To be submitted for

UCRL-19463

publication Preprint
S HOILn;
N
Sy
" AN EXTENDED SET OF FORTRAN
= INPUT/OUTPUT ROUTINES
j E. Close
v,
' February 16, 1971
AEC Contract No. W-7405-eng-48
(e
: Q
| , * c
LAWRENCE RADIATION LABORATORY «;
o
W

UNIVERSITY of CALIFORNIA BERKELEY

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government, Neither
the United States nor the ‘United States Atomic Energy
Commission, nor any of their employees, nor any of
.| their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
| legal liability or responsibility for the accuracy, com-]

leteness or usefulness of any information, apparatus, _

groduct or process disclosed, or represents that its use UC RL 1946 3
" would not infringe privately. owned rights,

TOWARDS A MORE GENERAL SET OF FORTRAN I/O
. SUBR OU TINES
1. INTRODUCTION

VOv-e:r' tl';é pa'stAnunnAbAer' ol yeers there hé.s evolired in ALGOL
a style of mput output that has no direct equwalent in FORTRAN. In
part1cular, the FOR TRAN READ/WRITE routines read/write one or
fnore cards/hne's fo;. each call and, _as usually used, there is a closely
. as sociatea format stafefnent for each s.uch' operation. In ALGOL, however,
Tt ibs .pos's'i;o'le'to read and write item-by-item [i; 2] and the foxlmating
of these oéeratiox}s can be preset in a rather convenient fashion [3,4].

‘This ciifference in iqput/output'is, in general, not because of the
' differencé in the languages; but, inetead, seems to be one of style and
efahdafdizetion of fﬁe earlier FORTRAN approach. In certain epplications;
it i‘s“ advjan,ytagveo;ls to have the item-by-item control that these routines
provide. Relaw is presented a sct of basic FORTRAN subroutines that
.}'Tav"e. been"d,eri{ze‘d from [_1, 2,3,4] . They heve, in so far a.s possible,
- the same names, calling sequences, and 'effect as their ALGOL equivalents.
The routinesv naturally divide themselves into classes. The first
| "(Table 1)‘is a basic set of input-eutput r.oﬁtines that provide a small self-
co‘n-ta..inedAsyste.rn containing most of the features of the I/O package. Next

(Tab,ie 2), is an additional set of subroutines that allow the user to set

input- output parametefs and, thus, gain greater control over the data
transmission. A third set (Table 3) are deri{/ed routines that follow, to

@BTRIBUIION OF TINS DOCURENT IS UNLWMTDE@

-2- UCRL-19463

a certain degree, the Berkeley sfyle [3,4] of inp‘u-t- output.

‘ A few elementary character handli_l;lg routines are furnished
as a separate class of subroutines.{Table 4).

In so far as is possible, the routines have the same names, calling
s.equ:enée‘s, and effect as their ALGOL equivalents[i, 2,3,4] .
| ATho ﬁser--oriented subroutines (Tables 1, 2,' 3, 4) are all based
ull 4 _ll.UwéL"le'vel ‘bel, "IJI subruulines (Table .5) that actually cariy vut suuch
of?the work. .These, tob, have been isolafed separately and wr’iften in
FORTRAN. It is these routinés that are most system dependent and for
the purpose of unde rstaﬁding, the input-output package can be considered
to be b_l,a_ck boxes. Once it is understood what the overall picture is and
hdw the l;'sef-oriented routines work, then these lower level subroutines
na‘tu‘ralvly.fall into place and are rather easy to understand since they
" actually implement the package.

While, at first glance, it may appear that such a set of input-output
‘.,rout'ines is expensive. in coding and time, it should be remembered that
it is the overall style and structﬁre‘that is beipg presented and that the
‘ideas and structure are simple. ‘Thus, a properly rewritten ['ORTRAN
;/O package co-uld‘easily, I believe, contain Athe usual FOR TRAN routines
aﬁd also an expanded set of routines such as a;'e presented here. For
- the present, HQQevér, this is presented as an, essentially, étand alone
p'acka.-gé :of FORTRAN subroutines.

Sections 2 through 7 that follow describe, in general, the ideas

-3- S UCRL-19463

associatgd with the various classes of routines. | Appendix A has a more
det#iled de'sc'ription of some selected lower level routines that will help
vur‘lderstand key pointé; thus, easing the task of modifying these routines.
Appendix B gives some examples to illustrate the s‘ize of this subroutine
p'atklage :and_ séme pertinent comments on their use. For the person who
wants to simply'usé the foutines, Tables 1 — 4, Table 6,‘ and Appendix

B should suffice. -

2. BASIC USER-ORIENTED SUBROUTINES
" The basic user- oi‘iénted subroutinés are tébuléted in Table 1 along
with a comment that should help in understanding ﬁheir proper use.

The first two are INMODE, OUTMODE that select the mode of
input,’ c;ﬁtput. " The following convention has been decided upon. There
shall be two input and fwo output modes. One of these is a standard mode,
s.ele'ctte.d by calling by calling INMODE or OUTMODE with the hollerith
clons,ta.nt' 1HS. " The other is a FORTRAN input— out mode in which standard
FORTRAN read/write routines are used for all input-output and this is
se‘-lle'ct_e‘:d by calling inméde or outmode with the hollerith constant 1HF,

: The o.rig:in'a,l selection at compile timé is standard input aﬁd standard
output ii"ia a data statement.

| ’I_‘herAeA is complete compatibility between the standard and FORTRAN
 mode; howev.ei-_, a certain amount of care must be taken when switching

modes since the same I/O routine called in two different modes will, in

-4- | ' UCRL-19463

‘ gene.ral, pi—oduCe two different output actions. More will b‘e said about
this later.

T—ﬁe next three routines, FNDUNIT, DRPUNIT, CNTUNIT, are
usebd', ' ;éSpectively, to find, drc;p, and connect the unit that appears as
theif iritegeil argument. A more complete discussion of how the input-
output ,chénneis are arranged can be found in Section 6 where some of the

. ideas connected with the lower level routinés are discussed. 'I'he following
short sumrl;lé.ry will prove sufficient to use the>I/O package.

=All.’che iﬁput/output done using the user- level routines works
thz"ough‘ one input/'-output channel that is designated the current input/ -
output channel. Initially, the vinput channel is selected as 60 and the
. output channel aslbi.'via‘a.v data staéemer.lt. However, another choice can
" be 'n-'xade by a call to 'tl"1e subroutine CNTUNIT. For example, I 5 CNTUNIT
(2, 2HIN) will set I>= 2, the name of the unit connected, and will connect
unit 2 as the current input unit. The previously connected input unit, 60,
is s,toréd. In general, this routine will suffice for the user:. However,
since storage space is finite, the number of units that can be stored is set
to six. Thus, the subro‘ut{neAFNDUNIT can be uséd to find a urﬁ[. For
éxampﬁe, I= FNDUNITA(¢) will establish whe?her more storage space exists
for storing' units since I = -1 implies that there is.no unit with name zero;
‘that is, no empty place to put another unit. And, similarly, DRPUNIT
c'an be used to purge a unit from the storage area if more space is needed.

. It should be noted that a unit can aiways be connected, even if there

-5- - UCRL-19463

is. no pll‘a"c‘e: to put the currently active one that it is replacing. If there
" is no 's.Atbrag'e é.vaiiabie, the currently active unit is dfoppéd and the new
'one conpeéted. It c‘an be reconnected; it will, ho{vever, be treated as a
new”uni‘t and thus t.h.e_channél'characteristics will be reset. This dropping
of é. uh{t'does.not hecessarily\imply that the one line of information is lost.
- The exaAclzf:effec't'of this unit switching'depends on the imi)lementation of the
loWe r le,vél réu'tin,es.

| 'I‘he two basic input-output routines are IN and OuT. All othér
ro_u‘.ti‘né)s .tﬁa't,tl;an.smit data, such as INREAL, dUTREAL, are based on
.calls to IN/OUT. Thi-s:has b'een deliberately dope s that the exact code
th.at"cé'n‘-stit"utes their body can be written as is most suitable. The inf)ut
- routin;: iN(N’, UNIT, FMT, A). transmits from the input channel -UNIT-
the N 1tems A(1).. , A(N) acCordiﬁg to the format -FMT-. The output
routine OUT(N, UNIT, FMT, A) behaves similarly when vs-/riting on the out-
puf channel -UNIT-}. ‘4 |

These two routines we re principally designed to work in the standard
‘ ipput- output mode. As implemented.in the lower level FORTRAN sub-
routines,f thé subroutine IN does a simple formateci READ(UNIT,FMT)
(A(i),.i =. i,‘N) 1n the FOR'TRAN mode and completely ignores the format
in fhe stanciard mode, fmt = 1HS. In the character mode, fmt = 1HA, n
. charé.,ctéfs are packed into A left justified. The output routine QUT does a
Isimple:f:o_rAmate.d WRITE(UNIT, FMT) (A(i), I= 1,N) in the FORTRAN mode

and in the standard mode it also does a formated write. The result is,

- 6- ‘ 'UCRL-19463

essentially, the same formated write except in the FOR TRAN mode the
next call to- QUT .wi_ll start on a neQ line in the usual E;ORTRAN fashion;
'Wixerea;.-s, 'Vin fljx"e_'s.tandard mode, the write will start in thé’ neth column
after :the la;t printed character of the preceding output transmission.

I mighf nofé in'pas sing that the simple expediency of being able to
use aiFOﬁ.{T'RAN WRITE statement or a REAb statement in a mode similar
to thé: he‘l’-'e.;defined standar:d modé would eliminate the need for IN and OUT.
‘And,' asA'v_vill be seen shortly, keeping track of priﬁt and read positions in
a; use?—addreséablezmanner would also bé quite useful. I point ithese out
bevéausg"i.t .isv not easy to dire‘:c.tly modify some of the existing systems
inth;t/'cS\;tpﬁt routines, even by people who know the system. The five
'subrgdfiriés’ CARDS, LINES, SPACES, P'AAGEA, S complete this basic list.
CALL CAR:DS (N) skips N-1 cards on the currently active input unit, the -
f;-th 'éa'rd is then the current data card for standard inpu-t‘ and is in the one
line holdi;'ng buffer'.‘ CALL LINES (N), produces N line feed carriage re-
turns on the _cu_rrently active oﬁtput unit, while CALL 'SPACES (N){priri_ts
N blanks on the cufrent:ly active output unit, This illustrates two things:
one is that such routines should not need the CALL associated with FOR'I'RAN
pr(‘)gz"iav.ms' and the other is that whenever a unit is not specified in the
ar"guz;nent Iist, the routine operates on the currentiy ac.tive unit. This ‘L'lnit
is fhe laét unit>_set up by some definite action‘; for exar;lple, the compiler
via a dafa.st'atemént ass'igns 60, 61 as input'/‘output units. Likewise, any
call to a routine with a uni.t argument will make that unit the cux;réntly

active unit.

-7- ‘ UCRL-19463

_ Sﬁb'}oufine PAGE pérforms a page eject faliowed by a carriage
return. " The top and left margins are set to the .current system values.
| Subroutine S outputs the string STRII\.IC';,. In ALGOL, a string
is well defined. Thus, a nice convenient way of éﬁtputing text is to say
.OU"I“STR'ING>(TEXT).. This can be cllone here‘by deﬁning STRING to be
" any valid hollerith constant that is itself a valid. 'FOR TRAN format.
N 'fhis, then, completes the bé.sic set of routines. - The simple
subfoutiné below illustrates their use:
SUBR (_)U"i‘INE TEST
" CALL OUT MODE (1HS)
~ ,cALL PAGE
CALL OUT (1,2, TH(3F6. 2), 1_0-.'2 1)
CALL S(19 H(*THIS IS A TEST*))
'RETURN
END "
| A cai_l to TEST would produce on unit 2 starting on a new page
10.21 ‘THIS IS A TEST
On the-other hand, if we call OUTMODE with {HF, thc results
are 10,21, |
THIS IS A TEST. .
3. @bITIONAL SUBROUTINES FOR SETTING 1/0 PARAMETERS
'~ The subroutines discussed here and tabulated in Table 2 all

deal in some way with the current input/outpuf unit depending on whether they

_—8- UCRL-19463

arﬂe input or output action. The current unit is. défined to be the last
refereﬁqed unit.v The.compiler, via.a data staterﬁént, initially set;s the
cu'.Arl'rent input unit to 60 and the current output unit to 64.

' The two s;lbfoufines H LIM and V LIM are margin setting
foutine;; ’ inifially, the left ma;'gin' is set to 1 and the right margin to 132,
th;e tolplmargin to 5 and the bottom margin to 60. This gives a line length
of 132 characters with-56 lines per page. The first'character is printed
in print p’&sitién 1, usually a carriage control column in FORTRAN, and
 the first iil;ne of print starts on line 5. The actual spacing on the output
printer depends on the printer overflow characteristics. These margins
can éaSily be. reset. For example, CALL H LIM (5, 110) causes the left
margin to be column 5 and the right colufnn (10).

The twc; routiness READP, PRINTP return as values, the current
value of the read position/print position pointer. These values are the
next"colur;lﬁ that will be read/printed: The only reason they have an
argument is because CDC FORTRAN [6] requires that function sub-
routines have one or more arguments.

The two routines IN T'AB, OUL' TAB are somewhat similar to the
tab operation on a typewriter. CALL IN TAB(N) will cause the read
~ pointer. to be set to N and the next character read will be from col.umn N.
Sirﬁilérly, for OUT TAB. Obviously, one can easily set a number of
fabulatioh positions by presetting an array in the calling program.

The subroutine IOPARAM can be used to set almost all the

-9- o UCRL-19463

ihput/‘outpﬁt variables that the I/O package uses. The first argument

is thé numbér of values that are in the arrays MODES, NAMES, VALUES.
The variables are contained {n the common block with name I0O. Their
compi_le‘c.l values }and definitions are given in Tables 6 and 7.

The “next four subroutines PRINTER, PUNCH, INUNIT, OUTUNIT
are u'se.d'to set the currently active input/output units toAthe requested:
va_.lu;eA.» The punch has been selected as 14 and the printed as 61.

" The four format routines IFORMAT, RFORMAT, BFORMAT,
OfORMA’I‘ are used to preset the formats that are used for the outputting
.of integer, real, logical (Boolean), and octal values when routines are
used thatA_ha‘ve no format specification. In the next section, we shall
discuss d_erived routines and it will be seen that many of these have no
forr_natA:VS‘pe‘c.:ification. When this is the case, the appAropriate preset
' Af'qrmatlis' ilsAe.d. These print formats are irﬁtially set by the compiler
x;iva data statements to standard values which aré 123, E23.14, L10, 023.
They can be reset at any time by calling the appropriate format routine.
anAe' set to some value, they retain that value until reset by another call
to the format roﬁtine. The routines that furnish the format along with
Lhe_ :iteuvls Lo be Lransrnittéd do not disturb these preset formats.

'Th¢ field width of the output quantity is specified by the variable
‘FIE-LD:.“ ‘The quar;tities will be right justified with zero fill in this ficld
Wi’dth. ‘The hufpber of decimal digits in a real number are specified

. by the variable DEC. The logical variable FIXED selects between fixed

-10- - - . UCRL-19463

‘and 'flqaéi.r_xi'gvpoint representation. Thus, | CALL RFORMAT (.FALSE., 23, 14)
vs;ill‘ set the -aboye' standard format for the output‘ .qf real qurﬁbe rs.

The subroutine EFILE is used to write an énd-of—ﬁlé on the
‘named unit. It 'is necessary to use this routine when in the standard
'(.I'sza.r;ti'a_l line) output mode :since its use ensures that the one line outpu}:

buffer will be emptied,

4. DERIVED INPUT- OUTPUT ROUTINES

Tﬁe .rout'ines'dis‘cussed here are all based on the input-output -
routines IN, OUT. T-‘héy obtain vtheir preset values from the common
block IO anhclil are eésential'ly independent of one'anoth-er and of all the
other user-oriented subroutines that have been discussed in Sections 2
and 3. Thése routines include roxl.lti;'xe's similar to t'hose.l_lsed by CDC
ALGOL [2] 'and those presented by DeVogelaere [3], and also some of
' th.eilo'gical varianfs; Their a;étion is approximately the same as their
ALGOL equivalents. Howevér, there ar‘e somé noticible changes. For
exarﬁpl'e, the,C_DC ALGOL procedure OUT REAL outputs quantities using
their s't'a.nd'ar‘d‘-forma‘t, whereas, the OUT REAL here presented uses a
preset format. Also, in the Berkeley style output presented by DeVogelaere,
a call to the procgd_ure OUTR(RL, FIXED, FIELD, DEC) followed by a call
OUT"RiEAL({UNIT,‘ R2) will Ic_aus.e both R1 and RZ to be output with the format
sct by F‘IXED, TIELD, DEC. In other words, the variable format that

appears in the argument list resets the preset format. The routines

S11- o UCRL- 19463

' p‘resenté‘d:her'e haVé complete independence of the preset and variable
f.orma't:_. |

The subroutines can be found in Table 3. We _sh.all limit ourselves
hére,to a fe'w general remarks that will make their use obvious. The
idea behi:nd their grouping is the following. To i'nput/output quantities,
We nduét spgcify‘a: unit from which it will be read/writfen, a list of
: qua.nﬁties'to bé transmitted, and a corresponding iformat for that
transmission.

Iflall of these items appear in the argument list, -then those values
are used. For example, CALL OUTR 3(N, R, .TRUE., 5, 2) outputs on-
uni’; N t‘he. value of thé real variable R using the fixed point format F5. 2.
The c.ﬁrr,ént output unit has now been set to fhe value éf N. If any of'
the Ltems are missing, then a standard choice is made for the missing
item. A miséing’ unit causes the current unit to be used. A missing
format ‘caupcs the appropriate presel furmat to be used. OUn output,
these :a:re‘ _the formats that are set using these routines: IFORMAT,

- RFORMAT,; BFORMAT, OFORMAT. ' On input, the .forrnat selected

is the. sfandard (field furee) format. For example, CALL OUTR1(R)
causc 6 t‘he'_vaklue of R to be vutput on the currently active output unif
using the preset real format that was set eithgr by the compiler via a

. ;dé.ta étatement bor by a subsequent call to RFORMAT.

The functioﬁ subroutines that appear in Table 3 assume the value

of the item read., - Since these routines are used in arithmetic expressions,

C-12- . UCRL-19463 "

it is, in gen.eral, not su.fficiefxt_ to have one ;‘outine. s Fof example,
i s READ'dogs not wolrk too well because of the impli'c_it mixed mode
arithmetic that a FORTRAN such as CDC FORTRAN [6] allows. Thus,
fhey are all explicitly type&. Again, the rédundancy in argument for the
functi;)n's READ I, etc., is because of the re’quiremént that a function
subroutine have at least one argument;

" The néfning of the subroutines is somewhat arbitrary; but, we
héve"tried to adhere to short names. (less than seven cha;-acters)', for
user éonvenienée and word size limitations on identifiers, that identify __
the tyb’e of routine and, at the same time, preserve the names of
'ﬁr‘evlioufsly defined input/output routines [2, 4] that perform similarly.
Logical variants of the same routine have been sequentially numbered.

. 'The‘ subroutines OTI, I0I, aud their varianls have a STRING
a'rgument. associated with them that can prove useful in some application.
. As was pr‘eviouély meﬁtioned, STRING is a hollerith constant which is
itself a suitable vafiable format including left and right parenthesis.

A ca_,ll such as CALL OTI(5, 5ﬁ(*B*), 3) will produce the output of

B = 5.‘ Thué, the string is assigned the value of the output quantity.
Similaﬂy, a call such as J = IOI{(I, SH(*B*'), 3) will assign to I and J the
value of: the ncxf item read frbﬁ the currently active input unit and also
it”will write B = N ox?the éurrently active output unit; we assume that
N.was tixe value just réad in. Sihce there is some disagreement in

FORTRAN about the use of multiple statements per line of coding, these

13- | . UCRL-19463

ré'ut'inés‘ are in a sense Alimited'to one output action per Iine. In CDC
FOR TRAN; éne could add the $ delimiter and write multipie statements
per liﬁe; bu_t the fast statement cannot have a$; "thus, it is bettef ‘to
leave itjv ;)lJ;t élompletely.
| The next two sets éf routires AJTAIL INAI and their variants can
be use’d to output-input afrays. The array element a(f)' is the first
_e.lement' in'pilt and the element a(u) is the last element input. Multiple
‘dimension arrays can, of course, be handled by simply consideriﬂg the
a‘fray as é large 6ne-dimensional array.
: The routines INPUT and OUTPUT are formated routines and can
. be used'in'either the FORTRAN or standard mode. Since these routines
are dé'fin'e.vd u;sing. FORTRAN, they are separately written as INPUT 1,
INPUT 2,; but, if they were written é.s gystem routine S, it would
- seem r.1at1v1ral to-'do as CDC [2] has done and ha\/e 'ong routine i1;1 which
© the uuxlu'ber, of af‘guzuents is arbitrary. It is worth pﬁinting out that these
routinés are very closely related to the READ,-‘ WRITE routines of
FORTRAN_; but have the added feature of ‘Vbeinbg able to have any legal
actual i)érémeter as an afgument'. Thus, for example, the argument
A:l could be a function .subprogram, or arithmetic expression, as well

as a simple variable.

_14- . UCRL-19463

5. «CHARAC TER- ORIENTED SUBROUTINES

The manipulation of c‘ha..;'acters using FORTRAN subroutines is
usually'r‘ éxpebn"siv'e'. Also, there always seems to Ee an infinite number
of foutin’és 'that, can be found useful to Bave. The routines given here
are patte,rnéd after similar ALGOL routines [1, 2] that have been set
£Q:rt;h as ‘ba.oic character-oriented 1'0utiues.‘

The first such routine is CLENGTH which Has as its value the
lehéth in éharacters of the argumeﬁt which is a S.Tf{ING. A STRING is
défine'c'l.’to be a hollerith constant of the form NH(¥ANY VALID TEXT%)
wh’e.;ne.:ﬂm delimiters havé been chosen to be (* and *). The delirﬁiters
are not coﬁnted‘and, as implemented here, a right delinﬁter cannot appeér
in the tex£.

'The routinecs INCIIAR®, OTCHARS lransmit data from the array
SOURCE and to the array DESTINATION. A more precise definition is
given in Table 4. The action of the routines INCHAR and OUTCHAR are
similar to INCHAR® and l,OTCHAR(b, but read/write their results from/to
the speci‘fied unit. These routines contain the argument LENGTH, the
léngth.Of the string. This was done because the simp]e définition of
the STRING that i.s used here requires the actual counting of the
character.s to obtain its léngth. This is too expensive to do for every
call to these routines, thus, it is furnished as a separate argument.

The subroutine C LENGTH furnishes the appropriate length.

-15- . UCRL-19463

.Th(::_ routine E‘QUIV allows one to obtain t'he internal representation
of an elzemgnt 1n é.'n esseptially machine-independeh_t manner.

aThé two routines CHARF, CHARS ére character fetching and
character s%oring'routines. ' 'They are basic routines and are presented
here siricé_ fhey are éxtén;ively used in the ‘lower level subroutine :
,‘package and are convenient routines to have available. A transfer of
characters can easily be performed by the call such as CALL CHARS

(DEST; N1, CHARF(SOURCE, N2)).

| 6. LOWER LEVEL SUBROUTINE

’ i‘his set _bf sub;‘outines exists solely for the purpose of
impiementing '-the previously discussed user leyel subro'utine. How they
are written,. theh" na‘mes., gnci fheir coding -is largely d'ependent on the
computer -uséd and the computing facilities available. A particul‘ar set
-of the's.ev‘r‘outinés. suitable for> the CDC 6.000-‘series computer§ has been
written in FORTRAN and they are listed in Table 5. The action taken
by ‘.the'm.is indicated there.

A.few comments on that set of routines-is given here. There is a
| .da,ta initiaiizgﬁon routine INIODAT which initializes all common areas that
'cc')ntai‘n‘ 1/0 pa¥ameters. This ;Jvould loéically be a block data routine.
It is p-resénted here as a subroutihe to insure its loading when using a
system'l’o'ader to satisfy the unsatisfied externals.

There are two format setting routines. One is for logical values

-16- : UCRL-19463

é.ﬁd 'oné foz; real values. Conn_'ected‘ with this is a rottine DCINTL thgt
co:‘u'u.ert_f.s the infeger N fo an interﬁal repreéentiori, ir this case CDC
d'isli)lay»codé. [6] with blank fill, that is suitable for use in a FORTRAN
FOR MAT ;s,t'a.tement. ‘

" The 'routine CHNSF actually c'onnecfcs the input/outpug channels
" as currently acfive units énd also gtares the channel characteristics
and is ‘thus',_quite dependent on the chapnel_ organizaticn.

Th}e»re are two specialized routines READ N and WRITE N that"
dol flield-.f%ee reading and partial line writing. Connected with the
partial 1_iné writing .are. tw;vo routinés STORE and W’RT |

| ‘A mdre detailed de'scription of some of these routines can be

fﬁund in Appendix A.

7. FIELD-FREE foRTR'AN'INPUT

The standard input, as defihed here, Vis field-free 'input. By
tﬁis is meant thatA the data ‘inputvis‘recongized by the manner in which it
is written and a F,ORMAT specification nee& not be specified. The
following conventions have heen chaosen.

An integer will be of the form + NN.:..N where N are dec¢imal
-'»v-&igits. A real member will be of the form + NN ...N.NN...NE+NNN,
The aistir‘xcti'on' betwgen the integers and reals is-made’x,by supplying the
,décimal f)oint for real numbers. If the E is supplied, the bré';l_numb'er

~will be read in an appropriate E format; otherwise, it will be read using

A7- ' UCRL-19463

-an ap.prop-r'iate F format. An octal number can bL either aj-_NN. .. N
_:or ~els.e ‘i_Nl\-I. ..NB where N are octal digits; A logical value is specified
by T, "I‘lAR-I.JE, F, FALSE. Any number '(integer, real, octal) value can
be followed by RNN...N when N are decimal digits. This will cause
that qua!r{tity to be read. NN...N times. Thus, 5R3 causels. the number 5
to be input thr'ée time;; that is, the next three input requests assign 5
".to Athe' inpﬁt quantity. A comment can be inserted anywhere as */text/*
~and it wAil_l' be gkipped during input. A string can be input as (*TEXT*)
and the array ;nto thch it is input will contain (* TEXT#*); thus, one

can _inplif and then subéequently output a string. Items to be input are
sep;rafed By a deliminator. This has been chosen to be either a comma
or else k or mo?é blanks where k is initially set to 2.

A field méy be skipped by inclosing; an empty field with two
_comma.x-s ‘such , ,-. Such fields cause the field to be skipped and the cor-
reSpoﬁding location to which the value would be assigned is also skipped.
The card width has no significance on field free forrl;lat. The quantities
are reaa é.s they are encountered.

| The following éxample will illustrate some valid data:
+5.2, 3 %/THIS IS AN EXAMPLE/*
(*A STRING IS READ*) -6.3E-1R5, +6R2, O-777, +11BR2.
o Thirteen items.are read, The first is a real number, the Secgnci
an integé‘r, theA third a string, then five real numbers, two_integers, and

finally, three octal numbers. .These can be placed anywhere on any

- 18- j . UCRL-19463

unumber of éar’ds. Noté, :howAe\'rer, thaf it is poséibl_e,to deiimit the
input line (card) léngth By setting'the input left and right margins with
subro:utin-.e‘I:O‘PARAM. See; Table II and Table 7. |

) ;_D‘qﬁble éreci_sion numbers are written 'the same as a single
‘. pre.ci‘sicA)nA number excepf that the E is replaced by a D. " Thus, 6. 3D - IR5
would d'enote five doubleA precision numbers., One dou"ble precision number
is considered as ohe item in the input lists; however, it oécupies' two
consecutive locations internally. Presently, double precision numbers

cannot be skipped with an empty field.

-19- 4 UCRL-19463 .

o APPENDIX A
Subroutine Descriptions
The information prése'nted here pertains to selected sﬁbroutines
from the Input- Output Package. Itis primarily m. -ant to‘sé.rve as a
guiae in understanding thel operation of these rout nes and to point out
some of the sys.terh type dependencies. .
SUBROUIfINE INIODAT

- This routine is used exclusively as a data s :tfing routine. To
_insufe that it will be loaded when loading programs using a system loader
such as fhe Lawrence Radiatic;n Laboratory's load: r, LOISE, it has
_ been ma.d.e ‘a subroutine. The ‘var'iables appearing in this routine are,
essentiélly, éll of the pertinent I/0O vériables aknd «re defined in Table 7.
SUBROUTINE'DCINTL (N, RESULT)

Since this routine converts integer numbers to an internal
'représentation sﬁitable for use in a FORMAT statement, it is machine
depehdént. The characters per word,' CHARPW, is set to 10 and the
internal code is assumed to be CDC 6000-series display code [6] .
INTEGER FUNCTION CHARF (SOURCE, N)

. Tlﬁs routine fet'ches a character from an array and thus is machine

- dependent. The characters per word, CHAPWOR, is set to ten and the

-20- UCRL-19463

bits per chai‘acter, BIT‘PWOR, is set to six. M1 assumes a 60-bit
word. ‘The two shift functions LEFT and RIGHT are used. This routine
is p‘rét.;er.ltly written in cbc ‘F"OR TRAN andCDc:coMPAss. The th
réutine_s perform idgntically. Because of the frequent ﬁse macie of this
‘rbuti.ne', the COMPASS"Version is to be. pfefer;ed:. |
'SUBR_LGUIINE CHARS (DEST, N, ITEM)

'This is, essentially, the inverse of CHARF and the abov_e‘comm'ents |
apply to thizs routine also.
SUBROUTINE STORE (ITEM, UNIT)

STORE is not machine dependent. It is used only i'n‘W'RI’I“EN
and peffox:ms'thé specifi@: task of filling the one line outpu‘t buffer
BUFEEﬁ3_. To do th.is"it uses subroutine CHA‘RS.‘ As it fills this one
léne Buffef, it keeps "t'rack of the right margin, RTMARG, and if the
curr.ent position of the write pointer, COLCNT3, exceeds the right
ﬁiargfn, it ther} writes out the one line of data, advances the line counter,
LNCT,- and resets the wfite pointer to the left margin, LETMARG. If
the lline'count is lérger than th;a number of lines allowed on a page, RP,
then it writes a line with a 1 in'colum.n one to cause a page eject, and
then 'sp‘ace's the correct number of lines to establish the top margin.
‘The ‘actually emptying of the bufférv is done by subrqutine WRT.
SUBROUTINE WRT (UNIT, L, U, A)

. This routine empties the array A by using a standard FORTRAN

WRITE statement. It also reinitializes A to all blanks thus reestablishing

-21- S UCRL-19463

A as a.jblank‘line-.

' sﬁBRbﬁTINE WRITEN (N, UNIT, FMT, A)

| | "I"}-lis‘ subroutine, and' the two subroutines STORE and WRT that

it u.t'iliz'es;-'c.oulld be repla’ce(i by the standard FOR TRAN routine WRITE
if only -there' were an option that would let WRITE output less than a
.re"cord.i . As preéently,v&ritten, the system routine QUTPUTC associated
with the'CDC FORTRAN WRITE statement finishes by writing an end

of recora zéro"byte thus making it unsuitable for the writing of partial
I.ines_"since: 1t always writes at least one record.

In order to overcome this diff iculty, the following, rather expensive,
approacﬁ was taken. . The CDC FORTRAN [6] routihe ENCODE is
used to méke all formatted writes when in the standard (partial line
Wrifiﬁg) output mode. These writes are writté'n as 140 character lines
into th'e; oﬁtpu't. buffer BUFFER4. Thus, any formatted write with
'i;ecords'(liﬁe lengths)_ile'ss than or edual_ to 140 characters can be
w,ritt;en‘using the standard FORTRAN formats. This W"r.ite is done at
statement 312.

I’n:‘til'lis mode bf Aoutput, there aré three formats that are considered
speciai;' | These are the (/), (), (IH1) that represent a new record {new
vl‘ine ca_.rria:geA return), the writing of a blank into the output line (actually
BUFFERS), and the page eject operation. Because of the way that
WRITEN is constructed, the onl-y way that these;operationAs can be

performed is to call the subroutine WRITEN with these ISpecial formats.

-22- UCRL-19463

Thus, the'i', the i'épetition of i_)arenthesis, and the ﬁag'e eject will not
produce'the' des.ired results 1f theyA appear in a FORTRAN style format.
They wiil be >c'orre'ctly handled by ENCODE, but our sﬁbsequent action
will de s't"roy'this effect. The 1 will be Aignored, as will the repetition
of ‘pare‘nAt.hAes‘is or repetition of Format. .The page eject symbol iﬁ
Col'u.fnn‘ 1 may or may n&t end up in Column 1. | |

.A_t’_ter the write operation ‘py ENCODE, the >rest of the c'oae is
devot-eti -to_fetching the Q'ritten characters out of BUFFER 1‘ and storing
them’ i.n'to.th"le' oné line output buffer, _BUfFER3. In;.tially, BUFFER1
is set to all zefos. The ENCObE write wi'll fill one 140 characterv line
with data, Starting with characte;‘ 1 in BUFFER3,~ the characters are
fetched one-by-one. The end of the write is signified by obtaining
the § = chara;:ters. As the characters are obtained, they are storcd

by the routine STORE.

Restrictions: The format musAt bé exausted in any one write
s;t_a_te.-r:nlent, _Also, repetition‘._df format or record slashes are illeé,al.
Any one write muét be = 138 characters. Thus, fhe wrife statements

CALL WRITEN(24, UNIT, 13H(12A10/12A10), A) or

CALL WRITEN(24, UNIT, 7H(12A10), A)

are illegal,

-23- 4 UCRL-19463

iAgain, all'thi's expensi've effort arises because ENCODE has a
limit on th‘e nt_imbex_- of characters that can be written into a record,
ana becaﬁsé it ils not presently possible to know how many characters
-were vyrit.teﬁ per record. If this were not the case, one could simply
fetch from BUFFE'Ri and store in BUFFERS3 until a zero character

'008_ was ‘oAbtained.

s'U‘BR OUTINE READN (A)

| This is a basic field free input routine. If the FORTRAN READ
vr'out'i'n.e had_ a suitable mode that allowed the i-eadir;ig of partial lines
éf dat; in a field free f;)rmat,' then this routine could be replaced by
that routine.

The actual data to be read is input Vi;. a FORTRAN READ state-
ment at “statemeﬁt 1600. The left margin, INL, and right margins,
COLMAXaré observed when using READN, data to'the left or right of
lff;ese m'a.rgins will not be input. The right margin check is made after
staLteme'nt'so'o. Once the one line input buffer BUFFER3 is filled, the
c‘haract_ers' are fetched, statgment 304, from this-array one at a time
and are identified in the next statement by checking their position in
the array.ALPHBTV. The character table ALPHBT is taken from

Appendix A [7] sequéntially starting at letter A and'ending at ;. The

-24- , UCRL-19463

. value of the j-th position in array ALBHBT ideniifies in octal the j-th
character of'that Appéndix. For examﬁle; TYPE = CHARF(ALBHBT, 2)
llreAturn’s- TY"_PE = 12g; thﬁs recognizing B in the ocfal numbers written
as NN.. . NB.

Upon entry 1nto READN the pointers P(I) are set to 1, the
bu.ffer NUMBUF(I) to a blank card, a.nd FORMAT 2.to all blanks If the
nurpbe r be"ulg ‘read has just previously been read under a repeat uption,
" that is, fhe RNN...N was appghded to the number, then the read operation
consists of a simple as s-ignment and the repeat counter NUMRPT is
dec‘reased by one. This i’lapi)ens qntil the réquested number of repetitions
has béén sa-tisf.iéd. "This action is controlled by the logical variable
REI;EA‘T'just’ before ’statement 204,

'E.a.ch .cali to READN roado.N itomo‘bcf‘o_ro réturning. In the caoe
of numbexs, this is N numbers ;equiring N wofds of A, but in the case
of a strin‘g,'»this wo‘,uld'Be‘ N strings each taking up the space that is
requivred to store (*TEXT*) and in the case of characters, it would be N -~
characters. Tha§ is, an item may be a. number or a stfing and the actual -
storage 'required to input chthe&a into A depends on the .i'tems. The
appropriafe céunting for this épefation is do.ne by setting N1, N2, N3, N4
at ostatement 206. The 10 aesumes that-there arc ten characters per word.

The rest of READN is broken into small sections that deal with
the quantities that are labled in the pfogram. Thus, the section BLANK

counts'b‘l.anks to recognize the delimiter made up of NUMBKS of blanks,

-25- ‘ UCRL-19463

' currently set to 2.
The section ASTRIK will recognize and skip %/ TEXT/*. The
Asection LEFTPARANTHESIS will recognize (*TEXT*) and store this

string starting at the next available A(I). The section COMMA recognizes

. the deli_mitér , « The next two sections.TRUE and FALSE recognize the

logi<-:a1 \;alués. Any valid display code character, [7] Appendix A, ‘tha@
doés"?xot direct the program té a labled section Will go-to section ALPHABET
and be. ékipped, Aﬁy +, -, *, digit wiii' -go‘to the section PLUS, MINUS, |
| POINT, -DIGIT'., The B, '6, E, R 'thion'é ‘are recognized- in the sections
B AND OHO, E, REPEAT.

- .Whe‘n a del__iminat@r has been encount.ered, NUMBKS or mofe
blanks or a comma, a transfer is made to READNUMBER. If the field
bgtween'deliminators was empty i3(1) < d, then that item is skipped,
‘sfatement 15001, and it causes the next item to be stored in the next A
, pdsition;; that is, a'wox;d is skipped in A. Presently, iogi('al values are
i excluded' from the repeat dption. P(1) = 0 shows a logical vaiué.was'
read. Ifa number was encountered, P(1) > Of thep the numerical field
wid-thé are appropriately set into FORMAT2, and the number is read
using the CDC réutine DECODE, [6] from the number buffer NUMBUF.

"‘Thus, to 'summariZe, the read operatiop consists of filling a line

buffuevr BU;F'FER and then recognizing and constructing a number in NUMBUF ¥,
At thg séme £ime, | the'a‘p,propriate férrﬁat is built 1n FORMAT2Z2. A

‘reference to Figure 1 will explain the significance of the pointers

-26- . UCRL-19463

P(1), ..., P(5) which are all initialized to -1.

Figure 1: "Nﬁmber constructed in NUMBUF,

Real 1;1' - 1|°2 < "'P3‘ | "P4 - Ps
*NN...N .NN...NE # NN...N RNN...N (]

’

Octal. P, . Pg o Py Pg
- 1 o I |
" O#NN...N U ~ - #NN...N BLUJ
Omitted from count
since it is skipped and not
stored in NUMBUFF
Integer].Pi : Pg
#NN....N L

 SUBROUTINE CNTUNIT(UNIT, MODE)
. CNTUNIT connects UNIT either as an "input, MObE = 2HIN,

or output.,_'MODE = 3H6UT, umt | The last connécted ﬁnits are LSTIN .
and I.JS_’I"OUT fqr input and output. | If the UNII“. to bé connected is already
conneéted, not}vxiAng is &one. Otherwise, the currén’c unit is stored and
UNIT is connected. When UNIT is connected as a .new unit, itis placed
in'the ;0 buffer area, IbB_UFF, and also if is activatedAas the current
unit,’ If thefe is n;) storage #pace available in IOBUFF, f_;hen it i; sim;;ly

| conﬁectéd as a »Curreﬁtly active unit and the next request f'orj éﬁofher unit -
will cause it to be dropped. ‘fhus, UNIT will always be connected, but

may not always be stored.

-27- a UCRL-19463

The actual finding ‘of the units is done by subroutine FNDUNIT
thch rét.urng a vaiue NAME such that IOBUFF(NAME) contains the
name of the unit it' was suppésed to find. A value <0 means it was not
found'.

"-fI‘he actual setlting, storing, and fetching of the parameters is
‘done by CHNSF
SUBRQUTINE CHNSF (SF, UNIT,.NAME, MODE)

The easieét way to understand CHNSF is to look at the ché.nnel
étructureA given in Figu;e 2. The definitions of the common variables are
given in Table 7. '

Wheneyef a new unit is connected, thé current value of the channel
characteristics residing in the common block IO are used. These can
'_easﬂ}; be set uéing HLiM and VLIM for output, or else IQPARAM; These
chargctéristics plus the blank filled 1 line buffer BUFFER are stor‘ed,

_21 vyd;ds, in the first availa'blé location in IOBUFF. Tﬁere is roém for
| six units (6~x 21 = 126),

Thé .currently active units are defined by cofnmon blocks/10/
and /BﬁFFERS/ as indicated in Figures 2 and 3. CHNSF fetches from
‘ IOBUFF and sto're's in these commons, or fetches from these commons
and stofes ‘in IOBUFF, to establish differeﬁt channels. The use of these
small térﬁporary working areas enables the multiple switching of channels
witﬁout‘iéosing the channel char‘acteristics or the partialljr constructed line.

This structure is patterned somewhat aftéi‘ the CDC ALGOL [2]

-28- UCRL-19463

' ,char;nel structure. These cham;zgl characteristics and buffers can be
set up internally in the internal buffer areas as has been done for the
CDC ALGQL, .but‘ the above one line channel structure was chosen in
ordér‘ to ha“fre a m'achine independent FORTRAN code,

‘ Figure 3 shows sqhématically how the input channels are arrayed.

Figure 2. Chahnel Structure

Word 1 21 3 i 5

O
G
(@]

21

Input _A name| INL|INR| INLP{ INRP| INRHO |INRHCP |14 word 1 iine buifer

Common | 1- | 15[16f 18 | 19| 21 |. 22 COMMON /BUFFER/ !
J1o/ |- : ; BUFFER(41),...,BUFFER(1 k) :
location) - : A j

Output = |name|OTL{OTR|OTLP|OTRP|OUTRHO|OUTRHOP|1k word 1 line buffer

Common | 2 | 9| 10] 12|13 23 24 |COMMON /BUFFER/

/10/ _ BUFFER(52),...,BUFFER(65) :
location : f

Figure 3. Channel organization of the array IOBUFF in common IOBUFI

i o 2z
{name [characteristics|1 line buffer| [name|characteristics|{1 line buffer|. . . -

106 . .
- |name]characteristics|1 line buffer -

‘ .~currently actiVe units in common IO
[1st inJcharacteristics{1 line buffer| [Lst out[characteristics[f line buffer|

-29-
. "UCRL-19463

APPENDIX B

Use of Routines by LRL Users

" The use of these routines is quite simple and is illustrated by

an éxample givén here. The information presented in Tables 4 - 7

shouldAprcwe sufficient to use them correctly. -

A few comments should, however, be made:

1.

‘The standard input.and output units are 60 and 61,

: respéctively. If these are suitable, -then no units

need ever be referenced.

The routines compile and execute under RUNF and '

- FTN (2.3).

The best use of these routines is made using the

- library.feature of LODE.

The subroutine organization is given in Table 3 and
Table 8. If a loader is not used to load the routines by -

satisfying unsatisfied exlernals, then these subdivision

will prove useful. Deck A'is required. Essentially, all

these foutines are used. Deck I is requiréd to set the
fdrrh_a'ts for those routines of Table 3 that do not have a
forrfnaAt. The rest of the decks are independent and‘can
be u§ed as desired. The numbers in Table 3 refer to

decks; for'-example‘, deck 1. 1, etc.

Subroutine

Table 1

- Basic IO Subrdutine s

Comment

s inmode (mode)
s outmode (mode)

if fnd unit (unit)

if drp unit (unit)

if cnt unit (unit, mode)

‘For input, if mode = 1HF, then normal FORTRAN
formatted reading is performed. If mode = 1iHS,
then the standard field free input is used.

For output, if mode = {HF, then normal FORTRAN-
formatted writing is assumed. If mode = 1HS,

then the standard partial line writing routine is:
used.

The IO buffer area is searched for the channel
with name -unit-. If unit is found, then fnd

unit = name waere IOBUFF (name) contains the
name -unit-, If the channel -unit- is not found,
then fnd unit = -1. Note, an empty IOBUFFER
area channel kas unit 0 assigned to it. ' ‘

-0¢-

The IO buffer area is searched. If the channel
with name -unit- is fourd, then it is dropped
from the IO buffer area. If it is not found, then

. drp unit = -1,

The channel with name -unit- is connected to the -
standard input/output channel area. If mode = 2HIN,
then it is connected as zn input channel; if mode =-
3HOUT, then it is connected as an output channel.
The value of cnt unit is the name of the unit '
connected,

€9%61-TYDN

Table 1 - contd.

Subroutine _ Comment
8 in (n, unit,. fmt, a) ‘ o The n quantities a(1), ..., a(n) are transmitted
s out (n, unit, fmt, a) ' - from or to -unit- using the format -fmt-. When

in the FORTRAN writing mode, fmt is any valid
FORTRAN variable FORMAT including left and
right parenthesis. If the standard input/output
mode is used, then for input fmt is field free '
input and fmt = 1HA is character input. That is,
n characters, six b1ts/character are packed in a
left justified. Whereas; for output, fmt can be
" a valid FORTRAN variable FORMAT; provided /
and repetition of parenthesis, without repetition
factor, and repetition of the FORMAT. before the
a(i) are transmitted, are excluded. That.is, the
line feed carriage return and/or paging operations
are not done by the format while transmitting the
items a(1),...,a(n). A standard output format

€9%61 - TUDN

1

can be invoked by setting fmt = 1HR, 1HI, or 1HL :b:
for real, integer, and logical values.

s cards (n) ’ ' n - 1 cards are sk1pped the n-th card is the current

‘ data card for standard input.

s lines (n) ' ’ : n new line carriage returns are performed on the .
current output unit.

& spaces (n) g ' n blank spaces are Awritten»on the current output

o " unit.
s page - : _ 7 A page eject is performed aloﬁg with a carriage
' return.

5 -6 (string) ' A o The string - string- is output on the current out-
put unit.

s nler : A new line carriage return is performed on the

current out unit, Forces write on teletype.

Additional Sabroutines for Setting IO Parameters»

Table 2

Comment

Subroutine

s h lim (left, right)
s v lim (top, bot)
if readp(p)

if printp(p)

& in tab(colm)

out tab(colm)

)

ioparam(num, modes
names, value’

jw

The left and right margms are set on the current output.unit, . Left = 1
and r1ght = 132 gives a full CDC pvmt line.. .

The top and bottom margins are set on the current output unit.

il

Top = 4 in the first line the printer prints, bot = 60 would thus give

60 lines/page. The actual margins obtained is dependent on the
local printer margins..

The present value of the reading position pointer is returned. This is
the next position that will be read by a standard (field free) read on
the current input unit. » '

The present valu_e' of the print position pointer is returned. This is

. the next position that will be printed on the current output unit in

standard (partial line writing) output mode.

The reading position pointer is set to the value of colm. - Thus, the
next position read ffom the current inpat unit will be colm.

The print position pointer is set to colm. Thus, the next position
printed on the current output unit will be colm., '

Num values of the input/output variables can be changed using ioparam.
Modesli] =0, i=1,..., num), causes iov [name[i]]:value[i] .
_Modeli] = 1 causes valu_e[i] = iov[.name:i]] . For the input/output
variables iov, we have the following: :

=2¢-

€9%v61-TdDN

" Table 2 - contd.

SuBroutine ' ‘ Commeqt~
Names - items _iE_corfimon blo.ck‘ IO A
i-s inunit,gim;g{t, ifield, bfield, rfield, rdec, rfixed, ofieid,
e 9 —14 otl, otr, otp, otl-f:, otrp_,ldtpp, . ‘
15 - 20 inl, inr, inp, inlp, inrop, inpp,
" -21 - 24 - inrho, inrhop, outrho, outrhop,
25 - 26 std, fortrn, |
27 - 44 ifmt(3), rfmt(6), 1fmt(3), ofmt(3), stdfmt(3),
T 45 — é9 psifm£(3),psrfmt(é),pslfmt(3),psofmt(3),
60 - 67 lefts,-righté, lefts 1, rights 1, £4, r1, £2, r2

" Their definitions are given in Table 7.

s printer : The current output unit becomes 61 for thel_prinfer or 14 for the punch.
s punch :

s inunit(unit} The current input/output channels are unit. -

s outunit(unit) ’ ' N

s iformat(field) | The format can be preset for those routines that are a preset format.
s dormat(fixed, field, dec) The formats are: o

s bformat(field) integer (I field)

s oformat(field) real fixed = .true. (F field.dec)

fixed = .false. (E field. dec)

9¥61 -THUON

,.
14

Table 2 - contd.

Comm: eht

Subroutine

s efile(unit)

logical - (L field)
octal » (O fie]d)

The fcrmats are =epa.rate1y set and are not destroyed when rouhnes
using a vanable format are called.

W’hen»using this set of input/output pro'cedure'-s, it is necessary to
use this subroutine to write an end file.

- -pe-

€9%61-190N

Table 3

Derived 10 Subroutines

Note: See Table 6 for argument definitions.

Current Unit : " Current Unit .~~~ Variable Unit ' Variable Unit
Variable Format Preset Format , Preset Format . Variable Format
(€5 N €T3 A
_ if readi(i) ; if readii(unit) .
- rf readr(r) ' 1f readri(unit)
- 1f readb(b) - 1l readbi(unit)
' if readio(o) : if readioi(unit) -
rf readro(o) rf readroi(unit)

[a¥]
o
@

W]

(2.0) o (2.1) ,
s outi(i, field) s outii(i) s outi2(unit, i) s outi3(unit, i, field)
s outr(r, fixed, field, dec) s outri(r) s outrZ2(unit, r) s outr3(unit, r, fixed, field, dec)
s outb(b, field) s outb1(b) 8 outbZ(unit, b) s outb3(unit, b; field)
s outo(o, field) s outoifo) s outoZ(unit, o) s outo3(unit, o, field)

|

3]
oo
QM)

-S'E'_

outint(unit, i)
outreal(unit, r)
outbool{unit, b)
outoct(unit, o)
otarray(type, n, unit)
outstr(unit, s)

€N, @.22)

s inil (i) inint(unit, i) -

lolololulo o

s inri(r) irireal(unit, r)
s inb1(b) inbool(unit, b)
s ino1(o) inoct(unit, o)

inarray(n, unit, a)
instr(unit, string)

lolwlwlo ln)

Cov61 -THDN

Table 3 - contd.

- inao?2(unit, oa, £, u)

Current Unit , Current Unit Variable Unit .+ Variable Unit
Variable Format i Preset Formzt | - Preset Format - ¢ Variable Format
@Go) @ . I 4.2) (4.3) S
s oti(i, string, field) 5 s oti(i, string) - 1 - s oti2(unit, i, string) | s oti3(unit, i, string, field)
. E otr(r, string, fixed, field, } _s'cltri(r, string) % s otr2(unit, r, string) | 's otr3(unit, r, s_tring, fixed,
dec) ' .| s ctbi(b, string) | s otb2(umit, b, string) | field, dec)
s otb(b, string, field) ' s ctoi(o, string) s oto2(unit, o, string) a s otb3(unit, b, string, field)
s oto(o, string, field) : ' o : C s oto3(unit, o, string, field)
5.0 £.1
if ioi(i, string, field) . if joii(string)
?_‘f-ior(r,‘string, fixed, field E iori(string) N
A ~dec) S _ .
1f iob(b, string, field) .. M iobi(string)
if ioo(o, string, field) i _if ioo1(string)

(60 E 1) ez (6.3 g
s outaifia, £, u, field) © s outaii(ia, £,u) £ outail2(unit, ia, £ ,u) .5 cutai3(unit, ia, £,u, field) 1
E outar(ra, ¢, u, fixed, field,] . A 5 cutar3(unit, ra, £, u, fixed

dex) ‘s cutari(ra,f,u) £ outabZ(unit, ba, £, u) , field, dec)
s outab(ba, ¢ ,u, field) - outabi(ba, £ .u). s outabZ(unit, ba, £,u,) s cutab3(unit, ba, £, u, field)
E outao(oa, !, u, field) E outaoi(oa, £ ,u) s outaoZ(unit, oa, £, u) 5 cutao3(unit, oa, !, u, field)
Q) (7.2
s inait(ia, £, u) s inai2(unit, ia, £, v)
s imari(ra, £ ,u) s inar2(unit, ra, £,)
s inabi(ba, £,n) s inab2(unit, ba, £ ,n)
Einao“oa,ﬁ‘,u) E

C€9%61-THYDN

Table 3 - cbntd.

* . "Current Unit
:Variable Format

Current Unit

PresetFOr»_mat"

Variable Unit
Preset Format

Vai’i'@‘ble Unit.
Variable ,Form'at

‘s inputi(unit, fmt, ai) o

[t |

input5(unit, fmt, at, , . . a5)
inputn(n, unit, fmt,a1,...,an) .

L o o SNV S

|

lw o

outputi (unit, fmt, a1)

output5(unit, fmt, at, ..., a5)
outputn(n, unit, fmt, ad,..., an)

€961 -TIDN

Table 4

Character Oriented Subroutines

Subroutine .

Csomment

- if clength(string)

8
Eotcharq)(dest, colct, string, i, Jength)

|

inchar(unit, string, i, length)

outchar(unit, string, i, length;

lw

- if equiv(string)

inchar¢(source, colct, string, i, length)

.The length (number of characters) of the strmg -strmg-

is returned as the value cf c length.

If the character in‘ positic-n -colct- of array -source-

is found in the string -string- of length -length-, then i
is the position count(from the left)of that character in
string with the first character having poéition 1. If the
character is not found in string, theni = 0. If 00g is in.
position,colct, theni = -1.

" The i-th character of the.string -string- with length

-length- is stored in position -colct- of the array -dest-.
Ifi > -1, then 00g is stored.

The next character is read from the input channel -unit-.
The string -string- with lengtk -length-.is searched; if
the character is found, then i i{s its position in string with
the first character havinr position 1. If the character is
not found, then i = 0. If the internal representatlon

of the character input is 00g, “heni = -1,

The i-th character of the string - string- with length
-length- is output on the channel -unit-, Ifi= -1,
then 00g is output. If i > length, then nothing happens.

The velue of equiv is the internal representation of the
string -string-. Thus, if string (without the delimiters)
was read uéing an A format :nto the variable X, X =
equiv(string) would be true. Restriction, only on word
is tranferred by equiv. '

-8€—

€9%61-T¥ON

Subroutine

Table 4 - contd.

Comment.

if charf(soufce, n)

s chars(dest, n,item)

_The internal representation of the n-th ch'aArac'ter, o
- . right justified zero fill, . is fetched from source and
returned as the value of charf.,

The integer item is stored.as the n-th character in-
. dest.. Item is assumed to be right justified zero
fill. " This routine is the inverse of the routine charf.

_6€-

€9¥61-TdDN

Subroutine

"I_‘able 5

- Lower Level Subroutines

. Comment
8 iniodat This subroutine defines and unitizlizes the input/out- .
s put variables in the common black IO.
s set lﬁ'nt(b, field, lfmt) A true or false logical format is set in 1Ifmt with field
s set rfmtifixed, field, dec, rfmt; -width -field-. A fixed (F; or fleating(E) format is set

lw

dcintl(n, result)

' E chns.f(sf, unit, name, modz)

s store(item, unit)

s wrt(unit, 2 , u, a)

in rfmt with field width -field-. There are dec digits
after the decimal point.

The integer n is converted to CDC display code and
stored left shifted with blank fill in -result-. This
converts numbers to an internal representation suitable
for use in a FORTRAN variable FORMAT. ‘

Chnsf establishes the characteristics for the input

(mode = 2hin) /output (mode = 3hout) channel with

name -unit-, If unit already exists, an exchange is
performed with the iobuffer area. If the unit does not
exist, it is established either zs a new or temporary unit.

" The integer -item-, right justified zero fill, is stored in

the ore line output buffer, buffer 3 of common block
buffers. Carriage returr, line feed, and paging operation
are performed as required. f[tem is assumed to be the
internal representation of a valid character.

The array a(£),...,a(u) ie written. via a FORTRAN
WRITE statement, on the output unit -unit-., After

the completion of the write, the array elements a({), ...,
a(u) are reset to blank characters.

€9%61-TdDN

Subroutine

Table 5 - contd. .

. Comment

8 readn(n, unit, a)

s writen(n, unit, fmt, a) -

This is the field free input routine. .The data is identified -

_and the appropriate format is established. Then the

incore forma.tted'read‘routine DEC_ODE réads ‘the data. -

An incore formatted write is performed using the sub-
routine ENCODE. It uses the subroutine store to
transfer to a one line holding buffer.

_Appropriate action is taken for the special formats (/);
(), (1H4) representing a line feed carriage return,
blank character, page eject. It'is assumed that not
more than two 140 character lines are written for one
call to writen.

-Ib-

C9¥6R-TYDN

Name

~42- : UCRL-19463

Table 6
Definitions

Comment

mode

unit

fmt

string

A hollerith constant spécifying a mode of operation.
For example, INMODE (1HS) gives standard field
free input., While CNTUNIT(Z, ¢HIN) connects unil 2

"as an input unit.

An infeger specifying an input/output unit.

An integer representing how many. For example,.
LINES(N) gives n line feed carriage returns,
OUTPUT(N, ...) outputs N items.

A FORTRAN hollerith constant of the form nH(...)
where ... is any legal FORTRAN FORMAT. When
in standard (partial line) output mode, /, repetion of
pareuthiesis, and repctition of the format hefare
exhaustion of the list are not permitted. In addition,
the following are permitted for output formars:

41IR standard format real ¥23.14
1HI standard format integer 123
1HL standard format logical L.23

If the string is to be printed, for example OUTSTR
(STRING), then a hollerith constant of the form nH(...)
where ... is the usual FORTRAN text such as *TEXT*:
or else nHTEXT. If the string is used in a character
routine such as C LENGTH(STRING), then a hollerith
constant of the form nH(*...*) where ... consists of

any valid alphanumeric characters. Note that (%, .. %)

is also a valid CDC FORTRAN [6] format string so

that there need be no conflict if all strings are written
as (*,..%). If the string is read in, then it is of the
form (*TEXT%*). INSTR(STRING), QUTSTR(STRING)
will input and then output, but the delimiters are missing
from the printed string and must be supplied to again
input the string. Note: The characters *), asterisk
right parenthesis with no blank, cannot appear within
the string. In partial line writing mode, the string must
be of the form (*TEXT*). The length of the string is
unlimited.

-43- ’ ' UCRL- 19463

Table 6 - contd.

Comment

Name .
a An array
) left An integ‘er specifying the left margin. The first
: character printed appears in column left.
right An integer specifying the right margin. The last
: character printed on a line wil. always be in a
column less than or equal to right. Overflow is
printed on the next line startinyg at the left margin.
top An integer specifying the top margin of the page.
The actual position of the margins depends on the
printer overflow margins. A page eject is performed
* by writing a 1 in Column 1 and ‘illing that line with
blanks. The next print line has top = 1.
bot ‘An integer specifying the bottoin margin of the page.
Counting from top = 1, bot is tae last line printed
before a page eject is performed..
P Thé column position of the next item to be read/
printed. '
: fieid The total field width that the printed item will occupy.
' The number, or logical value, is right justified in the
field. ' '
dec The number of digits to the right of the decimal point.
'fixed. The value . TRUE. means F format. The value
.FALSE. means E format. '
- i integef
r real
b logical (Boolean)
0 octal
ia integer array
ra real‘a_r.ra'y‘ ,

Name

-44- . S UCRL.-19463

Table 6 - contd.

»typé

at,a2,...

‘ source
dest -

if

Comment

ba loéiéal (Boolean) array

oa - octal array

£ Integer specifying the lower bound, first element
a["] . ’

u Integer specifying the upper bbuud, lasl elerneit

: alu] . T S

4{HR real array -

1HI ~ integer array :
1HL logical(Boolean) array
1HO octal array

An argument of an arbitrary type. Obviously, it
must agree with the format specification,

An array from which quantities are read.
An array into which quantities are stored.

integer func tion

- real function

logical function

subroutine

-45- . UCRL-19463

Table 7

Common Input/Output Variables

Common Variable ~ Preset Variable

/I0/ ~ Name Value Definition
1 ' inunit = 60 The current input unit. Sometimes

called lstin.

2 , outunit 61 The present output unit. Some-
‘ times called lstout.

3 ‘ifig.id 23 Preset integer field width.
4 | bfield ' 10 Preset logi.c.:al field width.
5 . rfie‘lcllA | 23 .Preset ;'eal;field Widﬂ"l.
6 - '. rdec 14 : Preset number of decimals in the

preset real field.

7 : - rfixed .false. Preset selection of fixed({. true.)
' or floating (.false.) point repre-
sentation of real numbers.

8 :: o ‘o_fifeld. » 23 Preset v“alue of the octal field width.
9 ntl : 1 left margin - output
10 | otf - 132 © right margin - output
11 o otp 132 number of characters per line -
‘output.
 12 | o otlp 5' top margin - outbut
.13 . ot.rp 60 bottom margin - output
14 -) otpp- | " 60 number of lines per page - output
15 - inl . 1 left margin - input
16 R " inr ‘ ‘ 73 right ma.r'gin' - input
17 o A inp 80 N;lmber of charlacters per card

(line)- input

~46-

UCRL-19463

Table 7 - contd.

.37

2H23

Common ‘Variable Preset Variable
- /10/ Name Value Definition
18 inlp 1 first card(line) - input
19 inrp 1,000,000 last card (line) - input-
20 inrpp 1,000,000
21 inrho 81 Next character read is in
column inrho
22 inrhop 0 The number of cards (lines) that
have been read.
23 outrho 1 The next character output is in
' column outrho
24 oufrhop 5 The current output line is outrhop.
25 std 1HS
26 fortrn 1HF
C 27 ifmt(1) 2H(1 The variable integer format is
. ' ifmt, The field width is placed
28 ifmt(2) in ifmt(2).
29 ifmt(3) 1H)
30 rfmt(1) 1H(.The variable real format is ifmt
31 +£mt(2) E or F is placed in rfmt(2)
32 rfmt(3) The field width is placed in rfmt(3)
33 rfmt(4) 1H.
34 rfmt(5) The numbér of decimal digits goes
' in ifmt(5).
35" rfmt(6) 1H)
36 1lfmt(1) 2H(L The variable logical forinat is 1fmt,
1fmt(2) The field width is placed in lfmt(2)

-47- . . UCRL-19463

Table 7 - cbntd.

Common Variable Preset " Variable

/10/ : Name Value Definition
38 1fmt(3) - 1H)
39 . ' ofmt(i) _ ZH(B The variable octal format is ofrnt.
40 ‘ ofmt(2) . 2H23 , The field width is placed in ofmt(2).
41 . ofmt(3) 1H)
42 . - AstdfrAnt(i) ZH(—(; A standard octal format is furnished
43 stdfmt(2) 2H(23 by stdimt.
44 : stdfmt(3) 1H) '
45 psifmt(1) 2H(I The preset integer format is psifmt.
46 : psifmt(2) 2H23 ~ The field width goes in psifmt(2).
47 psifmt(3) 1H)
48_' . psrimt(1) 1 H(-Preset real format.
49 psrimt(2) {HE E or F is placed in psrfmt(2).
50 - ‘p'srffnt(3) 2H23 | The field width is placed in psrfmf(3).
51 psrimt(4) 1H.
52 - . psrimt(5) 2H14 The number of decimal digits is
. , placed in psrimt(5)
- 53 psrimt(6) 1H) :
54 pslfrﬁt(i) 2H(L Preset logical format,
55 . pslfmt(2) 2H1U The field width is placed in pslfmt(2).
56 pslfmt(3) 1H)
57 psofmt(1) ZH(-(-)- _ Preset octal Format. The field
. ' width is placed in psofmt(2).
58 . psofmt(2) 2H23
59 psofmt(3) 1H)

60 L ' l.efts A ' 2H(* ' " Left string delimiter —internal.-

-48- . : UCRL-19463

Table 7 - contd.

Common Variable Preset : Variable
-/10/ " Name Value Definition -
61 ‘ - right s .. 2H%) Right string delimiter - internal.
62 - lefts 1 2H(* © Left string delimiter - external
63 . . rights1 2H%) Right string delimiter - external
h4 L1 .2 | ' The number of characters in lefts.
65 R1 2 The number of characters in rights.
66 1.2 . .2 The number of characters in lefts 1.
67 .R2 o 2 ~ The riﬁmber of characters in rights 1.
Common
/BUFFERS/
Bﬁffer(i) .. 1OH A vne live wnpul buller into which data
. . is read by a standard FORTRAN
IR ' ' READ statement,
Buffer(14) 10H It is initially set to all blanks.
Buffer2(1) 0 o The incode formatted write using

. ENCODE writes into this buffer.

Buffer2(37) = 0

Buffer3(1) 1OH Output lines are constructed in
' . ' ' buffer3 which is then written using
a standard FORTRAN WRITFE
. e stalement.
Buffer3(14) 10OH

-49- R . UCRL-19463

Table 7 - contd.

Common Variable Preset ’ Variable
/10 BUFF/ Name Value . Definition
i - Name A . A var‘iabl-e that is used. to locate

the names of the units in the input/
output channels stored in the array
iobuff. The name of the unit is in
iobuff{ name] . '

2 " Max Name 106 The maximum location in which
' an input/output name can be found
in array iobuff.

3 . Bufflth 14 The length of the one line huffer
' associated with a channel.
4 Chlth 7 The length of the channels in
which are stored the unit character-
istics."-
5. Chnpbuf 21 The total length of the channel and

" one line buffer. Thus, Chnpbuf =
Chlth + bufflth.

6-131 Iobuff Unit 60 for input and unit 61 for
- ' output are originally set. This
array is used to store up to six
input/output channels with their
associated characteristics.

*deck A |
iniodat:
set lfmt

set rfmt

deintl
chnof
store
wrt
inmode

outmode.

fndunit
" drpunit-
cntunit
in
readn
out
writen
charf
‘chars
¢ length
#deck AA
in '
read 1
datai
rdnum
wdeck B
cards
lines
spaces
page
8
*deck C
hlim -+
viim -
*deck D
read p -
print p

-50-

Table 8

Subroutine Origination

*deck E
intab
outtab

“deck F
ioparam

- vdeck G

printer
punch
*deck H
inunit
outunit
*deck I
informat
rformat
bformat
oformat
*deck T
“efile
#*deck K
inchar§
otchard
*deck T,
inchar
outchar
*deck M
equiv

UCRL-19463

-51- . © UCRL-19463

EXAMPLES

See the following pages.

~hnong2

Anann?
AQAN02
ApAnQ2
Annen?

S AOPRNG

L ELAEY

rnnetl

annnl13
. h0an1S

T AnnN7
CRana?]

~Apan?3

AONN2S
ANNNAR6

: AROADT

T Apnnll

Annnll3

~ANAN36
CABDELN

Anans?
ANONGS
ApOnaT
ANNNS2

L ANENSS

AOARST
aoneaRl

Anonkl

CILLTE
ADNONTD

LaanaTy. ...

ApnnTe
AOONTE
AnnYON

- ApNYA?

Aannyng

AOOT 06 .

P ARNTIN

400116 ..

LTI R
Arn113

PROGRAM TEST (THPUT=1AN040UTPUT=1200eTAPE6I=TNPUT s TAPEST=0UTPUT, |

REGIN

- CALL

- CaLl

CaLL °LOT .

TAPF1=INPUTTAPEZ=CUTPUT)

CINTEGER I¢JyREADT

INTFGFR CMTUNTT
LOGICAL B.READR
REALL AWRFADR

J= CNTUNTT(7340UT)
Jz CNTUNIT(12HIN)
CALL DUTMODE (1 HF)

CALL HLIM(2+130)

0N 106 J=1,.2

CALL AUTSTR(2519H(® THIS 1S OUTSTR®))
CALL S(15H(& THIS IS S #))

CaLL nuUTPUT (24194 (# THIS IS OUTPUT®)).
CALL LINES(2]

R= ,TOHE,

Az 1,0

I= 2
caLy
CcALL

OUTPITY (2411H(® A=9FAL2) 4A)
NUTPUTY (2, 9H (e [=2]53,1)
LINES (2] :
OUTI(142)

CALL DUTI(I.41M)

CALL OUTR(Ae«TRUE,sTy1)

CAILL OUTR{AsaTRUE,.91043)

Call NUTR (A4 «FALSEs1093)

CALL LINES(2)

CaLL NYTB(BK)

1= PEANI(1)

A= READR()

R= READR (1)

CALL TFORMATIS)

CaLl. BFORMAT ((TRUF ¢4643)

CaLL RFORMAT(1p)

CALL NUTINT(ZeT)

AUTRFAL (24 4)

ALITROD|. €2 ¢ 52)

LINFS (?)

AUTMODE (1HG) . - e -
CONTINUF ce

CalLL PaGE

caLL

.PRORRAM LENGTH INCLUBING I/0 RUFFFRS .

GLEELY]

TEUNETION ASSTGNMENTS

STATEMFNT AGSTGMMENTS

(RLOCK NAMES aND LEGTHS

VARTARLE ASSIARMNVENTS

 MAIN,3S

MAIN,2

MAING3

MAIN,4
MAIN,S
MAIN,6
MATNGT
MAIN, 8
MAIN,9
MAIN,]1O
MAING]Y
MAIN,12
«N0, 10,
MAIN.13
MAING16°
MAING1S
MATNG1K/
MATIN,17
MAING]IR
MAIN,19
MAIN,29
MAIN,2T .
MAIN,22
MAIN,23
MAIN,24
MAIN,25

MAIN,26

MAIN,27
MAIN,2R

- MAIN,29

MAIN, 39
MATIN,31
MAIN, 32
MAIN,33
MAIN.34

'
i
i

MAIN,36
MAIN.37
MAIN, 3R
MAIN, 39
MAIN.4D

- M&IN.‘O1"" .

MAIN,G?
MOTN, 63
MAIN, 44
MAIN, 45

[l

Anonnl
anpnnnl

e ARANDY

Apnne3
rAQNANS
ANNANG
ADOANLD
annny2

- AOON14

LI LAY

- ABNGPD

L LLY.rS

AnNnARs
S aenn?7

Apnn33
ApQAR3S
ANDN3T
apnanal

Aanna3
nnnab
nongl
nnnsSS

7
A
A

ARQARD Lo
ANENKD

fORNGG
AnpAsS
AnNDART
nanc7l

ANONRTR ..

AARNTA

Annyon

Ang1nl
Aanyn2

AnQIAS .

AN 07
Ane11l
ponYIPN
ARN123
ARNYI2A
ANNY 3N

ANy 32

AnNnY 34
ApN1I36

fOOYGE
ANNYGA
nADY4E

LA

AeNySY

®

S LI

-
oS-
|
i
2n
&

3n

N3 ¢
SURRNHTINE PLOT
AEGIN

INTEGFR Jo1

REAL BTeNELTAX X

Pl= 3,141593

COLL Vv LIM(1461)

CALL PAGE

CALL LINES(Y)

CAiLL |/PACES (5n) .

CALL S(19H (2 (SIN(X}®®2)8]10ne))

<= -+ - CALL LINES(3)

CALL SPACFS(m)
CALL TFORMBT (3)
DN 10 J=1y110e10
RFGIN -
caLlL dUTTI{J=1)"

- | COLL SPACES(T)
Enn
CaLL LINES(1)
", CALL SPACFS(9)
¢ CALL S{BH(%4#))

DO 20 J= 1410041

e ce- REGIN
' I=(J/730) 10
IF(1.FQ.J) CALL S(SH(eu#))
IF(TLNE,J) CALL S(SH(#a®))
CONTINUF,
END

e DFLTAX= ((2,8D7)/50,) 42,

X= DELTAX
Catl LINES())
CALl SPACES(9)
CALL S(SH(#¢#))
CaLL LINES(1) -

e e CALL RFORMAT(,TRUE«9301)

NA 39 J= 1425,
RFEQIN
CalLl. SPacesS(2)
CALL §(7H(®#x= #))
CALL NUTEY(X)
catL SPACES(l)
CALL S(BH(u4¥)))
I= (SIN(X)#42-8 1000.0)1710,0 ¢ 00001
CALL SPACES(I-1)
IF(T.NE, ") CALL S(SH(#,®))
CALL LINFS(M)
Call SPACES(Y)
CCALL S(SH(#ed)),
CaLl. LINES())
X= X+NE[TAX
END
Ca:i L LINESI(1) :
CALL S({29-{e THE ARQVE IS A TEST PLOT#))
CALLL LINES(Y)
RETHRM
END

MAIN,46
MAIN,47
HMAING4R
MAIN,49
MAIN,S50
MAaIN,S5)
HMATN,52
MAIN,S3
MAIN,Sa

- MAIN,S5S

MAIN,56
MAINGH 7
MAIN,SA
MAIN,59
MATN,60
MAIN .61

MEIN,62

MAIN,53
MAIN,64
MAIN,65
MAIN,64
MATN,67
MAIN,69
MAIN,69
MAIN,TN
MAIN,T7Y
MAIN,T72
MAIN,73
MAIN,74
MAIN, TS
MATN, T4

. MAINGT?

MAIN, TR
MAIN,T9
MAIN,80
MAIN,B1
MAIN,8?
MAIN,RR
MAIN,84
MAIN, B85
MAIN,.864
MAIN,.87
MATIN, B8
MAIN,89
MAIN,9n
MAIN,91
MAIN,92
MAIN,93
MAIN,9¢
MAIN,9S
MAIN,9A
MAIN,OT7
MAIN,98
MAIN,9Q
MAIN,100
MAIN,10]

-g.g.i

R e St S R

T e e weige s e

.ﬂ ’ : -
13090
T100NE+ND
TRUE
LN - _ -

1,800 o . L - _ : . : . S _
FALSE R - , _ - o ol el e s

g
Do e e e e . . e e e o -
w
- e -
1

THIS IS OUTSTR THIS IS.S THIS 1S OUTPUT
Az 1,001z - 2
2 21,0 1.000 1.000E+00 '
TRUE 2 2.500 TRUS
e e e e e . e O B ;
(V)
on - -
1
—— iy e —— — - - - - PR - ./ —_ - — e e S e. [
Q)
- w - -
.
- . -
—
O
—— - - S - - - - - —-.-—‘h- B e — ——
o~
w

"t emmen tem e morme em S meemes e

“X= 140

‘X= 1.5

THF ARDVE

FEEEEFrECEEEFRE CHEECECEERCRERPEEELECEERCEECE &

CEECEEEEEErEEEEC

Y N

SABIAPAAIILAARAIAAAALARASAAAN D

L

1S & TEST PLNT

(SIN:X)®#82)®100

80 50 69 70

8o

90
0»9‘p»ap&nﬁ»awﬁap9&ﬂ03499»9»+9ﬁn»9»ﬁ0»+»»»0ﬂp»ﬁb&»p»»»»%ﬁ»&»p»@»@»an&'

1¢0

.
-
.- s e m—le

Tt i
wn
I et e e @ em e
i
SOOI 5 M
Q)
"“w““ ————
-
-
o
N
.- e
o
M)
S

~57- UCRL-19463
’i‘he é?ograrxu' TEST on the1 next bage will echo what is input as
(**text*) and will stop on (¥*(STOP)*). |
When run as
LODE(I= LGO, L= RLIB)
XEQ(TEST, TAPETTY, TAPETTY)

it will talk with a teletype,

-58- - UGCRL-19463

PROGRAM TEST(INPUT=300+00TPUT= 300oTAPEl'INPUT TAPE2=0UTPUT) ~

_ @ RE)I

000002 : - INTFGER STR(10) _

000002 -~ INTEGER 14JysCONTROL sRFADTI yFQUIV
000002 “CaLb INUNIT(D)

000004 ' CALL OUTUNIT(2)

000006 ‘ CALL S{19H(# STARY PROGRAM,#))
000010 Co CALL S(25H(# TO STOP FNTER (STOP)#))
000012 : CALL NLCR -
000013 1 CALL INSTR(19STR)

¢00015 L “ CALL SPACES(T)

0600017 : CALLL S(RH(®// w))

000021 . CALL OUTSTR({2,STR)

00023 : CALL NLCR

0600024 . " IF(EQUIVISTR)Y JNE, 6HISTOP)Y GOTO 1
¢00030 - TCALL S{19H(® EMD OF PRObRAM“))
c00031 . CALL NLCR

000032 SToP

000034 : END

PROGRAM LENGTH INCLUDING 1/0 BUFPERQ
000756

FUNCTION AssiGNMENTs

STATEMENT ASSIGNMENTS
1 - 000014

RLOCK NAMES AND. LENGTHS N

VARIABLE ASSTGNMENTS : o
CONTROL= (00011) FQUIV = 000113 1 - " poolor U

000110
START OF COMSTANTS=000037 TEMPS==000071 INDIRFATS=000075

ROUTINE COMPILES IMN 041000

=59~ . UCRL-19463

References

‘Ka_uth, D.E., et al, A Proposal for Input- Output Conventions

in ALGOL 60. Comm. ACM 1(1964) 273-283.

'3000/6000 ALGOL Generic Reference Manual, Pub., No. 60214900,

Control 'Dafa Corp., 3145 Porter D'rivle, Palo Alto, Calif.

BC 'ALGOL Manual. Univefsity of California, Computer Center,
Bérkeley, Oct. 196'6 (third ed). | |
DeVogelaere, R., Algorithm 335, A Set of Basic AInput-‘Outpu‘t
Pfécedures, Comm. AC‘M 11 (Aug., 1968), 567-573.- |

Naur, P. (Ed.), Revised Report on the Algorithmic 'Languglge

"ALGOL 60, Comm. ACM 5, 1 (Jan. 1963), 1.

6400/6500/6600 Computer Systems FORTRAN Reference Manual,

Pub. No. 60174900B, Rev., Nov. 1967, Control Data Corp.,

- 3145 Porter Drive, Palo Alte, .Calif.

640b/65ﬂh/6600 Computer System SCOPE Reference Manual,

\

Pub. No. 60189400, April, 1967, Control Data Corp., 3145

Porter Drive, Palo Alto, Calif.

LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal lLiability or
responsibility 'for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.

