
To be submitted for
publication

)

!

)

--
)

AN EXTENDED SET OF FORTRAN
INPUT/OUTPUT ROUTINES

E. Close

February 16, 1971

AEC Contract No. W-7405-eng-48

UCRL-19463
Preprint

LAWRENCE RADIATION LABORATORY ~ ,.p.
0'

UNIVERSITY of CALIFORNIA BERKELEY
w

DlSTmBlJTlOf' Of ·nus DOCIJ1.HU !S UNUMITf.O,

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

..

r.-------------NOTICE-------------.
This .report was prepared as an account of work
sponsored by the United. States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employee~, nor any of
their contractors, subcontractors, or therr employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com­
pleteness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use UCRL- 19463

· would not infringe privately .owned rights.

TOWARDS A MORE GENERAL SET OF FORTRAN I/O
SUBROUTINES

1. INTRODUCTION

Over the past numb~r o! years there has evolved in ALGOL

a style· of input..., output that ha·s no direct equivalent in FORTRAN. In

particular, the FORTRAN READ/WRITE r6ut.ines r~ad/write one or
. . .

mor~ cards/lines for each call and, as usually used, there is a closely

associated format statement for each such operation·. In ALGOL, however,

it is possible to read and write item- by- item [1; 2] and the formating

of these operatio~s can be preset in a rather convenient fashion [3, 4] ·.

This difference in input/ output is, in general, not because of the

difference in the languages; but, instead, seems to be one of style and

standardization of the earlit::r FORTRAN approach. In certain applications;

it is advat1tageous to have the item- by-item control that these routines

provide~ Re.lnw is presented a Get of basic FORTRAN subroutmes that

hav·e· been·derived from [1, 2, 3, 4] . They have, in so far as possible,

the same_names, calling sequences, and effect as their ALGOL equivalents.

The routines naturally divide themselves into classes. The first

·(Table 1) is a basic set of input- output r.outines that provide a small self-

contained system containing most of the features of the I/O package. Next

(Table 2), is an additional set of subroutines that allow the user to set

input .. output parameters and, thus, gain greater control over the data

transmission. A third set (Tab~e 3) are derived routines that follow, to

-2- UCRL-1946~

a certain degree, the Berkeley style [3, 4] of input-output.

A few elementary character handling routines are furnished

as a separate class of subroutines.{Table 4).

In so far as is possible, the routines have the same names, calling

sequ:ences, anq effect as their ALGOL equivalents [i, 2, 3, 4] :

Tho user·- oriented subroutines {Tables 1, l, 3, 4) are all based

uti C:L luw~a ·1~·v~l ::.~l u.C ::;uLL·uuliu~~> (Tc~.Ll~ .S) tlLc~.l c~...:.Luc~.lly ~c\L LY uut uJud1

of the work. These, too, have been isolated separately and written in

FORTRAN. It is these routines that are most system dependent and for

the purpose· of uncle r standing, the input-output package can be considered

to be black boxes. Once it is understood what the overall picture is and

how the user- oriented routines work, then these lower level subroutines

naturally fall into place and are rather easy to understand since they

actually implement the package.

While, at first glance, it may appear that ·such a set of input-output

:routines "is expensive. in coding and time, it should be remembered that

it is the overall style and structure that is being presented and that the

ideas and strueture are simple. 'fhus, a properly rewritten J.i"OH THAN

I/ 0 package could easily, I believe, contain the usual FORTRAN routines

and also.an expanded set of routines such as are presented here. For

. the present, however, this is presented as an, essentially, stand alone

package of FORTRAN subroutines.

Sections 2 through 7 that follow describe, in general. the ideas

-3- UCRL-19463

associ~ted with the various classes of routines. Appendix A has a more

detailed description of some selected lower level routines that will help

understand key points; thus, easing the task of modifying these routines.

Appendix B gives some examples to illustrate the size of this subroutine

package and some pertinent comments on their use. For the person who

wants to simply use the routines, Tables 1 - 4, Table 6, and Appendix

B should suffice. ·

2. BASIC USER.,..ORIENTED SUBROUTINES

The basic user- o~iented subroutines are tabulated in Table 1 along

with a comment that should help in understanding their proper use.

The first two are INMODE, OUTMODE that select the mode of

input,· output. · The following con.vention has been decided upon. There

shali be two input and two output modes. One of these is a standard mode,

selected by calling by calling INMODE or OUTMODE with the hollerith

constant iHS. The other is a FORTRAN input-out mode in which standard

FORTRAN read/write routines are.used for all input-output and this is

selected by calling inmode ot:. outmode with the hollerith constant 1 HF.

The original selection at compile time is standard input and standard

output via a data statement.

There is complete· compatibility between the ·standard and FORTRAN

modey however, a certain amount of care must be taken when switching

inodes since the same I/O routine called in two different modes will, in

-4- UCRL-19463

general, produce two different output actions. More will be said about

this later .

. The next three ro.utines, FNDUNIT, DRPUNIT, CNTUNIT, are

used,· respectively, to find, drop, and connect the unit that appears as

their integer argument. A more complete discussion of how the input-

output channels are arranged can be found in Section 6 where some of the

idea's 'connected with the lower level routines are discussed. The following

short summ~ry will prove sufficient to use the I/O package.

All the input/output done using the user level routines works

through one input/output channel that: is de signa ted the current input/

output channel. Initially, the input channel is selected as 60 and the

output channel as 61 via a data statement. However, another c.hoice can

be marle by a call to the subroutine CNTUNIT. For example, I :; CNTUNIT

(2, 2HiN) will set I = 2, the name of the unit connected, and will connect

unit 2 as the current input unit. The -previously connected input ~nit, 60,

is stored. In general, this routine will suffice for the user. However,

since storage space is finite, the number of units that can be stored is set

to six. Thus, the subroutine FNDUNIT can be used to find a unit~ Fur

. . .

example, I= FNDUNIT(~) will establish whether more storage space exists

for storing ~nits since I=. -1 implies that there is no unit with name zero;

that is, no empty place t.o put another unit. And, similarly~ DRPUNIT

can be used to purge a· unit from the storage area if more space is needed .

. It should be noted that a unit can always be connected, even if there

-5- UCRL-19463

is.no piace to put the currently active one that it is replacing. If there

is no st.orage available, the currently active unit is dropped and the new

one connected. It can be reconnected; it will, however' be treated as a

new unit a:·nd thus the channel·characteristics will be reset. This dropping

of a unit does not necessarily imply that the one line of information is lost.

The exact effect of this unit switching depends on the implementation of the

lower level routines 0

·The two basic input-output routines are IN and OUT. All other

routines that.transmit data, such as INREAL, OUTREAL, are based on

calls to IN/OUT. This has been deliberately done S·) that the exact code

that constitutes their bpdy can be writtenas is most suitable. The input

routine lN(N~ UNIT, FMT, A). transmits from the input channel- UNIT-

theN items A(1) •.. ~ A(N) according to the fonnat -FMT-. The output

routine OUT(N, UNIT,FMT,A) behaves similarly when writing on the out-

put channel -UNIT-.

·These two routines were principally designed to work in the standard

input- output mode. As implemented .in the lower level FORTRAN sub-

routines·, the subroutine IN does a simple formated READ(UNIT, FMT)

(A(i), i = i,.N) m the J:t'Ul{'l'l{AN mode and completely ignores the format

in the standard mode, fmt = 1HS. In the character mode, fmt = 1HA, n

. chara.cters are ·packed into A left justified. The output routine OUT does a

simple formated WRITE(UNIT, FMT) (A(i), I= 1, N) in the FORTRAN mode
. .

and in the standard mode it also does a formated write. The result is,

. -6- UCRL-19463

essentially, the same formated write except in the FORTRAN mode the

next call to· OU'J;' will start on a new line in the usual FORTRAN fashion;

whereas, in the. standard mode, the wrl.te will start in the next column

after the last printed character of the preceding output transmission.

I might note in.passing that the simple expediency of being able to

use a FORTRAN WRITE statement or a READ statement in a mode similar

'
to the her·e defined standard mode would: eliminate the need for IN and OUT.

And, as will be seen shortly, keeping track of print and read positions in

a user-addressable· manner would also be quite useful. I point these out

becaus~ it is not easy to directly modify some of the ~xisting systems

input/ output routines, even by people who know the system. The five

subr~utines CARDS, LINES, SPACES, PAGE, S complete this basic list.

CALL CARDS (N) skips N-1 cards on the currently active input unit, the·

. .

n-th card is then the current data ·card for standard input and is in the one

line holding buffer. CALL LINES (N), produces N line feed carriage re-

turns on the currently active output unit, while.CALL.SPAGES (r:.r)-:pririts

N blanks on the currently active output unit. This illustrates two things:

one is· that such routines should not need the CALL associated w1th l'U.H.T.H.AN

programs and the other is that whenever a unit is not specified in the

argument list, the routine operates on the currently active unit. This unit

. .

is the last unit set up by some definite action; for example, the compiler

via a d~ta sta.temEmt assigns 60, 61 as inputioutput units. Likewise; any

call to a routine with a unit argument will make that unit the currently

active unit.

..

...

-7- UCRL-19463

Subroutine PAGE performs a page eject followed by a carriage

return. · The top and left margins are set to the·.cur.rent system values.

Subroutine S outputs the string STRING. In ALGOL, a string

is well defined. Thus, a nice convenient way of outputing text is to say

OUTSTRING (TEXT). This can be done here by defining STRING to be

. any valid hollerith constant that is itself a valid FORTRAN format.

This, then, completes the basic set of routines. The simple

subroutine below illustrates their use:

SUBROljTINE TEST

END

CALL OUT MODE (1HS)

·.CALL PAGE

CALL OUT (1, Z, 7H(3F6. 2), 10. 21)

CALL S(19 H(*THIS IS A TEST*))

RETUR,N

·A call to TEST would produce on unit 2 starting on a new page

10. 21 THIS IS A TEST

On th~ other hand, if we call OUTMODE with 1HF, the results

are 10. 21.

THIS IS A TEST.

3 •. ADDITIONAL SUBROUTINES FOR SETTING I/O PARAMETERS

The subroutines discussed here and tabulated in Table 2 all

deal in some way with the current input/ output ~it depending on whether they

-8- UCRL-19463

are input or output action. The current unit is defined to be the last

referenced unit. The. compile.r, via a data statement, initially sets the

current input uni't to 60 and the current output unit to .6.1.

The two subroutines H LIM and V LIM are margin setting

routines.· Initially, the left margin is set to 1 and the right margin to 132,

the top margin to 5 and the bottom margin to 60. This gives a line length

of 132 c'haracters with 56 lines per page. The first 'charac:te r is printed

in print position 1, usually a carriage control column in FORTRAN, and

the first line of print starts on line 5. The actual spacing on the output

printer depends on the printer overflow characteristics. These margins

can easily be reset. For example, CALL H LIM (5, 110) causes the left

margin to be column 5 and theright column (10).

The two routines READP, PRINTP return as values, the current

value of the read position/print position pointer~ These values are the

next··column that will be read/printed. The only reason they have an

argument is because CDC FORTRAN [6] requires that function sub­

routines have one or more arguments.

The two routines lN 'l'AH, Ou 'l' 'fAH are somewhat similar to the

tab operation on a typewriter. CALL IN TAB(N) will cause the read

poirite<r. t.o be set to N and the next character read will be from column N.

Similarly, for OUT TAB. Obvi.ously, one can easily set a number of

tabulation positions by presetting an array in the calling program.

The subroutine IOPARAM can be used to set almost all the

-9- UCRL-19463

input/output variables that the I/0 package uses. The first argument

is the number of values that are in the arrays MODES, NAMES, VALUES.

The variables are contained in the common block with name IO. Their

compiled values and definitions are given in Tables 6 and 7.

The next four subroutines PRINTER, PUNCH, INUNIT, OUTUNIT

are used to set the currently active input/output units to the requested·

value. · The punch has qeen selected as 14 and the printed as 61.

The four format routines !FORMAT, RFORMAT, !FORMAT,

OFORMAT are used to preset the formats that are used for the outputting

of integer,. real, logical (Boolean), and octal values when routines are

·used that have no format specification. In the next section, we shall

discuss derived routines and it will be seen that many of these have no

format specification. When this is the case, the appropriate preset

f~rmat is. used. These print formats are initially set by the compiler

via data statements to standard values which are 123, E23. 14, L10, 023.

They can be reset at any time by calling the appropriate format routine.

Once set to some value, they retain that value until reset by another call

to the format routine. The routines that furnish the format along with

llu: .ilt::uu; lu bt:: Lransrnitted do not disturb these pre set formats.

The field width of the output quantity is specified by the variable

FIELD. The quantities will be right justified with zero fill in this fic1c1

width. The number of decimal digits in a real number are specified

. by the variable DEC. The logical variable FIXED selects between fixed

-10- UCRL-19463

. .

and floatin.g point representation. Thus, CALL RFORMAT (.FALSE., 23, 14)

will set the above standard format for the output of real ~umbers.

The subroutine EFILE is used to write an end-of-file on the

named unit. It is necessary to use this routine when in the standard

(partia~ lineY output mode :ls.i.ilce its use ensures that the one line output

·buffer will be ~mptied.

4.. DERIVED INPUT- OUTPUT ROUTINES

The roufines discussed here are all based on the input-output

routines IN, OUT. They obtain their pre set values from the common

block IQ and are essentially independent of one another and of all the

other user- oriented subroutines that have been discussed in Sections 2

and 3~ These routines include routines similar to those .used by CDC

ALGOL [2] 'and those presented by DeVogelaere [3] , and also some of
-.

the logical variants. Their action is approximately the same as their

ALGOL equivalents. However, there are some noticible changes. For

example, th~ CDC ALGOL procedure OUT REAL outputs quantities using

their standard format, whereas, the OUT REAL here presented uses a

preset format. Also, in the Berkeley style output presented by DeVogelaere,

a call to the procedure OUTl~:(R1. FIXED, FIELD, DEC) followed by a call

OUT' REAL({UNIT, R2) will cause both R1 and R2 to be output with the format

set by FIXED, ·FIELD, DEC. In other words, the variable format that

. ·appears in the argument list resets the preset format. The routines

-11- UCRL-19463

presented here have complete independence of the preset and variable

format.

The subroutines can be found in Table 3. We shall limit ourselves

here to a fe·w general remarks that will make their use obvious. The

idea behind their grouping is the foll9wing. To input/ output quantities,

we must specify a unit from which it will be read/ written, a list of

quantities ·to be transmitted, and a corresponding format for that

transmissfon.

If all of these items appear in the argument list, then those values

are used. For example, CALL OUT}t 3(N, R,. TRUE., 5, 2) outputs on

unit N the value of the real variable R using the fixed point format F 5. 2.

The curr.ent output unit has now been set to the value of N. If any of

the items are missing, then a standard choice is made for the missing

item. A missing unit causes the current unit to be used. A missing

format cau"'scs the appropriat~ p1·~~el format to be used. Un output,

these are. the formats that are set using these routines: !FORMAT,

· RFORMAT; BFORMAT, OFORMAT. On input, the format selected

is the standard (field free) format. For example, CALL OUTR 1(R)

causes the· value of R to be output on the currently achve output unit

using the preset real format that was set either by the compiler via a

. data statement or by a subsequent call to RFORMA T.

The function subroutines that appear in Table 3 assume the value

of the item read. . Since these routines are used in arithmetic expressions,

. -12- UCRL-19463 ·

it is, ht general, not sufficient to have one routine ... For example,

J ;:: READ.does not work too well because of the implicit mixed mode

~rithmetic that a FORTRAN such a~ CDC FORTRAN [6]. allows. Thus,

they a're ·an explicitly typed. Again, the redundancy in argument for the

£unctions READ I, etc., is because of the requirement that a function

~ubroutine have at least· one argument.

·The naming of the subroutines is somewhat arbitrary; but, we

have ·tried to adhere to short names. (less than seven characters), for

user convenience and word size limitations on identifiers, that identify

the type Of·routine and, at the same time, preserve the names of

previou~ly defined input/ output. routines [2, 4] that perform similarly.

Logical variants of the same routine have been sequentially numbered.

·The aU:broutinee OTI, ·ror, awl tlu:~i.1· vct..L"ict.uLl:i have a STRING

argument associated with them that can prove useful in some application.

As was previously mentioned, STRING is e1: hollerith constant which is

itself a suitable variable format including left and right parenthesis.

A call such as CALL OTI(S, SH(*B*), 3) will produce the output of

13 - S. Thus, the string is assigned the value of. the output quantity.

Similarly, a call such as J = IOI(I, SH(*B*), 3) will as sign to I and J the

value of. the next item read from the currently active input unit and al::iu

it will write B = Non the currently active output unit; we assume that

N. w·as the value just read in. Since there is some disagreement in

FORTRAN about the .use of multiple statements per line of coding, these

-13- UCRL-19463

routines are in a sense limited to one output action per line. In CDC

FORTRAN; one could add the $ delimiter and write multiple statements

per line~ but the last statement cannot have a $;·thus, it is better to

leave it out c'ompletely.

The next two sets of routims Cl.JTAJ, INAI and thei.r variants can

be used to output-input arrays. The array element a(1:') is the first

element input and the element a(u) is the last element input. Multiple

dimension arrays .can, of course, be handled by simply considering the

array a.s a large one-dimensional array.

The routines INPUT and OUTPUT are formated routines and can

be used in either the FORTRAN or standard mode. Since these routines

· are defined using FORTRAN, they are separately written as INPUT 1,

INPUT 2; ... ; but, if they were written as system routines, it would

seem natural to do as CDC [2] has done and have one routine in which

lhe Huu.lu~r. uf arguments is arbitrary. It is worth pointing out that these

routines are very closely related to the READ, WRITE routines of

FORTRAN, but have the added feature. of being able to have any legal

actual parameter a·s an a~gument. Thus, for example, the argument

A1 could be a function subprogram, or arithmetic expression, as well

as a simple variable.

-14- UCRL-19463

5. ·CHARACTER-ORIENTED SUBROUTINES

The manipulation of characters using FORTRAN subroutines is

usually expensive~ Also, there always seems to be an infinite number

of routines that can be found useful to have. The routines given here

are patterned after similar ALGOL routines [t, 2] that have been set

fQrth .afl ba.oic character-oriented rouliu~~.

The first such routine is CLENGTH which has as its value the

le.ngth in characters of the argument which is .a STRING. A STRING is

defined. to be a hollerith constant of the form NH(*ANY VALID TEXT*)

whe.w. the delimiters have been chosen to be (>!< and >:<). The delimiters

are not counted and, as implemented here, a right delimiter cannot appear

in the text.

Tho routinco INGIIAR·.~, OTCHAR0 t.t·ani:WlH d.~ta f'\"bm the array

SOURCE arid to the array DESTINATION. A more precise definition is

given in Table 4. The action of the routines INCHAR and OUTCHAR are

similar to INCHAR0 and OTCHAR0, but read/write their results from/to

the specified unit. These routines contain the argument LENGTH, the

length of the string. This was done because the simple definition of

the STRING that is used here requires the actual counting of the

characters to obtain its length. This is tuu expensive to do for every

call to these routines, thus, it is furnished <;iS a separate argument.

The subroutine C LENGTH furnishes the appropriate length.

-15- UCRL-19463

The routine EQUIV allows one to obtain the internal representation

of an element in an essentially machine-independent manner •

. The two roudnes CHARF, CHARS are character fetching and

character storing ·routines. · They are basic routines and are: pre se.nted

here sirice they are extensively used in the lower level subroutine

package and are convenient routines to have available. A transfer of

characters can easily be performed by the call such as CALL CHARS

(DEST; N:l, CHARF(SOURCE, N2)).

6. LOWER LEVEL SUBROUTINE

· This set of subroutines exists solely for the purpose of

implementing the previously discussed user level subroutine. How they

are written,. their names, and their coding is largely dependent on the

computer used and the computing facilities available. A particular set

·of these routines suitable for the CDC 6000- series computers has been

written in FORTRAN and they are listed in Table 5. The action taken

by them is indicated there.

A few comments on that set of routines. is given here. There is a

da~a initialization routine INIODAT which initializes all common areas that

contain: I/O parameters. This would logically be a block data routine.

It is presented here as· a subroutine to _insure its loading when using a

system' loader to satisfy the unsatisfied externals.

There a.re two format setting routines. One is for logical values

~ 16- UCRL-1946~

and one for real values. Connected with this is a rot tine DCINTL that

convert.s the integer N to an internal represention, ir this .cas-e CDC

display code [6) with blank "fill, that is suitable .for .use in a FORTRAN

FORMAT 's.tatement.

The routine CHNSF actually connects the input/output channels

as cur:E-ently active units and also stcries the channel c~aracteristics

and is thu~. quite dependent on the channel or.ganizaticn.

Th~re are two specialized routines READ N a.ad WRITE N that

do field-h:~e reading and partial line writing. Connected with the

partial line writing. are two routines STORE and WR T.

·A more detailed de.scription of some of these routines can be

found in Appendix A.

7. FIELD-FREE FORTRAN .INPUT

The standard input, as defined here, is field-free input. By

this is meant that the data input is recongized by the manner in w~ich it

. is written and a FORMAT specification need not be specified. The

following conventions have bP.fm c.hosen.

An integer will be of the form i NN.: .. N where. N are decimal

· digits. A real member will be of the form·+ NN ... N. NN ... NE+ NNN.

The distinction between the integers and reals is·made .by supplying the

decimal point for real-numbers. If theE is supplied, the re·al number

· will be read in an appropriate E format; otherwise, it will be read using

-17- UCRL-19463

. an appropriate F format. An octal number can be either O+NNo .. N

or else +NN ..• NB where N are octal digits. A logical value is specified

by T, TRUE, F, FALSE. Any number (integer, real, octal) value can

be followed by RNNo .• N when N are decimal digits. This will cause

that quantity to be read NN. o oN times. Thus, 5R3 causes the number 5

to be input three times; that is, the next three input requests assign 5

to the input quantity. A comment can be inserted anywhere as >'f./text/-J.<

and. it will be skipped during input. A string can be input as (>:<TEXT>:<)

and the array into which it is input will contain (:i<TEXT*); thus, one

can input and then subsequently output a string. Items to be input are

sep(lrated by a deliminator. This has been chosen to be either a comma

or e_lse k or more blanks where k is initially set to 2o

A field may be skipped by inclosing an empty field with two

commas· such , , . Such fields cause the field to be skipped and the cor­

responding location to which the value would be assigned is also skipped.

The card· width has no significance on field free format. The quantities

are read as they are encountered.

The following example will illustrate sorne valid data:

+ 5. 2, 3 >:</THIS IS AN EXAMPLE/>:<

(*A STRING IS READ*) -6.3E-1R5, +6R2, 0-777, +11BR2o

Thirteen items.are read. The first is a real number, the secuncl

an integer, the. third a string, then five real numbers, two integers, and

finally, three. octal numbers. . These can be placed anywhere on any

'II

-18- UCRL-19463

number of cards. Note, however, that it is possible to delimit the

input line (card} length by setting the input left and right margins with

subroutine IOPARAM. See Table II and Table 7 .

. . Double precision numbers are written the same as a single

precision 11:umber except that the E is ~eplaced by a D. · Thus, . 6. 3D - IR5

would denote five double precision numbers. One double precision number

is considered as one item in the input lists; however, it occupies two

. consecutive locations internally. Presently, double precision numbers

cannot be skipped with an empty field.

-19- UCRL-19463 .

APPENDIX A

Subroutine Descriptions

The information presented here pertains to selected subroutines

from the Input- Output :Package. It is primarily m. ·ant to serve as a

guide in·understanding the oper.ation of these rout nes and to point out

some of the system type dependencies.

SUBROUTINE INIODAT

This routine is used exclusively as a data s ~tting routine. To

insure that it will be loaded when loading programs using a system loader

such as the Lawrence Radiation Laboratory's load··r, LODE, it has

been made a subroutine. The variables appearin~ in this routine are,

essentially, all of the pertinent I/O variables and tre defined in Table 7 0

SUBROUTINE DCINTL (N, RESULT)

Since this routine converts integer numberE to an internal

representation suitable for use in a FORMAT statEment, it is machine

dependent. The characters per word, CHARPW, j s set to 10 and the

internal code is assumed to be CDC 6000- series display code [6] 0

INTEGER :FUNCTION CHARF (SOURCE, N)

This routine fetcht:::,; a character from an array and thus is machine

dependent. The characters per word, CHAPWOR, is set to ten and the

-20- UCRL-19463

bits per character, BITPWOR, is set to stx. Mi assumes a 60- bit

word. The tw·o shift functions LEFT and RIGHT are used. This routine

is presently written in CDC FORTRAN and. CDC COMPASS. The two

routines perform identically. Because of the frequent use made of this

routine·, the COMPASS version is to be. preferred'.

SUBit0UT1NE CHARS (DEST, N, ITEM)

This is, essentially, the inverse of CHARF arid th~ abov.e comments

apply to thj;,s routine also.

SUBROUTINE STORE (ITEM,. UNIT)

STORE is not machine dependent. It is u·sed only in WRITEN

and pe:rforms ·~he specific task of filling the one line output buffer

BUFFEIU. To do this it uses subroutine CHARS. As it fills this one

line bUffer, it keeps track of the right marg1n, R TMARG, and if the

. .
current position of the write pointer, COLCNT3, exceeds the right

margin, it the~ WriteS OUt the One line Of data, adyan<;eS the linf\ C:OnntPT,

LNCT, ·and resets the write pointer to the left margin, LFTMARG. If

·the line count is larger than the number of lines allowed on a page, R P,

then it 'writes a line with a 1 in column one to cause a page eject, and

then ·spaces the correct number of lines to establish the top margin.

The actually emptying of the buffer is done by subroutine WR T.

SUBROUTINE. WR T (UNIT, L, U, A)

This routine empties the array A by using a standard FORTRAN

WRITE .statement. It also reinitializes A to all blanks thus reestablishing

-21- UCRL-19463

A as a· blank.line.

SUBROUTINE WRITEN (N, UNIT, FMT, A)

This subroutine, and the two subroutines STORE and WR T that

it utlliz.es, ·could be replaced by the standard FORTRAN routine WRI~E

if only there were an option that would let WRITE output less than a

record. As presently written, the system routine OUTPUTC associated

with the CDC FORTRAN WRITE statement finishes by writing an end

of record zero byte thus making it unsuitable for the writing of partial

lines since if always writes at least one rec<;>rd.

In order to overcome this difficulty, the following, rather expensive,

approach was taken. The CDC FORTRAN [6] routine ENCODE is

used to make all formatted writes when in the standard (partial line

writing) output mode. These writes are written as 140 character lines

into the o~tput bclfer BUFFERL Thus, any formatted write with

·records (line lengths). less than or equal to 140 characters can be

w.ritten using the standard FORTRAN formats. This wdte is done at

statement 312.

In this mode of output, there are three formats that are considered

special. These are the (/), (), (!Hi) that represent a new record (new

line carriage return), the writing of a blanl< into the output line (actually . ' .

BUFFER~). and the page eject operation. Because of the way that

WRITEN is constructed, the only way that these operations can be

performed is to call the subroutine WRIT EN with these special formats.

-22- UCRL-19463

Thus, the 1, th~ repetition of parenthesis, and the page eject will not

produce ·the· desired. results if they appear in a FORTRAN style format.

They will be correctly handled by ENCODE, but our subsequent action

. will des'troy this effect. The 1 will be ignored, as will the repetition

of parenthesis or repetition of Format. The page eject symbol in

Column 1 may or may not end up in Column 1 .

. After the write operation by ENCODE, the rest of the code is

devoted to fetching the w·ritteri characters out of BUFFER 1 and storing

them· into the· one line output buffer,. BUFFER3. Initially, BUFFER1

is set to all zeros. The ENCODE write will fill one 140 character line

with data. Starting with character 1 in BUFFER3, the characters are

fetched one- by-one. The end of the write is signified by obtaining

the J ~ characters. As the characters are. obtained, they are stored

by the routine STORE.

Restrictions: The format must be exausted in any one writ~

statement~ . Also, repetition of format or record slashes are illegal.

Any one write must be :S 138 characters. Thus, the write statements

CALL WRITEN(24, UNIT, 13H(1ZA10/12Ai0), A) or

CALL WRITEN(24, UNIT, 7H(12A10),A)

are illegal.

I~ .

I

-23- UCRL-19463

Aga:ln, all this expensive effort arises because ENCODE has a

limit on the number of characters that can be written into a record,

and because it is not presently possible to know how many characters

. w~re written per record. If this were not the case, one could simply

fetch from BUFFER 1 and store in BUFFER3 until a zero character

oo 8 was obtained.

SUBROUTINE READN (A)

This is a basic field free input routine. If the FORTRAN READ

routine had a suitable mode that allowed the reading of partial lines

of data in a field free format, then this routine could be replaced by

that ·routine.

The actual data to be read is input via a FORTRAN READ state­

ment at statement 1600. The left margin, INL, and right margins,

COLMAX are observed when using READN, data to the left or right of

these margins will not be input. The right margin check is made after

statement 300. Once the one line input buffer BUFFER3 is filled, the

characters are fetched, statement 304, from this array one at a time

and are identified in the next statement by checking their position m

the array ALPHBT. The character table ALPHBT is taken from

Appendix A [7 J sequentially starting at letter A and ending at ;. The

-24- UCRL-19463

val.ue of the j-th position in array ALBHBT identifies in octal the j:-th

character of that Appendix. For example, TYPE = CHARF(ALBHBT, 2)

returns TYPE = 12g; thus recogn1zing Bin the octal numbers written

as NN ••• NB.

Upon entryinto READN, the pointers P(l) are set to -1, the

buffer NUMBUF(I) to a blank card, and FORMAT 2.to all blanks. If the

t:1at is, the RNN ••• N was appended to the number, then the read operation

consists of a simple assignment and the repeat counter NUMRPT is

decreased by one. This happens until the requested number of repetitions

has been satisfied. ·'This action is controlled by the logical variable

F EPEAT just before statement 204.

Each call to READN roado N itomo before returning. In the caoc

of numbers, this is N numbers requiring N words of A, but i~ the case

of a string,' this wo:uld ·be N strings each taking up the space that is

required to store (*TEXT*) and in the case of characters, it would be N

characters. That is, an item may be a number or a string and the actual

storage· 'required to input N 'cf,.th~ into A depends on the items. The

appropriate COl,mting for this operation is done by setting N1, NZ, N3, N4

at otatcmcnt 200. The 10 aseumee that·there arc ten charactcro per word.

The rest of READN is broken· into small sections that deal with

tho quantities that are labled in the program. Thus, the section BLANK

counts blanks to recognize the delimiter mCl,de up of NUMBKS of blanks,

•I.
I

-25- UCRL-19463

cur-rently set to 2 .•

T.he section ASTRIK will recognize and skip >:</TEXT/>:'. The

section LEFTPARANTHESIS will recognize (>:'TEXT>:<) and store this

string starting at the next available A(I). The section COMMA recognizes

· the deli:rniter , • The next two sections TRUE and FALSE recognize the

logical values. Ariy valid display code character, [7] Appendix A, that

does not dire-ct the program to a labled section will go to section ALPHABET

and be skipped. Any +, -, •, digit will go to the section PLUS, MINUS,

POINT, DIGIT. The B, 0, E, R options are recognized in the se.ctions

BAND OHO, · E, REPEAT.

When a deliminat\OI' has been encountered, NUMBKS or more

blanks or· a comma, a transfer is made to READNUMBER, If the field

between deliminators was empty P(i) < 0, then that item is skipped,

statement 1SOO, and it causes the next item to be stored in the next A

position; that is, a word is skipped in A. Presently, logical values are

excluded from the repeat option. P(i) = 0 shows a logical value was·

read .. If a number was encountered, P(i) > 0, then the numerical field

widths are appropriately set into FORMAT.2, and the number is read

using the CDC routine DECODE, [6] fro:n1 the number buffer NUMBUF.

Thus, to summarize, the read operation consists of filling a line

buffer BUFFER and the~ recognizing and constructing a number in NUMBUFF.

At the same time, the ·appropriate format is built in FORMAT2. A

· reference to Figure 1 will explain the significance of the pointers

-26- UCRL-19463

P(1), ••• , P(S) which are all initialized to -'1.

Figure i : ·Number constructed in NUMBUF.

Reai' P 1 P 2 ·P3 · P 4 P 5
I I I I I
±NN ••• N • NN ••• N E :t: NN .•. N RNN ••• N U

Octal Pi P 5 .
I I

P1 Ps
I . I

0 :t:NN ••• N U ±NN ••• N B LJ

t ' Omitted from count
. 't. k' d d s1nce 1 1s s 1ppe an not

stc,red in NUMBUFF

Integer · Pi Ps
I I

.±NN •.•• N U

SUBROUTINE CNTUNIT(lJNlT,. MODE)

. CNTUN!T conn~cts UNIT either as an input, MODE 2HIN,

or output, MODE = 3HOUT, unit. The last connected units are LSTIN.

and ~S~OUT for input and output. If the UNIT to be connected is already

connected, nothing is done. Otherwise, the current unit is stored and

UNIT is connected. When UNIT is connected as a new unit, it is placed

in the 10 buffer area, IOBUFF, and also it is activated as the current

unit~ ·If there is no storage IJ)8:e available in IOBUFF, then it is simply

connected a.s a currently active unit and the riext request for another unit

will cause it to be dropped. Thus, UNIT will always be connected, but

may not always be stored •

. ·

-27- UCRL-19463

The actual finding of the. units is done by subroutine FNDUNIT

which returns a value NAME such that IOBUFF(NAME) contains the

narrie of the unit it was supposed to find. A value < 0 means it was not

found.

·The actual setting, storing, and fetching of the parameters is

. done by C HNSF.

SUBROUTINE GHNSF(SF, UNIT, NAME, MODE)

The easiest way to understand CHNSF is to look at the channel

structure given in Figure 2. The definitions of the common variables are

given in Table 7.

Whenever a new unit is connected, the current value of the channel

characteristics residing in the common block 10 are used. These can

. easily be set using HLIM and VLIM for output, or else IOPARAM. These

characteristics plus the blank filled 1 line buffer BUFFER are stored,

21 words, in the first available location in IOBUFF. There is room for

·six units (6 X 21 = 126).

The currently active units. are defined by common blocks /IO/

arid /BUFFERS/ as indicated in Figures 2 and 3. CHNSF fetches from

.IOBUFF and stores in these commons, or fetches from these commons

and stores in IOBUFF, to establish different channels. The use of these

small temporary working areas enables the multiple switching of channels

without·loosing the channel characteristics or the partially constructed line.

This structure is patterned somewhat after the CDC ALGOL [z]

·I

-28- UCRL-19463

. channel ·structure. .These channel characteristics and buffers can be

set up internally in the internal buffer ar.eas as has been done for the

CDC ALGOL, but the above one line channel structu.re was chosen in

order to have a machine independent FORTRAN code.

Figure 3 shows schematically how the input channels are arrayed.

Figure 2. Channel Structure

.Word 1 2 3 4 5 6 '(8 . . 21

Input name INL INR INLP INRP INRHO INRHGP 11+ word i line buf':fc::r

Common 1 15 16 18 19 21 22 COMMON /BUF'Ji'ER/
/IO/ DUFii'ElTI (1) , ••• , DUFFBR (i 4 l
location

Output. name .OTL OTR OTLP OTRP OUTRHO OUTRHOP 14 word t line. buffer

Common 2 9 10 12 13 2" 24 COMMON /BUYfER/ .)

/IO/ BUFFER(52), ... ,BUFF.'ER(65)
location

Figure 3. Channel organization of the array IOBUFF in corrunon IOBUFF

1 22
!name I characteristics It line bufferll t-n-=-a~m-e_,l-c-·h_a_r_a_c_t_e_r-:-i-s_t_i_c_s,.l-:-1-l-l-. n_e_b_u_f:::-f:::-e-rl . . .

106
lnamelcharacteristicsli line buffeij

currently active units in common IO
jlst in I characteristics It line buffer! llst out I characteristics It line buffer!

-29-
UCRL-19463

APPENDIX B

Use of Routines by LRL Users

The use of these routines is quite simple and is illustrated by

an example given here. The information presented in Tables 4. - 7

should prove sufficient to use them ·correctly.

A. few· comments should, however, be made:

. .
1.· The standard input and output units are 60 and 61,

respectively. If these are suitable,· then no units

need ever be referenced.

2. · The routines compile and execute under RUNF and

FTN (2. 3) •.

3. The best use of these routines is made using the

library feature of LODE.

4. The subroutine .organization is given in Table 3 and

Table 8. If a loader is not used to load the routines by ··

satisfying unsatisfit:ll t:xlt:rnals, then these subdivision

will prove useful. Deck A is required. · Essentially, all

these routines are used. Deck I is required to set the

formats for those routines of Table 3 that do not have a

format. The rest of the decks are independent and can

be used as desired. The numbers in Table 3 refer to

decks; for example, deck 1. 1, etc.

Subroutine

.! inmode (1node)
s outmode (mode)

g fnd unit (unit)

i!_ drp unit (unit)

if cnt unit (unit, mode)

Table 1

Basic IO Subroutines

Comment

For input, if :node = 1HF, then normal FORTRAN
formatted read:.ng _is performed. If. moqe = 1HS,
then the standard field- free input is used.

For output, if mode = · iHF, then normal FORTRAN
formatted writing is assumed. If mode = 1HS,
then the standard partiall line writing routine is­
used.

The IO buffer area is searched for the channel
with name -unit- . If unit is found, then fnd
unit = name w~"11ere IOBUFF (name) contains the
name ..: unit-. If the channel -unit- is not found,
then fnd unit = ... 1. Note, an empty IOBUFFER
area channel l:as unit 0 assigned to it.

The IO buffer a.rea is searched. If the channel
with name -uni-t- is four_d, then it is dropped
from the IO bdfer area.. If it is not found, then
drp unit = - 1.

The channel with name -unit- is connected to the -
standard input/output channel area. If mode = 2H;IN,.
then it is connecte:i as c..n input channel; if mode =
3HOUT, then it is connected as an output channel.
The value of cnt unit is the name of the unit
connected.

I .
I.N
0
I

Subroutine

..! in (n, unit,. fmt, a)
s out (n, unit, fmt, a)

s cards (n)

s lines (n)

s spaces (n)

~page

s -s (string)

s nlcr

Table 1 - contd.

Comment

The n quantities a(1), •.• , a(n) are transmitted
from or to -unit- using the format -fint- .. When
in the FORTRAN writing mode, fmt is any valid
FORTRAN variable FORMAT including left and
right parenthesis. If the standard input/output
mode is used,, then for input fmt is field free
input and fmt = 1HA is character input. That is,
n characters, six bits/character ~repacked in a
left justified. Whereas~ for output, frnt can be
a valid FORTRAN variable FORMAT; provided /
and repetition of parenthesis, without repetition
factor,· and repetition of the FORMAT before the
a(i) are transmitted, are excluded. That is, the
line feed carriage return and/ or paging operations
are not done by the format while transmitting the
items a(1), .•. , a(n). A standard output format
can be invoked by setting fmt = 1HR, 1HI, or 1HL
for real, integer, and logical values.

n - 1 cards are skipped, the n-th card is the current
data card for standard input.

n new line carriage returns are performed on the .
current output unit.

n blank spaces are written on the current output
unit.

A page eject is performed along with a carriage
return.

The string -string- is output on the current out­
put unit.

A new line carriage return is performed on the
current out unit. Forces write on teletype.

I
IJJ ...
I

Subroutine

s h lim (left, right)

s v lim (top, bot)

if readp(p)

if printp(p)

~ in tab(calm)

~ out tab(colm)

.! ioparam(num, modes
names, value:

Table 2

Additional S·.1broutines for Setting IO Parameters.

Comment

The left and right margins are set on ·the .curr.ent output: unit •. Left = t
and right = 132 gives a full CDC print line •.

The top and bott·::>m margins are set on the current output unit.
Top= : in the first line the printe:;:- prints, bot= 60 would thus give

. 60 lines/page. The actual margins obtained is dependent on the
local printer margins ..

The present vah:.e of the reading poaiti;::>n pointer is returned. This is
the next position that will be read by a standard (field free) read on
the cur::-,ent inpu~ unit.

The present val~e of the print position pointer is returned. This is
the nex1 position that will be printed on. the current output unit in
standar::l (partial line writing) output m::><;ie.

The reading position pointer is set to the value of calm •. Thus, the
next position read ftom the current inp·.1t unit will be calm.

The print position pointer is set to ,calm. Thus, the next position
printed on the current output unit will be calm •

Num values of t~"le input/ output variables can be changed using ioparam.
Modes[i] = 0, (i = 1,.:., num), causes iov[name[i]] =value[i].
Modeli] ::: 1 causes value[i] = iov[.name~ i]] . For the input/output
variables iov, we, have the following: .

..
w
N
I

Subroutine

---,~~----- ·-~

~printer

~punch

~ inunit(unit)
~ outunit(unit)

~ iformat(field)
~ :rformat(fixed, field, dec)
~ bformat(field)
s oformat(field)

Table 2 - contd.

Comment.

items in common block IO

1- 8 inunit, .outunit, ifield, bfield, rfield, rdec, rfixe~, ofield,

9 - 14 otl, otr, otp, otlp, otrp, otpp,

15 - 20 iill, inr, inp; inlp, inrop, inpp,

21- 24 inrho,inrhop,outrho,outrhop,

25 26 std, fortrn,

27 44 ifmt(3), rfmt(6),lfmt(3), ofmt(3), stdfmt(3),

45 59 psifmt(3), psrfmt(6), pslfmt(3), psofmt(3),

60 67 lefts, rights, lefts 1, rights 1, .£ 1, r1, .£ 2, r2

Their definitions are given in Table 7.

~The current output unit becomes 61 for the printer or 14 for the punch.

.The current input/output channels are unit.

The format can be preset for those routines that are a preset format.
The formats are:

integer
real

(I field)
fixed = . true.
fixed = • false.

(F field. dec)
(E field. dec)

I
w
w
I

Subroutine

~ efile(unit)

Comrr.ent

Table 2 - contd.

·logical
octal

(L.fie1d)
(0 fie1d)

The fc.rmats are .sepa·rately set and are not ~estroyedwhen routines
using a variable format are called .. ·.

When usin?; this s.et of input/m~tput procedures, it is necessary to
use this subroutine to vvrite an end file.

I
w
H:o
I

Table 3

Derived IO Subroutines

Note: See Table
Current Unit
Variable Format

CiJ0
~ outi(i, field)

6 for argument definitions.
Current Unit
Pre set Format

C£0
if readi(i)
r£ readr(r)
.!!._ readb(b)
if readio(o)
.!!_ readro(o)

C1iJ
~ outii (i)

~ outr (r, fixed.,
~ outb(b, field)
~ outo(o, field)

field, dec) ~ outri (r)
~ outbi(b)
~ outoi{o)

(~_j)
~ inii (i)
~ inr 1 (r)
~ inbi (b)
~ inoi (o)

· Variabre Unit
, Preset Format
:C£0 .

if readii (unit)
.!!_ readrt(unit)
.!!._ readbi (unit)
if readioi(unit)
.!!_ readroi (unit)

! Variable Unit
Variable Format

ITi) QD
~ outi2(unit, i)
~ outr2(unit, r)
~ outb2(unit, b)
~ outo2(unit, o)

s outint(unit, i)
s outreal(unit, r)
s outbool(unit, b)
s outoct(unit, o)
s otar ray(type, n, unit)
s outstr(unit, s)

~??)
~ inint(unit, i) ·
~ inreal(unit, r)
~ inbool(unit, b)
~ inoct(unit, u)
~ inarray(n, unit, a)
~ instr(unit, string)

s outi3(unit, i, field)
s outr3(unit, r, fixed, field, dec)
~ outb3(unit, b; field)
~ outo3(unit, o, field)

Table 3 - c ontd.

Current Unit
1

Current Unit
Variable Format &_Dreset Forme..t

CiJD !4. .
s oti(i, string, field) ! ~ oti(i, string') . i

sotr(r, string,fixed,fie1d, I ~-otri(r, string) .,
dec) · ! s _otbt(p, string) i

~ ot b(b, string, field} ~ ctof (o, string) '
~ oto(o, string, field)

([!])
if ioi(i, string, field)
d ior(r, string, fixed, field

dec)
_!! iob(b, string, field)
.i!_ioo(o, string, field)

&£)
if ioi.l (string)
rf iori (string)

U iobi(stringl
..if. ioo 1 (string I

Variable Unit
. Pre set Format

<DJ
! oti2(unit, i, strin;) ·
;!. otr2(unit, r, string)
! otb2(unit; h, s'fring)
! oto2(unit, o, string)

Variable Unit
>: Variable Format

tiiJ

'.

! oti3(unit, i, string, field)
!. otr3(unit, r, string, fixed,

field, dec)
~ otb3(unit, b, string, field)
~ oto3(unit, o, string, field)

.CtiD CUJ ·cLTI G:D
~ outai(ia, I., u, field)
~ outar(ra, I., u, fixed_, field,!

dec) ;
~ outab(ba, I. , u, field)
s outao(oa,!. , u, field)

! outai1 (ia, J. , u)

! c.utar1(ra, 1, u).
~ outabf (ba, f. . u).
~ outao1(oa, f. . u)

.s outai2(unit, ia, f., u)

s outab2(unit, ba, f., u)
:s outab2(unit, ba, 1, u,)'
~ outao2 (unit, oa, £, u)

~ inaii(ia, 1, u)
l s ina r 1 (r a, .f. , u)
I -

(7. 2)

1 ! inabt (ba, 1 , u)
! inaoi(oa, R., u)

! inai2(unit, ia, ,e , \:.)
! inar2(unit, ra, f. 'u)
! inab2(unit, ba, f. , u)
2 inao2(unit, oa; f., u)

.s outai3(unit, ia, £, u, field)
~ c-utar 3(unit, ra, f. , u, fixed

field, dec)
! cutab3(unit, ba, f. , u, field)
! cutao3(unit, oa, P. , u, field)

I
VJ
0'
I

Table 3 - contd.

Current Unit Current Unit Variable Unit
Variable Format Pre set .Format· Preset Format

.. '"""'~.- .

..

!"

Variable Unit '

Variable Format
{8_~3J"

~ ini:mti(unit, fmt,ai)
.
.
.

s - input5(unit, fmt, a 1, , o • aS)
s in!:mtn(n, unit, fmt, a 1, •.• , an) -

,{9 ~)

~ outimti (unit, fmt, a 1)

.
0

.
s outputS (unit, fmt, a 1, ••• , aS -
s outputn(n, unit, fmt, ai., , an) -

I
w
-J
I

Table 4

Character Oriented Subroutines

Subroutine

if clength(string)

.! inchar<j>(source, colct,. string, i,length).
~ otchar<j>(dest, colct,. string, i,]ength)

s inchar(unit, string, i, length)

-~ outchar(unit, string, i, length;

if equi.v(stri.ng)

Comment

~The le.ngth (number ·of characters) of the string -_string­
is returned as the value cf c Jength.

If the character in position - coict- of array -source-
is foun:l in the string -string- of length -length-, then i
is the position count(from the left)of thatcharacter in
string with the first character having position 1. If the
character is not found in string, then i · = 0. If OOg is. in
position,colct, then i = - L

The i-th character of the. string -string- with length
-length- is stored in position -colct- of the array -dest-.
If i > -f, then OOg is stored.

The next character is read from the input channel -unit-.
The string -string- with lengt}_ :-length-. is searched; if
the character is found, then i :s its position in string with
the first character having position 1. If the character is
not fo1.:nd, then i = 0. If the internal representation
of the character input is 'OOg, :hen i = -.1.

The i- th character of the string - etri.ng- with length
-length- is output on the channel -unit-. If i = -1,
then OOg is output. If i > leng~h. then nothing happens.

The vc..lue of equiv is the internal representation of the
string -string-. Thus, :£ st:-ing (without .the delimiters)
was read using an A format :nto the variable x, x =
equiv(string) would be tl"!Ue. Restriction, only on word
is tranferred by equiv.

I
w
(X)
I

Subroutine

if charf(source, n)

s chars (dest, n, item)

Table 4 - contd.

Comment

The internal representation of the n-th character, ·
right justified zero fill, . is fetched from source and
returned as the value of char£.

The integer iterr:i is stored as the n-th character in·
. de st.. Item is assumed to be right justified zero

fill. This routine is the inverse of the routine char£.

I
w
-.D
I

Subroutine

·s iniodat

s set lfmt{b, field, lfmtt
s set rfmt(fixed; fiel::i, dec, rfrr:t;

~ dcintl(n, result)

if: chnsf(sf, unit, name, mode)

s store (item, unit)

~ wrt(unit, 2 , u, a)

Table 5

Lower Level Subroutines

Comment

This subroutine defines and uniticJize s the input/ out­
put variables in the common block IO.

A true or false logical fermat is set in lfmt with· field
·width -field-. A fixed (F;, or fleating(E) format is set
in rfmt with field width -field-. There are dec digits
after the decimal point.

The integer n is converte-d to CDC display code and
stored left shifted with blank fill in -result-. This
converts numbers to an internal representation suitable
for use in a FORTRAN variable FORMAT.

Chnsf establishes the characteristics for the input
(mode = Z.bin) /output (m::>de = 3hout) channel with
name -unit-. If unit already ·e~oeists, an exchange is
performed with the iobuff.er area. If the unit does not
exist, it is established either as a new or temporary unit.

The integer -item-, right justifie·d zero fill, is stored in
the. O.IE line output buffer, ~11ffPr '1o nf rommon block
buffers. Carriage returr:., line feed, and paging operation
are performed as required. [tern :.s assumed to be the
internal representation o~ a vaJid clharacter.

The array a(.£), ... , a(u) ii..E wri:::ten. via a FORTRAN
WRITE statement, on the output un.it -unit-. After
the completion of the write, the array elements a(£), ... ,
a(u) are reset to blank characters.

I
~
0

'

Subroutine

s readn(n, unit, a)

s writen(n, unit, fmt, a)

Table 5 - contd.

Comment

This is the field free input routine. . The data is identified
and the appropriate format is established.. Then the
incore formatted read routine DECODE reads ·the data.

An inc:ore formatted write is performed using the sub­
routine ENCODE. It uses the subroutine sto.re to
transfer to a one line holding buffer.·

. Appropriate action is taken for the special ~ormats (/);
(), (!Hi) representing a line feed carriage return,
blank character, page eject. It is assumed that not
more than two 140 character lines are written for one
call to writen. I

~
I

Name

mode

unit

n

fmt

string

-42- UCRL-19463

Table 6

Definitions

Comment

A hollerith constant spedfying a mode of operation.
For example, INMODE (1HS) gives standard field
free input. While CNTUNIT(Z, ~HlN) connec:ts unil 2

·as an input unit.

An integer specifying· an input/ output unit.

An integer representing how many. For example,
LINES(N) gives n line feed carriage returns,
OUTPUT(N, •••) outputs N ite:rns.

A FORTRAN hollerith constant of the form nH(.•.)
where ••• is any legal FORTRAN FORMAT. When
in standard (partial line) output mode, /, repetion of
pat·t!uthesi!!, and repetition of the format h.;-fnrP.

exhausliou uf the list are not permitted. In addi.ti c:m,
the following are permitted for output formals:

UIR Gtandard format real :F:21. 14
1HI . standard .format integer I23
1HL standard format logical L23

If the string is to be printed, for example OUTSTR
(STRJNG), then a hollerith constant o£ the form nH(•••)
where •.. is the usual FORTRAN text such as >:<TEXT>:<
or else nHTEXT. If the string is used in a character
routine such as C LENGTH(STRING), then a hollerith
constant of the form nH(>:~ .•. :.'<) where ..• consists of
any valid alphanurneric characters. Note that (':' ... ':')
is also a valid CDC FORTRAN [6] format string so
that there need be no conflict if all strings are written
as (* ••• *). If the string is read in, then it is of the
form (~:<TEXT':'). INSTR(STRING), OUTSTR(STRING)
will input and then output, but the delimiters are missing
from the printed string and must be supplied to again
input the string. Note: The characters >'~), asterisk
right par en the sis with no blank, cannot appear within
the string. In partial line writing mode, the string must
be of the form (*TEXT*).· The length of the string i~
unlimited.

Name.

a

left

right

top

bot

p

field

dec

fixed

i

r

b

0

ia

ra

-43- UCRL-19463

Table 6 - contd.

Comment

An array

An integer specifying the left n1argin. The first
character printed appears in C•>lumn left.

An integer specifying,the right margin. The last
character printed on a line wiL always be in a
column less than or equal to right. Overflow is
printed on the next line startin;.; at the left margin.

An integer specifying the top rr.:argin of the page.
The actual position of the margins depends on the
printer overflow margins. A F age eject is performed
by writing a 1 in Column 1 and : .. illing that line with
blanks. The next print line hat; top = 1.

An integer specifying the bottom margin of the page.
CouJilting from top= 1, bot is he last line printed
before a page eject is performc,d ..

The column position of the next item to be read/
printed.

The total field width that the printed item will occupy.
The number, or logical value, is right justified in the
field.

The number uf digits to the right of the decimal point.

The value . TRUE. means F format. The value
• FALSE. means ·E format.

integer

real

logical (Boolean)

octal

integer array

real array .

Name

ba

oa

u

type

ai,a2, •..

source

des~

if

rf

s

-44- UCRL-19463

Table 6 - contd.

Comment

logical (Boolean) array

octal array

Integer specifying the lower boq.nd, first element
a[J'l. •

Integer specifying the upper uuuut.l., l.u,l dt::inent
a[u] .

·iHR
iHI
1HL
1HO

real array ·
integer array
logical(Boolean) array
octal array

An argument of an arbitrary type. Obviously, it
must agree with the format specification.

An array from which quantities are n~at.l..

An array into which quantities arc stored.

integer function

· real function

logica.l function

subroutine

Common
/IO/

1

2·

3

4

5

6

7

8

9

10

12

13

14.

15

16

17.

-45- UCRL-19463

Table 7

Common Input/Output Variables

Variable
Name

in unit

outunit

ifield

. bfield

rfield

rdec

rfixed

ofield

nt.l

otr

otp

otlp

otrp

otpp.

inl

inr

inp

Frese~

Value

60

61

23

10

23

14

. false.

23

1

132

132

5

60

60

1

73

80

Variable
Definition

The current input unit. Sometimes
called lstin.

The present output unit. Son1e­
times called lstout.

Preset integer field width.

Preset logical field width.

Pre set real field width.

Preset number of decimals in the
pre set real field •

Preset selection of fixed(. true.)
or floating (.false.) point ~epre­
sentation.of real numbers.

Pre set value of the octal field width.

left margin - output

right margin - output

number of characters per line -
output.

top margin - output

bottom margip - output

number of lines per page - output

left margin - input

right margin - input

Number of characters per card
(line)- input

Common

/IO/

18

.19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35'

36
.37

Variable
Name

inlp

inrp

inrpp

in rho

inrhop

out rho

outrhop

std

fortrn

ifmt(1)

ifmt(Z)

ifmt(3 >

rfmt(1)

:dmt(2)

r£mt(3)

rfmt(4)

rfmt(5)

rfmt(6)

lfmt(t)

lfmt(2)

\

'

..,46.., UCRL- 19463

Table 7 - contd.

Preset Variable
Value Definition

1 first card(line)- input

1, 000, 000 last card (line) - input·

1, 000,000

81

0

1

·5

1fi~

1HF

2H(I

1H)

1H(

1H.

1H)

2H.(L
2H23

;Next c ha.racter read is in
column inrho

The number of cards (lines) that
have b.een read.

The next character output is 1n
column outrho

The current output line is outrhop.

The variable integer format is
ifmt. The field width is placed
in ifn'lt(2).

. The variable r~al formr~t i-;; ifmt

E or F is placed .in rfmt(2.)

The field width is placed in rfmt(3)

The number of decimal digits goes
in ifmt(5).

The variable logical format is lfmt.
The field width is placed in lfmt(Z)

-47- UCRL-19463

Table 7 - contd .

.:

Common Variable Pre set Variable
/IO/ Name Value Definition

38 lfmt(3) 1H)

39 ofmt(i) 2H(O The variable octal format is ofmt.
40 ofmt(2) 2H23 The field width is placed in ofmt(2).

41 ofmt(3) 1H)

42 stdfmt(i) 2H(O A standard octal format is furnished
43 stdfmt(2) 2H(23 by stdfmt.
44 stdfmt(3) 1H)

45 psifmt(i) 2H(I The preset integer format is psifmt.
46 psifmt(2) 2H23 The field width goes in psifmt(2).
47 pslfmt(3) 1H)

48 psr£mt(1) 1H(Pre set real format.

49 psrfmt(2) 1HE E or F is placed in psrfmt(2).

5.0 psrfmt(3) 2H23 The field width is placed in psrfmt(3).

51 psrfmt(4) 1H.

sz· .. psrfmt(5) 2Hi4 The number of decimal digits is
placed in psrfmt(5)

53 psrfmt(6) 1H)

54 pslfmt(i) 2H(L Pre set logical format.

55 ·pslfmt(2) l1-i1 u The. field width is placed in pslfmt(2).

56 pslfmt{3) 1H)

57 psofmt(i) 2H(O Pre set octal Forrnat. The field
width is placed in psofmt(2).

58 psofmt(2) 2H23

59 psofmt(3) 1H)

60 lefts 2H(>:< Left string delimiter - tnte rnal.

Common
· /IO/

61

62

63

64

65

66

67

Common
/BUFFERS/

Buffer(1)

Buffer(i4)

Buffer2(1)

Variable
Name

right s

lefts 1

rights 1

L1

R1

L2

.R2

iOH

10H

0

Buffer2(37) 0

.Buffer3(1) 10H

Buffer3(14) 10H

-48- UCRL-19463

Table 7 - contd.

Preset
Value

2H*)

2

2

2

Variable
Definition

Right string delimiter - internal.

Left string delimiter - external

Right string rlelimih~r - external

The number of characters in lefts.

The number of characters in rights,

The nurnber of characters in lefts 1.

The number of characters in rights 1.

A Ullt:: liut:: iHJJ!J.L uuf.ft::~' into which data
is read by a standard FORTRAN
READ statement.

It is initially set to all blanks.

The incode formatted write using
ENCODE writes into this buffer.

Output lines are constructed in
buffer3 which is then written using
<1. ~;tanda rd FORTRAN WRTTF:
s La teu1ent.

•

Common
/IO BUFF/

1

2

3

4.

5

6-131 .

-49- UCRL.,.19463

Table 7 - contd.

.Variable
Name

Name

Max Name

Bufflth

Chlth

Chnpbuf

Iobuff

Preset
Value

106

14

7

21

Variable
Definition

A variable that is used to locate
the names of the units in the input/
output channels stored in the array
iobuff. The name of the unit is in
iobuff[name] .

The maximum location in which
an input/ output name can be found
in array iobuff.

The length of the one line buffer
associated with a channel.

The length of the channels in
which are stored the unit character­
istics.

The total length of the channel and
one line buffer. Thus, Chnpbuf ==

c hl th + buff! th.

Unit 60 for input and unit 61 for
output are originally set. This
array is used to store up to six
input/ output channels with their
associated characteristics .

*deck A
iniodat
set lfmt
set rfl11t
ucinll
ehuof
stor~
wrt
inmod8
outmode.
fndunit
drpunit
cntunit
in
readn
out
writen ·
charf
chars
clength

!lideck AA
in
read 1
datai
rdnum

•l•dt!ck B
cards
lino s
spaces

.page
1!1

*deck C
hlim ··
vlim ·

*deck D
read p
print p

. . ',

-50-

Table 8

Subroutine Origination

*deck E
in tab
outtab

·,:~deck F

ioparam
::·deck G

printl":r
punch

?~deck H
in unit
outunit

*deck I
informat
rformat
bfurmat
oformat

*deck .T
. P.filP

t.<deck K
inchar~
utchar0

'!<i!Prk J.,

in char
outchar

>'o<deck M
equiv

UCRL- 19463

..

•

-51- UCRL- 19463

EXAMPLES

See the following pages.

:-iil\1)1102
iiOOM?.
~0!\<~0?
iiQ!'II{l2
nl)l)r-n2

0

PRO(jQAM T!':ST (Tt-JPUT:l11nO .O•JTPUT:] :Ill!!• T.:.PF.:6·i=!NPUT tTAPF.:<.1 :OUTPUT, ,
HPfl = 1 \JPUT • T ~ P~2=C\J TPUT l

P.l: r.t 'II
· I~T~G~R I,J,REAOI

1 NTFG~="I? c~~ r,_,NJT
Ln<HCfiL B. REAOP
qc:r11. lltRfAOR
Jc CN.TI_Ir<! J T ('? r 3~0UT)
J"= CNTIJ~!IT I 1, ~HJNl iiorr.ll4

ftQ/\1\l(\

i'rtorll
· -- ··--- C.IILL OUTMOOE Cl !-'Fl

; iin~'l 13
'ii(l,'l15
' r; Ill) Ill 7
~nn~.~J

.-no!"' ?.3
;.-;;1)1'!_11?5
; : iil)rtn?.6
: ;;,on?7
;." ;;(10" 31
• 'i(lllll33
' .. ftl\(\1\36

F.nt)l"lol)

;;'l!ln42
tino"4'•
~(\1)1147

I ,;111',~2

j('!)l"55
1\(\.'1"57
'1~1)11(.}

~~1)11~3
i)(rn·n 63
iinrn70

CALL HL!M(2tl30l
Qr) }I) J=l·?
CALL nUTSTRC?tl9H(O TH15 TS OUTSTRO)~
CALL c; 115H (o T~IS IS .5 O) I
C~LL n•HP•.•T<2•19H<1) THt·S IS OIJTPu>.oll.
C'ILL UI\JE<:t?:
~= • TPIIF.:,
A: lo!l

T= ~
CALL OIITPIITl :2,1lHI• Ac*Ftio?.l tAl
Co\LL t')UTPUTl :?, 9H<• 1= 0 IS>.Il

· Clli_L UIIJES !?.1
CALL nun 1 r .?l
ChLL OUTI !J.,]()l
C~LL OUTP(A •• TP.UE.,),))
CALL OUTRI~t.TPUE.tlOtll
CALL OUTP(A,.•ALSEo!lO,J)

--CALL LINES!2)
Ct.LL f1IJTR(R,f.:l
J=PEt.f>T!ll
4: REAOQ(ll
A= RE1108(1l
Co'LL TFOR~1ATt5l

:. iini).l\71 --------·-··--·-­
~f\11"74

CALL ~•nRMATCoTRU~ •• 6,31
CALL RF0R~IITClrl .

' ~('1)'176
,;1)!)}00

. "fl 'l' n:?
ir,nl (1:,

! __ F,n.n t !i6. ·····~---- ---·
~C!lllO 111
~1\!11!2
i\~!1113
500114

CALL nuT !I'·!T 12, T l
C~Ll ~UTRFAL(~tAl
C~LL 1'\IITRI'\01_ C?.~_q
C:nLL UNFS !?l

--· C·'LI.. 1'\(ITf.i()I"H:: (1 ~sl
cniHI~<!U~
C'ILL Dll(";f.

CnLL PLOT

.PROt-RAM LE'I:GTH INt:LUr:Jl"IG l/0 RliFFF"RS
~t'l?:>62

MAIN.2
MA!N.J
~AIN.4

~AIN.S

MAIN.&

MAIN.B
MA!N.9
~AINolO

:-!A!N.ll
MAIN.l2
• 'JO.lO.
MAIN~l3
~AJN,l4.

MAIN.15
..,I> IN.!~

1"1AtN.l7-
"'AIN.:l!!
MAIN.lq
"'AIN.21)
MAlhl.21
MAIN.22
~AIN.23

"''AIN.24
"'AIN.25

_1.1AIN.2f,
MAIN.~7

MAIN.2A
-- MAIN.29

MAIN.J')
"'AIN.31
"'AIN.J?
"1AIN.33
"'AIN.34
MAIN.Jc; ·-···­
i'IAIN.36
..,IIIN.37
t•fAIN.3A
MAIN.3q
MAIN.4n

1

- - ... ---. ·- ---- -·-------------

I
1.:11
N
I

·- Mlo IN. 41 . ·-- . ·-··- --- ··-· ··-·. ""-···-·--·· --- -·--. -· ·-· ----
MAIN.4~

MAIN. to)

MAIN.44
MAIN,~S

c::
()
!x:l-
t-<
I

.....
-..o -·---·---- -------- --··-~------···

..

0'
w

nrtonnl
n(lnnl)l
~(1111)01
ti(lnno3
r.nonfl5
il(lOil'l6
;,oonl~
nntln12
"nn!'l4
iii)Qnl6
i'(.lnro;>(l

·r.olln?.2.

iinr,n~~
ii('~fl?7

i'1111n:n
iionr'~5
ii00"137
;;(1"1141

iionnt.3
r.o1Jn4n
i'r.'ln51

~-

--ll\
0·

·0 ..

i.nf')n55 21'1

f\!\01'1~(1
iiol'ln~z ·
ror.r64
iir.(ll'!{-5
;,')()nF-.7

tioor.71
-ionn:'l
n'lOI17A

!-')')11'11'1
""allll
"an1o3

·- n'l(\1 05
'-orq 07
~I'),, 1 1
(\no];>()
iin~"~1:::>3
t\r-1'12~
tin:-~1311

· n ~in 1 ~2
tinn134
ii(ll\136

~00142
il(l n 1 4'•
""014f
;":1150
~cr1s1

0

I'

. ,
SUqRf)IJT!t--E PL!'H
~F.GPJ

END

INTfG~"Q Jot
Rr::~L DJ,r)ELTAJC,l(
P!= 3.14}C:93
CALL V LIM!1t6ll
CII\..L 0 AGF..
C!\LL L lfJES I 11
C:'>i_L c;P ~CES I Sn l
C~LL ~(\QHC~CSIN!XI0~2l 0 1QOO))
CIILL LINES! 3l
CALL c;?ACF:S < t1 i
CALL JF0Rt-t.IIT(3l
Ot"l 10 J=ldlOol(l

F.: hi'~

c~LL nuTn !J-11
CALL_SPOC~SI7)

CaLL LI!I.JfSill
,Ct.LL ~PIICF;:S(9l

CfiLL <;("iH(O,j.l>) l
on ?.n J= lolOOol

E~rl')

I=CJ/l(l)U}()
I~!I.~O.Jl CALL S!SH(~,j.~)l
IFCT.!I.JE.Jl CALL SC5H(~,. .. ll
CONTINUF.

nr::LTAX= ((?.ttPYl/SOo)o~,

X: f)F.LTIIX
CALL U'llESill

C.~l.l SPACF.S!9l
CII.I.L c;c"iHI*-1-*ll
cau LFJF.Sill
CALL R~OKMATI.TRUE•o3oll

0'1 ~I) J = l '? 5. 1

EW~

CIILL SP~C~S!2l
CALL <;!7~!*X= O))

c 6 Ll. n u rr= 1 1 X l
CALL <;PAC::S (l l
ChLL s (<;H (li.,j.O))
I= ISIN(Xl*•2 ° 1001\oOl/lOoO • .00001
CALL SPACES!I-ll
I~ll.NE.n) CALL SCS"l!tt.o))
CIIU Llh:FSil l
Cfll.l SP~C":S ('1)

CIII.L s (':;>< (O,j.'*))
CALl_ LTNES!1 l
X= ~+f)F..!.TI\X

CII_L LINFSI1)
C~ L <;(?q~(o TH~ AROVE IS A TEST PLOT~>))
C fl L !_ T'JE <;I 1 l
R• 'JRI.I

1-lAIN.46
"11lli'llo47
t~ll IN .;4_R
MAlt~.49

MAIN.50
MAIN. 51
'14 TN. 52
MAIN. 53
MAIN.54
"''Ait~~·.ss
'"1AIN,5t,_
"'1 A I l>i,::, i
"'A I Ill. 5~
MAIN,59
"'ATN,60
MA!N.bl
M0JN.6~

MAlN.63
'1AIN.64
r~AIN.6t:;
MA}N 0 6~
"'ATN,67
MAIN.Aq
MAP..J.n9
"AIN.7rt
I~AIN. 71'
MA!N,72
MAIN.73
MAIN.7t.
t'AlN.75
~A Pl. 7f:o
'4AIN,77
MAIN.7R
MAli\1.79
"'1AIN,80
MAIN.I:ll
MAIN. I:!?
MIIIN.A"::
MAIN.84
'1A!N 0 85
MAIN.B6
"'AIN.87
MAIN.8~

MAIN.89
"1A!N.~IJ

MAIN.9l
MA!No42
"'AJN.93
"'II!N.94
MAIN.9S
1"-A!No'iA
MAIN.97
~~A!N.91l.

MAli\1 0 99
MAIN,l00
"'AIN.ll)l

(.

... ---·- ----------'-

I
U1
w
I

·-- c::---- ···- ...
()
!XI ...
[-<
I
.......
~
~
0!'­
w

,.
,\

i­
~ · ..
I
I
ti

f·
!

.!I
loi'OO

1oi'!"I'E+QO

TRU~ ,
1.~~0

FALSE

·-··-----·~·-- ···· _:_

.· ...

-- ~---····

----~-~-~

---· ------·-~

I
U1
~
I

-c;:----.
()

- -· ;;t·

~-....
-.!)
-~--

0'
.I.N

THIS IS O!JTSTR THJS IS. s
..
b: 1.oo . T: ?.

2 21.0 lo'10(1

--·---"· --.--- . ·-- --·-·--
TRUE 2 2.5('r.

THIS IS ClUTPUT

l.OOf'IE+OO

T"'' •c:-{"'IV_

•••

·-··-··- --·--·--· ·----

' i.n
U'1
I

-·---·-·----------·---~---·--·

- - .----- ___ e·.- ·--·- ---
o.
!::d -
t"'
I

-.!) -'*"' -·------
0'­
IJ.,)

.. X:: • 3

-·--·--X::· .s
·-Xi: • 8

:

·x= ·lo 0.

··X::· 1.3

i :

·X= 1 ~ 5
I

' X:: 1.~

1·, X::·-2o 0-

I X:: 2.3
i.

)(:: ?..S ,.
···-)(::- ?..8

. X: 3.(!

)(:: 3.3

lt: 3o5

X:: 3o8

)(: 4.o:

·X: 4.3

X: 4.5

X: -4.8

X= s.o
lt: 5.3

X: 5.'5

·)(: 5.8

X: 1-.,Q

X:: 6.3

------------~- ·------. ---------
n 10 3r- so 6!1 70 eo. 90 100

·~~~~~~~~~·~~~~~~~~~·~~A~~~~~~·~~·~~~~~~·~~~~~~~~~·~~~~~-~~~~~~·~-~~~~·~~~~~~~~··~~~~+~~~~·~~~~~~~~~·
• • • ... --- .. ~-. -···-'-- ----
• • ·-·

• • • ·• ···- --- -~ ---- -·
• ..

;

• ··i;
• ... ------- -·-···-.

• •
• ..
• • ·······--····

• ••
• .•.
• -------·-· .. : -..
•
•
•
• .. '. '
•
.:.

• • • ...
. .j.

•
.j.

•
• •
"'
J.

•
•
•

•

- -· ·•

. .

..
.

;• -: ... ---- ··--·---- ····-- ____ : ______ ...:._

-- ··- ~.,..... ---·-· ·--- ·--

•

I
\Jl

·----- ·-- -· 0"
I

_, ------· ---·-'-·-----------------,..---

..

-: -------·····'---~-- ····-- --·---- ---

•

--·-----·---c:-----.-
()

.---·--;;;·- ...

~
.I
.....
-D

--~-----· --
~

TH~ A~~v;:_: TS t. TFST PL'H

••• \. '!.· • :~

'<,·

••

-57- UC.RL-19463

The program TEST on the next page will echo what is input as

(>:<text*) and will stop on (*(STOP)>:').

When run as

LODE(!= LGO, L= RLIB)

XEQ(TEST, TAPETTY, TAPETTY)

it :iwill talk with a teletype·o

-58- UCRL-19463

PROG~ AM Tf.S T (T NPUT=30 0 t OU TPl1T=30 t:h TAPE 1 =INPUT t T APE2=0U'T PUT) '·
ct · REGIN

lNTF.GER STR(lO) 000002
000002
000002
000004
000006
000010
000012
000013
(}00015
000017
000021
(100023
000024
000030
r.00031
000032
000034

INTEGER I,J,CONTROLtRFAOJ,fQlJIV
. C.ALL INIINIT (1)

C/\LL OUTUNIT(C!)
CALL S(19H(~ START pqOGRA~,ct))

CALL S<?5~(~ TO STOP fNT~R (STOP)~))
C.~LL NLCR

1 CALL IN~TR<ltSTR)
·CALL SPACES(7)

CALL S(PH(O// ~))

C~LL OUTSTR<2,STR)
CA.l.L NLCR
IF<EQU!VfSTR).NE.~H(STOP)) GOTO 1

. C.Al.L S (1 9H (~ £1'10 OF PROGRAM1)))
CALl. NLCP.

STOP
ENO

PROGRAt-1 LENGTH INCLUDING 1/0 BUFFERS
000756

. FUNCTION ASSIGNMENTS

STATF.Mf.NT A~sJr,NMENTS
1 0000}4

RLOCK NAMES ANn LENGTHS

VARJAALE ASSIGNMENTS
CONTROL• OOOli~ EQUJV 000113 I

START OF C0NSTANTS•OOOD37

ROUTINE COMPlLFS IN 041000

TfMPS--000!171

o·oolo7 J 000110

J
·-59-· UCRL-19463

References

1. Kauth, D. E., et al, A Proposal for Input- OUtput Conventions

inALGOL 60. Comm. ACM 1(1964) 273-283~

2. 3000/6000 ALGOL Generic Reference Manual, Pub. No. 60214900,

Control Data Corp.; ·3145 Porter Drive, Palo Alto, Calif.

3. BC ALGOL Manual. University of California, Computer Center,

Berkeley, Oct. 1966 (third ed).

4. DeVogelaere, R., Algorithm 335, A Set of Basic Input- Output

:Procedures, Comm. ACM !..!._(Aug., 1968), 567-573.

5. Naur, P. (Ed.), Revised Report on the Algori1hmic Languf!.ge

ALGOL 60. Comm. ACM ~. 1 (Jan. 1963), 1. .

6. 6400/6500/6600 Computer Systems FORTRAN Reference Manual.

Pub. No. 60174900B, Rev., Nov. 1967, Control Data Corp.,

3145 Porter Drive, Palo Alto, .Calif.

7. 6400/6500/ nnOO C:omputer System SCOPE Reference Manual,

Pub. No. 60189400, April, 1967, Control Data Cu.rp., 3145

Porter Drive, Palo Alto, Calif.

•

r------------------LEGALNOTICE---------------------.

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

t
l

..
TECHl'w..,nL INFORMATION DIVISION

LAWRENCE RADIATION LABORATORY
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.,

