SPECTRAL SHIFT CONTROL REACTOR
BASIC PHYSICS PROGRAM
QUARTERLY TECHNICAL REPORT
NUMBER 10
January-March 1963

AEC Contract No. AT(30-1)-2602
B&W Contract No. 59-3082

THE BABCOCK & WILCOX COMPANY
NUCLEAR DEVELOPMENT CENTER
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
SPECTRAL SHIFT CONTROL REACTOR
BASIC PHYSICS PROGRAM
QUARTERLY TECHNICAL REPORT
NUMBER 10

January-March 1963

Submitted to
THE UNITED STATES ATOMIC ENERGY COMMISSION
By
THE BABCOCK & WILCOX COMPANY
Nuclear Development Center
Lynchburg, Virginia
ABSTRACT

This report summarizes the work performed on the Spectral Shift Control Reactor Basic Physics Program during the tenth contract quarter. The major objective of this program is to study the nuclear properties of slightly enriched uranium oxide lattices moderated by D₂O-H₂O mixtures.

Critical experiments were performed on a perturbed uniform lattice of 2.46%-enriched UO₂ fuel rods having a nonmoderator-to-moderator volume ratio of 1.0 and moderated by a 72% D₂O-H₂O mixture. The following perturbations were studied: boral blade in uniform lattice, moderator gap in uniform lattice, boral blade in moderator gap, cadmium blade in moderator gap, aluminum blade in moderator gap, boral cruciform in moderator gap, and aluminum cruciform in moderator gap. In each case the reactivity worth of the perturbation and the local flux distribution were measured.

The conceptual design of a series of Small Lattice Experiments (SLE) was completed. The objective of this work is to measure k∞, thermal disadvantage factor, and cadmium ratios of U²³⁵ and Th²³² in a lattice of 93%-enriched UO₂-ThO₂ (N₃⁵/N₂₅ = 15) fuel rods. The nonmoderator-to-moderator volume ratio is 1.0, and the moderator composition is 70-80% D₂O.

Improvements in methods of analysis continued. A program (RIP) for computing near thermal-resonance-and high-energy absorption for use in multigroup codes, particularly BPG, is described.
THIS PAGE WAS INTENTIONALLY LEFT BLANK
CONTENTS

1. INTRODUCTION. .. 1

2. CRITICAL EXPERIMENTS (TASK 23). 3
 2.1. Introduction.. 3
 2.2. Description of Core XVIII................................. 4
 2.3. Description of Perturbers................................. 6
 2.4. Reactivity Measurements................................... 8
 2.5. Buckling and Reflector Savings......................... 10
 2.5.1. Critical Buckling..................................... 10
 2.5.2. Axial Reflector Savings............................. 11
 2.6. Flux Distribution... 12
 2.6.1. Procedure.. 12
 2.6.2. Results.. 13

3. SMALL LATTICE EXPERIMENTS (TASK 24). 37
 3.1. Introduction... 37
 3.2. Conceptual Design.. 38
 3.3. Estimate of Expected Error............................... 38
 3.4. Design of Buffer and Test Regions....................... 40
 3.4.1. Fuel Rods... 40
 3.4.2. Buffer Region.. 41
 3.4.3. Test Insert.. 42
 3.4.4. Test Region and Void Can............................. 43
 3.4.5. Poisons.. 43

4. THEORETICAL SUPPORT (TASK 25)............................... 49
 4.1. Development of the RIP Program.......................... 49
 4.2. Analysis of Lattice Perturbations at 72% D₂O........... 53

List of Tables

Table
 2-1. Reactivity: Worth of Safety Blades.......................... 5
 2-2. Critical Parameters of Core XVIII-A...................... 6
 2-3. Dimensions of Perturbers.................................. 7
 2-4. Preliminary Values for Composition of Boral Blades..... 7
 2-5. Reactivity of Perturbations in Core XVIII................ 9
 2-6. Critical Buckling of Core XVIII-A....................... 11
Tables (Cont'd)

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7. Axial Buckling and Reflector Savings Vs Critical Height</td>
<td>12</td>
</tr>
<tr>
<td>3-1. Estimate of Potential Error in k</td>
<td>40</td>
</tr>
<tr>
<td>3-2. Physical Properties of TUPE Fuel Rods</td>
<td>41</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1. Core XVIII - Vertical Section</td>
<td>15</td>
</tr>
<tr>
<td>2-2. Core XVIII - Horizontal Section</td>
<td>16</td>
</tr>
<tr>
<td>2-3. View of Core XVIII-G</td>
<td>17</td>
</tr>
<tr>
<td>2-4. Location of Perturbers</td>
<td>18</td>
</tr>
<tr>
<td>2-5. (\delta p/\delta h) Vs (h) for Core XVIII</td>
<td>19</td>
</tr>
<tr>
<td>2-6. ((\delta p/\delta h)^{1/3}) Vs (h) for Core XVIII</td>
<td>20</td>
</tr>
<tr>
<td>2-7. Axial Buckling and Reflector Savings</td>
<td>21</td>
</tr>
<tr>
<td>2-8. Flux Distribution With Boral Blade in Lattice</td>
<td>22</td>
</tr>
<tr>
<td>2-9. Flux Distribution With Boral Blade in Lattice (B) - Gold</td>
<td>23</td>
</tr>
<tr>
<td>2-10. Flux Distribution With Boral Blade in Lattice (B) - Dy</td>
<td>24</td>
</tr>
<tr>
<td>2-11. Flux Distribution With Moderator Gap in Lattice (C) - Gold</td>
<td>25</td>
</tr>
<tr>
<td>2-12. Flux Distribution With Moderator Gap in Lattice (C) - Dy</td>
<td>26</td>
</tr>
<tr>
<td>2-13. Flux Distribution With Moderator Gap in Lattice (C) - Thermal</td>
<td>27</td>
</tr>
<tr>
<td>2-14. Flux Distribution With Moderator Gap in Lattice (C) - Fine Structure</td>
<td>28</td>
</tr>
<tr>
<td>2-15. Flux Distribution With Cadmium Blade in Gap (E) - Gold</td>
<td>29</td>
</tr>
<tr>
<td>2-16. Flux Distribution With Cadmium Blade in Gap (E) - Dy</td>
<td>30</td>
</tr>
<tr>
<td>2-17. Flux Distribution With Cadmium Blade in Gap (E) - Thermal</td>
<td>31</td>
</tr>
<tr>
<td>2-18. Flux Distribution With Boral Blade in Gap (F) - Gold</td>
<td>32</td>
</tr>
<tr>
<td>2-19. Flux Distribution With Boral Blade in Gap (F) - Dy</td>
<td>33</td>
</tr>
<tr>
<td>2-20. Flux Distribution With Boral Blade in Gap (F) - Thermal</td>
<td>34</td>
</tr>
<tr>
<td>2-21. Flux Distribution With Boral Blade in Gap (F) - Fine Structure</td>
<td>35</td>
</tr>
<tr>
<td>2-22. Comparison of Thermal Flux Shapes</td>
<td>36</td>
</tr>
<tr>
<td>3-1. Facility for Small Lattice Experiments</td>
<td>44</td>
</tr>
<tr>
<td>3-2. Test and Buffer Regions - Horizontal Section</td>
<td>45</td>
</tr>
<tr>
<td>3-3. Test and Buffer Regions - Vertical Section</td>
<td>46</td>
</tr>
<tr>
<td>3-4. View of Internal Structure</td>
<td>47</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Summarized here is the work performed on the Spectral Shift Control Reactor (SSCR) Basic Physics Program during the period January 1 through March 31, 1963. Contract activities in preceding quarters are given in the referenced Quarterly Technical Reports.1-9 The primary objective of this program is to study the nuclear properties of slightly enriched oxide fuels moderated by light and heavy water mixtures ranging in composition from zero to approximately 90% D₂O.

In the first phase of the program, completed early in 1962, uniform lattices of 4%-enriched UO₂ fuel rods were studied at a nonmoderator-to-moderator volume ratio (M/W) of 1.0. The results of critical experiments10, exponential experiments at room11 and elevated12 temperatures, and neutron age measurements13 (in a lattice of ThO₂ rods) are summarized in the referenced topical reports. The theoretical methods used to analyze and correlate the data are given in References 14 and 15.

In the second phase of the program, completed in December 1962, the variable of M/W ratio was extended to cover the range 1.2 to 0.7, and the variable of enrichment was extended to 2.46%-enriched UO₂. Critical experiment measurements of uniform lattice properties are given in References 7, 8, and 9. This phase also included Small Lattice Experiments (SLE) designed to investigate the applicability of the PCTR technique to epithermal lattices of the SSCR type. The results of this study are reported in Reference 9.

In the third phase of the program, which began in January 1963, emphasis was shifted to nonuniform lattice properties typical of those encountered in the design of power reactors. In a series of critical experiments (Task 23), the perturbations of a uniform lattice by control blades and moderator gaps are studied. The program includes
Small Lattice Experiments (Task 24) on lattices of 93%-enriched UO₂-ThO₂ fuel rods moderated by 70 to 80% D₂O-H₂O mixtures. The analysis of experimental data continues (Task 25).
2. CRITICAL EXPERIMENTS (TASK 23)
(R. H. Clark, Task Leader; E. J. DeRoche, G. T. Fairburn, J. W. Hallam)

2.1. Introduction

The objective of this task is to measure the effects of selective perturbations on the properties of a uniform lattice of 2.46% enriched UO₂ fuel rods at a nonmoderator-to-moderator volume ratio (M/W) of 1.0. In one sequence of experiments the effects on reactivity and flux shape of the following perturbations are measured as a function of moderator composition.

Core XVIII - 72% D₂O

A - Unperturbed uniform lattice
B - Boral blade in uniform lattice
C - Moderator gap in uniform lattice
D - Aluminum blade in C
E - Cadmium blade in C
F - Boral blade in C
G - Boral cruciform surrounded by gap
H - Aluminum cruciform surrounded by gap

Core XIX - 50% D₂O + Boron

A - Unperturbed uniform lattice
B - Boral blade in uniform lattice
C - Moderator gap in uniform lattice
F - Boral blade in C
Core XX - 0% D$_2$O + Boron

A - Unperturbed uniform lattice
B - Boron blade in uniform lattice
C - Moderator gap in uniform lattice
F - Boron blade in C

Cores XIX and XX are poisoned with boric acid to keep the core diameter constant in all experiments.

In another sequence of experiments the effects on reactivity and flux shape of a partially inserted cruciform blade are measured. The experiments are performed in Core XVIII, and measurements are made with the cruciform fully in, one-third out, two-thirds out, and fully out. A small amount of boric acid is added to keep the critical height (and diameter) constant during this sequence of measurements.

The Core XVIII perturbations, excluding the cruciform cases, were studied during this quarter and are reported here.

2.2. Description of Core XVIII

Core XVIII was assembled in the 5-foot diameter aluminum core tank used throughout the program. The fuel rods were aligned and supported at each end by 1-inch thick aluminum egg-crate grid plates. Additional alignment for the fuel rods and perturbers near the plane of the flux traverses was provided by two 1/16-inch thick drilled aluminum sheets, as shown in Figure 2-1.

The fuel rods were 5-foot-long by 0.475-inch-OD by 0.032-inch-wall aluminum tubes filled with sintered pellets of 2.46%-enriched UO$_2$. The active (fuel) length was 60.37 inches, the pellet diameter was 0.405 inch, and the average pellet density was 10.3 gm/cm3. The properties of the fuel rods are given in more detail in Reference 8. Since the fuel rods were spaced on a square lattice pitch of 0.595 inch, the M/W ratio was 1.001. Figure 2-2 is a horizontal section through the unperturbed lattice showing the position of the peripheral fuel rods, the location of the safety blades when inserted, and the direction and extent of the flux traverses to be reported in Section 2.6. Note that the lattice is shifted one-half pitch from its position in all previous studies so that the geometrical center of the core now corresponds to a fuel rod.
Figure 2-3 is a view of the top of the core with one of the perturbers (cruciform) in place.

Six 8-inch-wide boral and cadmium blades were used as safety rods. The boral blades were approximately 0.080-inch thick, and the cadmium blades consisted of sheets of 0.020-inch-thick cadmium cemented between 0.020-inch-thick stainless steel sheets. As shown in Figure 2-2, Blades 1 and 4 were ganged. The reactivity worth of the blades, estimated from rod-drop measurements, was affected substantially by the type of perturbation in the core, as shown in Table 2-1. All reactivity and flux measurements were made with the safety blades fully withdrawn, and criticality was obtained by adjusting the moderator level.

<table>
<thead>
<tr>
<th>Blade number</th>
<th>Blade material</th>
<th>Reactivity worth, dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cadmium/Cadmium</td>
<td>1.20 - 1.50</td>
</tr>
<tr>
<td>2</td>
<td>Boral</td>
<td>0.85 - 1.25</td>
</tr>
<tr>
<td>3</td>
<td>Cadmium</td>
<td>0.60 - 0.85</td>
</tr>
<tr>
<td>4</td>
<td>Boral/Cadmium</td>
<td>1.80 - 2.30</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.45 - 5.90</td>
</tr>
</tbody>
</table>

The unperturbed core XVIII achieved criticality with 5137 fuel rods (Loading A) at a moderator composition of 72.1 mole % D₂O. The relation

\[\pi R^2 = (\text{number of rods}) (\text{pitch})^2 \]

provided the equivalent core radius, 61.11 cm. The radial reflector thickness, given by the difference between the inner radius of the core tank and the core radius, was 15.1 cm. The critical moderator height, with all control blades withdrawn, was 107.8 cm. The critical parameters are summarized in Table 2-2.
Table 2-2. Critical Parameters of Core XVIII - A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fuel rods</td>
<td>5137</td>
</tr>
<tr>
<td>Type of fuel</td>
<td>2.46%-enriched UO₂</td>
</tr>
<tr>
<td>Equivalent core radius, cm</td>
<td>61.11</td>
</tr>
<tr>
<td>Radial reflector thickness, cm</td>
<td>15.1</td>
</tr>
<tr>
<td>Critical moderator height, cm</td>
<td>107.8 ± 0.1</td>
</tr>
<tr>
<td>D₂O concentration, mole %</td>
<td>72.1 ± 0.1</td>
</tr>
<tr>
<td>Lattice pitch, cm</td>
<td>1.511 ± 0.003</td>
</tr>
<tr>
<td>Rod diameter, cm</td>
<td>1.206 ± 0.001</td>
</tr>
<tr>
<td>M/W ratio</td>
<td>1.001</td>
</tr>
<tr>
<td>Temperature, C</td>
<td>20 ± 1</td>
</tr>
</tbody>
</table>

2.3. Description of Perturbers

The dimensions and locations of the perturbers of the uniform lattice are given in Table 2-3 and Figure 2-4. The unperturbed uniform lattice is designated A. In perturbation B, a 10-inch boral blade was inserted in the uniform lattice between two rows of fuel rods, one-half lattice pitch from the center of the core. Seventeen fuel rods along the diameter of the core were removed to create the moderator gap, C, and in D, E, and F, 10-inch-wide aluminum, cadmium or boral blades were inserted in the center of this gap. G and H were formed by removing 21 fuel rods from the center of the core and inserting 6-inch-wide boral or aluminum cruciforms in the center of the gap. All perturbers extended from one inch above the bottom of the core to several inches above the top of the fuel rods.
Table 2-3. Dimensions of Perturbers

<table>
<thead>
<tr>
<th>Loading</th>
<th>Geometry</th>
<th>Composition</th>
<th>Width, in.</th>
<th>Thickness, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(unperturbed lattice)</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>Blade</td>
<td>Boral</td>
<td>10.0 ± 0.1</td>
<td>0.097 ± 0.002</td>
</tr>
<tr>
<td>C</td>
<td>(moderator gap)</td>
<td></td>
<td>1 rod</td>
<td>17 rods</td>
</tr>
<tr>
<td>D</td>
<td>Blade</td>
<td>Aluminum</td>
<td>10.0 ± 0.1</td>
<td>0.090 ± 0.002</td>
</tr>
<tr>
<td>E</td>
<td>Blade</td>
<td>Cadmium</td>
<td>10.0 ± 0.1</td>
<td>0.090 ± 0.002</td>
</tr>
<tr>
<td>F</td>
<td>Blade</td>
<td>Boral</td>
<td>10.0 ± 0.1</td>
<td>0.093 ± 0.002</td>
</tr>
<tr>
<td>G</td>
<td>Cruciform</td>
<td>Boral</td>
<td>6.00 ± 0.04</td>
<td>0.093 ± 0.003</td>
</tr>
<tr>
<td>H</td>
<td>Cruciform</td>
<td>Aluminum</td>
<td>6.02 ± 0.03</td>
<td>0.090 ± 0.001</td>
</tr>
</tbody>
</table>

The aluminum blade and aluminum cruciform (D and H) were fabricated of #6061 aluminum. The cadmium blade E consisted of a sheet of 0.020-inch-thick cadmium cemented between two 0.032-inch-thick sheets of stainless steel (#304) with 0.003-inch-thick Mylar adhesive tape. Boral is a mixture of natural B₄C and aluminum, clad on both sides with aluminum. The meat is approximately 35 wt % B₄C and has a density of about 2.63 gm/cm³; the aluminum is commercially pure. Table 2-4 lists preliminary values for the composition of the boral. More accurate analyses will be reported later.

Table 2-4. Preliminary Values for Composition of Boral Blades

<table>
<thead>
<tr>
<th>Loading</th>
<th>Thickness, mils</th>
<th>Meat composition, gm B₄C/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Meat</td>
</tr>
<tr>
<td>B</td>
<td>97</td>
<td>65</td>
</tr>
<tr>
<td>F</td>
<td>93</td>
<td>63</td>
</tr>
<tr>
<td>G</td>
<td>93</td>
<td>63</td>
</tr>
</tbody>
</table>
2.4. Reactivity Measurements

Preliminary values for the reactivity worths of the perturbations in Core XVIII were obtained from their critical moderator heights and the integrals of \(\partial \rho / \partial h \) measurements. The critical moderator heights were measured by a calibrated manometer, accurate to at least \(\pm 0.1 \) cm. The accuracy of \(\partial \rho / \partial h \) measurements was approximately \(\pm 3\% \), based on the uncertainties in the inhour relation and a relative error of \(\pm 0.05 \) cm in \(\Delta h \) measurements by a conductivity-probe. To avoid difficulties from delayed photoneutrons, only one period measurement was made for each run. Figure 2-5 gives \(\partial \rho / \partial h \) as a function of the average moderator height, i.e., the average of the critical height and the height when the period was measured, as well as the integral of \(\partial \rho / \partial h \) vs. \(h \) relative to 145 cm. Figure 2-6 is a plot of the same data correlated against \((\partial \rho / \partial h)^{-1/3} \).

The results are summarized in Table 2-5, where all data were taken at 20 \(\pm 1 \) C. Although the radial dimensions of each loading were the same, i.e., the core diameter was constant, the number of fuel rods was changed in some loadings to create moderator gaps near the perturbers. The excess reactivity is given two ways, relative to a moderator height of 145 cm (full height) and relative to 107.8 cm (the critical height of the unperturbed lattice). The reactivity values are accurate to at least \(\pm 5\% \) and can be converted to absolute units using a provisional value for \(\beta_{\text{eff}} \) of 0.0069 in this core.

Comparative reactivity measurements by another technique are now in progress and will be reported next quarter. In these experiments boric acid is added to the moderator to calibrate moderator height against boron concentrations. Thus the reactivity worth of the perturbers will be obtained in terms of boron concentration for constant critical moderator height (and diameter).
<table>
<thead>
<tr>
<th>Loading designation and description</th>
<th>Number of fuel rods</th>
<th>Critical moderator height, cm</th>
<th>Reactivity, cents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Unperturbed lattice</td>
<td>5137</td>
<td>107.8</td>
<td>234.0</td>
<td>-0.0</td>
</tr>
<tr>
<td>B - Boral blade in lattice</td>
<td>5137</td>
<td>143.0</td>
<td>7.5</td>
<td>-227</td>
</tr>
<tr>
<td>C - Moderator gap</td>
<td>5120</td>
<td>101.9</td>
<td>294.0</td>
<td>60</td>
</tr>
<tr>
<td>D - Aluminum blade in C</td>
<td>5120</td>
<td>103.2</td>
<td>281.0</td>
<td>47</td>
</tr>
<tr>
<td>E - Cadmium blade in C</td>
<td>5120</td>
<td>128.1</td>
<td>80.0</td>
<td>-154</td>
</tr>
<tr>
<td>F - Boral blade in C</td>
<td>5120</td>
<td>144.2</td>
<td>2.9</td>
<td>-231</td>
</tr>
<tr>
<td>G - Boral cruciform</td>
<td>5116</td>
<td>145.0</td>
<td>0.0</td>
<td>-234</td>
</tr>
<tr>
<td>H - Aluminum cruciform</td>
<td>5116</td>
<td>102.0</td>
<td>293.0</td>
<td>59</td>
</tr>
</tbody>
</table>
2.5. Buckling and Reflector Savings

2.5.1. Critical Buckling

The critical buckling of the unperturbed lattice of Core XVIII-A was derived from two radial and three axial flux traverses with bare and cadmium-covered 0.259-inch-diameter by 0.005-inch-thick gold foils. The foils, mounted on 0.005-inch-thick by 0.5-inch-wide steel tapes, were spaced 5 cm axially and 1.511 cm radially (3.022 cm for cadmium-covered runs). The radial traverses were made in a plane 65 cm above the bottom of the fuel, and the axial traverses were made 4.5 pitches south and 9.5 pitches east of the core center.

The foils were activated for 20 minutes at power levels between 200 and 400 watts with all control blades withdrawn and were beta counted for 1 minute on each side in each of three end-window, gas-flow proportional counters. Count rates were at least 40,000 counts/min. Bare and cadmium-covered runs were normalized by four gold monitor foils.

Radial and axial bucklings were computed by least squares fitting the saturated activities in the asymptotic regions to the functions

\[J_0 \left[B_r (r-r_o) \right] \quad \text{and} \quad \cos \left[B_z (z-z_o) \right] \]

Based on a constant gold-cadmium ratio of about 1.45, the asymptotic region extended to a radius of at least 48 cm (extent of data) and between about 15 and 95 cm in the axial direction. Within these ranges \(B_r \) and \(B_z \) were constant.

The results of the measurements are listed in Table 2-6.

A small correction

\[\Delta B_z = \frac{-B_z^2}{\pi} \Delta h \]

was applied to reduce the data to the unperturbed critical moderator height of 107.8 cm.
Table 2-6. Critical Buckling of Core XVIII-A

<table>
<thead>
<tr>
<th>Run number</th>
<th>Type of traverse</th>
<th>Radial</th>
<th>Axial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>706</td>
<td>Bare</td>
<td>8.78 ± 0.07</td>
<td>6.00 ± 0.03</td>
<td>--</td>
</tr>
<tr>
<td>707</td>
<td>Cd covered</td>
<td>8.74 ± 0.06</td>
<td>6.00 ± 0.05</td>
<td>--</td>
</tr>
<tr>
<td>729</td>
<td>Cd covered</td>
<td>--</td>
<td>6.00 ± 0.05</td>
<td>--</td>
</tr>
<tr>
<td>Best value</td>
<td></td>
<td>8.76 ± 0.06</td>
<td>6.00 ± 0.05</td>
<td>14.76 ± 0.08</td>
</tr>
</tbody>
</table>

Since the critical moderator height was 107.8 cm and the critical radius was 61.11 cm, the radial and axial reflector savings are

\[
\lambda_r = 20.1 \pm 0.3
\]

\[
\lambda_z = 20.6 \pm 0.6.
\]

2.5.2. Axial Reflector Savings

Axial bucklings were measured in some of the perturbed loadings of Core XVIII to obtain the variation of axial reflector savings with critical moderator height. The axial flux traverses were made with bare gold foils, spaced on 5-cm intervals and usually located 4.5 pitches south and 9.5 pitches east of the core center. To check for possible variation in axial buckling with radial position, two such measurements were made in Core XVIII-G (cruciform), one along the core axis and one 15 pitches from the core axis.

The results are summarized in Table 2-7 and Figure 2-7. A small correction has been made for the difference between the critical moderator height, unperturbed by foils and foil holders, and that during the flux traverse. As predicted by the \(\partial \rho / \partial h \) (Figure 2-6), the axial reflector savings remains constant for moderator heights below 130 cm. The axial reflector savings for the loading containing the boral cruciform (Loading G) appears to be 1 cm less when measured along the core axis, i.e., axis of the perturber. Although this reduction can be attributed to the perturber in the top reflector (and absence of some fuel rods), which may locally reduce the reflector effectiveness, the discrepancy is within the combined errors of the two measurements.
Table 2-7. Axial Buckling and Reflector Savings Vs. Critical Height

<table>
<thead>
<tr>
<th>Loading number</th>
<th>Moderator height, cm</th>
<th>Axial buckling B_z, 10^{-2} cm$^{-1}$</th>
<th>Axial reflector savings λ_z, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>107.8 ± 0.1</td>
<td>2.426 ± 0.010</td>
<td>20.6 ± 0.6</td>
</tr>
<tr>
<td>B</td>
<td>143.0 ± 0.1</td>
<td>1.967 ± 0.006</td>
<td>16.7 ± 0.5</td>
</tr>
<tr>
<td>C</td>
<td>101.9 ± 0.1</td>
<td>2.570 ± 0.012</td>
<td>20.3 ± 0.6</td>
</tr>
<tr>
<td>E</td>
<td>128.1 ± 0.1</td>
<td>2.114 ± 0.010</td>
<td>20.5 ± 0.7</td>
</tr>
<tr>
<td>F</td>
<td>144.2 ± 0.1</td>
<td>1.943 ± 0.004</td>
<td>17.5 ± 0.4</td>
</tr>
<tr>
<td>G</td>
<td>145.0 ± 0.1</td>
<td>1.946 ± 0.007</td>
<td>16.6 ± 0.6</td>
</tr>
<tr>
<td>G(a)</td>
<td>145.0 ± 0.1</td>
<td>1.956 ± 0.007</td>
<td>15.5 ± 0.6</td>
</tr>
</tbody>
</table>

(a) Along core axis.

2.6. Flux Distribution

2.6.1. Procedure

Flux distributions in the vicinity of the perturbers of Core XVIII were mapped with bare and cadmium-covered gold and Dy-Al foils. The gold foils were 0.259 inch in diameter by 0.005 inch thick; the Dy-Al foils were 0.259 inch in diameter by 0.007 inch thick and contained approximately 5 wt % dysprosium. The Dy-Al foils were irradiated in a constant flux, and their activities were counted to calibrate for dysprosium content; matched sets of gold foils were selected by weights. For cadmium-covered runs, the foils were placed in small cadmium pill boxes having 0.020-inch-thick walls.

The flux traverses were made across the perturbers in a plane 65 cm above the bottom of the fuel. The foils were mounted on 0.005-inch thick by 0.5-inch wide spring-steel foil holders, which were accurately aligned relative to the perturber and adjacent fuel rods. Near the perturber, the foils were spaced every lattice pitch for bare runs and at double pitch intervals for cadmium-covered runs, and the spacing was increased at greater distances.
The foils were activated for 20 minutes at power levels in the range of 50 to 400 watts, with all control blades withdrawn, and then beta counted for 1 minute in each of three end-window, gas-flow proportional counters. Count rates were at least 10,000 counts/min except for some of the cadmium-covered Dy-Al foils where count rates were occasionally as low as 1000 counts/min. Bare and cadmium-covered runs were normalized by four gold monitor foils located near the edge of the core.

In two of the perturbation studies, fine structure measurements were made at quarter-pitch intervals with 0.020-inch diameter by 0.5-inch long Dy-Al (5 wt % Dy) wires. For the cadmium-covered runs, the wires were placed in 0.075-inch-OD by 0.020-inch-wall cadmium tubes, pinched off at the ends. The same calibration, irradiation, and counting procedures were used.

2.6.2. Results

The results of the flux measurements through the perturbers, except the boral cruciform to be reported next quarter, are shown in Figures 2-8 through 2-22. Although traverses were made on both sides of the perturbers to show that the perturbers were accurately positioned, the data reported are averages of the north and south traverses, since symmetry was observed within 1 to 2%. The slight asymmetry is attributed to the displacement of the geometrical center of the core one-half lattice pitch south and west from the geometrical center of the core tank.

Corresponding bare and cadmium-covered runs for each perturber are normalized. For the gold traverse, the thermal flux is proportional to the difference between normalized bare and cadmium-covered activities. For the Dy-Al traverses, since the cadmium ratio was so large, the thermal activity was obtained by multiplying the bare activity by \((C-1)/C\), where \(C\) is the Dy-Al foil cadmium ratio. To permit approximate comparisons of thermal fluxes between perturbations, the thermal activities are also internormalized (on the basis of unity for the bare gold activity at the center of the unperturbed lattice). It is emphasized that this internormalization is only approximate because the perturbers changed the flux level slightly, even at the remote location of the monitor foils.
Two independent measurements of the thermal flux shape were made in each case, i.e., that derived from gold and that from Dy-Al traverses. Statistically, the thermal flux derived from Dy-Al traverses is superior because the cadmium ratio is very high and the cadmium-covered activity provides a small correction to the bare activity. For gold, since its cadmium ratio is so low, 1% errors in bare and cadmium-covered activities produce a 5% error in the thermal activity.

As shown in the figures, however, the ratio of thermal activity derived from Dy-Al to that derived from gold departs from a constant value near the perturber. This deviation is attributed to spectral effects. The activation cross section of dysprosium decreases faster than \(1/v\) below the cadmium cutoff, and the activation cross section of gold decreases slower than \(1/v\) near 0.4 ev. The thermal gold data are also very strongly affected by systematic errors in the cadmium-covered traverses, such as epicadmium absorptions in the 0.020-inch-thick cadmium covers\(^{16}\) and changes in the effective cadmium cutoff energy near the perturber. These problems will be considered further in the next quarter.
Figure 2-1. Core XVIII - Vertical Section
Figure 2-2. Core XVIII - Horizontal Section
Figure 2-3. View of Core XVIII-G
Figure 2-4. Location of Perturbers

B - Boral Blade in Uniform Lattice

C - Moderator Gap in Center of Lattice

D - Aluminum Blade in Gap
E - Cadmium Blade in Gap
F - Boral Blade in Gap

G - Boral Cruciform in Gap
H - Aluminum Cruciform in Gap
Figure 2-5. $\frac{\partial \rho}{\partial h}$ Vs h for Core XVIII

![Graph showing $\frac{\partial \rho}{\partial h}$ Vs h for Core XVIII]

- Average Moderator Height, cm
- Excess Reactivity, cents
- $\frac{\partial \rho}{\partial h}$
- κ_{ex}
Figure 2-6. \((\partial \rho / \partial h)^{-1/3}\) Vs h for Core XVIII
Figure 2-7. Axial Buckling and Reflector Savings
Figure 2-8. Flux Distribution With Boral Blade in Lattice (B) - Gold

Normalized Saturated Activity

- Bare (#722)
- Cadmium Covered (#725)
- Cadmium Ratio

Lattice Pitch (1.511 cm)
Figure 2-9. Flux Distribution With Boral Blade in Lattice (B) - Dy

- Bare (#724)
- Cadmium Covered (×10) (#730)
- \((C-1)/C\)

Normalized Saturated Activity

Lattice Pitch (1.511 cm)
Figure 2-10. Flux Distribution With Boral Blade in Lattice (B) - Thermal

Normalized Saturated Activity

Thermal Flux

Dy/Au Ratio

Lattice Pitch (1.511 cm)
Figure 2-11. Flux Distribution With Moderator Gap in Lattice (C) - Gold
Figure 2-12. Flux Distribution With Moderator Gap in Lattice (C) - Dy

Normalized Saturated Activity vs. Lattice Pitch (1.511 cm)

- Bare (#716)
- Cadmium Covered (x 10) (#720)

\[(C - 1)/C\]
Figure 2-13. Flux Distribution With Moderator Gap in Lattice (C) - Thermal

Thermal Flux

Thermal Flux Ratio (Dy/Au)

Dy/Au Ratio

Normalized Saturated Activity

Gap

Lattice Pitch (1.511 cm)
Figure 2-14. Flux Distribution With Moderator Gap in Lattice (C) - Fine Structure
Figure 2-15. Flux Distribution With Cadmium Blade in Gap (E) - Gold
Figure 2-16. Flux Distribution With Cadmium Blade in Gap
(E) - Dy

Normalized Saturated Activity

Bare (#726)

Cadmium Covered (X 15)
(#717)

(C-1) / C

Cadmium Blade in Gap

Lattice Pitch (1.511 cm)
Figure 2-17. Flux Distribution With Cadmium Blade in Gap (E) - Thermal

Normalized Saturated Activity

Thermal Flux

Dy/Au Ratio (Dy/Au)

Cadmium Blade in Gap

Lattice Pitch (1.511 cm)
Figure 2-18. Flux Distribution With Boral Blade in Gap
(F) - Gold

Normalized Saturated Activity

Bare (#699)

Cadmium Covered (#703)

Cadmium Ratio

Boral Blade in Gap

Lattice Pitch (1.511 cm)
Figure 2-19. Flux Distribution With Boral Blade in Gap
(F) - Dy

![Graph showing flux distribution with different conditions.
- Bare (#700)
- Cadmium Covered (x 10) (#702)
- Boral Blade in Gap

Saturated Activity

Lattice Pitch (1.511 cm)
Figure 2-20. Flux Distribution With Boral Blade in Gap (F) - Thermal

Normalized Saturated Activity

Dy/Au Ratio

Lattice Pitch (1.511 cm)
Figure 2-21. Flux Distribution With Boral Blade in Gap (F) - Fine Structure

Normalized Saturated Activity

Lattice Pitch (1.511 cm)

[Diagram showing flux distribution with Boral Blade in Gap and Thermal Flux (Dy)]
Figure 2-22. Comparison of Thermal Flux Shapes
3. SMALL LATTICE EXPERIMENTS (TASK 24)
(N. L. Snidow, Task Leader; D. M. Roberts)

3.1. Introduction

The Small Lattice Experiment (SLE), an extension of the epi-
thermal systems of the PCTR17 technique for k_∞ and lattice parameter
measurements, was developed and tested during the preceding quarter.
The test lattice was fueled with 4\%-enriched UO\textsubscript{2} rods, had a nonmoder-
ator-to-moderator volume ratio (M/W) of 1.0, and was moderated by
a D\textsubscript{2}O-H\textsubscript{2}O mixture containing approximately 70\% D\textsubscript{2}O. Measurements
of k_∞, thermal disadvantage factor, and cadmium ratios of U235 and
U238 in this lattice, in which approximately half of the fissions were
epithermal, were in excellent agreement with results obtained from an
equivalent critical experiment.9

The objective of this program is to apply the SLE technique to
the study of two typical SSCR lattices containing thorium as the fertile
material. Both lattices have a M/W ratio of 1.0 and are fueled with
TUPE fuel rods (93\%-enriched UO\textsubscript{2} mixed with ThO\textsubscript{2}). The moderator
compositions are approximately 70 and 80\% D\textsubscript{2}O. In each lattice k_∞, thermal disadvantage factor, and cadmium ratios of U235 and Th232 will
be measured.

During the reporting quarter preliminary design calculations were
performed, and the conceptual design of the experiments was com-
pleted. Final drawings for the test insert and void can were prepared
and submitted for quotations. Specifications for cutting TUPE rods for
the test and end buffer regions were prepared, and the order was
placed. Minor modifications to the facility were made.
3.2. Conceptual Design

The major features of the SLE facility, with the exception of the test and buffer regions, are the same as in the first experiments and were described in detail in preceding Quarterly Technical Reports. As illustrated in Figure 3-1, the driver is a graphite honeycomb, fueled with 93%-enriched U-Al foils and graphite bars and mounted on a split-bed assembly. A 2-foot-diameter by 6-foot-high aluminum core tank, containing the buffer and test regions, is mounted in a cavity at the center of the driver. The driver configuration, split-bed assembly and drive system, core tank and moderator system, control rods and drives, and nuclear instrumentation are fully described in the referenced reports.

The core tank contains a central test region (the lattice under study) and a concentric buffer region. The function of the buffer region is to produce a flat and asymptotic spectrum throughout the test region. In the present experiments, the test region is a lattice of 169 (13 by 13) 0.308-inch-OD by 18-inch-long TUPE fuel rods, spaced on a square pitch of 0.387 inch and having an M/W ratio of approximately 1.0. The volume of the test region is approximately one-half of that in the first experiments. Design calculation, confirmed by experience, indicates that adequate sensitivity (＞50%) will be obtained with the smaller volume.

The first SLE measurements demonstrated that a substantial portion of the buffer region can be dissimilar to the test region without seriously increasing the spectral mismatch error in k∞. This is of particular significance when the supply of fuel for the lattice under study is limited. In the present experiments, however, sufficient fuel to make the entire buffer identical to the test region is available. Therefore, the buffer region also consists of TUPE fuel rods spaced on a square pitch of 0.387 inch. Both test and buffer regions are moderated by the same D₂O-H₂O mixture.

3.3. Estimate of Expected Error

In an idealized SLE, k∞ of the poisoned test region is exactly unity when a null-reactivity condition exists between the poisoned test and a void. The departure from k∞ = 1 for null reactivity under the actual conditions of the experiment represents the error in k∞ of the
unpoisoned test due to spectral mismatch. This error was estimated for the present experiments with no poison in the buffer and found to be for this extreme case only 0.8% for 70% D_2O and 0.4% for 80% D_2O. Adding poison to the buffer will reduce this error considerably below this value.

The infinite-medium multiplication factor of the unpoisoned test medium is given by:

$$k_\infty = \frac{\epsilon_p f_{1+\Delta 25}}{\epsilon_{p_{\text{P}}} f_{1+\Delta 25_{\text{P}}}} P$$

where the subscript p refers to the poisoned medium, and P is a factor which converts the ratio $(1+\Delta 25)/(1+\Delta 25_{\text{P}})$ measured in a finite medium to the ratio for an infinite medium. Approximate values and estimated errors for each ratio, calculated using the BPG-2 code, are given in Table 3-1. The error in the ratio p/p_{P} is based on a 5% error in the calculation of resonance escape from boron. A 1% error in the measured mass of poison for null reactivity and a 2% error in the measured cell flux ratios combined to produce the stated error in f/f_{P}. The error in the term $(1+\Delta 25_{\text{P}})/(1+\Delta 25_{\text{P}})$ assumes a precision of $\pm 0.5\%$ in the ^{235}U cadmium-ratio measurements and a 50% error in the calculation of $P-1$. On this basis k_∞ should be measurable to approximately 1% in both experiments.
Table 3-1. Estimate of Potential Error in k_∞

<table>
<thead>
<tr>
<th>Ratio</th>
<th>70% D$_2$O</th>
<th>Estimated error in ratio</th>
<th>80% D$_2$O</th>
<th>Estimated error in ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ/ϵ_p</td>
<td>0.997</td>
<td>< 0.001</td>
<td>0.998</td>
<td>< 0.001</td>
</tr>
<tr>
<td>p/p_p</td>
<td>1.130</td>
<td>0.005</td>
<td>1.117</td>
<td>0.005</td>
</tr>
<tr>
<td>f/f^*_p</td>
<td>1.282</td>
<td>0.006</td>
<td>1.204</td>
<td>0.004</td>
</tr>
<tr>
<td>$\frac{(1+\delta_{25})P}{(1+\delta_{25})P}$</td>
<td>0.852</td>
<td>0.006</td>
<td>0.863</td>
<td>0.008</td>
</tr>
<tr>
<td>k_∞</td>
<td>1.232</td>
<td>0.012</td>
<td>1.158</td>
<td>0.012</td>
</tr>
</tbody>
</table>

3.4. Design of Buffer and Test Regions

3.4.1. Fuel Rods

The TUPE fuel rods used in the buffer and test regions are 5-foot-long by 0.308-inch-diameter aluminum tubes filled with sintered pellets of blended 93%-enriched UO$_2$ and ThO$_2$ ($N_{Th}/N_{25} = 15$). Other properties of the fuel rods are listed in Table 3-2. The fuel rods for the test region, however, are cut to shorter lengths as described in Section 3.4.4.
Table 3-2. Physical Properties of TUPE Fuel Rods

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD, in.</td>
<td>0.308 ± 0.001</td>
</tr>
<tr>
<td>Wall thickness, in.</td>
<td>0.014 ± 0.001</td>
</tr>
<tr>
<td>Wall material</td>
<td>No. 1100 Al</td>
</tr>
<tr>
<td>Fuel diameter, in.</td>
<td>0.260 ± 0.002</td>
</tr>
<tr>
<td>Overall length, in.</td>
<td>62.0</td>
</tr>
<tr>
<td>Active length, in.</td>
<td>60.0 ± 0.1</td>
</tr>
<tr>
<td>Wt of fuel, gm/rod</td>
<td>434.6 ± 0.2</td>
</tr>
<tr>
<td>Wt of uranium, gm/rod</td>
<td>25.80 ± 0.02</td>
</tr>
<tr>
<td>Wt of U²³⁵, gm/rod</td>
<td>24.04 ± 0.02</td>
</tr>
<tr>
<td>Wt of ThO₂, gm/rod</td>
<td>405.0 ± 0.2</td>
</tr>
<tr>
<td>Atoms Th/atoms U²³⁵</td>
<td>15.00 ± 0.05</td>
</tr>
<tr>
<td>Fuel density, gm/cm³³</td>
<td>8.33 ± 0.14</td>
</tr>
</tbody>
</table>

3.4.2. Buffer Region

The fuel rods in the buffer region are fully aligned at the top and bottom and, to a lesser extent, at two midplane locations by egg-crate grid plates. These grid plates are constructed of 0.071-inch-thick by 1-inch-wide aluminum strips that interlock on a 0.387-inch pitch. The bottom grid plate is complete. The top grid plate, however, has every other strip missing, so that four fuel rods can be loaded through each opening. Plugs are inserted in the center of each group of four fuel rods, constraining each rod to a corner location. This arrangement facilitates the loading of the lattice while retaining the accurate spacing so easily obtained with the egg-crate structure.

The two 1-inch-thick intermediate grid plates are located at elevations corresponding to the top and bottom of the test region. Like the top grid plate, these grids are open, i.e., every other strip is missing. However, the strips for separate grids are staggered so that each fuel rod is completely bounded by four strips—on two sides at the upper intermediate grid and on the remaining two sides at the lower intermediate grid. This open arrangement facilitates loading the fuel rods while providing control of rod spacing in the
important area near the test region. The intermediate grid plates do not extend over the entire buffer cross section, but cover only the area around the test insert and along the diameter where flux traverses will be made.

All four grid plates are provided with a 6.6-inch square opening at the center for the test insert. The test insert is guided into position by four aluminum angles (1 in. by 1 in. by 1/16 in.) placed in the corners of the opening and fastened to the top grid plate. This arrangement facilitates the insertion and removal of the test insert and provides accurate alignment and spacing between the fuel rods in the test insert and those in the buffer region.

The four grid plates are aligned and supported by four 3/8-inch-diameter threaded stainless steel rods located at the periphery of the buffer region. Since the TUPE rods are only 5-feet long, the assembly is made axially symmetrical by supporting them on an aluminum shelf approximately 6 inches above the base of the tank.

The arrangement of the internal structures is illustrated in Figures 3-2 and 3-3: Figure 3-4 shows the internal structure before assembly and final alignment in the core tank.

3.4.3. Test Insert

The test insert is an assembly of (17 by 17) TUPE fuel rods, 6.58-inches square by 62-inches long, that fits in the square hole in the center of the buffer region. The outer two rows form part of the buffer and are included with the test insert to insure that the lattice spacing in the vicinity of the test region is accurately maintained. The upper and lower 22-inch sections serve as axial portions of the buffer, and the central 18-inch section contains the test region. The lattice pitches in all regions are the same, i.e., 0.387 inch.

The test insert is held together by four 0.25-inch-diameter stainless steel tie rods, which replace the corner TUPE fuel rods. The remaining 116 rods in the outer two rows are full-length TUPE rods. The 169 short fuel rods in each of the end buffer regions are cut from TUPE rods and sealed with epoxy-cemented aluminum end plugs. The cut rods in the end buffer regions are supported by thin (1/4- to 1/2-in. thick) stainless steel grid plates, which extend outward to include the
two rows of full-length TUPE rods and the four tie rods.

3.4.4. Test Region and Void Can

The test region itself is a sublattice of 169 (13 by 13) cut TUPE fuel rods, 5.031-inches square by 18-inches long, held at the top and bottom by aluminum grid plates, 5/16- and 1/2-inch thick, respectively. The test region is removable as a unit without disassembling the test insert by withdrawing the full-length TUPE rods on one side of the test insert and moving the test region through this opening.

In the measurement of k_{∞}, the reactivity difference between the poisoned test region and a void occupying the same volume is determined. Since the moderator is liquid, the void is simulated by a thin-wall aluminum can. Strength considerations require a wall thickness of at least 1/8 inch, and the hazard of flooding is reduced by dividing the can into six leak-tight internal compartments with 0.081-inch-thick aluminum partitions. The outer dimensions of the void can, 5.031-inches square by 18-inches long, exactly match those of the test region. Although nitrogen absorptions in the air inside the void can are negligible, a small correction for the aluminum will be obtained from comparative reactivity measurements on similar void cans containing a larger fraction of aluminum.

3.4.5. Poisons

The test region will be poisoned with the binal foils used in the first experiments. Binal is a homogeneous mixture of B_4C and aluminum that contains 2.53 wt% natural boron and has a density of 2.62 gm/cm3. The foils are 0.010-inch thick by 3-inches wide. To flatten the flux across the poisoned test region, poison is also added to the buffer region. This is done by taping 0.050-inch-diameter silver (90% Ag-10% Cu) wires to the buffer TUPE fuel rods. Calculations indicate that two wires per rod will be required. The wires will be located in the open spaces between the rods and the corners of the egg-crate grid plates.
Figure 3-1. Facility for Small Lattice Experiments
Figure 3-2. Test and Buffer Regions - Horizontal Section

- TEST INSERT
- TEST REGION
- BUFFER REGION
- TIE ROD
- CORE TANK 22 3/4" I.D.

17 X 17 RODS
13 X 13 RODS
Figure 3-3. Test and Buffer Regions - Vertical Section

Buffer Rods (Typ.)

- Tie Rod (1/4 in. dia.)
- 24-3/8 in.
- 18 in.
- 18-1/4 in.
- 18-1/2 in.
- 3-1/2 in.
- 6-11/16 in.
- 8-1/2 in.
- 20-1/4 in.
- 18 in.
- 5/16 in. Grid
- 3/4 in. Grid
- 1/2 in. Grid

Test Region

Top Buffer

Bottom Buffer
Figure 3-4. View of Internal Structure
4. THEORETICAL SUPPORT (TASK 25)

4.1. Development of the RIP Program

A method for describing near-thermal, resonance, and high-energy absorption for use in multigroup spectrum and criticality codes (in particular the BPG code developed for this program) has been developed. For a specified absorber the cross section in the near-thermal region (up to the energy of the first resolved peak) is treated as $1/v$. In the resolved-resonance region corrections are applied for Doppler broadening and the use of the rational approximation for the escape probability in heterogeneous calculations. Both the narrow resonance (NR) and narrow resonance infinite absorber (NRIA) approximations are available. The NR approximation is applied in the unresolved range with the Doppler coefficient averaged over the Porter-Thomas distribution of reduced neutron channel widths. Smooth cross-section data are used in the region above the unresolved resonance cutoff.

The method has been programmed in Fortran language for use on the Philco 2000 computer. The program package, entitled RIP-Resonance Integral Program, contains subroutines for averaging cross sections over an arbitrary structure, calculating the resonance integral for a set of resolved peaks, and calculating L-factors for input to MUFT, P1MG, and P3MG programs.

For a specified absorber, the RIP program treats absorption in four distinct energy ranges:

RANGE 1. From the thermal cutoff to the energy of the first resolved resonance peak, the absorption cross section is treated as $1/v$. Assuming a $1/E$ flux spectrum, the average cross section for groups in this range is then given by
\[
\bar{\sigma}_a = \frac{2 \sigma_a(E^*) \sqrt{E^*}}{\ln \frac{E_{i+1}}{E_i}} \left[\frac{1}{\sqrt{E_i}} - \frac{1}{\sqrt{E_{i+1}}} \right] (4.1)
\]

where \(\sigma_a(E^*) \) = thermal cross section at 0.0253 ev

\(E_i, E_{i+1} \) = lower and upper group bounds, respectively.

RANGE 2. In the resolved-resonance region, Wigner's approximation for the resonance escape probability is used to obtain the effective resonance integral for a narrow, isolated peak. For any specified absorber, the peaks are assumed to be widely separated, with a constant-lethargy-dependent collision density existing between the peaks. With these assumptions, the effective resonance integral for a peak is given by

\[
I = \int_{\text{peak}} \frac{\sigma_{a}^{(F)}(u)}{1 + \frac{1}{\sigma_p} \left[\frac{\sigma_{a}^{(F)}(u) + \sigma_{sr}^{(F)}(u) + \sigma_{si}^{(F)}(u)}{\sigma_{a}^{(F)}(u)} \right]} \, du (4.2)
\]

where

\(\sigma_{a}^{(F)}, \sigma_{sr}^{(F)}, \sigma_{si}^{(F)} \) = resonance-absorption, resonance-scattering, and interference-scattering cross sections, respectively.

Both the NR and NRIA approximations are available in either homogeneous or heterogeneous resonance-integral calculations. RIP uses, therefore, four expressions for the \(\sigma_p \) term given in Equation 4.2.

\[
\sigma_p^{(1)} = \sigma_p^{(F)} + \frac{1}{N_F} \sum_{i \neq F} N_i \sigma_s^{(i)} \quad \text{NR - homogeneous}
\]

\[
\sigma_p^{(2)} = \frac{1}{N_F} \sum_{i \neq F, j} N_i \sigma_s^{(i)} \quad \text{NRIA - homogeneous}
\]
where

\[\sigma_{(3)}^{(F)} = \sigma_{p}^{(F)} + \frac{1}{N_{F}} \sum_{i \neq F} N_{i} \sigma_{s}^{(i)} \] \[+ \frac{1}{N_{F} S^{*}} \] \[\cdot \text{NR - heterogeneous} \]

\[\sigma_{(4)}^{(F)} = \frac{1}{N_{F}} \sum_{i \neq F, j} N_{i} \sigma_{s}^{(i)} \] \[+ \frac{1}{N_{F} S^{*}} \] \[\cdot \text{NRIA - heterogeneous} \]

\[\sigma_{p}^{(F)} \] potential scattering cross section of absorber

\[S^{*} \] effective chord length of lump

\[N_{F} \] number density of absorber

\[N_{i} \sigma_{s}^{(1)} \] number of density and scattering cross section of elements in the lump or mixture

\[\text{index } j = \text{elements for which the maximum energy loss in scattering is less than the practical width of the resonance peak.} \]

Doppler-broadening correction factors are obtained numerically from a 1056-entry table compiled from the work of Dresner, Nordheim, and Nather. For heterogeneous calculations, a modified form of Rothernstein's correction for use of the rational approximation to the escape probability is applied. Interference between potential and resonance scattering in the absorber is neglected. The effective resonance integral for a peak is then given by

\[I = \frac{\sigma_{p}^{(i)}}{E_{0} \Gamma \gamma} J(\theta, \beta) \] \[\cdot \text{i = 1 for NR - homogeneous} \]

\[= \frac{2}{E_{0} \Gamma \gamma} J(\theta, \beta) \] \[\cdot \text{i = 2 for NRIA - homogeneous} \]

\[i = 3 \text{ for NR - heterogeneous} \]

\[= \frac{4}{E_{0} \Gamma \gamma} J(\theta, \beta) + \Delta I_{G}^{(i)} \] \[\cdot \text{i = 4 for NRIA - heterogeneous} \]

- 51 -
where

\[J(\theta, \beta) = \text{Doppler-broadening function} \]

\[E_0 = \text{energy of peak} \]

\[\Delta t_{G}^{(l)} = \text{correction for use of rational escape probability.} \]

The total resonance integral for a group is the sum of the resonance integrals for the resolved peaks lying within the group bounds.

RANGE 3. For a given energy within a group in the unresolved resonance region, the Doppler-broadening function is averaged over the statistical distribution of neutron widths as given by Porter and Thomas. An integration over energy between the group bounds using the NR approximation is then performed to yield the following form of the resonance integral for a group:

\[I = \frac{\sigma^{(i)}(l)}{D \rho} \int_{E_i}^{E_{i+1}} \frac{dE}{E} \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{e^{-y/2}}{\sqrt{y}} \cdot J[\theta(y), \beta(y)] \, dy \]

where

\[y = \frac{\Gamma_{n}^0}{\langle \Gamma_{n}^0 \rangle}, \text{the normalized, reduced neutron width} \]

\[D = \text{average level spacing.} \]

Averaging of the Doppler-broadening function and integration over the group is performed numerically using a ten-point Laguerre-Gauss quadrature formula and a four-point Newton-Cotes formula, respectively.

RANGE 4. In the region above the unresolved resonances, designated the high energy region, smooth absorption cross sections (either point data or group cross sections) are assumed to be available. The resonance integral for groups in this region is the infinitely dilute value obtained by integrating the cross section over the group.

The limits for the specified ranges are arbitrary. All four ranges are included in order that a complete resonance-absorption distribution function, i.e., a \(\psi \)-set, may be computed for input to BPG.
a one-dimensional multigroup code which solves the transport equation in the B_1 or P_1 approximations. This ψ-set describes the smooth absorption cross section in the $1/v$ and high energy regions and the fractional resonance absorption for each group in the resolved and unresolved regions.

In the MUFT and P1MG codes a homogeneous, non-Doppler broadened treatment of resonance absorption is available. In order to correct this approach for practical application of the codes, provision is made for modifying this treatment with the use of L-factors, which essentially divide-out the code-generated resonance integral and allow the insertion of the correct region, element, group, and peak-dependent resonance integral. Assuming one pseudo-resonance peak in each group in which resonance absorption occurs, RIP computes the group, element, and region dependent L-factor yielding the correct effective resonance integral in MUFT and P1MG calculations. The pseudo-resonance peak is chosen to permit a single library tape for these codes for a particular design problem, and cases involving changes in temperature, geometry, element compositions and concentrations may be prepared by inserting the appropriate L-factors on cards.

In addition to the ψ-set and L-factor calculations, RIP contains subroutines which allow the averaging of up to 400 cross-section data points over an arbitrary multigroup structure and the calculation of the effective resonance integral for up to 100 separately designated resonance peaks in the manner discussed for Range 3.

4.2. Analysis of Lattice Perturbations at 72% D_2O

Two-dimensional (PDQ) calculations have been completed for the following lattice perturbations:

1. Flat moderator gap.
2. Flat boral blade in gap.
3. Flat boral blade, no gap.
4. Flat cadmium blade in gap.
5. Flat aluminum follower in gap.
6. Cruciform boral rod in cruciform gap.
The two-dimensional results are presently under analysis and will be reported at a later date in comparison with experiments.

Coefficient data for the PDQ cases (four energy groups) was taken from the BPG-II code for all materials and energies except the thermal (fourth) group of the boral and cadmium plates. The control-rod materials were treated as being black to thermal neutrons. All cases were calculated at a moderator height of 111 cm and a D_2O concentration of 72.4 mole per cent.
REFERENCES

DISTRIBUTION

1. TID-4500, UC-80, 20th Edition (617)

 Behmer, RE (3)
 Catalano, JJ
 Potter, HS

 Hall, EE (2)
 Voigt, WR (3)

4. Brookhaven National Laboratory (1)
 Kouts, HJC

5. Norwegian Atomic Energy Commission (1)

6. The Babcock & Wilcox Company (49)
 Ball, RM
 Barringer, HS
 CEL Files (10)
 Central Files (10)
 Clark, RH
 Craven, JP/Barberton Library
 Deuster, RW (3)
 Edlund, MC
 Engelder, TC (2)
 Gumprich, WC/Mumm, JF
 Happell, JJ
 Harrison, RH/Moore, WT
 Landis, JW/Breazeale, WM
 Lewis, RH
 Littrell, LW
 Pettus, WG
 Plunkett, DA
 Roberts, DM
 Roy, DH
 Schomer, RT
 Snidow, NL
 Taber, AP/Alliance Library
 Lynchburg Library (2)
 Technical Report Group
 Webb, RA/Project File
 Wehmeyer, DB
 Williams, DVP