DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Published by: American Society of Tool and Manufacturing Engineers, Engineering Conferences, Paper No. 730.

Annual Conference
Cleveland,
Mar. 29 - Apr. 2, 1965

Issued by
Sandia Corporation,
a prime contractor to the
United States Atomic Energy Commission

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
BASIC PRINCIPLES OF FUNCTIONAL GAGING

Edward S. Roth
Staff Member
Advanced Manufacturing
Development Division 2564
Sandia Corporation
Albuquerque, New Mexico

Introduction

The representative gages discussed in this paper "receive" the part being gaged like a mating part. Called functional gages, they simulate the most critical conformation of a mating part. They can be mathematically determined if part drawings are tolerated per Mil-Std-8C and include the Maximum Material Condition modifier*.

Functional gages usually have a fixed configuration, like the mating parts they simulate, and allow each part gaged a different tolerance since no two finished parts are identical. Many complex, moveable-element gages are unfortunately used in industry today, but indicate questionable practices as functional gages should simulate mating parts.

There are two kinds of functional gages. The first is called a feature relation gage and the second a feature location and relation gage.

1. Feature Relation Gage: A gage that contacts only the primary (interface) datum surface on the part and checks the relationship of a pattern of part features. See Figure 1.

*Maximum Material Condition is the most critical specified interchangeability size. The largest male and/or smallest female feature.
2. **Feature Location and Relation Gage:** A gage that contacts two or more part datum surfaces and checks the location and relationship of part features from these part datum features. See Figure 2.

Functional Gage Design Principles

Principle 1

Functional gages contain fixed gaging elements (pins, bushings, etc.) located at basic part feature locations.

Principle 2

Part tolerances are true variables since all finished parts vary in size. The maximum material condition concept in Mil-Std-8C recognizes this truth.

Principle 3

When physically possible, a functional gage should simulate the mating part at the gage-part interface.

Principle 4

A gage is truly functional when it physically simulates the "worst" mating part possible.
Principle 5

The gage designer should not arbitrarily decide gage element size or location as the drawing dictates these criteria. The drawing is not complete if such decisions are required.

Principle 6

Parts that can be functionally gaged can also be functionally tooled since gages and tools should be basically identical. Although tools have clamping devices and are designed to withstand cutting forces, their form at the tool-part interface should, if possible, be similar to the gage used to accept the finished part.

Principle 7

All functional gage elements should receive the part simultaneously since most assembly features (bolts, pins, etc.) must all go simultaneously.

Principle 8

If several "identical" functional gages are within their specification limits, any part accepted by any one of these gages is acceptable.

Principle 9

One "datum" (usually encompassing several mutually perpendicular part datum features) per part will enable one gage to be used. Any increase in the number of "datums" will increase the number of gages and increase cost.

Principle 10

Gaging policy should be centered on the principle of acceptance--not rejection--of all possible in-tolerance parts. Since tolerances and wear allowances can make the gage worse than the "worst" mating part, a careful engineering analysis of each gage drawing can greatly increase acceptance rates.

Some Basic Interchangeability Gage Forms

The following gage forms will guarantee functional interchangeability for the two cases discussed.

Case I Clearance Holes in Both Mating Parts

Rule: The gage for each part consists of a pattern of pins located at the part basic hole locations. The gage pins will be the MMC size of the fastener (bolt or screw).

Explanation: Figures 3A, 3B, and 3C illustrate Case I. Since the part drawing (Figure 3B) does not specify a tolerance, a separate Go gage is not
required since it is built into the functional gage shown in Figure 3C. A separate Not-Go gage, of .530 diameter, is required.

THIS ASSEMBLY
FIG 3A

MEANS THIS DRAWING
(for both parts)
FIG 3B

paper number 730
Rule for Part 1: The gage for Part 1 consists of a pattern of pins located at the part basic hole locations. The gage pins will be the MMC size of the clearance hole.

Rule for Part 2: The gage for Part 2 consists of a pattern of bushings located at the part basic tapped hole locations and a set of Go thread gages for each tapped hole. The difference in size between the bushing ID (Figure 4E) and the shank diameter of the Go thread gage (where it goes through the bushing) will be the positional tolerance diameter specified at MMC to the tapped thread. The gage bushing will be a minimum of .500 high, the maximum thickness of Part 1.

Explanation: Figures 4A through 4E illustrate Case II. Note how the gages for Parts 1 and 2 simulate the worst mating part. The p .500 specification (Figure 4C) states that the mating part (Figure 4B) is .500 maximum thickness.
THIS ASSEMBLY

FIG 4A

MEANS THIS DRAWING FOR PART 1

FIG 4B

MEANS THIS DRAWING FOR PART 2

FIG 4C

\(\frac{5}{20} \text{ DIA} \)

\(\Phi A.000 \text{ in} \)

\(\frac{5}{240} \text{ DIA} \)

\(\Phi A.020 \text{ in} \)

\(\Phi P.500 \)
MEANS THIS GAGE FOR PART 1
FIG 4-D

MEANS THIS GAGE FOR PART 2
FIG 4-E
References:
