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ABSTRACT

Analytical and experimental techniques have been developed and evaluated for
determining residval stresses in filament-wound rings, Extension to more
complex geometries appears obvious but was not investigated, These techniques
should provide the tools for optimizing structural performance in filament-
wound composites. All techniques proved to be useful and differed only in the
accuracy of results (least accurate within ten percent; most accurate within
one percent), Radial variation of material properties was accounted for in
a stepwise fashion in the most accurate technique,
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SUMMARY

. Two analytical and two experimental techniques have been developed at the Oak

Ridge Y-12 Plant{@) to aid in the study of residual stresses in filament-wound
rings. The state of residual stress in a ring isassumed tobe one of pure bending
since the ring is free from external loads, A theory-of-elasticity solution and a
curved-beam solution were derived for fhe ring under pure bending. Both of
these solutions included effects due to maferlcl -property variation through the
thickness. For the range of practical interest, the curved-beam solution was
within 1.5 percent of the exact-elasticity solution. Two experimental approaches
were provided for acquiring data: surface-mounted strain -gages and ring-
diameter changes due to cutting of the rings. Both methods worked well, but
the strain gages were more accurate, possibly because of measurement errors

in the diameter-change method. The dlamefer-chcnge method with the curved-

beam solution appears to be a simple approach to evaluating, with reasonable
accuracy, a quantity of specimens, :

(@) Operated by Union Carbide Corporation-Nuciear Division for the US Atomic
Energy Commission,



INTRODUCTION

Of the materials available today, composites are rapidly achieving recognition as
the type possessing the highest performance rating. High-strength, fiber-
reinforced plastics are the most frequently used composites and are best in terms
of their strength-to-weight ratio. One process for making these composites is
filament winding. In this process, continuous filaments are wound onto a mandrel
under an applied tension (stress) with the plastic resin. This stress is "locked in"
the structure after curing and produces some residual stress distribution,
Although most conventional filament winding is done at a constant tension level,
the resulting stress distribution is not uniform because of interactions between
the layers already woundandthe layer beingwound. This study attempts to estab-
lish a method by which the residual stress can be determined and to ascertdin
some of the process parameters which control the residual stress.

Residual stresses in cylinders were studied by Mesnager(1)in 1919 and Sachs(2)
in 1927, Their work involved successive boring out of material from the inner
surface and measuring the outer-surface strains. The elastic equations for an
isotropic, internally pressurized cylinder were used to calculate the stress in the
removed material, Olson and Bert(3) expanded the Mesnager-Sachs boring-out
method to cover cylindrically orthotropic materials. While this method is, in the
limit, an exact solution for the residual, it is quite tedious and difficult to get
accurate results, '

The approach taken here can be classified as a "discrete-element" method
whereby the filament-wound rings are subdivided into a plurality of separate
rings. These separate rings (discrete elements) are fitted together by conditions
placed on the contact pressure between rings and the displacement of adjacent
points, The individual elements may be treated through an elasticity approach
such as the one partially developed by Fourney,(4) or the discrete elements
may be handled through the simplified curved-beam equations. For actual rings
encountered in this work, both theoretical approaches give good results,

It should be noted that the residual-stressdistributionis assumed to be that which
results from internal pressure (due to the mandrel)and pure bending. While other
factors may also influence the residual stress, thisapproach is felt to be repre-
sentative since two conditions of force equilibrium on an element in the "free"
state which mustbe satisfiedare: netforce equal to zero and net moment equal to
zero. This approach also allows a more general type of structure to be analyzed



since the element can be taken from any fabricated shape, and material properties
may vary arbitrarily through the cross section. The experimental work reported
herein tends to confirm the validity of this method for determining residual

stresses,
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DETERMINATION OF RESIDUAL. STRESSES

ANALYSIS BY THE ELASTICITY THEORY

In the solution for the stress, strain, and displacement relations of an elastic
body, it is necessary to satisfy the conditions of equilibrium, compatibility,
and the constitutive equation; ie, Hooke's law, The basic procedures for aniso-
tropic rings are outlined in Chapter 3 of the text by Lekhnitskii.(5) Solutions in
closed form are available for only a limited class of problems, generally
problems which possess a large degree of symmetry. Analysis of the residual
strain in a filament-wound ring has asolutionin closed form(4) provided there is
an axially symmetric state of stress, the material is uniform, and there is
cylindrical anisotropy. Through the fitting together of separate solutions for
uniform material, it is possible to analyze a ring of nonuniform material where
the nonuniformity is taken in successivediscrete layers, This technique is known
as the discrete-element method,

Single~Layer Ring

First consider the axially symmetric ring of uniform material with coordinates
and dimensions as shown in Figure 1, It is assumed that all the residual stress
is "unlocked" when a radial cut is made in the ring. It is further assumed that
the residual stress is axially symmetric and that this residual stress is
numerically equal to the pure flexural stress necessary to restore a cut ring
to its original configuration,

The equations of equi|ibrium(6) for this state of stress reduce to:

30 T o -0
r. 1 r@ r 0 _
ar ' r o8 T r 7 R =0, and (M
3o 3T
-84 + 2. =, 2)

dr r Tr@ =0. )

Integration of Equation 3 (variables separable) yields the result that:
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. Figure 1. COORDINATES AND DIMENSIONS OF AN
AXIALLY SYMMETRIC CUT RING. (The Origin of Co-
ordinotgs is Fixed ot O)

_ 2
Tre K/r",

where K is a constant of integration, However, T equals zero at the inner
and outer surfaces of the ring, which forces K to be identically zero. Hence,
Tr9 equals zero everywhere in the ring, which is the expected result, Asa
consequence, Equation 1 further reduces to:

- _r '
q6-0r+r dr “)

0).

in the absence of a body force (R

For the axially symmetric state of stress, with the restriction that second-
order terms in the strain tensor are negligible, the strain-displacement
equcfions(é) reduce to:

€ = du/dr, and (5)
=y, 13
€O—r'-'.rae” ©
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Similarly, the compatibility equcfion(é) states that:

lder_zdse-d%:() 7
r dr r dr 2 *

The appropriate elastic constants for the cylindrically anisotropic state of
plane stress are: E, E', v, and v',(b) The generalized Hooke's law(5) for these
conditions reduces to:

€ ='aI/E' - uoe/E, and (8)
€g = 0p/E - v'o JE". (9)

Substitution of Equations 8, 9, and 4 into Equation 7 yields the ordinary dif-
ferential equation:

’d2 % ¢ dc’r V'
'—f[f’“E'—r‘F"r] =0 (10)
dr
The general solution of Equation 10 is:
-k+1) k-1

or=A+Br + Cr , (1)

and Equations 11 and 4 yield immediately:

0y = A - Bkr-(k+]) + Ckrk— ], (12)

where:

K= E/EN = up, (13)
Substituting Equations 11 and 12 into Equation 8 yields an expression for
€ in terms of three constants: A, B, and C, Next, substituting this expression
for € into Equation 5 and integrating gives:

L - =
, C —Er,u—u ,andv’'=vy

8 o

(b) In other notations, E = E
, Or
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w=épf-unA;¢+uw*B+&-uw%]. (14)

In a similar fashion, Equation 6 yields an expression for "u" directly:

o=1 u-unA-&+uy*B+&-uh%]-3L (15)
E : o8
When Equations 14 and 15 are quofed, it is found that:
w_1-¢ (16)
06 E :
Upon integrating Equation 16 with the use of Equation 13:
v=(1/E - 1/E")rBA, (17)

where some f(r) derived in the integration is identically zero by the choice
of "v" as zeroat6= 0, ’

Evaluation of the constants (A, B, ond.,C) depends upon the manner in which
the input data are obtained from the ring before and after cutting.

Diameter Change of the .Ring as Input - Consider the cut ring of Figure 1, .
To close the small gap, o

v=ar | (18)
at 8 = 2m, By Equation 17, then:
= o .
A= 20/ - 178D (19)
The term "o may be approximated by the expfeésion:
*
o = 2n(a* - a) (20)

a 14

where "a" represents the inner radius of the ring before cuttingand "a*" the
radius after cutting, Hence: '

a* - a

A=SO/E S EY "

(21)
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At the inner and outer boundaries, O‘r (@) = ar (b) = 0, Thus, fromEquation 11:

: k-1 ; K1 ' S
B= Akl ey o (22)
- a b b a .

gokel ke

. . (23)
ST kel ke ke

C=-A

Furthermore, at the outer- ond inner boundaries, Equchon 9reduces to €

ce/E The strains on. these surfaces are thus: o
_A B k-1, C, k-l -
€ TE - E-kb +Ekb , and - (24)
_A B, -k-1 _ C. k-1
ei—E-Eka +Eka , (25)

where A, B, and C are f0und as described previdusly.

Then substitution of Equations 21 through 23 into Equations H and 12 ylelds
the residual stress distribution in the ring prior to cutting.

Strain Change on the Surface as Input - If a strain gage is mounted on the
surface prior to making the radial cut, the change in strain after the cut is
made is the amount of residual strain relief, If the strain gage is mounted on
the inner surface and the change in strain |s€ , Equations 22, 23, and 25
uniquely determine A thus:

. E €i .
A= . (26)
| [1 -k bk-lc—k-l _ 20—2 + b-k-lak-l]

ok_]b-k-] _ bk-la-k-l

Now, as before, the values of B and C are given by Equations 22 and 23, and
the value of €, is given by Equation 24, If the strain is measured on the outer
surface, the derivation would proceed in a similar manner,

The computer program for the foregoing theory is described in the Appendix
(Page 35).
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Multilayer Ring

A nonuniform distribution of fibers inthe radial direction causes a corresponding
variation of the elastic properties in the radial direction. Such a case is of
practical interest because a nonuniform distribution of fibers is inevitable in
the winding process since there is a natural tendency for resin to be squeezed
outward, Alternatively, a nonuniform distribution of fibers inthe radial direction
may be introduced intentionally to alter the characteristics of the ring.

The nonuniformity of the material is observed experimentally from an analysis
of samples cut from layers of finite thickness. Such samples are reduced by
burning off the resin which permits determination of the weight ratio of resin to
fiber, Elastic properties as a function of the resin-to-fiber ratio have been
determined empirically, Hence, the distribution of the elastic properties in
the radial direction may be found for any number, n, of discrete steps. By

fitting together elasticity equations based on uniform material for the "n
discrete layers by means of the appropriate boundary conditions, it is possible
to solve for the stresses, strains, and displacements in the multilayered ring.

By denoting a) as the inner radius of the first layer, by as the outer radius
of the first layer, aj as the inner radius of the jth layer, ..., the results
of the previous section which are pertinent to this analysis can be rewritten
as given in the treatment that follows. .

Stresses from Equations 11 and 12:

' k.=1 N k-1 o
o =A +Br! crl ,and (27)
r [ u |
k-1, k.-1 ‘ :
o.=A, -Br! ckr! . (28)
8 | | i

Displacements from Equations 14 and 17:

U=

m|—-

) -k, k.
[(ki - vi)rAi- - (ki + ui)r ' Bi + (ki-ui)r ' Ci] , and (29)
; . .

_ 1 1
- [d- 2] .
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The discrete layers are matched by boundary conditions which depend on whether
the input data are from a diameter-change measurement or a surface-strain
measurement,

Diameter Change of the Ring as Input - The constant, A;, is determined through
the use of Equation 21 at the inner surface of the composite ring. Thus:

A = ———= . (31)

It is noted that Equation 30, which is the tangential displacement, v, is an
expression for the size of the gap of the cut ring,

The remaining (3n-1) constants, Aj, Bj, and Cj, are determined from conditions
placed on the stresses and dlsp|ccemenfs Af the inner and outer surfaces, the
radial component of stress is zero, or:

o (q]) = o (bn) = 0, (32)

Between the "n" discrete layers of the nonuniform ring, the radial component of
stress and bofh components of the displacement must match, Thus:

o (bi-l) =0 (°i)' (33)
U (bi=l) =y (ai), and (34)
vib, )=

=v (ai). (35)

The matrix representing this system of equations is shown in Figure 2,

Once the constants A;j, Bj, Cjare computed, the strain distribution can be
computed by a modification of Equations 24 or 25

e(r)=E_f-Ei_k,r I i' . © (36)
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Note that €(r) is not a continuous function from one layer to the next through
the ring. The angle, o, which measures the gap (Figure 1)canbe computed by
~ Equation 20 as before, with any consistent radii used for "a" and ng*n,

Strain Change on the Surface as Input - The solution for the constants Aj,
Bi, and Cj involves 3n simultaneous equations when a change in the surface
strain is given as input data,

If, for example, the strain -is measured on the inner surface, one equation
follows from Equation 36 with r = a,, or:

-k]-l k,=-1
_]_A _klcl—__B +LC = € : (37)

Two additional equations result from  zero radial stress on the inner and
outer surfaces, namely:

o (a;) = 0, and - (38)
cr(bn) = 0. (39)

The remaining (3n-3) equations result from matching radial stress, radial
displacement, and transversedisplacement at the interfaces between the layers,
thus:

9 b, )= 0 ), (40)
u(bi_ ]) = u(oi‘), and (41)
vib,_ ) = via). | “2)

Sisl i

The matrix representation of the system of equations is given in Figure 3,

When the constants Aj, Bj, and Cj have been determined, the straindistribu-
tion can be computed as before through Equation 36 and the stress distribution
through Equations 27 and 28,

The computer program involved with this section is also described in detail
in the Appendix (Page 37).
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Figure 2. MATRIX REPRESENTATION OF EQUATIONS 32 THROUGH 35.
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ANALYSIS BY THE CURVED-BEAM THEORY -

A somewhat simpler analysis than that of the elastic-theory analysis for the
residual strain distribution is achieved through .the use of the approximate
curved-beam theory.(7) Both the analysis by the theory of elasticity and that
by the curved-beam theory are based on the assumption that the residual strain
is equal to the strain induced by pure bending moments applied to a radially
cut ring. The pure bending moments must be of proper magnitude and sign
that are just sufficient to restore the cut ring to its original configuration,

The approximate curved-beam theory assumes that the radial component of
stress is zero and that only the modulus of elasticity in the circumferential
direction needs to be considered in determining the elastic behavior of the ring,
Variations in the material composition in the radial direction areinevitable
in the winding process., Such variations may also be intentionally induced to
alter the properties of the rings., Through the use of empirical data relating
modulus of elasticity to the fiber-resin ratio, the modulus of elasticity may
be expressed as a function of "r", o '

The ' coordinates and notations are shown in Figure 4, Here, the radius, R,
locates the neutral surface; radii a; and bj denote the inner and outer radii,
respectively, of the jth layer., The z coordinate is measured radially outward
from the neutral surface, The radial and circumferential components of dis-
placement of the point are denoted by "u" and "v", Bars (5, V) denote a point on
the neutral surface. The elongation of an element subtended by d8 is (R + z)
€dd, where "€" is the circumferential strain associated with that element,
The assumption that plane sections remain plane under deformation dictates
that:

(R + z)
z

= Constant, (43)

which implies a hyperbolic strain distribution:

z

€ =K Brz’ (44)
The factor, K, can be interpreted from the geornetrry of bending as:
-
k=26 (45)

6 4

where "U'" represents the slope of the neutral surface, For a state of pure
flexure, "K" is constant since "¢" is afunction of "z" alone,
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Figure 4. NOTATIONS FOR A CUT RING.

When a ring is cut and the residual stress is relieved, the angle, & (Figure
4), is given by v(2m)/R. The distance, R, denotes the radius of curvature of the
neutral surface of the ring before cutting, while "R*" denotes the same radius
after  cutting, Note that "R*" may be either greater than or less than "R",
depending on the sign of the residual stress, The circumferential component of
displacement at the gap, v(27), is given by R, or:

v(2m) = 2n(R* - R). (46)

A negative value of V(Zn) is physically possible if two radial cuts are made in the
. ring. When the member is subjected to a pure bending moment toclose the gap,
v'(2m) = a. Thus, by Equation 45:

*
K = _R__T;_R (47)

If the circumferential modulus of elasticity is taken as any function, E(z),
the stress-strain relationship ¢ = €E(z) and Equation 43 yield:

%QET:))O = Constant, (48)

When Equation 48 is substituted into the equilibrium equation, JodA = 0,
z E(z) _
Iarra o 49)

is obtained, which defines the location of the neutral surface.
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When E(z) is a continuous function, Equation 49 may be integrated directly
to find "R", However, it is more often the case that samples are taken from
discrete layers through the ring. From known relationships between the fiber-
to-resin ratio and the elastic modulus, the modulus can be determined for
each "}" layer, Thus, Equation 49 may be rewritten: .

n

Zl [Ei fAi - dA]ﬁ =o (50)

When. the "n" Io‘yerAs have rectangular cross sections of constant width and
variable thickness, t, each, Equation 50 may be simplified accordingly to give:

n b
> leE ft. -rRIn_L]}]. (51)
i:] 1 | Cli :

Rearranging Equation 51 gives an explicit expression for the location of the
neutral surface, thus:

. . (52)

Zn: E. lnA (b./a,)

With the "R" given by Equation 52, the strain distribution may now be found

from Equation 43, The constant in Equation 44 can be evaluated routinely

if one of the surface strains is measured with a strain gage. Thus, if the strain,

€., is read on the inner surface, the strain on the outer surface is:
- alb - R)

GO—BmGi. (53)

On the other hand, if the inside diameter is noted before and after the radial
cut is made, the strain distribution follows from Equations 44 and 47, Since
it has been assumed that the radial component of stress is zero, it follows that
the radial component of the strain is of small order, Hence, the thickness change
can be neglected and the "K" of Equation 47 is:

(54)
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where aj is the inside radius of the ring before cutting and aj the inside
radius of the ring after cutting,

COMPARISON OF THEORIES

A comparison of the results for the residual-strain distribution obtained from
the elasticity theory with those obtained from the curved-beam theory is most
directly done numerically. In general, it is expected that the simpler curved-
beam theory should give less satisfactory results thanthe elasticity theory when
either the ring is relatively thick (R/t small) or the anisotropy is great (as
indicated by the magnitude of k, which is the square root of the ratio of E/E'),

In addition, the significance of a nonuniform distribution of fibers in the radial
direction is of interest. In many instances, a determination of the elastic
properties at several discrete layers involves somewhat more effort than may
be justified., Hence, comparisons are also made between the two theories on
the basis of the differences predicted for the amount of radial variation of the
elastic properties.

Comparison of the Two Theories for Uniform Material

Since the curved-beam theory assumes at the outset that the radial component
of stress and strain is zero, this theory neglects any contribution of E. (the
elastic modulus in the radial direction), On the other hand, E  is incorporated
into the elasticity equations through the parameter k =</Eg/E.. It is nated
that the elasticity equations as they stand will not run for isotropic material
k= l),(C) If isotropic material is to be considered, it is suggested that a value
of Eg, which is slightly larger than E,, be selected so that "k" is on the order
of 1.1, :

For comparison of the strain distributions resulting from the two theories,
it is convenient to consider the dimensionless ratio of the strain on the outer
surface to that on the inner surface, €,/€;. With reference to Figure 5, it is
noted that consideration of "k" is most important when the ring is relatively
thick (R/t <5). However, a practical range of "k" encounteredis 1<k<3, and it
is seen in Figure 5 that the curved-beam and elasticity theories give excellent
agreement within this range,

\

(¢) The solution for isotropic material may be found in the work of Timo-
shenko.'®) Thé general solution for the stresses isof a slightly different form.
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Figure 5. COMPARISON OF THE TWO THEORIES FOR THE CASES WHERE THERE IS A UNIFORM
DISTRIBUTION OF FIBERS IN THE RADIAL DIRECTION.

If the rings under consideration fall within the favorable ranges of k and R/t
for the curved-beam theory, the use of this theorygives the important advantage
that -the modulus of elasticity of the material does not have to be known to
determine the residual strain distribution,

Importance of Nonuniform Material

The residual-strain- distribution is a function of the material properties as
well as the radius-to-thickness ratio. When there is a wide variation in the
modulus of elasticity through the cross section of the ring, there can be a
significant effect upon the strain distribution,

In Figure 6 are shown the results of a study run by the elasticity program
for rings having four discrete layers, The circumferential modulus of elasticity
was made to vary in such a way that the differences in the values of Eg were
always equal, giving a "linear" variation of Eg in four steps. The amount of
variation is thus expressed by the ratio of Eg for the outer layer to that of
Eg for the inner layer, In this study, value of the radial elastic modulus for all
layers was taken as 0.3 of the mean value of Eg. While the range of the Eo/Ej
ratio, as shown in Figure 6, is admittedly much wider than would be encountered
in practice, it is still apparent that the distribution of Eg can be important,
Also, it can be seen that the effectis only slightly less pronounced for relatively
fhlck rings (R/f 1.25) than it is for relatively thin rings. In addition, it is
noted that there are many cases, the chances for which are more likely with
thin rings, in which the residual strain is greater on the outer surface than on
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Figure 6. VARIATION OF STRAIN DISTRIBUTION WITH NONLINIFORMITY QF MATERIAL. (Four Diserete Layeis,

Elasticity Theory; E = 0.3 EO Mean)

the inner surface. This seeming paradox has been observed experimentally,
and is explained by the fact that the material has a lower Eg on the outer layers,

If the value of "k" is not large, it might be expected on the basis of the previous
" results for uniform material that the results obtained from the elasticity theory
and those obtained from the curved-beam theory would be in substantial agree-
ment for nonuniform material. Such is the case, In Figure 7 is plotted the
relative error of the curved-beam theory, which can be compared to the
elasticity theory which is plotted in Figure 6,
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Figure 7. RELATIVE ERROR OF RESULTS FROM CURVED-BEAM THEORY COMPARED TO ELASTICITY THEORY.
(Er =0.3 E9 Mean; Four Discrete Layers)

For the case of a relatively thick ring (R/t= 1.25) the two theories agree
within = 1,5 percent for 0.1<E,/E;<4.5. Theagreement betweenthe twotheories
improves as the rings become thinner, For R/t < 2, the two theories agree
within + 0,5 percent for 0,1 <E,/E;<3.For R/t< 10 the two theories agree
within + 0.3 percent for 0.1 < E_/E; < 10,

EXPERIMENTAL PROCEDURE

In order to check the theory and determine methods of controlling residual
strains in filament-wound rings, several cylinders were fabricated. The process
was one of wet winding with single-end "S" glass yarn and a dip-type resin
impregnation tank, Tension was applied before impregnation by magnetically
loaded polished discs. Type ERL 2258/MPDA (100/20 pbw)epoxy resin was used
as the matrix, Fiber-winding tension and resin migration were the process vari-
ables that were controlled. These variables were step incremented at quarter-
thickness points. Specimens were fabricated with combinations of resin cure at
quarter thicknesses, constant tension, and linear stepwise increase or decrease
of tension. Atotal of twelve cylinders (two sets at different times) were made with
three of each sét given an intermediate cure and three completely wound and
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Table 1
FABRICATION DATA FROM TEST SPECIMENS

Specimen Number of Tension
Number Curc Cycles (grams)
1292-01 1 250 (constant)
1292-02 4 100 - 400
1292-03 4 250 (constant)
1292-04 4 400 - 100
1292-05 1 100 - 400
1292-06 1 400 - 100
1-1A 1 200 (constant)
1-2A 1 400 - 100
1-3A 1 100 - 400
1-4A 4 200 (constant)
1-5A 4 400 - 100
1-6A 4 100 - 400

cured, Data for the cylinders are listed in Table 1. All cylinders were wound on
rigid aluminum mandrels and rotationally cured for two hours at 185° F and two
hours at 300° F. From these cylinders, one-quarter-inch-wide rings were ma-
chined by diamond wheel grinding. Inner and outer surfaces were not machined.

As discussed in the topics on theoretical analysis, two techniques were used to
determine residual strains: ' strain-gage and deflection measurements. Strain
gages (micro measurements, Type EA-06-250BG-120) were applied to one ring
‘from each of the six cylinders on the inside and outside surfaces. These gages
were connected in a half-bridge arrangement usinga BLH strain indicator (Model
120C). The bridges were balanced then the ringwas cut. A segment was removed
when the rings closed on the saw cut. The final strain-gage readings indicated the
amount of residual bending strain present in the rings as fabricated, Two sets of
gages were mounted on each ringandtheaverage value for the inside and outside
gages was used, As mentioned in the theoretical discussion, only one strain read-
ing is needed for determining the residual distribution, The second reading thus
provides a check on the theory, In addition to strain-gage readings, the inside-
diameter change of the ring was measured, Diameters were measured and record-
ed before and after cutting by using an inside micrometer. This step provided
another set of data for the same ringand a comparison with the strain-gage values,

In order to check the importance of material nonuniformity as well as to provide
an idea of the validity of the theoretical analysis, samples were taken from each
of the rings to determine their material properties. A one-half-inch-long
segment of the ring was divided at quarter-thickness intervals, and a chemical
analysis was made for the fiber/resin ratio and density for these sub samples.
Results from the chemical analysis were used to calculate the fiber volume
percent and void percent in the material, These data were used along with
experimental curves to determine the tangential and radial moduli of elasticity,
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and in the computer programs to determine the nonuniformity effects, These
results are discussed in the next topic.

EXPERIMENTAL RESULTS AND COMPARISONS

Uniform Distribution of Fibers - Strain-Gage Input

Experimental results wee obtained by Fourney(4) forfive rings where a uniform
distribution of fibers was assumed in the radial direction, These experimental
results are compared to the elasticity and curved-beam theories in Table 2. A
constant value of E = 7,4 x 106 psi was used for the calculated values, Since the
values of R/t in Table 2 range from 11.3 to 16.1, according to Figure 5, virtual
agreement is expected between the elasticity and curved-beam theories, as
appears to be the case here, Agreement between the experimental results (strain-
gage readings only) and theoretical results is favorable, as shown in the last
column of Table 2,

Table 2

COMPARISON OF STRAIN DISTRIBUTION PREDICTED BY THEORIES WITH RESULTS OBTAINED
BY EXPERIMENTS FOR RINGS OF UNIFORM MATERIAL

Theoretical Data

Experimental Data(l)

Inner Average Elasticity =~ Curved Beam Percent
Radius  Thickness €; €5 €, €, Difference from
(in) (in) R/t (p in/in) (p in/in) (p in/in) ( in/in) Experimental Results
2.68 0.2372 11.3 180 -158 -170 -170.1 + 7.38
2.65 0.1646 16.1 140 -146 -134.5 -134.5 - 8.20
2.65 0.1837 14.4 128 =119 -122.6 -122.4 + 2.82
2.65 0.2218 n.g 126 -108 -119 -119.4 +10.02
2.65 0.2210 12.0 152 -147 -144 - -144.1 - 1.99

(1) From Fourney. (4)

Description of Test Specimens with Radial Variation of Fiber Distribution

Twelve test specimens with the winding tension varied on four discrete steps
were constructed at the Y-12 Plant, Four strain gages, two inside and two outside,
were mounted in the circumferential direction on the rings., Diameter and
strain-gage readings were recorded before and after the radial cut was made in
the rings. Subsequent chemical analysis by resin burnoff was used to determine
the fiber /resin ratio, These data were then converted through the use of empirical
relationships to the modulus of elasticity, A description of the twelve test rings
is given in Table 3, The R/t ratios here range from 9.1 to 10,3; which, as before,
is in the range where good theoretical agreement exists between the elasticity
and curved-beam theories.
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Table 3
DESCRIPTION OF TEST RINGS OF NONUNIFORM MATERIAL

Circumferential Mbdqlus of Elosticity(])'

Inner  Average Layer 1  Layer 2 Layer 3 Layer 4 Measured Strain Inner Radius
Specimen Radius Thickness (inner) (outer) ~— & €. After Cut
Number (in). (in) R/t (106 psi) (106 psi) (106 psi) (106 psi) (p inl/in) (n inc}in) (in)
1292-01 3.006 0.310 9.7 8.80 8.76 8.68 8.40 639 -570 2.959
1292-02  3.005 0.314 9.6 7.30 7.62 8.25 8.14 -478 413 3.028
1292-03  3.005 0.313 9.6 8.06 8.21 8.05 8.30 -555 509 3.024
1292-04 3.003 0.322 9.3 7.78 8.05 7.40 7.20 294 -287 2.979
1292-05  3.005 0.308 9.8 7.85 8.05 8.38 8.22 410 -384 2.978
1292-06 3.004 0.315 9.5 8.68 8.45 7.57 7.23 723 -687 2.954
1-1A 2.976 0.300 9.9 9.1 8.63 7.63 8.25 1,593 -1,5%96 2.875
1-2A 2.972 0.310 9.6 9.31 8.96 8.35 7.45 1,857 -],908(2) 2.857
1-3A 2.974 0.315 9.4 9.20 9.22 9.18 8.90 =226 216 2.988
1-4A  2.970 0.326 9.1 9.13 9.1 9.08 . 8.96 -144 134 2.978
1-5A 2.967 0.308 9.6 9.22 9.05 8.78 8.42 1,289 -1,270 2.888
1-6A  2.968  0.289 10.3 8.61 8.79 8.74 8.56 -2,048 1,939 3.1h

(1) Determined by resin burnoff.
(2) Gage drifted.

Comparisons with the Curved-Beam Theory

The curved-beam equations for a nonuniform distribution of fibers in the radial
direction depend only on the variation of the circumferential modulus of elasticity.
The results in Table 4 are based on the data in Table 3 and Equation 52, Page
21,

It is noted in Table 4 that the results achieved in the 1-XA series of rings are
very much better than the results of the 1292-XX series., The 1292-XX series
of rings were tested about a year ago, and it is uncertain why these results
should be so far off. The 1-XA series rings, which were tested recently,
apparently provide more reliable data, Consequently, further comparisons are
made only with the 1-XA series parts,

It is also apparent that the strain-gage method is superior to the diameter-
change method when the elastic modulus variation is accounted for,

For many cases, sufficient accuracy is achieved from the assumption of uniform
fiber distribution in the radial direction, With the curved-beam theory, this
assumption yields the important advantage of not having to determine the modulus
of elasticity, A comparison of the curved-beam theory for uniform material
with the experimental data for the -A series of rings is given in Table 5,
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Experimental Results

Curved-Beam Theory

Based on Diameter Change

Based on Strain Gage

Ring €; € €; Percent €5 Percent €0 Percent
Number (n in/in) (pin/in) . (uin/in) . Difference (p in/in) Difference  (u in/in) Difference
1292-01 639 -570 793.0 24.1 -742.8 30.3 -598.1 4.81
1292-02 -478 413 -384.6 19.5 359.9 12.8 447 .4 7.99
1292-03 -555 509 -315.2 43.2 295.1 42.0 519.5 2.04
1292-04 294 -287 429.8 46.1 -401.6 39.9 -274.9 4.31
1292-05 410 -384 459.9 12.1 -431.1 12.2 -384.2 0.05
1292-06 723 -687 866.5 "19.8 -810.7 18.0 -676.5 1.54

Average 27.4 26.0 3.46
1-1A 1,593 -1,5%96 1,637.8 2.8 =1,620.1 1.5 -1,575.8 1.3
1-2A 1,857 -1,908 1,886.4 1.5 -1,930.8 1.2 -1,900.8 0.4
1-3A =226 216 -243.6 7.8 230.6 6.7 213.9 0.9
1-4A -144 134 -144.8 0.6 135.9 1.4 135.2 0.9
1-5A 1,289 -1,270 1,326.0 2.9 -1,287.8 1.4 ~1,251.8 1.4
1-6A  -2,048 1,939 -2,307.3 12.6 2,172.6 12.0 1,928.4 0.5

Average 4.7 3.8 0.7

Note in Table 5 that the efficacy of the diameter-change method compares

favorably with

the strain-gage method, A comparison of Tables 4and Sis

also favorable. Apparently, only a slight improvement results from taking the
nonuniformity of the fiber distribution into account, and this improvement is
only apparent when the strain-gage method is used,

Table 5

COMPARISON OF EXPERIMENTAL DATA OBTAINED BY THE DIAMETER-CHANGE

AND STRAIN-GAGE READINGS WHERE A UNIFORM DISTRIBUTION OF FIBERS IS ASSUMED

Curved-Beam Theory

Experimental Results

Based on Diameter Change

Based on Strain Gage

Percent

Ring €; €6 €; Percent € Percent €
Number {u in/in) (p in/in) (p in/in) Difference  (p in/in)  Difference (¢ in/in)  Difference
1-1A 1,593 -1,596 1,683.6 5.69 -1,578.4 1.10 -1,493.5 6.42
1-2A 1,857 -1,908 1,976.3 6.42 -1,849.3 3.08 -1,737.7 8.93
1-3A 226 216 -245.2 8.50 229.2 6.11 211.3 2.18
1-4A -144 134 -145.3 0.90 135.5 1.01 134.3 0.22
1-5A 1,289 -1,270 1,351.3 4.83 ~-1,264.9 0.05 -1,206.6 4.99
1-6A ~2,048 1,939 -2,309.8 12.78 2,170.3 11.93 1,924.2 0.76
Averuge 6.52 © 3.88 3.91
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Comparisons with the Elasticity Theory

The elasticity solution is a function of the radial and circumferential components
of the elastic modulus and of the Poisson's ratio. The comparisons between the
elasticity solutions and the experimental data for the 1-XA series are given
in Table 6,

Again, there is some improvement by considering the material tobe nonuniform,
Also, the diameter-change method is slightly less accurate than the strain-gage
method. This difference is probably attributable to the accuracy of measuring
the diameters on rings which are somewhat flexible and which have some uneven-
ness in the surface finish,

As expected, the results obtained from the elasticity theory are closely in
agreement with the curved-beam theory., Hence, the extra experimental effort
that may be necessary to determine all elastic properties may not be entirely
justified, For rings of the type here, the results from the simplest method
(curved-beam theory for uniform material based on diameter change) are
very satisfactory (6.52 and 3.88 average percentage difference with experimental
data), The best results are obtained from the strain-gage method where non-
uniform material is considered, but the extra experimental work involved
probably doesn't justify the increased accuracy.

CONCLUSIONS

The analysis and control of residual stresses is important when using com-
posite materials in applications where optimum performance is desired,

For dealing with a particular material test specimen (the filament-wound
ring), two theories and two experimental techniques have been developed here,
Of the two theories, the curved-beam method is thé simpler to apply, but the
elasticity theory has a broader range of application. It is also noted that the
curved-beam theory may be applied without knowledge of the elastic properties
of the composite material if it is assumed that there is no radial variation of
the modulus of elasticity.

Of the two experimental methods, the diameter-change method is thought to be
more convenient because of the possible inconvenience of mounting strain
gages., However, strain gaging seems to have greater sensitivity, and thus is
recommended when more precise results are needed,

Both theoretical methods allow the radial variation of the elastic properties,
an important advantage in that rings made of varied materials may be analyzed,



Table 6
COMPARISON OF EXPERIMENTAL RESULTS WITH ELASTICITY THEORY

Uniform Material Assumed Nonuniform Material Taken Into Account

Experimentc| Results Based on Diameter Change Based on Strain Gage Based on Diameter Change Based on Strain Gage

Ring €; € €; Percent € Percent €o - Percent €; Percent €, Percent € Percent -

Number (uin/in) (pin/in) (pin/in) Cifferenze (pin/in) Difference (p in/in) Difference (uin/in) Difference (pin/in} Difference (unin/in) Difference
1-1A 1,593 -1,596 1,678.7 5.37 -1,574.7 1.33 1,494.3 6.37 1,631.8 2.43 -1,615.6 1.23 -1,577.3 1.17
1-2A 1,857 -1,908 1,$70.6 6.1 -1,844.6 3.32 -1,738.0 8.91 1,879.4 1.21 -1,924.8 0.88 -1,901.5 0.34
1-3A -226 216 -244.5 7.56 228.6 5.83 211.3 2.17 -242.9 7.47 230.0 6.48 214.0 0.93
1-4A -144 134 -160.4 11.3 148.6 10.89 133.4 0.44 -144.3 0.21 135.6 1.19 135.4 1.04
1-5A 1,289 -1,270  1,347.5. 4.53 -1,261.7 0.65 -1,206.8 4.97 1,321.3 2.51 -1,284.4 1.13 -1,253.0 1.33
1-6A ~2,048 1,939 -2,303.8 12.49 2,165.5 11.68 1,925.0 0.72 -2,299.5 12.28 2,168.0 11.8 1,930.2 0.45
Average 7.89 5.62 3.93 4.35 3.78 0.87

L€
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For example, the theory could routinely handle the residual strain distribution
in a ‘composite structure consisting of a metal ring covered with fiber glass-
epoxy winding; which, in turn, is covered with metal-epoxy winding.

The method of cutting the ring shares the disadvantage with Olson and Bert's
method(3) of being a destructive test. However, the dmount of labor in the present
method is considerably less than that involved in boring out the test specimens,
It is felt that a possible improvement couldbe made in devising a nondestructive
test whereby the behavior of a ring compressed between two parallel planes
could be indicative of the residual stress, Another nondestructive test could
be based on the photoelastic method, This method, in particular, may be useful
in leading to a more basic understanding of the mechanism of residual stress in
composite materials,
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APPENDIX

FORTRAN PROGRAM.

‘Residual Strain Distribution in Filament-Wound Rings - Elasticity Theory
for Uniform Material Only

This program is used to compute the residual strain distribution in filament-
wound rings by means of the elasticity equations, Page 9. This program is
limited to rings where the elastic properties are uniform throughout; when
there is a nonuniform distribution, the FORTRAN program that follows applies
(Page 37).

Input: (One card for each ring. No limit on the number of cases.)

1-10 Original inside diameter of ring (F format),
11-20 Thickness of ring (F format),
21-30 Tangential modulus, E (F format).
31-40 Ro&ial modulus, E' (F format).

41-50 Reading of the inner strain gage in microinches per inch (F format).
If strain gage reading is not furnished, leave blank,

51-60 Inside diameter of the ring after cutting (F format). If the diameter
after cutting is not measured, leave blank, If both the diameter and
strain-gage readings are available, separate outputs will be given,

INSIDE RADIUS original inner radius

THICKNESS , (same as input)

K ratio E/E"

INNER STRAIN residual strain on inside surface,
: microinches/inch

OUTER STRAIN , residual strain on outer surface,

microinches/inch
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c1 ' Constant A (Page 12)
C2 Constant B (Page 12)
C3 Constant C (Page 12)

'FORTRAN Listing:

(e N eNelel

RESIDUAL STRAIW DISTRIBUTIEGBN IN FILAMENT WOUND RINGS
ELASTICITY THEORY
UNIFORM MATERIAL INLY

BOR.D, 'I"S"’.‘ﬁ

I WRITE (5),2) i . ’

2 FORMAT (|H|,4X,69INSIDE,4X,6HTAICK=,6X, |HK,7?X,5HINNER,4X»5H0UTER)

3 WRITE (51,4) :

4 FORMAT (5X,6HRADIUS,SX, 4HNESS, |5X, 6HSTRAIN, 3X, 8HSTRAIN, 9X, 2HC | 45X
1 22HC2, 1 3%, zHC3)

.9 READ (53,6) DI, T/ET,ER,SI,DCUT

6 FORMAT(6F | g.0)?

7 FK & SQRT(ET/ER)
Rl = DI1/2.
RO = RI+T
RIC = DCUT/2,
1F (sh 10302

jg RIT = .y - FK’??ﬂ"(FKP|go)'RI"(~FK-|.g) - 2.0/RI*®2 + RUT¥(sFK
fel QU RI**(FK=|,0) ) / (RI**(FKm| 0)*RA**(=FK=1,2) = RO**(FK=[,0)
2RI (~-FK={,0) )

i1 Cy = ET*SI/BOT

12 62 = CI*RE® (FK o) =RI**(FK=|,0)) / (RI**(FK=|,q) *RA**(=FK=|,()
| =RO**(FK={.0) *RI®*(=FK=1.g) )

|8 €3 = = C1*(RO®C(=FK=jon)= RI®*CeFKm|og)) / (RI**(FK=|.g) *RO*"(=FK
I=1eQ) = RO*®(FKm| . n)*RI**(=FK=|,q) )

14 83 = ( C| -~ C2*F<*ROY*(=FK=jog) ¢ CI"FX*RO"*(FK=|.0)) 7/ ET

15 ST = € C| "= C2*FX*RI**(=FK~jo() ¢ CI*FK*RI**(Fu~y,q)) 7/ ET

|16 WRITE(550|7) RIIT’FKJSIlSG'Cl’CZl(:s

|7 FORMAT () Hps3F |gedszF et 23E1544, ) gH GAGE DaTa)

3y IFCDCUT) 3y1,30,3]

31 € 5 (RIC = RIY / tRI®(|.4/ET =|,g/ER))

32 02 = Cr*(RE* UFK= o) =RI®*(FK=)40)) 7/ (KI**(FK=|,p)*RE°*(-FK= ),
1=RE**(FK= |, ) *RI**(=FK={.y)) ' -

33 C3 5 = C1*(RO*(=FK=|,n)=RI**(~FK=],0))/ (RI**(F<m].0) *RO**(~FK~
||.g) - Rﬁ"(FK-|.u)’RI"(-FK’g.D))

34 S0 = ( G| = Ceg*r« Rﬁ“'(-FK~|.U) + CS'FK'RG."FW'|.U)) / ETY vyl

jb Sy s ( C' - CZ.F"(‘RI.'(!FK'lo“) * C:S‘F'('RI.'(F‘I('l.n)) / ET.'nuté

36 WRITE (5|:37) RI’T)FKJSI‘SGICIDC?DC:SJRIC

37 FORMAT (1 Hps3F geds2F e 03615440 )7H 1R AFTER UT WAS,FB8e4s4H IN,)

3B WRITE(S|,39)

39 FORMAT (|Hg)

4p 69 Ta 5
END
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Residual Strain Distribution in Filament-Wound Rings - Elasticity Theory
for Uniform and Nonuniform Material

This program is used to compute the residual strain in filament-wound rings by
means of the elasticity equations (Page 14). This program runs one-layer and
four-layer rings; a simple modification is necessary to run any other number
of layers. A

Iﬁput (One initial card for each ring, plus one additional card For each layer,
The groups may be repeated indefinitely.)

Initial Card: 1-10 Inside diameter (F format).

. 11-20 Thickness (F format).

21-30 Strain reading, microinches per inch (F format). May
be left blank,

31-40 Inside diameter after cutting (F format). May be left
blank,

4] " Number of layers, either 1 or 4 (I format),

Additional card for one-layer ring only:

1-10 Tangential modulus, E (E format),
11-20 Radial modulus, E' (E format),
21-30 Poisson's ratio, v (F format),

Additional cards for four-layer ring only:

1-10 Inside radius of layer, c:i (F format),
11-20 Tangential modulus, Ei (E format).
21-30 " Radial modulus, Ei (E format),

31-40 Paoisson's ratio, v, (F format).
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Output:

INSIDE RADIUS  original inner radius

THICKNESS same as input

INNER STRAIN computed residual strain on inner fiber, microinches/inch

OUTER STRAIN  computed residual strain on outer fiber, microinches/inch

‘ALPHA size of gap in cut rings, radians

Constants A, B, and C for each layer, Under the list of
constants is given the source of input for that particular
case,

FORTRAN Listing:

Q aoaoan

(s el 2]

RESIDUAL STRAIR DISTRIBUTIEN IN F!LAMENT WAUND RINGS

ELASTICITY THE

UNJFBRM AND NONUNIF®RM MATERIAL
8,Re« DEWEY, | je5=68, REVISED |=)1(=69

DIMENSION R(5),ET(4),ER(4),GN(A)sFK(4),RS(4),AL4),B(4).C(4)sF(12),
INCI2412)4D0C194)281(4),50(4)

WRITE ¢5),2)

10EX =

2 FORMAT ? H)s4X, 6HINSIDE,4Xs 6HTHICK®24X»5HINNER,4X,SHOUTER/ 5X,

IN

QHRADIUS:5X:4HNESSOSX06HSTRA!N:Sx:6HSTRAINJBXo5HALPHA///’
S‘I’ATEMENT 5, NO MUST BE EITHER | OR 4,

5 READ (50+6) DI,T,)SA,DCUT,NG
6 FORMAT (4F gsps11)

8

B8R

{o
|
!

LN

17
18

19

1001
20
2!
22
24
25

30

RI = D1/2,

RC- = DCUT/z,

RO 8(D1e2,0*T)/2,
1FNBLNE: |) GO T8 |gg

ANCH FOR WOBMOGENEJUS RING==DIAMETER MEASUREMENT

READ (50, )2) ETAN,ERAD,GNUT

FORMAT (3EI1Q+0)

HK=SQRT(ETAN/ERAD)

1F(DCUT) 30,3047

AC & (RCw»RI1)/ (RI®t|,/ETAN ®» |./ERAD))

BC ® AC®(RC*®(HK» | ,p)=RI®®(HKn} ,9))/ (RI**(KKmy,p) RO (~HK=,y) =
JRO®®(HKm | ,0) *RI®*®*(aHK=,0))

CC = AC*(RI®®(=HX=|,p) = RO®*(eHK=|,0))/(RI**(HKa|,() *RO*(=HK=] 1y
1Y » RO**(HKw»|+n)*RI**(=HK~|,0))

WRITE (51,1001) AC,BC,CC

FORMAT (6qgX, JE|5 4)

STR] & (AL ~ BC HK'Rx"t-HK~|.0) ¢ CC HK*RI®®*tH(R|,0)) %) yEO/ETAN
STRG & tAC = BC HXK®RO®"(eHK=|ep) * CC*HK*RB®CtHCF|,0)) "1 YEO/ETAN
ALPHA = 6,2832%ACe¢ |, /ETAN =|,j/ERAD)

WRITE (51,25) R, T.STRIaSTRU:ALPHA

ros?AT (2F 1294251001 sF 1 0¢5,5Xs33HDIAMETER MEASUIEMENT=-HOMBUENEOUY
1S/

1F (SA) 3},299,31
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c
C BRANCH FOR HOVMEGENEIUS RING==STRAIN MEASURED 6N INSIDE SURFACE
c
31 BOTT B |, p-HK " (RI®O(HK=|g) *RI*®(«HK~|.)=2,0/R]**2 & RO®*(~HK=|,
[YRI®S(HKm | q)) / C(RI®*(HK=|1() ®RO**(aHK= o) = W**UHK= o) " RI®*
2¢~HKe|,g))
32 AC = ETAN®SA/BOTT : -
335 BC B AC*(RE**(HK=1,g)=RI**(HK=|,0)) / (RI**(HKew{.p) *RE**(=NK=|4p)
[«RO®*(HK=| ,g) *RI**(=HK=]4())
34 CC 8 =AC*(RO" UmdKm | ) =R * (=K~ 4sg) ) /(RI** (K=, ) *RO*“(mHKe),y)
1=ROC*(HKm o) *RI®®l=HK~|,())
WRITE (5),1p01) AC.BC,CC
35 STRI = (AC = BC*4K*RI®*(=HK=|4g)+CC HK RI®*(HK= |, ) )/ETAN
36 STRG B (AC = BC®HK®RO®®(~HKe oq)*CC HK*RO®*(HK= |, ;) )/ETAN
38 WRITE(5,,39) R1,T,STRI,STRO
39 FORMAT {2F | geds2F ne s 5Xs29HSTRAIN GAGE DATA=-HIMBGENEBUS///)
c 4y 63 TO 299 '
C BRANCH FOR NONHOMOGENEOUS RING="DIAMETER MEASUREMENT
c
lyo IF (NO,NE,4) 69 TB 3 g
READ (5ps10)) (RUDIIETCUILERIIINGNCS) , Uz, 4)
byt FORMAT (Fig.ns2ElgepeFigep)
ROZ R(|)*T ]
R{5)= RO
fp2 nB 104 Jsi,4
FK(JY = SQRTCET(JIZER(U))
RS(J) = DCUT/2, *REJI=R(1)
194 CONTINUE
1F (DCUTY 05,200+ 105
102 DB 109 1=),)2
1g6 F(I) = pe0
ng 199 Jsi, |2
1Y Dllsd)= pgag
c F1RST ROW~==GAP SIZE
CHANBE SIGN |, INSTEAD BF ;,; R = R*
1o DC1ey) = =y,
FIE FOEY 8 (ROPI®RSEIIIZ(REIDI*CLag/ETC) Yo, g/ERCED))
[ SECOND RBW =~= SIGMA R = BN INSIDE
119 DC2s1) B jup
j20 D(2:,2) = RUII®O(="FK(j)=}ep)
121 N(2+3) & ROYI®*(FKU )=, )
pe 149 18,3
c MATCH SIGMA R

c

125 p(3%1, 3%1-2)
126 D(3%1, 3*Ie))
127 n(3%1, 3*1 )
128 D(3*I, 3°Is+)) 0
129 D(3%1, 3°1+2) = =R([+|)**(wFK(1&)w, qg)
130 D(3*1, 3*1+3) eR(I+|)*%( FK(ley)my, p)
MATCH RADIAL DISPLACEMENT U
131 D(3*1+|,3%1=2) (FK(1Y**2~GNC(I))*R(Te})/ ET(])
132 N(3°1+,3%1=)) ~(FK(I)SGN(IDI ORI+ ) **(aFK(])) /ZET(])
133 D(3*1+,3°1 ) CFKCTIGNCIDI®R(Ie()*%C FK(LIY) /ETLI)
134 N(3®1+{s3%1a)) “tFKCI*|)**2GN(1& 1)) *R(I® | I/ET(]I+|)
135 D(3%1+;,3%1+2) (FKCI4 ()+GNCTo 1)) *R(Te ) %2 (aFK(L+|)) VETCl¢))
136 D(3%1+1,3%]+3) @ (FKCT#I)mGNCI#§))®R(I#1)®*¢ FKUI#I)) ZETCI*])
MATCR TANGENT!AL DISPLACEMENT V
141 D(3%142,3%1=2) & |,0/ET(]) = |,0/ER(])
144 D(3%1+2,3%1¢|) = «|,0/FTCle|) ¢ |,0/ER(]+)
149 CONTINUE
RAA §J2¢ SIGMA R = p AT GUTSIDE
191 D(3*NO,3*°NE=2) & le0
192 ND(3*NG,3°NE=|) & RO**(=FKINO)=|,)
{53 NDI3I®NG,3*NE ) & RO®°*( FK(NB)w=|.p)
CHANGE Dtl,J) To cOLUMN DDC(II)
11 & p
DO 55 Jmy, 2
ng |55 laj, 2

0
Te)**(eFK(1)=j,0)

[}
t
tl+))**( FK(I)wy,p)

|
R
R

lo

N nNuwaouan

u O W8 ou K
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[z e NN Kol

aan

(2N Ko}

c

112l1e
155 DDCIT) ® D(l,J)
196 cALL SIMO (DD»F, |24KS1G)
IF{KSIG,EQ.}) GO T8 332,
SOLUTION 1S IN Fu FO))sFCa)aF(2)s, 0 oeHASI AC|)sAL2),AL3) e s
F2)4F(5),F(8)y, 4 HAS B(|)sB2),B(3)y0s
FC3),FL6),F(9),,,.4AS CCey1)2C2),C(3) s ETC.

16p DO |65 J=(,4
A(J) » F(3*J=2)
B(J) s F(3*)w))

165 C(J) & F(3*y )

COMPUTE TANGENTIAL STRAIN DISTRIBUTIGN

DO |68 J=a),4
WRITE (51,1001) ACJ)»B(J)aC(J)

167 SIGJY &  (A(J)e B(UI*FK(JI®REII*(mFK(J)=|ep) & J(JIPFK(JI)TREJDI®®
JCFKCAImy4p)) 7/ ETCJ)*},QES

168 s8CJ) = (ACJ)= 8(J)’FK(J)’R‘J‘|)”(-FK(J)'|.0) o COAIPFRGJI TR+
IY**(FK(JIm|,0)) / ETCJ) *|,gE6

170 ALPHA = (},0/7ET(|) =) ,n/ER([I)1%6,2832 *A(,)
WRITE (51,174) R(1).T, SI(l)»SB(l)nALPHA

}74 FORMAT (| Hg,F9,4:F15e4,2F getoFiipa5+,5X,47HDIAMETZR MEASUREMENTe=~NO
.NH&MGGENEGLS. 4 LAYERS )
00 |79 J=2,4

179 WRITE (50,182 R€J)»SI1€(J)»56CJ)

181 FORMAT (r,0.4.|0x,2F|g.|>

183 WRITE (51,184)

|89 FORMAY (|Hgrs//)
I1DEX = IDEX # 5

HRANCH FOR NONHOMBGENEBUS RING~=STRAIN MEASUREp 6N INSIDE SURFAGE

2gu IF (SA) 201,299,2¢)
2g) PO 205 I= 1,12
293 F(1)= g
D8 205 J=|, |2
205 n(l.d)= gaig
F(|) & SA.lcﬂE’é

CGEPFICIENTSF'CGLUMN |04I7OID"A' 205.80'|-'Bl 3’6)9'[2}'00

FIRST ROW -~ STRAIN READING
21) DUIs1) B 1.OZETC)).

212 D(122) E=FKCII*REII®*(=FK(I)4g)/ET())
213 nCI123) 5 FKCID*REI®S(FKE)Im |0 0YZET ()
SECOND ROW == SI3MA R = 0 O8N INSIDE

221 D(2.1) & ).p

|/|0UE6
222 D(2s2) 8 RO|I**(=FK(|)=jeq)
17).gEE . .
223 NC2,3) & ROPI*(FKEI=1.0)
(/) +DEB

INSIDE ROWS WMATCH SIGMA R, U, V AT THE INTERFAZE
Do 259 I=z1,3
MATCH SIGMA F

231 D(3*%1, 3*1=2) = |,
I/I'UE6

232 D(3%1, 3%[=)) & RUI*{)Y**(=FK(I)my,q)
/1.QE6

233 D(3%1, 3*1 ) = RUI«I**(FK{D)m|,p)
I/I.UEG

234 n(3° !: 3*l+1) 8 ~jap
"'lg

235 n(3 3%142) & =R(1+)**(eFK(]e )e|,q)
171 ‘

236 D(Sg I*1+3) 8 =ROI+ D (FK(Iay)ea |, )

|/|.uEb

¥
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MATCH U
24) D(3%1+|,3%1e2)
242 D(3*Ie 23%1n)
243 D(3%1+;,3%] )
244 N(3%1#,3%1+))
245 D(3%14),3%142)
246 D(3°14),3°1+3)

MATCH V
29| D(3%1#2,3%1+2)
254 N(3%142,3%141)
259 CONTINUE

LAST ROW, SIGMA R = AT OUTSIDE

260 nts'Ne,s-Nc-z) = 10

lFK(I)'°2-GN(I))'R(I*1) ZET(1)
«(FK(TY*GNCIDIPR(I* ) **(«FKI1)I/ET(])

CFKCI)SGNCIDI®R(TI* I (FK(L)Y ZETL])
SfFK(I+|)**2e8N(]+|))®R(1* | I/ET(]+))

lFK(1¢|)OGN(I¢|))'R(It|)"¢~rK(I*|))/ET(I¢
w(FK(I+|)=GNC1o|))*R(1%)%*( FKCI®))/ET(]

nn anan

[¢0/ETCLY =y, p/ER(])
=|«0/ETCl#)) & ), p/ERCI* )

28 D(SQNO.3°NC-|) & RU**(<FK(NOI= ), )
(AK
2682 D(3QN003'NC ) & RA**(FKINB)"|4q)

PLAcé ARRAY D(1,J) INTO COLUMN FORM pD(I])

11s g

ne 265 J=|,)2
DO 265 1=4,12
111+

265 DOCI1) & D(,J)
266 CALL SIMD (DDsF, |2.KSIG)
IF(KS1G.EG.|) GO T8 33
279 nd 275 lal,4
ACL) & F(3*1m2)
B(I) & F(3°Iw))

275 €(1) = F(3°])

STRAIN DISTRIEUTION
DO 28( Jeu|,4
WRITE (51, 1p01) &4¢J)sBCIIC(J)
278 SIC(J) = (AWJ)~ B(J)’FK(J)'R(J)"('FK(J)-|.0)¢C(J)'FK(J)'R(J)"(FK(J
19=1e0))/ETCJ) * |,.0E6
28p SO(J) B (ACJUIPBCJ)*FRCJIPROJP (I *(oFK(JI =)o) & SHJIIPFKCII"ROJ# )
| **(FK(JIm],0)) 7/ ET(JIY * |,qE6
28| ALPHA = (),g/ET()) = |.0/ER(|))'6 2832°A( )
WRITE (51,284) R{OII»TH5SI([),SOCI1),ALPHA
284 FORMAT (yHp,FY.4sF (.4 02F|n.|aF|0 5,5X,45HSTRAIN MEASUREMENT®=NONH
|OMOGENEBUS, 4 LAYERS )
DB 286 J=2,4
286 WRITE (51,288) R(JY,S1(J),S0(J)
288 FORMAT (Figeds 1 gX,s2F 0. t)
29y WRITE (5),84)
10EX = [DEX « 5
299 I1DEX = IDEX « |
3gu 1F CIDEX=25) 5,1,
By WRITE(S|,34))
31| FORMAT(|Hp,47HSBRRY, THIS PRUGRAM BONLY HBRKS FAR FOUR LAYERS)
Go Ta 299
32y WRITE(5 (1,32}
312 FORMAT( |Hp,42HSUSRBUTINE SIMQ REPORTS SINGULAR EJUATIEGNS)
68 T8 240 .
335 WRITE(S5,312)
G0 1o 299
END
TH1S IS BRNL Fpaggt BF |67

TEU I AU I SR U U B VS AV BB R SR LA I AP S AE BI  IPS I I A I N B B S R R R R I RN I )
SUBROUTINE SI%Q

PURPBSE ,
BBTAIN SHLUTION AF A SET 6F SIMULTANESUS LINEAR EQUATIONS,

AX=8B

USAGE
CAlLLL SINMQ(A,B,N,KS)

41

SIMQqgy

SIMQ
SiMQ
SIMQ
SIMO
S[MQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMG

002
003
004
005
ooé
00?7
008
ou9
0io
ol
012
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35

40

DESCRIPTION 6F PARAMETERS »
A = vaTRIX @F COEFFICIENTS STORED COLUMNW]
EESTRGYEQ IN THE cOMPUTATION, THe StZ
N BY N
B = VECTBR OF BRIGINAL CONSTANTS (LENGTH N). THESE ARE
REPLACED BY FINAL SOLUTION VALUES, VECTBR X,
N = NUMBER OF EQUAT]ONS AND VARIABLES
KS = BUTPUT DIGIT
g FBR A NORMAL SBLUTIBN
{ FBR A SINGULAR SET OF EQUATIBNS

SE.  THESE ARE
21 8F MATRIX a 1S

REMARKS
MATRIX A MYST BE GENERAL,
IF MATRIX 1S SINGULAR » SOLUTISN VALUES ARSI MEANINGLESS,
AN ALTERNATIVE SALUTIGN MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NBNE

METHED A
METHED OF SOLUTIGN 1S BY ELIMINATION USING LARGEST PJVOTAL

S1Ma
SIM0
SMQ
SIMaQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMy
SIMaG
SIMG
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SiMu
S1MQ

DIVISAR, EACH STAGE OF ELIMINATION cONSISTS: OF INTERCHANGINGSIMOQ

ROWS WHEN NECESSARY 7@ AVOID DIVISION By ZSRO 6R SMALL
ELLEMENTS, . .

THE FURWARD SOLUTION TO 9BTAIN VARIABLE N IS DONE IN

N STAGES, THE BACK SOLUTION FOR THE OTHER VARIABLES IS
CALCLLATED BY SUCCESSIVE SUBSTITUTIANS. FIVAL SOLUTION
VALUES ARE DEVELGPED IN VEZTOR g, WITW VARIABLE | IN 8C)),
VARIABLt 2 IN 8(2)0...0-0.01 VARIABLE N !N B(N)0

IF Ne PIveT CAN BRE FOUND EXCEEDING A TOLERANCE 6F y.u»

THE MATRIX IS CONSIDERED SINGULAR AND KS ]S:SET 7O |« THIS

SIMQ
SIMQ
SIMQ
SIMQ
SiMQ
SIMQ
SIMG
SIMQ
SIMQ

TOLERANCE CaAN BE MODIFIED BY REPLACING THE FIRST STATEMENT, SIMQ

SIMQ

.00!-ooowvoov'oo’o!!to.00'ooloo.o.ono.ooo.-.o..oo.oot-c.'coc‘occioslna

SUBRBUTINE SIMQ(A,B,N,KS)
DIMENSION A((44), B(2)

FORWARD SOLUTIEN

TOLED. 0
KS=y

JJI-N

ne 65 Js|,N\
JYSJe |
NNLNLLLY]
BIGAeq
IRENNLN

NG 3p 1sJ,N

SEARCH FOR MAXIMUM COEFFJCIENT IN cOLUMN

1JelTel

IF(ABS(BIGA)=ABSCALIJ))Y) 20,30+3D
RIGA=A(]Y)

IMAX=]

CONTINUE

TeST FOR PIVOT LESS THAN TOLERANCE (SINGULAR YRTRIX)
IF(ABS(BIGA)=TOL) 35,35,4)
KS=|
RETURN

INTERCHANGE ROWS IF NECESSARY

118JeN®(Jm2)
1Ts[MAXwJ

SIMQ
SIMG

SIMG
SIMU
SIMG
SIMQ
SIMaQ
SIMG
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMU
SIMQ
SImMaQ
SIMQ
SIMU
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMU
SIMQ
SIMQ
SIMQ

"



o000

o000

aooan

50

55

70

8p

ng 50 KeJ,N
1121 *N
1231 +17
SAVE=AC(]))
ACTY=AC(L2)
A(I2)YRSAVE

DIVIDE EGUATIOIN BY LEADING COEFFICIENT

ACL|I)=SACL )Y /RIGA
SAVE=B(JMAX)
R(IMAX)=B()
R(J)=SAVE/EIGA

ELIMINATE NEXT VARIABLE

1F(J=N) 55,70+55

1QSeN*(J=~|)

DO 65 IXsJY,N

1XJ=1QSeIX

1Tsd=1X

ng 6n JXBJY,N

IXJIXaN®(IX=])+IX

JJIXBIXUXS]T

ACIXUXIBACIXIX)m CALIXIY®A(IIX))
BEIX)=BCIX)mlBCJY®ACIXY))

BACK SOLUTION

NY=Ne |
1TeN*N

Do 8p Js|aNY
14=] T
1BsN=J

1CsN

DO Bg Ko,
R(IBY=B(IE)=A(IA)*R(IC)
1A=1A=N
1C=1Cm
RETURN

END

SIMQ
SimMa
S1MQ
SimMa
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMG
SIMU

SIMQ

SIMQ

SIMQ

S1IMQ
SIMQ
SIMaQ
SIMa
SIMQ
sSimMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMQ
SIMG
SIMQ
SIMQ
S1MQ
SIMG
SIMQ
SIMQ
SIMQ
SIMQ
SIMG

NN — — —— = — — — = —
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Residual Strain Distribution in Filament-Wound Rings - Strain Distribution

by the Curved-Beam Theory for Uniform and Nonuniform Material

This program utilizes the equations of the curved-beam theory (Page 19)

to compute the residual strain distribution in rings where there is either a

uniform or nonuniform distribution of fibers in the radial direction, Minor

v

modification is required if other than one or four-layered rings are to be

* analyzed.

Input: (One initial card for each ring. If the modulus of elasticity varies in the

Initial Card: 1-10

11-20

21-30

31-40

41-50

radial direction, there is one additional card for each layer,)

Inside diameter (F format).
Thickness (F format),

Inner strain reading, microinches perinch (F format.)
May be left blank,

Inside diameter after cutting (F format). May be left
blank,

Number of layers, either 1 or 4,

-

Additional cards for four-layer ring only:

1-10

Output:

INSIDE RADIUS
THICKNESS

R

INNER STRAIN
OUTER STRAIN

GAP SIZE

Modulus of elasticity (F format). Note: the program
uses ratios of E; thus, it is usually more convenient to
enter E without the 106,

original inside radius

(same as input)

location of neutral surface

computed residual strain on inner fiber, microinches/inch
computed residual strain on outer fiber, microinches/inch

computed width of opening of cut ring at r = a
source of input for computed data

1



FORTRAN Listing:

ST

co oo

2

[+ SRV 38 N /7

RESIDUAL STRAIN DISTRIBUTION IN FILAMENT WOUND RINGS
RAIN DISTRIBUTIBN B8Y CURVED BEAM THEGRY

UNIFBORM AND NONUNIFORM MATERIAL
8,R, DEWEY, iqg»{5»68

DIMENSION E(4), R(5), ET(4)

EQUIVALENCE (EC(|),ET(|))

WRITE(5|,2)

1DEX =

FBRMAT (|H|,4X,6HINSIDE,4Xs6HTHICK=»6Xs |HR+7X,5HINNER, 4Xs5SHOUTER,
19X s SHGAP) :
WRITE(5{:4) . _
FORMAT (5X,6HRADIUS,5X,4HNESS, [5X,6HSTRAINS,3X,6HSTRAIN,B8X,4HS14E)
READ(Sooﬁ) DIsT,S1+DCUT,NO

FGRHAT(4F|0,011|)

Rl = Dl/2

1F(NB=)2p,2049

9 TOP = 0 ’

|8
R4

C NE
20
30
3

33

49
44

43
50

/8T = ne

READ(S gy ) 1D (ECIIsUm 24)

FORMAT (4F g0 g)

R(|1) & RI

ng |A Js),4

R(J*)) & R(J) + T/4,

TOP = TOP + E(U)*T/4,g

BOT = E(J)*ALOG(R(Je))/R(JII+ BOT

RNA = ToP/EaT

GO To 3g
UTRAL SURFACE FOR E s CONSTANT

RNA = T/(ALBG((RI1+Y)/R1))

IF(ST) J1,4g.9

S8 S=(RI+T-RNA)/(RNA=RI) * RI/(RI1+T)* S}
WRITE (51,33) RI»T,RNA,SI,S0

FORMAT (|Hps3Fypeds2Fipns|sI15Xs,10RFROM STRAIN GAGE)
1F(DCUT)Y4,50,4

GAP = (DCUT = DI)/2,

CON=s GAP/RI

Sl =«CON®*(RNA=RI)/R] *},pE6

Sy 2 CAON®(RI*T=RNAY/(RI#T)® gk

WRITE (5':43) RIsT,RNA,SL1,S56,GAP .
FORMAT (IHU;3F|UO412F|U-lar|ﬂo4:5X525HFRUH DIAMETER MEASUREMENT)
10EX = IDEx + |

IF (IDEX = 28) 5,5,

END

45





