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ABSTRACT 

A previous calculation of the rate of di~fusion of like charged 

particles across a magnetic fielO. is generalized. No "a priori" assumption 

a·s to the relative magnitude of certain terms need be made and spatial 

density gradients are permitted in both directions perpendicular to the 

field. The final result agrees with that given earlier. 
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I . INTRODUCTION 

We are concerned with a gas of charged particles in a magnetic field. 

It is well known1 that if a gas is compos'ed of electrons and ions the dif

fusion of these par~icles across. a ma_gnetic field is approximately represent

ed by Fick's law and the effective diffusion coefficient Dis inversely 

proportional to the square of the magnetic field H: 

where cis the light velocity, ~the conductivity of the plasma gas and kT 

is the thermal energy. 

A quite different <type~ofodiffusion exists if there is only one.species 
2 ' 

of charged particles. One of us has previously shown that to the first order 

in the density gradient there is no diffusion across a magnetic field. The 

lowest order term.which contributes to the diffusion is proportional to the 

third derivative of the density. -The effective diffusion constant in this 
-4 case is found to be proportional-to H .• 

This diffusion rate .was calculated-in- I by taking into account .the off

diagonal terms of the stress tensor. which appea~ in the dynamical equation 

of motion. In the derivation,--it was assumed-that all space derivatives 

were in a single direction .. (say the x direction) • In addition, two 

inequalities were assumed which were .. .justified "a posteriori." 

More recently, a. different approach,.to _the same .problem was followed 

by Longmire and Rosenbluth. 3 They. also assumed the one-dimens.ional varia-
" 

tion of density gradients and arrived at essentially the same result as that 

in I. 

1. L. Spitzer, Physics bf.Fully Ionized Gases, Interscience Publishers, 
New· York (1956), P• 38'. . · · 

2. A. Simon, _Phys. Rev. ·100, 1557 (1955). This paper will be referred to 
as paper I hereafter~ 

3. C. L. Longmire and M. N.· ~osenbluth, Phys •. Rev. 103, 507 (1956). 
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It is the purpose of this paper to generalize the treatment in I by 

allowing density gradients to existboth in the x andy directions. The 

magnetic field is in the z-direction. This two-dimensional variation of 

density may be more realistic than the one-dimensional case considered 

before. As a result, it will be seenthat no "a priori" assumption con

cerning the magnitudes of the component·s of the stress tensor is necessary 

and the calculation is straightforward. 

II • DIFFUSION EQUATION 

We assume that there is no electric field and that the magnetic field 

is homogeneous and in z-direction. The dynamical equation for a simple gas 

(in the terminology of Chapman and Cowling 
4) takes the following form in 

a steady state: 

C) 0 nav =- T + ~ T , y ox XX y yx 
(1) 

0 T 0 - nav =- +-Tyy' 
X 'OX xy "Oy 

(2) 

0 
0 T 0 =- +-T ox xz Oy yz (3) 

where 

a =.eH , 
c 

(4) 

and n is the particle density._ It.is assumed in the above equations that there 

are no gradients in the z-direction. 

-The components of the stress tensor (T .. ) are given in reference 3 and 
~J 

take the following forms.* 

4. Chapman and Cowling, Mathematical· Theory of Non-Uniform Gases, Cambridge 
University Press, Cambtidge,. 1952. -

*The sign of the last term under the braCkets in Eqs. (11) and (13) of I 
· should be negative. This change, does not enter into any of the remaining 

equations. 
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16 2 2 
+ 9 G:)T 

T =p it . 
YY . -1 1 22 

+-c..) T 
9 

3. 

e +.-
{ 

1 
-XX 2 

( I ·) 16 2 2 4 cJ } e +e -CJT +,e·- T, 
xx yy 9 ·· · xy,? 

2u T = - ----!~,_,...,._...,.....":' 
x.y 1 16 2 2 + -cJ T 

9 { 

I e +
xy 2 4' J (e . - e . ) 7. CJT , 

YY XX :J. 

T = -zx 

T =- '1t 2~ 
zy 1 + 9 c;J T { 

- 2 
e +. zy .3 

(5") 

(6) 

(7) 

(8) 

Here T denotes the average time .between' collisions and t::J is the cyclotron. 

frequency. The quantity }l is the-coefficient of viscosity in the .absence of 

a magnetic field and is related to the pressure p as the follovJ'ing: 

rJ2 
p.=3pT. 

The matrix (~~ij) has the following components:· 

l OY ()Y 
e = - (2 --2£ .:. _.]L ), . 
xx 3 ox oy 

1 
av ov 

e = - (2 _.]L - ---2& : )., 
· YY 3 · C>y · bx · 

(9) 

(io) 

(il) 
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-+_.:f. 
(

"'VX OV ) 
oy ox (12) 

Therefore, we have 

ov 
e - e - x 
~ XX . yY - ax (13) 

We note here that Eq. (3) is identically satisfied because of the forms of 

T and T of Eqs. (7) and (8) and because of our assumption that there are zx zy 
no gradients in the z-direction. 

Let us now use the equation of continuity 

on ~ 
ot + v 0 (nv) = o, (14) 

~ 
(1) (2), Substituting for v from Eqs. and we obtain: 

on 1 [ ~2 (L _ ~2) Txy] -+- o o (T - T ) + ·= o. at a xy xx yy "Oy2 OX2 
(15) 

From Eqs. (5), (6), and (7) we see that 

T - T i~ ~ )2 { 8 •xy} = - (e - e ) - -cJT 
XX yy 1 

XX . yy. 3 +- T 
9 

(16) 

{
e + g

3 
Or (e - e )} xy ·xx yy (17) 

We are interested in the case where the magnetic field is strong and 

particles make many Larmer gyrations between collisions. This is expressed by 

the condition 0T > > 1. We are not concerned with the opposite case because 

in the limit of weak magnetic field usual diffusion must be the case. 
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We now substitute Eqs. (12), (13), (16), and (17) in Eq. (15) and carry 

.o~t differentiations. .The calculation is straightforward but the following 

pqints must be remembered. First, the mean free timeT (= ~/v) is inversely 

pi"oportional to the density n and thus Jl is independent of n. Second, the 

t~rms which are independent of T correspond to Hall dri'f.t r:curr.ents 1raibhertthBill 

d~ffusion and s~ould be ignored. 

We obtain: 

on 9 ~ t~ dn /).v ~ ~ dn 
IJ.v + - = - 8-at . 2 dx y n dy. X 

~T) a 

1 [~ ( L\ v ) 0 (Liv)] [~ ( d
2
Ii _ d

2n) + :· .... +- ()y + 
dx2 dy2 2 y 

... 

1 { (:)2 -(:)2}J ev Ov) [~ 
2 :] X+~ d n ~) dn +- + dxd + 2 2 oy ox dx n Y n 

~av av ) } 
. ..i• ~ 

~ · _-' (is'Y·-:a;-. -. Ox x ... - .. .• ·-
wh~re ..6.. 

02 t,2 
The terms which have been ignored in Eq. (18) are all =2+2. 

ox oy 

independent of T··. 

Now to lowest order in T, we have from Eqs. (1), (2), (5), and (6): 

1 op kT 1 :an-~ 
v y = na ox = ~ n ox 

v = 
X 

1 ~ = -- kT _,! o'n 
na oy .. a n 'l:Jy 

(19) 

(20) 
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Substituting these in Eq. (18) we obtain: 

on = ot 

where 

- D [,II, 21og n + 4 ologn ( C> Alogn) ox 

+ 2 { 1l2logn 2 o logn 

ox
2 oy2 

ox 

2 

+ 2 (0~~gn) _ 

ologn 
ox 

olo~) 
oy) 

4 ologn 
+ oy ( 0 . ) oy ,1logn 

2 (al~~JJ (02logn _ 02logn) 
ox2 oy2 . 

(21) 

(22) 

This is rather a complicated result. However, if we assume the density 

variation in x-direction only, we are led to 

. on 
Ot = 

Which is nothing but Eq. (17) of I. 

(23) 

It is noted that both Eqs. (21) and (23) have the same effective diffusion 
. -4 

constant which is proportional to H • 

It should be noted that one can iterate further by use of Eqs. (1), (2),, 

(5), and (6) and obtain higher terms in Eqs. (19) and (20). These in turn can 
-1 

produce other terms of order T upon substitution in Eq. (18). A 1/r contribu-

tion also results in this fashion upon substitution of these higher terms in 

the terms which have been omitted from Eq. (18). All of these additional T-l 

terms, however, are at least two powers higher in the space derivatives and may 

be neglected. 

'c 
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The result in Eq. (23}, since it is identical to: .th&:t derived in I, still 

differs from the result in Longmire and Rosenbluth by the numerical factor 4/3· 
In this regard it should be noted that there is some ambiguity in the choice of 

the velocity distribution function in their paper. Longmire and Rosenbluth 

determined the velocity distribution by choosing it to be a pure Maxwellian, 

undistorted by the presence of spatial d.ens-1 ty gradients. This seems to us to 

be entirely analagous to the methods used in kinetic theory derivations of 

transport coefficients. One always obt.ains the proper dimensional form of the 

coefficients but the numerical value is usually slightly in error since the 

calculation is not completely self-consistent. 
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