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An Evaluation of the Dispersion Reletions of Photoproduction

. Paul Finkler®
Purdue University, Lafayette, Indiana

March 31, 1964
ABSTRACT

A modification of the anés nethod is used to solve the singular integral
cquations fér the 3-3 partial wave ampliﬁudes of'photoproduction. The effcets
of multi-pion production uare assumed to be negligible. The method requires a
knowledge of the phase ut ali energie§. Consequently, it is necessary to treat
the porrespbnding pion~nucleon scattering problem to‘determine the effect of
@he high-energy behavior of the phase on the solution for the scattering ampli-
tude at low energics. The sharply resonant nature of the problem suggests an
approxiﬁdtion in the form of solution, ratner than in the Born terms, which
leads to relatively simple expressions for ﬁhe ratios of thec 3-3 photoproduction
amplitudes to the scaliering amplitude ané for integrals involving the 3-3 am-
plitudes. In addition, a modified Chew-Low formula can be éerived which should
satisfactorily represent the. 3-3 phase shift throughout the resonance region,

Finally, the cross scetions are calculated in the 3-3 approximation and the re-

sults compared with experiment.
I. TWTRODUCTION

Consicderablc attention has been direcied towerd the determination of the

amnplitudes for photoprocduction of pions from nucleons by the technigue of dis..
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persion relations. The foraulation of the dispersion relations for this process,
n ' and the first attempts to evsluate them, were macde by Chew, Goldberger, Low,
noeg l 1= 3 4 R I m PR ] 3 i :
and ffambu~ (hereafter referred to as CCLL). These authors obtained the integral
v equ?tions for the photoprocduction partial wave amplitudes from the connection

between the phases of the photoproduction and pion nucleon scattering emplitudes

n

provided by unitarity. Only those contributions from the resonant 3-3 phase

shift were reteined under the integrals end each contribution was expanded in

’

inverse pow: - L." the nucleon mass 1. In thne static limit (1/2-0), the P-wave
total magnetic moment angiitudes wvere determined by a comparison with the cor-
responding static limit equations for the pion nucleon scattering amplitudes,

wnereas «ll charge terms were evaluated, approximately, on, the basis of the

3

cutoff model.
bl " The.various attempts to improve upon the CGLY results for the (3-3) ampli-

tudes have met with only qualified success. These attempts invariavly employ,

with CGLN, the assumptions that multi-pion production effects may be neglected
end that the 3-3 resonance exhausts the dispersion integrals. In addition to

these assumptions, howvever, these treaitments also involve either scme assumption “

4,5

about the ratios of the photoproduction to the scattering amplitudes or some

type of approximation for the inhomogencous terms in the dispersion relations.
: 6
Examples of the latter approach are 1/} expansions in the static limit~ ané pole

(=4
representations for the Born term.” However, in spite of the cefforts of the
several zuthors, tne situation with regard to the 3-3 amplitudes has not been
clarified. On the ¢zne hand, there is lack of gualitative agreement between the

£
i

ults of Re

1G]

re s. U and 5 for the energy depencence of the ratio of the magnetic

o,

izole amplitude generatea by the total vector magnetic moment to the scattering
amplituce, wnile on the other nand, the CGLH results Tor the 3-3 charge ampli-

tudes, which vanish at resonance, must be at least quantitatively incorrect.

it = 5 & s————— — -~ reme w7 . v
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The present investigation is an attempt to resolve these uncertainties which

surround the 3-3 photoproduction amplitudes and thus to improve the calculation

‘of the dispersion relation predictions in the range of energies for which the

~ 3-3 state is dominant,

The ﬁresent approach is fundamentally different from the methods of most
othe? authors in that we shall attempt to solve the equatioﬁs for the 3-3
photoproduction amplitudes by analytical means. No approximations will be madg
for the Born terms in these equations. Furthermore, no assumptions will be
made concerning photoproduction—toascatteringfamplitude ratios, although we
will derive from our solutions relatively simple e*pressions for these ratios.
The two assumptions we shall make (which have already been used by the previous
authors) are (1) that the equality of the 3-3 photoproduction and scattering
pﬁases, provided by unitarity at low energies, may be extended to all energies
and (2) that only the 3-3 state contributes appreciably to the dispersion inte-
grals for the_low energy amplitudes. The method to be used is a modification

of the Omnds'

solution of singular integral equations for functions whcse phase
is kpown on the interval of singularity. Because the singular interval in the
case qf photoproduction extends to energy regions in which the phase is not
known, it will be necessary to treat the corresponding problem for pion nucleon
scattering in order to determine the effect of the unknown, "high" energy be-
havior of the phase on the solution for the 3-3 scattering amplitude in the
energy region from threshold through the 3-3 resonance.

The photoproduction dispersion relations are given in Sec. I1I, fogether
with a brief review of kinematics, Tge Omnes method is described in Sec. III
and & somewhat modified form of solution is derived. Section IV contains a
discussion of the meaning of the phase in the Omnés method. In Séc: V, the

dispersion relation for the 3-3 scattering amplitude is discussed in order to

obtain a representation for the high energy behavior of the 3-3 phase. The
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"results of Sec. V are applied, in Sec. VI, to the determination of the 3-3

phétOproduction amplitudes. In Sec. VII the dispersion.relatioﬁs are evalu-
ated in the 3-3 approximation and the results compared with experiment. Final-
ly, in Sec. VIII, our results and conclusion are discussed.

II. PHOTOPRODUCTION KINEMATICS

We will follow, as closely as possible, the notation of CGLN.l Further-

more, all kinematic quantities will fefer, throughout, to the barycentric sys-

tem, In this system the differential cross section may be written

2
d .
a%:% I<f| 3(&) l1>|’ (2.1)

where the decomposition of the total amplitude into the usual Pauli spin

matrices is given by

-

Flol =ige ¥ roaolxe) FHla
5 (2.2)
+ig-k q-¢ '}3/qk + ico+qg qr¢e ?u/q .

In these expreséions, £ is the photon polarization vector and’gnand‘§.are

the barycentric momenta of the pion and photon, respectively. The magnitudes
of these momentsa, together with the pion energy mq and the initial and final
nucleon energies El and E are related to the total barycentric energy W by

the expressions

2

2 2)

1/2
k= (W =M ’

/2w, wq =k + 1/2v, Q (w © - 1)

(2.3)

.

[}
i
=
]
~
-
=
1]

W-w
ql

where M is the nucleon mass. If F is decomposed into linearly independent
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_isotopic matrices according to
g . . -1 o
. = + S - ,
‘_ F = F 6g3+ 37 3 [rpr3]t FoTg

then the connection between the ;}u (0 = +, -, 0) and the amplitudes of the

~ four possiblé charge configurations are given by

-3(YP - T,Op) = ¥+ 3
F(yn » 7%0) = F - %O
(2.4)
Fyp ~w'n) = /2 (¥ + F)
F(yn »17p) =2 (3 - ¥) -

The % (i = 1,2,3,4) satisfy coupled dispersion relations which have a

somewhat complicated structure. The simplest expression of these integral

’

representations is in terms of the invariant amplitudes A,, which are related

J
to the 33 by

G}l/h = A+ (W= M)A, + 2M\')1(A3 - A/ (W - M)
(E + M) }2/qh = --Al + (W + M)A24 + 21\1\)1(‘6‘3 - Ab)/(w + M)
(2.5)
?}3/qh = (W = M)A2 + (A3 + Ah)
(E+ 1) F/a%n = = (W + M)A, + (A = &),
" where
h(w) = (W - M)(El + M)l/2 (E + 1-1)1/2/2‘.\1, (2.6)

and where the.connection between the momentum transfer variable vl and the

barycentric production angle 0 of the pion iz given by

2le = k(wq - g cos 0) .
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The dispersion relaﬁions satisfied by the Ai have the form

-]

1 2 1 !
A (W,v.) =B (W,v ) + —L//\ d(W') Im A, (W',v.) t
J 1 J 1 T J 1 1y2_y2 - _ov@
(M + l)2 . (W) =W (W')"+W 2My, -2M
(2.7)
with
1 1
B,(W,v.) = R, (v.) [ : ] A (2.8)
J 1 R W2-M2 W2—2le-M2 N
‘The upper signs refer to the amplitudes A§+éog and Aé-) . It is convenient
&

to consider separately those parts of the Born terms generated by the nucleon
total magnetic moment and charge, which we denote by the superscripts u and e,

respectively. With this notation, one finds for the residues R, the expres-

J
‘sions
B rms0) L pplemi0) g
A IRV R | |
R0 L (@) Ly o *—“n>6 (2.8")
Rl(+"’°) = 2uv, R§<+"’°) = 2R§(+"’°) = 2RE<+'-'O) =-Zeg

where g is the unrationalized renormalized pion-nucleon coupling constant

2

g = uM2r2 £° = 0.08 ,

and up(un) is the total magnetic moment of the proton (neutron)

by ¥ 2.79 e/24, uw_ = - 1.91 e/21, e® = 1/137 .

To make use of the unitarity condition, one must decompose the photopro-

duction amplitudes into photon multipole eigenamplitudes which correspond to
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transitions into eigenstates of the final pion nucleon system with a definite

total -angular momentum J, isotopic spin T, and parity. The correspondence be-

© tween the~isospinA(+,-) amplitudes and the eigenamplitudes with eigenvalues

T = 3/2 and T = 1/2 is given by

33/2 - 7.5, 31/2 =+ 2¥ | ' ' (2.9)

while the amplitude '39 corresponds only to the value T = 1/2. The complete

angular momentum Gecomposition of ¥ into photon multipole eigenamplitudes was

.given‘by CGLL. lere, however, we are concerned only with the J = 3/2, even

parity part of the¢ amplitude :}3/2, defined by9

. ' .
¥ - E%' %%%' (3 q-q' = 0-q 0:q") ;3?/2 (q', k) (2.10)
~wowW AN an A e ~ i

The amplitude 3}3 may be expressed in terms of the CGLN multipole amplitudes
372

3/2

1+ 0 which correspond to transitions induced by magnetic dipole and

1+ and.E

-electric quadrupole radiation, respectively. Ve will find it convenient to

deal not with these multipole amplitudes but with the linear combinations

_ 3/2  3/2
(2.11)

_ (32 3/2
¢2 - (Ml+ + El+ )/qhk .

/

In terms of these amplitudes the parts of 5;3 2 which, by unitarity, have the

3-3 phase are given by

~33 _ 3/2 3/2, _
j}l = 3 cos 8 (Ml+ + El+ ) = 3 ghk ¢2 cos B
~33 _ 3/2 -
Fo7 = ML = ah (ko +o9,)
) y (2.12)
33 _ 3/2 3/2
33

Ho=0 .
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Theiprojections for the Born parts of ;}33 have been given by Gartenhaus

‘qnd Blankénbeclerg in terms of total magnetic moment and charge contributions.

. The results of these authors may be written in terms of the Born projections

for ¢l and_¢2, which are given by

g(u -un) 1 E l, g E
¢\5 —'—P——[—Q () - 5 (Gap s <-€>]

kg 3 %02 'q’ T 5 ‘E+M
T f_(f_v_"_‘irﬁ MQ (:E.) Mo (& . __02__ Q (:E_) \
o8 ()2 1'% " % 'Y T sy Y3 g

e _eg 1 <2g _ ' fg
%13 kq [3Zw+MS Qoe (q ) SZE+M§(W~M5 Q13 (q )] ‘
(2.13)

eg (W-H) E a (W+M) E
¥ PMkq [" Z0wm) o2 (E) T S(ER) (WeM) 13 (q):\‘
e _eg 1 w eg {W+M) E
o5 = 25 W) (B 43 (Z{q") - o2 Sw-M) (E) 43 (q)
R

where the Qm are the Legendre functions of the second kind:

_ 1 a+l
Qle) = 3 2n (t;'li
Ql(&) = aQo(a)-l

(m+1)Q (a) = (2m*l)e Q (a) -m Q ,(a) m=1,2,3, ...

The dispersion relations for the ¢i (i = 1,2) may bve found by projection,
by means of Eq. (2.10) and with the help of expressions (2.2) and (2.5), from
those satisfied by the AJ (§ = l,2,3,h).‘ The contributions to the dispersion

integrals for the Aj’ in Eq. (2.7) may be separated into those parts which in-
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volve the denominators (W')Q-WQ and into those parts which arise from the "left
hand" or crossed cut. If the latter contributions are denoted by the subscript
L, then one finds, by carrying out the projection outlined above, that the ¢i

satisfy'the expressions .

. 1 F Img, (w')
9g(0) = ople) + 2 dwt —mm— e (8 J) S ey (e) 1 =152
1
. (2.14)
B = .]:. g.‘."_'. '
s = ﬂf S0 Ing, (u')

where 6i,ji5 the Kfonecker delta and where the Born terms ¢iB are given by Eq.
(2.13).

The left hand cut terms oL which appear in Eq. (2.1k4) are rather compli=-
cated, even when only the contributions from the 3-3 state are retained under
thé integrals defining them. Except at bnergies beyond the range of present
interest, however, these terms are small in comparison to the Born terms. It
is therefore consistent with our approach, insofar as we have already neglected
the con£ributions to these integrals from other states, to retain only the

static limit of these terms. The results of the 1/M expansion for the ¢iL’ in

the limit i - « are given by

Im(2k'¢é - ¢i)

dw'
1L on w'+w

-
+
1]

(2.15)

N o [mwé - 2“’i/k) . Im(2¢é - ¢1/k") ]

¢’2L 5? w'+w w

Equations (2.15) are analogous to the dispersion relations of CGLN (see Eqs.

(11.1-11.5) of Ref. 1) if only the 3-3 contributions are retained in the latter.
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- In fact, if the feplacement’h + k-is made in Eq. (é.lh) and if the static limit

of the Born terms is taken, then the two sets of equations become identical., It
must be‘emphasized, however, that by the neglect of all but the static limit of

.the shall left cut te;ms, ve héve thus far introduced on}y a negligible error’

in our Egs. (2.13-2.15).

III. THE OMNES METHOD

The-bartial wave axnplitudes for photoproduction and pion-nucleon scat-
tering setisfy dispersion relations, in a complex variable z = x+iy, of the

form

M) = 302) + 2 [ ax Inalx) \, (3.1)
X
0

wﬁere the inhbmogeneous term B is to be regarded as a known functién which is
real and regular.on the infinite cut (xo,w) of A. It is clear from Eq. {(3.1)
that in addition to this cut, across which A has the discontinuity 2i Im A,

the amp}itude A has all the singularities of B. It will be assumed, of course,
7

that all integrals in our expressions exist. It was shown by Omnes' that if

oné knows the phase § of the amplitude A, then a solution to Egq. (3.1) is giveén

by '
A(z) = B(z) + eA(Z) %fdxve'p(x') sin §(x') 13_('_)5.'_) (3.2)
X =2 ’
X

0
Here, 4 is a function which is constructed from the known phace § according

to the prescription ' ¢

8(z) = %/ axt {2l | (3.3) .
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and p is ‘given by

2im

L p = O+ 6(xtie) ¥ i6(x) = §-§/AAx' %ﬁ%é%) ‘ . (3.&5
. . 0

where P stands for principal value. The conditions on § for Eq. (3.2) to'be
a solution of Eq. (3.1) are, according to Omn&s, that § be continuous and tha£
§(=) = O.

Expression (3.2) fo; A is a solution of the original equation in that it
has only those siﬁgularities prescribed by that equation aﬂd it has the correct
phase. That the solution does have the correct phase may be seen by taking

the limit z - x + ie, x > X and by then recombining the singular part of the

. integral with the inhomogeneous term. It is clear, however, that it is possible

to add to the result (3.2) any solution of the homogeneous counterpart of Eq.
(3.1) which has the correct phase on the cut. These additions take the fornm of
polynomials to be added to the coefficient of eA in the solﬁtion. Such appen-
dages, of coufse, are not spurious; the correct polynomial must be determined
from a.consideration of the expected behavior of the amplitude at large values
of its argument.

It was indicated above that Eq. (3.2) is a possible solution if the phase
is continuous. There are, however, physically admissible situations in which
the amplitude phase may be discontinuous. Leaving the detailed discussion of
the phasevto the followiné section, we proceed now to construct a solution
which adﬁits this possibility. ,

Let A, B, and.A be the same as before, with the understanding that a sub-
tracted form of Eq..(3.3) must be used if & does not vanish at infinity. If A

is to be analytic on the cut plane, then B must have the Cauchy integral repre-

sentation
B(z) = == | az° Ble!) (3.5)
_ 27 (z'=2) *
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vhere the contour C, does not cross the cut (xo,m). We will assume, as is

usually the case, that B satisfies
B(z) - 0 as |z]| + = .

Then the contour can be chosen so that it encloses only the singulsrities of
B and is taken in a counterclockwise sense about them. The integrals of B

taken about the singularities via C.. can now be expressed as an integral of

B

-the-discontinuities o 3 along the singularity curves (denoted by SB):

B(z) = 2 ._1_°_°_-_§ﬁz_l | (3.6)

2ni 2 'z

Let us define an auxiliary function G by means of

22) 52y = a(2) , (3.7)

so that, from Eq. (3.1) we also have

%) G(2) = B(2) + —f axr Alx ) (3.8)

(x -z

In the cases of physical interest, A has no poles x

o and 6(x0) = 9 so that G,

from its definition, also has no poles at x That G has no singularities on

0
the cut (xo,w) can be shown explicitly as follows: If we denote the limit of

. + .
G(xtie) as € = 0 by G,(x) end evaluate Eq. (3.7) as the cut is approached from

above, we find that the limit is given by

ié

(¢]
(@]
o
i
x>
1"

1A,

From Eq. (3.8) it follows that the discontinuity of éAG across the cut may be

written

¢® [c,e*® - e™®] = 21 ma_ = 2i]A,|sin ¢
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[

If we how eliminate |A, | between these last two expressions, we find the result

p -
e (G+ -G )=0

and it -follows that G has no singularities on (x.,») except, perhaps, at points

0

e vanishes. The discussion of such zeros in e

o}

where e is given in the follow-

ing section. There it will be seen that for the physical partial wave ampli=-

tudes with which we are concerned, e

can vanish only at the zeros of A. It
then follows, from Eq. (3.7), that G must also be regular at such isolated points
of (xy,=).

The determination of the function G is now straightforward. The singulari-
ty curve SB of the inhomogeneous term B cgnnot intersect that cut»(xo,w). Be-
cause eA is regular and nonvanishing in the vicinity of SB and because G is
analytic on (xo,w), it follows from Eq. (3.8) that G is analytic everywhere

except on the curves S It further follows that the discontinuity of G across

B.
SB is given by

disc. G = e 2 disc. B

By the same arguments which led to the result (3.6) for B, we may write the

Cauchy integral formula for G in the form

2ni 2'-z z2'-2

i . -a(z') . .
Glz) = = ‘J/ﬂdz, disc. G(z') =h//qdz' e disc. B(z') (3.9)
SB SB

This result may 2lso be written as

—A(Z') gt
6(z) =fdz' gl | (3.10)

‘s

wnere we recall that C_ is the contour wbich encloses the singularity curve S

B 3

of the inhomogeneous term. Finally, we have for the solution of Eq. (3.1) for
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a function-A with known -phase § the result

: : -a(zt) . . :
Alz) = eA(z) E%{ b/r~dz' e disc. B{z') (3.11)

z2'-2
S

B

"It is in this .form that the Omn2s method will be applied to the integral equa-~

" tions of photoproduction.

Expression (3.11) for A is not unique, as was the case for the Omn2s solu-

tion in its original form (3.2). It is possible to add to the result (3.9) for

G some polynomial in z, the form of which must be determined by the behavior of

A(z) as [z|+ » . For the amplitudes of present interest, however, no such poly-

‘nomial will be needed. The question on uniqueness is discussed in some detail

in Ref. 10.

The relatively simple form for the general solution (3.9) becomes even
simpler wnen the inhomogeneous term B consists of poles. In such a case the

discontinuities of B are Dirac delta functions or derivatives thereof. Thus,

"if B in Eq. (3.1) has the form

B(z) = =———de— = Y 4 (—3;4 , 0 =0,1,2, ...

(z-g)n+l " n! .. n ‘z=f

where y and §{ are parameters, then the solution (3.10) for A assumes the form

Az) = eA(z) Y dnn [e‘A(E) ]. .

n! aE z=§

This result will be used to some extent in the following sections.

IV. REMARK ON THE PHASE

An inherent feature of the solution given by Eq. (3.11) is that the phase

§ referred to in the definition of A is the amplitude phase of A; that is, the
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real phase § is defined by
CA(x) = ]A(x)lelé(x) : (4.1)

A physical partial wave scattering amplitude fs’ however, is ordinarily expres-
sed in terms of the phese shift ds by

id

f = <e s sin 6;)

2 3 (.2)
q

where q is a positive momentum. In the general case, wherein inelastic channels
are open, the amplitude may be expressed in terms of a complex phase shift with
a non negative imaginary part. It is evident from (4.2) that neither a complex
phase shif't nor its real part is the amplitude phase referred to in (Lk.1).

Even in pure elastic scattering (e.g., potential scattering), the amplitude
phase is not necessarily equai to the real phése shift., In fact, the amplitude
phase must always lie bétween O.aﬁd 1 (mod 2n) whereas there is no such restric-
tion on the phase shift. This festriction on the amplitude phase follows from
Eq. (4.2), which implies that the imaginary part of fs is always positiye or
zero.

The distinction between ihe amplitude phase and a real phase shift is evi-
denced, for example, when the phase shift Gs(x) in Eq, (L.2) passes through w
at some point X . In this case the amplitude phase é, which must be eqqal to
68 (mod 2w) u§ to x_, must be-discontinuous at that point. An illustration of
such a possibility is shown in Fig. 1. In Fig. l(a), our hypothetical phase

shift 6s(x) venishes below some threshold x,. and passes linearly through 7 at

0
x .. Fig. 1(o) displays the corresponding amplitude phase &§(x) when its dis-

continuity at X is -7, If we now assume that f‘q satisfies an equation of the
type (3.1), then the Omn&s solution for fs has the form (3.9) and is thus pro-

2

portional to eA. It follows from Eq. (3.3), however, that if & has a disconti=-
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nuity -n at X_» then eA(*) is proportional to (x-xﬁ) for x= x . This result
is a9§ropriate because the amplitude fs, which by definition is proportional
’ ﬁo el S sin 68, must have a linear zero at X Thus we may be assured ﬁhat
the choice of amplitude phase in Fig. 2(b) leads to the correct behavior of
' the solution in the vicinity of a linear zero in the amplitude. In general,

a discontinuity of -nw in 6, n = 0,1,2, ... , will leed to a zero of order n
in the soiution whereas positive discontinuities, which would give rise to poles
in the physical region, must not occur.

'In_the course of our derivation of the Omnes solution (3.9), we found that
the ‘auxiliary function G has no singularities on the interval (xo,w) except
possibly at the- zeros of eA. The above considerations show, however, that the

order of a xero of eA can always be chosen equai to the order of the zero in the

total amplitude A, It then follows from Eq. (3.7) that G has no singularities

V. THE 3-3 PHASE AND SCATTERING AMPLITUDE

It is élear from the foregoing that in order to apply the Omnés ﬁethod
to the equations for the 3-3 multipole amplitudes, we first must know the 3-3
phase at all energies. Unfortunately, such complete information about the phase
is not available. If we assume, however, that the Omn2s method yields physical-
ly meaningful solutions, then we may hope to learn something of the unknown
portion of the phase from a consideration of the scattering amplitude, which
satisfies a dispersion relation similar to those for the photoproduction ampli-

tudes. Our rational is the following: If we can use,the Omnés method to "solve"

the scattering equations--that is, to determine the function & in Eq. (3.3)--

ther, by unitarity, we can use the same 4 to evaluate the photoproduction ampli-
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tudes. The problem here, then, is to construct as much of the function A as
isvpéssible from the expérimentélly known values of the phase'and to construct
tha? Part of & which_ariseé from the unknown high energy behavior of the phase
in such.a way that the solution reproduces the known, .low energy, scattering.

~ amplitude.

A, The 3-3 Phase

Belovw the resonance energy W s the 3-3 phase shift § is well represented

3

33

by the Chew-Low effective range formula

L 2
q3 cot 633 = w(wr-w)/ <§ f wr) » WSw_ (5.1)

The currently accepted value for the coupling constant is f2 = 0.08. The values
used by various authors for the resonance position range from w, = 2.06 (Ballll)
to. the value w? = 2.14, which follows from McKinley's three-parameter fitu to

q3 cot §_,. Throughout this investigation, we will use the values

33

w_ =2.07 , £2 = 0.082 . (5.2)

Some typical experimental values of the phase above resonance are shown
in Table I, where it can be seen that the values of the phase approach w as
the energy increases. One can readily see this tendency of the phase from the

3

plot of the function £(w) = w(wr-w)/(wr q” cot & 3) shown in Fig. 2. Accord-

3

ing to Eq. .{(5.1), £(w) should have the constant value hf/32. The values of
£(w) that correspond to the phases of Table I, however, show a marked downward
trend toward the value zero. Should this trend persist, the point at which
the function § vanished would correspond to the point where the phase shift

passes through n. A zero in £(w) somewhere in the interval 5 <w < 10 is seen

to be consistent with the data of Table I.
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Becaﬁse inelastic effects will certainly be important at very high energies,

no assumption that we make about the asymptotic behavior of the phase shift

' can have any & priori jJustification. Insofar as we are assuwuing that the phase

shift is everywhere real, we may further assume, as Levinson's theorem for po-
tential scattering suggests,12 that the phase shift asymptotically approaches
some integral multiple of n. In particular, the simplest assumption that can

be made about the high energy behavior of the phase shift § ere (1) that §

33 33

approaches n from below (2) that 633 drops rapidly and approaches zero from
above, and (3) that 633(w) passes through n at some point w and then asymptoti-

cally approaches m from above. We will find it unnecessary to treat assumption

~

‘(1) separately, because it is a special case of assumption (3)(i.e., the limit

.w-»oo),

m
Assumptions (2) and (3) have consequenies which differ little from one
another--at least insofar as-they affect the construction of the solution (3.11)
in the low energy region. That this is so follows from the arguments of Sec. IV,

thé conclusions of which are summarized in Fig. 3. The solid curve in this
figure represents the amplitude phése in case (3), the &otted line is the exten-
sion of the phase shift in case (3), and the dashed line is the phase in case
(2). In voth cases, W, is the resonance position and W can pe regarded as the
position at which the amplitude phase passes downward through w/2. In both
cases, again, there will be a local minimum in the vicinity of w ; for case (2)
however the minumum will occur below W and will be followed immediately by a

resonance. It follows that, except in the immediate vicinity of W assumptions

(2) and (3) lead to similar results for the function A. Since we are only in-

.terested in the determination of the amplitude in the region of known phase, we

can concentrate our attention on case (3).

It is not to be expected that assumption (3) correctly describes the high
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I‘eﬁergy behavior of the phase but it should be sufficient to describe the effect
of that behavior on the solution at low energy. Also, we‘have‘seen in Fig. 2 .
}that this assumption is in accord with the experimental values of the phase
above resonance. Finally, assumption (3) has the advantage that we know before-
hand jus£ what its major effect on the solution will be. That is, we know from

A("‘)‘)/(mm-m) is roughly independent of w and depends,

Sec. IV that the function e
therefore, primarily on the known phase shift in the vicinity of the resonance.
To represent the phase above resonance for use in our computations, we

adopt the convenient form

'l W —w w ~a
n 1l - —-( .> ( ) y W < w < w .
2 \w _~w w=a r— == m
m r :

§(w) = ﬁ (5.3)

~

0 ; ww
m

\ 5

~This form ensures that 6 has the values*n/2 and 7 at W, and W respectively.
The number a is to be found from the condition 6(2.74) = 0.Tim. This condition

was chosen in agreement with the 310-MeV phase shift of Table I.

B. Equation for the Scattering Amplitude
/2

+ 1s given in terms of the 3-3

The 3-3 partial wave scattering amplitude fi

phase shift 633 by

(32 033 51" O35
1+ qQ

where g and all other kinematic quantities to be used in this section have the

seme meaning as Sec. 2. The analytic structure of this amplitude has already

13,14

been investigated in great detail by several authors. The results of these

analyses may be condensed into the statement that the amplitude ¥, defined by
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is

3/2 33 . .
gy = 2 f1+  ow © sin 654 (5.4)
(E+M) 2 T E+M 3 : )

has no kinematic singularities in the w = W-M plane relative to the invariant
amplitudes which satisfy the Mandelstam representation. If follows that Y sa-

~tisfies a dispersion relation of the form

o«

) Y(w) = vé“’) + %—fdw' -I—”‘B-\%‘:-'—)- + wL(w) (5.5)

1

-

where WL is the contribution of the left hand of "crossed" cut and ¥y is the
Born term. Equation (5.5) for V¥ represents the 3-3 projection of the fixed=-
momentun-transfer dispersion relations for the scattering amplitudes (see Egs.

(3.3) and (3.4) of Ref. 15). The Born contribution Wé is given bylo

o A ‘
¥y = <—'ij:5> [ (W-M)a(W) - % (E“”’émmh(w)] (5.6)

where g is the unrationalized renormalized pion-nucleon coupling constant and

where a and y are given by

= a a+l
¢ =1=-3¢2n (a-l)
_ 1 2 a+l
y = 3a + 5 (1-3a") n ()
1
. (s - %)
2
q

The left cut term WL involves contributions to ¥ from all angular momentun

states but we are interested here only in the contributions of the 3~3 state.




21— UCEL~T953-T

The resulting expreésion for WL is of the same relative ordef of magnitude as
thé-corrc;;onding-contributions to the photoproduction amplitudes. In accord-
ance with our treatment of the latter, we will retain only the static limit of

‘the -3-3 contributions to WL.- In this limit we find the relatively simple ex-

i [ gy Im¥(wt) ”
Y= 5 f Tl (5.7)
. l ‘ : .

According to the result (3.11), the equation for the scattering amplitude

pression

has an Omneés solution of the form

.

 t(w) =a(w') y 0 | ,
Y(w) = S fdw' - 1" ' (5.8)

2ni w'=w
1

whéfe VI = WB + WL is the resultant inhamogeneous term in the equation for
.W. Although we have dwelt el great length on the manner in which the high
energy behavior of the phase will be repre;ented, we have not yet specified
how the parameter W is to be determined. The solution (5.8) for Y depends
on w. through the function 4, given 5y

W
m

1 é(w;wm)
slose, ‘f ey (5.9)

1

where 6(w,wm) is constructed according to Egs. (5.1-5,3). We may determine

W by normalizing the soluticn to the known resonance value of the amplitude

(5.4): That is, the condition
2u_ R
[¥(w )] = ———s (5.10)
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" is imposed on the solution (5.8). This condition is sufficient to determine

a unique velue for W e

The normalization procedure just described requires some justification.
I1f one allows W, to vary, one finds that the solution at low energies is ?uite
sensitive to this pgrameter. The important point here is that the phases of

the scattering amplitude at low and high energies are interrelated by the con-

ditions of unitarity and analyticity. The latter condition is expressed by the

dispersion relation for ¥, while the unitarity condition for the scattering

amplitude is expressed by the restriction (5.4) on the form of Y. Thus, if

vthe phase were known for all energies, the Omngs method would automatically

give the solution for Y which satisfies unitarity. If, however, one uses an

arbitrary @ togethér with the Experimentally known phases to form the Omnés
solution, then the result is Just a function which satisfies the dispersion
rélgtidn and has the correct phase at low energies. Our procedure of normal-
izing the solution for ¥ at resonance gives us the "correct" w --that is, the
correct representation for the effect on the solution of the unknown part of
the phgse. We see, therefore, that there is only one value for W that is
consistent with unitarity. |

The actual evaluation of w by means of Egs. (5.8-5.10), while straight-

" forward, necessitates a detailed investigation of the singularity structure

of the inhomcgeneous term WI’ coupled with the evaluation of a complicated

integral about the contour CI' In some cases this precise but somewhat tedious

method will be unavoidable. For the 3-3 amplitudes, however, the peculiar na-
ture of the sharp resonance admits of a considerable simplification in the
solution by which both of the above complications may be circumvented. This
simplification, which is described below, takes the form of an approximation

in the structure of the solution.

S
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C. The Relativistic Approximation

It can be seen from Fig. 2 that, according to our assumptions concerning
éhe parameter @, s the 3-3 amplitude phase § hgs the following behavior: ¢ is
small below resonance but rises rapidly through n/2 and toward L in the vicinity
of w3 above\resonance, the phase remains near n up to the position of the am-
plithde Zero u , at which point § drops discontinuously to zero. Thus, in the

liﬁiﬁ of a sharp resonance at w.» the phase would assume the form:

Ty W, <w<w
T m :
- § = (5.11)

Oy w<w,w?>uw
r’ m

Except in the physical region where the detailed behavior of the phase is im-
portant, the function & of Eq. (5.9) depends only on the gross features of the

phase. That is, one can compute A(w) approximately by using Eq. (5.11) in the

defining integrial: ’ - .
: w
4 W -
]
=']"'\f ) f—d‘:) =£n<m >
Ui _w'ew W_=-w
1 W, r
or

-A(w) (w -w> . . (5.12).

This forﬁ for ?-A is approximately valid for all complex w sufficiently far
from W, . One can check the validity of this approximation by computing A
"exactly" from the phase of Egqs. (5.1-5.3) for various values of w - At the
singularity of the inhomogeneous term nearest the physical region, i.e., at

w = 0, the approximation (5.12) differs from the exact e"A by about 3%; the
error decreuses as w receles from the physical region. In other words, Eq.
(5.12) is correct to 3% throughout the singularity region of the inhomogencous

term.
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The approximatign just described enables us to calculate, in closed form,

the contour integral that appears in the Solution (5.8): . We find the result

. . 1 ] )
1 Coa(er) Y1l o oeemety Yple')
— dw'e —_—— dw N
o 2ni w'-w 2ni W =W w'-w
m -
CI v

= [(wr-w) v (0) + (0 -w ) ‘:"I(wm):l./(wm—w) .

The last expression follows immediately from the Cauchy integral formula for

WI. Thue, the solution for the scatiering amplitude may be written in the form
ié
. 33 .
. e sin &
_av 33 _ Aw)
¥(w) = Tl q3 = e [(wr-w) vo(w) + (w =) WI(wm)]/(wm-m) .

(5.13)
While this approximation is relativistic in the sense that the inhomogeneous

" . ternms may‘be treated exactly, we cannot expect it to be correct at very high
_energies where the phase is unknown. The principal advaqﬁage of Eq. (5.13) is,
of course, that the solution in the physical region involves the inhomogeneous
term only in the physical region.

There is another advantage to the approximate Solution (5.13). It i: zos-
sible.to derive from this solution an approximate formula by which certain non-
singular integrals involving the 3-3 amplitudes can be evaluated in closed form.
Some of these integrals, such as the expression (5.7) for the small left cut

terms, have the form

2w mpen
T W -0
1

where ¢ is not on the cut (1l,=). That is, o is in a region where, to a good

approximation, the expression
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A(o) -

W_=0
r

is valid. The integral, however, is just ¥(o) - WI(O). If one uses the above

" expression for eA(o) in the solution (5.13) to evaluate ¥(o), one finds the
result
1 y Im ¥(w') V(w s _ nTYr
ﬂ‘jr 2 ¥(o) .- ¥;(0) = =——=v_(u ) (5.14)
1 r

Now let G by any function analytic on (1l,») and consider the integral

0

f dw' Glw') Im ¥(w') .

1l

IG =

A |+

~

For G we have the integral representation
1 Glo)
[] = e )
Glw") 2ni d/\do o-w'

where the contour CG encloses all the singularitiés of G. With the help of

Eq. (5.14) we can rewrite the integral in the form

—.J.'. l,_l__ (0)
IG—nfdw 2nifd°o—w1mw( ")
: 1 CC .
=i | doclo) 2 [ g Ztlel)
2ri T o-w'
CG 1
- 1 G(o)
- (wm_wr) I (wm) 2ni -
r
CG

]

(wm-wr) ¥q (wm) Glw_)

Thus, the closed form epproximation for all nonsingular integrals is given by
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ER

jf\dw' G(w') Im ¥(w') = (wm-wr) Yo (mm) G(wr) _ (5.15)
. :

‘'The appearance of G(wr) in this result clearly illustrates the sharp resonance
nature of our epproximation.

In view of the approximations thaﬁ we had made in previous sections--such
as the neglect of the contributions of‘states other fhan the 3-3 state to WL
and the neglect of inelastic effects-blt would be superfluous to attempt to
* find corrections to the solution (5 13) and the approximate formula (5.15).
This solution, as we have seen, should be correct to a few percent. Further-
more, this small error in the éolution for the scatterirg amplitude will be
absorbed, for the most part, in the parameter wm_by the normalization procedure
‘described above. It is now a simple matter to carry out this procedufe and

evaluate w .
m

The inhomogeneous term ¥

I in Eq. (5.13) is given by

1% Y
'whér?.thé Born term ¥, is given by Eq. (5.6). The integral (5.7) for the left
cut term WL can be evaluated formally with the help of Eq. (5.15); the result
is
¥ (w) S (?E:f£> [ Yolw ) + ¥ (w )] . (5.16)
L 9 w+wr B''m L'™m

We can evaluate this result at w = W, and we find the expression

¥ (wm =-J§- <w o > |:l -= <w on >:] ¥ (w ) ~ (5.17)

If we now impose the normelization condition (5.10) on the Solution (5.13), we

are led to a unique value for W We find, in fact, that Wy is determined from
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the ‘expression

pla) g3z vy () (g )/ (uy +0 )

o <0 ) 3 R 9 r (5.18)
[(mm-wr) YB(wm)] - - 1+ 5.

e A L= (3 amu )/ Cva)

where the principal integral (3.4) for p = 4 - i6 is calculated with the phase
6§ of Egs. (5.1-5.3). The abcve equation for w, was solved graphically, by
plotting the left and right nand sides as functions of W e For the present
choicé of resonance position and coupling constant, namely w, = 2.07 and f2 = 0.082,
the intersection of the two curves bccurs et W = 6.38. With the parameter 0
thus determined, the left cut term ¥ can be computed'from Egs. (5.16-5.17);
this resulf is tabulated, together with the total inhomogeneous term at W in
Table II,

ﬁefore we apply the result w = 6.38 to the determination of the 3-3 pho-
toproduction amplitudes, let us indicate how one may derive from Eq. (5.13) a
- generalization of the Chew-Low effective-range formula, If wé define~a function

n according to

Re e-A(w)

- wr-w
5e°cosé=< >n(m),l<m_<mm (5.19)

W _=-w
m

then, because the zeros of ef

and cos § have been built in to the right-hand
side of the last expression, we can expect that n is a smooth and slowly varying
function of w. Furthermore, because expression (5.12) is valid for w < 1 and

w > W we can also expect to have n = 1., When the representation (5.19) is
used to eliminate e ® from the solution (5.13), the resulting expression is the

+

formula

3 s '(w)(w -w)
3 _ [ 2u n r
q~ cot 533 h (E+M) [(wr_w)‘wlfg) + (wm_wr) WI(wm)] (5.20)

To compute n{w) one can use the phase of Egs. (5.1-5.3) together with the de-

Tinition (5.19). It is found that n can be represeated to an accuracy of 2%
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by the (non-unique) expression

’ (w=1){w =l-w) i :
n(w) = [1.2}¢5+ ,mm ] %;—“) ©(5.21)

The result (5.20-5.21) is compared with the experimentai data in Fig. 4.
Although we héve required an appro%imate knowledge of the 3-3 phase in

order to arrive at the result (5.20), it may yet be useful in some future

analysis of the scattering data. This is so because the approximations used

to derive (5.20) are roughly independent of the precise values of w, and w .

Thus, Eq. (5.20) may be fit to the experimental data as a three-parameter formu-
‘la. However, because of the fact that from the present point of view one of
the parameters=~-the zero-position wm--is related to the other two by the nogmal-
ization procedure, a more nrofitable approach would be to treat the combined
expressions (5.18) and (5.20) as a two parameter representation for 6., in terms

33

of W, and f2.' In this way one might obtain not only a satisfactory representa-

tion for the phase shift but also a more precise determination of the resonance i

position and coupiing'constant.

VI. THE 3-3 PHOTOPRODUCTION AMPLITUDES
A. Solutions in the Relativistic Approximation

Ve are now in a position to derive the solution for the 3-3 photoproduc-
tion amplitudes ¢., i = 1,2, vhich are defined by Egs. (2.11-2.12). These
amplitudes satisfy the dispersion relations (2.14), in which the inhomogeneous
terms consist of the pole in ¢2 at w = 0, the approximations (2.15) for the

small left cut terms ¢, , and the relativistic expressions (2.13) for the Born
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Aéqordingfto ‘our assumption, the 3-3 photoproduction. and scattefing ampli-
tudes_pave the same phase and thus are associated with the same function A. It
followé that the solution (5.13) and the formula (5.15) for the evaluation of
Anon-siﬂéular-integrals will apply equally well to the photoproduction case if
we feplace pke séattering amplitude Y everywhere in these expressionsbby either
of the émplitudes ¢i. Thus, the solutions for the photoproduction amplitudes

are given by

0, = eA(m) [(wr-w) ¢iI(w)w+-iwm-wr) ¢iI(wm)] ’ . (6.1)
m

and all nonsingular integralé involving these amplitudes may be evaluated

according to the prescription

ER

' ] 1 - - .
\Jf do' Glw') Im ¢ (w') (w -w ) Gluw,) o pley) s (6.2)
1
where ¢iI is the rgsultant inhomogeneous term in the equation for ¢i .

We may use the result (6.2) to evaluate formally the integrals for the

left cut terms in (2.15) and the residue 8 of the pole in ¢2; we find the

expressions
A ST 2k 0oplu) - ¢11(“’m)>
“1 T 9 Vn O w tw
2L ) oople) = 20, (w )k . 20,p (e ) = o)1 (0 )k,
¢2L 9 “p wr+w w
(wm-wr)

r

When these representations for the non-Born inhomogeneous terms are inserted
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into the definitions of the ¢, (w ), i.e., into the expressions

) + ¢iL(wm) + (éi,2) B/wm

oyplug) = oipluy

there results g pair of coupled linear equations for the ¢iI(wm) in terms of
the known ¢iB(wﬁ)' The solution of these eguations for a given w and resonance
position w,. is straigﬁtforward and’the results—-for the values w = 6.38 and
w_ = 2.07T--are tabulated in Table II.

While ihe Solution (6.1) for the ¢; is satisfactory as it stands, it is
more instruciive and more convenient in practice to work with the ratios of the
photoproduction amplitudes to the scattering amplitude. We can readily construct

these ratios from Egs. (5.13) and (6.1) and we find the result

fi._ $1 - (b=0) ¢ () + (0 -w ) ¢, (w ) (6.4)
Y (%%ﬁ) e 033 sin 6. (wr-w) WI(M) * (wm-wr) VI(wm)
: 33

The advantage of a cloged form such as (6.4) for the amplitude ratios is that
the dependence of these ratios on the parameters w.» wm; and the coupling con-
stant is made explicit. The ratios predicted by Eq. (6.4) for the amplitudes
generaped by the nucleon total magnetic moment (u) and charge (e) are shown in
Figs. 5 and 6, respectively. Also shown in these figures are the corresponding
predictions of CGLHl; however, the ratios for the CGLN charge terms are shown

only up to w s where they vanish.

n

B. Connection with the CGLN 3~3 Charge Terms

It can be shown that the CGLK prescription for the determination of the

3-3 charge amplitudes is a special case of the Solution (6.1). This solution
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may be rewritten in the -form

e G e« (B2 «»ﬂwmﬂ
= e‘”iﬁge-p cos 6) ¢ (w) + (7 cos 6) <~ > ]

e cos ¢ ¢ + el (f i) (w -wr (w ) | (6.5)

o

where ‘we have used Eq. (5.19) with n(w) = 1. The second term in the last,
expressionlis finite at resonance because cos § vanishes there. In the limit

w ~+ «, Eq. (6.5) reduces to the expression

¢? = o3¢ cos § ¢§B ; 1=1,2 (6.6)
This ?esult follows from the fact that the Born terms ?iB(w) approach zero
fasdter than f/w as J + »; consequently, all of the non-Born inhomogeneous terms
evaluatgd.by the‘précedure of preceding section vanish iﬁ‘the l;mit W > .

The result (6.6), however, is just. the CGLN expression for the ‘charge terms

and the difference between expressions (6.5) and (6.6) represents the present

-corrections to these terms.

VII. CROSS SECTIONS

The method we will use to obtain the photoproduction cross sections from
the 3-3 amplitudes is similar to that of Gartenhaus and Blankenbecler.9 t was
shown by Ball that the differential cross section, summed over f%nal nucleon

. . - g . AN ; 11
spins and averaged over initial spins and photon polarizations can be written
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Q.

2 2 ‘
a—%.:-}% {I}ll +|32| - 2 cos O Re 31*}2

1 2 2 2
+ 5 (1 - cos%e) l—_lf§3| + |F 17 + 2 cos 8 Re F ¥

+2Re (F "% + -'3;2*;343)]}

According to Egs. (2.4) and (2.9), the amplitudes for photoproduction from pro-

tons are given by

F(yp » 1°p) =

Wi+

gt1/2 +_§_ &'3/2"‘ A

. + 2
F(yp > n n) =

wl\l

(F2 - P e

'The resultant amplitudes ?i, i=1,2,3,4, can be evalua)ted fronm ELgs. (2..5-2.7)
under the assumption that the contributions from the 3-3 state exhaust the dis-
persion integrals., 'The present scheme for evaluating the resultant amplitudes
in the following. Ve may use the relation (2.5) bet.ween the ¥ and the in-

variant amplitudes Aj to separate ¥ into parts which arise from the Born terms

2

(B), the right hend cut terms (R) associated with the denominators (w')2 - W

and the remaining left hand cut terms (L) of the dispersion relations (2.7):
F=Hr KRR

We subtract from these contributions to ¥ the corresponding 3-3 projections

(2.10) and finally add the solution functions by means of Eqs. (2.12) and (6.4).

Thus, if P33 is the 3-3 projection operator on the integral expression for X and

3_33

F is given by

is the corresponding solutions of the equuations fon P33Q£ , then our resultant
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J = (}f33 + (i-P33)3‘ .

" The general formulae resulting from this approach are given in the Appendix.

33

Finally, G; may be expressed in terms of the 3<3 phase shift by means of Eq.

_"(6,h) while the nonsingular integrals defining (l-P33)( F. o+ :;L) can be

R
evaluated with the help of Xg. (5.15) and Table II.

| The coupling parameters that were used in the p%esent calculation are the
same a5 in Eé. (2.8'). The nucleon mass M wes taken to be 6.73/R, where R is

the ratio of the mass of the photoproduction pion to that of the charged pion
(R =1 for vyp *'n+n, R = 0.967 for yp ~ nop). ‘The positions of the resonance
and amplituée zero must be similarly modified: The valueé used were w, = 2.07/R
and w = 6.38/R. This procedure ensures, for example, that the total barycentric
energy (in MeV) of the resonance is the same for all éharge configurations. The

'

conversion factor thét gives the proper units to the cross section is
AN (19.06/52 -30 2
<m ) = .96/R") x 10 cm
kil
where m is the pion mass, Finally, we remark that the numerical values in
Table II were deri&ed for the case of charged pion photoproduction; the dif-
ferent powers of R which appear there were determined from the requirement that
each contribution to W,¢l, and k¢2 behaves like (unitless energy)-3 in accord-
ance with the pehavior of the respective Born terms.

The results of the present calculations are compared with experiment in-
Figs. T7-11. These results are in satisfactory agreement with the main features
of the déta. Because of the'lérge discrepancies among the results of the Various4
experimental groups, however, it is impossible to draw from this comparison any
conclusions .about the quantitative accuracy of the present predictions for the

3-3 amplitudes. For the case of charged pion photoproduction, we show the matrix
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element squared at 90° (Fig. 7) and the differential cross section gt 260 Mev
(Fig. 8); AIt can be seen that the theoretical curves tend £o egree best with
‘the higher daﬁa in the vicinity of resonance.
‘ The cross sections for the process yp ~+ wop are reported in terms of the
¢coefficients in the expansion |
o

R
33 = A+ Bcos 6 +C c0528 + ...

an
These coefficients are shown in Figs. 9~11. The predictions. for the coefficient

A in Fig. 9 appear to be too large near resonance.

VIII. DISCUSSION AND CONCLUSIONS

Our primary aim has been to improve the calculation of the 3-3 photopro-
ductian amplitudes from the CGLN dispersion re}ations. Except for a slight
modification, the method used is that of the Omn&s. To carr& out this program
we have made three basic assumptions, each of which compensates for some aspect
of our present léck of knowleége of the photoproduction amplitudes., These
assumptions are (1) that only-the 3-3 amplitudes contribute appreciably to the
dispersion integrals at energies below and in the vicinity of the 3-3 resonance,
(2) that the phase of the 3-3 photoproduction amplitudes is the same as that of
the 3-3 scattering amplitude for all physical energies, and (3) that the effect
of the unknown high energy behavior of the phase on the solution for the 3-3
scattering amplitude can be represented by a zero in that amplitude at some
energy @ in the physical region. The parameter W, in the last assumption is
not arbitrary but is determined from the unitarity condition at resonance.

The principal result of this investigation is contained in the expression

(6.4) for the ratios of the 3-3 photoproduction amplitudes to the scattering
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amplitude. The present predictions for these ratios are compared with those
of CGLY in Figs. 5 and 6. The significant features that one observes from
this comparison are (1) that the ratio associated with the magnetic dipole

amplitude Nf/z

q +u (half the sum of the solid curves in Fig.\S) is smaller than

"the corresponding CGLN result by 9% at resonance and decreases relative to the

15

- CGLN result as the energy increases and (2) that the charge amplitudes do

3/2

not vanish at resonance--although the amplitude El+e

does have a zero just
above resonance, .

A secondary result is the generalized effective range formula (5.20) for
.thé 3-3 phase shift. As we indicated at the end of Sec. V, this formula can
be used not only aé a representation of this phase shift that is valid over
-a wide range of energies but élso as a means for a precise determination of
the resonance position and the pion-nucleon coupling constant.

.'The cross sectioné shown in Figs. T-ll were calculated under the assump-
tion thét the only important singularities of the photoproduction amplitudes
are the Born terms and the 3-3 contributions to the dispéfsion integrals. Ex-
ampleé of other singul;rities which may be important in the region of the 3-3
resonance are the éontributions to the dispersion integrals of the higher
energy.pion nucleon resonances and effects due to the exchange of rho-mesons.
While rho exchange contributes directly only to the isoscalar (0) photopro-
duction amplitudes, it also contributes to the isospin 3/2 scattering amplitude
and thus will affect-the present results for the 3-3 amplitude ratios. The
contribution of the rho-meson to.the 3-3 scattering amplitude, which has been
treated by Frautschi and Walecka, has an enéfgy dependence and sign consistent

' I .
with a decrease in the 3-3 amplitude ratios bvelow resonance.l This contribu=-

tion can readily be incorporated into the present expressions for the scattering

amplitude and photoproduction enplitude ratios, provided that a redetermination

of the parameter w is carried out.

H
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APPENDIX

The .decomposition of the toté.l amplitude F into Born terms and terms
arising from the right and left hand cuts of the CGLKN dispersion relations
is discussed in Sec. VII. The following expressions for these contributions
‘ar“é vélid oriiy under the assumption that the 3-3 rescnance exhausts the dis-
. persion integrals., The definitions of .all gquentities which appear below can
- be found ir.x‘Sec. II. For the right hand cut.contributions we have

1 43/2 _
Flg = 3ak cos o [¢2 - 0pp = by |

@«

J/\dw' {(?W%T [(wé + k)(w'w+M2)fk] ® &L;;M > Ino )

1

(e, Bug (WHH) Tno.!
WO 20w 1

+
=y

EM 3/2 _ o ‘ .
o Fan T B0 [y = opp - ep) + (5 =0y - 0y ]
+ L . (E+l~4)(‘,-.fw'+:\42) . k'(W'N-M2+l) 3wlk-2Mvy ) Im
e oW W ST WA 2
1 ‘ ' ,
k(E+M) W'W-M2+l EMv) Inm
- ww' 2W'W 'Zw'+n) ¢1
1 .,3/2 _

o F3r =3 [0 -4y - 0y

(z+M) 3/2_ 1 _duw" .
2 YLR - T %) wWew %)

~l/2 0 .
\'ylp }iR =0; 1= 1)203:1‘ .

a
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The left hand cut contributions are even more involved than those given
above, In order to condense the formulae somewhat, we introduce the following

functions:

B(Wjv, ) = (3(W'+M)(wék'-2le) - w'(E'+M)k') Imp)
- (w'(E'+M) - 12M2vl/w') Imgy
Ciw:vl) = (3lugk'=2Mv ) + k' (E'+M)) Ingy + ((E'+M) + GMv,/(W'+M)) ;méi
D(w;w,vl) = 3((w')2 + wé-eme-thl) .

The contribufions from the left hand cuts can now be written as
(-~
'

1 ..3/2 17 équ' | 2 '
.g :}lL = wa {wB + (m -thl) C + 6M\)l (W'+M) Im¢l}

n

1
L+M) 3/2 _ 1 2 '
I = W { (W+M) B + ((w+M)_ -thl) c + émvl(wlwm) Im¢1}
1
2 ST |
ot ] o [poan e
-1
) o3z 1| e [y .
Fin 3 D {3(w +W+2M ) Im¢l-2C}
1/2 _ 3/2
FL T HEL
i=1,2,3,8 .
0 ‘
Fip =0 '

Finally, the corresponding expressions for the Born terms :}3/2 »1/2,0

(i = 1,2,3,4) can be obtained readily from Eqs. (2.5-2.9).

i - o o - ——

g ) o emp— ¢

B
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TABLE II. Results for the 3-3 Amplitudes

8 Resultant
Left Cut (Residue of Inhomogeneous
Amplitude Contribution Pole at w=0) Term at w
2 0.1090
v (—-‘3—) e - 0.2262 R
(AR
3 r
glp_-u )
u ~ 0.0820 _ 8L8 R
¢%///< 3M ) w_+w 0.1
g(u -u
-0.0400 . 0.0479 2
/ ) ( — = ) 0.3845 R 0.0973 R
r
e eg 0.0th 2
¢£///(8§ —;;:;— R - 0.0242 R
e eg) -0.0066 0.0037 2 3
¢2/(%’ﬁ ( T 0.0505 R 0.0097 R

Notes: Quoted results are for the case f2-0.082, wr=2.07, and wm=6.38 |

The correction factor R =

mass of final state pion

mass of charged pion

the text (Sec. VII).

is discussed in
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LIST OF ILLUSTRATIONS

Figure'i; Distinction between the phase shift 65, shown in (a) and the
amplitude phase &, shown in (b) when the former passes through n. The two

phases can be taken as equal for x < x*.

I;@urg 2. Plot of £(w) = u(wr—w)/(qu cot 633) vs., w. For the resonance

energy we have used w, = 2.07. The experimental points are those of Table I.

Figufe 3. Behavior of the emplitude phase above the region of known phase.
The short Aashed curve represents the extension of the phase shift under the
assumptidn tha; it passes through = at W while the solid curve gives the
corresponding amplitude phase. The dashed curve is the phase in the case where

the phase shift drops rapidly toward zero.

Figure 4, Chew-Low Plot: q3 cot ¢ B/w vs., w. The solid curve is the pre-

3
diction of Eq. (5.20) for the values w = 2.07, w = 6.38, and £2 = 0.082.

‘The experimental points are from the compilation of'McKinley.h

- -~

Figure 5. Ratios of the photoproduction amplitudes generatéd by the total

nucleon magnetic moment to the scattering amplitude. The solid curves are the

predictions of Eq. (6.4). The CGLN results, which predict a; = a; , are given
by the dashed curve.
Fifure 6. Ratios of the photoproduction amplitudes generated by the nucleon

charge to the scattering amplitude. The solid curves are the predictions of
Eg. (6.4). The corresponding predictions of CGLN (dashed curves) are shown

only up to the resonance position, where they vanish linearly.

- +
Figure T. Matrix element squered at 90° for m photoproduction. The present

predictions ere compared with various experiments.
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Figure 8. Barycentric differential cross section at 260 MeV. The data nota-
tion is the same as in Fig. T.

Figure 9, .The coefficient A in the expansion %%-= A+B cos 6 + C cos?e teoo
0

for the process yp + 7 p.

Figure 10. The coefficient B for the process Yp =~ nop. The data notation is

the same 'as in Fig. 9.

Figure 11. Coefficient C for the process yp *_nop. The data notation is the

same &3 in Fig. 9.
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