THE DOW CHEMICAL COMPANY
ROCKY FLATS DIVISION
GOLDEN, COLORADO

U. S. Atomic Energy Commission Contract AT(29-1)-1106

TWO EXPERIMENTAL SUB CRITICAL ARRAYS
OF Pu(NO₃)₄ SOLUTION

by
C. L. Schuske

J. G. Epp - Technical Services Manager

Facsimile Price $1.10
Microfilm Price $.80

Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
I. Shielded Array of 5 in. Diameter Tanks

2. Shielding: 4 in. thick Benelex is on the top and sides of the array with a concrete floor at the base. The side shields are ~ 6 in. from the tanks, the top shield ~ 12 in. from the tanks, and the concrete floor ~ 2 in. below the tanks. There is no intervening shielding between tanks. (Benelex has a density of 1.44 g/cc.)

3. Fuel: Pu(NO₃)₄ solution at 5N excess HNO₃, 400 g Pu/liter.

4. Conclusion: An extrapolation of the inverse multiplication curve (Figure I) indicates that these 5 tanks could have been of infinite length and remained subcritical.
II. 30 in. Diameter Raschig Ring Filled Tank

1. Test Vessel: 30 in. diameter stainless steel tank. The Pyrex Raschig rings occupy ~ 25 v/o of the tank and contain ~ 6 w/o natural boron. The Pyrex rings have the following nominal specifications:
 - O.D. - 1-1/2"
 - wall - 5/32"
 - height - 1-3/4"
 - 19% B_2O_3

2. Reflector: An "L shaped" concrete wall, 8 in. thick, bounds the tank on two sides (Figure IV) the concrete floor below the tank can be assumed infinite. The test vessel is in a room containing other tanks of solution.

3. Fuel: $\text{Pu(NO}_3\text{)}_4$ solution at 9N excess HNO_3, 350 g Pu/liter.

4. Conclusion: Extrapolation of the inverse multiplication curve (Figure III) indicates the test vessel would not be critical at any height.
Shielded In - Line Array
of Five Tanks

5' schedule 40, s.s. tanks
4' Benelex shielding
(sides= 6' from tanks,
top= 12' from tanks)

Test Solution:
400 g Pu/l
5-1 0' N HNO₃

Fig. 1
TANKS: 5" dia., Sched. 40, S.S.
BENELEX: 1.44 g/cc DENSITY
30" DIAM. RASCHIG RING FILLED TANK

FUEL:
Pu(NO_3)_4, 9N HNO_3 Excess
350 g Pu/liter

POISON:
6% Nat. B.
25% of Tank

Fig 3
EXPERIMENTAL RACK
RASCHIG RINGS FILLED

FIG. 1

CONCRETE WALL