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‘1. INTRODUCTION

‘Perhaps the major complication associated with digital divi-
sion is best illustrated by your performing the following long-division

problem and noting carefully the steps YOu:followo

3%, 1057, 6, 2 1
s b1 08057

A= decimalApoiht marker

i

Ybur operations in selectingvthe first quotient digit are

. summarized. in the flow chart, Figure 1. The salient point is that

division is a trial and error process requiring an.initial "guess" of.

a quotient digit followed by a subtraction, or at. least a comparison, :to

' determine whether the guess is cbrreét. If. it is not, the initial

choicé'is»modified and the procéss ?epeatéd,} It is the trial and error

nature of division, whether performed by man or machine, which complicates

its execution. - In building a computer arithmetic unit, division is the

" most difficult basic operafion téhiﬁplement efficiently.'

But despitethe complexity, the iiterature"is replete with
: "r . . *
themes and variations for implementing digital division. Flores, Il]:

for example, states four methods for ingfeéSing speedmofldivisiqn‘ﬁnd

then proceeds to describe no less than twenty-four schemes which in-

[2] 1

corporate some or all of these speed—up%teehhiques. MacSorley

. describes four division techniques demanding various divisor multiples

to accélerate execution. &

¥ « :
Numbers  in-brackets refer to the correqunding_entry under. References.
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FIGURE I FLOWCHART‘ OF MANUAL EXECUTION OF- DIVISION
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‘ There'is far less in the literathre, however, describing

" theory and -analytic tools.to be used in designing a division, scheme.

Most of the articles describe schemes which are products more of art

thah of science; This report is an attempt to contribute to the

science: of computer arlthmetlc 1mplementatlon°

Thls report descrlbes a class of d1v1310n technlques espec1ally‘"
suited for 1mplementatlon in an electronic digital computer. For

historic reasons, this class will be referred to as SRT division. - The

.jname.is derived Trom the(fect that the hinary case of this type of -

division‘was discoveredfindependently, at about the same time, by

* Dura  Sweeney of IBM, J. E. Robertson of the Unlvers1ty of Illln01s,

31

and T. D. Tocher of Imperlal College, London The paper, however,

. 1heorporates.more‘recent work, due exclusively to Professor Robertson,

which extends the bihary’SRT division to a radik higher than two.
¢ [5] |

Much of Chapter 2 is based upon his repor and upon numerous
personal communications.

After a descrlptlon of the theory and propertles of SRT

d1v131on, the report turns to the problem of actually 1mplement1ng-

the scheme and presents an example of one poss1ble reallzatlon°




2. THE THECRY OF SRT DIVISION

2.0 Introduction

‘This chapter introduces a recursive relationship for de-
scribing division and from it‘develops the nature of SRT division.
ihe discussion is augmented'with'two graphical representations;.one
to determine the range restrictions associated with SRT and the other
.to aid in computing the. ”cost“ of quotlent digit selection

MOSt of the follow1ng analy51s w1ll be developed for a
general radix, r. At first this generallty may appear superfluous,-for
after ail; isn't a digital computer a binary machine, and doesnit hinary
impiy radix two? It is true that the basic storage elements.of a‘
digital computer.are two state dev1ces and that numbers are represented
1nternally by strings of "1 s and "O's ; Computer arithmetic, however,
1s often faCilitated by con31der1ng groups of bits rather than each bit
1nd1v1dually° Such grouping may be interpreted as use of dlglﬁSAOf
higher radix than twoﬁ For example, a pairlof bits becomes one, radix
four digit; a trio of bits, a radix eight Koctal) digit. |

In the'iiterature of‘arithmetic unit design, one finds re-
ferences to such techniques as inspection of bits "two at a time," or
perhaps ''generation of several quotient bits simultaneously".. In:
this - report such techniques would be described in terms of higher radix

arithmetic.



2.1 The Recursive Relationship

'Digital divisibn as>implemeﬁted in an electronic éomputer
4éqp§istsAof préliminary operations, i;e., ﬁormalization, a recursive
éioceés; énd'é termihal»operatian; i.e.;, changing the form of the
remaihdef° .Ai£hough’preliminafy and terminal épefations:var& ffom
machiﬁe,to @aqﬁine,the& generally consume much less of tﬁe execution
time,than the reéuréiVe Qperationé. For réétoring, ndn;restoring, and
thé éRT division schéﬁe pb bé described in this report, this recursive
relationship is defined by o

=Trp. - Q. d ' o : (2.1.1)

where the symbols are defined as follows:

J =.the recursive index = 0, 1, ... m-1

o
il

~the partial remainder.used in the jth cycle

j.
P, = the dividend
P, = the remainder
qj = the jth'quotient digit in which the quotient is of the form
B-a h% 0 Wy
:ﬁ—<radix point
m = the number of digits, radix r, in the quotient
d = the divisor
r = the radix A I I




This relationship and the symbols as defined will be used
throughout this report The relationship is used spe01f1cally in the

development of range restrictlons on the partial remainders in Section

2.3,
Although not éermane to the theory of SRT d1v151on, it is
1nterest1ng to note in passing that this relatlon p01nts to poss1billt1es
for accelerating the execution of d1v1sion° Verbally, the equatlon says
that each partial remainder must be multiplled by the radix (er), i.e.
shlfted left one digltal position and that the selected quotient diglt
must then be multiplied by the divisor (qj+l d) and subtracted from this
shifted partial remainder. The division process will thus be accelerated
if the‘shift and/or the subtraction time is decreased. In practice, all
values of qj+l d are. stored in registers.or are readily available'via
shift gates from the register containing the divisor. .The rapid forna- ¥
tion of q = d thus reduces to minimizing the neces51ty for forming |
awkward multlples requiring an addltlon, and to accelerating the; selec-
tion of qj+l d at the divisor input to the adder/subtractor.
Secondly, note that the recursive index{ j, is implicitly an

inQé}se function'of the.radix,: When actually implenented on a machine,
digits of a higher radix than two are represented by two or more binary
bits. A string of £ binary digits (bits) is equivalent to £/2 radix
four digits. In general for £ bits of radix two, there corresponds

loégr digits of radix r, where for practical cases, r = 2"

integer'> 0. Thus to produce a quotient of given precision, the

m

I

J

n

number of iterations required, and, concomitantly, the execution time

is decreased as.the radix is increased. .



2.2 The Representation of Quotient Digits

As noted in the last.secfion,'thé‘use of a higher radix reduces
the'number:of cycles.requiréd'to.perform_a division of given precision.
The implementafidn:of sﬁch-a scheme may, however, be costly, and costlier
still if quotieht digits-are represented as they are in manual methods or
mééhine“féstdfing diviéionq» In tﬁese cases qgotient digits hafe.the
values.O,-l, 2,-,.0 r-1. Withﬂﬁhetradix;ﬁr, equal.four the stsible :
digit Valﬁes are‘O,bl, é, and 3. A radik fouf restéring di&i;iopAfhere;'  o
fbré reéuires that miltiples of 1, 2, and 3 times the divisor-bé available
for subtraction from the‘parfial remainder. The 1 times is of course
readily- available, the.2 times is'forméd merely by shifting left one
binary. position, the 3 times‘multiple,Athever, fequires extré time"

and/or hardware. - It may be formed by a tripler circuit or by addition

Aiof@l.timés_and 2 times the divisor which is then stored in an auxiliary

register: :FofAradix éight,multiples.of 3, 5,and 7 times the. divisor
must be computed and stored. | |
Wifh SRT division the problem of forming divisor multiplés is»

mitigated by using both”plus:and minus quotient digit values. Tﬁe
gquotient digits are of the form -n, -(pfl), eee -1, 0, 1, ..: n, where.
ﬁ is an ipt¢ge;:sucp,thaF:;/a(r-l) < n_f;r-l.: Within- this rangé the
actﬁalAchQice qf-gAfbfu;iéi;éh:;:ESila}gély é:fupctign of ‘design de-
tails. The éhoice is considered further in Secéidﬁ 2;6,7  | |

. The necessity.fof the range restriction is as follows: ~At

least r unique digits. are required to represent a number, radix r. In

the representation introduced above, there are f2n$i‘ﬁﬁique digits,




thus the requirement :2n+l > r.. .On the other hand, for';adix r, the
- maximum value“ofiquuotient digit, n, should‘not be'greatef.than the
Valué of the maximum-digit representable{.thuS'n.éhr-l. :Combining~these
" two inequalities yields the restriction stated. above. °
" With plus and minus quotient digits, a higher:radix division
méy’be:iﬁgiéméﬁﬁea With?féﬁef-ékaafd”multibles of'the'divisor74 Now:
the-éuotiént digits for a radix b division are -2, -1, 0, #l, 42,V-Ail
the necessary multiples of- the divisor'may be formed by shifting'ahd :
" complementdtion and require no‘auxiliary registers. -
©* The sedond,;but probably'mofefsignificaﬁt*consequence of‘this
‘represeﬁtationubf quotient "digits is that it'introduces-rédundapcy'into
thefrépresentétion of thé‘quotiént."lf 2nA7 r-1, then there are mére
s&mbOls‘available to represent avnumber-'thanEactual'lyAne‘ce's"sary° AR
" fome. numerical valuezmay‘thereforé be represented “in mo#e—than oﬁe
form. For example, with r = 4, n'= 2, and with f~répresehting negation,
the number 6 could be represented as 12, or 22, As explained in the.
next ‘sections, this redundancy permits .less precision’in.comparing the
divisor and'partialuremainder-in selecting a quotient digit. This.
statement seems intuitively'corpect sincé without reduhdancy, each
quotient digit may ‘be repreesented ohiy one'way:and thus -must be se-
‘iééfédfpreéisely;'-Witﬁ‘redundancy,”the-quotientfdigit, thus the
comparison éf divisor and partial remainder, need not be precise.
This non-unique representation' does, however, complicate the division
;n that the redundant. form must eventually be converted to a conven-

" tional representation.



2.3 Range Restrictions

With the quotient representation now defined, consider the
derivagion of range restrictions on the partial rémiﬁders. Recall
from the manual execution of a division that in determining whether a
quotient digit is correcﬁ ér not, one ié eSsentiaily applying the
?esgricgéon ﬁhaﬁ Otjip3+1 <1d, whére pj+i is the result ?f thé sub-
tractioﬁ of qj+l ﬁimes the QiQisor from the jth partial remainder. If
pj+1 is not within this range then qj+1 is changed until it is. Fo? non-
restoring diviéion, negative partial remainders and negatiQe quotient
diéits are allowable, thus the range restriction is ij+il ijdl.' It
seems reasonable, therefore, to hypothesize other division-techniques
for which |p3+1| < k‘l d l, and which utilize thé quotient digit repre-

sentation introduced in the last section. The upper limit on k will be 1.

The lower limit, although not'yet obvious, is 1/2, thus 1/2 < k < 1.

.To show that this is in fact the case, first reconsider the

recursive relationship described in Section 2.1 and restated below.

After pj+l is formed on the jth cycle, it is multiplied by
the radix r (shifted left); j is increased by one and becomes rpj of
the present cycle. Since ij+l| < kd, it follows pj must obey the

same restrictions, i.e.

crleg lsee a0 . (2.3.2)




Substituting 2.3.1 into.2.3.2 yields

-kd £ TPy - 541

£ kd - | (2.3.3) |
At this point the divisor is assumed to be normalized, i.e.,

restricted to the range 1/2.4 ‘dlz;l, Furthermore, (2.3:1) is .normalized

with respect to the divisor and rewritten letting zjf= pj/d and

254 = Pya/d

(2.3.4)

Equation (2 3 4) may be interpreted. graphically as a‘plot.of

z versus er with the quotlent digit, a

34 541 ae a oarameter, Such a

representation shall be called a z - z plot.. Recall that the quotient
digios assume dalues -n, ;(nel), cees -l,.O, 4, ..., n. \Figure.Q is
such a graph,' To_faciliﬁate'discussion, each plot'corfeSponding to a:
dlfferent quotient digit is called arg-line llne°

The goal of this section is to demonstrate that a correct

division procedure exists which incorporates the above range restric-

.tions and.quotient representation. This existence is substantiated

if for each value of rzj in the allowed rangefthere corresponds a

quotient digit and a Zj+l’

also in theif.allowed ranges. In terms of -
Figure 2,'this means that for any point on the‘rzj axié such that
-rk < rzj S'rk, one must be able tofmove on a line segment norMaljto
the rzj axis and interesect_a g-line at a point corresponding to a
z.' within the range -k £ z < k. Thls allowed range is enclosed
J+1 ' J+l ) .
. - - - 2. '
between the lines Zj+l k and'zJ,_Fl k in Flgure
10
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Tbbsawisfy.bhe?fonegoingﬁreQuireMenkg,‘whe“maxﬁmum'vaMue;of,'

rzj, i.e. rk, must occur at the intersection of z, = k and the g-line,

J+l
zj+l = rzj -n. Similarly, the minimum value must occur at the inter-

section of z. = -k and the q-line,

-rz. + n. These bounds on
J+l J - :

2541 T
rzj are indicated by the dashed vertical lines of Figure 2.

Figure 2. now points to the value of k in terms of r and n.
At the upper right vertex of the bounding rectangile, Zj+1 =k = rzj - n.

But since rzs = rk,

n

K = —
r-1

(2.3.5)
The division is now characterized by tangible parameters, namely the
radix and the maximum value of quotient digits. Combining (2.3.5)

r-l £n « r-1, verifies the statement

with the restriction on n, 5 &

at the beginning of this section, 1/2 :5k.f;l.m

2.4 Redundancy in the Quotient Represéntation

‘Section 2.2 indicated that the quotient digit representation
of SRT division introduces redundancy iﬁto thej@uotierAl‘t° This fact is .
also manifested.-in Figureféxinhthe regions on the rzj axis for which
either one of two g-lines may be legitimateiy selected. TFor example;
aﬁ point A one may move vertically upward to the qj;l =>O,liﬁe or
downward to the qj+i = +1 line. 1In eitheficase the quotient digit is
corrécfo Figure .3, a specific case of Figure 2,.testifies to the fact
tha£‘this freedom‘of'choice is not merely the result of an inaccurately.

drawn graph. Here r = 4, n = 2. The vertical dashed lines define the

overlap regions.
12
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The production of a redundant quotient requires extra hard-
ware and perhaps time, to convert it to a conventional binary represen-
tation acceptable by programmers and other sections of a machiﬁe.

This conversion is discussed at greater length in Section 2.7. The
conclusion of the section is that the positive consequences of a
freedom in quotient digit selection overshadow the cost of conversion.
With no redundancy, the divisor and the shifted partial remainder must
be gompafed (usually by subtraction) to the full precision defined for
the machine. With redundancy, the designer is at liberty to inspect
fewer bits of the divisor and shifted partial remainder thaﬁ define
full precision. Handling fewer bits may save time and hardware:

these ramifications are explored further in the chapter concerning
implementation. 1In Figure'3, for example, a correct quotient digit is

rp,
selected knowing rzj: — t0 a precision only great enough to contain

d
it within an overlap region. Exactly what precision is rcquired for a
given value of r and n is the subject of the next section.
In terms of z - z plots such as Figures 2 and 3, the redun-

dancy is proportional to the width of the overlap regions. The width

of this region in terms of n and r is found as follows: Consider two

adjacent lines of Figure 2, i.e., Zj+l = rzjji and.z‘j:wl = rzj - (i-1).
The overlap, A rz ., is the difference between rz. for z, = and
J J J+l r-1
rz, for z! = 0, Solving for this difference yields
J J+l r-1
A rz, = 2n + 1. The ratio —= is therefore a measure of redun-
J r-1 r-1 -
dancy

1k




As rédundancy‘(width of overlap region) is-increased, the -
required precision of inspection of divisor and partial remainder, and
thus hopefully the execut;on time, is decreased. It;_thérefore, appearé
that for a given r, n should be as large as possiblg, i.e., n should
equal r-1. "Such a choice may not be practical, however, 'since n = b,
requireé the abiiity to form Q-multiples of the divisor. The choice’
of n is therefore bound up iﬂJthe usual trade off between time and

hardware.

2.5 The P-D Plot

Now consider another graphical representation of the division
procedure. This éonstruction, suggested by C.‘V.,Freiman‘of the IBM
Corporation [5] is useful in further describing SRT division and in
computing the“réquiredfpreéisipn of inspection -of the divisor énd.a'.
shifted partial remainder. The basis for the plot is the recursive

relationship

(2.1.1)

developed ‘in Section42;3;J'Thé3figure'is thus essentially a plot of
partial remainder versus divisb%ﬁlvalues and therefore in fhis'report

shall be referred to as a P-D plot°

15




. Solving the recursive relationship for rpj yields

‘rp. =P

5 j+l-+ q d. . . - (2.5.1)

J+1 -

" For a fixed quotient digit, the upper limit of~rpj as a function of

the divisor, d occurs when pj+l is maximum,  i.e. when

'n

Psy "7 &

thus
rp _ [ +.q d. : 4 (2.5.2)

J max r-1 J+l ’ ) '

Likewise,.the lower 1limit occurs with p. = ;E—-d,fthuSH‘
J+L r-1
rp = (5 +aq.,)a ~ (2.5:3)
J min r-1 J+l

These linear equations may be plotted as functions of d with qj+l as

a parameter ranging from -n to +n in steps of 1. The area between

rp and rp.

5 max i, for a given.gy ; = i w1¥l be denq?ed the q(i) area.

J mi .
The division procedure is now deﬁerminedﬁ A given value of
divisor,”d and the jth shifted partial remainder will specify a point

in a q(i) area. The digit i will be the value of the next quotient

digit qj+lwhibh in turn is used in forming the next partial remainder.

16




In this representaﬁion the'redund&ncy is @anifestedfés‘Overlappingtof‘the
q(i) regions, i.e. some'paifé'of d}and fpj Qill_ﬁﬁécify:a boint for

which elther qj+l =1 orqu+lﬁ= i TA; ;s a yalld.gh01ce° /

Figure 4 is.an example of é‘P—D;ploﬁ-fof a division with

i

r =4, n=2. The equations fér the linés-pléqﬁed,‘2', 2, etc., are
given in Table 1. The:Tegion'fér whiéh‘q5+l = 2 is a valid choice, 1i.e.
the q(2) area,is betweeﬁ{lihes;E' agg'231§he q(l) area is between

lines 1' and 1, and so férth. Néte'£he overlap between q(i) areas,

for example, the region bétweenhliné'i',and 2 in which either the choice

q =1 or q. ., =2 is correct.’ Note further that ‘the figure is

J+l
symmetric about both axes.

On}tge right’half of_Figqre 4 (the same méy be dong on the
left), "steps" have been drawn within the overlap of "the q(i) fegions;
The width of a Vtread”_(constantjrpj, g va?ying) defines a. divisor

interval, the value of rpj for each tread defiﬁes é comparison con-

stant, the distance'between:comparison‘COnétants defines a partial

remainder interval. Phrased inythisfterminolog&,.diviséon cohéists of
locating a'given divisor &alue;withinfthe approériateidivisor intervai,
locating the shifted par%ial rem;inaer within thé apprépriate interval
fusing comparison éonstants),'and sélectingia valge of qj+l enclosed
by the intersection of. the boundaries of éhése«iﬁtervalsi Since a

" divisor and partial reméindqr muét be'locqteﬁ only t6 within an
interval{ they peed not bé in;pected'fq fullﬁpreciéion“ig'selecting a

correct quofient digit. Here is where the rédundancy pays dividends.
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FIGURE 4. P-D PLOT WITH r=4, n=2
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rpy =+ ooy d +q, d
r=>5L
Designation . o j : L _ " Equation_
in Figure 3 - A T qj+l i R pj+i - rpj =
o T : S 2/§Ad S ‘- 8/3 .
ey 'i'u e H.mé'ﬂ S ;2/3-arn.«r..:i~'d~£)é d'
l'_ﬁm‘- U i-?"‘ U o/ a L té/B )
- S f-.r_l R -2/3‘d ’;v AT i}3va
o S "“'6' R ie . f" f:2/3 .
-O:‘ S , bi- L fé/gﬂa L f;é/s ai'
3 S s T dpa
1 1 2/3a’ S 5/3.d
28 5 2/3a Cdyza
7 2 23 '"-8/3a

Table lol Equations Defining the Regions of Figure L.

Techniques for selecting divisor intervals:and comparison con-

stants are detailed in the next two sections. At this point, however,

we shall make several general observations First, as we shall soon

discover, the comparison constants are. compared withtthelhighsordertN

bits of the shifted partial remainder and similarly, the end points
of the div1sor 1ntervals are compared w1th the N hlgh order bits of
the divisorq The comparison constants and end point of the divisor
1ntervals should therefore be numbers which are. representable with

Np and Nd bits, respectively. The choices iliustrated in Figure 4

which maximized the width of the divisor interyais do not meet this

W

requirement.




In Figure 5, however, more practicél chbices are shown. The
dashed lines répresent the theoretical choices used in Figure L. Now,
although. the number of steps has been increased, the boundaries fall
at poinfs easily representable‘in binary noféﬂ:ion° Note that ‘inspec-.
tion of 4 bits plus sign of thé>partial remainder and divisor is
sufficient to locate the correct choice of quotient digit.

The second observation is that the choice of divisor inter-
vals and comparison constants is bound up with the required precision
of inspection of the partiél fémainder and divisor; if, for example,
the divi&or intervals widths are increased, the required precision
of divisér ihspectibn, (number.of bits) may be decreased. Further-
more, the haximum:precisioﬁ of inspection of the divisor.is determined
by the divisor interval of smaliest width. By inspection of Fiéure 5, ’
the reader migh£“gueéé where £his step.is, bﬁt; wé shall now locate
it analytically. The result of this derivation will be usefﬁl in the
next ‘sections. - | |

The length of a divisor interval is limited by the boundaries
of théfoverlép regioh. 'The maximum precision of”iﬁsbecéidﬁ is required

wheré the divisor interval is minimum. To determine where this

~minimum divisor interval occurs consider the detail of the overlap

of the q(i) and q(i-1) regions shown in Figure 6.
" For' a given value of fpj, ‘the maximum width of a divisor

interval is
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FIGURE 5. DIVISOR - INTERVALS AND COMPARISON CONSTANTS
- WITH r=4, n=2 | | -
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rp; [n7tr-0)%i-1]4d

rpj = [—n/(r'—l) + i]d

FIGURE 6. DETAIL OF A P-D PLOT OVERLAP REGION
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sects d = 1/2, i.e., when d; = 1/2. The precision of required inspec-

il
Qu
1
fol]
I

Ad

= rij -5 én - R (2.5.4)

where R = (r-1).
‘The interval Ad is minimum, when i is maximum and rpj is

minimum. The maximum value of i is n, the minimum value of rpj for

tioh;of divisor is thus determined by the divisor interwval closest to

= n and q. = n~1.

J+L

a = }/2 anq'between A4

(5]

- which is

" Robertson has introduced the selection ratio,
defined as the ratio of the slope of the.lower bound of ah oveflap
region to the slope of the upper bound. This ratio is a relative

measure of the width of the divisor interval for which a single com-

‘parison constant is \falid° From Figure 6 , it appears that 045 (the

selecﬁlon rgtlo bgtween Ay =1 and.qj_*_l ='1-l) is

_ 'i(I‘-l) ~n
i (i-1)(r-1)+n

(2}505)

The difficulty of selection is broportional to Gy and as

indicated earlier is most difficult for i = n.

The selection ratio may be used to compute ahother pgrameter

the minimum number of divisor intervals necessary to span & given

overlaﬁ region. If a <« 4 « b, then this minimum is the smallest

.23
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: . S.
integer, Si such that . 1 <.

s i;e., Si = integer part of

AL

log a - log b

1oz 0 For exahple:with 1/24da<1,i=n=2, 1=
i

'Oi = .8 and Si = k. -Note that this agrees with the graphical results

of Figure 4. The number of steps between line 1' and line 2 is four.

2.6 The Cost of Quotlent Dlglt Selectlon
2.6.1 General | o

To thns p01nt we have establlshed that an 1mportant featufe“
of SﬁT div1s1on is the eblllty te seiect quotlent digits ftom truncated
veréions of the diuiser and shifted partial remainder;. We now turn to
the mere specific uuestion of what preeision is requireduin these ap-
proximations, i.ef, how many bits of the divisor and shifted nartial
remaindef'must be'inspeeted toiguarantee correct quotient digit selec- -
tion. 1In e sense, this required_precision is the cost of quotient
dlglt selectlon | |
The cost will be shown to be a functlon of the ch01ce.of

I

radix and to a certaln extent, of the method of selectlng the quotlent

[5]

digits. Robertson has suggested that the mechanlsm for‘selectlon

of quotient digits may be viewed as a limited precision model of the

full precision division. This concept is exemplified in the following
example.

A radix 256 division wouldArequire eight quotient bits per
shift of partial remaindef, To genefete‘theseneight bits,‘as shown -+
in Section 2 6 2, 12 blts of the partlal remalnder and 13 bits of the
divisor are presented to a dlv1s1on mechanlsm which need be only

elaborate enough to produce eight bits of quotient from a 12 bit ]
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dividend and a 13 bit divisor. The results of this limited prééisioﬁ,

division (eight bits) are returned to the full precision mechanism as

ity g R
Ky

part of the full precision quotient andfféréw dged in forming the next
full precision partial remainder. Note that the numberdefining full-
precision may be changgd in discreﬁe steps by ‘changing the numbér of
“"calls" to the modél division. Furthermbfe,‘the'moael divisionzscheme'
may be quite different from that of thé full pre;isionfdivision;

For purposes of computing costé of quotient selection, we
shall consider two classes of model ddvision procedure;. fﬁe figét
will be those invdlving.the use of aﬁ auxilary arithmetic unit and
employing addition‘and/or subtragtion in forming the quOtiénﬁ digits.
Examples of schemes in this class iﬁclude a radix‘fqur SRT division
performed in the exponent arithmetic unit or the p?ocedure suggested

(9]

by Wallace- which is logically equivalent™to forming the approxi-
mate reciprocal of the divisor and multiplying by the partial remainder.

This class will be référred to as arithmetic models.

The second class consists of those methods which are the
logical equivalent 'of a tablejlook-up.‘ This fechniqueﬂmay«be viewed
aé the direct implementation of a P-D plot, i.e., decoding the divisor
ihterval{ the partiai;remainder interval and prbducing the quotient
digit fqdiéétéd gy their intersection. This class will be referréé

to ‘as table look-up models.

' Before considering these two type ‘models in further detail,

let us' state more precisely the conditions which must beiobtdined:iin
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the choice of model division .and precision of inspection.. Let

m = the number of bits to the right of the .radix point

.-of divisor and dividend.

' rp'j = the truncated version of the shifted partial re-
mainder.
€ - = the number of bits to the right of the radix point
s ol
in rp..
_PJ
: - ,-m -€ . .
Ap L= i'(2 - 2. )=~ 4+ 2., the uncertainty 1n-rpj.
/N
e = the truncated yersion of the divisor.
& = .the number of bits to the right of the radix point
. .
in' d. . ' o
- - - N\
Lad o= o+ (2'8 - 2‘m);:.i 2 6, the uncertainty in 4.

The following cost criterion summarizes the requirements on

the quotient selection mechanism, Ad and Ap.

Cost criterion: Given the approximatipns rgj + OAp and
~ e 7\ .
d + Ad, the integer result of rpj/d = 1 performed in the model must -
be such that on the appropriate P-D plot, the rectangle defined by

A ’
(a + Ad, rp‘j + Ap) is entirely within the q(i) regioq,

2.6.2 Cost Detérmination for an Arithmetic Model

. We first considerlthe determination of the cost. for a
division using an arithmetic model. .In this_?ésgvrgj ﬁnd.a are
prqsented to a limited precision arithmetic unit and the division
carried out to produce a rounded integer,quotie@tﬁ: If the bit.posi—_

tion to the right of the radix point in the model is "1", the integer
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portion is increased by one and truncated, otherwise the result is

merely truncated. This.rounding is necessary if the cost criterion is
to hold for an.arithmetic model .

Equation 2L5.L indicated that maximum precision is required
in the overlap of the q(n) and ¢(n-1) regions in the vicinity of

= 17/2. The‘precision determined here will be sufficient for any

other region of the P-D plot. Figure 7 is a(detail of this regiohu

Two additional factors must now be cqnside£ed:u a redundantly
fepresented"partial remaindef'and a negative divisor. As,illustrated
in the next.ehaéfer, a éivision seﬁeme‘WHich mesheéiﬁeiiiﬁifﬁ'mulei-"
plication must cope with redundantly represented,partiai feméinders;
One consequence of the representation is that the ‘truncation error
(Ap attributable to considering only a few hlgher order bits of the
partial remainder may be either positive or negatlve,' When a negative
(2's complement) divisor is permitted, truncetion errorjmay alee'be
negative. | a |

In the divisei interval 1/2 + Ad, the dividingﬂliﬁe'beﬁween
the selection of q = n and q = n-1 is rgj = 1/2(n - 1/2) since rgj/a =
2 x 1/2(n - 1/2) = n - 1/2 which must be rounded to n. -For the cost
criterion to hold, the rectangle (1/2 +&d, 1/2(n - 1/2) + Op) must
not extend below the bottom of the overlap region defined by rpj'=
(n - 2)3)d. Such a rectangle is indicated by the dashed lines in |
Figure 7.':Since thie rectapgle.is,not unique, there is some aveil—

able trade off between Ap and Ad. To achieve more quantitative

27




rp; = (n-1/3)d

rp] = (n"2/3)d

Afl o /

re;= 1/72{n-i/2)

ap-—m————-—=—- === =

L

%L

FIGURE 7. " COST . CALCULATION" FROM: P-D PLOT
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results, we now limit the analysis to a special but useful case:lthat
2k o
.in which the radix is of the form.r = 2 ; where k is a positive
(non-zero) integer.
s s 2k : e '
A division with r = 2 may be implemented with a cascade of
k adder/subtractops.witn:mu;tiples“of 1 times and'2 times the divisor
available to the first stage of thé cascade; L times and 8 times to the
, : 2k -2 ’ . ]
second, and so forth'through2£?k~93 times and Qfgkl})times available
to the kth stage; In this case, n, the largest multiple of the
- divisor which may be formed, is the sum of the largest multiple which
. . . (2x-1)
may be formed at each stage in the cascade;i.e. n =2 +8 ...+28-".77.
Furthermore, the sum of this geometric series is ;%I = 2/3. " Thus we
' . 2 : '
shall consider the case r = 2 k, n =2/3(r-1).
For practical implementation,'the rectangular region defined

horizontally by Ap will be symmetric about d = 1/2 and rp, = 1/2(n-1/2).

Referring to Figure 7, note thaf Ad must be smaller than the smaller ‘”

of Ad and A4 . *The following demoﬁstrates that Ad.< Ad, ..
. 1 max 2 max : . ) 2 1 max
' o -1e N
8y ax = 1/2 H‘?‘§§§: -1 S (?f6'l)
-n - 1/2 -
A%ﬁmx_:u2<n-ﬂ8 +9
. 2 : S
Ad ~aq, =1 - B2 BF 1/4 - (2.6.2)
1 max 2max -7 02 - -
: n -n+2/9 - '
. Since .
n:—nfl/’-#>l
n -n+2/9
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LR - . _O
dl max Ad2 max <

Ad Z< Ad _ - (2.6.3)

il max” 2 'max

Thus choosing Ad.érAd " will insure that thé rectangle will fit

1l max
“horizontally. ‘
'Similarly
Ap, = (n - 1/3)a; -1/2(n - 1/2) T (2.6.4)
&p, = - (n -2/3)a, "+ 1/2(n - 1/2)
p) - Opy = (n - 1/3)a) + (n'-'2/3)a, - (a - 1/2)
: | E | (2.6.5)

let

d, = 1/2 - ad

d, = 1/2 +ad ’ S a (2.6.6)

Substituting (2.6.6) into (2.6.5) yields

_Ap = ﬂ <o

Ap o 3 <L

1
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As implied earlier, if we are certain thétlrgﬁ‘é‘l/Q(nn— l/é)
will produce the guotient selection, qj%l = n, then Ap S‘Ap2 will be
suffiéient. If we canpot,guaranﬁeé'ﬁhis,.then Ap £ Apl'mdst hold.

We shall adépt the lattér, more cautious_approach. If we

 selected the Former, then the (n - 1/3) term in equation é.6.i3_wou1d
be replaced by (n - 2/3). The results in Tgble'2; however, Qili beA
ithe same. | h | |

Récalling that Ad = 2_6 we want

-8 : ?- oy,
2 < Ad) oy o S (2.6.8)

which from 2.6.1 becomes

2 cafe (BHZ ) L (26e9)

where

_, 5
l

23 1)

Let

I(x) = x if x is an integer.

v

next larger integer if x is' not an integer.
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The minimum value of & 1s therefore

n - 1/2 .
o] min -I log2 Q/e(l - n—t—l7§ )> (2.6.10)
- Possible values.of & are thus
5=0% ., 8 +1, ...m . (2.6.11)

Similarly since Ap = 2—€, combining 2.6.7 and 2.6.4 yields

o€ 5;1/12 - é_a(n _1/3) o (2.6.12)
and thus
€ = -1 log, (1/12 - 2'5(n - 1/3)) | (2.6.13)

where & is defined by 2.6.11.

Now let
. .:" . /\ '.
Nd = number of bits’pf d =79.
Np = number of bits of TPy =€ + 2k

Note also that the sign of d and rpj must be known to model. Table
2 summarizes the results of equations 2.6.11and 2.6.13 for k = 1, 2,
3, 4 Note that € approaches a lower limit of L when-the‘l/lE term

in 2.6.13 becomes dominant.i-

¢
i
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10
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Thus it appears there are three feasible cases for which the

cost of inspection is as follows:

Np =Lk + 3

Nd =2k + 3
Case 2

Np4£ 2k + 5

Nd =2k + L
case 3

Np =2k + 4

Nd = 2k + 5

Caée“three WOﬁid'érobably be the most practical case,tb'
implement Sincg Np.is miﬁimum. Np bits of the redunééntly‘represented
partial remainder musf be converted into confentional form before each
model division. 8Since this assimilation is essen’cially_'ais's‘é.‘r‘:i.'eil'l

process, the assimilation time is directly. proportional to Np.

2.6.3 Cost Determination for a Table Look-Up Model

This class of model is a logical implementation of the P-D
diagram. In its most brute force form, this model may be viewea as
a grid or matrix with.vertical lines which are the outputs:of decéders
applied to 3 and with the horizontal'lines‘ﬁhich are the outputs of
thg decoders applied to rgj. At each intersection of thé lines{iS
and AND gate with one input connected to the vertical line, the other

to the horizontal line. Each point of intersection corresponds to a
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-quotient digit value, i, and thus the.output of each AND gate. is

connected to thé inpﬁtuof.£héAap§fop}iate ¢R gaﬁe the true oqﬁputﬁof
,whidh'is'qj+i =1,

The overlapAregions:afe divided by steps-as discussed.in
Section 2.5 suéh that the cost criterion. (Section 256,i) will hold in
all intervals. To determine the reéuired Np and Nd‘in fhis case, we
again.consider the worst case region of the P-D plot Wperéfa%=7lf2-
and between q(n) and q(n-1) as shown in Figure 7. . !

_ Again, if we choose the.dividing‘ling between qj+l-= n and
4y = n=1 to be at 1/2(n - l/2),_fhén‘£he calculationg.éf Section
216°2walso hold for -the table look-up case with r = éek;- Recall,-
howevér,fthat we generally wish.to minimize Np'since'thié'will_reduce
fhe assimilation time in forming rgj in each cycle. We can accompiish
this by selecting the éomparison constants, the dividiqg‘line between
choice_of quotient digit values, as close to the tqp of an o&erlap
»fegion as possible. |

- In the arithmetic quels? the comparison cogstants aré
implicit in the modél, and thus, for example, we had no cholce but
to use 1/2(n - l/2)lin the cost calculatiéns° "In the presént case,
howéver, we may select ahy~value which is within fher6Véri;p regién
and an integer multiple of 2_€, |

The value'of’l/2(ﬁ - 172) is always an exact binary number,
speéifiéally.a numbéi with a‘fra;tionéi'part of é/hi ‘The distance
_fro@:l/Q(n - 1/2) to the upper'liMif‘of the:ovérlépreéioﬁ'élongA

a =1/2 is 1/2(n - 1/3) = 1/2(n - 1/2) = 1/12. This means that the
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largest cdmparisqn'consfant we may choose in this region’ without
increasing € ‘to bé”greége? than fouf.is 1/2(5._ 1/2) +il/i6. If we
design the logic such éﬂaﬁ.rgj ='l/2(n - 1/2) + 1/16 and a =1/
<§elects qj+l f.n, then Ad and Ap costlééiculations;areA@&Nfollowé:

Inithis case ghiJ NS

o

1

-5 _ Lo L
27 < - o | <
27 <7/18 - 27%(n - 2/3)
In the same manner as that outlined in the last gectibn we obtain. *
Tab1§"3 and the three cases.
‘Case"l

N =2k +14

=
I

.2k 3

N =2k + 4

2k + b -

=
H

N- =2k + 3

2k + 5

=
Il

The first entry Nd*= L, Np = 6 is not included in the above

'linear_équatiqns but this is the most. practical:-case for k==.1, radix
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1 2 & .. == L(- )-l- L{ 6 .
mimn .
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7 3 3 5 :
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2 10 & s.= T % T 8
: - 8 L 8
9 T
. 3 ™ 7
3 b2 5 =9 ok 9 0o
' 10 N 10 10
11 3 Tl 9
n 3 " 9
min .
12 2 12
13 13 11
“é 3 " 1

Table 3. Costs for Table Look-Up Models

four. . By comparison with the results of Section 2.6.2, note that for

a given k, 'a case may be found for which a table look-up model re-

quires.fewebibitsiof‘cgmpérigohﬂthanhthencgrrespbﬁding;é}ithmétidnﬂ:”°

model.




2.7 Quotient Conversion

The quotient developed by SRT division will in éeneral in-
clude negative digits and eventually must be converted to a conventional
binary form. This conversion time and haranre is the greater part of
the price paid for the accrued advantages of redundancy.

'First consider a specific:caser conversion of a result pro;
duced by é.non—restoriné division. Here guotient representation is
tthsame as that discussed in Section 2.2 except that zero is not an
allowable digit. The algorithm for- such a conversion is illustrated
in Figuré 8. Ihié c;nversion may be performed sequentially as the
qubtient digits are gener;ted, and thus reqﬁires-no additionalntermiqal
operations. The digit qj+l is unchanged if it is positive, othér@ise
it is replaced by r + qj+1,'and the adjacent higher order digit qj’
decreased by l; Note that since zero is nof a permissible digit,
there is no requirement fqr a bbrrow pfbpaé#ﬁioﬁ in decreasing qj by
l', The hardware required is of the order of:a two digit subtractor.

| It is not geherally possible, howéver, to perform SRT divi-
sion not allowing q = O. Non-restoring division may be viewed as SRT
division with n = r-1. For this case, the q(O)’region of a P-D plét,
is completely overlapped by the q(1) and q(-1) regions. The quotient:
digit value q = O may, therefore, bg eliminated and thé cénveréioh
consequentiy simplified to tﬁat of Figure 8; Fbr casesldeSRf<di- :
visidn with ﬁ.Z:f—l,the q(0) région is ngtﬁsubéﬁmedC byiéther regions
and thﬁs qg=0 must”bé éllowed if.ﬁhe divisibn is té bé éompietely

defined.
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SIGN OF SIGN OF -

QUOTIENT ) QUOTIENT
NEGATIVE POSITIVE

qj+1+rtajs Qj+1+Qj+i

]

] jej+!

FIGURE 8. - QUOTIENT CONVERSION FOR NON-RESTO'FiING' DIVISION
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With the possibility of q = O, the conversion is complicated:
the algorithm of Figure 8 is no longer adequate, for now the difference
q - 1 may require a borrow from‘qj_iu

propagate to.the left until it .encounters a:non—zefo digit. This

Furthermore, this borrow must

potential for borrow propagation requires that‘fhe equivalent of a
full precisionAsubtracfor be available-teﬂthe quotient register if
conversion is to occur as the quotieht digits are generated.
Alternafely, the full precision quotient may be generated
and stored in the redundant ferm end tﬁen converted during an extra
terminal step. A high-speed arithmetic unit frequently emploYé;a
redundant representation of the partial product during multiplication,
é.g. carry-save adders, which also require a terminal conversion. One
possibility, then, is to share the herdware for conversion of both
products and quofientsn The sampie implementation presented in the

next chapter incorporates this approach.
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3. IMPLEMENTATION OF SRT DIVISION

. 3.0 Introduction

_Ar@ed with pﬁé theor& and techﬁiquéé ﬁnfoldedsin thé;lést‘
chapter, now consider an.éxémple.impiementatiqn of SRT divisién, This
example is nét presented as g“détailedAconstruction proéosal,Aput is
rather intended to céﬁtribute'ﬁhe‘foliowing: | | I

1. A description of.several.fairly general copsidéréfions'

—for imple@enting digiéal division andrbf how. SRT division
a@gshés.w;thin these considgrationé. | |

2, ZAA eléborat&og; in a rather conérete wéy, of thé copcept

. of limi&ed,precisipn ﬁodeling. )
BW{‘A Aoﬁién as to the:hardware demands_and.o?e;afion.time
of‘funétioﬁal blocks requirédnin implementing SRT~
division. | : o

ThrdUghout this chapter, it is assumed thap tﬁg designer has
already made the decisions as to the speed of thg)giectrénic components
he wili use, and. that-now he is attemptingAto organize these cohéoneﬁts

into a faster, more efficient system.

! ' 3.1 General Con§ideratién$ for Impiemeﬁtétion

! ” J_Chépte? é introduced a class of division techﬁiques which
appear especially suited fdr implementatiop.in a digital maghin@k'
H@ving.accepted‘this p;emisé‘apd havipgidgcided,to fa;klé-S#T di.vision’,':”~

the designer is still faced. with méhy decisions and. dirty design details.
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These details are strongly related to the structure of the allied parts
of the arithmetic unit and to such real iife questions as available
logic, speed demands, available packaging space, and to a large extent
to the price the deslgner is w1lllng to pay for a. high speed divide.

A thorough exploratlon 1nto these factors is well beyond the scope of

this paper, however, there are several more general guldellnes which

may apply.

3 l 1 Relatlve Occurrence of D1v1slon

The first guldeline emerges from the observation that divi-
sion is usually the least frequently executed of the basic arithmetic
operations: add,isubtract multiply,.and divi&e. The designers of the
IBM STRETCH computer (6] estlmated that on an average, out of 16 opera-
tions of a general purpose computer, the relative occurrence by opera-
tion type is:aSifoklows:r‘ A

1 division

3 multiplications

6 additions

6 .control.transfers

These figures indicate.that the designer should‘pay more to
accelerate multiplication than division: +that in a conflict between
accelerating multiplication and'division,'the:fOrMer should be the

victor.

3.1.2 Acceleration of Division
With decreasing'hardware costs, increasing packaging density,

and demands for still faster arithmetic units, the first guideline may
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not'be as significant as it was ‘in the days of STRETCH. .Toddy the

“desigher will proba¥ly &im both fbr.Véry”high—speed'multiplyfahd#divide:

Thé design question is ‘hot merély how to6 implement-diVision, but»rather3

.how to implement high-speed division, or yet more specifically, highw.

speed SBT division.

The next guidelines, - therefore, relatedfto"Ofgahizational
factors affecting‘the speed of execution of division. 'Of course, in -
selecting the 'SRT method, the designerihas already seized upon the
possibility of accélerating execution by decreaSing-the‘preciSioﬁ and-
thus reducing the time reqﬁifed iﬁlseléctihg a quotiéqt'digit;‘”There
are, however, other possibilities beyond tHiS'fundaﬁEntal decisign;

As mentioned in Section 2.1, ‘the rebursive‘rel;tionship
points’ directly to four possibilities for accelerating division. A
fifth, obvious, but important factor is added here.. -These possibilities
are as follows: -

"1. Decrease ‘the time for forming‘rpj,Ii;e}'theAleft o
“shift time:
cén-'Décreaseithe~seleC£ion time for multiplés of the
divisor ‘at the divisor input to-the adder/subtractor.
3,V‘Decfeasé thé add/subtract time.
L. -Increase'the radix and(fhus decrease the number of
‘cycles fequired.tofgénerate{a quotient Of speéified
" precision.
'-f5°<fDécréase the” time for .selecting a quotient digit; i.e.-

'for'compariﬁgfthe divisior and shifted partial remainder.
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The first of these is essentially the problem of minimizing
the number.of logic stage delays required to transfer and shift the
conteﬁts of the secondary rank of the accumulator back to the primary
rank. -

. . Similarly, the second item relates primarily to minimizing_
control delay in operating a shift gate once a quotient digit is
selected. |

In approaching the third factor of this list{ degreasing
the add/subtract time, the designer is likely to turn to a carry/
borrow save. type unit which eliminates propagation until a terminal
step [7].~.This is a standard technique in implementing multiplicatioﬁ,
but must be épproached cautiously for the case of -division.

Thennecéssity for cautioﬁ arises from the fact that such
schemes actually introduce redundancy into the representatiqn of a
sum or difference and thus, for aivision, produce a redundanﬁ~partial
remainder. As mentioned. in Section 2.5.2, redundancy in the partial
reﬁainder complicates the qqotient seiection and, for a practical_.

scheme, requires that at least part of the partial remainder be

_converted to conventional form after each pass through the subtractor(s).

Incfeasing the radix, although it dées decrease the number of
cycles required, also carries with it some disadvantag?sa For a fixed
n (the upper limit of a quotient digit) an increase ofifAdeéreases the
redundancy ;%— and thus requires either greater precision in‘selgcting

- quotient digits, or an.increase of n. - As noted earlier,.an incréase
in .the value of n demands the availability of more multiples of fhe'

divisor and thus more hardware.
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The fifth factor is exploréd.fuf%her in Section 3.3 with

reference to the seléctiénjof the model.divisioﬁ.:

Note.that thé Questioq:of.minimi;iné conﬁrdi step-up time _
is largely béyond the scope of this papeé} It is, héwever,<é-very
real and related problem to be faced in accelerating én arithmetic
process. There is little efficiency in building a systém“Which"
oéerates faster thén'céhtfél[gigﬁals éan service it;'

3.1.3 Cdmpatibility of Division with the Multiplication Scheme

According to the STRETCH statistics mentioned in Section
.3.1.1, multiplications éccur half .as .often as additions,“‘Muifipiicaf
tion, however, is usuéiiy exeéufed as a series of cdnsidefably more:f
than two additions'andithus requires the use of acceléfatiqn techniqﬁési
if the speed of mﬁltiplicatioﬁfénd.additidn.afe to be compai;iblé° These
techniques essentiallf reduce ﬁo the firét four of thoseumentionéa ih
?eétidn'3alm21wifh the word "divisor" replaéed by‘multiplicana;.”iéft
shiff”.replaééd by Wright;shift“, and "quotient" by ”pdeubt,”A'Thus,
at.least to a first agproximation,'accelerationAof-multiblication ahd
. division. are compéﬁible°

A 5igh-spged arithmetic uniﬁ-usually includes a subétén&ial
investment in hafdwafe to éccélefate~£he execution of mﬁitiplicaiion,
- Hopefully, much of'tﬂié investmenfnmay ;lso be used‘for aivisiOn.
: With this.in.mind.andAaccépting;thevpremise that accélefa-

tion. of diviéion;should4plécé'second.to accelerated multiplication,

we adopt the followiné:stfategy: design a highfspeed multiplication
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scheme, then embed division within it. Although not the ideal, it is,

in fact% a practical strategy which has been used in arithmetic tnit
designo’ In a sense, this guideline summarizes the guidelines mentioned

in both of the previous sections.

3.2 A High-Speed Multiplication Scheme

.Having adopted the design stratégy.”multiply‘thén divide", we
must now propose a high-speed multiplication scheme with which we hope
to mesh division. The.description of the scheme will necessarily be at
the block diagram.level and will by nd meaﬁs be fully jusﬁifiéd? Also,
. details such as overflow and handling of the exponent wil;.not ﬁe dis-
cussed. The scheme, howevér, has.been studied and, in fact,<simuléted
by the author. It is similar to that proposed for implementation-in
the Illinois Pattern Recognition-Computer (I1liac III)::,The_numﬁer
format to be handled by this»device'is assumed to be an 8 byfe (8 vits.
ber byte)‘nofmalized floating point number with 1 byte of exponent ana
7 bytes of mantissa.

Figure 9 is a simplifiéd.block"diagrém of “the proposed unit.

3.2.1 Notation 7 | o

The conventions used invFigure Q9 are as follows:

1. Flipflop registers are denoted by rectangles with’the
horizontal subdivisions‘indicaﬁing_bytes. For examp;e,
the M register (M REG) is 7 bytes (56 bits) long.

.20 Grougs of combinatorial logic are shown in.circles or

rectangiés with rounded corners. Any gating is re- -
presented in te:rms of AND (), OR(v), and. EXCLUSIVE E)R(@)_°

L6




L

V-BUS

L b

LSML8USM o’o LSMR8USM vbuQ O
% LHQLBUHQ |
, : (D) O (- () —
vDM . VDUM 0 UHQDUSM o LHQRBUHQ
T | 1 T T I T L T L T T T
. I! T 1 jsr T T TUHY : FROM
1 L. My ] ML7I/||L6YI 0 - (UM 1 X X iUQi j L }. MD
I _)L |. MOYI Mo‘;“ NEGO
T
Tomn %K %? USMDSI
. : N - MULTIPLIER
L. )+ NEGI RECODE
PROPAGATION A C TO M SHIFT
LOGIC ) — . . ARRAY
' L1+ NEG2
l ' (- UHQDLHQ
I T T e NEG3
| . - SaT T T D NEG4
EXPONENT : M SHIFT ARRAY 1
ARITHMETIC UNIT .+ 4 Gkst W
S S N

CONTROL o LMDX
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5.

The widest lines indicate a bus for data in SD format

(2 bits per digit, see Section 3.2.2), the next..

widest for numbers in conventional notation (1 bit per

digit).

Gating signal names are of the form F. F. X T. T. where:

8.

Examples

a.

1°2 12
F, and F, (F2 is optional) are the names of the

registers from which data is transferred.

X = D if the.transfer is direct, i.e. not shifted.
= Rn if the data is shifted n places to the

right during the transfer.
X = Ln if the data is shifted n places to the

left during the transfer.

. T, and T, (Te'is optional) are the names of the

registers to which data is transferred from Fl
and F2 respectively.

The concatenation of register names starting

with the same letter such as UM ana US is further
abbreviqted-as UMS.

of gqting'signal names:

VDM - Gate the data on the V-Bus directly into

" the M-Register.

ML7Yl - Gate the contents of the M-Register
shifted left seven positions into the Y input
of signed-digit subtractor S1.

UHQDLHQ is equivalent to the two names UHDLH
and UQDLQ.
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6. The label TO MD or FROM MD indicates connections to the
Model Division to. be described. in Section 3.3.3.

3.2.2 Description and Operation

As mentioned earlier, multiplication is .substantially accel-
erated by the use of an adder or adders which eliminates carry propa-
gation until a terminal step. The "adder" proposed for this model,

S1-Sh is actually a signed-digit subtractor (SDS}: it incorporates

facilities for postponing borrow propagation. Actually, the device
performs both additioh and subtraction under control of the "NEG"
signal. - We shall digress a moment for a brief description- of this
. device.
Each stage of the signed—digit subtractor (SDS),.aéfshowﬁ ipA

-figure lO,4is‘a.3—input, 2-output device together with an.interstage
connection and a "NEG" control line. Yi is a bit of the subtrahend-
(minuend - subtrahend = reméinder) in conventional binary form. Si
and Xi together éomprise the minuend in a. redundant notation. which will
be called SD format. Each digit of the miruend is of the form 5, X, '

where Xi is interpreted as a magnitude, 1 or O and S as a sign,

O0=+,1=-. The SD format digits are therefore reppesented as folliows:
5. X, DIGITAL VALUE
0 | o +0
o 1 - +1
0 0 +0
1 0 -1
1 1 -1
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1

-1 e

Stage i NEG

.

sign of minuend digit

magnitude of minuend digit

subtrahend in conventional binary form

~sign of difference digit

magnitude of difference-digit

NEG = control to complement Ti

NEG

0 ~>"I’i not - complemented

NEG

1~ Ti complemented

interstage interconnection, but not a propagating borrow/carry

C, & NEG
i

c. & (X, 8Y,)
1 1 1

=l
(=1
[
=
(%]

Figure 10. Stage of a Signed-Digit Subtractor.’
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The4output'of thg subﬁractor is in this same formagyi,eflzi
is the magnitude of the'digit,'Ti iéﬁthé sign. C; and C;_ are
interstage connections and; as may be seen from the logic:quations
are not propagating borrows. Another advantage of SD format is that
a number may be negated merely gy compiémentipg the sign»(S) bits.

Note that'thé~£osﬁponing,of 5orrow propagation is aéhie?ed
only at the expenée Qf~iptroducing redundancy into the representation
_of the pesult, Aqtually two registers, for example US and_UM,'are
reguired to.store a_numbgr intﬁhis redundant form.

We must, also pay the price of conversion or assimilation, to

conyentiqnal form. This a;similation aétuallylrequires a,bgrrow pro-

' pagatioﬁ ;nd‘ong additional subtraction. The propagatiquis.acgelgratéd
by use of look-ahead techniques,;bgtfis stil; rather;timeaconsé@ing

.and expensive. Thelpropagation Qccurs‘in:the‘propagation;logic £he
output of which is ﬁhen‘appliedbto'the'Y ingut of‘S% to p?oduce_the
assimilated result.

The propagation logic forms, the outputs

B, . =B,z v.T, Z.
Ti-1 B T i i

and Sb is used to produce the assimilated result with bits
A, =2, & B,
i i » ‘

' detail 4 8]

The SDS is described in more detail in reference o

In the proposed scheme, four of the signed-digit subtractors

are cascaded to provide multiplication, radix 256, iﬁe} 8 bits of the




multiplier are used simultaneously. The multiplicand is loaded from
the V-BUS into M, the multiplier into UQ. The low order'ﬁyte of UQ
drives recoding logic which couples to the control lines in the shift
array.

[9]

This recoding, suggested by Wallace ; requires plus and
minus multiples of 128, 64, 32, 16, 8, 4, 2, and 1 times the multiplicand.
The multiples are formed by the shift array; the signs by the NEG con-
trols, i.e. by adding or subtracting the multiple. The MDYl input is
uéed only for an ADD or SUBTRACT instruction, not for MULTIPLY.

J After passiﬂg through the SDS cascade, the contents of
LS-IM and LH-LQ (partial product and multiplier) are shifted right 8
bits back into the US-UM and UQ Registers. This continues‘for 8
cycles; the 9th is an assimilation cycle.  Here the product in 8D
format is applied to the propagation logic, the'output of the propa-
gation logic to Sk, and consequently converted to conventional
representation.

Admittedly the scheme just outlined is expensive and in"manyb
cases may not be justified. The designer may wish to choose a similar
scheme but with fewer levels of cascade, i.e. smaller radix. Although -
the division scheme to be designed is built upon this radix 256 multi-
plication scheme, the techniques and procedures should be eésily" |
reducible to a lower radix case.

Before concluding this section, we must admit a slight

diversion from our design strategy. The reader may have noticed that -

all four of the SDS in Figure 9 have been extended to the left one byte.
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Actually, if the multiples of M were~added“iﬁ the order, i, 2, L4, 8,

16, 32, 6L, 128 rather than the way shown, only Sk’ would have to be
extended a full 8 bits. Since, however, quotient digits are formed

most significant first, (the product is formed least significant first)

and we wish to use this same shift array for divide,.the arrangement
must be as shown. The extra SDS stages must be included and thus the
division scheme has, to some extent, infringed upon the désign of the-

mulfiplication scheme.,

3.3 Design of Division Scheme

3.3.1 General

Now begins the task of embedding a division scheme within
the multiplication scheme described in the last section. 'SinceAthe
SDS cascade will perform both addition and subtraction of the contehts
of the M-Register and the numbér ‘in SD format in the UM-US Registers,
the obvious extension is to pléce the divisor in M and the dividend
and subsequeﬁt partiél'remainders in UM-US. The quotient digits will
be produced in redundant.form. In this ‘case a logical ‘choice would be
to produce quotient digits in SD format so that they may be assimilated
by the same circuits as used in multiplication. The contents of UH-UQ
may be gated to US-UM via UHQDUSM and then assimilated as in the final
cycle of multiplicatibn,. The quotient is thus 'stored in UH-UQ: the
sign bits in UH and magnitude bits in UQ. Furthermore, division with
the hardware will require an 8 bit shift from LS-IM to 'US-UM

{LSMIBUSM) and from LH-LQ to UH-UQ (LHQLSUHQ).
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The full precision division is now generally defined. The
divisor is first stored in M, the dividend in UM and the sign Qf the
dividend in all positions of US. Quotiént digits are then formed by
a model division using a and rgo. The quotient digits are stored in
SD format in UH-UQ and also used to set the multiples of the divisor
in M to be subtracted from the dividend. The next.partial:remainder is
formed in the SDS cascade (s1, 52, 83, sh), stored in LS-IM, and then
shifted left 8 bits into US-UM° These cycles continue until the full
precisionAquotient has:been generated. The quotient is then gated
directly from UH-UQ into US-UM, assihilated,(and gated intolLM where it
is available to the central proceésiné unit. ' :

We must now desigp‘a model division to select the qﬁotien£
digits to be stored in UH-UQ and to be used_to'control the M—sﬁift:
array in forming.a full precision partial remainder. Noteifhap the
4‘divisiqn'scheme here is of the class with radix r = 22k, n.= é/3 (r—l)-
as‘mentiohed in Section 2.5.2.. fhe numfer of ca;cades,k;iswg-igmtﬂis
.caéea The ialue of n is the sum.of the maximum mﬁltiples of the divisor
which may be formed at each stage of the SDS cascade and heré is
128 + 32 +38 +2 = 170. The radix point is between the leftﬁo;t@an@%-
next.leftmostb byte of the UM-US and iM—LS Registers.

3.3.2 An Arithmetic Model

First considering an arithmetic model, we select case 3 of
Section 2.5.2 and calculate that for k = 4, Nb = 12 bits and Nd = 13
bits. The first.lé bits of the shifted partial remainder could there-

fore be assimilated into conventional form and divided by the 13 high
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order bits of the divisor to produce 8 quotient bits.. This operation-

could be performed by a non—festoriﬁg scheme inAauxiiéfy'hardware such
as the ekponent“arithmétic wnit.” Since an exponent unit nbfmally'
does not perform division, some augméntation is required: ThHe minimum
addition would be a left“shift path from.the'secbndary'to fhé primary’
rank of the accumulator.® Also, since we have specified only a 7 bit®-
exponent, the width df;thé'expoﬁent unit would reqﬁiré én exténsion =
of 5 5itso These additions wduld,:however,‘be-relatively'inekpenéiveL"
The exponent unit, which normally sits idle dufing'moétJof the division
operatioh, could be used more efficiently.

" There i§ however, a major disadvantage to the arithmetié
-models: the necessity to round the.Quotient digits pféducéd“by the
model béfbreAbéing used by the full precisioﬁ mechanisgglehié
rounding'WaS'meﬁtibned in SectionA2;5i2 and is obligatory if the cost”
criterion is to hold. Without'this“requirement theiquoﬁiéntib;té*';
could be used sequentially as they are’ generated’'to set the gates of -
'th.e.M-Shift'array° ‘In this case, the full precigion.divisof‘Woﬁlﬁ"bé :
fqimed in LS-IM very shortly after the last qﬁétient‘bit'Wésrgréqued
by the model. Sincé, however, thé rounding may affectfthe most signi-
ficant bit of the quotient returned from the modél;‘the propégatioﬁ
through the SDS array canhot:begin dntil the mode;”di#ision'is complete.
- This restriction severely limits the feaSibility‘of the arithmetic
models and due to this rounding requirement, a table~ldok—up model

will be used in the example developed here.
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3.3.3. A Table Look-Up Model

As descrlbed in Section 2 6.3, the round-off, problemcdoes.not
arise in a table look-up quel° The major disadvantage here is hard-
ware cost and large faqout'requirements of 8 and rgj to thg seléction.
logic. In the example.arithmetic unit.being develoged here, multipii—
cation.is radix 256.. For compatibility Qe would aiso like division.to
be radix 256,Aaﬁd consequently,fwould like a.radix 256 tgbleAlook-ﬁp
model which would produce 8 bits of the quotient_in-parallel,, Byz
~ considering a P-D'plot for radix 256,.n = 170, or merely the fact
that-Np 12 bits and N h bits, ‘the reader may quickly convince
hlmself that the hardware requirements for such a scheme are prohibi-
tlve; at least w1th conventional 1oglc° (

A Tadix. 16-table look-up is probably possible with integrated
circuitry ahd'perhaps with more conventional. circuitry if -the de;igner
is wiliing to pay_thg price: approximately 250, 5-input NANDS; 160,
8-input_NANDé;_2562 8-input NYRS; and l60idrivers which will drive up
to 50 NOR loads. - |

jIﬁ this example we will gdbpt a more modest approach in
imélgmenting a radix M;téble loékjﬁp andlapply it successively at four
- positions of the SDS cascade. In a sense, we have been forced to
_-reduce the radix 256 division to.h—radix i divisions.’

From Section 2.5.3 a"rédix 4. table look-up modelbrequireS'

N. =L, Np = 6. The :6. bits of the partial remainder are supplied

d

sequentially from.four stages of the full precisioh hardware labelled

"TO MP" in Figure 9. ' The first stage is the output of US-UM, the other
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three from the output of Sl 82, and S3 The‘high order bit supplied
to the model is dlsplaced 2 blts rlght at each stage° Thus if~the'
subscrlpt 1 denotes the hlgh order dlgltal p031tlon, the first rp

to the model 1is US UM through US ) UM6 The second input is the
third through elghth output of Sl, etc,, ’

A block dlagram of the proposed table look -up model 1s shown
in Figure 11 and described in Table 4. The P_D plot whlch is actually
implemented is shown in Figure 12, Table 5 expllcltly 1llustrates the
quotient digit selection for each er and d Note the correspondence
between the steps in the overlap reglons of Flgure 11 and the steps
shown in the table°

Before studying;these figures and tahles note the following
_considerations which‘are incorporated.in the design: |

l; bniy the first quadrant of.the'?-DAplot-is actually.

implementeda The approx1matlons d and rp are considered
to be p031t1ve and the real slén is computed as with al
signrmagnitude representation, If rpj is negative‘nhen
presented to the model;"it'is.made~positive before
ass1mllatlon by complementlng the s1gn bits.

.2, The divisor and thus the selected d1v1sor 1nterval is a

constant for a given d1v1slon-andlthus the speed of -
selecting the divisor interval is much iess critical

than that of forming the partial remairder interval.
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The QUOTIENT SELECT TABLE actually implements ZERO and

TWO regionsof the P-D plot in Figure 12 and forms PNE

as ZERO TWO. The TWO and ZERO regions are easier to
implement than the PNE region since they are bounded

on oné side by the rahge restrictions on rpjo

The inputs to the model and the controls are supplied from

~the full precision unit as shown in'Figure 9 and are designated as

fo}lows:

Us. .
dJ

>

integer subscripts.

the true output of the j-th position of the US

' Register containing the sign bits of the partial

remalnder°

the true output of the J -th posltlon of the UM
Register contalnlng the magnltude bits of the
partlai remalnder |

the j-th sign bmt of the. output ‘of =Eigredr, .

dlglt subtractor Si.

the j-th magnltude blt of the output of signed

dlglt sutractor Si.
the true output.ofAthe j-th position of the M
Register containing the divisor. MO is the sign .

of the divisor.

‘sequence control s1gnals

logical 31mmatlon (pR)

logical product (AND)

The other symbols used in Figure 11 are defined in Table k.
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FIGURE 1I.
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BLOCK

FUNCTIONAL DESCRIPTION

LOGICAL DESCRIPTION

(1 < i< 6 except as noted)

INPUT

" AND - OR gating configuration
to gate the rp. selected by
the control si%nal C, to

SIGN DETECT To determiRe the sign of the

selected rp., i.e. the sign
of the leading non-zero digit.
Used to control NEGATE and in
forming the sign of the
quotient digits.

subsequent stages of'the model.

M

i ClUMi

v Coly 4o
VG2 4
v 02 546

= c.US
PSi Cl i

CoTy 540
v ETy s

A" C)-*T?), i+6

Table 4. Functional and Logical Description of Figure 11.



BLOCK " " FUNCTIONAL DESCRIPTION -~ LOGICAL DESCRIPTION-

NEGATE To negate rp. by complementing all ' PS. = PS, & SIGNP

of the PS bits. With this feature : oot |
the quotient select table need only

" implement the first quadrant of the
P-D plot (@ and ?pj positive).

|assmIATION Converts rp. in.SD format into a = . B, = PM.PS, v PM,B,
: X . : i o N § i7i-1
. conyentlonai bilnary number. Uses e T T
borrow look-ahead technique to ' . B6 =0
accelerate this step. : A = 6 B
i i i
.g\\ DIVISOR  INTERVAL DEC_ODES da, i.e. Ml to M)-&' - Dl- = M2M3M
SELECT . .
, : Since M, = 1, it may be D. = MMM
eliminated. : b = MMy
. A , T
Dy = MpMH,
Dh = M2M3M)_L
‘ D5 = MMy

D, =D v D, VD,

D8=DMYD5VD6
D9=DuVD5
DlO=D5VD6

Table 4. - Functional and Logical Description of Figure 11 (continued).




BLOCK ' FUNCTIONAL. DESCRIPTION

QUOTIENT SELECT ' The logical implgmen?ation : ZERO = A1A2A3Au
TABLE of the P-D plot in Figure 11. R
| e pongmetes i B SD,
v Alé2A3DlO
WO = KiKéA3Au§5A6Dl
o v KiKéA3AuA5Dl
v KiEéA3AhA5A6D2
’ v A Dg
v A2A3D8

v A1A2.3AAD9

v R AR R AD,

v 4 A A.AuA5A6D6
ONE = ZERO TWO
Dy = Sign of divisor
SIQNQ= SIGNP @ D,

Table 4. Functional and Logical Description of Figure 11 (continued).




BLOCK

FUNCTIONAL DESCRIPTION

LOGICAL DESCRIPTION

QUOTIENT BUFFER
AND SHIFT
CONTROL

Stores the quotient digits

.until all 8 are formed and

gated to the lower order
byte of UH-UQ. Produces the
M-Shift ARRAY gate signals
and the NEGI signals which
control whether the SDS adds
or subtracts the selected
multiple of the divisor.

i=1,2,3,k

. TWO
. ONE
. SIGN Q
. SIGN q

C

ML7Y1
ML6Y1
ML5§2
MLL4Y2
ML3Y3
ML2Y3
ML1Y1

MLDY1

QSg
QSg v €y Q¢
3?6 v 03 %EA
8y, v € @5
e,

Table 4. Functional and Logical Description of Figure 11 (end).
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3.4 Estimate of Speed of Execution

Although in this report we have described the division
scheme only at the block diagram level, a detailed simulation has been
programmed and will be available in {lod. Based upon this simulatién
and actual logic design of the arithmetic unit of Jlliac III we can
estimate. the execution time of this‘division schemé in terms of
transistor collector delays. The actual logic is of the direct coupled
saturated DTL type.

| Table 6 summarizes the number of transistor collector delays
associated with operation of each block of the model division, Figure
11, and with the relevant blocks of the complete arithmetic unit shown
in Figure 9. These figures are used in Table T7.in tracing the opefa-
tions involved in performing one division cycié i.e. making one pass
through the SDS cascade and producing 8 quotient digits in SD format.
The final cycle assimilates the redundantly represented quotient as
described under ASSIMILATION.

To estimate the execution time in seconds we shall assume a
collector delay of 15 ns and thus 8 bits of quotient require 76 x 15 ns =
1.1 usec. A 56 bit division such as proposed for Illiac III therefore
requires 7.§_psec. plus 0.3 msec. for assimilation or a total of 8 msec.
Tnitial and terminal shifting of operands have not been included but

represent a negligible time compared to the execution time of the

recursive operations.
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BLOCK -~ - - cLtee - .-+ NUMBER.OF
“COLLECTOR DELAYS

Model Division Figure 11

Input Gatihg 4 2
Sign Detect ; 1 -
Negate _ 1
Borrow Generate e : 3
Quotient<Seiect.Tabl¢ : 2
Quotient Storage and-Shift Control 3

N - Total for Model per. 2 Digits of Quofient i2

Full Precision Division Figure 9

Signed-bigit Subtractor (Each)

(81, s2, 83, sk) . o 3" .

M-Shift Gates (Including Driver) 3 ’
Register to Register Transfer 2 -

Propagation Logic i T

Table 6. Transistor Collector Delays of Blocks of the Division Scheme.
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Initial Conditions: Divisor in M-Register. Dividend in UM-Register.

-Sign of Dividend in All Positions of US-Register.

EVENT NUMBER OF COLLECTOR DELAYS

QUOTIENT GENERATION

Perform Model Division : 12
Set ML7Yl or ML6Y1

Perform Add/Subtract in S1

Perform Model Division 12

Set MLSY2 or ML4Y?

Perform Addy/Subtract in S2 3
Perform Model Division 1&2-
Set ML3Y3 or ML2Y3 3
Perform Add/Subract in S3 3
Perform Model Division 12
Set ML1Y4 or MDYL . 3
Perform Add/Subtract in Sk 3
Store Result in LS-IM 2
Left Shift via LSMLBUSM 2
7 “Total:.Time per 81:Bits of Quotient 76‘
ASSIMILATION
Gate Quotient in UH-UQ to‘US—UM via UHQDUSM 2
Dirpcti-through S1 ’ ' L
Generate Borrows in PPropagation 7
Assimilate to Conventional Form in Sk 3
Store in IM o ‘ } -2
Total Time.for Assimilation .18

Table 7. Transistor Collector Delays in Execution of Division.

68




‘L. SUMMARY AND CONCLUSION

ﬁ,l Summary

The first half of this report was largeiy a-consirpctiyer"
aefinition of SRT division. It introduced a recursive rélationship'.
defining division, a'represehtation of the quotient’allowing;bothu«
positive and negative digits, and range restrictions on the partial
remainders. It was then shown that the consequence of this.quqtient.
representation and range restriction wés that correct quotientidigits-
could be selected by inspection of truncated versions of thevd}viSOr '
and shifted partial remainders. The P-D plot“was-described and used
as a key tool in the d&évelopment. |

Next, théAréport turned to'the more specific‘task of deter-

mining the number of bits necessary in these approximations. -.The cost .

_criterion was.stated as the fundamental requirement on .the precision of

inspectionui Although this criterion. is general, to.obtain numerical
results the :discussion was restricted to a radix of 'the form r.=A22k
and to the arithmetic or table look-up type. The chapter concludeaf
with a short discussion of the conversion of the redundantly represented
numbers..to .conventional form.

Theisecqnd major'section o%-theurepért attempted to relaﬁe,
the equations, graphs, and statements of the first section to real-
world problems of designing a digital arithmetic unit. It described

some general design considerations and pointed to compatibility of

division with multiplication as one of the most important.

69




A£ this point, fhe discussion of division digressed to one of
proposing a multiplication scheme and to the block structure of an
arithmetic unit with which it could be‘realized. The focus then
returned to division where, after rejecting an arithmetic-model, a
table look-up model'divisionFWas proposed .

The model was described at»the black-box level and -some -
estimate was given as to the expected operation time of such a scheme

implemented with conventional DTL.

h.2° 6dnclusion

- To.a large extent, this report has been'direcfed to the
designer faced with the task of impleﬁenting digital division. ‘The
mode of presentation; however, has not been intended to be of- ah
algorithmic style, ‘but is rather aimed at a bésié understénding'of
SRT division in hopes thatlthe designef will be able to adapt it to
his particﬁlaf specifications and hardware. :The‘bhapter'on imple-
mentation was included merely to indicate one Qay of applying SRT
division.

‘The aUtﬁof also hopes that this report will support ex-
ploration into development of Higher radix quotient éeléction models,
é.g. a trﬁe‘radix'256 model which can select 8 quotients bits in
parallel. Note that the operating speed of the model in the example

impleﬁentation.is by far the slowest link.
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Much of the delay in quotient select is, .however, charge-
able to the necessity for assimilating the redundantly represented:
Ej. It would therefore appear appropriate to explore models whiph ‘
could selectAquotients directly from'a‘redundaptly réprésented partiél
remainder. Perhaps'this could be accomplished with analog techniques‘j
in which rpj was converted to a voltage proportional tp‘the‘weigpted
sum of the bits. Such a converter could handle bbth plus and minus
weights. It may‘also be possible to mitigate the round-off problem
associated with the arithmetic models. The P-D.plot could then be
impléMented with analog-digital rather than strictly digital cirquité.

Also note that the form of the Quotient selected by the model
in the exampié‘implementation‘is by fno means unique.  ‘In this case; the
SD format was seiecteq S0 aé‘tovbe'compatible with the M-Shift Arréy‘
control signals and the apsimilation'circuitry usedrfor‘multipiiCa;
tion. There may;“howevgr, bé-more efficient réchihgs? ‘PerhépS'the

goals could best be summarized as attempting to implement division so

that it is actually performed as the‘inverse‘offmultiplicétion.
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