DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
L. M. Raring

J. J. Milich

SNAP-50/SPUR Pump Material Test
Requirements

The following material test requirements are based on analytical results from P&NA-CAMEL design efforts and Westinghouse motor design studies, carried out under subcontract. The materials to be evaluated include, D-43, PMC-11, and PMC-33.

It is understood that there are sufficient quantities of PMC-11 and PMC-33 available to permit immediate testing. The D-43 material is scheduled to be on hand April 1, 1964, which would permit initiation of testing early in April.

I. Short Time Tensile Tests

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Number of Tests/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Temperature</td>
<td>2</td>
</tr>
<tr>
<td>500°F</td>
<td>2</td>
</tr>
<tr>
<td>1000°F</td>
<td>2</td>
</tr>
<tr>
<td>1500°F</td>
<td>2</td>
</tr>
<tr>
<td>2000°F</td>
<td>2</td>
</tr>
</tbody>
</table>

The 2000°F test point was requested by Metallurgy to aid their extrapolation and evaluation techniques.
II. Creep Tests

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Stress</th>
<th>Number of Tests/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000°F</td>
<td>3000 psi</td>
<td>2</td>
</tr>
</tbody>
</table>

*Second test point to be picked by Metallurgy. This point will be based on the slope of existing 1% creep curve of Cr-12Mo.

III. Stress to Rupture

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Number of Tests/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600°F</td>
<td>1</td>
</tr>
<tr>
<td>1800°F</td>
<td>1</td>
</tr>
<tr>
<td>2000°F</td>
<td>1</td>
</tr>
</tbody>
</table>

The above minimum program will permit initiation of preliminary design efforts. There are many other material properties which are required to permit design evaluation by CANEL as well as by the motor subcontractor who will be involved in the design of the pump motor. These are as follows:

1) Creep data at 1600 and 2000°F for 3000 hours (preliminary strength)
2) Yield strength from room temperature to 2200°F
3) Thermal conductivity
4) Thermal expansion
5) Modulus of elasticity
6) Electrical resistivity
7) Hot hardness
8) Rubbing compatibility
9) Weld studies (E.B. and T.I.G. techniques)
10) Rubbing compatibility
11) Lithium compatibility of base metals and welds
12) Weld transition development
13) Compatibility with rotor and stator materials
14) Cavitation properties

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
In addition, information is required on:

1) Outgassing of the rotor and stator
2) Lithium permeability of BeO
3) Lithium compatibility of BeO-metal braze joint
4) A back up material for rotor canning

In order to permit design and analysis, the material properties that are not available will be based on existing Ch-12r data. The properties for the three candidate materials must be verified as soon as possible in order to permit continuity and to minimize design changes.

It is suggested that the transfer of material information pertaining to this request be submitted as supplements to CNIM-5555. Any further requests by the Pump and Motor Group will also be as supplements to this memorandum.