It is well known that a pinch column with internal H/sub Z/ and external conducting shell can be made grossly stable, but that small-scale instabilities persist; especiaily in the tubular region of maximum current density. To investigate further these small-scale instabilities of the stabilized pinch,'' we are using 12-in.-i.d. linear pinch tube with a 3-in.-o.d. insulated center rod. By controlling a current along this rod, as well as a current along external conducting straps, and a third current in an external H/sub z/ coil, it is possible to create many grossly stable pinch configurations. The small-scale stability of the tubular …
continued below
Publisher Info:
California. Univ., Livermore. Lawrence Radiation Lab.
Place of Publication:
California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
It is well known that a pinch column with internal H/sub Z/ and external conducting shell can be made grossly stable, but that small-scale instabilities persist; especiaily in the tubular region of maximum current density. To investigate further these small-scale instabilities of the stabilized pinch,'' we are using 12-in.-i.d. linear pinch tube with a 3-in.-o.d. insulated center rod. By controlling a current along this rod, as well as a current along external conducting straps, and a third current in an external H/sub z/ coil, it is possible to create many grossly stable pinch configurations. The small-scale stability of the tubular region of maximum current density can thus be studied for a wide range of internal and external magnetic field vectors. The magnetic field distribution in each discharge is obtained by a string of 10 magnetic pick- up loops. The distribution of plasma density is determined by modulating the inner or outer wall current and measuring the radial velocity of the resultant compressional Alfven waves. In one experiment, an initial H/sub z/ is entrapped in plasma by preionization, and then pushed radially outward from the rod by a rising H/sub theta /. The resultant field distribution, in which H/sub theta / everywhere falls more rapidly than 1/r, should have absolute hydromagnetic stability. The persistence of small-scale instabilities, as observed by the magnetic probes, in this inverse stabilized pinch'' suggests that the basic trouble is nonhydromagnetic. It is also found that, when the magnetic field approximates a vacuum field distribution, perfectly smooth and reproducible probe signals can be obtained. The absolute plasma current densities at which nearvacuum field distributions have been found stable are larger than current densities at which the 'stabilized pinch'' and inverse stabilized pinch'' distributions have been found unstable. (auth)
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.