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1.  INTRODUCTION·

1'.1                                                -

'Pe'rhaps   the major complicatien assooiated with digital   divi-

sion is best illustrated by your performing the .following long-division

problem and noting carefully the steps you follow.

3964         1   10574'68  28 1 1
a = decimal point marker

f

Your operations in selecting the first quotient digit are  :

summarized. in  the flow chart, Figure 1. The salient·point is that

division is a trial and error process requiring an.initial "guess" of

a quotient digit followed by a subtraction, ·or at. least a comparison, 'to
1

.1

determine whether the guess is correct.    .If.  it · is  not, the initial

choice is modified and the process repeated.  It is the trial and error

nature of 'divisioo, whether performed by man or machine, which complicates

its execution·.  In building a computer arithmetic unit, division is tde

most difficult basic operation to implement efficiently.

But despitethe complexity, the literature is replete with
r *

themes and variations for implementing digital division. Flores, ,[1]

for example, states four methods for increasing speed-of divisi9n and

then proceeds to describe no less than twenty-four schemes which in-

[2]
corporate  some  or  all of these speed-up' techniques. MacSorley

describes four division techniques demanding various divisor mult iples

to accdletate execution.

9 *
Numbers in·brackets. refer. to the corresponding- entry under. References.
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There is far less in the literature, however, describing

theory and ·analytic· tools · to  be  used in designing a division, scheme.
:

Most of the articles describe schemes which are products more of art

than of science.  This report is an attempt to contribute to the

science of computer arithmetic implementation.

This report describes a clas·s-of division techniques"'especially

suited for implementation in an electronic digital computer.  For

historic reasons, this class will be referfed to as SRT division.  The

name is derived from the fact that the binary case of this type of

division was discovered.independently, at about the same time,· by

Dura Sweeney  of  IBM,   J. E. Robertson  of the University. of Illinois,

and T. D. Tocher of Imperial College, London The paper, however,
I3]

..           incorporates .more. recent  work, due exclusively to Professor Robertson,Y

which extends the binary SRT division to a radix higher than two.

Much of Chapter 2 is based upon his report and upon numerous
[5]

personal communications.

After a description of the theory and properties of SRT

  division, the report turns to the problem of actually implementing

the scheme and presents an example of one possible realization.

I.
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2.  THE THEORY OF SRT DIVISION

2.0  Introduction .

i ·             ·This chapter introduces a recursive relationship for de-

scribing division and from it develops the nature of SRT division.

The discussion is augmented with two graphical representations; one

to determine the range restrictions associated with SRT, and the other

to  aid in computing the  "cost" of quotient digit selection.

Most of the following analysis.will be developed for a

general radix,   r. At first this generality may appear superfluous, · for

after all, isn't a digital computet a binary machine, and doesn't binary

imply radix two?  It is true that the basic storage elements. of a

digital computer are two state devices and that numbers are represented
W

internally by strings   of   "1's"   and "0's". Computer arithmetic, however,

is often facilitated by considering groups of bits rather than each bit

individually.  Such grouping may be interpreted as use of digits of

higher radix than two.  For example, . a pair of bits becomes one, radix

four  digit;  a  trio  of  bits,. a radix eight (octal) digit.

In the literature of arithmetic unit design, one finds re-

ferences to such techniques as inspection of bits "two at a time," or

perhaps " generation of several quotient bits  simultaneously" .    Ih

this·report such techniques would be described in terms of higher radix

arithmetic.

2
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2.1  The Recursive Relationship

'                          Digital division as implemented in an electronic computer

V
consists of preliminary operations, i.e., normalization, a recursive

process, and a terminal .operationb, i.e., changing the form of the

remainder. Although preliminary and terminal operations  vary  from

machine to machine,they generally consume much less of the execution

time,than the recursive operations.  For restoring, non-restoring, and

the SRT division scheme to be described in this report, this recursive

relationship is defined by

d                            ·(2.1.1)Pj +1   =   rPj   _    j +1

where the symbols ·are defined as follows:
'*

j   = · the ·recursive index  =  0,   1 , ... m-1

thp. =..·the. partial remaifider.used  in  the j cycle
J

po = the dividend

pm = the remainder
.th

q. = the J quotient digit in which the quotient is of the form·
3

 0 a  1q2 ··· qm

L radix point

m = the number of digits, radik r, in the quotient

d = the divisor

r = the radix
./                                                   

                                                     
                                                     

                                                     
                                                  r  

t.,



This relationship and the symbols as defined will be used

throughout this report.  The relationship is used specifically in the

development of range restrictions on the partial remainders in Section
V

2.3.

Although not germane to the theory of SRT division, it is

interesting to note in passing that this relation points to possibilities

for accelerating the execution of division.  Verbally, the equation says

that each partial remainder must be multiplied by the radix
(rp ), i.e.

shifted left one digital position and that the selected quotient digit

must then be multiplied by the divisor (q d) and subtracted from thisj +1

shifted partial remainder. The division process will thus be accelerated

if the shift and/or the subtraction time is decreased.  In practice, all

values of q d are stored in registers or are readily available via
j+1

shift gates  from the register containing the divisor. The rapid forma-                              i

tion of q d thus reduces to minimizing the necessity for formingj +1

awkward multiples requiring an addition, and·.to· accelerating :the; selec-

tion of q d at the divisor input to the adder/subtractor.j +1

Secondly, note that the recursive index, j, is implicitly an

inverse function of the radix.  When actually implemented on a machine,

digits of a higher radix than two are represented by two or more binary

bits. A string of Z binary digits (bits) is equivalent to £/2 radix

four  digits. In general  for  Z  bits of radix two, there corresponds
2m= digits of radix r, where for practical cases, r = 2n,

log2r

n = integer > 0.  Thus to produce a quotient of given precision, the

number of iterations required, and, concomitantly,- the execution time

is decreased as.the radix·is increased.
V
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2.2 The Representation of Quotient- Digits

As noted in the last section, the use of a higher radix reduces

.4 the number of cycles required to. perform a division of given precision.

The  implementation. of  such· a scheme may, however, be costly, and costlier

still if quotient digits.are represented as they are in manual methods or

machine 'restoring division. In these cases quotient digits have. the

values. 0,   1,   2,    .., r-1. With i:the ': tuad:ix; : r, equal  .four  the  possible·

digit values are 0, 1·, 2,· and.3. A radix four restoring division there-

fore requires that multiples of 1, 2, and 3 times the divisor·be available

for subtraction from the partial remainder.  The 1 times is of course

readily·available, the. 2 times is formed merely by shifting left one

binary position, the 3 times multiple, however, requires extra time

....                                and/or  hardware.     It  may be formed  by a tripler circuit .or by addition

i

,.  -of.   1.:times and 2 times the divisor which is then stored in an auxiliary

register. For radix eight, multiples  of  3,   5, and 7 times the. divisor

must be computed and stored.

With SRT division the problem of· forming divisor multiples is

mitigated by using both plus.and minus quotient digit values.  The

quotient digits are of the form -n, -(n-1)1 ... -1, 0, 1, ... n, where

nis an integer such·that  1/2(r-1)  S n 3-r-1.    Within· this range  the

actual.choice of n for a give'ri r is··largely a function of design de-

tails.  The choice is considered further in Section 2.6.

The necessity for the range restriction. is as follows: ·At

least r unique digits. are required to represent a number, radix r. In

the representation introduced above, there are : 2n-1:1 unique digits,

7



thus the requirement  :·2n+1  -7 r..   On the·- other  hand, for radix  r,   the

maximum value of· a quotient digit, n, should not be greater.than the

value ·of the maximum ·digit representable, .thus 'n L r-1.  'Combining.these                 

two iriequalities yields the restriction stated abdve,

With plus and minus quotlent digits, a higher radix division

may be implemented with fewer .awkward multiples  of the divisor.    Now

the· quotient digits for a radix 4 division are -2, -1, 0, +1, 42. ·All

the necessary multiples of· the divisor may be formed by shifting ahd

complementation and ·require no' auxiliary registers.

The  second, but probably mor'e  significant·  consequence  of  this

representation.Ef quotient digits is that it introduces redundancy into

the representation of the quotient.  If 2n 7 r-1, then there are more

dymbols available to represent a number'than actually necessary.   " i
Y

:': RomA numerical values may  thereford  be  represented.in  more .than  one

fdrm. For example, with r = 4, n = 2, and with Tapresenting negation,

the number 6 could be represented as 12, or 22.- As explained'in the

hext sections, this redundancy permits .less precision in·comparing the

divisor and partial remainder·in selecting a quotient digit.    This

statement seems intuitively correct sinde without redundancy, each

quotient digit may 'ba  repiesented only one  way ·and thus ·must be  se-

lected.precisely.  With redundancy, the quotient. digit, thus the

comparison of divisor and partial remainder, need not be precise.

This non-unique representation' does, however, complicate the division

in that the redundant.form.must eventually be converted to a conven-

tional representation.

k
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2.3  Range Restrictions

With the quotient representation now defined, consider the
·6'                                                                                                                                                                   1

derivation of range restrictions on the partial reminders.  Recall

from the manual execution of a division that in determining whether a

quotient digit is correct or not, one is essentially applying the

restriction that 0 < P < d. where p. is the result of the sub-
j+1

'

J+1
thtraction of q. times the divisor from the j partial remainder.  If

J+1

n    is not within this range then q is changed until  it is. For non-
rj+1 j+1

restoring division, negative partial remainders and negative quotient

digits are allowable, thus the range restriction is |pj+11  Sid|.  It
seems reasonable, therefore, to hypothesize other division techniques

for which |p +11  S k|d| , and which utilize the quotient digit repre-

sentation introduced in the last section.  The upper limit on k will be 1.

The lower limit, although not yet obvious, is 1/2, thus 1/2 S k<1.

To show that this is in fact the case, first reconsider the

recursive relationship described in Section 2.1 and restated below.

Pj+1 = rpj _ qj+1 d (2.3.1)

thAfter p is formed on the j cycle, it is multiplied byj+1

the radix r (shifted left); j is increased by one and becomes rp  of

the present cycle.  Since | p +11 < kd, it follows p  must obey the

same restrictions, i.e.

r  'p j   1  5 rk  I d 1 (2.3.2)



Substituting 2.3.1 into.2,3.2 yields

-kd < rp  - a L. kd (2.3.3)
r       j         .j +1  -

At this point the divisor ls assumed to be normalized, i.e.,

restricted to the range 1/2.L  d 41. Furthermore, (2.3.1) is.normaliied

with respect to the divisor and rewritten letting z ,= p /d and

z j +1    =   Pj +1/ d.

<2.3.4)zj +1  =  rzj   -  qj +1

Equation (2.894) may be interpreted graphically as al plot.:'of

z    versus rz  with the quotient
digit. as a parameter. Such a

j+1 ,   .qj +1

representation shall be called a z-z  plot.. Recall that the quotient

digits assume values -n, -(n-1), ..., -1, 0, +1, ..., n. Figure 2 is

such a graph. To.facilitate discussion, each plot corresponding to a

different quotient digit is called a·q-line.

The  goal of this section is to demonstrate that a correct

division procedure exists which incorporates the above range restric-

tions and.quotient representation.  This existence is substantiated

if for each value of rz. in the allowed range there corresponds a
· J                             ·

quotient digit and a z .   also in their allowed ranges. In terms of      .=-·
j+1'

Figure 2, this means that for any point on the rz  axis such that

-rk < rz .  < rk,  one must ba able to .move  on a line segment normal to
-  J-

the rz. axis and interesect a q-line at a point corresponding to a
J

V

z    within the range -k L z L k. This allowed range is enclosed
j +1 - j+1 -

between the lines z = k and z. -k in Figure 2.
j +1 J +1

10
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T6 :·sa;tisfy .the :for.eigoing'.ir,equire.nienits„ '%he  malimum wallue .of.

rz., i.e. rk, must occur at the intersection of z = k and the q-line,J                                                                                         j+1
6

Zj+1     J
= rz. -n.  Similarly, the minimum value must occur at the inter-

section of z = -k and the q-line. z = -rz. + n. These bounds onj +1 '
j+1 J

rz. are indicated by the dashed vertical lines of Figure 2.
J

Figure 2.now points to the value of k in terms of r and n.

At the upper right vertex of the bounding rectangle. z =k -rz. - n.
' j+1   J

But since rz.. = rk,3

k = r 1 (2.3.5)

The division is now characterized by tangible parameters,· namely the

radix and the maximum value of quotient digits.  Combining (2.3.5)
'

r-1with the restriction on n,   3- 2 n z r-1, verifies the statement
-  -

at the beginning  of this section,   1/2    k  -el.

2.4  Redundancy in the Quotient Representation

Section 2.2 indicated that the quotient digit representation

of SRT division introduces redundancy into the quotient.  This fact is

also  manifested. ·in Figure. 2.in the regions  on  the  rz .  axis for which
3

either   one   of two q-lines   may· be legitimately selected. For example,

at point A one may move vertically upward t6 the q = 0 libe or
j +1

dbwnward to the q = +1 line.  In either case the quotient digit ib
j +1

correct. Figure .3, a specific case of Figure 2, testifies to the fact

that this freedom of choice is not merely the result of an inaccurately
:

drawn graph,  Here r = 4, n = 2.  The vertical dashed lines define the

overlap regions.

12
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The production of a redundant quotient requires extra hard-

ware and perhaps time, to convert it to a conventional binary represen-

tation acceptable by programmers and other sections of a machine.
.

This conversion is discussed at greater length in Section 2.7.  The

conclusion of the section is that the positive consequences of a

freedom in quotient digit selection overshadow the cost of conversion.

With no redundancy, the divisor and the shifted partial remainder must

be compared (usually by subtraction) to the full precision defined for

the machine.  With redundancy, the designer is at liberty to inspect

fewer bits of the divisor and shifted partial remainder than define

full precision.  Handling fewer bits may save time and hardware:

these ramifications are explored further in the chapter concerning

implementation.  In Figure 3, for example, a correct quotient digit is
rp.

selected knowing rzj= ·-·3 ' |. to a precision only great enough to contain             '

it within an overlap region.  Exactly what precision is required for a

given value of r and n is the subject of the next section.

In terms of z-z plots such as Figures 2 and 3, the redun-

dancy is proportional to the width of the overlap regions. The width

of this region in terms of n and r is found as follows:  Consider two

adjacent lines of Figure 2, i.e., z = rz,-i and z' = rz. - (i-1).j+1    J.     . j+1    J
nThe overlap, 8 rz., is the difference between rz. for z =  --- and

J                                                          J j+1 r-1

r z.     for    z  '            =        -
n

Solving fbr this difference yieldsJ               j -11 r-1
2n                  narz.  =    -    + 1. The ratio - is therefore a measure of redun-

J r-1 r-1

dancy.

14



As redundancy. '(width of overlap region) is increased, the

required precision of inspection of divisor and partial remainder, and

thus hapefully the execution time, is decreased. It) th€refore, appears

that for a given r, n should be as large as possible, i.e., n should

equal .r-1.  Such a choice may not be practical, however,/since n = 5,

requires the ability  to  form Jj ·multiples  of  the· divisor. The choice

of n is therefore bound up in the usual trade off between time and

hardware.

2.5  The P-D Plot

Now consider another graphical representation of the division

procedure. This construction, suggested by C: V. Freiman of the IBM

Corporation is useful in further describing SRT division and in[5]

computing the»required·Iprecision of' inspection-of the divisor And..

shifted partial remainder. The basis for the plot is the recursive

relationship

Pj+1 -'rPj  _  j+1 d (2.1.1)

as .described in Section 2.1 together  with the range .restriction

t  n'-
1 pj +1     ..=    r-1     d

develdped 'in Sectiori·2:.3.·  The·figure is thus· essentially a plot of  
' ' .

partial remainder versus divisbmi values and therefore in this rebort
i

shall be referred to as a P-D plot.

15



Solving the recursive relationship for rp. yields
J                                                 ·

.rp. =P + q d. (2.5·1)J j+1. j +1

For a fixed quotient digit, the upper limit of· rp  as
a function of

the divisor, d occurs when p is maximum, i.e..whenj +1

P      =-n    dj +1 r-1   '

thus

rp.              =    7-1     +· qj +l  d. (2.5·2)J max ( n

-n
Likewise,.the lower limit occurs with p   = - d..'thusi:j +1 r-1  '

, -n
rPj    min   =   C   7-1      +   qj +1 )d. (2.5·3)

These linear equations may be plotted as functions of d with q *l as

a parameter ranging  from  -n  to  +n in steps  of  1.     The area between

rp. and rp. for a given·q = i will be denoted the q(i) area.J max J min j +1

The division procedure is now determined.  A given value of

th
divisor,' d and the j shifted partial remainder will specify a point

in a q(i) area.  The digit i will be the value of the next quotient

digit q WHith in.turn is used in forming the next partial remainder.
j +1

16



In this representation the 'redunda·ncy is manifested-as 'over]:apping:.of .the

q(i) regions, i.e. some pairs of d. and rp  will ipecify a .point for
· which either q = i or·. q .=  i  -.lisa valid. choice.  ;

j +1 j +1  .

Figure 4 is.an example of a P-D ·plot ·fer a division with

r = 4, n = 2.  The equations for the lines plotted, 2', 2, etc., are

given in Table  1. The region  for  which· q = 2 is a valid choice, i.e.j +1

the q(2) area, is between, lines 2' and 2; :the q(1) area is between

lines l' and 1, and so forth.  Note the overlap between q(i) areas,

for example, the region between line. 1' and 2 in which either the choice

q    = 1 or q =  2  is  cortect. i Note. further  that the figure  is
j +1 j+1                 .  .     ,.

symmetric about both axes.

: On the right half of Figure 4 (the same may be done on the

left), "steps" have been drawn within the overlap of the q(i) regions.

The width of a "tread" (constant rp , d varying) defines. .a. .divisor

interval, the value of rp. for each tread defines a comparison con-3

stant, the distance' between. comparison constants defines a partial

remainder interval. Phrased in this terminology, division consists of

locating a given divisor value within:the appropriate'divisor interval,

locating the shifted partial remainder within the appropriate interval

<using comparison constants),'and selecting,a value of q enclosed
9+1

by the intersection of: the boundaries of these· intervals. Since a

divisor and partial remainder must be located only to within an

interval, they need not be inspected to full' precision-in selecting a

correct quotient digit.  Hete is where the redundancy pays dividends.

:
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rp.  = + _n   d  +q      d
u                                                                                     J       - r-1 j +1

r=4

Designation Equation
.:                        in 'Figurd 3 qj +1 pj +1 rpi =

2'                 2             2/3 d 8/3 d

2                   2             -2/3 d 4/3 d

1'                 1             2/3 d 5/3 d

1                    1             -2/3 d 1/3 d

0,               0           2/3 d 2/3 d

0 0, -2/3 d -213 d

1,                                                         1                                           2/3 d -1/3   d

1                   1             -2/3 d -5/3.d

F''                                               2                                      2/3 d -4/3 d
2             -2/3 d -8/3 d

Table 1.  Equations Defining the Regions of Figure 4.

Techniques .for selecting divisor intervals. and comparison con-

stants are detailed in the next two sections.  At this point, however,

we shall make several general observations,  First, as we shall soon

discover, the comparison
constant   are.Oompared· With,2,;6.hp;i.·&,i#668'*defj:N<

bits of the shifted partial remainder and,  similarly,  the end points

of the divisor interyals are compared with,the N i· high  rder bits 'of

the divisor.  The comparison constants and end point,of the divisor

intervals should therefore be numbers which are. representaSle with

N  and Nd bits, respectively.  The choices illustrated in Figure 4

which maximized the width of the divisor intervals do not meet this
.

'2

requirement.
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In Figure 5, however, more practical choices are shown.  The

dashed lihes represent the theoretical choices used in Figure 4.  Now,

although. the number of steps has been increased, the boundaries fall

at points easily representable in binary notation.  Note that inspec-

tion of 4 bits plus sign of the partial remainder and divisor is

sufficient to locate the correct choice of quotient digit.

The second observation is that the choice of divisor inter-

vals and comparison constants is bound up with the required precision

of inspection of the partial remainder and divisor; if, for example,

the divisor intervals widths are increased, the required precision

of divisor inspecti6n, (number of bits) may be decreased.  Further-

more, the maximum. precision of inspection  of the divisor is determined

by the divisor interval of smallest width.  By inspection of Figure 5,

the reader might guess where this step is, but, we shall now locate

it andlytically. The result of this derivation will be useful in the

next sections.

The length Of a divisor interval is limited by the boundaries

of the'overlap region.  The maximum precision of inspection is required

where the divisor interval is minimum. To determine where this

minimum divisor interval occurs consider the detail of the overlap

of the'q(i) and q(i-1) regions shown in Figure 6.

For' a given'
value of rp ,

the max'imum width of a divisor

interval is

20
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FIGURE 5. DIVISOR INTERVALS AND COMPARISON CONSTANTS

WITH r=4, n=2
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*
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-
-

1 D- d
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FIGURE 6. DETAIL OF A P-D PLOT OVERLAP REGION
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rp,            rp.
a d=d-d- - J

21 .n + i _EL + i -1
2-1 r-1

2 n - R=rp.R                     2               (2.5.4)J        -·22  · -2.,R i  -R 1+.nR -n

wher6 R = (r-1).

The interval ad is minimum, when i is maximum and rp. is
J

minimum.  The maximum value of i is n, the minimum value of rp  for

q  *1 = n will occur when the upper bound of the overlap region inter-

sects d = 1/2, i.e., when d1 = 1/2.. The precision of required inspec-

tion:of divisor is thus determined by the divisor interval closest to

d = 1/2 and between q. = n and q = n-1.
J +1 j +1

[5]Robertion has introduced the selection ratio, which is

defined as the ratio of the slope.of the.lower bound of an overlap

region to the slope of the upper bound.  This ratio is a relative

measure of the width of the divisor interval for which a single com-

parison constant is valid. From Figure 6 , it appears ·that ai, (the

selection ratio between q = i and q = i-1) isj +1 j +1

-i(r-1) -n
(2.5.5)

ai =  (i-1)(r-1)*n

The difficulty of selection is proportional to al and as

indicated earlier is most difficult for i = n.

The selection ratio may be used·to compute another parameter

the minimum number of divisor intervals necessary to span d given

overlap region.  if a L d 66 b, then this minimum is the smallest

23



integer, Si suth that ci i <  2 , i.e., Si = integer part of

log a - log b .  For example with 1/2 L d L l,i=n=2,r=4,
log a i

-  -

ai = .8 and Si = 4. ..Note that this agrees with the graphical results

of Figure 4.  The number of steps between line l' and line 2 is four.

2.6  The Cost of Quotient Digit Selection

2.6.1  General

To this point we have established that an important feature

of SRT division is the ability to select quotient digits fromtruncated

versions of the divisor and shifted partial remainder.  We now turn to

the more specific question of what precision is required in these ap-

proximations, i.e., how many bits of the divisor and shifted partial

remainder must be inspected to guarantee correct quotient digit selec-

tion.  In a sense, this required precision is the cost of quotient

digit selection.

The cost will be shown to be a function of the choice of

radix and to a certain extent, of the method of selecting the quotient

digits. Robertson has suggested that the mechanism for selection[ 5]

of quotient digits may be viewed as a limited precision model of the

full precision division.  This concept is exemplified in the following

example.

A radix 256 division would require eight quotient bits per

shift of partial remainder. To generate these, eight  bits,. as  shown·:,

in Section 2.6.2, 12 bits of the partial remainder and 13 bits of the

divisor are presented to a division mechanism which need be only

elaborate enough to produce eight bits of quotient from a  12 bit

24



dividend and a 13 bit divisor. The results of 'this limited precision.

division (eight bits) are returned ·to the full precision m,echanism·as
1 ·,'·1  t .·   . ::'A" .

part  of the full precision quotient and ·:· are,· used  in forming the  next

full  precision partial  remainder.    Note  that  the number' defining full '

precision may be changed in discrete steps by changing the number of

"calls" to the modal division. Furthermore, the model division .scheme

may be quite different from that of the full precision·division·.

For purposes of computing costs of quotient selection, we

shall consider two classes of model division procedures.  The first

will· be those involving the use of an auxilary arithmetic unit and

employing addition and/or subtraction in forming the quotient digits.

' Examples bf schemes in ·this class include a radix four SRT division

performed  in the exponent arithmetic 'unit  or the procedure suggested

[9]by Wallace- which is logically
 

equivalent'to forming the apprbxi-

mate  ruciprocal  of the divisor and multiplying by the partial., remainder.

This class will be referred  to as arithmetic 'models.

The second class consists of those methods which are the

logical equivalent. of a table look-up.  This technique.may.be viewed

as the direct implementation of a P-D plot, i.e., decoding the divisor

interval, tHe partial: remainder interval and producing the quotient

digit indicated by their intersection.  This class will be referred

to as table look-up models.

Before considering these two type models  in further. detail,
let .us state' m:gre· precisely the conditions which must be : batdihed:1' n
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the choice of model division .and precision of inspection. . Let

m    =  the number of bits to the right of the ·radix point

·of divisor and dividend. .                                          -

A

rp   =  the truncated version pf the shifted partial re-

mainder.

E    =  the number.of bits to the right of the radix point

in rf .

ap + (2-E - 2.m) - 1 2-E, the uncertainty in rp ..
/\

d       the truncated version of the divisor.

8             . the  number .of  bits  to the right  of the radix point
/\

in d.

-5                                                A
ad        =     1   (2-8   -   2 -m)  =  1  2      , the uncertainty   in   d.

The following cost criterion summarizes the.requirements on

the quotient selection mechanism, ad and Op.
A

Cost criterion:   Given the approximations rp .  + ap and
J -     ··

/\

d + ad,  the integer result of rp /d = i performed in the model must

be  such  that  on the appropriate  P-D plot, the .rectangle defined .by
A

(d   +  ad,    rpj   1  ap) is entirely within·  the q.(iD region.

2.6.2  Cost Determination for an Arithmetic Model

We first consider the determination of the cost. for a
A A

division using an arithmetic model. .In this .case rp  and d are

presented to a limited precision arithmetic unit and the diyision

carried out to produce a rounded integer quotient.    If  the  bit  posi-

tion  to the right  of the radix point  in the model  is ·"1", the integer
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portion is increased by one and truncated, otherwise the result is

merely truncated.  This.rounding is necessary if the cost criterion is

to hold for an arithmetic model.

Equation 2.5.4 indicated that maximum precision is required

in the overlap of the-q(n) and q(n-1) regions in the vicinity of

d = lf2.  The precision determined here will be sufficient for any

other region of the P-D plot. Figure 7 is a detail of this region.

Two additional factors must now be Considered:· a redundantly

represented 'partial remainder  and a negative divisor. As illustrated

in the next chapter, a division scheme 'which meshes well With multi-

plication  must cope with redundantly represented ,partial remainders .

One consequence of the representation is that the truncation error

(Ap) attributable to considering only a few higher order bits of the

partial remainder may be either positive or negative.  When a negative

(2's complement) divisor is permitted, truncation error:may alsd be

negative.

In the divisor intelval  1/2  + ad,   the dividing.line between
A A A

the  selection  of  q  =  n  and  q  =  n-1  is  rp   =  1/2 (n  -  1/2
) since

rpj/d=

2   x  1/2 (n   -  1/2 )   =   n  - 1/2 which  must be rounded  to  n.   ·For  the  cost

criterion to hold, the rectangle (1/2 + Ad, 1/2 (n - 1/2)   1 ap)   must

not extend below the bottom of the overlap region defined by rp .  -
3

(n - 2 3)d.  Such a rectangle is indicated by the dashed lines in

Figure 7. .Since this rectangle  is  not unique, ther.e  is some avail-

able trade off between ap and ad.  To achieve more quantitative

27



r Pj
A

rp,= (n-1/3)d
J

3-                                                                       r p;  = (n- 2/3 )  dr    f--         1 i rpj= 1/2(n-1/2)
8 pe  i

-Li

Rz

=d
di             1/2               de

, 8 d            p           Ad 2 mu
1

Imo                                 
                             4

FIGURE 7. COST CALCULATION- FROM' P-D PLOT
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results, we now limit the analysis to a special but useful case:ihthat

2k
.in which the radix is of the form r =2  ; where k i s a positive

(non-zero) integer.

2k
A division with r=2 may be implemented with a cascade of

k  adder/.subtractor,s .with multiples   of  1 times and 2 times the divisor

available to the first stage of the cascade, 4 times and 8 times to the

second,  and so forth through 2 t» ) ..<Pk71) .4) times and g. · .., times available

th
to the k stage.  In this case, n, the largest multiple of the

divisor which may be formed, is the ·sum of the largest multiple which

.(2k-1)may be formed at each stage in the cascade,i.e. n=2+8 ...+25-'..
Furthermore,   the  sum  of this geometric series  is    -L =  2/3.     Thus  we,r-1

-2k
shall consider.the case r=2  ,n= 2/3(r-1).

For practical implementation, the rectangular region defined

-               horizontally by ap will be symmetric about d = 1/2 and rp  = 1/2(n-1/2).

Referring to Figure  7,   note   that  ad.  must be smaller  than the smaller
h.

of ad and Ad .   ·The following demonstrates that Ad_<ad
. 1 max 2 max      :                              2    1 max

ad      = 1/2 A - 1/2   _   - (2.6.1)2 max
\:-213   j

ad          = 1/2  n  -  1/2        1 max
< 0  -  1/3

2

ad - ad 1- n  -n+1/4
1 max 2 max r n2 (2.6.2)

n ·- n + 2/9

Since

n2.n+1/4 >1
2
n  -n+2/9
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ad - ad LO
1 max 2 max

2' l-maxc-< ad2*,max (2.6.3)

Thus choosing  ad z. ad will insure that tha recthngle will fit-  1 max

horizontally.

Similarly

6Pl = (n i I/3)di - 1/2(n - 1/2) <2.6.4)

aP2  =   -   (n  -  '2/3)d2   +  1/2(n  -  1/2)

apl  -  aP2  =  (n  -  1/3)di  +  rn  -'2/3).d2  -   (n  -  1/2)

(2.6.5)

let

dl = 1/2 - ad

d2 = 1/2 +
ad (2.6.6)

Substituting (2.6.6) into (2.6.5) yields

-adapl - ap2 =  -3-  6 0
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thus

.apl  K. ZSP2 (2.6.7)

A·

As implied earlier, if we are
certain that rp  = 1/2(n

- 1/2)

will produce the quotient selecti&nb o = n. then ap < AP2 will be
'    -+j +1          '

sufficient.     If we cannot, guarantee·  this,   then  ap  < apl  must  hold.

We shall adopt the latter, more cautious approach.  If we

selected the.former, then the (n - 1/3) term in equation 2.6.13 woiild

be replaced by (n - 2/3).  The results in Table 2, however, will be

the same.

-8
Recalling that ad = 2 we want

-8
2 <ad (2.6.8)-          1  · max

which from 2.6.1 becomes

2-8   <1/2   (   n  -   1/2     -   f ) (2.6.9)
-      n-1/3

where

2k
n  =  2/3 (2        -   1)

bet

I(x) = x if x is an integer.

=  next larger integer  if  x ' is' not an integer.
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The minimum value of 8 is therefore

n     -    1/ 2 . \ (2.6.1 0)5 min = -I   10%  /2(1 -n- 1/3 )yl

Possible values..of  5  are  thus

8=8 ,8 + 1,  ... m (2.6.11)min min

Similarly since ap.= 2- , combining 2.6.7 and 2.6.4 yields

2-<   1/12  - 2-8(n  - 1/3) (2:6.12)

and thus

€ =· -I      log2    /12 - 2-6(n - 1/3) 
(2.6.13)

where 5 is defined by 2.6.11.

Now let

A

N   =  number  of bits· of  d  =6.
d

/\

N  = number of bits of rp. = € +2 k
P                           J

Note algo that the sign Of d and rp. must be known to model.  Table
3

2 summarizes the results of equations 2.6.11 and 2.6.13 for k = 1, 2,

3,   4.     Note  that € approaches. a lower limit  of  4  when·  the  1/12  term

in 2.6.13 becomes domimAnt :·.t·:
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k       r        n                                   8                €.    s'        N                  N
d.            P .

142 5=5 5 5 7min
6                 5                6·                 7
7          4.         7           6

8   .4    8    .6

m                4                m                  6

2 17 10           8    =    7         7          7          11min

8        5  ..     8.   ·'    9

9498
10         4        10          8

m           4           m.            8

3      64      42                 5      =      9               9               9               15min
10          5 10 11

11              4            11             10,
12 '4 12                 .IO

m        .4         m         10

4 256 170                                  5.            =
11 .11 11,         19min
12         5        12         13

13          4         13.         12

14          4 .        14          12

m          4          m  '        12

Table 2. . Costs. for Arithmetic Models
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Thus it appears there are ·three feasible cases for which the

cost of inspection is as follows:

Case 1

N  = 4k + 3
P

N  = 2k + 3
d

Cas6 2

k  N.=2k + 5
P

N  = 2k + 4
d

Case 3

N·   =2k + 4
P

N  = 2k + 5d

Case three Would probably be the most practical case.to

impldment since N  is minimum.  N  bits of the redundantly'represented

partial remainder must be converted into conventional form before each

model division. Since this assimilatiori is essentially. ar s6ridll

process, the assimilation time is directly. proportional to N .
P

2.6.3  Cost Determination for a Table Look-Up Model

This class of model is a logical implementation of the P-D

diagram.  In its most brute force form, this model may be viewed as

a  grid or matrix with. vertical lines which  are the outputs:,Of dec6ders
A

applied to d and with the horizontal lines which are the outputs of
/\

the decoders applied to rp..  At each intersection of the lines.ib3

and AND gate with one input connected to .the vertical line, the other

to the horizontal line.  Each point of intersection corresponds to a
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quotiant digit va·lue,  i,  and thus the..output  of  each  AND  gate. is

connected to the input' of .the appropriate 0R gate the true output of

. which  is q = i.
j +1

The overlap ·regions.:are divided by steps.as discussed.in

Section 2.5 such that the cost criterion. (Section 2.6.1) will. hold in

all intervals.  To determine the required N  and Nd in this case, we

again. consider the worst case region of the P-D plot Wher:e. di·= ily'2.

and between q(n) and q(n-1) as shown in Figure 7.

 

Again, if we choose the dividing line between q = n and
j +1

qj +1 = n-1 to be at 1/2 (n - 1/2), .then the calculations of Section
· 2k2.6.2 ·also hold for·the table look-up case with r=2  .  Recall,

however, .that we generally  wish to minimize  N    since  this  Will  reduce
P

A

the  assimilation  time in forming  rp   in each. cycle.    We can accomplish

this by selecting the comparison constants, the dividing line between

choice of quotient digit values, as close to the top of an overlap

region as possible.

In the arithmetic models, the comparison constants are

implicit in the model, and thus, for example, we had 40 choice but

to use 1/2(n - 1/2) in the cost calculations.  In the present case,

however,  we may select any ·value which is within the' overlap region

and an integer multiple of 2-<.

The value of 1/2 (n - 1/2) is always an exact binary number,

specifically a number  with a fractional  part  of  3/4-0 The distance

from' 1/2 (n - 1/2) to the upper limit of the overlap region along

d = 1/2 is 1/2(n ,- .1/3) - 1/2(n - 1/2) = 1/12. This means that the
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largest comparison constant we may choose in this region without

increasing € 'to b'e greater than four is 1/2(n - 1/2) + 1/16.  If we
. .                              A

design the
logic  such  that  rp   =  1/2 (n  -  1/2 )  +  1/16  and  d  =  1/2

selects q = n,  then ad and ap cest .calculations.·are..44 follow,s:
j +1

Ih ithis :case  .4.5 ·  ,   6:c

2-5 < ad
-.  . max

2-5  S  7/48    0         1n-2/3

2-<   5  7/48   -   2-8(n   -   2/3)

In the same manner  as that outlined  in  the last section we obtain ·

Table 3 and the three cases.

Case 1

M.-2k +-4
P

..Nd=2k  +  3

Case 2

N  = 2k + 4
P
N  = 2k + 4
d

Case 3

N ·= 2k + 3
P

N  = 2k + 5d

The first entry N ·= 4,.N=6 i s not included in the above
.P

linear equations but this, is. the most· prattic&1(·ca,se.  for.k,·=: 1, rddlix
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k n  8€N d Np
1                      28'4                                                     4                                4                                  6

mint "

5                       4              4               6

6                              3                  4.                  6

7                            .3                 3                  5
7 0

m                 3          m           5

2     10       5    = 7               4        7         8min
8                   4 8 8
·9                 3,         9           7

m                 3          m          7

3      42        6  .  =..9                 4          9          10min
10                4 10 10

11                 3         11           9

m                 3          m           9

4    170      8    = 11              4       11        12
min

12                            4               12                 12
13                 3         13          11

6                 3          m          ll·

Table 3. Costs for Table Look-Up Models

four.  By .comparison with the results.of Section 2.6.2, note that for

a,given k,  a  case  may be  fouhd for  which. a table look-up model  re-

quires fewebibitsiof,compArti)soil' tthails the  )forrespbhding:, di,3 thiitetic' "'   ' ·

model.
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2.7  Quotient Conversion

The quotient developed by SRT division will in general in-

clude negative digits and eventually must be converted to a conventional

binary form.  This conversion time and hardware is the greater part of

the price paid for the accrued advantages of redundancy.

First consider a specific: caBe:· conversion of a result  pro-

duced by a non-restoring division. Here quotient representation is

the same as that discussed in Section 2.2 except that zero is not an

allowable digit. The algorithm  for· such a conversion is illustrated

in Figure 8.  This conversion may be performed sequentially as the

quotient digits are generated, and thus requires ·no additional terminal

operations.  The digit q is unchanged if it is positive, otherwisej +1

it is replaced by r+q  ·. and the adjacent higher order digit q ,j+1'

decreased by 1.  Note that since zero is not a permissible digit,

there is no requirement for a borrow propagation. in decreasing q  by

1.  The hardware required is of the order of a two digit subtractor.

It is not generally possible, however, to perform SRT divi-

sion not allowing q - 0.  Non-restoring division may be vitwed as SRT.

division with n = r-1.  For this case, the q(0) region of a P-D plot

is completely overlapped by the q(1) and q(-1) regions.  The quotient

digit value q=0 may, therefore, be eliminated and the conversioh

consequently simplified  to  that of Figure  8. For cases  of  SRT  di-

vision with n L r-1, the q(0) region is not subsumed. by other regions

and thus q=0 must be allowed if.the division is to be completely

defined.
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FIGURE 8. QUOTIENT CONVERSION   FOR NON- RESTORING DIVISION
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With the possibility of q = 0, the conversion is complicated:

the algorithm of Figure 8 is no longer adequate, for now the difference

q. - 1 may require a borrow from q. .  Furthermore, this borrow must
J                               J -i

propagate to.the-left until it.encounters a non-zero digit.  This

potential for borrow propagation requires that the equivalent of a

full precision subtractor be available to the quotient register if

conversion is to occur as the quotient digits are generated.

Alternately, the full precision quotient may be generated

and stored in the redundant form and then converted during an extra

terminal step.  A high-speed arithmetic unit frequently employs:a

redundant representation of the partial product during multiplication,

d.g. carry-save adders, which also require a terminal conversion.  One

possibility, then, is to share the hardware for conversion of both

products and quotients.  The sample implementation presented in the

next chapter incorporates this approach.
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3.  IMPLEMENTATION OF SRT DIVISION

.3.0  Introduction

Armed with the theory and techniques unfolded in the last

chapter, now consider an example implementation of SRT division.  This

example is not presented as a detailed construction proposal, but is

rather intended to contribute the following:

1.  A description of .several fairly general considerations

for implementing digital division and of how. SRT division

meshes .within these considerations.

2. .An elaboration, in a rather concrete way, of the concept

of limited,precision modeling.

3..,   A  notion  as  to the hardware demands and operation  time

'                               of functional blocks required. in implementing SRT

division.

Throughout this chapter,. it·is assumed that the designer has

already made the decisions as to the speed of the electronic components

he will use, and that-. now he is attempting. to organize these components

into a· faster, more efficient system.

3..1  General Considerations for Implementation

Chapter 2 introduced a class of division techniques which

appear especially suited for implementation.in a digital machine.

Having. accepted this premise and having.decided to tackle SRT division,

the designer is still.faced. with many decisions and. dirty design details.
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These details are strongly related to the structure of the allied parts

of the arithmetic unit and to such real life questions as available

logic, speed demands, available packaging space, and to a large extent                -

to the price the designer is willing to pay for a.high-speed divide.

A thorough exploration into these factors is well beyond the scope of

this paper, however, there are several more general guidelines which

may apply.

3.1.1  Relative Occurrence of Division

The first guideline emerges from the observation that divi-

sion is usually the least frequently executed of the basic arithmetic

operations: add, subtract, multiply, and divide. The designers of the

[6]IBM STRETCH computer estimated that on an average, out of 16 opera-

tions of a general purpose computer, the relative occurrence by opera-

tion  type  fi.: ds·jfo]01'ows:

1  division

3  multiplications

6  additions

6  control transfers

These figures indicate.that the designer should pay more to

accelerate multiplication than division: that in a conflict between

accelerating multiplication and division, the former should be the

victor.

3.1.2  Acceleration of Division

With decreasing hardware costs, increasing packaging density,

and demands for still faster arithmetic units, the first guideline may
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not'·be as significant as it wAs :ih· the days of· STRETCH. .Today the

desigher Will  ptobadly'dib  both  for .very  high-speed· mditiply  and: divide.

The. des'ign ques'Eidn is hot mer*ly how tb implement di-vision, but tather'-,

how to implement high-speed· division,   or  yet more specifically, high-.

speed SRT division.

The next guidelines, · therefore, related"  to ·organizational

factors affecting the speed of execution of division.  Of course, in

selecting the SRT method, the designer has already seized upon the

possibility  of  accalerating  exebution by decreasing ·the ·precision  and  

thus reducing the· time tequited in ·selecting a quotient digit. There

are, however, othe-r·  ossibilities beyond this fundamental decision.

As  mentioned  in. Section· 2.1,  the  recursive  relationship

points' diredtly to four passibilities  for accelerating division.   A

fifth, obvious, bzit important factor is 'added 'here.  ·These .possibilities

are' as. follows:

1.   Decrease :the · time ·for forming rD .,. i .e'.  the left
J           ·

shift time.

2.   Ddcrease·· the· ·selection time for multiple-s of the'

divisor  at the divisor input to·the adder·/ subtractor.

3.    Decrease  the add/ subtract  time.

4.     Increase the radix and ,thus decrease the number  of

cycles re4uired. to generate' a quotient of .specified

precision.

:5. ··Decrease the- time for .selecting a quotient digit, i.e:.·

for· comparing·.the divisior 'and shifted partial remainder.
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The first of these is essentially the problem of minimizing

the  number. of logic stage delays required to transfer and shift the

contents of the secondary rank of the accumulator back to the primary.

rank.

Similarly, the second item relates primarily to minimizing

control delay in operating a shift gate once a quotient digit is

selected.

' In approaching. the third factor of this list, decreasing

the add/ subtract  time, the designer is likely  to  turn  to a carry/

borrow save. type unit which eliminates propagation until a terminal

step This is a standard technique in implementing multiplication,[7]

but must be dpproached cautiously for the case of .division.

The ·necessity for caution arises from the fact that such

schemes actually introduce redundancy into the representation of a

sum or difference and thus, fof division, produce a redundant. partial

remainder. As mentioned in Section 2..5.2,. redundancy  in the partial

remainder complicates the quotient selection and, for a practical

: scheme,.requires that at least part of the partial remainder .be

converted to conventional form after each pass through the subtractor(s).

Increasing the radix, although it does decrease the number of

cycles required, also carries  with  it. some disadvantages.    For a fixed

n (the upper limit of a quotient digit) an increase of r decreases the

redundancy -9- and thus requires either greater precision in.selecting
r-1                                                    ·

quotient digits, or an. increase of n.  As noted earlier,.an increase

in the value  of n demands the availability  of more multiples  of  the ·

divisor and thus more hardware.
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The fifth factor is explored.further in Section 3.3 with

reference to the selection of the model division.

Note that the question of minimizing control step-up time

is largely beyond the scope of this paper.  It is, however,. a ·very

real and related problem to be faced in accelerating an arithmetic

process.  There is little efficiency in building a system which

operates faster than control' signals can service  it.

3.1.3  Compatibility of bivision .with the Multiplication Scheme

According to' the STRETCH statistics mentioned in Section

3.1.1, multiplications eccur half .as .often as additions.. Multiplica-

tion, however, is usually executed as a series of cOnsiderably more. 

than two additions and.thus requires the use of acceleration techniques

if the speed of multiplication. and. addition. are to be compatible.  These

techniques essentially reduce to the first four of those.mentioned in  ;

Section. 3.1.2 .with the word "divisor" replaced by multiplicandS "idft

shift" replaced by "right shift", and "quotient" by "product."  Thus,

at. least  to  a .first approximation, acceleration. of · multiplication  and

division. are compatible.

A high-speed arithmetic unit usually inciudes a substantial

investment in hardware to accelerate ·the execution of mliltiplication.

Hopefully,  much of· this investment may also be used for division.

With  this. in  mind. and. accepting the premise that accelera-

tion of division should. place second. to accelerated multiplication,

we adopt the following strategy:  design a high-speed multiplication
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scheme, then embed division within it. .Although not the ideal, it is,

in fact, a practical strategy which has been used in arithmetic Unit

design.  In a sense, this guideline summarizes the guidelines mentioned

in both of the previous sections.

3.2  A High-Speed Multiplication Scheme

Having adopted the design strategy "multiply. then  divide,",   we

must now propose a high-speed multiplication scheme with which we hope

to mesh division. The description of the scheme will necessarily be at

the block diagram.level and will by no means be fully justified.  Also,

details such as overflow and handling of the exponent will .not be dis-

cussed.  The scheme, howevdr, has been studied and, in fact, simulated

by the author.     It is similar  to that proposed  for.  implementation· in

the Illinois Pattern Recognition. Computer (Illiac  III).. .The number

format to.be handled by this·device is assumed to be an 8 byte (8 bits.

per byte) normalized floating point number with 1 byte of exponent and

7 bytes of mantissa.

Figure   9   is a simplifiad. block   diagram of' the proposed  unit.

3.2.1  Notation

The conventions used in. Figure 9 are as follows:

1,  Flipflop registers are denoted by rectangles with the

horizontal subdivisions indicating bytes.  For example,

the M register (M REG-) is 7 bytes (56 bits) long.              '

2.  Groups of combinatorial logic are shown in circles or

rectangles with rounded corners.  Any gating is re-

presented in terms of AND (·), OR(v), and. EXCLUSIVE OR(01.
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3.  The widest lines indicate a bus for data in SD format

(2 bits per digit, see Section 3.2.2), the next.

widest for numbers in conventional notation (1 bit per

digit).

4.  Gating signal names are of the form Fl F'2 X T  T2 where:

a.  Fl and F2 (F2 is optional) are the names of the

registers from which data is transferred.

b.  X=D i f the.transfer is direct, i.e. not shifted.

X = Rn if the data is shifted n places. to the

righ;t during the transfer.

X = Ln if the data is shifted n places to the

left during the transfer.

c.  Tl and 12 (T2 is optional) are the names of the

registers to which data is transferred from Fl
and F2 respectively.

d.  The concatenation of register names starting

with the same letter such as UM and US is further

abbreviated as UMS.

5.  Examples of gating signal names:

a.  VDM - Gate the data on the V-Bus directly into

the M-Register.

b.  ML*Yl - Gate the contents of the M-Register

shifted left seven positions into the Y input

of signed-digit subtractor Sl.

c.  UHQDLHQ is equivalent to the two names UHDLH

and UQDLQ.
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6.  The label TO AD or FROM MD indicates connections to the

Model Divisioh to. be described. in Section 3.3.3.

3.2.2  Description and Operation

As mentioned earlier, multiplication is .substantially accel-

erated by the use of an adder or adders which eliminates carry propa-

gation until a terminal  step. The "adder" proposed  for this model,

Sl-S4 is actually a signed-digit subtractor (SDS):  it incorporates

facilities for postponing borrow propagation.  Actually, the device

performs both addition and subtraction under control of the "NEG"

signal. We shall digress a moment for a brief description- of this

device.

-                          Each stage of the signed-digit subtractor (SDS),.as shown in

Figure 10,.is. a 3-input, 2-output device together with ·an. interstage

connection  and  a "NEG" control  line.      Y.   is   a  .bit   of  the   subtrahend
1

(minuend - subtrahend = remainder) in conventional binary form.  Si

and Xi together comprise the minuend in a. redundant notation which will

be  called SD format. Each digit  of the, minuend  is  ·of  the, form  Si  Xi

where Xi is interpreted as a magnitude, 1 or 0 and S as a sign,

0 = +,1 = -.  The SD format digits are therefore represented as follows:

Si      Xi      DIGITAL VALUE
0                0                           +0

0 : 1    +1

0              0                       +0

1        0             -1

1        1             -1
.

49



Yi  si   Xi

-  0/ \/ 0/

Stage i     <     
     NEG

Ci-1             <                  -                           .      <                       C.1

V 0/
T.
1 bi

S  = sign of minuend digit

X  = magnitude of minuend digit'

Y  = subtrahend in conventional binary form

Ti = sign of difference digit

Z  = magnitude of difference·digit

NEG = control to complement Ti

NEG =  0  ->· Ti  not
· complemented

NEG =1+T i complemented

Ci = interstage interconnection, but not a propagating borrow/carry

T. = C. 0 NEG
11

Z.= c. 0(X. e Y.)
11 11

C =S X. v X. Y.
i-1      i       1            ,1       1

C. = S X    v X    Y
1    i+1 i+1 i+1 i+1

Figure.10.  Stage of a Signed-Digit Subtractor.

50



The. output of the subtractor is in this same format, i.e. Z

is the magnitude of the digit, T( is the sign.  Ci and Ci-1 are

interstage connections and,,as may be seen from the logic equations

are not .propagating borrows.  Another advantage of SD format is that

a number may be negated merely by complementing the sign (S) bits.

Note that the ·postponing.of borrow propagation is achieved

only at the expense of ·introducing redundancy into the representation

of the result.  Actually two registers, for example US and UM, are

required to store a number in this redundant form.

We must. also pay the price of conversion or assimilation, to
conventional form.  This assimilation actually requires a borrow pro-

pagation  and. one additional subtraction. The propagation.is accelerated

by use of look-ahead techniques,  but. is still. rather time-consuaing
.

and  expensive. The propagation occurs  in. the .propagation.·logic  the

output of which is then applied to the. Y input of s4 to produce the

assimilated result.

The. propagation logic forms. the 0utput s

B   . =. B. Z.  V.T. Z.
i-1    i  1    1  1

and S4 is used to pboduce the assimilated result with bits

A. = Z. 4 B.
1   1   1

·[8]The SDS is described in more detail in reference

In the proposed scheme, four of the signed-digit subtractors

are cascaded to provide multiplication, radix 256, i.e. 8 bits.of the
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multiplier are used simultaneously.  The multiplicand' is loaded from

the V-BUS into M, the multiplier into UQ.  The low order byte of UQ

drives recoding logic which couples to the control 1lnes in the shift

array.

This recoding, suggested by Wallace , requires plus and
[9]

minus multiples of 128, 64, 32, 16, 8, 4, 2; and 1 times the multiplicand.

The multiples are formed by the shift array; the signs by the NEG con-

trols, i.e. by adding or subtracting the multiple.  The MDYl input is

used only for an ADD or SUBTRACT instruction, not for MULTIPLY.

After passing through the SDS cascade, the contents of

LS-LM and LH-LQ (partial product and multiplier) are shifted. right 8

bits back into the US-UM and UQ Registers.  This continues for 8

cycles; the 9th is an assimilation cycle. .Here the product in SD

format is applied to the propagation·logic, the output of the propa-

gation logic to s4, and consequently converted to conventional

representation.

Admittedly the scheme just outlined is expensive and in many

cases may not be justified. The designer may wish to choose a similar

scheme but with fewer levels of cascade, i.e. smaller radix.  Although

the division scheme to be designed is built upon this radix 256 multi-

plication scheme, the techniques and procedures should be easily -

reducible to a lower radix case.

Before concluding this section, we must admit a slight

diversion from our design strategy.  The reader may have noticed that

all  four  of  the  SDS in Figure  9 have been extended  to the  left  one ·byte.
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Actually,  if the multiples  of M were· added  ih the order,  1,  2,  4,  8,

16, 32, 64, 128 rather than the way shown,  only S4 would hdve to be

extended  a  full  8 bits. Since, however, quotient digits are formed

most significant first, (the product is formed least significa·nt first)

and we  wish to use this same shift array for divide, . the arrangement

must be as shown.  The ettra SDS stages must be included dnd thus the

division scheme has, to some extent, infringed upon the design of. the·

mulfiplication scheme.

3.3  Design of Division Scheme

3.3.1  General

                           Now begins the task of embedding a division scheme within

the multiplication scheme described in the last section.  Since the

SDS cascade will perform both addition and subtraction of·the contents

of the M-Register  and the number  in SD format  in  the UM-US' Registers,

the obvious·extension is to place the divisor in M and the dividend

and subsequent partial remainders  in UM-US. The quotient digita  will

be produced in redundant form.   In this case a logical choice would be

to produce quotient digits in SD format so that they may be assimilated

by the same circuits as used in mu]..tip].ication.  The contents of UH-UQ

may be gated to US-UM via UHQDUSM and then assimilated as in the final

cycle of multiplicati6n. The quotient is thus stored in UH-UQ:  the

sign bits in UH And magnitude bits in UQ.  Furthermore, divisioh with

the hardware will require an 8 bit shift from LS-LM to US-UM

{LSMLBUSM) and from LH-LQ to UH-UQ (LHQLBUHQ).
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The full precision division is now generally defined.  The

divisor is first stored in M, the dividend in UM and the sign of the

dividend in all positions of US. Quotient digits are then formed by

A /\

a model division using d and rp .  The quotient digits are stored in

SD format in UH-UQ and also used to set the multiples of the divisor

in M to be subtracted from the dividend.  The next partial.remainder is

formed in the SDS cascade (Sl, S2, S3, s4), st6red in LS-LM, and then

shifted left 8 bits into US-UM. These cycles continue until the full

precision quotient has. been generated.  The quotient is then gated

directly from UH-UQ into US-UM, assimilated, .and gated into LM where it

is available to the central processing unit.

We must now design a model division to select the quotient

digits to be stored in.UH-UQ and to be used to control the M-shift

array in forming.a full precision partial remainder.  Note that the
2k

division scheme here is of the class with radix r=2  , n.= 2/3 (r-1)

as mentioned in Section 2.5.2.. The number of cas·cades,kjis 4 in this

case, The Value  of  n  is  the  sum  of the maximum multiples  of the divisor

which may be formed at each stage of the SDS cascade and here is

128   +32   +8   +2   =17.0. The radix point is between the leftdosit'andi

 

next  leftmost.  byte  of  the  UM-US  and  LM-LS  Registers.

3.3.2  An.Arithmetic Model

First considering an arithmetic model, we select case 3 of

Section. 2.5.2 and calculate that for k = 4, N  = 12 bits and N l = 13
bits.  The first.12 bits of the shifted partial remainder could there-

fore be assimilated' into conventional form and divided by the 13 high
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order bits of the divisor to produce 8 quotient bits.- This operation·

could be performed by a non-restoring scheme in.auxilary hardware such

as the eXponent arithmetic unit.- Since an exponent unit normally

does not perform division, some augmentation is required.  The minimum

addition would be a left' shift bath from the  secondary tb th6   rimary

rank of the accumulator.  'Also, since we have specified obly a 7 bit - ·

exponent, the width  of' the exponent unit would requird  an  extension     

of 5 bits. These additions would, however, be ·relatively'inexpensive.

The exponent unit, which normally.sits idle during most of the division

operation,. could be used more efficiently.

There id however, a major disadvantage to the arithmetic

.models:  the necessity to round the quotient digits produced'  by the
/.

model before being used by the full precision mechanism.   This

rounding Was mentioned in Section. 2.5.2 and is obligatory if the cost'

critetion is to hold.   Without this requirement the quotiant' bits- ·-

could be used sequentially as they are geherated'to set the gates of

the M-Shift array.     In this casey  the full precision divisof  woiila -be

formed in LS-IM · very shortly after ·the  last  quotient bit  was' pr8duced

by the model. Since, however, the :ouhding may affect  the  most  signi-

ficant bit of the quotient returned from the model, the propagation

through  the SDS array canhot begin until the model  division  is  complete.

This restriction severely limits the feasibility of the arithmetic

models and due to this rounding requirement, a table look-up model

will  be  used  in the example developed  here.
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3.3.3. A Table Look-Up Model

As  described in Section  2.6.3, the round-offi. prbbletind.doest,not

arise in a table look-up model. The major disadvantage here is hard-
/\ A

ware cost and large fanout requirements of d and rp  to the seldction

logic.  In the example.arithmetic unit. being developed here, multipli-

cation..is radix 256. For tompatibility we would also like division.to

be radix 256,. and consequently,· would like a.,radix 2.56 table look-up

model which would produce  8 bits  of the quotient. in paraliel.    By

considering a P-D plot for radix 256,..n = 170, or.merely the fact

that N  = 12 bits and Nd = 4 bits, the reader may quickly convince
P

himself that the hardware' requirements for such a scheme are prohibi-

tive, at least. with conventional logic.

A .'radix. 16 -table look-up is probably possible with integrated

circuitry and perhaps   with more conventional' circuitry  if · the designer

is willing to pay the price: approximately 250, 5-input NANDS; 160,

8-input.NANDS;..250, 8-ihput NORS; and 160 drivers whibh will drive up

to 50 NOR loads.

In this example we will adopt a mbre modest approach in

implpmenting a radix 4-table look-up and apply it successively at four

positions of the SDS cascade.  In a. sense, we have been forced to

reduce the radix 256 division to 4-radix 4 divisions.

From Section 2,·5.3 a-radix 4·table look-up model requires

Nd = 4, N  = 6.  The,;6. bits of the partial remainder are supplied

sequentially from·four stages of the full precision hardware labelled

"TO  MD"   in  Figu:re 9. The first stage is the output of US-UM, the other

56
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three from.the output of Sl, S2, and S3.  The high order bit supplied

to the model is displaced 2 bits right at each stage.  Thtis if·the.
A

subscript.1 denotes the high order digital position, the first rp 

to the model is US. ' UM  through US6' UM6. The second input is the

third through eighth output of Sl, etc.

A block diagram of the proposed table look-up model is shown

in Figure 11 and described. in Table 4.  The P-D plot which is actually

implemented is shown in Figure 12.  Table 5 explicitly illustrates the

A A

quotient digit selection for each rp  and d.  Note the correspondence

between the steps· in the overlap regions of Figure 11 and the steps

shown in the table.

Before studying.these figures and tables note the following

considerations which are incorporated in the design:

1.  Only the first quadrant of the P-D plot.is actually
A /\

implemented.  The approximations d and rp  are considered

to be positive and the real sign is computed as with a
A

sign„magnitude representation.  If rp  is negative when

presented  to the model,  it  is made· positive before

assimilation by complementing the sign bits.

2.  The divisorand thus the selected divisor'interval is a

constant for a given division and thus the speed of

selecting the divisor interval is much less critical

than that of forming the partial remainder interval.
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3.  The QUOTIENT SELECT TABLE actually implements ZERO and

·TWO  regions of  the  P-D  plot in Figure  12 and forms  0NE

as ZERO TWO.  The TWO and ZERO regions are easier to

implement than the hNE region since they are bounded

on one side by the range restrictions on rp..J

The inputs to the model and the controls are supplied from

the full precision unit as shown in Figure 9 and are designated as

follows:

i, j ,= integer subscripts.

US. = the true output of the j-th position of the US
J

Register containing the sign bits of the partial

remainder.

UM. = the true output of the j-th pbsition of the UM
J

Register containing the magnitude bits of the

partial remainder.

T.               =  the   j-th   sign  bit   of  the. outpjit  or",36*grieds...
1, j:

digit subtractor Si.

Z.     = the j-th magnitude bit of the output of signed
1, j

digit sutractor Si.

M. = the true output of the j-th position of the M
J

Register containing the divisor.  M  is the sign

of the divisor.

C.     = sequence control signals.
1

E      = logical simmation (OR).
v.

H     = logical product (AND)

The other symbols  used in Figure  11 are defined in Table  4.  ·
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...
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.
...
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..0.- 1111  11
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DI
D TWO QUOTIENT

B ML6YI
B ML5Y2

D                    & ML4Y2
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M3            INTERVAL         • SELECT ONE AND D MLIY4
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D                    & MDY4

SHIFT D NEGO
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D D  NEGI

SIGNQ D NEG2CONTROL
D                      D NEG 3

D NEG4

1....11„.1
QSt       QSB QMI QMB

FIGURE 11. BLOCK DIAGRAM OF MODEL DIVISION



BLOCK FUNCTIONAL DESCRIPTION LOGICAL DESCRIPTION

(1 <i<6 except as noted)
-  -

INPUT AND - OR gatiAg configuration PM  = C UMi     l i
to gate the rp. selected by
the control sidnal C. to V C Z

2 1,1+2subsequent stages oflthe model.
V C Z

3 2,i+4

V C4Z3, i+6

                                                                            
                                                                            

              P S.   =  C  US
1 1 i

v C T2 1,i-+2
v C T

3 2, i+4

V C4T3, i+6

6           i-2

SIGN DETECT To determine the sign of the
SIGNP = E  PSiPMi   H   PM.A                                                       J

selected rp., i.e. the sign i=1 j=0
of the lead ng non-zero digit.
Used to control NEGATE and in

PMO -1
forming the sign of the
quotient digits.

Table 4.  Functional and Logical Description of Figure 11.
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BLOCK FUNCTIONAL DESCRIPTION LOGICAL DESCRIPTION·

NEGATE To negate e. by complementing all     ·         PS. = PS. 0 SIGNP
1-1

of the PS bi s.  With this feature

the quotient select table need only
implement the first quadrant of the

P-D:plot (3 and $p  positive).         i

A                                                                                                                                                                                                                                                                        -

ASSIMILATION Converts rp. in. SD format into a       :          B. = PM.PS. v PM B
1    ·" 1 1 i i-1

conventionai binary number.  Uses
borrow look-ahead technique to B6 = 0
accelerate this step. A. = PM. 4 B.

111

A

  DIVISOR INTERVAL DECODES d, i.e. Ml
to M . D    = M ·M M'·4                                   1     2 3 ·4

SELECT
Sinbe M  = 1, it may be                                 - - -D =MMM
elimina ed.                                        2    2 3 4

D  =M M M.3  ·234
D4    =    M2MJM4

D  = M M5·    ·2 3
D6 = M2Mj

D  =D v D v D7 1 2 .3
08 = D4 v D5 v D6

D9 = D4 v D5

D   =D  v D.
10    5   6

Table 4.  Functional and Logical Description of Figure 11 (continued).



BLOCK FUNCTIONAL.DESCRIPTION

----

QUOTIENT SELECT The logical implementation ZERO =A A A A1234
TABLE of the P-D plot in Figure 11. ------

It may be constructed with v A A A A.A D123451
diode matrix logic. ---

v A A A D
1 2 3 10

TWO  = AiA2A3AL,A5A601

v.AlA2A3A4A5D1CA\
[0'

--

v A A A A A A D1234562
v A D

1 8.

v A A D238
-  -

v A A A A D1 2.3 4 9

v »2AJA4A5D4
-  -

v A A A A A A D
1 2.3 4 5 6 6

ONE = ZERO TWO

DO   = Sign of divisor

SIQNQ= SIGNP * DO

Table 4.  Functional and Logical Description of Figure Il (continued).

..



&                                                                                                                                                                                                                                       4

BLOCK FUNCTIONAL DESCRIPTION LOGICAL DESCRIPTION

QUOTIENT BUFFER Stores the quotient digits i = 1,2,3,4
AND SHIFT .until all 8 are formed and
CONTROL gated to the lower order              QM       C. TWO

2 i-1    1
byte of UH-UQ.  Produces the QM       C. ONE
M-Shift ARRAY gate signals 2 i     1

and the NEGI signals which
QS2 i-1   Ci SIGN Q

control whether the SDS adds
QS       Ci SIGN Qor subtracts the selected 2i

multiple of the divisor.
NEG C  QS8el

- -

NEG
cl Qs8 v C2 Qs61
--

NEG
C2 QS6 V C3 QS42
- -

NEG
C3 QS4 V. C4 QS2301

w                                                                 NEG4    c4 Qs2

MI# Yl                 QMB

ML6Yl  - QM7

ML5Y2    QM6

ML4Y2    QM5

ML3Y3  - QM4

ML2Y3    QM 

ML1Yl Q 

MLDYl    QM1

Table 4:  Functional and Logical.Description of Figure 11 (end).
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4p                    QUOTIENT DIGIT SELECTEb

10.1100.2.      2       2      :2 ·     2       2       2       2

01.1100       2.    ·. 2.       2       2      .2       2.      2       2
01.1011       2       2       2       2       2       2       2       2

01.1010                  ...2             '        2.                     2                      2.                     .2-                    2.2.                     2
01.1001       2       2      .2       2       22       2       2
01.1000 2 2 2 2 2 2 2 2
01.0111 2 2 2 2 2 2 2 2
01.0110       2      .2.      2       2       2,      2   i   1       1
01.0101       2       2       2       2       2       2   1   1       1

01.0100    2·    2.   2   .- 2,   2.   2 .· 1    1
01.0011                 2                 2                 2                  2                  1                 111
01..0010      2.   -  2       2       2   i 1 .1,     1      1
01.0001       2       2       2   1   1       1       1       11
01.·0000 2                      2                      2 1. ,1                      1                      1                     ,1.                     1

00.1111                 2                 2                  1                 1                 1                 1                 1              -  1
00.1110  2  1  1,· 1.... 1, 1.1 1
00.1101 . .2 - -1         1                   1                   1                    1                   1                   1                   100.1100     .1    -1     1   „  1     1     1.   ., 1 ,..1

00.1011       1       1       1       1       1       1       1       1
00.1010       1      :1       1       1     -1       1       1       1
00.1001       1       1       1       1       1       1       1       -1
00.1000      1      1      1      1      1      1      .1   · _.1
00.0111       1       1       1       1   1   0       0       0       0
00:.0110    1 1 1. ·1.1.0                0                0                0
00.0101 1 1 0 » 0  '  0     0     0     0
00:0100 --1---1.-  O              0              0              0             .O.            .O              0
00.0011 0 0 0 0 0 0 0 0
00.0010       0       .0       .0.       0       0      .0       0       0
00.0001       0       0       0       0       0       0       0       0
00.0000* .0 0.00..0                 0                 .0

A

Divisor·d .1000 ..1001, ,1010 .1011.   .1100. .1101 .1110 ..1111

Tabla 5. Quotient Select Table.

4
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3.4  Estimate of Speed of Execution

Although in this report we have described the division

scheme only at the block diagram level, a detailed simulation has been

[·10]
programmed and will be available in .  Based upon this simulation

and actual logic design of the arithmetic unit of Illiac III we can

estimate. the execution time of this division scheme in terms of

transistor collector delays.  The actual logic is of the direct coupled

saturated DTL type.

Table 6 summarizes the number of transistor collector delays

associated with operation of each block of the model division, Figure

11, and with the relevant blocks of the complete arithmetic unit shown

in Figure 9.  These figures are used in Table 7.in tracing the opera-

tions involved in performing one division cycle i.e. making one pass

through the SDS cascade and producing 8 quotient digits in SD format.

The final cycle assimilates the redundantly represented quotient as

described under ASSIMILATION.

To estimate the execution time in seconds we shall assume a

collector delay of 15 ns and thus 8 bits of quotient require 76 x 15 ns =

1.1 usec.  A 56 bit division such as proposed for Illiac III therefore

requires 7.7 jisec.  plus  0.3 jisec. for assimilation  or a total  of 8 -11.Sec.

Initial and terminal shifting of operands have not been included but

represent a negligible time compared to the execution time of the

recursive operations.

3
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BLOCK                                      ...                                  .-  . NUMBER·OF

x:   ..   · . '·COLLECTOR DELAYS

Model Division Figure 11

Input Gating                                 2

Sign Detect                                   .1

Negate                                       1

Borrow Generate                           3

Quotidnt·Select Table                        2

Quotient Storage and·Shift Control           3

....

. Total for Model per 2 Digits of Quotient    12

Full Precision Division·Figure 9

Signed-Digit Subtracter (Each)

(Sl, 82, 83, s4)                             3

M-Shift Gates (Including Driver)             3

Register to Register Transfer                2             - -

Propagation Logic                           ·7

Table 6. Transistor Collector Delays of Blocks  of the Division Scheme.
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Initial Conditions: Divisor in M-Register.  Dividend in UM-Register.

Sign of Dividend in All Positions of US-Register.

EVENT NUMBER OF COLLECTOR DELAYS

QUOTIENT GENERATION

Perform Model Division                           12

Set ML7Yl or ML6Yl 3

Perform Add/Subtract in Sl                        3

Perform Model Division                            12

Set MLSY2 or ML4Y2                                 3

Perform Add/Subtract in S2                        3

Perform Model Division

Set ML3Y3 or ML2Y3                                3

Perform Add/Subract in S3                         3

Perform Model Division                           12

Set ML].Y4 or..MDY4                                                       3
.'

Perform Add/Subtract in S4                        3

Store Result in LS-LM                             2

Left.Shift via LSMLBUSM                           2

CTot'&1.Time per 83:;Bits·'.of Quotient               76

ASSIMILATION

Gate Quotient in UH-UQ to US-UM via UHQDUSM       2

D»b"ft!·.-through Sl                           4
Generate Borrows in PPropagation                  7

Assimilate to Conventional Form in S4             3

Store in LM -2

Total Time.for Assimilation 18

Table 7.  Transistor Collector Delays in Execution of Division.

.
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4.  SUMMARY AND CONCLUSION

4.1  summary

The first half of· this report. was largely a .constructive·

definition of SRT division. I€ introduced a recursive relationship

defining division, a representation of the quotient allowing; both·

positive and negative digits, add range"·restrictibns· on ·the .partial

remainders.     It  was then shown  that the consequ€hce  of thi·s. quotient

representation and range restriction was that correct quotient digits

could be selected by inspection of truncated versions of the divisor

and shifted partial remainders.    The P-D plot' ·was described  and  used

3                  as a key tobl in ·the dUvelopment.

Next, the .report turned to' the more specific·'task of deter-

•                              mining the number  of· bits· necessary in these approximations.   ..The  cost

criterion was .stated as the fundamental requirement· on .the  precision  of

inspection.  Although this criterion. is general, to.obtain. numerical

2k
results  the 'didcussion was .restricted,to a radix of. the. form r .= .2

and to the arithmetic or table look-up type. The chapter concluded :

with a short discussibn of the conversion .of the redundantly represented

numbers.  to.conventional  form.

The. second major section  of. the.report attempted to relate

the equations, graphs, and statements of the first section' to real-

world problems of designing a digital arithmetic ·unit.   · ·It described

„         some general design considerations and pointed to compatibility of

division with multiplication as one of the most important.
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At this point, the discussion of division digressed to one of

proposing a multiplication scheme and to the block structure of an

arithmetic unit with which it could be realized. The focus then

returned to division where, after rejecting an arithmetic model, a

table look-up model division  was  proposed.

The dodel was described at the black-box level and -some

estimate was given as to the expected operation time of such a scheme

implemented With conventional DTL.

4.2  Conclusion

To. a large extent, this report has been directed to the
7

designer faced with the task of implementing digital division. The

mode of presentation, however, has not been intended to be of- ah „

algorithmic style, but is rather aimed at a basic understanding of                     r

SRT division in hopes that 'the designer will be able to adapt it to

his particular specifications and hardware.    . The chapter on imple -

mentation was included merely to indicate one way of applying SRT

division.

The author also hopes that this report will support ex-

ploration into development of higher radix qu6tient selection models,

e.g. a true radix 256 model which can select 8 quotients bits in

parallel.  Note that the operating speed of the model in the example

implementation. is by far the slowest link.

(,         1

70



Much of the delay in quotient select is, .however, charge-

able to the necessity for assimilating the redundantly represented., 
/\

p..  It would therefore appear appropriate to explore models which  '3

could select quotients directly from a redundantly represented  artial

remainder.  Parhaps this could be accomplished with analog techniques
A

in which rp. was converted to a voltage proportional to the weighted
J

sum of the bits.  Such a converter could handle both plus ahd minus

weights.     It  may  also be possible to mitigate· the round-off problem

associated with the arithmetic models. The P-D..plot could then be

impldmented  with .analog-digital  rather  than strictly digital· Circuits.

Also  note  that  the  form  of the  quotient  selected by· the model

in the exampld implementatioh is by ho means unique.   In thid case; the'

SD format was seiected so as to be compatible with the M-Shift Array

control signals and the assimilation circuitry used·· for multiplica-

tion.  There may,·  however, be more efficient recodings: 'Perhaps the             I

goals could beit be summarized as attempting to implement division so

that it is actually performed as the inverse of multiplication.

,
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