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ABSTRACT

Localized Green's functions are defined for bound systems. An in-
dependent -particle approximation analogéus to the Hartree-Fock procedure R
is derived; the first correction is shown to be’identical with that
determined in a corresponding shell model. An independent-particle
approximation based on use of the free two-particle t matrix iﬁstead
of the interparticle potgntial is formulated and its first correction

is shown to be similar to that in a suitably constructed shell model.
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Localized Green's Functions

In a previous paperl, it was shown that the Green's functions for

bound systems are

%]

G (Lo -m32*eeon®) = (-1)™g-k/2|T@ (1) ok W T (). 4T (1))l ey 5/2)

- o (1)
= (-1)"eE B /o lT(y (1-8) . ¥ (n-aW T (n'-n) . 4T (10-0)) [ K/2)

1
N-particle system with total momentum’k/e. The vector A is any four~

Here 1 = x, = (tl, 51); the state IgN 5/2) is the ground state 8y of the

vector.
The Green's functions of Eq. (1) are not suitable for independént- '
particle approximation, since the momentum of the state gN must be con-

served. Thus, with the G, of (1), one would have to try, for example,

x4

GNk(1231'2')’z.[¥Q§1) 8 (§1 + X, - k) GN§£1;1')GN§2(232')d§ld52 (2)

"W

as a Hartree spproximant. Such an epproximant would be difficult to
menage because of the integration in (2). Basically, this difficulty
is due to the fact that (}m5 is not a localizedufunction, vhile an

independent-particle approximation for a bound system presupposes a

- center for the single-particle orbitals.

In order to obtain a localized Green's function, note first that

if A 1s chosen to be Ac:



A, =(in + in) ?n . (3)

then the invariént Green's function
alI%(l...n;l'...n') = (-1)n<gN’-5/2lT(w(1-Ac)...¢*(1' ~ 2)) gy x/2)

' : 2
does not depend on Ac, but only on relative coordinates. However,

GN(l...n;l'...n') = fd,}% GNk,(l.”n;l'...n')

"y

(5)
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depends on.&c in an essential way, since GI depends on k in an essential
way. The localized function GN is useful also because qﬁ can be obtained

from it:

lk'Ac

Gy, = (2m)™® J’%c A G - (6)

~

Thus Gy contains all the information that ot does, although Eq. (5)
might appear to contradict this. However, it is Jjust that GI depends
on ohly 2n variables, not 2n + 1; GN depends on the same number of
variables.. It does not depend °n,§; but rather depends in a nontrivial
way on all 25 particle coordinates, not just on the relative ones (a1n

this relates to the space coordinaetes only; the fumctions all depend




only on relative time coordinates).

As was shown in I, Gy, cen be resolved into, for exemple,
Visd

GNk(l;l') =G (1;1') 8 (k) + Gﬁk(l;l') (7)
Oy (1251°2") = G (12;1%21) & (k) + (17 Plz)(l*Pl.a.)Go(l;l')cb',b(ase') o
+ cﬁ§(12;1'2')
Hence, it follows that
GN(l;l') = G (1;1') + Gﬁ(l;l') ‘ (9)

,2.)60(1;1')G§(2;2') + Gﬁ(12;1'2') (10)

1108) = 11018 ¥
qN(l2,1 2t) Go(lz,; 2') + (I*Ple)(l Py

where

Gy = .[gg Gine | (1i)

K74

The differential equations for the functions GN are obtained by

integrating Egs. (29) and (30) of I:

DlGN(l;l') =08 (1.1") ¥ iJV(l'Q)GN(m;l'2+)d2 - (12)
. .
DlGN(l...n;l'...nO = [1 ¥;§; Pl'i’ 6 (1-11) GN(2...n;2'...n')

-+

i.{v(l-(n+l)) QN(12;..n,n+l;l'-{-n'(n+l)+)d(n+l) (13)

+ ’ -
where n' stend for t_ + 0, x,- In terms of the functions Gﬁ, the

N




equation for Gl\}(l;l') is obtained by integrating I(31):

D,Gy(151") = *1jv(1-2) [00(1;1')613(2;2") *co(a;l')cﬁ(lse*)

+ c;l\'[(la;l'a*)] a . (14)



Independent~Particle Approximation

Eq. (10) is fundamental for the discussion of‘independént-particle
approximations. The basic 'weak-coupling" approximation that leads to

a Hartree-Fock equation is

e (12;51727) = 6 (11 qy T (2521) F g (12")gyT (2511) (15)

Note that this approkimation by no means requires that the inter-‘
particle interaction be weak. Eq. (15) may be a good approximation

when
6, (1251'2") ~ ¢ _(11")c (22") ¥ G _(12')G (21") e

is very bad. This is due to the fact that Gl\'](lz;l'Z') contains only
that part of the Green's function in which neither particle propagates
freely, nor do both.together. If the-system is such that once one of
the particles interates with gN it is no longer free to interact inde-
pendently with the other particle, then (15) can be a good approximation
even for strong interparticle interactions. Thus it follows that (15)

may be good when

GN(lE;l'z') ~ GN(ll')GN(22') ¥ G.N(l2')GN(2l') (17)

is also quite bad. It is seen that the separation of the free-particle

motion that has been made in (10) is important in obtaining a good




independeht particle-approximetion.

with (15), (14) becomes

DlGﬁIP(l;l') =F 1 (Go(l;l') + GﬁIP(l;l'))[V(l-2)GﬁIP(22+)

(18)
+ iJ(Go.(E;l') + GI\;IP(E;l')) v(l-e)GI;IP(l;2+)
or, with (9)
chl?(l;l') = 8(1-1') F 1 IP(l;l')fV(l-E)GI;IP(22+)d2
+ 1](}1‘?(2;1')' v(r-2)ey " (1;2")a2
=6(1-1') F icl?(l;l')fv(l-e)an’(e;2+)d2
| (19)
+ iJGI?(e;l') V(l-2)GNIP(l;2+)d2
where
Go(1;2+) 6 (ti - ty) = G0(2;2+) =0 . - (20)

has been used.
Equation (19) is just the Hartree-Fock equation in Green's-function
3
form. The interpretation of (19) differs somewhat from the usual one.

In the first place, the function GN in (19) has definite properties




under Galilean transformations. The invariant Green's functions and
hence the S matrix can be obtained from GN via Eq. (6)(7 Secondly,
although (19) can be obtained by substituting (17) into (12), it is
possible ﬁhat (19) is a'good approximation even when (17) is not, since
the derivation of (19) has used only the condition (15), which is weaker
than (17). The fact that (15) rather than (17) gives a good independent-
particle approximation is é partial explanation of the fact that "strongly"
interacting particles like nucleons can be described so well by an in-
dependent-particle model.

It is interesting to note that (19) is the limit of another procedure,
namely, that in which a central potential A\V(r) is assumed to bind the
particles around the origin. Then the corresponding Hartree-Fock

equation is

(Dl-xv(l)) Gﬁp(l;l') = 6(1-1') ¥ iGﬁP(ll'{IV(l-Q)GﬁP(22+)d2
(21)

+ 1l[c§P(21')v(1-2)q§P(12+)42

Aand (19) 15 the limit of this as A = 0. Thus Gy and not G 1is obtained
by this limiting procedure, and, again, Eq. (6) gives the p;éscription |
for obtaining Gy - '

In order towﬁbtain the solutions of (19), it is useful to define

the nonlocal Hartree-Fock single-particle potential WIP(lgl') by



JwIp(l,l')f(l')dl' - qﬁfv(l-a) [GNIP(2;2+)f(i) F Gl?(l;2+)f(2)] 2, (22)

where the time-dependence of WIP

is given by
P, ‘ |
WL, = 80, - 1) Wl (x,x!) - (23)

With Eq. (22), the equation for GIP(l;l') becomes

f’ 1E‘:’(l 1') = DGy P11 - Jw (1,2) (2 1142 = 8(1-1") (24)

so that IP(l ;1*) is just the Green's function for N independent particles

in the potential Wt (xl, x') and takes the form

-ie_(t.-t!)
Gre1Y) = g0, G g (xde & 1 1 x (6,8) (25)
X (ttf) = (1 - £)8(t -t") - fae(t'-t.) | - (26)

Only Fermions are treated from this point on.' The analogous treatment

for Bosons is easily constructed. Hence, the qx in (26) are defined by

£ =1 ¥€0
. (27)
£, =0 7#0

where O is the set of N single-particle states that are the N lowest

eigenstates of



#

-, (x) +JWIP(§,?§,')¢G(35')<1§' = € b, (x) (28)

Of course, the potential W is found by a self-consistent procedure,
since it must satisfy (23); the latter involves only the "occupied"
single-particle states. '

It is worth noting that in the Hartree-Fock approximation there

is a vector |HF) such that

GNIP - (-1)® (wr|r|HF) 4 (29)

where T stands for a time-ordered product. However, it is not true in
general that there exists a vector Ia) such that the exact Green's

functions GN can be writtenb

Gy = (-1)® @lzled 5 ‘ (30)

for if (30) were correct, it would follow that
: k k
lad @ =Jd}5|gN 2 ¥eyp -5 | (31)
and, hence;

(gy - § o)l %) =8(k - k') (32)

for all k, clearly impossible. The invalidity of (30) is the main

argument for working with Green's functions instead of wave functions.

10



Correlated Independent-Particle Approximation

If the interparticle potential V is singular at small distances,
Egs. (15) and (18) are not a good epproximation. In order to obtain
& useful independent-particle approximation, consider Eq. (10) in
diagrammatic form as shown in Fig. 1. If";.'c’l and %5 are close together,
V(1-2) times the second graph on the right side of Fig. 1 can give a
divergence. In that case, it 1s natural to regroup the terms in the
way shown in Fig. 2, where some of the graphs in the third term in Fig. 1
have been shifted to the second term in Fig. 2. The single-particle

function SN(l;l') is related to G&(l;l’) by
Ge(1;1*) = 6 (1;2)8,(2;3)6 (3;17) (33)

where the convention will be that any repeatéd index is to be integfated,

as 2 and 3 in (33). .Hence, the resolution corresponding to Fig. 2 is

GN(12;1'2')=Go(l2;l'2')+Go(12;l'})SN(B;h)Go(“;2')+Go(12;32')SN(Bsh)Go<h;l’)
+ Go(12;3h)sn(3h;56)Gb(5;1')00(6;2'). (34)

+
In order to evaluate V(1-2)G(12;1'2 ), the relation

v(1-2)c,(12;34) = £12;56) [0, (5:3)6,(6:4) - G (iMgy(6:3)]  (35)

is required. ZEquation (35): follows from the properties of the t matrix:



Go(12;3h)=co(1;3)eo(2;h)-co(l; k)G (2;3) i
36

6, (135)0,(256)¢(56;78) [ 6, (T53)c,(854) <, (T34)6,(8;3)
t(12;34)=v(1-2)8 (1-3)8 (2-4)+iv(1-2)G (1;5)G (2;6)t(56534) (37)

It follows from Egs. (34) and (35) that

v(1-2)a (121 127)a ft(l23h—)[GO(Bl')Go(ll-B)-Go(ll-l')Go(35)] sN(56)G°(62+)d5dl+d5d6

(38)
+J't(1231+) [G°(55)Go(h6)-G 0(1+5)G°(36)]SN(5678)G0(71')Go(82+)d.3dhd5d6d7d8

where Eq. (20) and
t(1234) = 8(t) - t5) 8(t5 - t)) B(t) - t5) (39)

_ have been used Equation (38) gives

DlGN(l;l') = 6.(l-l') -iJ't(l25‘*) $G°(31')(:‘rl\;(h2+)-C-o(l#l')Gﬁ(32+)

(ko)

+ g(34;1%2") | acasal

where

GI'\I'(51+;1'2+) = [GO(BS)GO(%)-GO(36)GO(h5)] SN(5678)G°(71')GO(82+) (41)

In (40) and (41), %(3#;1'2.*.) is a two-particle Green's function in

which the particles at 3 and 4 are not allowed to interact with each




other without first interacting with the medium. -Hence, the correlated -

independent-particle approximation is

T 11") = g G1NG e - (52N ) (e)

and gives

DG N P11 )-6(1-1')-1ft(1231+)|: C]'p(31')c;l\,lp(l+2 )-ch’(sa )G lP(lu')]dacﬁdh (43)

The result given by Eq. (43) is Just the Hartree~Fock eéuation (19)
with V replaced by t, the free two-particle t matrix. The t matrix here
is not defined self-consistently,4 although better convergence might be
obtained with a self-consistent t. However, the sﬁnblicity of (43),
together with its resemblance to (19) are attractive features that would
be lost by use of a self-consistent two-body t matrix.

Again, (43) has been derived on the assumptions.that (19) needs
correcting only forlzl.- %5 small and that the particles interact freely
when they are close together. | |

Since t(12;34) has times equal in pairs, Eq. (U43) can be solved like

ClP(l,

Eq. (19), namely W 1') is defined by

-1Jt(l2 Bh)c ]-P(u .2 )f(3)d2d3d’4fl-ijt(1231+)GNJ‘P(32+)1‘(k)d263dl&=jwcm(l;l')f(l")d.l'
(L)

13



1w(t ~t?!)
W0, = L f S PP (45)

Then Eqs. (25) - (28) and (44), (45) with W replaced by wClP specify
Q

the solutions of the correla.ted independent-particle approximation (43).

In this case, the fact that the potential WClP depends on the energy Ga

O.

‘of the single-particle state shows that even in the lowest approximation

there is no vector Ic.) such that GC]‘P is an expectation value in the

state [a) of a time-ordered product.

14



Corrections to the Independent-Particle Approximation

In order for (19) to be useful, it is necessary to have a system-
atic procedure for computing the corrections to the independent-particle

approximations to the Green's functions. The substitutions
6 (131) = G (1;17) + G1(3;17) N (16)
GN(12;1'2') = Go(l2;l'2') + (l-Plz)(l-Pl,2,)Go(ll')Gﬁ(22')"'Gl\;(l2;l'2') (47)
Ge(12;1'2") = (1-P ,)Ga(11)Gy(22) +4KN(12;1'2') - (48)
6y(125:1'231) = g (123510275 ) + {o (12;1%2")c}(55 ") |
(49)

+ {o,(111)y(25 2131} + G12551%2'5")

cy(123;1'2'3") = {G};(ll')Gl\;(%')Gﬁ(BB')}*{Gb}(l.l')KN(% 2'3')}+ K,(123;1'23')  (50)

where the curly brackets indicate antisymmetrization in 123;1'2'3%, in

(12) and (13) give, after considerable manipulation,

DlGN(_l;l')=8(l-l')-iJV(l-2)[GN(ll')GN(22+)-GN(12+)GN(21')H(N(1231'2+)]6.2 | (51)

DlKN(l2;l'2') = N
-ij'V(l-B)[GN(BB'F)KN(lE;l'2')-GN(l3+)KN(32;l'2')+GN(23+)GN(12')GN(31')
-GN(»23+)GN(11')%(32')40(25”)60(15;2'1') |

15




+6 (11K (23 2'57) + g (12')K (23 3*1')+GN(23+)KN(31;1'2') (52)
+GN(31')KN(12;2'3+) +‘GN(32')KN(12;3+1')+Kﬁ§123;1'2'5+)
+GN(23+)(GO(31;1'2')-Go(lz')Go(31')fGo(11')Go(52'))

1 (13%) (6235272 ), (2100, (52 )45, (22 ), (511 )

+GN(35+) (Go(l2;'l'2')-Go(ll')Go(22')+G°(l2')Go(21'))] a3

The equations for KN(123;1'2'3'), etc., can be obtained similarly.

As is»readily seen from (51), KN(12;1'2*) is a measure of the
deviation of GN(l;l') from G§P(l;l'); if KN(12;1'2') is set equal to
zero, Eq. (51) becomes the independent-particle equation (19). The
function KN(12;1'2') is thus a sort of two-particle correlation Green's
function. There are at least two ways of attacking (51) and (52). The
first method will be called the perturbative independent-particle (p1P)
method. In this method the self-consistent independent-particle poten-

IP

tial W and the function G§P(l;l') are chosen by the process described

in conjunction with Egs. (22) - (28). Then the expansions

611 = ¢F(w1n + ePann + Py v ()
k(1251%27) = kP (1251020 + (P (1251720) +--- (54)
Ky(123;1'2'3") = 1(1512)(125,71'2'3') +eoe | (55)

are substituted into (51) and (52); Eq. (51) can be written

16



IP 1) =
Dy GN(l;l ) =
6(1-1')-f[§(1-2) [(GN(22+)-G§P(22+))GN(ll')-(GN(12+)-G§P(12+))GN(21') (56)
ﬁcN(12;1'2+)] )

In (56),‘WIP must be taken to be of zeroth order, so that substitution

of (53) and (54) gives first Eq. (24) and then

P10 =0 - (57)
pPa{® (1,10 = -1 | v(r-2)x P (1251027
o (1510) = -1 | v(1-2)e M (125102 a2 (58)

It should be noted that one of the virtues of the choice of potential

prescribed by the independent-—-particle approximation is that it makes

the first correction to GN(l;l') of second order; this is essentiallj

due to the varigtional aspect of the Hartree-Fock approximation.
According to (58) the first correction to GﬁP(l;l') is determined by

Klgl)(le;l'z').' In Eq. (52), the substitution

I.N(l2;l'2') = ch(la;l'z')+Go(12;1'2')-Go(ll')Go(22')+Go(12“)Go(21') (59)
= GN(lz;l'e')-GN(ll')GN(ez')+GN(12°)GN(21')

gives

17



D?L“(L?;l'?)
- |  (60)
= -1Jv(1“-2)[(GN(33+)-GI§P(33+))1N(12 1'2')-(GN(l5+)-G§P(13+))1ﬁ(12 1127)
+ G(237)a (12)6, (314)-6, (237 )6 (11 )g (32°)
+ G (1111 (23 273 )46, (12°)1y (23 3711 )4 (25 )y (51 172)

+ 6, (3111 (12 2'37)4g (327)1, (12 3*1')%(123;1'2'3*)} a3

and, hence,

IP_(1) -
L'/ (12;12")
LN : | (61)
= - iJv(l-e)aNIP(es*)[cr?(le')cl?(sw-a;;"’(u')cl?(se')] a3
- so that Lél) is determined by Gﬁp(l;l').‘ Note that (59), substituted
“into (58), gives
a{® (1:11) '-1fv(1-2)1.r(‘l) (12;12M)a2 (62)

so that (61) and (62) together give the lowest-order correction to
E 'R tnt
Gy (,1*) and the lowest-order approximation to LN(lE;l 21).
It can easily be verified that Eqs. (61) and (62) are the first-order
equations of a shell model, namely, that they are the first-order equations

for the Green's functions associated with the Hamiltonian

18




B = - [itx) (a(x.x')v? : WIP(x',x')) b (x)dx ax!
(63)

+ %J‘l’f(x)‘“(y)ﬂx-y)w (x) ax ay -wa(x) W (x,x*) ¥ (x") dx ax*

which is just the shell-model associated with the Hartree-Fock single-
particle orbitals given by Eq. (28). Hence the PIP method is Just the
usual perturbation theory based on the zeroth-order functions determined
by the Hartree-Fock procedure.

An alternative method to the perturbative independent-pafticle
method is the self-consistent independent-particle (SCIP) method. In

this method the single-particle potential wsc(l,l') is defined by
-Jv(l-a) [GN(22+)f(l)—GN(12+)f(2)] a2 =stc(l'l)f(l')u' (64)

+,
where GN(12 ) is the single-particle Green's function to the order. of

the calculation. Then (51) becomes

DicGN(l;l') = DlGN(l,'l')-fwsc(ll")GN(l"l')dl" = 6(1-1')-1Jv(1-2)LN(12;1'2+)d2 (65)

and (52) and (59) give

| D]S_CLN(12;1'2') | (66)

= -iJ'V(l-E)[GN(25+){GN(12')%(31')-GN(D')GN(32')}"GN(JJ.')IN(EB 213%)

19



+6 (12)L, (233371 )46, (237)1, (31 1%27 )46, (3101 (12 2157)
+GN~(32')LN(123+1')+KN(12351'2'3+)] a3 .

In first order, the SCIP method gives

DicLlf,l) (12;1'2?) . (67)

= -ijV(l-2)GN(23+) [GN(lz')GN(al')-GN(n')GNBe')] a |,

and (65)and (64); these three equations.must be solved self-consistently.
A possible advantage of the SCIP method over the PIP method is in

the treatment'of situations where collective effects appear. For example,

an asymmetric W(11") can appear in the SCIP method more easily than in

the PIP method, since it is to a large extent the "residual" interparticle

interaction (that is, not included in W) that is Aresponsible. Similarly,

the SCIP method might be expected to be better than the PIP method in

cases where pairing forces are strong.

20



Corrections to‘thé Correlated Independent-Particle Approximation

The exact equation for the single-particle Green's function is

Eq. (40). Instead of (42), the equation

G§(12;3h) - Gﬁ(15)cﬁ(2h) - Gﬁ(lh)Gﬁ(EB) + JN(12;5A) (68)

must be used. The analog of (43) and (51) is

<1t
DlGN(l,l )

= 5(1-1')-1J;(123h)[GN(Bl')GN(h2+)-GN(52+)GN(hl')+JN(34 l'2+i]d2d3d4 (69)

The function ;N is & measure of the deviation of GN(l;l') from
G§IP(1;1')- If Jy = 0, then G = GﬁIP. In order to obtain an equation
for Jﬁ(123h), it is necessary to use expressions for GN(125 11213%)

analogous to (34) and illustrated in Fig. 3:
cy(125 1%2'31) = ¢ (123 1'2'3") + ¢ (125 1'2'h')sN(h5)Go(53')

¢ 6 (125 1575, (k) _(52")46 (125 be'3")5 (W5)s, (51°)

+ 6, (125 1'5)5, (4567)G (62°)G (73 )+G (125 k2'5)s (4567)c (617)G (T3')

+ 6, (123 h53')sN(4567)G0(61')G0(72')
+_(125 b56)s (456 789) ¢ (T1')c (82')G (95")

Since

(10)




(e, -t5)6,(125 1%213%) = ¢ (25")g, (52 172") (72)

if follows that

v(1-3)c, (123 1'2'3+)=Go(-23+)It(151+5)[G0(1+2')GO(51')-GO(1&1')G°(52')]dhds (72)

can be used with four of the terms in (70)- For the others it is
necessary to consider the structure of Go(123 1'2'3%). Since a per-

turbation theory in t is the result that is sought, it is useful to

write G (125 1'2'3') in the form (Fig. L)
do(123 112'3') = A'[Go'(ll')Go(QE')Go(ﬁ')]'
+ A'[Go(ll')Go(24)Go(35)t(4567)Go(62')GC;(B') |
| 16 (22')6_(14)G _(35)t(456T)G (61*)G _(T5*) (13)
40, (33)a,(WW)a (25) (456T)6, (61)c, (72;)
+ a*[a,(14), (25)c, (36)T(456 T89)G, (T11)G, (821G, (95")]

where A' is the antisymmetrization operator in the coordinates 1',2%,3%.
A study of the diagram structure of (73), together with Eq- (37) gives
V(13)6,(12351%2'3") = &[G, (22")6(1345)6 (b1 1)a, (55 Y)]

' L (7%)
a1 [o, (2IT(143;567)6, (51106, (6216, (73]

and, also, the integral equation for T itself:
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3
(123 1'2'31) =ZT1(123 112131) - (15)
1=1

7,(123;1'2'3") = T,(251;2'3'1") = T,(512;3'1'2") S (76)

T, (123;1'2731) = £(12;1'M)g (Wb 1)t (4135273 1)+ (122 ")a (4h)6(4 135115 ")

(17,
+ t(ths)Go(W)Go(ss')[Te(h's 3511230415 (415135112 '3')]

Equation (77) can be regarded as the basic integral equation for deter-

- mining the properties of the free three-particle system from the free

two-particle £t matrix. It is clear from the iteratifé treatment of
(77) that T itself is of second and higher order in the two-particle
£ matrix.

In addition, Jy(125;1'2'3') is defined by
o (125:1%2'3") = a* [ 6, (141G, (25)5, (36)5, (456 T89)c, (711G, (B2")c (937)]  (78)
= {eyaneie2ney B3} +{on1103, (25 2130)
+ 3, (1233123 ")

After considerable manipulation, the equation for JN(1251'2') is found

to be

DlJN(lzl'e') = -th(Blé) GN(53+) JN(he;l'e')-GN(43+)'JN(52;1'2')

(25 [y (12 ) (511) - (g 52 (i 172 (79)
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,(25") [y ey (51 1)y Dy (521) -Gk e (51 e (B ey (52 |

+GN(61')JN(272'3+) + G(62")3, (72 113%)
mN(71')JN(622 '3"')+GN(72')JN(26 1'5+)+JN(627 1'2'3+)‘
In Egs. (69) and (79), the preturbative expansions
G (151") =.Gng(l;l')+G§1)(l;l')+0§2)(1;1*)+ ...
g (12;1%2%) = Jél)kl2;;'2')+J§2)(12;1'2')+...
JN(123;1'2'3') = J§2)(123;1'2'3')+...
give Eq. (43) for chP(l;l') and
Glgl)(l;l') =0

' DiIPG(a)(l;lt)

1l

CIP (1) /1n.v1nt
Dy Jy (12;1121)

= -th(Dl#S)

5,23 CIP(lI'Q')GNIP(51')—GCIP(l#l')GCIP(52')

CIP CIP CIP CIP
0*SPP (k2 1)6 SR (51140 1P (1 )6t T (s

ol

6T (25" [ ST (b )™ (51.1) oLTF (2 ) SR (52) |

(&)
(81)

(82)

= 0, (;10)- f CIP(l;l")Glgz)(l";l')dl"=-ijt(l23‘+)Jlgl)-(51+l'2+)d2d3d1+ (8%)

(85)




In Eq. (84), Jél)(Bh l'2+) only occurs for t, = t); it follows that for

3

+ .
t, = t,, the term in (85) with factor G (23") is zero. Hence, the first

correction Gée)(l;l') is of second order in t and is similar to the

correction in a shell model with CIP(l;l’) the Green's function describing

the "noninteracting" particles in their orbitals and with interparticle

‘interaction given by t. Since the single-particle orbitals are not

orthogonal, it is not possible to write a Hamiltonian for this equiv-
alent shell model in configuration space, although in the space with

nonorthogonal basis ®_(x), the Hamiltonien is

gCIP =Z ¢ ala, + % Z‘(aBItIYb)agagaaaY -Z(a IWCIpls)a;aB

B2 aI; =S¢ | | (&)

In this case, the equations for the Green's functions are not iden-
tical with those in the shell model given by (86). The perturbation
theory based on the zeroth-order given by the correlated-independent-
particle approximation is most easily carried out by usiﬁg Green's

functions.
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Figure 1 - Equation (10) in diagrammatic form.

Figure 2 - Equation (34) in diasgrammatic form.
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Figure 3 - Resolution of three-particle Green's function.

i
: + T

i
+

Figure 4 - Resolution of the free three-particle Green's function.
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