Review of Effects of Radiation on Aquatic Populations

by

W. L. Templeton

Pacific Northwest Labs

Battelle Memorial Institute

Richland, Washington 99352 USA

Prepared as a working paper for the
IAEA Panel on "Radiation Effects on Population
Dynamics in Ecosystems"

Reykjavik, Iceland

October 2-5, 1972.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of
their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use
would not infringe privately owned rights.

Research performed under USAEC Contract AT(45-1)-1830
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Radiation is not a recent introduction to the marine environment, since low levels from environmental and cosmic sources have been present throughout geological time. Lethal amounts of radiation differ widely among marine organisms and are related to variations such as species, age, physiological status, and body size. These variations are further complicated by the interaction of environmental factors. Exclusive of the eggs of fish and larvae of invertebrates and fish, most marine organisms for which data exist are relatively radioresistant.

Limited studies on the effects of chronic exposure have been conducted. These have been limited to selected developmental stages and indicate that, with the possible exception of some Russian data, the dose necessary to evoke an unequivocally detectable biological response is considerably above that of concentrations of radionuclides in the environment as a result of controlled waste disposal operations.

Studies on the genetic consequences or radiation exposure to population indicate that, despite larger numbers of mutations, increased utilization or reproductive capacity maintains a population at preradiation density.

Field studies on the effects of radiation indicate that our best technologies and methods cannot demonstrate effects on marine ecosystems, at prevailing dose rates, that are clearly and uniquely attributable to ionizing radiation.

However, more sensitive parameters of radiation effects on individuals, populations, and communities need to be developed. Long-term studies, in which factors such as rates of growth, morphological abnormalities, onset of maturity, and reproductive capacity are
considered, for example, should be emphasized. Chromosomal studies under experimental and field conditions should be extended, and the somatic and genetic consequences of such changes on populations and ecosystems should be evaluated.