IMPROVED ELECTRICAL LEADS FOR HIGH PRESSURE SYSTEMS

Robert E. Terry and Arthur L. Ruoff
Thurston High Pressure Laboratory,
Cornell University
Ithaca, New York 14850

Electrical connections from the interior of a pressure vessel to atmospheric pressure typically place many design constraints on high pressure experimentation. A simplified version of older techniques using the cone seal (1-3) has proven itself repeatedly in both gas and liquid systems with high reliability and ease of fabrication. Previous cone sleeves were made of oil soaked pyrophyllite, ivory and bone as well as certain plastics. All of these sleeves were made by careful machining to very close tolerances. Such machining was a considerable challenge (as well as being time consuming) and is completely eliminated in the technique described here.

The present procedure utilizes heat shrinkable Kynar (4) (or other) plastic tubing as illustrated in Figure 1. The top diameter of the cone is 0.400cm and the cone angle measured from the axis is 16°. The Kynar tubing should have an internal diameter either equal to or slightly less than the maximum cone diameter. The initial wall thickness of the tubing is 0.012cm. The tubing is slipped or pulled over the cone as in (b) and shrinking is performed routinely with a heat gun to yield the completed sleeve as shown in (c).

The wire leads may pass completely through the cone for applications where thermoelectric junction effects are to be avoided. In this case the wire is soldered in. For other appli-
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
cations a shallow hole is drilled in each end of the cone and the
two lead wires are soldered in these holes.

The Kynar tubing has under ordinary conditions an operating range for long term service of -55 to 175°C and short term capabilities (1 hour) at 375°C. Our primary applications of these seals, however, has been at room temperature and to 10 kbars. No seal has needed replacement for a period of five years involving a huge number of cycles.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.
REFERENCES


4. Kynar is a trade name for a semi-rigid high temperature polyvinylidene fluoride tubing which is manufactured by Rayclad Tubes, a subsidiary of the Raychem Corporation. We obtain our supplies from Deanco, Inc., Ithaca, N.Y.
LEGEND FOR FIGURE

Figure 1: (a) Cone with electrical leads and heat shrinkable tubing.
(b) Tubing pulled over cone.
(c) Plastic sleeve shrunk in place.