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A MODEL FOR COMPUTING THE MIGRATION OF VERY SHORT-LIVED 
NOBLE GASES INTO MSRE GRAPHITE 

R.  J. Kedl 

. . ABSTRACT 

A model describing t h e  migration of very shor t - l ived no'ble 
gases from t h e  f u e l  s a l t  t o  t he  graphi te  i n  t he  MSRE core has 
been developed. From t h e  migration r a t e ,  t h e  model computes 
(with c e r t a i n  l im i t a t i ons )  t he  daughter-product ,d i s t r ibu t ion  i n  
graphi te  a s  a function of reac tor  operat ional  h i s to ry .  Noble- 
gas daught er-product concentrations (l ' O B ~ ,  e, 89~ r ,  and 9 1 ~  ) 
were measured i n  graphi te  samples removed from the  MSRE core 
a f t e r  7800 Mwhr of power operation.  Concentrations of these  
i ~ o t o p e s  computed with t h i s  model compare favorably with t h e  
measured values. 

INTRODUCTION 

On Ju ly  17, 1966, some graphi te  samples were removed from t h e  MSRE 

core  a f t e r  7800 Mwhr of power operation.  While i n  t he  reactor ,  these  sam- 

p l e s  were exposed t o  flowing f u e l  s a l t ,  and a s  a r e s u l t  they absorbed some 

f i s s i o n  products. After  removal from t h e  reactor ,  t he  concentrat ions of 

severa l  of these  f ission-product isotopes were measured a s  a function of 

depth i n  t h e  samples. Detai ls  of t h e  samples, t h e i r  geometry, ana ly t i c a l  

methods, and r e s u l t s  a r e  presented i n  Refs. 1 and 2 .  Br ief ly ,  t h e  graphi te  

samples were rectangular  i n  c ross  sect ion (0.47 X 0.66 i n .  ) and from 4 112 

t o  9 i n .  long. Al l  samples were located near t h e  center. l i u e  of t h e  core.  

Axially, t h e  samples were located a t  t h e  top, middle, and bottom of t h e  

core .  The t o p  and middle samples were grade CGB graphi te  and were taken 

from the  stock from which t he  core blocks were made. The bottom sample 

was a modified grade of CGB graphi te  t h a t  i s  s t r uc tu r a l l y  s t ronger  and has 

a higher d i f f u s i v i t y  than regular  CGD. (This graphi te  was used t o  malre t h e  

lower g r id  bars  of t h e  co re . )  The ana ly t i c a l  technique was t o  m i l l  off  

successive l ayers  of graphi te  from t h e  surfaces and determine t h e  mean iso-  

t r op i c  concentrat ion i n  each layer  by radiochemical means. 



A model was formulated t h a t  p r e d i c t s  q u a n t i t a t i v e l y  the  amount of 

c e r t a i n  of t h e s e  isotopes i n  t h e  g raph i t e  a s  a funct ion  of  the  r eac to r  

opera t ional  parameters. S p e c i f i c a l l y  t h e  model i s  appl icable  only t o  ve ry  

shor t - l ived noble gases and t h e i r  daughters .  This d i f f u s i o n a l  model may 

be described as  follows: As f i s s i o n  takes  place,  t h e  noble gases (xenon 

and krypton) a r e  generated i n  t h e  s a l t  e i t h e r  d i r e c t l y  o r  as daughters of 

very  shor t - l ived  precursors,  so they can be  considered s~ generated d i -  

r e c t l y .  These noble gases d i f f u s e  through t h e  s a l t  and i n t o  t h e  g raph i t e  

according t o  conventional d i f f u s i o n  l a w s .  As they d i f f u s e  through t h e  

g raph i t e  they decay and form metal atoms. These metal atoms a r e  a c t i v e ,  

and it i s  assumed t h a t  they a r e  adsorbed ve ry  s h o r t l y  a f t e r  t h e i r  forma- 

t i o n  by t h e  g raph i t e .  It i s  a l s o  assumed t h a t  once t h e y  a r e  adsorbed, 

they (and t h e i r  daughters)  remain a t t ached  and migrate no more, o r  a t  

l e a s t  very  slowly compared with t h e  time s c s l e ~  involved. 

The de r iva t ions  of t h e  formulas involved i n  working with t h i s  model 

a r e  given i n  t h e  next few sec t ions  of t h i s  r epor t .  The f i r s t  sec t ion  con- 

s i d e r s  d i f f u s i o n  through f u e l  s a l t ,  where t h e  noble-gas f l u x  leaving t h e  

s a l t  and migrat ing t o  t h e  g raph i t e  i s  determined. I n  t h i s  sec t ion  t h e  

"very s h o r t  h a l f - l i f e "  r e s t r i c t i o n  i s  placed on t h e  model. The next sec- 

t i o n  t akes  t h i s  f l u x  and determines t h e  noble-gas concentrat ion i n  t h e  

g raph i t e .  The following sec t ion  determines t h e  noble-gas decay-product 

concentrat ion i n  t h e  g raph i t e  a s  a funct ion  of r eac to r  opera t ing  h i s t o r y .  

The last  s e c t i o n  compares computed and measured concentrat ions of four  i so -  

topes 1 4 0 ~ a  (from 140xe), 141ce (from 141xe), 8 9 ~ r  (from 8 9 K r ) ,  and 9 1 ~  

(from 9 1 K r )  i n  t h e  MSRE graphi te  samples. 

It i s  of i n t e r e s t  t o  point  out  t h e  d i f fe rence  between t h i s  model and 

a previous ly  derived model used t o  compute nuclear  poisoning from 1 3 5 ~ e  

( ~ e f .  3 ) .  In  t h e  135~e-migra t ion  model, a l l  t he  xenon t h a t  migrates t o  

t h e  g raph i t e  comes from t h e  bulk of t h e  salt  and i s  t ransmit ted  through 

t h e  boundary l a y e r .  The xenon generated wi th in  t h e  boundary l a y e r  i s  con- 

s idered  neg l ig ib le .  In t h i s  noble-gas model, all t h e  xenon (o r  krypton) 

t h a t  migrates t o  t h e  g raph i t e  i s  generated i n  t h e  boundary l a y e r  and t h a t  

wlilcli comes fE6m t h e  bulk oi' t h e  s a l t  i s  n e g l i g i b l e .  This i s  a d i r e c t  

consequeilce uf t h e  very s h o r t  h a l f - l i f e  r e s t r i c t i o n  placed on t h e  noble-gas 



model .in contras t  t o  l3 5~e-migra t ion  model, which spec i f ies  a long. half  - 

l i f e  (9.2 . h r ) .  

DIFFUSION I N  SALT 

The equation t ha t  describes t h e  concentration d i s t r i bu t i on  of a d i f -  

fusing mater ia l  i n  a flowing stream between two p a r a l l e l  p l a t e s  and includes 

a mass generation and decay term i s  (see  der ivat ion i n  Appendix A )  
I 

where 

C s  = noble-gas concen.l;ra.lion i n  s a l t  (atoms/ft3 ), 

Q = noble-gas generation r a t e  (atomslhr per  f t 3  ' of s a l t ) ,  

X = noble-gas decay constant (hr" ), 

Us = noble-gas di f fus ion coef f ic ien t  i n  s a l t  ( f t 2 / h r ) ,  

v - salt veloci ty  ( f t / h r ) ,  

z = a x i a l  d is tance ( f t ) ,  

r = t r averse  dis tance ( f t ) ,  

ro = half  t h e  dis tance between t h e  p l a t e s .  

I n  t h e  case of laminar flow, 

S a l t  Flow 

where 7 i s  t h e  mean f l u i d  veluci.Ly7. 

I f  we r e s t r i c t  t h e  formulation t o  very shor t - l ived isotopes of noble 

gases, we can say 

t h a t  i s ,  a s  t h e  f u e l  s a l t  i s  moving through t h e  core t h e  noble-gas genera- 

t i o n  and decay r a t e s  a r e  balanced and t h e  noble-gas concentration i s  c lose  



t o  steady s t a t e .  Even though the  mean s a l t  ve loc i ty  past t h e  samples i s  

i n  t h e  order  of 1 o r  2 f t / sec ,  t h i s  analysis  i s  r e s t r i c t e d  t o  a s a l t  l ayer  

next t o  t h e  graphi te  only a few thousandths of an inch th ick .  A t  t h i s  

pos i t ion  t h e  s a l t  ve loc i t y  i s  very low, and t h i s  assumption i s  qu i te  ade- 

quate.  The o r i g i n a l  d i f f e r e n t i a l  equation then reduces t o  

The r e s u l t  of t h i s  assumption i s  t h a t  a l l  ve loc i ty  terms disappear, and 

t h e  model of flowing s a l t  reduces t o  t h a t  of a so l id .  In tegra t ing  once 

wi th  t h e  boundary c ~ n d i t i ~ n ~  t h a t  a t  r = 0, c = 0 and Cs = Css, where 

Css  = s teady-s ta te  isotope concentration a t  r = 0, we f ind,  t h a t  

I n  t h e  ana lys i s  of l3 5 ~ e  poisoning i n  t h e  MSRE (Ref. 3 ) ,  it was seen t h a t  

t h e  xenon concentrat ion i n  s a l t  a t  t h e  i n t e r f ace  was very small compared 

wi th  t h e  concentrat ion i n  bulk s a l t ,  I f  a s imi la r  s i t ua t i on  is.assumed 

i n  t h i s  case, t h e  ana lys i s  can be s impl i f ied considerably. The assumption 

i s  there fore  made t h a t  

and l a t e r  it w i l l  be seen t h a t  t h i s  i s  t r ue .  The above equation can now 

be evaluated a t  r = ro: 

where t h e  negative root  gives t he  proper sign t o  ( d ~ ~ / d r ) , = , ~ . ,  The noble 

gas f l u x  leaving t h e  s a l t  at r = ro i s  r e l a t ed  t o  t he  concentration 



gradient  a s  

By subst i tu t ing,  

Flux,=,+ = (2QDsCSs - X D ~ C E ~ ) ~ . ' ~  . 
,. 0 

With t h e  very shor t  h a l f - l i f e  r e s t r i c t i o n  on t h i s  model, t h e  isotope 

concentration i n  t h e  bulk s a l t  i s  a lways-at  steady s t a t e ,  and it can be 

evaluated by sqi~at,j,n.g t he  generation and decay terms a s  follows: 

Subst i tu t ing t h i s  value of Css i n t o  t h e  above equation, gives 

DIFFUSION . I N  GRAPHITE 

In .  t h e  previous section we' determined t h e  noble-gas f l u x  leaving t h e  

s a l t  and going i n t o  t he  g raph i te . -  It i s  now necessary t o  r e l a t e  t h i s  noble- 

gas f l ux  t o  t h e  noble-gas concentration i n  graphi te .  

The equation t h a t  describes d i f fus ion  of a gas i n  graphi te  a t  steady 

st,at,e a.nd includes a decay term i s  4 

where 

Cg = noble-gas concentration i n  graphi te  (atoms per  f t 3  of g raph i te ) ,  

E = graphi te  void f rac t ion  ava i lab le  t o  gas, 

D = noble-gas di f fus ion coef f ic ien t  i n  graphi te  ( f t 3  void/br per  f t  g . . 

of graphi te  ) , 



X = noble-gas decay constant  (hr'l ), 

x, y, z = coordinates ( f t  ) . 
There i s  no generation term i n  t h i s  expression because these  gases 

a r e  generated only i n  t h e  s a l t .  It w i l l  a l s o  be assumed t h a t  t h e  cross  

sec t ions  a r e  s u f f i c i e n t l y  low tha t  burnup can be neglected. Since we have 

r e s t r i c t e d  t h e  formulation t o  very shor t - l ived isotopes,  we need consider 

only t h e  one-dimensional case  because t h e  isotopes a r e  present only near 

t h e  surface  of t h e  graphi te .  The above equation then reduces t o  

Solving with t he  boundary condit ions t h a t  Cg = 0 a s  x -4 and'C = C g i  
g 

a t  x = 0, we obtain 

~ i f f e r e n t ' i a t i n g  and evaluating at x = 0, we .ob ta i i  

The noble-gas f l u x  i n t o  t h e  graphi te  i s  represented by 

and by subs t i t u t i ng  a e  obta in  



which i s  t h e  equation t h a t  r e l a t e s  t he  noble-gas.concentration at t h e  

graphi te  surface t o  t h e  noble-gas . f l ux .  . By combining .Eqs . , (2 ) and (3 ) ,  

we can r e l a t e  t h e  f l u x  t o  concentration anywhere . i n  t h e  graphite,  

and by combining t h i s  equation with Eq. (l), we can r e l a t e  C t o  known 
g 

reactor  operational  parameters. 

DAUGHTER CONCENTRATIONS'IN GRAPHITE 

As an example consider t h e  140xe chain f o r  which data  from the  MSRE 

graphi te  samples . a r e  ava i lab le  ( spec i f i c a l l y  140Ba). The decay chain i s  

a s  follows: 

(16 s e ~ ) ' ~ ~ X e . - - ,  (66 S ~ C ) ' ~ ~ C S  - (12.8 day)140Ba 
Yield - ,3 .8$  Yield - 6.35% 

. From Eq. ( 5 )  we can compute t he  4 0 ~ e  .concentra-Lion i n  t h e  graphi te .  

Neglecting t h e  .short- l ived 140cs, t he  14'Ba generation r a t e  i s  given by 

X,e .;xe 
- 140i3a generation r a t e  = X 

Lg 

and 

BacBa 
4 0 ~ ; r .  dert.a.y r~ . t , e  = X Q - 

When t h e  reactor  i s  a t  power, the  change i n  l4PBa concentration i n  t he  



g r a p h i t e  as a funct ion of t ime i s  

I f  we spec i fy  t h a t  t h e  equation i s  appl icable  only f o r  i n t e r v a l s  of 

t ime when t h e  r e a c t o r  power l e v e l  i s  constant ,  and recognize t h a t  ~2~ w i l l  

approach equil ibrium very s h o r t l y  a f t e r  t h e  reac to r  i s  brought t o  power, 

t h e  term XXecie i s  a constant  and t h e  equation can be in tegra ted .  With 
Ba t h e  boundary condit ion t h a t  a t  zero time, = C t h e  so lu t ion  i s  
goy 

XxecEe -X B a  t Ba 
Ba. -h t 

(1 - e  + Cgo e  
XBa 

Then, when t h e  r e a c t o r  i s  shut'.i3own, t h e  1 4 0 ~ a  concentrat ion w i l l  decay a s  

With these  equations,  t h e  1 4 0 ~ a  concentrat ion i n  t h e  graphi te  can be 

determined as a  funct ion of t ime and can be taken through t h e  "reactor  on" 

and " r e a c t o r  o f f "  cycles  by solving t h e  equations t h e  appropr ia te  number 

of t imes .  

RESULTS FOR MSm GRAPJXLTE SAMPLES 

The concentra t ions  of f o u r  i so topes  from noble-gas precursors were 

measured i n  t h e  MSRE graph i te  samples i n  order t o  determine t h e  app1ica.-:: 

b i l i t y  of t h e  model t o  t h e  MSRE. The decay chains involved a r e  t h e  follow- 

i n g  : 



.8-h)88~r + neutron 

( 3 .  2-m)89~r -+ (15.4-m) 89~b 
4.59 

The underlined element is the particular isotope whose.concentration 

was'measured. The.measured.concentration profiles are shown in Figs. 1 

through 4. . The .three .curves. shown on each plot are fop the top, middle, 

and bottom graphite samples. Although data are available from three .sides 

of the rectangular sample that was.exposed to salt, for the sake of clarity, 

only data from the wide.face are shown. Concentrations from the other 

faces.exposed to.salt are in good agreement with these. 

The noble-gas-diffusion coefficient in graphite that was used in 

these calculations'was determined from the daughter-product concentration 

profiles. . The assumption was made earlier that as.a noble gas.in graphite 

decays, its ' metal daughter- is immediately adsorbed and migrates .no more. 

If this is true, it can be shown that the daughter distribution in graphite 

will follow the same exponential as.the noble-gas distribution. Equation 

(2) represents the noble-gas distribution for the one-dimensional case, 

and this equation can be .evaluated for the "half thickness" case .as follows : 

Therefore 
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Fig. 2. 141ce Distribution in MSRF: Graphite Samples at 1100 hr on 
July 17, 1966. 
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July 17, 1966. 



where 

X1 / 2  
= graph i t e  th ickness  where daughter i so tope  concentrat ion i s  r e -  

/ duced by 112, 

E = graph i t e  void  a v a i l a b l e  t o  noble gas ( taken t o  be 10%)) 

h = appropr ia t e  noble-gas decay constant .  

Sfnce -:the d i s t r i b u t i o n s  of  the  noble gas and i t s  da.ughters fol low t h e  

same exponentia.1, t h e  va lue  of x  w i l l  be t h e  same f o r  both.  Half- thick- 
112 

ness  da ta  can t h e r e f o r e  be obtained from Figs .  1 through 4  and Eq.  (8)  : .  

evaluated  f o r  D i n  g r a p h i t e .  The d i f f u s i o n  c o e f f i c i e n t  i n  g raph i t e  i s  g  
no t  cons tant  throughout bu t ,  r a t h e r ,  i s  a  func t ion  of depth. I n  drawing 

t h e  l i n e  through t h e  d a t a  po in t s  i n  t h e  f igures ,  more weight was a t tached 

t o  t h e  su r face  concentra t ion  distribu.l;ioa .than t h e  i n t e r i o r  d i s t r i b u t i o n  

because t h e  d i f f u s i o n  c o e f f i c i e n t  . a t  t h e  su r face  i s  of primary i n t e r e s t .  

Actual ly ,  some of t h c  c o n c e n t r a t i o n , p r o f i l e s  tend. t o  .I-eve1 out  a t  g rea te r  

depths i n  t h e  g raph i t e .  This implies t h a t  D increases  with depth. The 
g  

d i f f u s i o n  c o e f f i c i e n t  was computed f o r  each sample of each decay chain 

and t h e  r e s u l t s  a r e  shown i n  column 4 of Table 1. The d i f fus ion  coe f f i -  

c i e n t  se lec ted  f o r  t h e  remainder of these  ca lcu la t ions  i s  shown i n  t h e  

fol lowing t abu la t ion ,  where t h e  values of DXe have beer, averaged f o r  each 
I3 

sample, and t h e  values  of D- from t h e  " K i  chain were given precedence 
g  

over t h e  chain .  

Dif fus ion Coeff ic ient  i n  Graphite ( f t 2 / h r  ) 

Top Sample Middle Sample Bottom Sample 

' 1 . 6  x lo-' 2.0 x 10-~ 6.9 x 

0 . 3  x 0.9 X 14 .4  X 

From t h i s  t a b u l a t i o n  it may be seen tha. t  t h e  bottom sample has a h'igher 

Dg tha.n e i t h e r  of  t h e  o t h e r s .  This w a s  expected because it was a more per-  
Xe 

meable grade of g r a p h i t e .  I n  t h e  case of D t h e  t o p  and middle samples g  
agree  f a i r l y  wel l  whereas i n  t h e  case of D? t h e  t o p  sample i s  about 30% 

of t h e  middle sample. Probably t h e  grea . tes t  inconsistency i n  t h e  tabula-  

t i o n  i s  t h a t  D i e  i s  g r e a t e r  than DKr. f o r  t h e  top  and middle samples, whereas g  
it would be expected t h a t  DKr would be g r e a t e r  than D i e .  The reason f o r  

g  
t h i s  i s  not  known. There may be some quest ion about the  assumption t h a t  t h e  



'l'able 1. Computed Values f o r  MSRE Graphite Samples 

Calcula ted  Daughter concentra t ionh 
Measured Sample D Q, Cgi Cs i C s  s  F ~ U X  Noble-Gas Daughter Pos i t ion  (atoms/hr per  (atoms per f t 3  (atoms per  (atoms per  (atoms/hr per    lux/$ 

f ( i n .  ) Atoms per  f t 3  dpm per  g of Precursor Isotope i n  Core (ft27hr)a ft3 of s a l t ) b  of g r a ~ h i t e ) ~  ft3 of sa l t )d  f t 3  of s a l t ) e  f t 2  of s a l t )  of Graphite  Graphite  a t  Date 
of Sampling 

TOP 
Middle 
Bottom 

TOP 
Middle 
Bottom 

Top 
Middle 
Bottom 

Middle 

%i f fus ion  coefficienl; i n  grapli i te  near  surface .  e ~ o b l e - g a s  concentra t ion  i n  bulk s a . l t  a t  7 . 5  Mw (Q/x) .  

b ~ o b l e - g a s  generation  ate at  7.5 Mw. f ~ o b l e - g a s  f l u x  from s a l t  t o  g raph i t e .  

' ~ o b l e - ~ a s  concentrat ion i n  graphi te  a t  surface  a t  7.5 Mw. g ~ ~ u i v a l e n t  f i l m  th ickness .  

d ~ o b l e - g a s  concentrat ion i n  s a l t  a t  i n t e r f a c e  a t  7.5 Mw ( i n  equi- h ~ n  g raph i t e  a t  su r face  a t  d a t e  of sampling. : 
l ibr ium with C ) .  Henry's law constant  f o r  Xe i n  molten s a l t :  
2.75 X l om9  mofis of Xe per  cc of s a l t  per  a t m ;  Henry's l a w  cons tant  
f o r  K r  i n  molten s a l t :  8.5 X moles of K r  per  cc of s a l t  per  atm. 
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noble-gas daughters do not migrate. This assumption should be good f o r  

a l l  daughters involved, except possibly cesium and rubidium. These .e le-  

ments have bo i l ing  points  of 1238OF and 1290°F) respectively,  and there-  

f o r e  t h e i r  vapor pressures could be s ign i f ican t  a t  t he  reac tor  operating 

temperature of approximately 1200°F, and they may d i f fuse  a l i t t l e .  Never- 

t he l e s s  t h e  above values of D a r e  i n  t h e  expected range, and s ince  the  
g 

following ca lcu la t ions  a r e  not strong functions of D t h e  values w i l l  be 
g 

used a s  l i s t e d  above. 

The d i f fus ion  coe f f i c i en t s  of noble gases i n  molten s a l t  were taken 

and 

and represent an average of coef f ic ien t s  estimated from t h e  Stokes-Einstein 

equation, t h e  Wilke-Chang equation, and an ind i rec t  measurement based on 

analogy between t h e  noble gas -sa l t  system and heavy metal ion-water system. 

The noble-gas generation r a t e  ( Q )  was evaluated f o r  each sample posi- 

t i o n  (top, middle, and bottom) from computed t .he~mal-flux d i s t r i bu t i on  

curves ( ~ e f s .  5 and 6 ) .  

The operat ional  h ic to ry  of t he  MSPi' was laken L u  be a.s l i s t e d  below. 

The f i r s t  s i gn i f i c an t  power operation of appreciable duration s t a r t e d  on 

Apri l  25, 1966, and t h e  graphi te  sample concentrations were extrapolated 

back t o  t he  sampling d.a.t.e (1100 hr  on July  17, 1966). 

Pow.er Level Time a t  Indicated Power 
(Mw ( h r )  

88 S t a r t i ng  date 
248 
64 
12 
86 
44 
2 8 
42 
60 
68 

430 



Power Level 
' (MW) 

Time.at Indicated Power 
( h r )  

26 
12 

292 
100 
320 

16 
5 0 
1 Sampling da te  

-For .each  isotope.involved and f o r  each sampling posit ion,  Eq. ( 5 )  was 

evaluated f o r  the  noble -gas . concentrat ion i n  t he  graphi te  . - The .concentra- 

t i o n  of t h e  appropriate daughter isotope was then soived f o r  ,and ca r r ied  

through t h e  reactor  operational  h i s to ry  w i t h , ~ q s .  ( 6 )  and ( 7 ) .  . The r e s u l t s  

o f  these  .ca lcula t ions  a r e  l i s t e d  i n  Table 1 and shown i n  Figs .  1 through 

4. For t h e  sake of c l a r i t y ,  t h e  daughter-product concentration i n  t he  

t a b l e  and ori -bhe f igures  i s  given only a t  t h e  'surface ,of t h e  graphi te .  On 

t h e  f i gu re  it i s  indicated by a c i r c l e  around t he  appropriate symbol. 

CONCLUSIONS . .  . 

The following observations .can be made from studying t h e  t a b l e  and 

t h e  f igures .  

1 .  .The model p red ic t s  very shor t - l ived noble-gas and daughter-product 

concentra.Lions i n  graphi te  f a i r l y  well .  This i s  especia l ly  t r u e  when we 

consider t h e  degree of uncertainty of some.of t h e  parameters, such a s  f i s -  

s ion y ie lds  of shor t - l ived noble gases.and t h e i r  ha l f - l ives ,  Dg.and Ds, 

and de t a i1ed : ' i n fomt ion  on f i s s i o n  densi ty  d i s t r i bu t i on .  

2. From comparing columns'7 and 8 of t he  t ab le ,  it can be seen t h a t  

t h e  assumption (c, )r=rb <<;C,., i n  t he  sect ion  iffus us ion i n  s a l t "  i s  qu i t e  

good. 

. 3 .  Column 10 of t he  t a b l e  i s  t h e  thickness of an imaginary s a l t  f i l m  

next t o  t h e  graphi te  i f  a l l  t h e  xenon ( o r  ~ r y p t o n )  generated i n  t h i s  f i l m  

goes i n t o  making up the-computed noble-gas f l u x .  , S p e c i f i c a l l y ,  it i s  

column 9 divided by tiolumn 5. . I t  can be shown t h a t  t h e  dissolved gas-con-  

cen t ra t ion  w i l l  reach 63% of i t s  s teady-s ta te  concentration ( C s s )  a t  t h i s  



d i s t ance  from t h e  g raph i te .  The f i lm thickness f o r  140xe, 141xe, and ' l K r  

i s  very t h i n  and t h e  s a l t  ve loc i t i e s  t h i s  c lose  t o  t h e  graphite a r e  in -  

deed very low. It may be reca l led  t h a t  t h e  d i f f e r e n t i a l  equation f o r  d i f -  

fus ion  i n  a flowing stream i n  t h e  sect ion  i iff us ion i n  Sa l t "  reduced t o  

an equation f o r  d i f fu s ion  i n  a sol id ,  but  s ince  t h e  s a l t  f i lm thickness 

involved i s  small, t h i s  i s  an adequate reduction.  

4 .  I n  t h e  case  of 8 9 ~ r ,  t h e  f i lm  thickness i s  subs tan t ia l  and it is  

probably coincidenta l  t h a t  t h e  model f i t s  t h i s  decay chain a s  wel l  a s  it 

does. Krypton-89 i s  not a shor t - l ived noble gas i n  t h e  sense of t h i s  de- 

velopment. A s  a  mat ter  of f a c t ,  i t s  h a l f - l i f e  (3.2 min) i s  equivalent 

t o  almost e ight  c i r c u i t  times of f u e l  s a l t  around t h e  loop (25 s e c ) .  The 

*'Kr concentrat ion i n  t h e  external  loop w i l l  therefore  become appreciable, 

and e f f ec t s  of t he  xenon s t r i p p e r  and c i r cu l a t i ng  bubbles a s  add i t iona l  

krypton s inks  must be considered. 
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APPENDIX A 

Derivation of'Equation Describing Diffusion i n . S a l t  
Flowing Between'Parallel  P l a t e s  

. Consider'two p a r a l l e l  p la tes ,  a s  shown below, with f l ow . in  t he  z d i -  

rec t i o n  only. 

Flow 1 

Direction 

01 0 
5 a 
k 9  
k d  
T i  0 

n~ Elon 

nr t- 

Let ~ z A r ( 1 )  be an element of volume one un i t  i n  width. Consider t h e  

flow t o  be viscous, t h a t  i s ,  no turbulent  mixing. Dissolved mater ia l  

en te r  and leave t h e  volume element by d i f fus ion  i n  both t h e  z and r d i r ec -  

t ions .  It may enter and leave Lhe volume element by convection only i n  

t he  z d i rec t ion .  Mass i s  generated i n  t h e  volume element at  a constant 

r a t e  resu l t ing  from f i s s ion ,  andimass i s  depleted from t h e  volume a s . a  

r e s u l t  of decay. The noble-gas decay r a t e  , i s .  proportional  t o  i t s  concen- 

t r a t i o n .  A mater ia l  balance around t h e  element of volume w i l l  y i e ld  t h e  

following terms i n  k i t s  of atoms/hr: 

mass i n  by di f fus ion a t  r I q r l r  ''(1) 

mass out by di f fus ion!al ;  r. + Ar ('r / r+Ar  
n ~ ( l )  

mass i n  by d i f fus ion  a t  z qZ lz  A 4 1 1  

mass out by di f fus ion  at 2. + Ax ~Z/Z+AZ wl) 
111a8s i n  by convect,j.on at, 7, vCsz 

mass out by convection. a t  z + AZ v C s ( z + ~ z )  &(l) 



mass genera t ion 

mass decay 

where t h e  terms a r e  defined as fol lows:  , 

q r / r  = mass f l u x  i n  t h e  d i r e c t i o n  of r and a t  pos i t ion  r (a toms/hr . f t2)  

q , / , + ~ ~  = mass f l u x  i n  t h e  d i r e c t i o n  of r and a t  pos i t ion  r + A r  ' .. 

(atoms/hr.f t2 ) 

z = a x i a l  dimension ( f t )  

r = t r a v e r s e  dimension ( f t )  

v = s a l t  v e l o c i t y  ( f t / h r )  

C s  = no'ble-gas concentra t ion dissolved i n  s a l t  (atoms per  f t 3  uf 

s a l t , )  

Q = noble-gas genera t ion r a t e  (atomslhr per  f t 3  of s a l t )  

X = noble-gas decay constant  (hr-' ) 

Ds = noble-gas d i f f u s i o n  c o e f f i c i e n t  i n  s a l t  ( f t 2 / h r )  

By equating t h e  input  and output terms and dividing by OrAz(1) we obta in  

I f  0 and Az a r e  allowed t o  approach zero, 

and, by d e f i n i t i o n ,  

Therefore 

- 
a2c, a2 c i3 

- - -  
Ds 

and - = -Ds ar az 



S u b s t i t u t i n g  we ge t  

and i n  t h e  case of f u l l y  developed laminar flow between p a r a l l e l  p l a t e s  
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