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LIST OF SYMBOLS

a Attitude parameter of bearing pad

=9 Slope of anemometer calibration curve

b Half-thickness of film

C Dimensionless location of center of pressure under bearing pad.
Cs Friction coefficient

h Film thickness

hq Bearing radial clearance

H h/h,

I Anemometer current reading

Io Anemometer current reading for zero flow velocity
L Mixing length

m Velocity profile parameter

N Pressure at entry to bearing pad

n Friction coefficient variation parameter

P Pressure

P Dimensionless pressure (p/pué)

T Journal radius

R Reynolds number ub/v based on centerline velocity
u Velocity in direction of turning

Au Incrementation of velocity relative to Couette flow

iii



INTRODUCTION

This progress report summarizes the third quarter of a one-year
program cof basic research on liquid metal lubricated bearings, with emphasis
on turbulent-film lubrication. In the initial progress report, the general
problem was outlined along with the objectives of the program, and
preliminary apparatus and experimental plans were described. In the
second progress report, preliminarydata were presented, and preliminary
approaches to the analysis of turbulent film lubricated bearings were
outlined. In this progress report, emphasis is on improved data and
improved analyses on the major aspects of the problem. In many cases,
these improvements represent the completion of sub-tasks of the program.

Highlights of Progress Report No. 3

Improved Friction Coefficient Data. In Progress Report No. 2,

techniques were outlined whereby friction coefficient could be computed
through use of the wall law along with velocity profile measurements. It
was indicated that the wall law would be expected to apply with increasing
accuracy as the position of the measurement was moved in toward the wall,
It was also pointed out that the errors in the measurement would be expected
to increase as the position of the velocity measuring probe was moved in
toward the wall. Thus a compromise was required. In this report, an
improved means of making this compromise has been arrived at: the wall

law is applied blindly to all measurements across the channel, and a



friction coefficient is computed for each individual measurement. These
friction ccefficients are plotted and graphically extrapolated back to the wall.
The resulting ""wall'' friction coefficients have been plotted against Reynolds
numbers, and they appear to bear a logical relationship to prior work of
Taylor, Smith and Fuller, Robertson, Couette, and others.

Improved Profile Analysis. This effort consists of two parts, one of

which has been to find a suitable expression for the turbulent wall-law
velccity profile, and the other is to compare the actual measured velocity
profiles with the wall-law profile. In Progress Report No. 2, a simple
expression was suggested as a close fit of wall-law data, and this expression
has been explored more fully, showing it to be a much stronger representation
than was initially expected. For example, the mixing length relationship
carried implicitly in this expression is shown to be consistent with Emmons'
observations on eddy dimensions. Comparison of the measured velocity
profiles with the wall-law profile have shown, on the basis of the above local
friction coefficient estimates, that there is an additional momentum transfer
term in the flow in our large-scale turbulent film apparatus. This additional
momentum transfer term is attributed to vortex flow which co-exists with
the fully-turbulent flow.

Improved Pressure Measurements on the Full-Bearing Configuration

in the Large-Scale Turbulence Apparatus. A new method for

measurement of the extremely low pressures (as encountered in the full-

scale bearing; was presented in Progress Report No. 2. This pressure



measurement technique has been further developed and exploited, and
complete pressure profiles for the f~u11 bearing have been produced at three
Reynolds numbers. Difficulties were encountered due to the relatively
large magnitude of the velocity pressure, as compared with the static
pressure which was being measured. Small disturbances in the flow, which
changed the velocity, could alter the local static pressure significantly.
Elaborate experimental care has removed this source of error, and it

is believed that representative pressure profiles have been obtained.

Data on Skewed Flows. One of the most sought for items in this

program has been data on strongly skewed flows. The relationship of
velocity and shear stress has not previously been established experimentally
for such flows, and any theoretical calculation is based primarily upon some
assertion as to how the friction law should vary for such flows.

During this report period an obstruction was placed in the bearing
film in the large-scale turbulence apparatus, and a wide variety of skewed

prefiles resulted. Both pressure measurements and profile measurements

are reported here, and are expected to be subject to analysis in the forthcoming

period.

Improved Derivations for Turbulent-Film Bearing Analysis. Deri-

vations presented schematically in Progress Report No. 2 are reviewed and

improved or corrected in many details.



Estimation of Inertial Effects in Pad-type Bearings. The analytical

techniques outlined above have been extended to pads without end leakage,
and with inertial effects. These include both the initial impact pressure at
pad entry, and the continuous inertial effect throughout the film. The result
of these computations is that the impact pressure is overwhelmingly signifi-
cant in determing both center-of-pressure location, and load support for a
variety of pad length-to-clearance ratios, and angles of incidence. It is
expected that measurements of the actual impact pressure at pad entry will

be available to support or correct these analyses in the forthcoming quarter.



FRICTION-COEFFICIENT VARIATION IN COUETTE FLOW

Friction Coefficient Variation

As pointed out in Progress Report No. 2, a program has been developed

to determine the Cf and/or T necessary to force experimental data to satisfy

the universal velocity profile equation

Yt = Ut+ (Ut/8.74)7 (1)
or
y’\/’T/p/u =uNp/T + (uNp/T 8“74)7 (2)

Here v, p, vy, and u are known, and 7 may be solved for., If the actual profile
is of the same form as the universal velocity profile, and if the flow is simple
Couette flow, the value of C¢ computed for any pair of (u, y) coordinates will
correspond to that for any other pair. If the values of computed 7 vary out
from the wall, this indicates that the velocity profile does not follow the
universal velocity profile.

Figure 1 shows a number of profiles of computed C¢; (where C¢ =
Z'r/pu%), showing the computed value to remain nearly constant, but still
dropping off toward midstream. This tells us that the universal-velocity-
profile shear-stress relationship underestimates the actual midstream
shear stress; thus it indicates that an additional mode of momentum transfer
must be at work, over and above the turbulent mode. This is undoubtedly

Taylor vortex flow, still at work even when the flow is fully turbulent.
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Extrapolations of the C¢ plots back to the wall provided values which
must be independent of this extra momentum transfer. The results of such
extrapolations are plotted in Figure 2, and it is seen thatthe Cfmagnitudesare
above those for plane-Couette flow as well as the thin-film values of Smith
and Fuller. The data tend toward the earlier data of Taylor for even thicker
films, though the transition is at high Reynolds number. Critical Taylor
number for transition is at R £ 100, and appears to correspond well to the
observed transition.

In the forthcoming period, checks will be made to determine if
similar effects take place under finite pads; and, if this is verified, a series

of Cy profiles for different clearance/radius ratios will be reported.
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COMMENTS ON THE RECOMMENDED UNIVERSAL
VELOCITY-PROFILE EQUATION

Numerous authors have attempted to fill the need for a continuous
universal velocity profile expression, reaching all the way from the wall
out into the turbulent flow. These include Miles(l), Van Driest(z),
Szablewski(3), Reichardt(4), and Ng(S). Aside from the fact that none
of these precisely represents the others, all are relatively difficult
functionally, and make hand calculation virtually impossible, when one
tries to use them to compute shear stress from velocity data. To pro-

vide a simpler expression for such work, we have proposed the expression
vt = ut + (ut/s.74)7 (1)

Here UT =u p/ T and Yt = (y/p ’\/_’l?), where uis velocity parallel to the wall,
y is the coordinate normal to the wall, p is fluid density, 7 is wall shear
stress, and p is viscosity. Somewhat unexpectedly, this relationship was
found to fit available experimental data well. As shown in Progress

Report No. 2, it follows the data of Nikuradse(6) up to a value of vyt =500
and possibly as high as Yt = 1000. In the transition region near YT = 10,

it was shown also to agree closely with the data of Reichardt and Laufer.
There is exceptionally good agreement between the selected function and
Laufer's data, and it would be very satisfying if we could convince our-

selves that these recent measurements are the most accurate.

Defining CfEZ'r/pu2 , and R=uy/v
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Eq. (1) leads to the following friction law

2 (2/ce)?
+ e ———————————

2
f (8. 74)7 @)

A defining cquation for eddy viscosity, n, may be written as follows
%u

(b +pn) 5= 7 (3)
P gy

The shear stress T may be assumed constant, since this is one of the
essential conditions of the universal velocity profile. Combining Eq. (1)

and Eq. (3), and drawing upon the appropriate definitions
P—:l = 0. 801 (U¥/8. 74)° (4)
Mixing length, £, may be defined by
n =12 l L (5)
by

Combining this with the above relationship for eddy viscosity [Eq. (4)],
and defining 7 2/pv2 =172
2

6 6

(LYY = 0.801 (Ut/8.74)° [1 + 0. 801 (ut/8.74)"] (6)
It is not convenient to solve this explicitly for Lt in terms of YT, but
for the special cases of very large and very small Y* this becomes
respectively:
For large V&
Lt = 0.801 (U*/8.74)0 = 0.801 (Y*)6/7 (7)
For very small YT

Lt =~0.801 (vt/8.74)3 =+0. 801 (Y*/8. 74)3 (8)



Note that for the very small Yt this follows a cubic relation, for
which Emmons{7) has given some substantiation in terms of reported
measurements of eddy dimension. At the higher values of YV the
relationship is very nearly linear, as is ordinarily assumed in mixing
length theory. The relationship between L" and Y' is best illustrated
in Figure 3, where the predictions of Eq. (6) combined with Eq. (1),
are shown merging into the cubic relationship at the small Yt, and
approaching (very nearly paralleling) the ordinarily assumed mixing
length relationship of It = 0.4Y*. On the basis of these observations,we
suggest that the simple profile represented by Eq. (1) not only provides
a good direct fit of empirical velocity profile data, but also appears to
make sense when viewed in terms of the mixing length relationship which

it carries with it implicitly.

11
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EMPIRICAL REPRESENTATION OF VELOCITY PROFILES

At the outset of the experimental program it was decided that the
measured velocity profiles would be characterized by a best-fit power-law
expression. To this end a least~squares technique was worked out for
computer-analysis of the data.

In the past quarter, this has been re-assessed, and, to a large
extent, abandoned. A graphical curve-fit appears to offer a preferable
approach. The principal difficulties have been encountered at low values
of R. In fact, the technique is quite satisfactory at large R or fully turbulent
flow.

Figures 4 and 5 illustrate the agreement of the curve of the type
u/uy = (y/b)", for the n computed by the least-squares program, and for a
relatively high Reynolds number. In this case, thefit is satisfactory on both
linear and logarithmic plots.

Figures 6 and 7 show the results of three different techniques of
arriving at the best exponent for the short profile at a low Reynolds number.
It is seen that the least-squares result gives excessive weight to the single
deviant point near the wall. An ''eyeball'' fit on the logarithmic plot (with
emphasis on the points near midstream) also does not provide a satisfactory
fit on the linear plot. As a third approach, one point at the knee of the curve
was established accurately by repeated runs, and the power-law curve was
computed to pass through this point. It appears that this last device is an
effective approach to the problem of arriving at a single-parameter power-law

for comparative purposes.
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Yet another approach to data analysis is shown in Figure 8, where
actual profiles are compared with the universal velocity profile curve. To
this end friction coefficient was computed by the extrapolation technique (See

Figure 1), and this was used in computing Y* and U*t. In this case

Ut =(u/uy) N2/Cy (9)

t =yr/UTD (10)

Y
When plotted as shown, the midstream values (y = b) are below the universal

velocity profile. This again emphasizes that some factor other than simple

turbulence contributes to the resistance to flow.
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COMMENTS ON A NEWLY INTRODUCED METHOD
FOR DEALING WITH TURBULENT SHEAR
FLOWS IN BEARINGS

Recently Pan and Ng( 5) have reported the application of a novel
relationship for generation of velocity profiles in pressure flows, this
having been suggested by Elrod. It is apparent that this relationship does,
in general, fit the principal requirements of the problem. However careful
analysis is required to assess it relative to other approaches such as the
mixing-length approach. In essence,it is assumed that the eddy viscosity,
1N, bears a fixed relationship to Yt, where Yt = ym/v.rather than the more
conventional YT = ym/v. In order to get eddy viscosity in any circum-
stance, the distribution that satisfies the wall law may be used to establish
the functional relationship between Yt and pn/p. The exact function depends
upon how well the wall law expression for pn/p may be written. If we may
apply the relationship from the previous section with confidence, we may
write

on =1{0.8) w(ut/8.74)° (11)
Or, in the fully-turbulent part of the flow (i.e., outside the sublayer)

pn = 0.8 w(¥y*)0/7 (12)
With this simple relationship, it is possible to explore more fully the implication
of this suggestion in flow where 7 is a function of y. For example, it is

particularly informative to determine the mixing-length relationship implied.
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For flow when the viscous resistance is negligible
T = pl2(8u/dy)?

In terms of eddy viscosity this is

Combining these

ﬂ =N p/’T n (13)
Using Eq. (12) for n

6/7

2 =Np/7(0.8) pl(y/vINT/p] (14)
For Couette flow where 7 = 7o, this would be

0 =NpITg (0.8) plly/vINTS/p18/7 (15)
Comparing a flow with varying 7 to the Couette flow, for corresponding

values of y

+ \1/14
‘o) (16)

This would call for {—~o when 7—0 (as at midstream of pure pressure flow).
On the other hand this is not serious since n—0 when 7—0, thus giving a

1/14 is such a weak

realistic profile. Over most of the range the (7/7)
function that £—~{ . and the assumption is equivalent to a fixed mixing length
distribution, corresponding to that for the universal velocity profile (or for
Couette flow). This is especially true for small-perturbation pressure flow
imposed upon a strong Couette flow. Even if 7 =0.570, £ = 1. 05 Lo, and
for 7 =0.275, 4 = 1.12 £.. This bears out the statement that the subject
assumplion is tantainount tothe assumptionofa ""universal mixing length
distribution, "' where L™ =f(Y+), and both LT and Y* are based upon Tg

rather than 7.
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PRESSURE PROFILES

Pressures in the large scale turbulence apparatus range upward to
the magnitude of

p/puf £ 3X107> (17)
Since the '"velocity pressure' is pué/z, even a one-percent change in velocity
would create a pressure increment such that

Ap/pul = 1072 (18)
Thus even a very small disturbance can create pressure changes that mask
the true pressure. As a consequence of this delicacy of measurement, a
great many runs were required to establish confident data. The end result
showed a gratifying consistency, as indicated in Figures 9 and 10. In Figure
9, the time-readings in the pressure measurement instrument are shown,
thus indicating a considerable variation in actual pressure from run to run.
In Figure 10, the dimensionless pressure is plotted for the three runs and is
seen to correspond well within expected experimental scatter despite the
change in Reynolds number from run to run. These data will be analyzed
further in the forthcoming period. As they stand, they confirm the general
magnitude of the previous report, and thus sustain the previous arguments
that both circumferential and axial flow are significant even in our short-

bearing experimental setup (L/D = 1/3).



O R =2500
AR=2200
+R= 1900

FFFFFF 9. PRESSURE INSTRUMENT READINGS VS ANGULAR
POSITION AROUND LARGE-SCALE TURBULENCE APPARATUS



>
ol 4
o R = 2500
R = 2200 6
+R= 1900 / 2160 28\0
92704 K

AROUND LARGE-SCALE TURBULENCE APPARATUS



25

SKEWED FLOWS

In operating the large-scale turbulence apparatus as a bearing, it
was found that (even at large eccentricity) insufficient leakage flow would
arise to permit a critical set of measurements on skewed flows. As an
expedient approach, the '""bearing'' was placed concentric with the journal and
an axial blockage was clamped to the bearing, in the form of a 0.5 in. X 0.5
in. board. This forced the flow to divert and pass out the ends of the
clearance space, as fluid was transported to the barrier by traction on the
moving journal. Two sets of data at two Reynolds numbers are reported
here. Analysis of these data involves the complete solution for bearings
with end leakage and will be attempted in the forthcoming quarter. At present
these data are reported for their direct interest value.

Figure 11 shows a map of the local velocity vectors near the obstacle
at low Reynolds number (R = 550). Here Z is measured from midchannel
outward toward the edge in inches; X is measured from the barrier in inches.
Note that the midstream velocity simply decelerates. Outward from this
line the velocity turns into the axial direction and increases in magnitude.

Figure 12 shows a comparable figure at higher speed (R = 2500) where
the pattern of flow is shifted somewhat - presumably due to inertial effects.

Figure 13 shows typical measurements of velocity-direction at a
given (X, Z) point and for different values of y/b, at R = 2500.

Table 1 gives a series of pressure measurements which accompany

the velocity pattern of Figure 12.
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TABLE 1.

X, in.

SKEWED FLOW (R = 2500)

Z, in.

(@] O N O

o O

ok O

PRESSURE DISTRIBUTION IN

O O O O

o O

o

. 374
. 361
. 337
.273

. 344
. 337

321
. 281
. 220

. 297
. 297

. 280
. 253
. 198
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INERTIAL EFFECT ON A PAD WITHOUT END
LEAKAGE AND WITH TURBULENT FLOW

Appendix A reviews the derivation of the equation for flow in a

bearing without end leakage, showing it to reduce to the following form

d 1 -H
cap. e T )& (1og) (19)
d 2 dX X \ g2
. ! £ L s
Letting Cy = Cy¢ X this simplifies to
_gzé—dH/zderzc'f(l 'ZH) (20)
X H H

For an inclined {flat slider on a flat surface

T
I

1 - aX

Substituting this into Eq. (20)

daP _ & a N ZC%( a _ a ) 21)
dX 21 -aX)2 A \(1 -ax2) (1-aX)

Letting Q = (1 - aX)

2C,
d f dQ dQ
ZQ2+ a [- QZ+ Q:l (22)

If it is assumed, as outlined in Appendix A, that §,/X2 and C% may be dealt

with approximately as constants

t/x% + 2Cila 2C;

"PE— g ox T h(l-aX)+N (23)




31

’ ‘ Under the same simplifying assumption, P may be integrated a second
time; however, Eq.(23)was considered to be sufficiently simple for
numerical integration.

To evaluate the constant of integration N, the leading edge
pressure must be assumed. The full span of possibilities can be covered
by three choices: (1) The value of N = 0 would correspond to the absence
of inertial effect, (2) The value of N = 2 would correspond to full stagnation
pressure at the entry. The value of N =1 would correspond to recovery of
half the stagnation pressure at entry -- and, pending experimental verifi-
cation, might represent a logical magnitude.

Summarizing all of the combinations of variables chosen

N t/x cf a Xs

0 0 0. 005 0. 001 ~-200 -400 -800
0 0 0. 005 0. 005 -100 -200 -400
0 0 0. 005 0.01 - 20 - 40 - 80
2 1 0. 005 0. 001 -200 -400 -800
2 1 0. 005 0. 005 -100 -200 -400
2 1 0. 005 0. 01 - 20 - 40 - 80
1 1 0. 005 0. 001 -200 -400 -800
1 1 0. 005 0. 005 ~100 -200 -400
1 1 0. 005 0. 01 - 20 - 40 - 80

The choices of N have been explained above. The choice of {/x = 0 simply
eliminates the inertial term from Eq.(19). Cy; represents a plausible

‘ magnitude from the previously shown C; charts and the magnetudesof Q/XZ
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as indicated in Appendix A. The slope a provides bearings with a
clearance/length ratio ranging roughly from 0. 0005to 0. 05; this would
imply for 0. 001 in. central clearance that pads would range from 2 in.
down to 0.2 in. Thus, a plausible range of conditions has been covered.
The quantity X, measures the position of the pad's leading edge from an
arbitrary point, where H is assigned a value of unity. This arbitrary
point corresponds approximately to the mean film thickness.

Computer Results

A, Pressure Profiles. Figures 14 thru 16 showthree setsofpressure

profiles, showing the effect of pad length L (expressed as a multiple of mean
film thickness) and N (the pressure recovery factor). Because L was not
one of the pre-set parameters in the program, exactly comparable values
are not available for all of the magnitudes of N. On the other hand, they are
sufficiently close to permit useful comparisons. The principal feature

to note in these plots is that the leading-edge impact pressure N is a major
factor in determining the pressure profile. Figures 15 and 16 show similar
relations for different pad angles.

B. Location of Center of Pressure. In Figure 17, the symbol C/L

represents the distance back from the leading edge to the center of pressure,
expressed as a fraction of pad length. The subscript on C—N corresponds to
the magnitude of N used in the calculation. Note that for N = 0 (i.e., no
impact pressure), the center of pressure is behind the pad center, as is

true in laminar flow. For N =1, the center of pressure is well ahead of



PRESSURE, P

3.0

L=800, N=2

20
L=1182, N=2

L=709, N=1i

—

T
a=0.00lI

L=1248, N=2

1.0 7]
L=480, N=|
L=1188, N=0O
L=661, N=0
0O ] ] 1 i
0] .2 4 6 8 1.0 2.0
NORMALIZED DISTANCE,%
92672K

FIGURE 14. PRESSURE DISTRIBUTIONS UNDER TILTED PAD FOR

a =0.001

33



PRESSURE, P

3.0 T T T T
a = 0.005
B L=512, N=2 i
L=306, N=2
20 _
L=205, N=2
L=488, N=| ]
1.0 -
L=5I1, N=O
i L=286, N=0O ]
L=160, N=O—7
(0] i 1 ] ]
0 2 4 6 8 1.0
X"'Xo

NORMALIZED DISTANCE, T

92673K

FIGURE 15. PRESSURE DISTRIBUTIONS UNDER TILTED PAD FOR
a = 0,005



PRESSURE, P

1 1 1 1

a=00I
2.0 4

L=136, N=2
| L=78, N=2 ]
L=97, N=2
L=117, N=1I
1.0

o) ]
o 2 .4 6 .8 1.0

NORMALIZED DISTANCE,EE--)-(-Q

92671 K

FIGURE 16. PRESSURE DISTRIBUTIONS UNDER TILTED PAD FOR
a=20.010

35



MEAN PRESSURE, P

0.1
0.005
0.001

o
1

—a— e eosmm a

— e = Gm— a

N
1

BEARING LENGTH, L

FIGURE 17, LOAD SUPPORT CHARACTERISTICS OF
TILTED PAD

36

92674 K



the center of the pad, moving backward for longer values of bearing length
L. Note also that for increasing pad angle the center of pressure moves
rearward. Thus, for a pivoted bearing there will be stability in the sense
that, for a given pivot position, pad angle will increase until the center of
pressure moves to the pivot position. One would conclude from the
calculated values that pivot location at midpoint of the pad (C-N/L =0.5)

is not unrealistic for turbulent-film bearings. It also suggests that if

the pad is to be subject to either laminar or turbulent flow a pivot position
near to the halfway point is desirable.

C. Load Carrying Capacity. The mean pressure ﬁN is plotted

in Figure 18, where it is seen to be significantly affected by the impact

37

pressure, as determined by N. Otherwise, itis shown to increase regularly

with bearing length and with pad-angle as given by a. It is interesting
that the principal effect of impact pressure is to elevate the complete
family of curves. Surprisingly, the elevation is not the initial value of
P (i.e., of N); it is smaller, running nearer to 0. 75 N. Perhaps this

observation can be used as a rule of thumb for future calculations.
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PHYSICAL CONCEPT OF LEADING-EDGE IMPACT
PRESSURE RISE

Refering to Figure 19, visualize the shaft surface as moving to the
right (with the speed '15), and drawing with it boundary-layer fluid at the
same speed. At entry to the bearing,the meanfluid velocity must achieve the
ultimate value of up(at the extreme right), thus continuity considerations
dictate that a sizeable part of the flow must be deflected. One might visualize
an entry as shown, corresponding to orifice flow with a vena contracta, by a
"dead water' region and followed by a mixing zone. If the velocity at the vena
contracta is still ug then ughy; = uph. The momentum flux equation between

a and b may be written approximately as

hp, + (pughy)ug = hpy + (puph)uy, (24)
or

Py - Py = P ughlug - up) (25)
If uy -—:% ug

Pp ~ Py = puﬁ (26)
or

s (27)

Y5

©

One factor which would lower this magnitude would be prior dissipation in
the region of deceleration which must precede entry to the bearing. In that

region there must be a pressure rise to deflect the flow and consequently
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the fluid must move into an ''adverse pressure gradient' with attendant

deceleration--and possibly with separation and the losses which accompany

this.

Only experimental measurements will answer this question completely.
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FUTURE PROGRAM

The principal effort of the forthcoming quarter will be to round out
and exploit further the findings and methods of analysis indicated in this
report. It was noted in the previous report that the subject of combined
pressure-flow and Couette-flow would be dealt with in the vortex-flow
regime, in the present report. However, during the preparation period, a
(9)

paper has been published by Di Prima on this subject It is felt appropriate

to hold discussion of this subject back until this recent work has been assessed.
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APPENDIX A

In Progress Report No. 2 equations were outlined for bearing
analysis. The derivations presented at that time have been improved
and corrected here, preparatory for ultimate incorporation into a more
general derivation for flow with end leakage.

The ultimate goal of the present derivation is to generate an

equation for circumferential flow, of the type:

oU U dP
(1 + U)=~—=+2C¢f — = - —
( )ax féH X (1)

where
Ay
= = = 2 — = =
o = U, x/hg = X, h/hg = H, p/puyy.= P, C¢c =Cy, R = r/hg
and
t= Colupct Aup)? - Cypy (up, - Auy)?
4 Cqc(up) Auy (2)
h
f Audy
0
X = (3)
Aubh
h
alu
6[ (uc + Au) —g}-{-dy
t= (4)
Ja oA
Zbubc<1 + Ub> i)
Upe ox

The last three quantities are shown to be weak variables and, of the

order of unity.
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present case, these need not be discussed here. An expression of Newton's
second law for such a film* may be written as follows (under the assump-
tion of steady flow with the local velocity u in the x direction, and where
pressure is assumed to be independent of y,the coordinate measured across

the film thickness, which ranges from 0 to h):

h

ou 9
g‘ Pug‘;dy+55h=7h-'ro (5)

It is now possible to introduce the definition

Cs= 2]7] (6)

such that C; is defined relative to the wall on which the shear stress is to
be measured, and uy is defined as midchannel velocity relative to that
wall. Substituting into Eq. (4)

h . 2 2
3 8 Cep plupy) Cto Plupg)
f pu—%dy+—3h= [__._2____] [__0__2___9_ (7)
h

Refer to Figure 1-A for which the definition of the relative velocities Uk
and u,  are defined.

At this point it is desirable to refine further the definition of
Uy, in order to examine the case of a pressure flow, acting codirectional
with a Couette flow. As illustrated in Figure 1-B, a Couette flow with
centerline velocity Uy is incremented to the right by a pressure flow,

where the incrementation of the centerline velocity is of the magnitude Au,,.

*For turbulent or laminar film.
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In view of the definitions of U, and LR these become

ol = [Ppct Aubl

Y| = [Ubc = Sup|
Here it is recognized that the Couette flow bears such symmetry relative
to each wall that the mid-channel velocity is, in either case, designated
by the same quantity u, ., relative to either wall, for the Couette flow

acting alone. In terms of this, Equation (6) becomes

h .
C u,. - Auyn)? C u,. ~ Ay )2
f pu é-Edy'+.8_E.h=: fhP( ¢ b) - foP( ’C b =0 (8)
0 a ax 4 . 2 Z

— 1 1 J | 4

I 1I I1I

The equation has been divided into three parts for purposes of discussion,
part I being the "momentum flux" term, part II being the '"pressure gradient"
and part IIT being the '"wall shear' term.

2. Wall Shear Term

If Cfc is the wall shear stress for the Couette flow before
its incrementation by Ay, it is possible to write for other conditions the

relation
¢ = e (9)
Hence $C¢. will permit the computation of actual friction coefficient C¢

when ¢ is known. To obtain some idea of the type of variation expected

of ¢ we may write the approximate expression:



48

¢=&=(5£)n (10)

In this case we have assumed that the C¢ vs R relationship is continuous

and can be approximated by suitable selection of n. This would not

necessarily be the same n that would best represent the Reynolds number
variation for the Couette flow alone, though evidence has been presented
(see Progress Report No. }) which suggests that n will not differ greatly

from that magnitude. In terms of this, Term III of Equation (8) becomes

Ype Duy, ‘I'Aub)‘2 Upe V2 (upe - Bu)
2 Pl 2

I11) = pC
(1 P fC<ubc:+Aub

(11)
Or using Equation (10)

2 - -
Ceeupe (1 N Auy, > ¢-n ( : Auy, ) ¢-n
2 Upc Upe

(I11) = p (12)

If n = 0 (in which case C; = C;. = Const.), Equation (12) would reduce to

2

Csou 4Aq

(1) = p LS bc[ b} (13)
2 Ybe

This would be expected to prevail where wall roughness causes Cy; to depart
from smooth-wall behavior and level out at a nearly constant value at high
Reynolds number.

Using the results of Equation (13) and Equation (12), a useful com-

parison is the consequence when the following quotient is determined:
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[(1 . Aub>2—n (1 Aub>2'n]
Ubc Ubc

£ = 4(Luy/uy )

(14)

The quantity £ would compare the effect of Cs¢ varying, with that of constant
C¢ as to their influence on term III. Table II shows comparisons of the
variation of § with Aub/ubc for n=1/2 and n = 1/4, which would be

expected to represent a realistic range of magnitudes.

Table II
3
n=1/2 n= 1/4
Aub/ubc - 0 0.75 0.875
Aub/ubc =+1/2 0.741 0. 866
Aub/ubc= +1 0.70 0.84

Note that for Aub/ubc —- 0, £ =1 - 521- Also note that Aub/ubc =1,
represents the limit of applicability of Equation (8), as written, since
exceeding of this magnitude would require a change of the sign in Term III
of Equation (8), since the shear stress at one wall would reverse direction.

In terms of §, and Equation (12), Term III becomes

Csouf (
(II) = p fzcubcé[‘*:) ‘lﬂ (15)
C

In recognizing that pCfélﬁc/Z is the wall shear stress Te of the original

Couette flow acting alone

(IID) = 7 _¢& [‘m“ﬂ (16)

Yhe
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This is a useful form of the term since £ is not widely variable, as is
seen in Table II. As a first approximatioﬁ, it could well be § =1 - % .
If more accuracy is desired any reasonable choice of n will give a fair
approximation since, for the wide range indicated, the ratio of £ for the
two values of n is about 0. 85; or, only a 15% error in Term III would have
resulted if one value of n had been used for computation when the other
should apply. Somewhere between these extremes even better agreement
should result.

Should we, in measurement, be able to determine n within
20% of its best value, only a very small error in Term III would result.
This suggests the feasibility of obtaining realistic predictions of the
"wall shear' term by reasonably accurate experimentation.

3. Momentum Flux

In Equation (8) the momentum flux term, Term I, may be

written as

h > 5
af oy d[(; i )h]

-0
(1) = dx =P dx

(17)

A new dimensionless quantity { is introduced to account for the variationof u.
It is of interest to determine the general magnitude of { and its sensitivity

to the shape of the velocity profile. We note that
hﬂzd

00X
0lu2

ox

(18)

t= 2
h




52

Though some additional analysis is possible, we shall proceed directly to
an order -of -magnitude investigation of factors influencing the term by the
assumption that both u, and Au vary out from a wall into either half channel
according to an equation of the form u/uy = (y/b)™. In addition to approxi-
mating the flow in each half channel by a power -law profile,it assumes that

the law is identical for each. In terms of this, Equation (17) becomes

b h 2
2 2 2 2
Lhuy = f (uep + Auy) (%/b) m o4 f [2uy, -(uch - Auy)| (y}(b)
0 b

(19)

To obtain some information on the variation of §, it is desirable to insert
some numerical value of m, which for the present has been chosen as 1/7.
In addition to {,two additional parameters have been included in the calcu-

lations, and these have been defined as follows

h
f uZdY
A= 9———2—— (19)
ubch
(ubC+Aub)2
B > (20)
Yphe
and
A/B=¢ (21)

Table III compares A, B and ¢ for different values of Auy/up.

m
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Table III
Aup /upc A B 4
0 1.006 1 1.006
+1 3.789 4 .947
-1 0.012 0 ©

Note that though § = oo for Aub/u —~ -1, this is not to be misinterpreted

bc
as making { a useless parameter. Comparison of A and B shows that
the momentum flux prediction using the approximate profile, follows the
simple prediction reasonably well. Thus if { were assumed to be unity

and applied to B, it would predict A = 0 rather than the very small value

of 0.012, computed by the more accurate estimate of the profile.

4, Cont inuity

The continuity equation for an incompressible lubricant film

may be written as follows:



h
(ho— h) U =(‘)/‘ Au dy (22)

Here there is no normal motion between surfaces, and ho is film thicknes
where only Couette flow would prevail. It may, in fact, be a hypothetical
thickness which does not exist in a bearing, but nevertheless serves as a
parameter to characterize the flow.
fh

To determine how the integral 5 Audy is influenced by
velocity profile form, let us use, as previously, a profile in the half
channel (for velocity relative to the nether wall) Au/Auy = (y/b)™. Equa-

tion {22) becomes
b
m
(hO - h)ubc= zf Aub(y/b) dy
0
or integrating

24u. b Au, h

h -h = =
(hq )ubC m +1 m+1

Had the velocity Auy prevailed across the channel as a ''constant'' incre-

ment to the flow the result would have been

(hy - h)ubc= Auyph (24)

A

The ratio of the right-hand term in Equation {23} to the eyuivalent term in

Equation (24) may be designated by X and would be, for m = 1/7,

= 0.875 (25)
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Again the critical quantity is close to unity. Hence the correction due to
the choice of m tends not to be a major factor. Irrespective of the parti-
cular value of m, the continuity equation written in the following form
must be correct:

(26)

(hg - hlupc= xAuph

5. Extreme Conditions

It has been mentioned that the preceding analysis cannot be
applied without alteration outside the range -1 < Aub/ubc <+ 1. Further-

more, the approximate power law expressions for Cs and velocity profile

Upe - Aup
Uhe

must breakdown where 0. On the other hand, shear stress

tends also to go to zero in this case, which makes the precise magnitude
relatively unimportant.

To show how insensitive a typical quantity might be to gross
departures of velocity profile from the chosen form, let us examine the
somewhat more realistic power law profile approximation shown in

Figure 2, with respect to the continuity equation.

h

(hg - h)u, =

'
o
)
e
o
<
fl
—
(W]
c
T
O
<
5
Q.
<
]
c
T
]
=3
H
1
c
o
(@]
=

(27)
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When Eq. (27) is compared with Eq, (26), we note that

1l -m
XTTmrn (28)

If, for instance, m = 1/7, y = 0.75, which is not greatly different from
the value of 0.875 given by the previous computation in Equation (25).
6. Summary

Though additional comparisons can be made, it is futile to
do so without further knowledge of actual velocity profiles. There is
nevertheless reassurance in the observation that {, £ and x are all near
unity and are all relatively insensitive to the details of the velocity profile
or the C; variation function.

Again it should be reiterated that the defining-equations for
L, £ and ¥ are not dependent on special assumptions as to the particular
velocity profile or Cf variations. They remain critical parameters in the
film equation for determining the influence of turbulence quantities. They
may be used to compare various turbulence 'theories'' as to differences in
their predictions. They are also the quantities to be evaluated by our

experimental measurements.





