HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY

PDF Version Also Available for Download.

Description

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the ... continued below

Creation Information

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P. et al. March 20, 1959.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Notes

NTIS

Source

  • Other Information: Orig. Receipt Date: 31-DEC-59

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: CF-59-2-65
  • Grant Number: W-7405-ENG-26
  • DOI: 10.2172/4248964 | External Link
  • Office of Scientific & Technical Information Report Number: 4248964
  • Archival Resource Key: ark:/67531/metadc1027409

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 20, 1959

Added to The UNT Digital Library

  • Oct. 15, 2017, 10:09 p.m.

Description Last Updated

  • Oct. 20, 2017, 2:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 18

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P. et al. HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY, report, March 20, 1959; Oak Ridge, Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc1027409/: accessed March 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.