i 3v)p̂ dv d̂ , (9) 
0 -i , I ' 

the equation 

dz ^ 

which deduced from (8). This means that in our case K is 

constant within every region of uniform composition and 

temperature. 

4. THE CASE WITH A TEMPERATURE DISCOKTimilTY 

Following Kottwitz we consider two adjacent 

half spaces, each filled with a macroscopically \iniform 

nonabsorbing medixim, one ( - oo < z < 0) of temperature T^, 

and the other (0< z<oo) of temperature T- > T . The 
n •nuji.y be 

functions I , f, U ae^^different for both media and will 

be distinguished by the subscripts 1 and 2. Bach medium 

has its ss own K-integral (K.. = const, for z < 0 and K = const. 

for 2 ;> 0). 

At great distances from the discontinuity the 

neutron distribution is Maxwellian, 

- 1262 -

file:///iniform


(p(-oo ,v,p) = (27c) ŷ (-«7)»j3ĵ  v'expC- j^v ), 

-1 4 3 Z 2 
^(oOjVju) - (2:nc ) ^(«>). |3̂  v exp (-,3 v )^ 

We are primarily interested in the determination of the 

ratio of the fluxes \u{oo) and y(--'̂ )i and to how 

this ratio depends upon the ratio of temperatures 

and upon the scattering properties of both media. 

If the Constanta K and K are expressed by 

G>(z,v,u) at 2 E= - oc? , z » 0, and z = 00 , the following 

aquations are obtained: 

The right-hand sides of these equations are proportional 

to the averages of U ( /3. v) and U ( B v) over) unknown 

distribution c(0,v,u). Denoting these averages by "Cu^)^ 

and <(̂U y> , we may write 

-XL-i , ' . --i . (11) 

If both media contain only infinitely heavy 

atoms, U and U are constants and therefore U'(^'^) = V ( ~ '̂ )̂» 

in agreement with Kottwitz. 

= 1263 



For finite atomic masses a general conclusion i^t**« hr 

obtained if U(u) increases with increasing u (as in the case 

of the monatomic gas). We see then that the average of U ( '^^v) 
1 J 

over the "proper" Maxwellian distribution at T must be 

smaller than the average over the "hotter" distribution 

&)(^{) ,v,u). Similarly U ><^u\. Hence 

i.e., the flux is smaller on the warmer side. 

In order to obijain an estimate for the ration 

i//(«')/y'(- oo) we may, according to Kottwitz (1), approximate 

d>(0,v,u) either by a Maxwellian distribution at some medium 

temperature T, or by a mixture of two Maxwelliem distributions 

at T and T . If both madia have equal scattering characte

ristics and if the temperatures are not too diferent, a 1 : 1 

mixtiire seems adequate, and we obtain 

t^l -̂  ^ ̂  <"2X , 
f{ 

where U stands for IJ = U , and VU > and vJ > are the 
1 2 ^ 1̂2L 27L 

averages of tJ( 3 v) and U(/3 v) over the "wrong" Maxwellijpcn 

distributions at T and T , respectively, e.g., 
2 i 

oo 

/u^)^ = 2J U(u)-(,3y/2^)Vexp[-(|^//?,)V]du. 

For a small temperature difference this can be approximated by 

/ u ^ ^ » U '[̂  1 - 2 (il/T) (U/U - 1)J , 
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where 

V ' j U(u)u^e~^du. 
0 

With a similar expression for \U / we obtain finally 

fC-<=°} T V 

This is in acco^rd with (1) if we put 

5 = _ 

OC 2U/U. (12) 

For a monatomic gas with ML m oo obviOTisly U " U, and 

therefore again ô  « — • 
2 
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5. MEDIUM WITH SLOWLX VARYING TBMPERATUHE 

And simpler and much more general treatment than in 

the previous case is possible, if the temperature of the 

mediTJun only slowly varies with z, i.e., if -t din T/dz < ^ 1, 
I 

wheBElis some average mean free path. In such cases a P^ 

approximation can be used, if boundary regions are excluded. 

The velocity distribution is almost Maxwellian. This must 

be true also if the composition of the medium is not uni

form, since in any case with uniform temperature the 

Maxwellian distribution (jb «<: v^e ) represents a solution 

of the transport equation. 

We try to solve equation (8), where /3 = S(z), by 

an approximation of the form 

y^(z,v,|i)= (̂ Jr)'[ŷ (ẑ v) + f^f^C^y^^ P (z)v^exp[-/3'(z)v^ , (ij 

A system of two equations follows for the coefficients y/ and y^ i 

2M^^^(M. - 20%^)y^^(z,v) +f (z,^v)\|/(z,v) 

'i 

- J f (z,|^^v)^fo(z,^v-*Bv*)y^(z,v*)dv*, (14) 

llf||!l?+ J(4 - 2pV)Y,(z.v)J +i'(z,pv)^^(z,v) 

- J f (z,|5v)pf^(z,4v^^v*)^(z,v') dv\ (15) 

where the abbreviation Y =- K z ) - din 6/dz » - 5 din T/dz 

has been introduced. 
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A restriction fov'^ is immediately apparent, if 

the net ciirrent is written down, which, according to our 

assumption, vanishes: 

2 
oo 

'' ft"* 3 n'̂  2 
(z,v)0v e2cp(-8v )dv - 0 . (16) 

~T - 4 ^^(z,v)pv exp(-8 

We know that the homogeneous equation 

(14)jlLas~a non-trivial solution v^(z,v) » ̂ '(z), 

corresponding to a strictly Maxwellian distribution. Hence 

equation (14) is soluble only if the first term satisfies 

a certain orthogonality condition. It txirns out that this 

condition has the form dJ/dz = 0, with the expression in 

(l6) substituted for J, and therefore is satisfied auto

matically if ^ obeys eq. (16). 

Since "̂/̂  is small compared tolj^, the first term in 

(14) is small of the second order ('̂  0(iJrY))» ^^^ ^^ *° 

this order the solution of (14) must be equal to the solution 

of the homogeneous equationi \^(z,v) = ^'(z). When this is 

introduced into equation (15)» its solution can be expressed 

in the following form: 

|i(z,v) . - -1^-^-" ̂ J^Y^z) U(z,pv) + 2yU/(z) V(z,|^. (1?) 

As indicated the fxmction U, a solution of (4), now may 

depend also upon z. V is the solution of a similar equationi 
"O 

V(z,u) » u i(z,u) +Jf (z,u-*>u')V(z,u*) du*. (18) 

After substituting the right-hand side of (17) 

into (16) we obtain a differential q̂ quation for y'(z), which 
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is conveniently written in the form S^^ 

d I^ESI. -fl -oC(z)likli^, (19) 
dz L2 J dz 

where ot(z) » ̂  - V(z)/U(z), and 

- r 3 2 
V(z) - 2jv(z,u) u e"^ du. 

^ lU^L 2 
Multiplying both sides of equation (18) bylU(2,u)u e du, 

and integrating, we verify that V(z) » 2 U(z), so that 

the thermal diffusion factor can be expressed by the 

averages of U alone, namely by equation (12). 

Let us taioi recall the special case when the 

whole medixim has uniform scattering characteristics, so 

that OC = const. Then the solution of (19) has the simple 

form mentioned by equation (1). 

Our initial restriction to the plane case with 

no net current has helped to simplify the above deductions 

somewhat. However, generalizations to three dimensional problem! 

and to cases with non-vanishing net current immediately 

suggest themselves. A general diffusion equation, which 

accounts for combined ordinary and thermal diffusion, 

should have the form (cf. the above -Equations (5) and (19)) 

Ĵ  » - |u grady + (1 - oc)(y'/T)grad Tj . (20) 

Such aquations are well known from phenomenological 

theories of these transport phenomena (13). 
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6. THE DUFOUR EFFECT 

An alternative deduction of the formula (12) for 

the thermal diffusion factor can be achieved, if we cosider 

the Dufour effect, that is the heat flow associated with 

(13). Though with neutrons the effect 

in unobservably small even for the highest available fluxes, 

it deserves some interest because of its relationship to 

thermal diffusion. 

The effect is described by the equation 

I = - C grady , (21) 

where I is the flow of kinetic energy, transported by 

neutrons in a medium of uniform temperatiire, and C may 

be called the Dufour coefficient. In order to find an 

expression for this coefficient, we consider an extended 

medium of uniform composition and uniform temperature, 

in which a stationary neutron distribution of the type 

described by equation (3) is set up. The net flow of kinetic 

energy of the neutrons i s 

f 
I ^2% 1 2 7 

^mv Q ( z , v , u ) u dv du 
0 - 1 

4 = 2= dw> 
- - JirUkTC^ - - -UkT - i -

3 fc 3 dz 

WB see t h a t 

C - - U k T . (22) 

On the other hand the coefficients for diffusion, 

thermal diffusion and the Dufour effect can be eacpressed 
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by the quantities L,., L and L , used by de Groot (13). 
cr -US-

Comparing his equat:^s (13, ppT^ 119) with the above equations 

(20) and (21), and taking into account some modifications 

valid for the neutron gas in a medium at rest, we verify that 
1- _ 2.-1 

11 
-U = L,,(kT/m )V , 

^U (1 -oc)y - L /m - L • 2kT/m^ 
3 2 / lu 11 

-1 
_ ;kT/m')X 
ul 

Q, '^ JA ,(kT/m)y/ . 

Observing that, according to reciprocity principle 

of Ottsager (13), L = L , we find 1 -oc = 3 C/&T UJ- 2. 
"^ lu ul 2 ^ ^ 

Then, in view of eq. (22), again equation (12) ensues. 
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The heavy gas model and associated Wilkins equation are particularly attractive 

for deriving neutron spectra since the usual integral expression involving the 

scattering kernel is replaced by a simple differential operator. The result

ing model, however, does not give an adequate description for materials and 

energies where binding effects are importanto 

As reported by Triplett^ ., Horowitz has proposed modifying the heavy gas 

thermalization model by allowing the slowing-down power to be a function of 

energyo This type of modification has two virtues» It preserves detailed 

balancing, and it generates a Majcwellian distribution in the limit of no neutron 

losseso The functional form of such a modification should be obtainable either 

from experiments or from the theoretical scattering kernel (when known) of the 

material in questiono However., since the modified gas model only approximates 

the actual scattering behavior of the material^ only certain features of the 

scattering kernel can be retained., As we will discuss., analysis of rethermal-

ization experiments indicates that the cross section weighted average energy 

loss per collision is the important quantity in a slowing-down process. We, 

therefore, choose to modify the heavy gas model so that the cross section 
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weighted average energy loss per collision from an arbitrary Maxwellian spectrum 

is correctly reproduced. This allows a unique determination of the required 

variation in slowing down power from either the scattering kernel or from re-

thermalization experiments. 

To investigate the accuracy of the modified gas model, we have calculated the 

modification to the Wilkins equation using the kernel code KRYOS-II^^' and 

have compared the spectrum calculated directly from the kernel by the code 

C2^ 
SPECTRUM^ ' with the spectrum obtained from the modified Wilkins equation. 

The solution to the modified Wilkins equation is obtained by iterating. In 

deriving a spectrum, we are free to choose the ratio of absorption to slowing 

down power for the system. In order to compare theory with experiment, as 

well as the direct spectrum calculation with the modified gas calculation, we 

have used a parameter characteristic of the system whose spectrum was measured 

by Coates and Gayther^^'. The two theoretical spectra and the experimental 

r e su l t s Eigree with one another to within a few percent. 

The importance of the cross section weighted average energy loss per collision 

(5) 

is particularly evident in rethermalization phenomena. As noted by Selengut^ ' 

rethermalization can be t rea ted with two thermal groups, having Maxwelllans 

as t r i a l spectra. However, t o obtain meaningful r e su l t s one must not only 

require neutron balance but energy balance as wel l . A recent paper by Selengut' ' 

discusses energy balance in a two-group analysis , and derives the following 

two-group equations: 

-Di V ^ <̂ 1 -̂  (^al -̂  ^ 1 ^ 2 ) h = ^12 h •" \ 

2 (^^ 
-D2V jzSg-̂  (z^2-^ Z ^ ^ , ) jZî  = E^^ Ĵ5̂  . S^ 
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where 

L - ^ ^ 2 L - %)2-Ea2 E 
2-^1 Ej32-Ejji 82 ED2-EEI ^^ 

E _ -A Ex J, . Eai-Epx E (2) 
l - ^ 2 - E ^ 2 - E ^ , Bl Ei,2-E33, a l 

S = ^J)g" ŝ s s = f̂l"%)l s 

ân = f̂ â ^̂  -̂ n ^̂^ "̂  ^ = J ^̂^̂  "̂  

D̂  = J ' D ( E ) X n (E) dE Ejĵ  = J E D(E) X^ (E) dE/D^ 

(5) 

ŝn " j ŝ̂ ^̂  ^n ^̂^ ^ ŝ ' J ̂ ^̂^ ^ "̂ /̂  

AE = fdE IdE' ( E - E ' ) S-CE-^E') X ( E ) / S 
n J J ° n £ sn 

The X ( E ) represent t r i a l spectra, S ( E ) , D ( E ) , LAE), and E ( E ) are , respectively, 
n a s 

source, diffusion coefficient, absorption cross section, and scattering cross 

section. E (E-^E') is the scattering kernel. 

(J) 

Bennett^'' has analyzed his rethermalization experiments by fitting the param

eters E and E__.T in equation (l) to reproduce the experimentally obtained 

activity traverses. He refers to these transfer cross sections as rethermal

ization cross sections. More details may be found in Bennett's paper. In 

graphite, since the absorption cross sections are small, the quantities of 

interest are the AEn's, and in a sense they are the quantities that rethermal

ization experiments measure. It should be noted that E^ is the average energy 

loss in a collision by an average neutron in group n. Note that we can also 

write 
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A E^ = J dE A E(E) Eg(E) X^ (E)/2g.̂ . W 

where 

A ¥ ( E ) Eg(E) = JdE' (E-E') Eg(E^E') (5) 

is the cross section weighted average energy loss by a neutron of energy E in 

a collision with a moderator nucleus. The quantity (5) has been calculated from 

the KRYOS code using parameters appropriate for 295 K graphite. Since the 

KEYOS kernel is nonmllzed to the high energy free atom cross section, it is 

convenient to define 

G(E) = AE(E) Ee(E) (g) 

where E„ is the free atom cross section. The results of the KRYOS calculation 

are plotted in the form (6) in Figure 1. The corresponding heavy gas expres

sion 

rE(E) =£(E"2T) (7) 

Is shown for comparison. For large energies 

G(E) = .11^18E-. 01116 (8) 

If one compares this result with the high energy limit from the gas kernel (see 

for instance, von Dardel^'0, one finds the coefficient of the E term should be 

2A = "11+19 (9) 
(A+l)2 

for A = 12.01. ThuS; the KRYOS kernel gives the correct high energy behavior, 
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One can then use expressions (2), (4), and (5) to obtain the rethermalization 

cross sections for an arbitrary Maxwellian neutron distribution impinging on 

a region composed of 293 K graphite. (We have approximated, Ej)j^— E^.) These 

results are shown in Figure 2. Included is the heavy gas value and the results 

obtained experimentally by Bennett. The crystalline binding effects taken 

account of by KRYOS are strongly in evidence. 

Since graphite displays crystalline binding effects so strongly, it should 

provide a good test case for Horowitz' modification to the heavy gas model. 

The modified heavy gas approximation consists of the replacement 

-E (E) jZi + dE' E (E'->E) JZ5 (E') = 
dE 

|af(E) E { ^ - T 0 + E T ^ 

(In the usual heavy gas approximation f(E) =1.) As mentioned, this modifica

tion has two very desirable properties. First detailed balance is maintained, 

in the sense that since 

00 

.E30 + IdE' Zg(E'->E) 0(E') dE = 0 (11) 

the right hand side of (lO) should also integrate to zero. For any reason

able flux the term in the brackets goes to zero for E = 0 or E —*oo, and 

the right hand side of (lO) has the desired property. Second, in the absence 

of losses, the solution to the Wilkins equation (the right hand side of (lO) = 

0) is still a Maxwellian. 

Let us calculate A Eĵj on the basis of the modified gas model. We have 
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A E, /dE E - Eg 0 + IdE' E g ( E ' ^ E ) ^ n ^ ^ ' ^ A sn 
(12) 

dE E ^ 
dE 

I n t e g r a t i n g by p a r t s , we f ind 

2 r a f(E) 
M 

E X - T X + ET i ^ ^ 
cE n n 

A sn 

A E„ = + I dJE 2 ^ f ( E ) 
M 

E X - T X + ET ^^n n ' 'n dE / 2 
sn 

(13) 

We cannot say anything about A E un l e s s we make some assumption about X 
n n 

If we choose a Maxwellian of temperature, T̂ ,̂ then A E is determined. Writing 

Tĵ "-'- = S, we obtain from (13) in this case 

AEn(s) = 2 Eo sf(ST-l) 
oo 

f(E) E^ e"S^ dE (lî ) 

Thus^ if A Ej^(s) is known^ by taking the appropriate inverse Laplace transform, 

one can find f(E)o A Ej^(s) can be determined experimentally or calculated from 

the scattering kernel. To calculate A Ej^(s) from the scattering kernel, we 

substitute a Maxwellian for 0 ( E ) in expression (4), obtaining 

00 

AEn(s) = 
Zsn(S) 

dE A E ( E ) E ^ ( E ) E e"^^ dE 
5 

(15) 

where again S = Tj^~ . By equating (l4) and (15)^ we can obtain a relation 

between the scattering kernel as expressed by A E ( E ) E (E) and the modifica-

tion to the Wilkins equation f(E). It is apparent that f(E) and A E ( E ) E „ ( E ) 

contain the same information although in somewhat different form. 
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Equating equations (13) and (15); we find 

00 00 

dE G(E) E e"^^ dE = (ST-l) f g(E) E^ e"^ dE (16) r dE G(E) E e"^^ dE = (ST-l) f 

o o 

where 

g(E) = 4 . f(E) (IT) 

and we have used the definition of G ( E ) , expression (6). The right hand side 

of (16) can be written as 

00 

R.S. = g(E) E'̂  (-1-T i_) e dE 
dE 

(18) 

^ 

and integrating by parts 

00 

R.S. = E g(E) + T i_(g(E) E^) 
dE 

-SE ,„ e dE (19) 

Since (19) holds for all S, we must have 

-E G(E) = = E 2 g(E) + T £_(g(E) E 2 ) 
dE 

Imposing the boundary condition that g(E) remains finite as E-^00, we can 

solve (20) to obtain 

00 

(20) 

M-E-^e^'"^ I JL e-̂ ^̂  a(x) ax 
J T 
E 

(21) 

Equation (2l) enables one to find the required modification to the heavy gas 

equation from the cross section weighted average energy loss per collision. 

For a heavy gas 

G(E) = -§- (2T-E) (22) 
M 
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and we find on doing the integration 

and, hence, 

as it should. 

g(E) = 4 -
M 

f(E) = 1 

We have used G(E) obtained from the KRYOS code to evaluate g(E) from (2l). For 

low energies, errors in the integration of (2l) lead to errors in g(E). How

ever, since T is the equilibrium temperature of the moderator. 

0 = 
o 

/ 

oo oo , 
M(E,T) G(E) dE = f J L e"^^ G(X) dX 

J T 
o 

(23) 

and one can rewrite (2l) as 

E 

g(E) = .E-2 e^/^ / ^ e"X/T G(X) dX (24) 

At low energies G(E) varies as E"-'-/ , which enables one to start the integra

tion of (24). In practice, it is satisfactory to use (24) for low energies 

and (21) for high energies. The results are shown in Figure 3» 

With the modification (2l), the Wilkins equation becomes 

E 0 = E i_ 
a o (JE 

1 

5(E) E J Z 5 - T J ? 5 + E T M 
dE 

If E„ varies as v"" , we may express 

VE 

Defining 

a 
2a(T) 

E. 

(25) 

(26) 
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We can solve (25) by Iteration if a is small. We follow the method used for the 

(3) 
unmodified Wilkins equation by Hurwitz, Nelkin, and Habetler , The result is 

where 

Q(E) 

^ = ^ = " ' ' 

E 

1 + a Q(E) 

= T r r(3/2) - r(3/2,y/T)^v 
J ^M v2 p-y/T g(y) y e' 

r(x) is the gamma function and r(a,x) is the incomplete gamma function. 

(27) 

(28) 

The function 

H'(E) =|ge-E/TQ(E) 

(3) 
Corresponds to the Hurwitz function H(E) obtained by Hurwitz, et al " . The 

two functions have been plotted in Figure 4 to show their differences. Note 

that the modified Hurwitz function is nearly twice as large as the unmodified 

(4) 
Hurwitz function in the thermal and epithermal regions. Coates and Gayther^ 

give as parameters for their system 

E (kT) = 4.52 X 10-5 ^^'1 
a 

E = .3862 cm" 
s 

(29) 

These values have been used to calculate a spectrum directly with the code 

SPECTRUM and a spectrum from expression (27). Since the parameters (29) give 

a A of the order of .3^ the correction factor 

1-0.799 A 
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(3) 
discussed by Hurwitz, et al., has been applied to the original a to give 

an a of 

a = 1.52 X 10-2 (jQ) 

Figure 5 shows a comparison of the modified gas results with the results from 

SPECTRUM. Figure 6 compares the modified gas results, the experimental results, 

and an attempted fit with a Maxwellian and the unmodified Hurwitz function. 

Note that the results from the modified Wilkins equation, the results from 

SPECTRUM, and the results from experiment all agree to within a few percent^ 

while the unmodified gas fit exhibits discrepancies of 10-20^ with the experi

mental results. 

At least in the case of graphite at room temperature the modified Wilkins equation 

gives a successful description of actual measured spectra. With this encourage

ment we plan to look at graphite over a range of temperatures and at other 

moderators, including water. The modification we have described should also 

be applicable to the space dependent Wilkins equation. 

Finally, note that by means of rethermalization type experiments, one can in 

a sense measure the modification f(E) experimentally. One essentially examines 

the energy transfer characteristics of the moderator in question using a 

Maxwellian spectrum as a probe. If a number of different temperature spectra 

are used, one finds A E^(s) in equation (l4). Taking the inverse Laplace 

transform will then determine f(E) . 
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ABSTEACT 

The thermal neutron spectrum is calcul&ted using the 

PI transport equations and the heavy gas cross section 

for scattering by moderator atoms. A consistent expansion 

of the gas cross section and the diffusion coefficient to 

first order in vj, the Inverse moderator mass, leads to a 

spectrum %hich is nearly identical to that celculeted by 

Hur%itz, et al (1) in *hich the diffusion coefficient is 

assumed to be constant end several terms of first order 

in u in the energy moments of the gas cross section are 

ignored. 
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INTRODUCTION 

Hurwitz, et al (1) have shown that the gas cross 

section for neutron thermalization can be expanded in 

powers of the inverse moderator mass (USI/M). This 

expansion may be substituted into the PI equations which 

reduce to a fourth order differential equation in space-

energy derivatives. The space derivatives may be replaced 

by the eigenvalue of the Helmholtz equation (v"*cp + B^cp—o), 

Retaining all first order quantities in u in the transport 

cross section as well as in the moments expansion of the 

scattering cross section in the Pi equations introduces 

energy dependent terms which modify the equations for the 

spectrum found by Hurwitz. However, even for highly absorb

ing, fast reactors, the resulting spectrum differs from 

the Hurwitz result by only 1%, 

THEORY 

The consistent, one dimensional, PI transport equations 

are 

^ ' -H ^ , 4 ) , ^ 3 H- ^ 4 ) . ( £ ' ) ^ c ( e - , e ) d E ' (1) 
e' 

where 
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I 

- I 

and X •= cos(©'*^ = cosine of angle of scattering. Using the 

principle of detailed balance, the transport equations may 

be rewritten as 

3 

where 4* iE) — cP IE)/M(E) and M(l!.) equals the Maxv.ellian flux. 

Expand '^ (£) in a Taylor series about E on the right 

hand side of (4) and (5), keeping terms up to the second 

derivative. Thus, 

vihere 

are the energy moments of the scattering cross section. 

?ollov.ing the technique described in the Hurwitz 

paper (Appendix A ) , the scattering cross section IE ex

pended in a povver series in u, the inverse of the moder

ator mass. 'ihis result 

is substituted into i'-j. 16) for the energy moments (see 

Appendix B, ref. 1) . 'ihe moments are 
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< ^ e ° X = T . [ . ^ ^ ] = ^ , (7a) 
•ae 

< A S ' > ^ = JU^^ [ -HE-+ -4o ] (7b) 

<£ iG^>^ -^ ^ e (7c) 

< £ i £ ' > , = ^ J U ^ ( E - Z : < ^ ) {7d) 

< ^ E - ^ > , ^ - M ^ ^ e e (7e) 

Hurwi tz , e t e l , drop the l a s t two energj* moments ((7d) and 

(7e)) and assume t h a t the d i f f u s i o n c o e f f i c i e n t i s zero o r d e r 

in u , tha t i s 

D-. l3T.y' +e(a) (8a) 

and 

so t h a t (5) becomes 

^,^^) - - ^ ^ - n-He(u)] (8c) 

If D is expanded to first order in u, energj dependent terms 

are introduced which make the diffusion coefficient 
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^̂ ^̂  - ̂ . -' 'Avi ' - ^ ĵ f + t.,(fS-'̂ ] ''̂ ' 

where 6= KT and T"^^ ^ •^^ ̂  ^ f j _ ̂ Jd \ 

Substituting (9a) into the transport equation results 

in an expression comparable to (8c), that is 

where the operatorAis of the form 

As a result of keeping all first order terms in u in the 

diffusion coefficient and in the enex-̂ j ̂ noments of the scat

tering cross section, energy derivatives of the diffusion co

efficient have been introduced. After•4>t(E) is smbstituted In

to Eq. (4), a fourth order differential equation in space-

energy derivatives is determined. This may be reduced to a 

second order differential equation in energy by assuming that 

the spatial dependence obeys the Helmholtz equation which is 

of the form v*f+ B̂ 't=-o. if •vy is the eigenfunction satisfying 

2 2 
the Laplacian, B ( the eigenvalue)., may replace the operator N7 

Let e =•£/©, The second order differential equation for 'V„(S) 

is, then, 

e4„'V [^-G+«=. (03-^0 - [ . ^ F-̂ (e) ~F3(€)]'^.-o (10) 
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V 
where 

î ;- 4i , . 0 " . f^H 

and 

F. (e) - 3 J E i B ! (JLA^ I 
I + Oj^ B^ \ ^T^:- € 

^ 

3 < 5 ^ ^ ^ ^ 
a^rb * ^ \i 

ft. — 
-Z.UT, r-.(e) . 

F.[e) --^2i^l>_M; _L^̂ c 
» + 0 / B ^ / 2Q-t, .i-ltti-^^-^"^ 

If terms of order uB ere neglected, 

F, C&i ^ F^Ce) ^ o 

- | D . V 

Consequent ly , Eq. (10) reduces t o 

er.[^-c^)^:~^^.^ {^y-^c - o (11) 
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Equation (11) may be converted to an integral equation whose 

solution in the sense of a first iteration is 

where ^ ^ 

(14) 

6' 

0(3 

i'̂ r?2.-. ^ ^ Tv5 ^a. 

This solution is to be compared with the corresponding one 

presented by Hurtwitz et al (reference 1, Equation (14)) which 

may be obtained from our equations (13) and (14) by setting D« u 

equal to zero wherever it appears as an exponential and by retain

ing only the term in curly brackets in the integrand of (14). 

The integrals In (14) were evaluated on a computer for both the 

Hurwitz and the cases. 

CONCLUSION 

The above procedure was discussed at the Mexico City meeting 

of the American Physical Society (2). The difference In the 

spectrum resulting traa. a consistent expansion of all quantities 
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in j{ is less than 1% at all points for a wide range of reactors. 

This analysis was applied to reactors which varied from the 

large, thermal, graphite reactors (B^ - 60x10 cm." , la " .00413 

cm.~-'-) to small, fast reactors with high leakage and absorption 

(B - .019 cm.~^, Z» ^ ^'"^ cm."-*-). Consequently, for most 

reactors, the Hurwitz approximations give very zoo6 results. 
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Abstract 

The matrix elements of the neutron scattering kernel for a fredfeas 

and a crystalline material expanded in terms of Laguerre polynomials of 

energy, -weighted by a Majcwellian distribution, are obtained by a genera

ting function for the Laguerre polynomial. The eigenvalue problems in a 

spatial and time dependent neutron thermalization are solved by using the 

obtained matrix element. For the spatial problem first order Laguerre 

polynomials are used. Half order Laguerre polynomials are used for the 

time dependent problem, because they diagonalize respectively the spatial 

and the time dependent term. 

The convergence of eigenvalues and eigenfunctions in the time depen

dent problem using half order Laguerre polynomials is rather slow compared 

with the spatial problem's convergence. The diffusion cooling coefficients 

for a Debye crystal]ine and a graphite are calculated from the eigen values 

and eigen functions in the time dependent problem. 

The results obtained for beryllium and graphite are respectively 3.36 

and 2.4 times larger than those obtained by the Nelkin theory. 
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1. Introduction 

The time dependent problem using a pulsed neutron, and the space dependent 

problem have been considered by many a.uthors (IclS) ^OT the study of neutron 

thermalization. Experimental data (13, 14j 15) have been accumulated and theo

ries also have been developed by using the variational method (3, '1) and the 

expansion iliethod of flux in-terms of orthogonal polj'-nomia] s (5) 12). In the va

riational method, if simple trial functions are used, simple analytical formu

lations are obtained. From these formulations -we can get the physical meaning 

of the phenomena avoiding a tedious numerical calculation. Som.etimes, however, 

the numerical results obtained from variational approach are not very accurate. 

I'fhen an accurate numerical value is needed, it is better to adopt the expansion 

mentod. Although this method has been used for the neutron thermalizati.on pro

blem, only the low order ext^ansion 5) 9) has been considered except the case of 

hea-vy gas model {6rs^ J, 10—'12) and of free gas with mass 1 (8). In the heavy 

gas model, the matrix of che scattering kernel is diagonalized in terms of 

first order Laguerre polynomials. 

•ftef*"'ei 

In this paper, the matrix elements of the scattering for free gas 

and crystalline material expanded in terms of the Laguerre polynomial, which is 

weighed by the Maxwellian distribution, are obtained by using the generating 

fiinction of Laguerre polynomials. In the case of space dependent problem with 

energy independent diffusion coefficient, first order Laguerre polynomials, dia-

gonalizing the diffusion term, are used to expand the flux, and half order 

Laguerre polynomials are used for the time dependent problem, where the term 

differentiated by time with a 1/>^E energy dependence is diagonalized. In 

Laguerre lopynomials, the generating function of the scattering kernel in the 

space dependent problem is simply related to the one of the time dependent pro

blem. The generating fixnction for the crystalline material is calculated by the 

Plazeck's mass expansion method, the phonon expansion method (17» 18) and two 

frequency dividing methods (21) which have been used for a calculation of total 

cross section and differential cross section of neutron scattering. 

The time and space dependent eigenvalues and eigenfunctions for free gas, 

Debye crystalline and graphite are calculated. J\. convergence of spatial eigen

values obtained by increasing the dimension of ma-trix is very good. However, 

the convergence of time dependent eigenvalues is rather slow. The diffusic^n 
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cooling coefficient obtained from the decay constant of pulsed neutrons in a 

small assembly has been calculated from the thermalization power Mg. The 

Nelkin's formulation for the diffusion cooling corresponds to the 

formulation in which only the first two terms of the Laguerre expansion are 

kept. The Nelkin's formulation gives a comparatively good numerical value in 

the case of free gas model. However, in the case of crystalline material, 

like beryllium and graphite, the accurate rftsults are : in beryllium a 3.36 

times largar value than the Nelkin's resiilts, in graphite a 2.4 times larger 

value than the results from Nelkin's formula. 

2. General formulation 

The Boltzmann equation for the time and spatial dependent angular flux 

f (r , E,S , t) is (16) : 

Since we are interested in the eigenvalue problem, we shall take the 

HoiATce term S ( T , E, <Qj) to be zero. In the diffusion approximation equa

tion (1) takes the form : 

'̂  at 

(2) 
'0 

where 

4>C'r',E,t") = ^<iajir,t,Q.:t) 

By making a Laplace transformation for the time variation, and for the 

spatial variation, expanding the flux in terms of the eigenfunction of the 

equation t 
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V^MLr^-t^l%^(fr-)^o 
2 

where B is the buckling corresponding to the 1th harmonic, the time varia

tion and the spatial variation can be separated from the equation (2), and 

the problem reduces to a following time and space independent equation, in 

which the time constant A or B appears as an eigenvalue. 

'h^t^^') + ^ C E ' ) 8=̂ <!'(£') +r<,(E)f(E) 

(3) 
+ Z4(E)'f(E) - J fcE')rs(E'-.EUE' =0 

'0 

In order to simplify matters, we shall consider the spatial eigenvalue 

problem and time eigenvalue problem separately. Since the moderator material 

generally shows the l/v absorption cross section, it is suitable to include 

the absorption cross section terms in the time eigenvalue problem, and to 

treat the spatial eigenvalue problem in the non absorbing medium. 

a) Space dependent problem 

Let us first consider the spatial eigenvalue problem in the case of 

energy independent diffusion coefficient : 

mS'-fCE^ -I- rs(E)<^(E) 

We assume that ^ (E) can be expressed as : 

4 

(4) 

4?(E) = £ J-ZT±' ^ ' ^"^W*^ *̂' (5) 
l-o 

(1) where L. (x) is the generalized Laguerre polynomial of order unity and degree 

of i and the Laguerre polynomial of order o( , L. .̂x) has the following 

generating function : 
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^'^"' = L rLK'w w C6) 
,a( + l 

The polynomial has the following orthonormality t 

I (7) 

Substituting (5) into (4) and multiplying the resulting equation by 

r{(J^) 
1 f 1 ̂  S 

L̂ t ' (-sr) and integrating over B, we get 

(8) 

where 

*̂  N;(*+i)(i+i) ^ " * 

- ĵ  [ ole'dE Zs(E'-^E) iL,: ( 4 ) ^ i (T) T*^ J (9) 

It is well known that the heavy gas model has been frequently used in 

the neutron thermalization problem because the matrix (S..) is diagonalized 
2 

simultaneously wi'th> energy independent spatial term DB by this Laguerre 
polynomial. 

Next, we shall consider the evaluation of the matrix (S..). 

(̂ ) In this paper, the Laguerre polynomial with the orthonormality eq (7) has 
been used instead of the Laguerre polynominal defined in the text book 
(Method of Theoretical Physios, Morse & Freshback). The reason is that this 
Laguerre polynomial is more convenient than the others for numerical cal
culation using the calculating machine. 
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In the incoherent approximation, the formula for the differential cross 

section in the neutron scattering by the crystalline material can be written 

in the form : 

dSLduj -U ?TC-J^ (10) 

QJ = B/-fi, , where B is the energy of the scattered neutron, Xh is the solid 

angle, k' and k are the wave vectors of the incoming and scattered neu— 
—* -

tron and )C=' k* — k, zlg is the bounded cross section, and M (t) is related 
to the frequency spectrum f {co) as follows j 

(11) •*n Jo 

where M is the mass of atom, m the neutron mass, and p = ——— . 

In the calculation of matrix element (S..), we use the generating funo— 

tion of (6) for the Laguerre polynomial. Let us consider the first terms 
(1) S: .' in the matrix S. . of eq (9), which are obtained as the coefficient of 

^ > 

jj('t-+l")(j-n") Y -^ in the following generating function ? 

• <*C f-T(1^)) f^ ^'^^' ^^'^"' '̂'̂  

Substituting eq (10) to eq (12), we get : 

-^^ico '̂ •'̂  fit -̂  
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By substituting the following relation into eq (13) s 

yf^ i'w. (14) 

we get : 

(15) 

-*. Ut-*<I)6t +-:*J) + (i-'-J)a'»n.(M«')-Mtt))]''̂ '-

where I - ( j - ^ + 1) ̂  """̂  "̂  ' ^ " A ^ T ^̂ ^̂  

(2) The generating function for the second term of eq (9) S^ ' is obtained 
(1) by the same way with Ŝ  ' as follows : 

5"^= JJI ^^ (.-P)-̂ (.-iLr̂ (-f'(î -7?P ̂  ife))ciE'̂ Â '<̂  

r^ csbb 

The generating function for matrix S is : 

S - Ŝ "") - S^^^ (18) 

Free gas case 

The effects of crystalline material are included in the term of 

^ M ( O ) — M(t) /. If we take the upper limit (t̂ -ŵ Debye frequency) of fre

quency function f (tO) to be zero, that is, the atomic force between the 

composed atom becomes zero, this expression becomes the one of the free gas 

model. In this case, the function / M ( 0 ) - M(t)_/ is expressed in the follow

ing form : 

M C ) - ^ ^ = --^ (^^- Jt') (19) 
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Substi tuting eq (18) into eq (15)> 

(d-P^f (i + ̂ f + 4-Pt(l-P4)H3 

•m. 

M 

(20) 

Similarly, we get t 

(a) ^ V ^ • M ^^ 1-P 

8 — T — T T T r : — r - ; (21) O — Z.fi r 

and SH:. p JH ^yx 

4Z.3 _5t_ [ ' "T7 f (—"^ ) ] 

In the case of hea-vy gas model, by putting rr-^O, we get : 

^Heairy - " ^ ^h^t. M ( | - p J l f (23) 

We can easily find out from eq (23) that the matrix in the hea"7y gas 

model is diagonalized. 

Crystalline material 

For the case of the crystalline material, the Plazeck's mass expansion 

method, the phonon expansion method, and the two frequency dividing methods 
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which have been used for the calculation of total cross section and differen

tial cross section, are applied to the calculation of the integrations in 

eq (15) and (I7). 

In the mass expansion method, the integrant in eq (I5) is expanded by 

the power series of (TT ) as follows ; 

s'i)^ ^ :L ' ( i -p r ( i -x ) -

y î * ^(T-^ ^̂  /^\^ r f (1+ J )^ r(t)]^ 
^ (24) 

where 

% ^i^y^lno^-iit)'] 
u;̂  

= ^'^o) Z . TTT:;—rrpTTTTTv-J ^'*«-^"^)^ =̂«̂ ' (25) 
t;:'o r(s-'»t+i)r('^+i).-J^^ 

where G^ (uP) - d(ft?) 

*- '" ' ' l7o-J •'••J 7:;:^ 1 

r̂ r̂ O 5 ^ i ^.--^«5-.(26) 

and using the formulation 
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^ ^ where K t, (x) i s the modified Hankel functi i 

^ ^ We fi-et 1 

; ion . 
We get I 

S 

i —^— It..f^l^t(^^-)e-^}^s) 
£:for(%-^^i)r(''tti)_J,^ U W H / J 

Simi l a r ly : 

(29) 

Prom eq (28) and eq (29) t 

i 
S = -Z-, ^' (,-pj.)0-p)(p-t) ( ^ , V M ^ - ^ , r ( t - . « ) r c - . . i ) ^^ 

. f ^ ( ^ i ) ^ (^5)<(^^ ^*"K,..((.-^^f,»V 

(30) 

where 
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^ . S^-^'^- - * 5 . - 5 

In phonon expansion method, the integrant in eq (17) is expanded by : 

^ raw (^f( [(i+J)^W] 
(32) 

By similar calculation as the mass expansion method, we get : 

(33) 

where 

In the case that mass M approaches to one, the convergence of series in 

the eqs (32) and (33) becomes slow. In order to calculate the differential 

cross section, the author developed the two frequency dividing model (22) in 

which the frequency ftinction is divided in two parts in such a wa^ that the 

high energy approximation is applicable to the low energy frequency and the 

phonon or mass expansion method is applicable to the other part with high 

frequency. By using this model, we can improve the convergence of the series 

in the phonon or mass expansions. This means that the f\inction /~M(0) - M(t_}7 

is divided into the following two integrals by the cut frequency u>t, 

CM{o)-M(t)] = ̂ (C")d|3w ^^'^u; _ j"liA.putsou}tUA»^i4}^P^ 

+ J te4.^i^-^U^ ~j 'lo&4,^^taou}^-^^y^^^^^]t^^^ (34) 
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The integration in the low energy frequency part from 0 to 10^ is ex

panded by power series of "t . However, if the U)Q^ is not small enough compa

red with the temperature, the neglect of higher term of t spoils the energy 

balance. If we assume that the low energy frequency part is located in the 

very small energy compared with the temperature T, the integration of 

M(O) - M(t) over the low enefgy region is expressed by : 

lMe'*"~V; (35) 

where Mg is the effective mass for the low frequency part, and is defined as: 

Me = ^̂  C i - S^^-f^'^^ "^^ (36) 

By this approximation and applying the mass expansion method to the 

high frequency part, the generating function S is expressed by : 

fc.r(V'>u-n)r('»^+i) J ^^^""^ i [^!T7y^) ^'^'^ ^ ^^ 
^ *,w 

where the signs (// ) on the integration sign and H-^i*^) means that the inte

gration in the expression is done only over the high energy frequency part, 

-7' 2,CH-^T(X-hT)J 

'̂ ' arn-^TCiro)] 
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b) Time dependent problem 

The method for the space dependent problem in the last section can 

easily be extended to the case of time dependent problem. The time dependent 

equation, in the medium with the l/v absorption is expressed by : 

-.^c|>tE) + ̂ ^ ( E ) - rt(E')2sCE'-^E)0CE' J>fÊ  + -^4>(E') - \ 

(39) 

This equation is easily solved by expanding the terms — •;̂  j (&") and 

--r T IE) in terms of the Laguerre polynomial of airst order jenergy (from. V p '_-j 

now on, we will include the absorption term — into decay terra — ) . But, 

in the following eigenvalue problem 

since the large nijmber of calculation codes have been developed for the case 

that matrix B is diagonalized, it is more convenient to use the other ortho

gonal set disgonalizing the term which is proportional to l/v. 

We assume that "+* (E) can be expressed as i 

. V |n(^+l) ,t'/*)/E>k E p - ^ / T 
r ( * + | ) ^i ^^f 1^^ *"* (40) 

Substituting eq. (40) into eq (39) and multiplying the resulting equa

tion by 

and integrating over E, we get : 

1̂  X s^j - iToSij 3 ^-i = ^ 
(41) 

4 
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where v » Va'm.T 

(42) 

Since the Laguerre polynomial of half order L. (.x) has the generating 
rn -'-

function of eq (6), the matrix elements S.. in eq (42) are obtained as the 
-̂  J 

coefficient of 

T in the following generating function S 

JS"" = VO-PKi-x) S (43) 

where S is the generating function of the space dependent problem in eq (18). 

Furthermore, if the diffusion coefficient or the absorption cross seo-

tion is proportional to E , the generating function S of the matrix for 

scattering kernel, where the flux is expanded in terms of Laguerre polynomial 

diagonalizing the diffusion term or the absorption term, is composed from 

the S in eq (18) as follows : 

t^ fCi-PKi-^)]"'.^ 
(44) 

3. Numerical results 

Since much more works have been studied for the time dependent problem 

than for the space dependent problem, we will consider mainly the time de

pendent problem as the application of the above described theory. 
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The decay constant /\^ of pulsed neutrons in a small assembly is ex- ^ ^ 

pressed by : fl~3) 

\ - (STc.v-) + 0)0 B""- C B ̂  (45) 

where B is the buckling of the assembly, D is the diffusion coefficient, 

DVaveraged over the Maxwellian distribution, and C is the diffusion cooling 

coefficient. 

In the case of an energy independent diffusion coefficient, Nelkin (3) 

found : 

_ V ^ ^J^ _ _ ^ 
c - V-

^ VoMn 6 /IMA (46) 

where Mp i s the thermalization power and i s defined as : 

M. = 4.I>P^^'^'"^)^"'-")^ ̂ '^'^ (47) 
T and i t i s related to the matrix element S^^ and S^̂  as follows : 

M a . ^ A 5 i i a (48) 

This diffusion cooling coefficient (12) is expressed more exactly by 

^ 1 \^ 6 Xi (49 ) 
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-riiere Ao** %>v > "b̂ ® nith eigenvalue and eigenf unction of time dependent 

equation (39)« Since the term of m •« 1 contributes mainly in many oases 

and the value of C^ J^'T,^\AJ,^\ > /o"̂  i-^^ nearly ( , ), r**Js"T, ^J7,^^ > /o^.-is nearly ( 

C = ^ (50) 

In table I, the time dependent eigenvalues for the free gas case are 

shown as unit of 

H 1 
— —=——- where the 20 x 20 matrices which remain the terms 

until the L ^ Q A ^ ) â ® solved. 

Table I shows that the ratios of 'Xjr\.*i.//\,^{n > 1) in the case of mass 1 

are smaller than the ratio in the case of heavy mass. This makes it difficialt 

to distinguish the Xi f3?om the higher eigenvalues in case of free gas with 

mass 1. In the case of comparatively heai!>y gas like the one of mass 10, their 

eigenvalues approach those of the heavy gas model, but the high eigenvalues 

are different from those of the heavy gas. This means that, in this case, the 

heavy gas model is not applicable to the analysis in the high energy region. 

7l§are 1 shows the eigenfunotions of mass 1, 2, Oo , which are oalciliated 

from 10 X 10 dimensioned matrix. 

The eigenvalues for mass 1, calculated from the several dimensioned 

matrices are shown in table II in order to see their convergence, and 

their eigenfunotions are shown in figure 2. The convergence appears compa

ratively slow, and the higher eigenftmotions show different shapes in the 

various matrix dimensions. 

Next, the space dependent eigenvalues and eigenfunotions are shown in 

table III, and figure 4» Similarly to the time dependent case, the ratio 

of spatial eigenvalues B . / B decreases when the mass approaches to 1. 

The convergence of spatial eigenvalues in the case of mass 1 is shown in 

table IV.. The convergence is faster than in the time dependent case, Ue 

can easily understand this fact, if we consider that the first order 

Laguerre polynomials are the spatial eigenfunotions in the heavy gas model. 
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Heavy crystalline model 

Next, we are going to consider the effect of the chemical binding on 

neutron thermalization by taking the heavy crystalline model, where the mass 

M is so heavy that the first power of 1/M is taken in the expansion fof eq. 

(30). The time auid spatial eigenvalues in the heavy crystalline nodel vitk 

the Debye frequency are shown with the thermalization power Mg in table V. 

The eigenvalues of graphite crystals in room temperature are oaltmlatttd.' 

with the frequency which was Yoshimori and Kitame calculated for the sttuljf 

of specific heat. In the case that graphite is assiimdd to be the heavy dtya-

talline model the eigenvalues are shown in table IV, and their eigenfiina1ll-«B 

in figure /!^ . 

In the case of simple energy independent diffusion coefficient, the 

formulation for the diffusion cooling coefficient is described in eq. (49)• 

However, we shoxild carefully compare the results obtained with experimental 

values by including the effect of energy dependent diffusion coefficient and 

the correction of the B term. Thus we just have to compare the obtainad. 

results with the values calciilated from the other theories, i.e. the values 

of \ . in eq (49) > X, in eq (50) are compared with X M I ^ ®^ (46). 

If we assume that Berylliijm is the heavy crystalline material at the 

Debye temperature ( 0 = IOOO^K), we get the value of \^li/'Z^'a - 0.38| 

A| M/T" m •• 0.5020. The latter value is smaller than the value oaloiol-

ated from eq (46) /V.|>JJM/ ̂ Tg ̂  " I.685 by a factor 3»36, and approaches 

the old experimental value measured by Komoto and Kloverstom (1958) rather 

than the recent data measured by de Saussure and Silver (1958). 

In the graphite which is assumed a heavy crystalline with the frequency 

function of the Yoshimori-Kitano model, A| M/XTe "̂  " 0.333 and 7^\^/2Ia ™ " 

0,399 are obtained, and the value is smaller, than the ^f^^M/ 21^^ " 0.957 "^ 

a factor 2.4* According to the Krumhansl and Brooks (21) model whose fre

quency function is the Debye frequency with Qf," 900'i:, 0<u - 2500*K, the 

value of AKJJ^M/ 2e"^ is 0.843. These results show that high matrix el««» 

ments are very important in the calculation of diffusion cooling eceffioianta• 
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w Singwi calculated the effect of this non maxwellian distribution 

for the diffusion cooling coefficient by taking the first three terms 

of the Laguerre expansion of the .flux. However, by using the heavy 

gas model instead of heavy crystalline model, he estimated this value 

to be nearly 20 'fo. This is underestimated. If we take the 3 x 3 matrix 

which corresponds to the Singwi*s correction, the values of ^ M/ ̂  m 

Berylliiim and graphite are 1.172, 0.649 respectively, where "X is the 

time dependent first eigenvalue calculated from the 3 x 3 matrix. 
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• * 

mass 

1 

2 

3 

4 

5 

10 

(1) 

1.064 

1.638 

1.954 

2.153 

2.289 

2.608 

3.009 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0.9242 

1.318 

1.541 

1.685 

1.786 

2.03 

2.352 

2 

1.131 

1.699 

2.130 

2.478 

2.764 

3.643 

5.207 

3 

1.300 

2.107 

2.761 

3.306 

3.769 

5.318 

8.889 

4 

1.531 

2.635 

3.563 

4.356 

5.043 

7.414 

13.54 

5 

1.806 

3.235 

4.467 

5.539 

6.480 

9.826 

19.19 

6 

2.110 

3.881 

5.438 

6.812 

8.034 

12.49 

25.85 

7 

2.436 

4.560 

6.457 

8.154 

9.680 

15.38 

33.57 

8 

2.777 

5.265 

7.517 

9.554 

11.40 

18.47 

42.40 

9 

3.132 

5.992 

8.611 

11.01 

13.20 

21.75 

52.45 

mass 

1 

2 

3 

4 

5 

10 

10 

3.499 

6.741 

9.739 

12.51 

15.06 

25.21 

63.83 

11 

3.879 

7.512 

10.90 

14.05 

16.99 

28.87 

76.69 

12 

4.271 

8.309 

12.10 

15.66 

18.99 

32.70 

91.20 

13 

4.679 

9.133 

13.34 

17.32 

21.06 

36.73 

107,6 

14 

5.103 

9.992 

14.64 

19.05 

23.22 

40.97 

126.0 

15 

5.549 

10.89 

16.00 

20.86 

25.50 

45.45 

146.9 

16 

6.023 

11.85 

17.44 

22.79 

27.91 

50.23 

170.8 

17 

6.536 

12.88 

18.99 

24.87 

30.52 

55.42 

199.0 

18 

7.110 

14.04 

20.73 

27.28 

33.43 

61.28 

277.8 

19 

7.800 

15.42 

22.82 

30.00 

36.94 

68.38 

277.9 

Tahle I — The time dependent eigenvalues for the free gas. 

Unit is — ^ -B- . The values in column (1) are the matrix element s' 



SimeRBlon 
of matrix 

17 X 17 

14 I 14 

11 X 11 

8 x 8 

1 

0.9244 

0.9246 

0.9252 

0.9273 

2 

1.141 

1.158 

1.186 

1.243 

3 

1.339 

1.396 

1.486 

1.647 

4 

1.606 

1.711 

1.872 

2.156 

5 

I.9I8 

2.075 

2.315 

2.744 

6 

2.262 

2.474 

2.800 

3.417 

7 

2.629 

2.900 

3.326 

4.231 

8 

3.014 

3.350 

3.899 

-

Dimension 
of matrix 

17 3C 17 

14 X 14 

11 X 11 

9 

3.416 

3.827 

4.541 

> 
10 

3.835 

4.335 

-

n 

4.273 

4.885 

-

12 

4.734 

5.499 

-

13 

5.224 

6.237 

-

14 

5.754 

-

-

15 

6.345 

-

-

16 

7.056 

-

-

Tahle II -* The oonvergenoe of time dependent eiganvalues in the oase of mass 1. 

(The valued of -tr -—;- are shown .) 



1 \ ^ 
mass ^ . ^ 

1 

2 

3 

4 

5 

10 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0.3284 

0.5259 

0.6370 

0.7068 

0 .7543 

0.8646 

1 

2 

0.6201 

1.077 

1.406 

1.646 

1.827 

2.301 

3 

3 

0.9022 

1.621 

2.199 

2.661 

3.033 

4.116 

6 

4 

1.179 

2.159 

2.993 

3.698 

4.293 

6.182 

10 

5 

1.453 

2 .693 

3.783 

4.740 

5.576 

8.413 

15 

6 

1.725 

3.223 

4.571 

5.781 

6.864 

10.75 

21 

7 

1.994 

3.751 

5.356 

6.821 

8.156 

13.17 

28 

8 

2 .263 

1.277 

6.136 

7.859 

9.445 

15.63 

36 

9 

2.532 

4.802 

6.917 

8 .894 

10.74 

18.12 

45 

( J O 

ro | ~ \ i 

mass ^ v . 

1 

2 

3 

4 

i 5 

10 

10 

2 .796 

5 .324 

7.696 

9.930 

12.02 

20 .63 

55 

11 

3.062 

5.847 

8.474 

10.96 

13.31 

23.16 

SG 

12 

3.327 

6.368 

9.250 

12.00 

14.60 

25 .70 

78 

13 

3.592 

6.888 

10.03 

13.03 

15.89 

28.25 

81 

14 

3.855 

7.407 

10.80 

14o05 

17.18 

30.81 

95 

15 

4.119 

7.925 

11.57 

15.09 

18.47 

33.39 

110 

16 

4.382 

8.441 

12.35 

16.12 

19.77 

36.03 

126 

17 

4.649 

8.965 

13.12 

17.16 

21.08 

38.83 

143 

18 

5.069 

9.483 

13.90 

18.21 

22.42 

41.77 

161 

19 

11.14 

16.70 

21.41 

25.71 

29.80 

48.35 

180 

Tahle I I I - The space dependent e igenva lues f o r the f r e e gas 

(where t h e p r o d u c t s of s p a t i a l e i g e n v a l u e t imes - ~ 7~«~ (^"' '^ ) are shown i n t h i s t a h l e ) 



Dimension 
of m a t r i x 

17 X 17 

14 X 14 

11 X 11 

8 

2 .263 

2 .263 

2 .263 

9 

2.530 

2 . 530 

2.532 

10 

2.796 

2 .797 

4.672 

11 

3.062 

3.064 

-

12 

3.327 

3.349 

-

13 

3.593 

6.624 

-

14 

3.859 

-

-

15 

4.191 

-

-

16 

8.785 

-

-

Tahle IV - The convergence of the space dependent eigenvalues in the free gas of mass 1. 

The eigervalues lower than 8th correspond to the results ohtained from 20 x 20 matrix. 

This tahle shows the products of the spatial eigenvalue times li !• /. .\ 
m 4 2 j ^^ '^ ' 



Dehye temp 
Temp 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 spectrum 
- g r a p h i t e 

^11 

3.009 

2.839 

2.412 

1.901 

1.425 

1.037 

0.7447 

0.5349 

0.3876 

0.2849 

0.9939 

"^^„.^ i 

^ 1 1 \ ^ 
3^^ a t =0 

1 

0.9434 

0.8017 

0.6317 

0 .4734 

0.3445 

0.2475 

0.1778 

0.1288 

0.0947 

0 .3303 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

I.9O6 

1.025 

0 .5093 

0.2708 

0.1571 

0 . 0 9 7 5 4 

O.O6466 

0.04452 

0.03172 

0.3332 

2 

4.636 

3.271 

2.089 

1.205 

0.6931 

O.4I87 

0.2744 

0.1892 

0.1357 

0.1072 

3 

9.446 

7.542 

5.645 

4.072 

2.810 

1.865 

1.251 

0.8632 

O.6I77 

2.949 

4 

16.33 

14.03 

11.51 

9.157 

7.164 

5.544 

4.267 

3.239 

2.439 

6.548 

5 

25.75 

23 .13 

20.02 

16.91 

14.12 

11.69 

9.684 

8.026 

6.658 

12.57 

6 

38.70 

35.81 

32.13 

28 .23 

24 .53 

21 .18 

18.29 

15.81 

13.70 

21.78 

7 

57.80 

54.62 

50.32 

45.52 

40.77 

36.27 

32.25 

28.68 

25.55 1 

36.44 

Tahle V - The time dependent eigenvalues of the heavy Dehye crystalline model and the graphite. 

(where the values of — i;̂  are shown) 
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ABSTRACT 

The time, energy and space dependent Boltzmann equation has been 

studied in order to obtain information on the diffusion cooling coefficient 

and other pulsed neutron parameters. In order to interpret experiments 

correctly it is essential to know what is meant by buckling in an energy 

dependent system. It is shown by an exact spatial analysis of the energy 

speotrum that this can be identified with the square of the infinite medium 

Fo\irier transform variable only if the extrapolation distance Zo is itself 

a function of buckling. The value of ZO(B^) has been oaloulated, together 

with the average ensrgy of the speotrum across the system. 
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1, Introduction 

Th3 decay constant of the fundamental mode i s frequently given 

i n the form: 

X = Eao Vo + Do B* - C B* + F B" + 0 ( B ' ' ) • . , . ( l ) 

where B* i s the so-called "buckling" of the system, Nelkin^ ' has shewn 

how, by solving the i n f i n i t e medium Fourier transformed Boltzmann equation, 

the coeff icients Sao Vo, Do, 0 e t c , can be obtained in terms of averages 

over the neutron energy spectrum. These equations are solved in t h i s paper 

in terms of the eigen-functions of the scat ter ing operator Sa, The quantity 

B'' has been l e f t i l l -def ined in Nelkin's paper. The usual de f in i t ion of B* 

depends upon the f lux going to zero a t the extrapolated boundary, however in 

systons in which the sca t te r ing mean free path i s a function of energy 

th i s i s not a unique condition. We sha l l see tha t i t i s possible to obtain 

a consistent value of B^ and tha t th is adds ce r ta in l imi ta t ions in the 

in te rpre ta t ion of pulsed neutron experiments, 

2, The Energy Dependent Boltzmann Equation 

The exact solution of the Boltzmann equation contains terms 

corresponding to a l l the space and energy modes. In what follows we are 

concerned only with the asymptotic value of t h i s solution such that the energy 

spectrum has become constant with time (assuming such a condition i s poss ib le ) . 

This allows the f lux to be wr i t ten : 

$ ( r , E , t ) n qKr^)©" ^* . . . (2) 

For simplicity we shall consider isotropic scattering in the 

laboratory system of coordinates and the geometry will be that of an infinite 

slab. The Boltzmann eqiation then takes the form: 
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00 1 

T- - •». 2O(E) + SS(E) + fi~1<j>(E,xn) = ̂ fdE^ tji^ S(E^-* E) q> ( E I X, |i^) , . . (3) • 

iBx 
Assuming a solut ion of the form ' ( ( E ^ ) = 9(E,B)e and solving 

( l ) t h i s by the perturbation method Nelkin ' a r r ives a t the following set of 

equations : 

n 

Z F^^ (E,X) <p^^^_^j^^E) = So^^^^^(E) (4) 

00 

van where 9 ( E , B ) = Z ( 1 B ) » " 9^^^ ( E ) 

nao 

and 
00 

f l s ( E ) M(E) ^° • Vbo / iSlE^ "^^^ ^ 

CO 

Voo = jr. M(E) dE 
o 

CO 

= J1M(E) 

C = Cj, + C^ 

^ = v S ^ / ( ^ ^ - T ) ' ^ a x o ( ^ ) ^ (5) 
o 

o 

The values of the coeff icients of B^ in equation ( l ) are obtained 

by integr«.ting equation (4) over a l l energy. The notation i s that used in 

Nelkin 's paper, 

3, Application to a F in i t e Medivmi 

Before discussing the solution of equation (4) i t i s necessary to 

see how t h i s theory can be applied to a f i n i t e medium. At the moment i t 
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is still the solution of the infinite medium problem. In spite of this, 

the solution can be used to construct physically useful solutions in the 

following way, which has many points in common with the method of images 

used in elementary electrostatic theory. Instead of dealing with a body of 

finite size, we consider an infinite medium for which 9 (B) gives an exact 

(mathematical) solution. The negative values of 9 (B) have no physical meaning 

but if the regions in which 9 (B) is negative occur only in that part of the 

medium external to the body we are considering, the negative values can be 

treated as convenient mathematical fictions introduced to obtain a solution 

of the physical problem. In general the value of 9 (B) obtained will not 

give an exact solution beoaise it is not possible to fulfill the exact boundary 

conditions at the sxirface, viz: 9 (B, H) = O for o < n < 1, The 

mathematical picture is shown belovv: 

+ 2Zo ' 

An i n f i n i t e set of + ve and - ve systems of width '2a + 2Zo' 

ex i s t s (mathematically), the per iodic i ty of the solut ion i s B. I t i s 

poss ib le , therefore, to associate t h i s with a f i n i t e medium buckling if the 

per iod ic i ty i s adjusted so that the solut ion goes through zero at the extrapolated 

boundary d i s tan t Zo from the surface. 

For the present analys is , then,we assume "that the square of the 

in f in i t e medivim Fourier transform var iab le , B*, can be associated with a 

f i n i t e medium buckling. The va l id i ty of t h i s approach and a method of 
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specifying the oorreot extrapolat ion distance Zo i s investigated l a t e r in th i s 

report where the space dependence of the energy speotrum i s considered. 

4 . Solution of the Perturbation Equations 

The operation S09 characterizes the thermal speotrum. In the one 

veloci ty case §0̂ 9 i s ident ica l ly zero. If therefore the f lux 9(E) i s expanded 

in the eigenfnB,of So the deviations fran one-velocity theory wil l be 

immediately obvious. The operator So i s usually extremely oomplioated, however 

we wil l assvme tha t the discrete set of eigenfunotions Xi(E) of i t can be 

found, together with the oorrespoixLing eigenvalues. Thus we can write 

§0 Xi(E) + Ri Xi(E) = 0 . . . . . . . . . (6) 

where Ki are the eigenvalues corresponding to the eigenfunotions Xi. I t 

i s further assumed that the eigenvalue speotrum i s non-degenerate. 

Associated with equation (6) i s the adjoint equation 

So[ Xi(E) + Ki Xi(E) = 0 . . . . . . . . . (7) 

where So and Xi are definsd through: 

(XitsoXi)= (Xi, So*Xi'') ... ,,, (8) 

and (Xi, Xj*) = 6ij 

Because of de ta i led balance, the lowest eigeixvsaivs Kx> i s always zero corresponding 

to Xo = Ee and X« = 1. With these fac t s in mind equation (4) fo r n=o, 1 can 

be e»lved. We make tiie following expansions: 

00 

'Po.o^^) = ^ C a i X i ( E ) (9) 
' * i=» 

1 —F 

We also know tha t f » r - absorption (fo^o ( E ) = Ee = M(E) , 

Insert ing equation (9) into the equation obtained from (4)» 

multiplying by the adjoint X. ( E ) and integrat ing gives: 
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C ĵ  = •—- r i l«k - Do Vok j , k > • (10) 

Using equations (9) and (IQ) in (5) gives: 

C^ = -~— Z ^ (̂  ̂  lok - Do Vok^ (11) 
D V*© K. \ 3 / 

k=1 ^ ^ ^ 

where the definition x ^ = / X(E) Xi(E) Xk*(E) dE is used. 

o 

5, The Heavy Gas Approximation 

In the pa r t i cu la r oase •f the heavy gas approximation, the eigenfunotions 

of §0̂  are known. The heavy gas operators So and S ^ a r e ; 

sen ^ U^^E L ^^) 
" ^ M \ aE» as / 

" ^ M V dE" d E / 

and the eigenfunotions and eigenvalues a re : 

XAE) - "(^) ^ î-̂ (̂ ) , Xi*(E) = ^^h^) 
^ • Vii ( i ^ i ) . Vil ( i + l ) t 

Ki = ~ j ^ 1 = 0, 1, 

Ths diffusion cooling coefficient then becomes 

C = ^2^^ Z i ( I t k - 3 Do Vok)» 

For constant cross sect ion 

C = 2 J o _ l s ^ ^ ^ 

^ V5t C k«t k 

We also find the f lux to order B^* 
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6, Chemical Binding 

If the heavy gas approximation for Sô  <p i s not a good one, there are 

two methods of approach. The f i r s t i s to find a form of So which includes 

(2) 

chemical binding, ths d i f f i c u l t i e s associated with t h i s a re well known,^ ' 

The second approach, which i s tflae most p r a c t i c a l , u t i l i z e s the eigenfunctions 

of the heavy gas operator hut admits tha t Sô  Xi # - Ki Xi heoause the 

Laguerre polynomials are not eigenf unctions of So, 

In this Case i t i s not possible to solve for the Cgjk d i r e c t l y , 

hut they can be obtained from the set of equations: 

1 lok - Do Vok = E C2,i yik , k > o. 

^ ^=' k = 1 , 2 

(3). 

Yik = Bi Bk J f dE dEME) 2(B-*Ê ) TLI^^ \ E ) LJ^^\E) - L̂"" ^(E^)I^^^ ^ ( E ) ] 

where fiJs. i s defined as 
00 "O 

0 O 

Bi = [ i : ( i + 1) J ] " * 

Retaining terms i , k = o, 1 we find 

For Yxa = 0 Utits reduces to an expression obtained by K«S, Singwi 

If the Yii » Yik (^ ^ i)» then C can s t i l l be represented as an 

in f in i t e s e r i e s : 

C - ^voloo" y J _ / l o k - Vok\ 
^ ° 9/7^ k=1 Ifl^ \?-°° "^°°/ 

If ths eigenfunotions can be found by any other method then 

equation (11) i s s t i l l va l id . 
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7 . Average Energy 

The average energies inside and outside ai?© frequently of i n t e r e s t , 

they are defined by 

E 
/ E <P(E,B) dE 

? 9 ( E ^ ) 

» E, out 
dE 

_ ^ E 1 ( E ) <P ( E , B ) dE 

^ l ( E ) cp ( E ) dE 

They are given by 

E,. = 2 9 
I 

1 • B° Y â loo 

3V2(YIX Yaa-Yia") 
\̂ 2V2 loo J Yaa f 1 _10 i " ) 

\ 2 7 2 l o o / 

- Iia. + 0(B* 

which for Yia = o reduces to 

\ - 2 
f l B^loo / 1 - i 2 l 

' 3V2 Yii V2V2 loo 
) + 0 ( B * ) " 

Also 

1 = 2 - ^2 ^'^ - ^2 B 
out loo 3 Yi 

?^(|^--)(l„-i^').0(B') 

For B" = 0 E . = 2 and E...^ = 2 - ''^ ^^^ 
9 out loo 

This i s in teres t ing because i t shows tha t -tiie leakage spectrum di f fers 

in average energy from the i n t e r i o r spectrum except for the case of constant 

m,f . p , in which case l o i s 0 by the orthogonality of the Laguerre polynomials. 

(5) 
Using the values of the cross section obtained by Singwi we find for 

Betyllium l o i = 0,155, loo = 1.51, I n = 1.65. Therefore E^^^ = 1,855. 

This d i f fe r s by about ']% from the i n f i n i t e medivun value inside the assembly. 

Using a l / v s c a t t e r i n g law for water we find V^oo = ~ 0.354» therefore 

E . = 2,5 which i s 25/o greater than the i n f i n i t e medium value. 

The great difference between the values for Be and H_0 serve to 

i l l u s t r a t e how sens i t ive the leakage spectrum i s to the var ia t ion of m,f .p. 
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with energy. We shal l see further evidence of t h i s in the section on space 

dependence vriiere the extrapolat ion distance i s calculated, 

8, Terms of 0 ( B * ) 

For small systems terms of order B* may become important. In order 

to f in i t h e i r magnitude we r e t a i n higher orders in the set of equation (4 ) , 

namely the (p4,o equation. After solving these equations by the expansion 

method i l l u s t r a t ed above we find for the heavy gas case the coefficient 

for the B* term in the decay constant: 

F = ii- c, - g° \^ r 
3 D ga— 

A similar calculat ion based on the diffusion equation gives fo r 

F (= F^ say) 

pi Do°ls° r J L Z 3 ^ I Vol ViJ "2 M ^ - - 2 - 1 2 ^ * ^ ̂  
52 [ V o o i ^ ^ i j ^ ^ J i=^ i^ VooMi=i ^ J 

. * . F - P^ = •'•g ^D (12) 

5 

K.S, Singwi^ ' has obtained the value F^ in t he f i r s t approximation 

i i = 1. However, because of equation ( l 2 ) h is values are erroneous, the 

correction term ^ D which i s due to the coupling of t ransport and energy 
3 

effects is by no means negligible. 

In order to investigate the effect of B® terms on the decay constant 

the diffusion cooling coefficient is rewritten 

'̂= s [^-r='] 
Using i , j = 1 in the above we find 
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or in the more general case 
\ 

F = i s . / l + Qls Yii 
S 8YII l̂  3 

For Be the largest assembly used by Andrews^ ' was B^ = 0,075 ou *, 

assume Yii = 0,08, Ig = 1.51 we find (p/C )B'' = 0,234, this is a correction 

of 23^ somewhat greater than that predicted by Singwi of ^6fo, 

An important conclusion of the above analysis is that diffusion theory 

can be used to order B* in the decay constant and to order B ' in the flux. 

Transport corrections to the decay constant are additive and can be small 

up to B*. Beyond this transport and energy effects are closely interlinked, 

however, the neglect of transport effects can be tolerated, o,f, the difference 

between 23/5 and 16% of an already small correction. 

The weakest part of the above analysis lies in the association of 

the square of the infinite medium Poxxrier transform variable with the buckling 

B*. In the next section we show how this can be made rigorous provided that 

the extrapolation distance is suitably defined, 

9, The Space Dependent Energy Spectrum 

The existence of a unique buckling depends on the validity of the 

first fundamental theorem of reactor theory viz, space and energy are separable: 

$(E,r)= $(r) f(E) (13) 

This i s exact ly true i n a homogeneous i n f i n i t e medium. I t requires 

however, some j u s t i f i c a t i o n in f i n i t e systems. What i s done is to seek 

an "asymptotic" region inside the medium fa r from boundaries, in which the 

f i r s t fundamental theorem i s va l id . Experiments^ ' have been performed to 

t e s t t h i s assumption. Those by Inflnu at OakjRidge are partioxxlarLy in t e r e s t i ng , 

In8nu measures the thermal and epithermal fluxes and shows tha t only i f de.ta 
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within 3 - 3?" of the boundary of a large c r i t i c a l aqueous u^^^ solut ion 

are included i s the extrapolat ion distance independent of energy i , e , 

equation (13) ^ p l i e s , (This case i s an extreme example, in non-multiplying 

media the effect wi l l be l e s s ) . 

On physical grounds the exact solution can be wri t ten 

«<Kx r) = ^r) f (E) * p 4 E ^ ^ > ^ „ , (14) 

The asymptotic par t es tabl i shes a unique extrapolat ion distance for 

a given buckling. The distance 'd* 
9(E, r 

analytic 
continuation 
of 9(r) 

%o(B'') 

ard the distance 'd' are formulated. 

is the width of the zone in which the 

term p. is important. In the 
f̂ trans 

theory which follows, analytical 

expressions for ZO(B^), the term 

As far as possible these ^trans 

expressions have been compared with experimental or theore t i ca l r e s u l t s obtained 

by othsr workers (of v/hich there are few). In general the agreement i s good 

although in such comparisons which are of the l imi t of experimental observation 

only the general trend can be observed. In pa r t i cu la r the resu l t s show an 

increase of ZO(B^) with buckling for Be and a decrease for HpO, This i s a 

r e su l t of the great differences in the energy dependence of the m.f, paths 

for these elements, 

10, The Energy and Space Dependent Diffusion Equation 

The analysis which i s developed can be t rea ted quite generally in 

the P ĵ approximation. However, the important physics of the problem can be 

I l l u s t r a t ed very well by diffusion theory. 

The diffusion equation can be wr i t t en for an i n f in i t e s lab: 

i a^E, X. t) + ri:a(E) - i(El i L I *(E,x,t) = So $(E,x,t) (l5) 
V vt L 3 ^x* -J "^ 
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The boundary c o n d i t i o n of zero r e t u r n c u r r e n t i s 

*(E^,t).|i(E) m>^^ = 0 * • • • . • 
X!=a 3 ^ ' ax 

This e l a t i o n i s solved by means of the expansion 

- • • • • , ( 1 ) , ^ , Z XiW M(K) Li^^(E) 
i=o vrrTi + iTi 

Where we have assumed 

. . . • * . 

(16) 

(17) 

4̂^ 
Vil (1+1)1 

$(E,x ,b) = cp(E»x) e"^* 

Using t h e s e expansions i n e q x a t i o n s (15) and (16) m u l t i p l y i n g by 

and i n t e g r a t i i ^ we f i n d 

J, [-xvik-if^^.m 
J 

X i (x ) = 0 

k = Oi 1 , . . . 

[ 
3Xl(x) E 1 6ik Xi(a) + I l ik ^ 

i=o L 3 dx 

1 

x=a J 
= 0 , . . • . • 

where we have assumed — a b s o r p t i o n and inc luded 2ao Vo i n X, 

We cons ide r only the i , k = 0 , 1 t e r m s : 

(18) 

(19) 

- X Voo Xo - i | 2 i i l 2 - X Vox Xx - i | i - ^ = 0 
3 ax^ 3 3x2 

- X Vox Xo - i | ^ ^ - X Vix Xi - i f i 4 ^ + Yxx Xi = 0 
3 °x2 3 ^xs 

Xo(a) . I loc ±l2i^ 
3 dx 

^ 1 , , ^ Xo(x) 2 
3 dx 

x=a 

H . 2 i o ^ ^ Xx(x) 
3 ' ax 

= 0 
x=a 

.^„ + Xx {&) + -̂  Ixx — ^ ^ 
x=a 

The e q u a t i o n f o r Xo can be w r i t t e n : 

ifXo + ij aa Xo + o X» = 0 

x=a 
= 0 

ax'* dxa 

J 

. . . • . . (20) 
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where a = ^ " ^°° " ̂ "^^ 

9 

b = -T (X Voo Ixx + X Vxx loo - Yxx loo - 2 loi X Vox) 

0 = X" Vxi Ve>o - Yxx X Voo - X** Vox'* 

We seek a solution of the. form Xo(x) = S Ai e ^ , the equation 

for Oi then becomes: 

aq,*+ba? + o«! 0 
1 1 

We can show tha t the roots of t h i s are i i a, •- a„ where a and oa are r e a l . 

Because of the symmetry condition Xo(x) = Xo(-x) and the complete 

solution to (20) becomes: 

Xo(x) = Ax cos a X + As cosh Og x 

similarly 

Xx(x) = P Ai cos a X - Y A2 cosh oo x 
- -- oo loo 

„i^ p . -' ^°° - \ y ° ' . Y = X V o o ^ - y -

3 

The subst i tu t ion of these two eqxations into the boundary conditions 

leads to a determingLntal equation, the usefulness •f which wi l l become evident 

af ter discussion of t he parwraeters a and og. By considering the t o t a l f lux : 

(p(E,x)=M(E) foos a x ^ +^ L I ^ ' ' \ E ) j + | ^ o<wh Oo x H - ^ L I ^ ' ' \ E ) 1 "1 

and reca l l ing e(jiation (14) we can associate M(E) ( 1 + ' "̂ 2 Li ( E ) j 

with <p ( r ) f(E) and | a o^sh Ogx M(E) M - V^2 LX^^^(E) J with p ^ ^ ^ ^ ( E ^ ) . 

Consider fur ther the equation for the decay constant. We find 

that the equation involving a and X i s 

J 
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X (Vox - Voo VXX) + ^ T" (Voo Ixx + Vxx loo - 2 lox Vox) + Yxx Voo -

- Yxi loo g" - a* ., , , 2 . ^ 
-»—'—= Y (Ixx loo - lox ) = 0 

which on rearrangement gives: 

.4 / . 
I 
t 

\ 9 
\ , 2Vo loo s 2 l o o " Vo g lox - 1 « / 6\ 

^ = "375r- °' - 9VkYxi— \ i ^ 27r/ + o ( ^ ) 

This is identical with the Fourier transform expression, so that 

taken with the expression for the total flux it implies that ĝ  is equivalent 

to the buckling of the system provided it is calculated acoordirg to the 

determinantal equation discussed earlier, i.e. the buckling is the inverse 

wavelength of the aaynptotio solution. 

11. The Extrapolation Distance 

The conventional definition of buckling (a^ = B*) is for the infinite 

slab of width '2a': 

B a _ 
% 

i2(a+Zo) 
\ 

h 
\ 2H , 

X / 
This d e f i n i t i o n can only be r e t a i n e d i f Zo i s a func t ion of B . 

The value of Z O ( B ^ ) i s ob ta ined from: 

1 - Y ( loo + eiox) t a n Ba , 1 + - ~ ^ ( loo - YIOX) t anh oo a 

3 - — ( lox + PQ-xx) t a n Ba , - y ^ (lox - Ylxx) tanh oa a - Y 

= 0 

Also tan Ba = tan ~ = tan 

It will be shown later that Oea > 3, hence tanh Osa = 1. 

m _ i_ 7C(H -• Zo) 
2H 

h ^ 2 L | o \ = t a n ( V - B Zo 1 = cot B Zo 
I 2 2H 1 ^2 j 

Thus we have an equation for ZO(B^). By expanding the determinant 

= tan 

in powers of B we find: 
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f t [ - i - r i B ' - i f ^ ' t r ^°<^''] <=̂> 

A 
where — = loo | 1 + lo^yioo^ U «-xo == / ^ - ^ ^ p f , 

«X V Ixx lOO-lOi' 
1 + 2 ae,o Yixy 

In order to interpret these results we must assess what effect 

diffusion theory has on the extrapolation distance. A one velocity 

Pi and Ps calculation has been performed and it is found that: 

(Zo)Px = I loo ( 1 - 1^ B= loo' + 0(6"*) 

(Zo)P3 = 0.7051 loo (1 - 0.0148 B " 100** + 0(6*)) 

This shows tha t the Px effect overestimates by a considerable 

amount the vso'iation of Zo with buckling. The B3 calculat ion shows tha t in 

the one velocity case the var ia t ion of Zo with buckling oan be neglected in 

the regions of i n t e r e s t . This Implies that any var ia t ion of Zo with B* 

observed experimentally i s due almost en t i re ly to energy e f fec t s . In order 

to account for th i s lit l e a s t to order B ' we have subtracted the one-velocity 

Px effect from the value of Zo given above in eqaation (21) , giving: 

2 
Zo = -r loo 

3 
fl + '—^ r H ^ S loo'B'l ^o(B*)'],.„ (22) 

S = fn of l i k , Yxx, 

A Pa Lx calculat ion should be made to t e s t the va l i d i t y of th i s 

but up t o order B* i t should be quite accurate . 

An in te res t ing resu l t of th i s ana lys i s , which is independent of the 

Px subtract ion, occurs where B'-*0 i , e . we have an in f in i t e half space, then: 
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Zo = I loo 1 + l * i V l o o ' _ \ (23) 
I 1+2 Yxx osjo I 

This implies tha t the mult ivelocity effect increases the extrapolat ion 

distance no matter what the var ia t ion of mean free path with energy» for the half 

space. An approximate calculat ion for water, assuming i t t o be a / v s ca t t e r e r , 

and using diffusion cooling experimental r e su l t s for Yxx, yie lds an increase 

of 6,5/j fo r the extrapolat ion distance over the one veloci ty value. For Be 

the increase i s only 0 , 7 5 ^ If the cross sect ion is constant then Zo = / 3 loo 

always. 

Numerical r e su l t s for ZO(B^) are presented in f igures Hand IV. 

They show hm sens i t ive ZO(B^) i s to the sign of lox . Gelbart and Davis^ ' 

have performed a Va ca lcula t ion using the Radkowsky kernel and the i r r e su l t s 

fo r Zo are in close agreement with these, thus showing the va l id i ty of 

subtracting the Px one veloci ty effect . 

Tables 5 .2 , 5.3 and 5.4 give some numerical r e s u l t s for water, with 

different effective masses for the water molecule,and for beryllium. The 

experimental r e su l t s fo r Be are obtained from Andrew's^ ' report by calcula t ion 

from his values of cube size and buckling. The experimental r e s u l t s for 

water are obtainsd by assuming Zo =0 .71 1 , where 1 i s the averaged value of 

1 ( E ) , arsuming 1 ( E ) ov ,j over a maxwellian the average energy of which has been 

obtained from diffusion cooling experiments and i s a funct ion of buckling. 

Although agreement is not good i t i s encouraging tha t the r e s u l t s follow tiie 

theore t i ca l t rend, i . e . an increase of Zo fo r Be and decrease for water, 

with buckling. 

12. The Relaxation Length 

A relaxation length 03""^ may be defined which i s a measure of 

the width of the t rans ient zone near the boundary. oa"^ i s given by: 
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as = / i : t i ^ : . [ - ^ [(^-ife)'^'A]-H-^=^> 
afl(B*= • ) = oe,0 . 

Vfe f i n i ~ c»sh oex « constant e" °^^^~^) 
Ax 

Thus for distances > ga" t h i s term decays rap id ly . oo i s seen 

to increase with buckling, t h i s i s to be expected since the ensrgy spectrum 

deviates more from s bm for small systems. Calculations indicate t h a t 

oe ^ = 2,6 cm. and 0.52 cm, for Be and H„0 respect ively for the case B* -* 0 . 

The r e su l t s suggest t ha t deviation from the asymptotic solution begins to 

become large at points of the order of a«~^ cm. from the boundary. Tables 

5.1 and 5.2 show the var ia t ion of a«"^ with buckling. OQ"^ i s very sens i t ive 

to the value of Yxx and the effect of chemical binding on space-energy 

separabi l i ty can be studied through th i s parameter. Since Yxx appears in the 

denominator, the smaller i t i s then t h e l ess accurate is space-energy 

separabi l i ly i . e . the smaller i s the asymptotic region. For low temperatures 

where YXX becomes very small, th i s i s pa r t i cu l a r ly important and i t may well 

be tha t no unique buckling exis ts in -the usual sense. 

A fur ther ' reason why at low temperatures pulsed neutron decay 

constants must be viewed with doubt, at l eas t for c r y s t a l s , i s because of the 

large amount of e l a s t i c sca t te r ing at low energies . If t h i s region becomes 

important then there is a pos s ib i l i t y that no unique decay constant wil l e x i s t , 

each energy group decaying independently. 

13. Average Energy 

Having obtained 9 (E ,X) we are in a pos i t ion to calculate E<p(xj3^), 

t h i s i s a convenient measure of the way in which the neutron energy spectrum 

changes with posi t ion and leads to a c r i t e r i o n for judging how accurately 

space and energy can be made separable. 
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This l e a d s t o : 

E <p(x^B^) 

Etp(x,B') = ^ B (p(E,x) dE 
00 

/ 9(E,x) dE 

= 2 
A2 

. 1 » 003 Bx - Y V A 
"72 

cos Bx + "̂ V-A 

/AX cosh (X3 X ~| . . . 

X cosh ga X J 

(25) 

The twt extreme va lues E <p(o, B^) and E cp(a, O) are of i n t e r e s t : 

• • • • • • 
E ((<•, B=) = 2 il - 7 ^ 2 ) + 0 I e "°^^ j 

Apart from the very small correction term this is exactly the same 

as the result obtained assuming space and energy to be rigorously separable. 

We fini: 

(26) 

E ? ( a , o ) = 2 1 - 1 
V2 1*0 (1+2 Yxx Ofl'o) -J 

(27) 

I t i s a l so p o s s i b l e t o r b t a i n E<p(x) f o r a s e m i - i n f i n i t e p lane 

X < 0 , i n t h i s case : 

lox/V2 
E(p(x) = 2 1 -

V2 i 
(1+2 Yxx a l io "i/'l l o o - x ' ' i e - ^ / ^ i ° + 1 . x ' {^-^^^^^ - 1! J 
"̂  / ; / i»» \ /' 

(28) 

For X - 0 t h i s reduces t * E<p(a,o). 

Equat ion (27) i s an extremely i n t e r e s t i n g r e s u l t because a p a r t from 

- X 
the f a c t o r (I + 2 Yxx a3,o) i t i s e x a c t l y the express ion obta ined f o r 

^out 1^ * ^ space-energy separable case o-,f, s e c t i o n 7 , The r eason f o r t h i s 

i s apparent through the boundary c o n d i t i o n s ( l 6 ) „ 

E<p(a) = / ^ ^ E > ^ ) ^ 
/ 9 (E , a ) dE 

which i s the d e f i n i t i o n of Eout, 

7 E 1(E) M E £ ) | dE 
0 ^ ' a s ! x=a 

/1(E) M^) 
0 dx x=a 

dE 

- 13U9 -



This shews c lear ly how the ap&ce dependent energy spectrum can account 

concisely for the average energy propert ies of the spectrum in a s ing le 

def in i t ion . Previous authors ^ ' have had to redefine the average energy for 

leakage spectrum calcula t ion. E<p(x) i s shown for Be and water in f i g s . I and V. 

We notice that E<p(x) depends sensi t ively on lox. For Be lox i s posi t ive but 

for a l/V sca t t e r i t i s negative consequently E<p(a) i s l e ss than Ecp(o) for the 

former and greater than i t for the l a t t e r . Furthermore E(p(x) is constant up to 

a distance of the order Oo from the surface. This i l l u s t r a t e s that in th i s 

region space and energy are accurately separable. 

A physical explanation of these r e su l t s can be given in the l i g h t of 

cer tain experiments. In the experimsnts of Fermi and Anderson^ '^ ' 

established that neutrons emitted from a cavity a g r ^ h i t e measuring 

10 X 10 X 125 cms. have a temperature of 300 K. The temperature of neutrons 

emitted from the surface of the graphite was found to be 200 K. According 

(11) to Zinn^ the temperature of neutrons emitted from a paraff in surface was 

390 K whereas t h e i r temperature inside the medium was 300 K, This i s in 

agreement with the above theory. 

An inevitable conclusion of these r e su l t s i s tha t the energy of 

neutrons emitted from a medium i s not the same a^ t h e i r energy within the 

medium and depends on the conditions under whish escape takes p lace . 

I t i s suggested tha t the essent ia l factor determining the spectrum 

of neutrons emitted from a surface i s the energy dependence of the m.f . p . The 

spectrum of neutrons escaping from a surface w i l l be enriched in f a s t e r neutrons 

i f , with an increase in energy, 1 ( E ) i s increased, and vice versa. For a 

precise calculat ion of the neutron spectrum i t i s necessary to take into account 

the changes in neutron density and spectrum in ihe v i c i n i t y of the boundary of 
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the medium, v;hich are caused by escape, and also the t r ans fe r of neutrons 

from a group vdth ore energy to a group with another as a consequence of the 

energy exchange in the medium. 

Equation (27) shov̂ ŝ tha t these arguments are correct and contains 

exp l i c i t l y the energy dependence of the mean free path in the quantity lox 
- X 

and also the energy sharing effect in the quantity 1 + 2 Yxx Oojo, 

In p a r t i c u l a r , i f the mean free path i s constant lox = o and the 

emergent spectrum i s the same as the mediijm spectrum. On the other hand 

i f l ( v ) g V then lox < o and the emergent spectrum is enhanced in high energy 

neutrons. Similarly i f l ( v ) has the form usual ly found for c rys ta l s where 

the mean free path increases rapidly fo r small v e l o c i t i e s , the reverse happens, 

lox > 0 and the emergent spectrum is softened. 

The mean leakage energy does not depend so sens i t ive ly on the 

Yxx term, thus showing that i t i s the mean free path ra ther than the d i f f e ren t i a l 

scat ter ing cross section which determines the cha rac te r i s t i c s of the leakage 

spectrum. 

14. Variation of Buckling vjith Posi t ion 

A convenient vifay of finding how well a single buckling character izes 

a medium is to p lo t - V* <p (x,E)/cp(x,E) against pos i t ion . This has been done 

for water and beryllium in f i g s . I l l and VI. The energy averaged value, 

corresponding to E = 2, i s the l e a s t varying value but the re la t ive var ia t ion 

i s much greater than that of the average energy. 
15. Conclusions 

(a) The concept of buckling in energy dependent systems i s shown to be val id 

as long as the asymptotic region i s vrell es tabl ished. This may not be 

possible for some substances at lev/ temperatures. 
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(b) The leakage spectrim i s determined mainly by the var ia t ion of mean free 

path with energy and i s l e ss sensi t ive to the d i f fe ren t i a l scat ter ing 

cross sect ion. 

(c) For calculat ion of neutron spectra in pulsed systems to order B* or 

grea ter , t ransport effects must not be neglected. 

(d) The spa t i a l calculations have only been performed in diffusion 

theory, i t would be useful to extend the theory to higher 

orders , both in the P„ and L ( l ) approximations, ana ly t i ca l ly . 

Work i s proceeding along these l i n e s but at present th is i s 

incomplete. 
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TABLE 5.1 

Relaxation Length for T/ater 

H2=3.55 

B2 

0 

0.0472 

0.1430 

0.2406 

0.3401 

0.4414 

0.5446 

oc" ' 

0.5157 

0.5187 

0.5255 

0.5319 

0.5387 

0.5456 

0.5526 

V 
B^ 

0 

0.0477 

0.1480 

0.2544 

0.3665 

0.4838 

0.6058 

i . . . ^ 

1.044 

- X 

gs 

0.9512 

0.9928 

1.0146 

1.0600 

1.1081 

1.1594 

1.2144 

M2=7 

B^ 

0 

0.0471 

0.1418 

2.374 

0.3339 

0.4312 

0.5293 

.8 

- X 

0.3480 

0.3489 

0.3509 

0.3529 

0.3549 

0.3569 

0.3590 

The values of M = 1.044, 3.55 and 7.8 correspond to effective 

masses of the water molecule of 18, 5.3 and 2.4 respect ively . 
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TABLE 5.2 

Beryllium Extrapolation Distance (Theory) 

B^ 

0 

0.0053 

0.0106 

0.0159 

0.0213 

0.0267 

0.0321 

0.0375 

0.0429 

0.0484 

0.0538 

0.0593 

0.064fl 

0,0703 

0.0759 

0.0814 

0.0870 

Zo/loo 

0.7153 

0.7166 

0.7178 

0.7190 

0.7202 

0.7214 

0.7225 

0.7236 

0.7247 

0.7258 

0.7268 

0.7278 

0.7287 

0,7296 

0.7305 

0.7314 

0.7322 

- X 
da 

2.607 

2.641 

2.678 

2.717 

2.757 

2.799 

2.842 

2.887 

2.934 

2.984 j 

3.036 

3.090 

5.147 ! 

3.207 

5.270 

5.337 

3.408 

1 
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TABLE 5.3 

Beryllium Extrapolation Distance. 

Experiment 

1 '̂ 
.005369 

.004810 

.007419 

.01290 

.01823 

.02772 

.04693 

.05792 

.07315 

Zo/loo 

0.7125 

0.7157 

0.7150 

0.7186 

0.7271 

0.7515 

0.7500 

0.7616 

0.7795 1 
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TABLE 5.4 

Extrapolation Distance 

Water as l/V Scat terer 

M2=5.55 

B^ 

0 

j 0.0472 

0.1450 

0.2406 

0.3401 

0.it414 

0.5446 

Zo/loo 

0.756 

0.752 

0.744 

0.756 

0.728 

0.721 

0.714 

^2= 

B2 

0 

0.0477 

0.1480 

0.2544 

0,5665 

0.4858 

0.6058 

=1.044 

Zo/loo 

0.769 

0.755 

0.729 

0.705 

0.684 

0.667 

0.652 

F 

12=7.8 j 

B^ 

0 

0.0471 

0,1418 

0.2574 

0.5559 

0.4512 

1 0.5295 
1 
1 

Zo/loo 

0.748 

0.746 

0.742 

0.758 

0.754 

0.751 

0.727 
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FIGURE I 

VARIATION OF AVERAGE ENERGY WITH POSITION 
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FIGURE 2 
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FIGURE 3 
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VARIATION OF BUCKLING WITH POSITION FOR 
VARIOUS ENERGIES 
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Traasper t Theory of Neutreas i a Heavy Gas in p laae Qeeaetry 
I . The i n f i n i t e medium and constant t o t a l c r o s s - s e o t l o n 

Roman S. ^elazny 
Department of Physics , Cose I n s t i t u t e of Technology, Cleveland, Ohio 

Permanent address : I n s t i t u t e of Nuclear Research of Pol i sh Academy 
of Sciences and I n s t i t u t e of Theore t i ca l phys ics of ffarsaw Univers i ty 

V7arsa», Poland 

Abstract 

The purpose of the paper i s to present a general 'netnod of so lu t i on 

of neutron t r anspo r t equation i n heavy gas i n plane geometry i n the 

case of i n f i n i t e medium and constant t o t a l c r o s s - s e c t i o n . This so lu t ion 

i s based on the eigenfunct lon expansion method introduced o r i g i n a l l y 

i n one-veloci ty t r anspor t theory by Case. The complete se t of e igen

funotions has been derived and the c a l c u l a t i o n of the Green funct ion 

for Boltzmann equation in i n f i n i t e medium has been discussed, fo r 

t o t a l c r o s s - s e c t i o n slowly varying with energy the pe r tu rba t i ona l p ro 

cedure has been suggested. 

I . In t roduc t ion 

The knowledge of t r anspor t phenomena in tne process of migrat ion of 

neutrons i n heavy gaa moderator has became recen t ly more and more 

important both from the t h e o r e t i c a l una p r a c t i c a l point of view. 

There e x i s t s qui te a la rge number of works devoted to homogeneous 

problems, but the number of papers devoted to space-energe t ica l c o n s i 

de ra t ions i s very l imi t ed . The main too l used by the authors i s the P, 

approximation / I^ Z / or some i t s extensions as for example the P«L^ 

method of Weiss i 3 j . 

The purpose of t h i s paper, which i s the f i r s t of planned ae r i e s of 

woricB, i s to apply to thermal iza t ion problems tne Case method 

of eigenfunction expansion. As i t turned out the problem of the so lu -
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t i on of the Boltzmaim equation for In f in i t e medium i n 1/M approxima

t i o n with arbitrary external source d i s tr ibut ion has been raduoed to 

the so lut ion of the forth order d i f f eren t ia l equation with respect to 

energy. The oiHy r e s t r i c t i o n made i s the constant t o t a l oross - s to t ion 

approximation, which may be used as the bas i s of phenomenologlcal par-

tui'batlonal procedure i n the case of slowly varying t o t a l oross-aeot ioo 

I I . Basio equations for heavy gas moderator 

The general form of the stationary Boltamann equation for spaee-encrge-

t i o a l d i s tr ibut ion function of neutrons i n plana geometry la 

/ " ^ (-1) 

/ 
whvre 

6-4^{E) — 6^^ CE) -^ ^ C^J. (2.) 

0^(£j and Ojs(^/ denote the absorption and soatter iag oross - sec t lons , 

respect ive ly , and 'S~(E'-^E^/I'~^/I') denotes the transfer oross-seot lon . 

The expression for transfer and scatter ing cross-seot ions for a heavy 

gas moderator are / V_/ , ~H>3 IF 

where T Is the temperature of the moderator and 

Following the well eatabllshed Ideaa l e t ua expand these crose-sect ion 
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up to the linear terma with reapeot to ^ '^ J^ » "here M la the 

mass number of the diffusing medium. We gat 

(Index £̂  standi!^ by o fanotlons denotea differentiation with res

pect to E). 

Icaartlng both oroaa-saotlons Into £q. (1) wa get the Boltsmaan equa

tion In l/ll approximation (B> Sq« for Heavy gaa moderator): 

where we have Introduced operators defined as 

and have performed the change of energy variable 

err (^) 

since (bur transport equation (1) has became now a differential equation 

with respect to energy variable we must add proper boundary condltiona. 

It Is reaaonable to formulate generally that we shall be interested in 

such solutions of £q. (7) which 

1) for d-^O y^^, S) -^ O^ 

11) for 6 -^ c^ i^6c^/i^S) - ^ O 

Suff ic ient ly quickly to assure the existence of at l e a s t 

few f i r s t moments with respect to energy. 
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i l l ) TCy',M,^)< ^ for •xs^ & i n the interval /^^ ^ 

(with possible exception for x « - ^ <>̂  ) . 

I I I . EigenfuQotions of the Boltsmann equation with constant t o t a l 

cross - sec t ion 

Let us l imit oar oonsiderttiona to the case of constant t o t a l c r o s s -

sec t ion . The Eq. (7) wil then be rewritten i n a s l i g h t l y dlffvvent 

form, corresponding to the change of a x Tarfcaole 

I t i s 

where for oonYonienoe sake we have omitted the bar over the x variaole 

and have Introduced the constant o 

We have omitted also, temporarily, the source term on the ri||tat hand 

side. 

Now let us seek, according to the general ideas of eigenfunction expan

sion method, the eigenfunotlona of the homogeneous Eq. (10) in ths 

The function (f(^/P,^) must satisfy then the following equation 

Since ô f and Sc do not depend on M we can introduce the 
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following functions 

^.^e) ̂  ]^f'^./.^J^', ('^^ 
—/ 

6(y, e) « Jy^ry;£) ^' (,sj 

and Eq. (13) can be rewritten in the form 

The formal solution of this equation is 

proYidsd conditions (14) and (15) will be satisfied. This requirement 

gives us ^ 

c 
Z 

'^:^3mJ://^ ^̂ ^̂ V̂ ^ -^ X.(ya)fu^r'ji^' -=-<^fKe)^ (^S) 
Sy ^ - . ^ ' -^ 

Let us introduce the following functions of complex argument 

or>/=/d' / i .^j^^ 
(zO 

which have the following properties: 

i) f(y') is a seetionally holomorphic function of the complex 

argument i> with the out along the interval f- 1, 1) of 
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the real axis. The Plemelj formulae for function f( ) are as 

follows 

where index 4 and - denote the upper and lower limit, respecti

vely. 

With the help of theGe functions conditions (18) and (19) can oe rew

ritten in the form: 

This is a system oi two equations for three unknown functions. It means 

that we can express two of them in terms of the third one, which must 

be determino in the following course of any concrete neutron thermali-

zation problem. 

As the unknown function let us choose /̂K̂ <£) . It is evident that 

function ^(K^) must banave with respect to £ in a completely ana

logous way as functiou ^(^><^yitself. The ooundary conditions (B.C.) 

will oe then ths same as the OJMS formulated in the paragraph II for 

Multiplication of the first equation in formulas (24) by Ĵ  and sub

traction from ths aeconit one gives us the xollowing relation 
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whiea is valid for every > and £- . It is suffieient now to discuss 

only the content of the first equation from the pair (24) wlta the 

help of (23). 

Let us distinct the follewiag oassst 

A. y ^ C-z^j) 

la this interval 

and the funetioa <^^^ean be written in the form 

yyc ^ (IT) 

B. ^ / (",') 

In this doaaia we have the oAndition 

which is a forth order differential eqtatlon with respect to <?/y/S^ 

y plays a role of sigenvalue. It is plausibls to assuae that 

boundary conditions (B.O) foraulatsd for n ^ / ^ in prseeding paragraph 

and applied also to ^/^<£) , aooording to ths remark mads above, plsk 

up the proper eigenvalues of )^ . Ths eharaoter of diffsrential equa

tion (24) and applied oounaary oonditioaa sesma to favour only ths dis

crete sst of eigenralaes. The symmetry property of the operator 

allow us to assttffls that the diserete eigenvalues are 
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±y' (j^^,....^/v) fSc) 
7 

Thorough exaoination of the oonditioaa (26) with the oaleulat ioa of 

discrete eigenvalues (30{ w i l l be made i n the next paper. 

The aorrsspondiag diserete eigenfunotion w i l l then have the form 

I t i s worthwhile to indieate that sinoe the condition (28) i s homoge

neous with every fuast lon (iB'^.S) i s eenneoted an aroitrary eonstant 

factor which mast be determiJM in a concrete problem. 

This ends our task of finding the whole se t of eigenvalues >' and 

sorrespendlng eigenfunst ioas . 

17 . The completeness theorem 

The aext goal i s to proovs that the derived systsa of eigenfunetiena 

form a eoqplete aat systea . In anothsr words we should proove that ai^ 

funetioa of /l and ^ ( sat i s fy ing propsr oenditioast the boundary 

eenditions (B.O.) with rsspset to energy and of the Holder e la s s with 

rsspset to Jtc ) oan be expanded into t h i s set of functiozw: 

Using ths s x p l i e i t form of our e i g e a f u ^ t i e n s (27) and (31) we ean 

rewrite Eq. (32) i n the form 

TAJ/, e) a(,a) -t % I '̂ ,̂ ^^4)_^ /̂r ^̂ >̂̂ <=J ,j, _^^^ ^̂ ^ ^,^ 
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where 

and 

A/ 

I t i a convenient to traaform Eq. (33) to the following form 

"P 

Eq. (36) hae a dominant form of singular integral equation. The only 

difference from cliaasical situtetion consists in the fact that coeffi

cients of our iiingular integral equation are differential forms with 

respect to additional parameter in our problem, energy. It causss that 

in addition to usual requirements concerning y and A dependeneo 

of involved functions (they must be functions of Holder elass, see for 

example i'^J or [^4 ) we must demand that all functions of energy 

satisfy the boundary conditions (B.C) from paragraph II. 

To solvs ths Eq. (36) let us introduce the following functions 

/J 

HM ^SnJ i^^^^ 

For functions ^A^f^) and ''̂ .̂<̂ ôf Holder elass the above intradueed 

functions are sectifnally holomorphic functions in a complex Z, plane 

with 8 cut along the interval ( - 1, 1) of the real axis. 
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The Flemelj formulae for thess functions are: 

^J-o) 

-ytt ^ 

where index • and - denotes the upper aiid lower l imi t for y« € (- 1 ,1 ) , 

respect ive ly . 

Let us remind also that the similar Plemelj formulae for introduced 

e a r l i e r seet ional ly holomorphic operator are; 

With the h«lp of formulae (39), (40) and (41) Eq. (36) has been reduced 

to the following Riemana-Hilbert problem: 

for A e (-1, 1). 

The function K(z, t. ) defined as 

Kf^.B)^ A A - ^ ^ (4ij 
•8 

which vanish at -v— f>̂^ must be, as a holomorphic funetioa ia aa sa

tire complex plane, equal identlsally to zero (Liouville theorem). 

Hence we get the following differential equation for the function kiz^e] 
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X (^,^) ^f^,&) ^ ^/C^^O ^€) 

to which we must add the boundary eendit i sas (B.C.) . 

Ws shal l net solve th i s equatiea i a t h i s paper l imi t iag ourselves to 

the general d iseuss loa . Let us aotieothat the homogeneous patt of 

£q. (44S i s ideat ioal formally with Eq. (28) . I t meaas that there are 

such values of a 

for which the osmpatibil ity conditions for Eq. (44) muat be 

These conditioas determiae a l l arbitrary uoiistaats, whioh eaters the 

fuaet iea ^/<£/th3*ough the discrete part of the expansion (formula (26)) 

Having dstsrmiaed the function A(ss,&) from Eq. (44) w« ean ealeulate 

the funotiea ^̂ <̂̂ ^ from the f i r s t formula of (39)* This ia not the ead 

of eur eenside ratio as since our ^?/^,£)depeBd on some unknown fuaetieas 

of energy. Applying te ^{^f<^J appropriRtw operations we can very eas i ly 

derive the proper equatieas for these fuaet ieas . Thss equatieas with 

eur bouadairy cendit ieas (BiO) should determiae them uaiquely. This ends 

tho scheme of a proof of the completeness theorem. 

Let us einelude> t h i s paragraph by the statement that the general so lu

t ion of Beltsmana Eq. (10) has the fermt 

V. The pess iole appllcatioas 
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A. The Oreea fuaetiea 

The Green fuaetiea fer infinite mediam is the selutioa ef the fellewiag 

equatiea 

whieh satisfy the same boundary eoaditioas (B.C.) with respect te easr-

gy as formulated ia par. II and whieh additieaally vanish at •«• aad -

iafiaity of the x variable. 

Prem formula (47) we infer that /*^"^°/A/«^ <v'̂ "̂ ^ must has the form 

/ ) 

How iBtegratiag both sides of Eq. (48) with respect to x in the inter

val (--<̂ y —'V ) and in the Interval ( — (/>^ -t-h ), i-espectively, ta

king the limit ^ —^ O aad subtracting the results, we get the fellewiJ 

i*elatloa 

^ l'fj(o*) - '^Jo 'Jj = J^(A--<^^) "XS- C.J, rs^) 

where only th© x ĉ rgument cf To has been wrtttea explicitly. 

Inserting eipreaaion (49) into relation (t>0) we get the following equa

tion for unknown coefficlenta of the expansion (49): 

Eq. (51) is completely identical with Eq. (32) of CompletenosB Theorem 
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The only difference i s that xiow the non-homogeneity terma i s specif ied 

as a given function. The prescription for the solut ion given in the 

preceding paragraph may be used to e x p l i c i t calculat ions of the Green 

function. I t i s worthwhile to mention that the Cauchy integral applied 

to cP function gives also a see t iona l ly holomoirphio function. 

The exp l lo i t knowledge of the Green function eimble us to write down 

the solut ion of Boltcmann tqu&tion with any prescribed source^ 

B. The case of slowly varying t o t a l cross - sec t ion 

In the case of slowly varying to ta l cross-aeotion ^^{^) the Boltsmann 

Eq. (7) can be written in the form 

aor using the proper units for x variable 

Assuming that the variat ion of OM/'^) i e small we may traat the term 

as a small pertufbatlon. The knowledge of the Green fuuction from the 

point A of t h i s paragraph s iap l l fy the calculat ions of d i s tr ibut ion 

function j . 

I t should be, hawever, stressed that such an appraaoh i s purely pheno-

menological one, sd>nce one part of the rigorous t o t a l cross -sect ion 

As known. It ia the scattering oross-seot lon given oy formula (6).and 

i t can be scarcely treated as a slowly varying one. Nevertheless in 
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Ciany applications such an approach will be sufficiently accurate., 

unless the existence of free surfaces will not dlsturo seriously the 

neutron distribution function. 

VI. Coxiolusiozm 

The presented paper is treated ES the introduction to a series of paperi 

f̂ evoted to the ttudy of transport piicnomena in diffusion of neutron in 

a heavy gas moderator by means of eigenfuuction expansion method. 

For simplification sake it has been assumed the total cross-section 

beixig indeoerdent of energy. In thse circumstances it has been shown 

that the application of eigenfunotion expansion is possisle . It has li 

been prooved that there exists a complete set of eigenfunotions and 

the general solution of Boltzmana equation can be expanded into this 

complete set. It ia to tee noticed that the discrete eigenvalues should 

90 determined I'rom the solution of the forth order differential eqiatio 

with respect to energy with appropriate boundary conditions, which re-

serasle to great extent the problems of quantum mechanics. To this prob

lem will fte devoted the nest paper of the series. 

The suBsequent paper wil touch the Milne problem and the related topics 

It is Irapoi'tant that in the case of the so called "partial range" com

pleteness theorem (the terminology of K.M. Case ) the possisilities 

of the theory of aingular integral equations become very limited by 

the operatorial character (with respect to energy) of their coefficient 
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L. V. Malorov 

ASYMPTOTIC DISTRIBUTION OP THERMAL NEUTRONS FAR 

PROM A PLANAR SOURCE 

The distribution of thermal neutrons far from a 

planar source, in homogeneous and inhomogeneous media, is 

analyzed with acooxint of thermallzation and fission. 

I. 

In subcrltlcal homogeneous media, located sufficiently 

far from a planar source, the steady-state thermal-neutron 

energy spectrum Is Independent of the distance to the 

source. Por a medium in which there is no neutron multi

plication, this was demonstrated by Hurwltz and Nelkin [1]. 

In this case the asymptotic spectrum of the thermal neutron 

satisfies the following equation [1]: 

where 
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11 
O0 

Here L , which are the eigenvalues of the equation, satis

fy the relation 

-1 
L̂  = j^(E^4>Je)J.EJj^jGiCe)<|.(e)^Ej (s) 

In operator form, Eq. (l) oan be rewritten as 

]5'(E)At(^) = L H , ( E ) 

where 

^*.(E)=s:(E)t^(6)-g 

An Investigation of the spectrum of the operator A/D(E) 

shows that for any moderator model there exists a smallest 

eigenvalue of the Eq. (l). It is single, isolated, and 

corresponds to a single positive eigenfunotion. All the 

points of the spectrum lie on the real axis. If ^ and 

P <5~( £ —7 E')dE' are Independent of the energy, the 
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operator has a discrete spectrum. If on the other hand, as 

occurs In real cases, these quantities depend on the energy 

there exists a region where the operator A/D(E) has a con

tinuous spectrum; this region is contained in the segment 

or, in real cases, 

^ . 
oo 

Consequently in a homogeneous non-multiplying medium the 

flux of the neutrons emitted by a plane source has the 

form 
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Here 

r,/ . (E) depends on the spectrum of the source neu-

trons and on the moderator model. 

These results can be readily obtained by using the 

theory of the spectrum of self-adjoint operators, parti

cularly the ¥eyl theorem concerning perturbations of the 

spectrum of a self-adjoint operator by a self-adjoint 

completely continuous operator [2], The corresponding 

proofs are given in [3]. 

In subcrltlcal multiplying media, located sufficiently 

far from the planar source, the neutron flux has a form 

\1} 12] . 

where c|5 _ (E) satisfies the following equation [3]t 
o 

C'.(e)4>,(.)-^^1>.,(0-f^.^ (6) 

Here 
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%=vU'(EUE)4,U')-iE' d£ J 
O 

is the density of the fission-neutron sources. 

If we fix all the parameters of the medium and in

crease V̂  , starting with zero, the smallest eigenvalue 

1/LQ of Eq. (6) decreases to zero at a certain value iJ~ 

V ^. Tfhen V= ^r.^ there can exist in the medium a or or 

stationary neutron distribution, with an energy spectrum 

satisfying the equation 

C P Q ( E ) describes the stationary distribution of the 

neutrons in a medium with a homogeneous spatial distribu

tion of the sources. As V increases, the eigenfunotion 

of Eq. (6), (p - (E), which describes the energy spec-

trum of the thermal neutrons far away from the sources, 

tends to <:^Q(E). In [3] an investigation was made of 

the spectrum of the operator 

[4(.K(^)-5-^^]y(.) 
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and it was shown that when V̂  < V^^ there exists a unique 
cr 

positive eigenfunotion that determines the asymptotic be

havior of Cp {E, z) given by Eq. (*). 

II, 

The dependence of the asymptotic spectrum of the 

thermal neutrons on the degree of criticality of the 

medium can be Illustrated by using the approximation of a 

heavy monatomlc gas. 

In this case [1]: 

In order to obtain an analytic solution, we assume that <̂ „ 

= a + b/E; (T = l), and 

oo 

i ^ = vS(e-Eo)fGj(,E')-^(6'-)ci.E 

EQ — energy of the neutrons produced by fission. 

Then Eq. (6) can be reduced to the following form 
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where 

Vpi KE)S(E-Eo)r(S^(E')<^(£0«^E:'^o (\o) 

zL'ys', 

P+J 

N 

('0 

When V - 0, the eigenfunotions of Eq. (10) have the form 

(generalized Laguerre polynomials) and 

V^)-E^e-'L^:\E) 

! > 
3̂ 6-̂ ^ 

Therefore the flux of thermal neutrons in a medium with 

planar source has the form 
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.£• p+i ^ ( B ) -if^ r ^ 

'Vjso 

If v' > 0 and the medium remains subcrltlcal, the eigen

funotions of Eq. (10) can be written in the form 

where M(o<' , ̂  , E) are confluent hypergeometrlc functions. 

Here 

_ PiL ._2 ! L o< =. -! + 
•^G;^ ^ L ^ ^ < S ; 

(,c) 

Since EQ » 1 (the neutrons produced by fission have a 

very high energy) , we have for E > E,. 

4(E) ^ E*^"^'' n^.Ve'^ (IT) 

At high energies, smaller than the energy EQ of the fission 

neutrons, we have 
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4 ^ ( E ) ^ E " ^ " " ^ " ^"^'^ {'^) 

If 1/LQ = 0 we get a = 0, I.e. , the medium is critical and 

V̂  = V , and then (f)(E) = E""̂ , i.e. , it agrees with the 
cr 

Perm! spectrum. 
„2 The eigenvalue LQ is determined from the balance 

equati on 

o 

When 1̂ = 0, (19) coincides with (3). 

Thus, the asymptotic spectrum of the thermal neu

trons In a media where there is no fission has the follow

ing form far away from the source. 

In a critical infinite medium without external source we 

- 1383 -



-l/2 Note. In real medium 6"„ = E ' at thermal energies. a 

The analytic solution given above can be used for an 

approximate calculation of the neutron spectrum in a medi-

-1/2 um with absorption E ' , using the approximate method 

A. Niklforov and V. Uvarov [5]. The gist of the method is 

-1/2 to replace the absorption cross section (5~ '^ E ' by 
St 

the approximate expression a + b/E, The parameters a and 

b are determined from relationships that are similar to 

the following: 

00 

P4^ -

0 0 

i C \ >_P-^ -E 

III. 

In a heterogeneous subcrltlcal medium comprised of 

a series of homogeneous layers whose boundaries are per

pendicular to the plane of the sources, the neutron flux 

i3Qk 



has the following form far away from the source [3]: 

where (P (E, r) satisfies the equation 

^5^^^^M (23) 

In the region of small energies, ''̂  — o 

The asymptotic spectrum of the thermal neutrons depends on 

the criticality of the medium v̂  , At large energies, Cp 

(E, "r) decreases exponentially if V = 0, If >̂  = l̂  , 

then the energy spectrum of the neutrons is close to the 

Perm! spectrum at high energies. The eigenvalues and eigen

funotions of (23) can be determined by numerical means. 

If V̂  = 0 then we can assume that at sufficiently 

high energies (b (E, "r) = 0. In this case Eq. (23) 

reduces to the following: 

-vDv^-^(61^+(r)<^-'-^ c^ — 
\h) 
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If V= V and L-2 = 0, then Eq. (23) becomes inhomo-

geneous 

Here 

I 

Ec 

(ip (E' , r) can be calculated by the usual methods without 

account of thermallzation. 

Eq. (24) can be solved by Kellog's iteration method 

By way of the zeroth approximation it is useful to use 

the solution of Eq. (25). In this case the Iteration 

converges very rapidly. The solutions of Eqs. (24) and (25) 

- 1386 -



as expected, differ from each other. 

To solve Eq. (24) and (25) . a program was developed 

for the "Strella" computer (L. V. Maiorov, V, L. Pono-

mareva, V. N. Toroptseva, 1959). To calculate one point in 

the space grid of a 15-group system of equations one re

quires approximately 15 seconds. 

By way of illustration we given the results of the 

calculation of the flux of thermal neutrons in a multi-zone 

cylindrical sleeve Inserted in the thermal column of a 

reactor. The properties of the medium are constant in each 

zone [1]. 

The neutron sources are situated in the plane z = 0 

(the thermal column was assumed in the calculation to have 

a cylindrical form). 

The calculation was carried out for ^ - 0 and / = V 
c 

The composition of the zone was as follows: first zone 

— natural uranium, second and fourth zones — aluminum, 

third zone — empty, and fifth — graphite. 

In reference [1] an experiment is described for the 
g 

measurement of the ratio P^ — the ratio of fissions ver 
239 2'55 

second on Pu -̂^ nuclei to the number of fissions on U -̂  in 
such a system 
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<r o 

o o 

This quantity was measured at different graphite tempera

tures T in the thermal column. In the figure, curve 1 

shows the dependence Pc(T) for a medium in which it is 

assumed that '̂  "^ 0 (corresponding to reality); curve 2 

is experimental. Curve 3 was calculated under the condi

tion V = y) . It is seen from Pig. 2 that the degree 

of criticality of the medium greatly influences the spec

trum of the thermal neutrons. The solution of the prob

lem for 1̂  = ^ ^y, was used as the zeroth approximation 

of the iteration process (26), 

The author is grateful to E. S. Kuznetsov for in

terest in the work and to M. V. Maslennikov for a dis

cussion of reference [5]. 
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FIGURE CAPTION 

OQQ 235 

Figure 1. Ratio of Pu to U fission as a function of graphite 

temperature in thermal column. Curves 1 and 3 are 

theoretical, and correspond to î  = 0 and u = v , r e -

spectively. Curve 2 is experimental. 

- 1389 - . 



^ / 

2.^ 

20, 

/ . < -

/,3 

300 4rOO yc>o 6»» 7i?o 7* 

- 1390 



The Proceedings of the 

BROOKHAYEN CONFERENCE ON NEUTRON THERMAUZATION 

have been published in four volumes. 

Yolume I, The Scattering Law 

Yolume II, Neutron Spectra in Lattices and Infinite Media 

Yolume III, Experimental Aspects 

of Transient and Asymptotic Phenomena 

Yolume lY, Theoretical Aspects 

of Transient and Asymptotic Phenomena 




