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ABSTRACT

A method is developed for the calculation of the effect of Doppler
broadening on the absorption of neutrons by a resonance absorber. Nu-
merical values are given for the correction factors required in the
interpretation of transmission experiments and self-indication experiments

and for the self-shielding factors for slabs, spheres, cylinders, and
homogeneous mixtures.
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THE ABSORPTION OF NEUTRONS IN DOPPLER BROADENED RESONANCES

G. M. Roe

INTRODUCTION

:t.‘." .l‘vq‘
! v
2

The probability that a neutron will be captured by a nucleus depends on
the relative velocity of the neutron and the nucleus, hence when the nuclei
T e are in thermal motion the effective cross section must be calculated by
‘ averaging over the velocity distribution of the nuclei. Bethe and Placzek*’**

have shown that in the neighborhood of an isolated Breit-Wigner resonance the
effective capture cross section is 00‘¢(93x) where

plo) w —h (2 ST o (xv)7ke (1)
2N e —° 1+ y2

. x= 2. (E - B)
' r
' 2
hEOkT (2)
vy - © = .
®
- where
\ a
E = energy of neutron
E, = energy of neutron at the center of the resonance

Op = peak cross section at the center of the resonance
I' = full width of the resonance at half maximum

A = ratio of nuclear mass tc neutron mass

k = Beoltzmann's constant |

T = absolute temperature

- Equation (1) is based on a Maxwellian distribution of velocities for the nuclei.

Loa Lamb®** has shown that for a crystal, T in Equation (2) should be replaced by
T an effective temperature T'. T' is very nearly equal to T if T is larger than
“~ the Debye temperature of the crystal. Implicit in the derivation of Equation (1)
s is the assumption E5 >>T
v #Bethe, H. and Placzek, G.,Phys. Rev. 51,464 (1937).
b #¥Bethe, H., Rev, Mod. Phys. 9, 140 {1937).
**¥%Lamb, W.E., Phys. Rev. 55, 190 (1939).
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A
If a beam of neutrons whose spectrum can be treated as flat in the
neighborhood of a resonance passes through e thickness L/ of material with
peak crogs section o, (in macroscopic units)y the probability of capture by the
resonance is proportional to

—;?—r Soodx {1 - e‘l%q’(e’x)z (3) o

-0

Numerical values of the quantity (3), obtained by a combination of numerical
vadratures and series expansions, have been computed for selected values of
0o and © by Melkonian® and by Dardel and Persson.”. These results can be
used to compute the Doppler correction in the experimental measurement of the
‘resonance parameters o, and I' by transmission data on thick and thin samples.

"They cennot be used to compute the self-shielding factors defined below,
which require the integration of (3) over a range of values of L , Compu.-
tation by quadratures is even less suitable for computing the temperature
derivative of the self-shielding factor.

In order to estimate the temperature coefficient of reactivity of a
reactor, a semianalytic method for calculating the self-shielding factor and
its temperature derivative in a slab geometry was developed in 1948.*** Tne .
functions required in the interpretation of transmission experiments and ’
self-indication experiments occur as a by-product of this analysis. These
results are described below, together with some recent extensions of the
method to the calculation of self-shielding factors for homogeneous mixtures,
spheres, and cylinders.

PROPERTIES OF (8,x)

The definition {1) is equivalent to

7=V
e

o0
P(0,x) = § cosxv av (&)
0
Clearly ¥ satisfies
2
%y . 2 (5)
9x= 00
*Melkonian, Havens, and Rainwater, Phys. Rev. 92, 702 (1953). -
##Dardel, G. V. and R. Personn, Nature 170, 1117 (1952). s ;
*¥%Internal memorandum by G. M. Roe and Reactor Handbook, Vol. I, 1953, B
po 6680 : -4“‘
KAPL-1241
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From Equation (4) one can ocbtain the following integrals:

(e o]
§ Ydx = 7 (6)
- 00
§ 7 y2ax = T (o) (7)
-]
- 00
S « ((l + x2) ¢ -]:; dx = 219 (8)
-0 \ ) :
5 4R - LSRR eM(e)z (9)
L peeny oo
where v2
w - -
Me)= v-(8/2) av
(o]
\E 1/2e fl - erf ,/__1_\
20 . LN 28
(11)
n-1 \ b+l
1l o5 (a)m l:z:L/a\, 2
2 =0 n. e’

1 -6+362 —1593+1056h - aee

It

For 6 <<1 + x2,

L1 L oleP ) oo (60xt - 12062 +12) (12)
(1 + x2) (1 + x2)3 (1 + x2)°

KAPL-1241
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For x small, //

Y= o+ %x2a'(e) + eee (13)

where
a= ale) = M(26) (1%)

For © large and x < <203/%

2
~ |‘v -x=/he
v e
or, somewhat more accurately,

- x202 /T

V= e (15)

The series (12) msy be inverted to give

X2 = (%1) +0[6-8y)+ 02 [2h}-96% + 6831 + ... (16)

AREA UNDER AN ABSORFTION CURVE

The area under an absorption curve (fractionsl absorption versus energy)
is given by expression (3). In the 1imit L —+ O the area — g UOI‘J-. Hence,

for any,Z— the area under the resonance may be written

g o, It G(G,UOL )

G(e,n) = —1—500 dx {1 —e W(e’x)} (17)
—-00

TN
Thus G is the factor which corrects for the fact that the sample is not really

thin and for the broadened shape of the resonance. In seeking an approximation

to G, it will be simpler to take Y instead of x as the independent variable,
and to treat x as a function of ¥ and 6. The maximum value of ¥ is «a, hence
define

_ ¥(8,x)
P= aZexs (18)

= x(6,P)

b
il

and integrate (17) by parts.
KAPL-1241
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1
G(e,n) = 22 § xe” "%ap (19)
(o]

x is defined implicitly by Equations (1) and (18). We now seek an analytic
expression which gives a good approximation to the true x over the whole range
of P and yet permits the integration to be carried out in terms of known
functions. Note first, from Equations (12) and (13), that

1

X -+ for P—=+ O (20)
N op
X -+ 1-P for P+ 1 (21)
74
y=zo(0) 1 {(1 + 20)a - 1} (22)
2o(0) 8P |

Now for integral n,

1
§ ap 1-P Pne"ZP
o P

is a tabulated confluent hypergeometric function. Hence if x is replaced by

\iji;jg gzpolynomial in PZ the integral in Equation (19) can be reduced to

J
a combination of tabulated functions. Equations (6) and (7) may be written

1

§_xap = = (23)
1

50 xpap = THO) (24)

The polynomial in P is chosen so that conditions (20), (21), (23), and (24)
are satisfied exactly. The resulting approximation for x is

[

x = xy (25)
xja(6) = V12 E {1 - (1 - 4P)s (@) + (P - 2P?)S,(6) + W(3P - 16P° + 16P3)s3(e)?
L v

KAPL-1241
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ith
W /;3
5,(8) =1 -Va (26)
85(6) =4 - 2Ja - 2 %_9_) (27)
s3(9>=1+%§{%-5m-8m} (28)
7 o4

Values of the S functions are tabulated in Table 1. The expansions for small
© and large © are

s.(e)xe -1Lg2 10983
1 2 2

S5(0) & 362 - 4983 + ...

5(6) & -%92 +§3193 - e

(29)
1/4
s,(8) =1 - (&%) + ooo
1/4
32(9)=(h-2~/'2_)-2(%) + ..
1/4
- 2 L 5 T
83(6) = <\ - §-d”§_+4;;> -5 (E@) + oeus

When Equation (25) is expanded in powers of ©, the result is in exact
agreement with the expansion (16) up to and including terms in the square of ©.
Hence any of the approximations below which are based on the use of Equation
(25) will slso be correct to the same order in ©.

KAPL-12k41
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Table 1

M a s1(e) S2(9) 53(9)

1 1 0 0 0
0.9903 0.9811 0.0095 0.0003 -0.0000
0.9856 0.972k 0.0139 0.0005 -0.0000
0.9811 0.9640 0.0181 0.0009 -0.0001
0.9724 0.9485 0.0261 0.0018 -0.,0002
0.9640 0.9341 0.0335 0.0029 -0,0002
0.9485 0.9083 0.0Lk69 0.0055 -0.0003
0.9341 0.8857 0,0589 0.0084 -0,0003
0.9208 0.8654 0.0697 0.011% -0.0002
0.8911 0.8225 0,0931 0.019% +0.,0001
0.8654 0.787h 0.1126 0.0272 +0.0005
0.8225 0.7323 0.14h2 0.0k22 +0.,0016
0.787h4 0.6900 0.1693 0.0564 0,0030
0.7323 0.6271 0,2081 0.0806 0,0055
0,6900 0.5813 0.2376 0.1012 0,0079
0.6558 0.5L456 0.2614 0.1187 0.0099
0.5916 0.4819 0.3058 0.1563 0.0151
0.5456 0.4382 0.3380 0.1859 0,019k
0.4819 0.3799 0.3836 0.2303 0.0261
0.4382 0,.3414 0.4157 0.2643 0.0315
0.3799 0.2915 0.4601 0.3137 0.0394
0,341k 0.2595 0.4906 0.3500 0.0457
0.3132 0.2365 0.5137 0.3788 0.0506
0.2664 0.1990 0.5539 0.4304 0,0598
0.2365 0,175k 0.5812 0.4657 0,0658
0.1990 0,146k 0.61Th 0.5162 0.0750
0,175k4 0.1284 0.6417 0.5513 0.0815
0.146k4 0.1065 0.6736 0.5987 0,090k
0.1284 0.0931 0.6948 0.6325 0.0970
0.1159 0.0838 0,710k 0.6561 0.1015
0.0960 0.0691 0.7371 0.697h 0.1093
0.0838 0.0602 0.7546 0.7256 0.1147
0,0691 0.0495 0.TTTh 0.7636 0.1222
0,0602 0.0L31 0.7924 0.7888 0.1272
00,0495 0.0354 0.8120 0.8219 0.1337
0.0431 0.0307 0.8247 0.84h1 0.1381
0.0386 0.0275 0.8341 0.8603 0.1413

0 0 1 1.1716 0.,2049

KAPL-1241
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The accuracy of the approximstion (25) may be checked with the numerical
values of the function ¥ tabulated by Rose, Miranker, Leak, and Rabinowitz.*
For a given x and 6, ¥ may be obtained from their tables, P computed from

Equation (18) and x7 from Equation (25).

X

0

=

O O 1 O W

10

The tabulated values for y were based on the numerical integration of Equation
(5) and contain some errors slightly larger than the claimed accuracy of 1/2%.
The values of P given in parenthesis were obtained independently and show that
a part of the difference between x, and x arises from small errors in the tables

P
0.9991 (1.0000)
0.95320
0.8286
0.6590
0.4833
0.3309
0.2158
0.1378
0.0891
0.0600

0.0428 (0.0423)

X1

0.1% (0)

0.99
1.95
2.97
L.,07
5.12
6.03
6.87
7.76
8.86

With 6 = 4, for example:

9.83 (9.8T)

for Y. Even by ignoring this correction, the sgreement between x; and x is

quite satisfactory, especially since our final results depend only on certain

average values of x and conditions (23) and (24) ensure that the error in the

average will be small.

The approximation to the function G is obtained by inserting Equation (25)

into Equation (19).

G(e, 0 = G]_(ey ﬂ)

G1{0,n) = Wy(na) - 51(6) {ﬂwg(ﬂa) - W3(na>_} + 52(0) {‘W3(qa) - Wh(na{R\BO)

+ 5300) | 3us(m0) - Buy(na) + Sws(na) |

where the W; are confluent hypergeometric functions

*¥BNL-257, "A Table of the Integral P{x,t) =

Wily) = M(i - 3/2, 1, - ¥)

M. E. Rose, et al., September 1953.

¢

s

Ty

1

NTE

-00

(31)

exp - (x-y)2/ht ay

1+ y-

KAPL-1241
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These functions have been tabulated,* or may be computed from tables of Bessel
functions of imaginary argument.

1
e () ]

it

=
W
P
o
S’
1]
A E=
]

12 4 1. 3 32 "%
- S - 1 L
ws(y)={(y3+y2+y) 11(%) (;24‘37)%(2)3 = e

/ \ /J

Gl(Oyﬂ) and 1 - G are plotted as functions of © and na(6) in Figures 1 and
2, and as functions of © and 1 in Figures 3 and 4., Interpolation is easiest
when na is used as one of the varisbles, even though reference must be made
to Table 1 in order to find a.

It is now possible to make some estimates of the accuracy of Gl(e,ﬂ)o
The approximation used for x could be improved by writing

1 \1-P
@ P

2 Rgl0)P° {(hog + 80 + 3) - (120° + 520 + 51)P
o=l L

(32)
+ (12@2 + 800 + 128)P2 - (4o® + 360 + 80)P3}

where the terms have been adjusted so that the four conditions (20), (21),
(23), and (24) are kept intact.

If only one term Ry(©) is kept in the improved approximation for x, the
new approximation for G becomes

o401 = 03001 + 7y(e) 2 {305 - Py + L - g (33)
L

There are a nunber of ways of choosing Rl(e), One possibility is to adjust
Rl(e) so that for P 1

. ps {1 , 20 -7, } (1)

4802

*British Association Report 1926.

KAPL-1241
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This improves the shape of the resonance near the maximum. Another choice is
to adjust Rl(e) s0 that the second term in the expansion of G for large 1 is

correct S
G(6,1) » —— «g 14881, z (35) ';
NEZTI b ,

e R,(©) based on (34) R, () based on (35) ;
0.1 -0.003 -0.001
0.3 -0.001 -0.006
1 0.002 -0,018
3 0.012 -0.031
10 0.028 -0,036
30 0.0L45 -0,015 .
100 0.06k4 0.049 )
300 0,080 0,160 Tt
1000 0.35h4 e
00 0.115 oo

The function which multiplies Rl(e) in Equation (33) is small,

5 2 55 .. 21 3
h{% %%+T% TV

na(e) - P

1 0.012

2 0,034

L 0.067 -

6 0,080 -
¥ )

Te5 0.082 -

10 0.078 )

20 0.051 <

Lo 0,024 .'

100 0,007 A

KAPL-1241
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.
’ Thus, with elther choice for Rl(e) the next correction term to be added to
) Gy is always less than 0.005 provided © is not greater than 100. The
- approximation G1(©,1) is least accurate when © is large, as is to be expected
from the fact that for large © the broadened resonance is nearly Gaussian in
. . shape and the approximation for x should then include a logarithmic term,
- The error in G.(©,7n) when © is large can be investigated in another way.
From Equations (15) and (17) we find

) G(e,1) —> Q(na) (36)
000
where
e
az) = 2§ Py 1 - oo (37)
zNT  -00
R Y

mo (D +1)Iym+ 1T

This may be compared with the limiting value of Gl for large ©

- ) a(no) G1(6 - 0)

7 0 1.0000 1.0000
0.1 0.9656 0.9655
0.2 0.9330 0.9327
0.4 0.8727
0.6 0.8184
0.8 0,769k
1.0 0.7251 0.7203
1.5 0.6312

] 2 0.5565 0.5429

j b 0.3723 0.3422

i 6 0.2788

e 10 0,1870 0.1380

’ 4 . 20 0.1050 0.0583

) k0 0.0576 0.0227
T0 0,0351 SN Y.
100 0.0255 0.0060

KAPL-1241
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The agreement is better than 1% for 7@ not greater than unity. In actual Q
physical problems, © and na will not both be large. For © = 400, o = 0.043, )

80 one may assume the curves in Figures 1 to 4 to be accurate to better than ’

1% for N not greater than 25.

LIS

SELF -INDICATION EXPERIMENTS

For an absorber of thickness t, and a detector (of the same material) of .
thickness to, the self-indication cross section is

o0
S h- e-ﬂlﬂ"} 3{1 - e"‘z“’} ax
. |
Usi = . (38)
[ {1 -e°q2¢}dx
- 00
M1 = Npogty, fi2 = Fpogtp (39)

This may be evaluated directly in terms of the function G.

. (n + 15)G1(0,N + Nn) - ny6(6,n;)
o 51 - 1+ N2)6119,M + M 1649,7 (40)

N5G1(85M,) o

In the above, both absorber and detector are assumed to be at the same T
temperature. If the temperatures differ, © = €7 for the absorber, 6 = 6, :
for the detector, then

(1 + 12)G1(Gesny + Mp) - ﬂlG(elyﬂl)

g4 = 1 (k1)
where, approximately (see page 42),
-5 | 25
0 ¥6 {1 - s — (k2)
o 1+ ko
_ ﬂlel + 7]292 - s
6= —=— "%
it e
2 2 .
1.67 + 7_6
7.0t h% @
13+ 1p
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SELF-SHIELDING IN HOMOGENEOUS MIXTURES

For a resonance sbsorber mixed with scattering material, the probability
of absorption before scattering is*

Noog
Ngog + Ngog

nesr a resonance, o, = 0,%0,x), and the probsbility integrated over the
resonance may be written

NgTo
22 £(e,0)
s%s
where
o
1 pdx
(e = = L
gl6,L) = = 5_001 ~ T3 (43)
¢ = 2% (k)
N0
After integrating by parts, fy may be written
= 2 axdP
fH(Q;C) == So m (45)

with P and o defined by Equations (18) and (14). The approximation (25) may
now be inserted for x and the integral evaluated.,

£(0,8) =V (al) - 8,(6)V1(ak) + 55(0)Va(al) + s3(0)V3(al) (46)

Voly) = (1 + y)~ 1/2

nw - % L{fa-(fnuy-y'?)vo

/

¥See appendix for a discussion of the relevance of this probability to
reactor calculations.
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L3

VE(y) = y3 { -8 -4y + (8 + 8y + ye)VO }

V3ly) = if; { 32 - 32y - 6y + (32 + U8y + 18y2 + y3)vof

The functions 1 - fy; and f, computed from Equation (46) are plotted in
Figures 5 and 6.

Bethe and Bell have observed® that in the limiting case of large ©
can be expressed as & Fermi function. When 6400, the approximation (l%) can
be used for Y in Equation (43). This leads to

dz
50,0 — > = §0 et irey T ye ) (47)

This limiting form is plotted as a dashed curve in Figure 6. For al less than
4, the dashed curve lies on top of the curve for 6 = 100.

The simple form of the integral (43) makes it possible to find a simple
alternate approximation for fy. Suppose we approximate $(0,x) by

a(e) + x°/A°B2

48
(1 + x2/A2)(1 + x2/B°) (48)

\b(e,x) =

This approximation has the correct limiting values for x—+ O and x-+00, and if
we choose

A+ B = 1+B(8)

B =B
a

p(e) = L= M)
M(e) - a(e)

¥Private communication from H. Bethe.
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then the integrals § vYax and § c6¢2dx will also have the correct values.
=00 -

Equations {48) and (43) then give

£,(0,0) = Brylrsd (49)

NT+%a [2 + (1 +8) +2%(~/1+Za'— 1) ]1/2

This approximation is more accurate than (46) in the limit 6 —» o9, but is
less accurate thsn (4L6) for © not large.

SELF -SHIELDING FACTOR FOR SLABS

Consider a slab of thickness t exposed to an isotropic flux of neutrons
with a spectrum which is flat in the neighborhood of a resonance. The
probability that a neutron which strikes the slab will be absorbed in the
slab is

1 00 _1
§ opdp § ax { 1-e 4 tNa°°“9»X>Z

o -00 )

vhere i is the cosine of the angle of incidence. In the limit t - O this
probability approaches tNgo,T, so it will be convenient to write the
probability of sbsorption as

tNaTT@Of(e,T)
where
T = Naoot
O (e0]
T dan -0y ;
T) = = Pt} dx - 0
(6,7 = 2§ 3S==oo {1 e z (50)
f
or, using Equation (17)
oodﬂ F S
£(e,7) =T § — Gto,n) (51}
|

We have already found an approximation to G so it is only necessary to integrate
Equation (30).

£(0,7) = £,(0,7) (52)
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£,(8,7) = XE(a't) - 5,(®) { X(at) - X3(on) } (53)

+ 82(9) { XB(OL'\T) - Xh(a'r)§

+ ss(e) { 3X3(crc) - 8Xh(oﬁ) + 5x5(on)}

oo
X(x)=x§ ELur-3/2,r, -y)
T x y2

(o]

= M(r -~ 3/2, r, -x) - % (r -3/2) § %XM(I' -1/2, r+ 1, -y)

X

By meking use of the recurrence formulas for the confluent hypergeometric
function, the X, functions may be written

Xp(x) = - Ty(x) + g o + L mp
XB(X) = - 2T1(x) +om 4oy - g
L (55)
Xy(x) = 'ng(x)'l'g'ml"ﬂ"i%mE -}E_m3+gmh
2
R = - Lm0+ Im + Iny -5y + Dmy, - L
where
mi=M(%-,9 i, wx) (56)
g
T (x) = Sx —%M(%»E, -y/) (57)

The m, have already been tabulatedo* The function Tl(x) has the following
expansions:

Cx I DL (4 1/2) 15"
Ty(x) = n {ﬂn = b x:l(_l) n(1/2)ini(n + 1) (58)

~ T (n -1/2)1(n + 1/2)! 1
Tulx) = \)_:nzo (- 1/2):(1/2)in!  (n + 3/2)x" (59)

¥British Associastion Report 1926.°

P‘mf,
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The rate of convergence of the series in (58) may be improved by subtracting
out some confluent hypergeometric functioms.

L 11 1 1
Tl(x)=-}l§{,&n§+z—-2m2-§m3-§mh (60)
(-1)™Hn - 1/2)131 , 1, x2

* nil (- 1/2)4(n + 3)!

J

The computed values of [1 - £1(6,7)] and f1(6,T) are plotted as functions of
© and Ta(9) in Figures 7 and g, and as functions of © and T in Figures 9 and
10, For © —ocothe correct limiting form for f is

UlN

O

=]

£(0,T)—> P(Ta(6)) (61)
0500
where
00 dw
P(x) = x § ¥ a(w) (62)
X W
= 1 =~ 7 X X ,Q.n —];— + 2 (_1)n+lxn

8/ 5 oz ox mepn-l) (a+l)Na+l

Here, 7y is Euler's constant. The limiting form P is plotted as a dashed
curve in Figures 7 and 8, and provides a check on the accuracy of fl(e,T)
for large ©.

For estimating the temperature coefficient of reactivity due to the
Doppler effect, one needs to know

rOf _ g Of
T 06

0
The derivative may be obtained simply by operating on (53) with 3§ ; remembering
that @ is a function of ©. The numerical results are given in Figures KS-1285,
-1286, and -1287. For convenience in interpolation the function plotted is

9
e — f.(6,7)
o0 T

1 - a(e)

KAPL-1241
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Here also one can check the accuracy by an independent calculetion of the
limiting form of the derivative for 600, The correct limit is

99?‘;'(_‘?_3_"7_)___) - Lcop ' (1a) (63)
B o6-00

The curve marked ©6—+0oin the figures was computed from (63).

SLAB OF NONUNIFORM TEMPERATURE

For the slab treated in the previous section, suppose the temperature is
proportional to 6(r), where r is the fractional distance from one edge of the
slab. Then the { which appears in Equation (50) must be replaced by

A 1
p = § d(6(r),x)ar (64)
[o]

It would be convenient to replace $ by‘¢(eé,x) with 6, & constant; then the

self-shielding factor would be approximated by £1(0¢,T). Now in getting the .
approximations G, and f; we effectively replaced‘w(e,x) by & substitute ;
function; although the operation was carried out by treating x as the dependent )
variable. In regard to accuracy in Gy and £, the three most important -
conditions were that the substitute Y have t%e right tail and that *

oo o0 -
§ $dx and § ¢2dx have the correct values. Therefore, we will adjust % .

o OO cO
so that
oo o0 p
§ dlegxlax =§  dax (65)
= OO0 =00
and
o0
§oo 42 (0g,m)ax = §_ $Pax (66)

The condition (65) is automatically satisfied. If we write

®= 6(r)
o' = o(r')
condition (66) becomes '_
T o 1 1 -
o Me) = f ax 5o dr S0 dr' $(0,x) y(0',x) (67) B

or

o} O

M(0g) = § b 51 dr'M(a - e') (68) ‘
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Let 6 be the average "temperature" of the slab.

1

6= § o(r)ar (69)
0

— 1 5

e = § o (r)ar (70}
o]

Write

8, = 6 + (6 - 9)

9=6+(9-3)

and expand both M's in (68) in Taylor's series about 0.
M(3) + (0 ; BM'(B) + L (6 - 8)°M"(3) + ...
= M(®) + % (62 -8 M"(8) + ...

or

o =6 . (62 - &) aM"(8)
e —

, — ]+ e (71)
) - 4kM'(9)

The quantity in brackets approaches 3/2 6 when & is small, and 3/8 when © is

large. Since the second term is smsll anyway, we can replace (71) vy

o2 - 82

g-23
0, ¥ 8 -2 (72)

e -
1+ ke

If the density of the slab is also nonuniform the integrals in (64), (69), and
(70) should be modified by inserting normalized weight factors proportional to
the density.

SELF -SHIELDING FACTOR FOR SPHERES

Suppose that a neutron strikes & sphere of radius r, at an angle cos‘lp
with the normal. The path length inside the sphere is 2r_p. For an isotropic
flux of neutrons the angular distribution is 2pdp. As be?ore ,» assume that the
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spectrum of incident neutrons is flat in the neighborhood of a resonance, Then
the average probability that a neutron striking the sphere will be sbsorbed in 'g.

the resonance is proportional to -5
o 1 -2r p N o ¢ (0,x) o
S oo X § 2pap(1 ~e "o a0 )

o]

Dividing by the limiting probability for r, - O gives the self-shielding factor
S for a sphere

1
S(0,8) = 2= §_oax § wap(1 - eFHEY (13)
(o]

£ = Nadoro (7’4)

We have already found an approximation for the integration over x, and (73) may
be written

s(e,f) = 8y(0,8) ° (75)

1
51(,8) =3 § uZauc,(0,28) (76)
o/

The function G, is given by Equation (30) and the integration of the confluent
hypergeometric functions is simple.
5;{8,8) = By(2ak) - s1(6) { B,(2aE) - B3(2az)} (77)
+ 85(0) { By(2aE) - Bh(EaE)}

+ 33(9) g 3133(2az) - 8Bh(2a£) + 535(201{)}

B(z) = 22221 wr o 5/2, r -1, - 2) (78) -
{r - 5/2)z ,
8l 21 (r-2) wiroq/2,r -2, -2) -
22(r - 5/2)r - 7/2)
s L2l o x - 2)r - 3) 1-Mr-9/2,r-3; -2)
23(r - 5/2)(r - 7/2){r - 9/2)
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A1l of the required M functions have been tabulated.” Numerical values for Sq
are plotted in Figures 11, 12, 13 and 14. The dashed lines in Figures 11 and
12 give the correct values of S in the limiting case - 00, obtained by
combining (73), (15) and (37).

S(6,£) —> U(2Ea) {79}
0-+00
1
U(x) = 3§ y2alxy)dy (80)
(o]
Ux) = 5 -3 (ox)7 (81)

=0 0+3  (n#l) i+l

The accuracy of (77), which will be poorest for large ©, can now be tested by
comparing the limiting value of sl(esz) for ©-+00with the correct limiting
value U.

2Ea(e) U(2Ea) [81(0,£)] @400
0 1.0000 1.0000
0.1 0.9740
0.2 0.9493 0.9491
Ok 0.9025 0.9020
0.6 0.8596 0.8586
0.8 0.8201 0.8186
1 0.7836 0.7805
1.5 0.7037
2 0.6373 0.6281
L 0.4533 0.4368
6 0.3576 0.3253
10 0.2491 0.2057
20 0,14hk 0.0965
40 0.0807 0.0407
70 0.0496
100 0.0362 0.0115

*British Association Report 1926.

KAPL-1241



v

%0 Pl

The agreement is excellent so long as Ebz is not too large. The error in S .

for £ large is of no concern since in practical cases the conditions £ >>1 -

and & —+00 are inconsistent. -4
Suppose the temperature of the sphere is nonuniform. Then the function 2

¢ in Equation {73) should be replaced by -

b =1 sHaLy(o(r),x) (82)

o}

where
I’g'JE?%'le;

and e(r) is the "temperature"” at a fractional radius r. We wish to approximate
P by $.9s,%), with €. a constant. Following the same reasoning as in the slab
case discussed above, we chose to fix 6, by the condition

1 1
fo'e) ©0 A
S oS whPlemlap= § _ax § wdy 2. (83) ,
0 o
L.
This leads to . -
Ge = 6
with the "average temperature" defined by
_ 1
6=2 9§ o(r)rJr+ (1 - r2) tanh™lr ! ar (84)
o

The next correction term for ee is not so simple as in Equation (71), but will
be corvespondingly small.

SELF -SHIETDING FACTOR FOR CYLINDERS

Consider a cylinder of radius a exposed to an isotropic flux of neutrons.
Suppose a neutron enters the cylinder at P and emerges at Q. The path length
ingide the cylinder is

PQ = 2acos0y

cosgel + sin?elsin2¢l

KAPL-~1241
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where 91 is the angle between PQ and the normal to the surface and ¢1 is the
angle between the projections of PQ and the cylinder axis on a plane tangent
to the cylinder at P. The angular distribution for the neutrons is

d¢l coseld(cosel), so the probability that a neutron striking the surface will
be absorbed is proportional to

/e 1 )
§ / dﬁi § cos®qd(cosey) 1 -e (PN ¥
)

o

If we change to new angles A and B defined by

cosB = «/cos2el + sin?@lsinzﬁl

CosAgios—Ql
cosB
the ebove probability becomes
cOSA
T/2 /2 5 e
-2aN, o cosB
§ da §  dB cosA cos®B 1-e a% ¥
o} o

As vefore, we assume that the spectrum of incident neutrons is flat in the
neighborhood of the resonance,; average the probability over the resonance and
normalize to unity for the limiting case o, =+ O. If

p = Nyao, (85)

the self-shielding factor C(6,p) for cylinders is

o T/2 /2 o cosA
cle,p) = 2§ ax dA §  dBcosAcos®B 1 - e-2p¢( ) COSB;
v2p =00 o o 3
(86)
or
/2 T/2
= E 2 2pcosA
ci{e,p) = = So da So dB cos®A cosB G<9, == (87)
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By changing variables to
W= cosA V = cos®A + cosEB o
cosB ™
_x
the integration over V can be carried out. -
8 (o 0]
c(e,p) = 3= 5§ o(e,20w)awy(w) (88)
o]

Y(w) = 35- J (1 + % w2)K(w2) - (1 + wz)E(wz)g ifwS1  (89)
w .

Y(w) = w (1+ 1)1{(—1—)- 1+%E%>j i£w2 1 (90)

2e) (
K and E are the complete elliptic integrals. ‘:
2y - Torl 1.,.

K(w2) = S F( %, 151;%°) (91)
B(w?) = ZF(- 2, Z513) (92)

With considerable labor C(®,P) could be computed by inserting the approximation
G ¥ Gy in (88) and integrating numerically. This would require four numerical
integrations for each choice of p. These integrations can be avoided by using
a short-cut which turns out to be extremely accurate.

For any cylinder there exists a sphere which has the same self-shielding
factor as the cylinder. We define the radius of such a sphere by the relation

c(e,p) = s(8,&;) (93)

€. = Eal6,p)

KAPL-1241
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Our, object is to construct curves for the function Eco We can then use the
curves already obtained for S to compute the values of C(e,p)° Consider just
the limiting forms of C and S. For £ and p large

5(6,E) - g \J ;f—z

c(o,p)> [u&qz P_
(3/4): Tp

while for £ and p small

5(6,)» 1 - 2EM(e)

c(6,p)» 1 - %pM(m

Hence, for p large

3, | &
£.(0,p) 36 | 22 p= 1.5221p (9%4)
25 1,
h o
and for p small
£ o(0,p)~ %é p= 1.7718p (95)

Note that both of these limits are independent of 8, so long as 6 is finite.
Equation (86) msy be transformed to

0 © 1.(y)X (y)
c(e,p) = 2 § dqu? S _i_z__l_z_

. =0 pY y2

dy, (96)

5

where I; and K; are Bespel functions of complex argument. For © large we
can use Equation (15) for ¢ to cbtain

co 2 I (¥ )k (y)
2 -22 0 1 1
0(0,p)» F=mpa S dze o ay (97)
(o.0]
o1 2 B s T (n - 3/2):(pa)®" I L

=1 (- 1/2)(n - 1)ini(n +1) W 20+l pa

+—2 21| gn-1)+9(n)+%n+1)-2n -3/2{l
2(2n + 1) 2
) .. KaPL-12M1
?m ‘?} ‘r .ih
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In this equation ®(n) is the logarithmic derivative of the factorial function.
The series in (97) has been computed and the results compared to the limiting
form of S given by Equation (79) in order to find & (6 p) as a function of

pa(G) in the limiting case ©6—+00. This limiting ratlo S /p is plotted as a
dashed curve in Figure 15. For 6 = 0, Equation (96) can be reduced to

1
c(e,p) = 2 § d_g sin_lx/?—«/r(l -r) I, (rp)Ky(rp)

T o r

© 11(y)K;(n)

+p % (98)
p y

The integrals were evaluated numerically and the result compared with S(O, £)
from (77) to obtain the ratio f /p plotted as the so0lid curve in Figure 15.

The curves lie so close together that the error in reading &, from Figure 15
will be less than 1% for any value of ©.

The recipe for finding C(6,p) is therefore: From Table 1 find af6) and
compute pa, read ./p from Figure 15, read S;(0,f.) from Figures 11 to 1%, and
set €(6,p) & 81(0,%).

SELF-SHIELDING FACTOR FOR AN ARRAY OF SLABS

Consider an infinite array of parallel slabs of alternate thicknesses t
and ty. The slabs of thickness t; contain only moderator of cross section oy
and number density N,. In each of the slabs of thickness t, a fractional area
¢ is filled with absorber of peak resonance cross section 0o and nunber density
Ng. The remaining ares of these slabs contains moderator. To simplify the
analysis we now move all of the moderator into the t, slabs;, leaving voids in
a fractional area (1 - &) of the absorber slabs. The effective thickness of
the moderator slabs must be increased in the ratio

1+ (1 -28g) X
tm

Let¥

T = Nyogt (99)

v = Npa(ty + (1 - )t) (100)

#Note that T/v is the ratic of the spatial average of the peak macroscopic
gbsorpticn cress section to the spatial average of the moderator macroscopic
cross section.

- KAPL-1241
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The probability that a neutron which has just been scattered by the
moderator will be absorbed by the resonance absorber before it is again scattered
(or sbsorbed) by the moderator may be written

S R O o Te N
v

1y31 . ee'yct¢+v) - (1 - e)e'yv

(101)

where ©{ is the shape factor for the resonance [Equation (1)] and 1/y is the
cosine of the angle between the path of the neutron and the normal to the
slabs. In deriving this probability the following assumptions were made:

1. For any given absorber slab the path of the neutron passes either
entirely through absorber or entirely through void. That is;, the slab
is thin enough so that edge effects can be lignored.

2. The probability that the neutron path passes through sbsorber in a
given slab is €, independent of whether the path passed through void
or through absorber in the preceding slab.

3. The initial points for the path of the neutron are assumed to be
distributed uniformly in the moderator.

The probability P has the following limiting values:

For T smsll

2.2
N ey ey 1
P o = Kn(YW) +oaes (102)
For v large oo
3 dy P a7
Po 2§ ;3.(1 e TV (103)

For 7 large

A A '
P_»POO—vS (10k)

2 -4 2 -y
P == e + = . (105)
o 2v 2v [1 -(1-¢€)e""] 2 [1-(1 -c¢e)e-VF
2 =X
n-1 . °
s e gt e
=1 ny

KAPL-1241
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In order to find the self-shielding factor the probability (101)must be integrated

over the resonance. This integration can be expressed in terms of the functions
f and fH which we have already obtained if we approximate the probability by

»
PEP e
i d ~yuTd
Pom oy e o S H 0T (o8)

The parameters A, Ay, q, and p can be chosen so that the three limiting
propertles, 102% (103), and th), are satisfied. The desired values are

= 1 - 1
Al =3 Ag =1 - ;
. (107)
= = POO
2P

The self-shielding factor for an array of slabs is defined as (See Equation A-1)

§ Caxp

m 00 (108)
§ °° axp(T+ 0)

e OO

~
-~

fprray =

The approximation P = P, and the definitions (43) and (50} now lead to*

frrray = % £(o,uT) + (1 - %)fH(QyEPT) (109)

This epproximation provides a smooth transition between the limiting cases of
isolated slabs and homogeneous mixtures. The factor p is given in Figure 16as a
function of € and v/&, Although derived for the case of parallel slabs,
Fquation (109) can be modified to estimate the effect of resonance shielding

in cther geometries. For example, for a two dimensional array of parallel
cylinders

g l l S

¥This is an improvement over the older approximation given in Reactor
Handbook, p. 668. The geometrical model employed in this section and the idea
of approximating fp,.. 88 & linear combination of f and fy, rather than using
the function f only, were suggested by Dr. Henry Hurwitz, Jr.

KAPL-1241
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with S /f

1
H1= e

K i1s adjusted so that p/K gives the correct ratio of the macroscopic absorption
and scattering cross sections in the homogeneous limit. P, is the probability
that a neutron will be absorbed before being scattered in %he limiting case of

perfectly black cylinders, and must be calculated for the particular geometry
involved.

KAPL-1241
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APPENDIX*

SELF-SHIELDING OF RESONANCES IN REACTOR CALCULATIONS

A situation frequently encountered in reactor calculations is one in which
nuclear resonances have an energy width which is small compared to the average
energy loss of the neutron in an elastic scattering collision. Typical capture
resonances have widths of the order of magnitude of 0.05 ev, and the average
energy loss in a scattering is approximately 2 E/M where E is the initial
nevtron energy and M is the ratio of scatterer mass to neutron mass. Thus for
carbon with M = 12, the energy loss is large compared to capture resonance
widths for neutron energies as low as & few ev. Even for the heaviest nuclei,
the energy loss in scattering becomes large compared to resonance widths at
energies above 10 ev. This situation simplifies the treatment of resonance effects
since, if the resonance width is small compared to the average energy loss it can
be assumed with almost complete generality that the number of neutrons scattered
into the energy range E to E4+dE from higher energies per unit time is independent
of E over the resonance. (Note that this assumption can be used regardless of
whethir the resonance spacing is large or small compared to the average energy
loss. )¥*

We now define a function H oy {E)] which gives the prcbability that the
neutron will be absorbed#®#¥ by the material having the cross-section resonance
before it is scattered out of the resonance region by a collision with one of
the other materials. {(We assume that scattering of a neutron in the resonance
region either by the material having the resonance or by other materisls will
reduce the neutron energy below the resonance region.) In writing P{og) as a
function only of the total resonance cross section g, we are assuming that
the cross sections of the other materials are independent of energy over the
region of the resonance. It is clear that under the assumption of uniform
spectrum of neutrons scattered into the region of the resonance the number of
neutrons undergoing resonance processes 1s proportional to the integral of
P{os(E}) over the energy of the resonance. If we assume that the proportion
of neutron scattering, capture, and fissions in the resonance is independent
of energy in the resonance, the number of processes of each kind can be
obtained directly from the total number of resonance processes occurring.

*Prepared by H. Hurwitz, Jr.

##The existence of a monoenergetic neutron source at an energy slightly
above the energy under consideration could lead tc a violation of this assumption,
but narrow absorption or scattering resonances above the energy under
consideration would not vitiate the assumption.

#%%#In the sense of this section, absorption may be taken to include all
processes taking place in the material having the resonance, that is, scattering
ac well as radioactive capture and fission.
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If € is a constant over the resonance,the integral of P[ec,(E)] over the
resonance will be proportional to € for small €, but will increase less
rapidly than € as € increases to unity. We define the self-shielding factor f
of a resonance by the relation

.. Tes §P(og(E)QE (a1)

1
lim L §p E))dE
i = §P(e0,(E))

The self-shielding factor thus defined will lie in the range bvetween zero and
unity. Note that the self-shielding factor will be less than one even for a
homogeneous medium, in which case

0g(E) ’
P(c (E)) = (A2)
0other + Ua(E)
Hence in this case
0o (E) i
TalES
’ Oother * Cald) (A3)
Soa(E) -
o
other

To apply the self-shielding factor to reactor problems, it is simply
necessary to phrase the theory employed in the calculation in a2 manner which
makes direct use of the ratio of the number of neutrons undergoing a resonance
process to the number of neutrons scattered into the region of the resonance
per unit energy range. This ratio is then written as the self-shielding factor
times the elementary linear expression for the ratic which is valid in the
limit of small cross sections [that is, the denominator of Equation (A3)].
Since the integral over the resonance of the sbsorption cross section is
independent of the temperature, the entire temperature effect is included in
the self-shielding factor. Temperature coefficients of reactivity may thus
be calculated by the standard methods of adjoint perturbation theory in terms
of the variation of f with temperature as obtained by methods described in the
text.

As an illustration we shall discuss the application of the above procedure
to the case where there is no spatial dependence in the macroscopic sense. IT
the scattering material has mass M relative to the neutron, the integral
equation governing the slowing-down process has the form

u ={u-u')
Y{u) = § [1 - Plulp(u') S au’ (A4)
u-ln(l/og 1 -a
M-1) 2
a =
M+ 1
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Here u is the lethargy variable which is equal to {n(107 ev/E). The quantity
$(u)du represents the number of neutrons scattered into the lethargy range du,
and (1 - P(u)) is the probability that a neutron introduced at lethargy u will
be scattered before it is absorbed. The number of neutrons, q{u), being
slowed down past the lethargy u is given by

u 'uu')_a

(u) = § p(u)1 -P(u') —-——du' (A5)
a(u o/ )11 [ u')]

U= a

In accordance with the fundamental approximation of this appendix, the
absorption probability P(u) can be replaced by & smoothed function P(u) which
has the same average value as P{(u) over lethargy intervals large compared

to the resonance widths but small compared to {n 1/a. Hence for each interval
Au, we must have

—_ {.0_du
P(u)au = 2 £, =2 {A6)
resonance s
in Au

where the index i goes over the resonances in the interval Au; fi is the self-
shielding factor for the ith resonance as defined by Equation (Al) and Slaadu
is the integral of the absorpiton cross section over the region of the ith
resonance. {(The use of the lethargy variable rather than the energy variable
in"the resonance integrals does not alter the self-shielding factor since

the relation between u and E is essentially linear in the small lethargy range
which is considered.) The cross sections Og and oy are the macroscopic cross
sections averaged over the structural inhomogeneities; that is, the average
nunber of atoms per unit volume of each type times their atomic cross sections.

If §(u) is either small compared to unity or a slowly varying function of
u, Equations (A4) and (A5) can be sclved by the BWK approximaticn.* The
solution has the form

u
a(u) = qg(P(u)) exp (- §__ Mu')au") (AT)
where A{u) is related to f%u) by the implicit relationship
1 - S£ a I:GXP)- - l)u]du - 1l - a(l - >\) - F()\.) (AB)
1-F ) 1 -« (1 - a)1 -2)
and
g(P) = —— “(_-:::
g Ne]
ax] A

¥KAPL-706, "Reactor Physics," Progress Report for November, December 1951,
January 1952, p. 15.
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with V4

—iiE = -
E—d}"]o 1

The factor q, is the slowing-down density at an energy Jjust above the point at
which absorption becomes important, that is, when.l(u) becomes different from zero.

@ /ni/a (A10)
-a

In the age diffusion_approximation, Equation (A7) is further approximated
by setting Nu) equal to P(u)/E and 8L?$ equal to unity, and also, in the
simplest form of the theory, setting P(u) equal to ca/as. An improvement on
ege theory due to Greuling and Goertzel is equivalent to approximating
Equation (A8) by the relationship

e —F (A11)
£ - (E-7)P
where
7 = —t [1-0(1+fn1fa+ I 1/a)] (A12)
E(1 - a)

Note that in using Equation (All), or the more accurate Equation (A8), P(u)
must first be averaged over a small energy range before being inserted in the
equation for A. Thus, in using Equation (Al1l) for a homogeneous mixture

e

(A13)
g - (&-7) < >
It __EE___ is constant, Equation (A13) reduces to
Og + Og
g
A=
Cos + 7% ()

KAPL-1241




Lo %

It should be noted that it is possible to uge age-diffusion theory in the
simple form in which P is in effect replaced by ca/a and still obtain the full
accuracy of Equation (A8). This is accomplished by multlplyigg T, as obtained
from the cross sections by the average self-shielding factor f defined s0 that

F=L10% (a15)
%
and then multiplying by B(?) which is defined by the requirement
- - 7 (£16)
A(P) = 8(P) ° =
g
In the approximation of Equation (All),
B = L (AL7)

1 - [1-17§
£
The final recipe therefore is to use the following effective absorption cross
section in the age-diffusion equation:

o = B(P)T o, (A18)

8ery

The factor f corrects for spatial and energy self-shielding effects and the
factor B corrects for the error in the age-diffusion epproximation when the
average gbsorption is large.
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