
& 

LA-3257-

LOS ALAMOS SCIENTIFIC LABORATORY 
OF THE UNIVERSITY OF CALIFORNIA o LOS ALAMOS NEW MEXICO 

OPTIMAL CONTROL OF 

NUCLEAR REACTOR PROCESSES 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



LEGAL NOTICE 

This report was prepared as an account of Govern
ment sponsored work. NP.ithP.r thP. TTnited States, nor the 
Commission, nor any person acting on behalf of the Com
mission: 

A. Makes any warranty or representation, expressed 
or implied, with respect to the accuracy, completeness, or 
usefulness of the informl\tion contained in this report, or 
that the use of any information, apparatus, method, or pro
cess disclosed in this report may not infringe privately 
owned rights; or 

B. Assumes any liabilities with respect to the use 
of, or for damages resulting from the use of any informa
tion, apparatus, method, or process disclosed in this re
port. 

As used in the above , "person acting on behalf of the 
Commission" includes any employee or contractor of the 
Commission, or employee of such contractor, to the extent 
that such employee or contractor of the Commission, or 
employee of such contractor prepares, disseminates, or 
provides access to, any information pursuant to his em
ployment or contract with the Commission, or his employ~ 
ment with such contractor . 

Printed in USA. Price $ 5.00. Available from the 

Cle aringhou se for Federal Scientifi c 
and T echnical JnfnrmMi on, 
National Bureau of Standards, 
U. S. Department of Commer ce , 
Springfie ld, Virginia 

.. 



LA-3257-MS 
UC-80, REACTOR TECHNOLOGY 
TID-4500 (37th Ed.) 

LOS ALAMOS SCIENTIFIC LABORATORY 
OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO 

REPORT WRITTEN: March 1965 

REPORT DISTRIBUTED: April 8, 1965 

OPTIMAL CONTROL OF 

NUCLEAR. REACTOR PROCESSES .. · 

by 

Ronald R. Mohler 

This report consists essentially of a dissertation submitted in 
partial fulfillment of the requirements for the degree of Doctor 
of Philosophy in the University of Michigan, 1965. 

Contract W-7405-ENG. 36 with the U. S. Atomic Energy ~ommis;.sion 

All LA •.. MS reportli are informal dncumP.nt'5, """~JJy prP.p~rPri fnr ~ "flP.Gi~l 

purpose and primarily prepared for use within the Laboratory rather than for 
general distribution. This report has not been edited, reviewed, or verified 
for accuracy. All LA •.. M::i reports express the views of the authors as of the 
time they were written and do not necessarily reflect the opinions of the Los 
Alamos Scientific Laboratory or the final opinion of the authors on the subject. 

. 
! 



THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



.·J 

ABSTRACT 

Two prob~ems which are analyzed in this study are (1) the minimum-

time control of a nuclear-reactor fission process and (2) the optimal 

control of a direct-cycle heat-exchange process to minimize the 

consumption of coolant. Interest in these problems has been increased 

by an ~ttempt to develop nuclear-powered rockets for the space program. 

The latter problem is particularly significant for the nuclear rocket 

engine since a decrease in the amount of coolant required can result 

in a direct increase in payload. 

This study analyzes both problems in detail, then synthesizes 

them in a physically plausible manner. The reactor state·is defined 

. by the classic neutron kinetic equations in the first problem. In 

the latter problem, the system is coupled to a single-stage, heat-

exchange model by coolant density reactivity and core temperature. 

reactivity. State-variable techniques and computer computations are 

utilized in the.analysis of these optimal control problems. 

The neutronics control must bring the neutron density "(reactor 

power) from an initial steady-state condition to a desired terminal 

steady-state condition in the minimum time. However, the allowable 

reactivity change must be limited (i.e., confined to a closed set) for 

safety reasons. Pontryagin's maximum principle is used along with 
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physical evidence to show that·optimal control is a bang.;bang process; 

i.~., a two-level piecewise-constant variation in reactivity. For this 

problem, there is no switching or discontinuity in control between end 

points. 

The above problem is treated by the general optimization theory . . - - . · .. , . . ' ' . 

in which the desired terminal phase is defined by a set of _points. 

Once the. terminal set (desired neutron ~ensity) is reached, it is 

theoretica~ly possible to .maintain steady-s~ate neutron density by 

means of a continuous terminal variation in reactivity as given by 

. u- ·.' 

where t = neutron mean generation time, Ci = time rate of change in 

density of. the ith group of precursors and n1 = the desired terminal .. 
. -·· .. - ·.· 

neutrcm· density.- Mathematically; this: variation, in reactivity is in 

the allowable .control set. In prac-tice however; such open-lOOP. control .. 

is unstable. By comparison, a dither type of control performs very . - . . . . . 

well. l~ fact,, a simpl~ continuo~s type _of Closed-loop control (with 

reactivity physically constrained to the_ allowable set) approaches 

the performance of _the optimal system. A describing ftmction analysis 

is used to estimate. the stab_ility of this system. 

Th~ bang-bang process is found to ~e a candidate for the optimal 

ne~tronics control with respect to other performance indices. However, 

the consideration of singu!ar types of solutions shows that the optimal-

control trajectory can be a connection of bang-bang trajectories and 

singular typ~s of trajectories. 

.. 
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The time-optimal neutronic control process is also a required 

part of reactor control when attempting to minimize propellant con

sumption of a nuclear rocket engine. Ideally, the optimal variation 

in coolant mass flow rate is again a bang-bang process. This study 

considers constraint in reactor power and a stall constraint in the 

performance of the propellant pumping system. These state-variable 

constraints are found to further complicate the optimal control process • 
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PREFACE 

This dissertation deals with the problem of controlling n~clear-

reac.tor processes in some optimal manner. After a brief statement of 

purpose, Chapter I discusses theory and formulates models of a nuclear-

reactor fission process, a direct~cycle heat exchanger and a simplified 

nuclear rocket engine. These systems are found to belong to a' general 

class called bilinear systems. 

Chapter II presents ari analysis of the optimal control of the 

classical mono-energetic neutron kinetics. Various constraints on 

reactivity and state-variables are considered in the analysis of this 

problem. The theoretic terminal control is found to be unstable due to 

its open-loop nature. Then a closed-loop dither process is introduced 

as a terminal control and performs very satisfactorily. For most 

purposes however, it is shown that a conventional type of continuous 

closed-loop control may be used. 

Optimal control of heat-exchange processes and the nuclear rocket 

engine are discussed in Chapter III. Coolant density reactivity and 

conventional temperature reactivity are investig~ted. In addition to 

the above neutronic constraints, consideration is given to constraints 
. ' 

in reactor power and to constraints in the pumping of coolant. 

Chapter IV presents conclusions and an outline of areas which seem 

fruitful for future· research. 
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Chapter 1 

INTRODUCTION 

The present need for optimal control of nuclear-reactor systems 

has been brought about by the application of such systems to the space 

program and the military program. 

1.1 Objectives 

The primary objective of this study is to examine the problem of 

controlling nuclear reactors in some optimal manner. In particular, the 

minimal-time control of the neutron kinetics with reactivity constraints 

is to be analyzed in detail and synthesized in a practical and physically 

realizable manner. It is shown that a two-level piecewise-constant 

control may. be the optimal reactor control for a portion of the time with 

respect to a class of performance criteria. Also consideration. is to be 

given to the startup and shutdown of a simplified nuclear rocket engine 

so as to minimize the consumption of propellant. 

Phase-space constraints and control velocity limits are to be 

considered in the study. Modern control theory
1

along with analog and 

digital computer simulations, are to be utilized to analyze and 

synthesize the optimal control. 

1,2 Background 

Optimal control of the neutron kinetics has been considered in 

other studies: T. P. Mulcahey
1 

(in a 1963 Purdue University Ph.D. 

dissertation) designed a suboptimal reactor control system without 

mathematical foundation. 2 In another·paper, Shen and Haag made a non-

linear transformation to arrive at a simple linear system. By use of 

dynamic programming, they found that an extremely complicated contro.ller 

1 
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minimizes a mean-square error of the transformed system. The error, 

however, is a complicated function of reactivity and neutron level. 

Optimal control of neutron level does not necessarily follow. 

In addition to this dissertation (which has been summarized in 

Reference 3) very recent work on optimal control of neutron kinetics has 

be~n reported by Rosztoczky and Weaver4 and by I. Kliger5 . By means.of 

the maximum principle (to be discussed later), Rosztoczy and Weaver have 

analyzed the optimal shutdown of a nuclear reactor so as to minimize 

x:enon poison buildup. Meanwhile, Kliger has analyzed the minimal- time 

control of neutron density·by application of Holder•s inequality. In 

his work Kliger assumed that the system constraint appeared as a func-

tional relationship involving reactivity and neutron level. This dis-

sertation·considers different constraints and generally different 

problems than previously analyzed. 

The optimization problems treated in this study differ from 

problems handled by the classical calculus of variations in that the 

allowable control set is ~ closed set. But if the allowable ~et is 

op~n, . then a number of important necessary conditions for a control to 

be optimal are found in the classical calculus of variations6 •7• 

In recent years the optimal control problem has been analyzed by 

h . . ··1 8 d i . 9 d 'i f h t e max1mum pr1nc1p e , ynam c programm1ng ·an extens ons o t e 

6 10 
calculus of variations • Kalman shows that a ·version.of the maximum 

principle arises from the Hamiltonian-Caratheodory formulation of the 

calculus of varia·tions while dynamic programming is based on the p~in-

ciple of optimality
9 

This principle states that i-f the performance 

index is Markbvian, then an optimal control is optimal with respect 

to any state.which results along the optimal trajectory of the system~ 

The performance index is Markovian if it is a function of the initial 

. { 
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state and a functional of the control from the initial time to the 

terminal time where the initial time is considered to be any initial 
. 11 J 

time. C •. A. Desoer derives the maximum principie from the principle 

of optimality. 

. . 12 8 
L. I.Rozonoer , as well as L. s. Pontryagin and his collaborators, 

show that for certain problems the maximum principle is a necessary 

condition for a control to be optimal and is further a sufficient 

condition for the optimal control of certain systems jointly linear 

in the state vector and control ve.ctor. 

1.3 Optimal control 

Modern control theory is usually concerned with the general class 

of processes which can be described by a system of ordinary differential 

equations, 

· (i • l, ... ,n),- (1.1) 

with prescribed initial conditions• Here xi (t) are the state variables 

of the process, u (t), ••• ,u (t) are the control variables and t is 
1 m 

time. In this st~dy it ie aesu~d that af1/axj are continuous in 

xq and~ for all i, q, j and k. (1.1) is frequently written in vector 

notation, . - ... ~ .. 
x a f(x;u) 

(1. 2) 

where the dot represents differentiation with respect to time. Here 

;; is. the state vector with components . x
1 
(t), .•• , xn (t). -u is the 

control vector with components u (t), ••• ,um(t). 
1 . 

The control vector 
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.... 
must belong to an admissible class. u(t) is an admissible control if 

' . ... 
it is piecewise continuous and lies in a closed region U, Le., u E u. 

(It will be assumed .that U is time invariant in _this dissertation.) 

An optimal control problem may be stated as follows: Given a 
... 

process described by (1.2), determine an admissible control u(t) that 

will transfer the process from some prescr·ibed initial state 

... ... 
x(to > = Xo 

(where t. = initial time) to some terminal state 
. 0 

... ... 

(1 • .3) 

x(~) = ~ (L4) 

(where t
1 

= terminal time) in a manner designed to minimize an index 

of performance J , 
,. 

l
tl -'+ ... · 

J = ·c(x;u) dt, 
to . 

(1.5) 

·where Cis frequently ~alled the cost functio~. 

1.4· Maximum principle 

The following formulation of the maximum principle is only a 

formal presentation. The reader is referred to Chapter 1 of Reference 8 

for pr-ecise theorems and explanations. 

Suppose one is interested in showing the optimality of some given 
-t ~ ~ .. 

trajectory x(t) [where x(t) is a solution to (1.2) for some u(t)] which 
. ~ ... 

connects a given initial conditidn, x(to) = XO , with a given terminal 
... ... 

conditidn, x(t1 ) = x1 • Although the init-ial time is speCified, the 

terminal ~me is 'assumed to be free in this study. For such~ trajectory 
... 

to be optimal it'is necessary that a costate vector p(t) is related to 
... 
x( t). through Hamilton 1 s equations. Hamil ton 1 s equations are discussed 

• 
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below and relate the st~te vector of the system to a costate vector by 

means of a scalar function. The form of the optimal control is that 

which maximizes this scalar function. A simple app~ication of this 

theory is presented in Section 2.1.1; this analysis should afford the 

reader a better .understanding of the method. 

For convenience the system may be considered to be of order n + 1 

by letting the cost function be fn+l and adding the equation xn+l = fn+l 

to (1.2) with xn+l(tc) = 0. Then Hamilton's equations, which form the 

basis of the maximum principle, take the following ,form: 

d~ - .... .... ~R.. 
dt - f(x;ti) = ~ (1. 6)* 

(With specified end conditions, x(t
0

) = x
0

and ~(t1 ) = ~ ] 

and 

where pis a costate vector, not-identically zero, xis a state vector 

and both are of order n + 1. It is assumed in this study·that f is not 

** an explicit function of t. The scalar R in (1.6) is 

.. - .. 
R(x;p;u) = 

n+l 
(p,f) ~ }! 

i=l 
' (1. 7) 

* For convenience, the partial derivative of a scalar with respect to 
a vector is consid~red to be a vector rather than a row vector in this 
dissertation. 
** A time-variant system may be transformed to one which is time in
variant by defining x

0 
= t mere x

0
(t

0
) = t

0 
and x

0
(t

1
) = ti, with Xo = 1.0. 
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Then the Hamiltonian K is defined by 
.. · 

.~- .. _ ... 
lC(x;p) = max R(x;p;u) 

liEu 
(1.8) 

That is, the Hamiltonian is an absolute maximum with respect to all 

.... .... 
controls in the allowable set. In order that u(t). force x(t) from 

~ ~ ~ ~ 

some initial_point x(t0 ) = Xo to some terminal.point x(t1 ) =x1 so 

.... .... 
as to minimize J = xn+l. (\), it is necessary the u(t) and x(t). are re-

lated to a continuous costate vector ~(t) by equations (1.6) .to (1.8). 

These equations, along with the necessary continuity conditions given in 

conjunction with (1.1), form the maximum principle. Furthermore it is 

shown. in Chapter 1 of Reference 8 that the Hamiltonian is. a constant and 

identic_ally equal to zero for the free end-time problem. Also pn~ is a 

non-positive constant if equations (1.6) to (1.8) are satisfied. That is, 

.... -
lC(x;p) = 0 (1. 9) 

and 

(1.10) 

for t 0 ~ t ~ t 1 • 

From (1.7) it is seen that the costate system is adjoint to the 

original system (1.2). Thus 

/ 

~ 
dt = (1.11) 

·, 

where.the superscript T refers to a matrix transpose. 
., 

If the .cost funct.ion is unity, . the process is. time optimal. Then 

the maximum principle may be formulated.as.foliows: 

Rap +R, 
n+]. (1.12) 

•' 
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.... 
where R = (p.f) and the system is again of the order n. Then Hamilton's 

equations are .. 
dx ....... 

=~ = f(x;u) dt ~p (1.13) .. .. .. .. 
[with x( t

0
) = xo and x( t

1
) = ~] 

and .. 
..!!E = oR 
dt -ax 

'the Hamiltonian H is an absolute maximum of R with respect to all 

;admissible controls: 

.... 
H(x;p) = ... ...... 

max R(x; p; u) 
itEu 

(1.14) 

Again it is necessary that equations (1.12) to (1.14) are 

satisfied along with the necessary end conditions if the. control and 

trajectory are to. be time-optimal for t
0 

~ t ~ t 1 • Also , the neces-

sary continuity conditions must be valid. The Hamiltonian for this 

minimal-time problem is a non-negative constant, 

...... 
H(x;p) c: 0 (1.15) 

for t
0 

~ t ~ t 1 • Again, the costate system is adjoint to (1.2): 

~ = - (~)T P 
(!X 

(1.16) 

cP(t) , 0]. 

If the foregoing equations which formu!ate the maximum principle 

are satisfied by only one trajectory which satisfies the required end 

conditions and if (from physical arguments about the problem) it is 

known that an optimal trajectory must exist, then the discovered trajectory 
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. h . . 1 . 8, 10 1s t e un1que opt1ma traJectory Note, howev.er, that the mathe-

matical question of existence of an optimal trajectory is quite involved 

.and will not be discussed here. 

.... 
In ·case the system is jointly linear in the state x and the control 

u, i.e. as defined by 

.... 

..=. -t ... 

x = Ax + Bu (1.17) 

(xis of dimension n), then for certain problems the maximum principle 

is sufficient for a control to be optimal. Furthermore, ·for such prob-

lems the time-optimal control (with each component of the control mag-

nitude constrained) is a piecewise-constant process. If the eigenvalues 

of the A matrix in (1.17) are real, it is shown on pages 120-123 of 

Reference 8 that there is· a maximum of (n-1) switchings between con-

straints in each control variable. 

·The previous formulations have assumed that the terminal phase 

is fixed, while the· terminal time is assumed free. -In this study· it 

is necessary to consider the case for which the terminal phase maY 

be confined to a specified smooth hypersurface S1 

If T1 is the plane tangent to 51 at the resulting terminal phase 

~- ~ ~ 

x(t1 ) = x1 , it is necessary that the system costate vector p(t1 ) 

... -be orthogonal to T1 at x1 • Let 0(x) = 0 define the· terminal hyper-

surface of interest. Then the necessary costate condition may be written 

as follows: 

where u is a nonzero constant • 
.... 

When x1 is.known beforehand the problem becomes the classical one 

with a fixed terminal point. The mathematical details of this problem, 

•. 
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along with the more general case (1. e. , both end ·points confined to 

-specified smooth manifolds, with p(t) orthogonal to the corresponding 

manifold 1 s tangent plane) is discussed in detail in Reference 8, pages 

45-50. 

1.5 State-variable constraints 

In addition to control constraints, the process is frequently 

constrained in its state variables. Optimal control of processes with 

restricted phase co-ordinates was pioneered by Pontryagin, Boltyanskii, 

~amkrelidze and Mishchenko (see Chapter 6 .of Reference 8). Later 

this·work was related to the classical calculus of variations by 

13 L. D. Berkovitz • Recent contributions in this area include publi-

14 ca.tions by S. S. · L. Chang and ~ryson, Denham and Preyfus15 • 

This dissertation follows the work of Reference 8. A ·summary 

of such work is· presented in Appendix A. The object of this section 

is to review the theory presented in Appendix A for the case of scalar 

control. Only the necessary conditions (i.e., necessary for the ~calar 

control case) presented here are used to discuss the neutronic constraint 

problem in Chapter II. One interested in the more complicated optimal-

control problem with phase constraint and .vector control should read 

Appendix A. The necessary conditions for the case of vector control 
\ 

are considerably more complicated than,those given below and only tend 

to confuse the reader interested in neutron-kinetic applications. After 

obtaining an optimal control by physical arguments in Chapter III, the 

more general theory is used to substantiate the optimal startup for a 

nuclear rocket engine in Appendix E. 

The optimization problem considered here consists of selection of an 

allowable scalar control whose phase traje~tory x lies in a given fixed. 
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region_G of the (n+l) dimensional phase space, satisfies the state 

equations [given by. (1.1) along with necessary end conditions] and 

minimizes a performance index J = xn+l(t1 ). [given.by (1.5)]. 

Following Appendix A, let the .region G be defined by 

s6c) ~ o. (1.18) 

Assume that: (1) S(x) is negative (i.e., optimal motions are not on 

the. phase-constr~int boundary) for the time interval (to , t 8 ) , 

(2). S(x) is zero (i.e., motions are on the phase,..constraint boundary) 

for the interval (t
8

,tb) and (3) S(x) is negative (i.e., motions 

are not qn. the phase-constraint boundary) for the interval (tb,tl) • 

During the time that trajectories· are not on a phase-constraint 

boundary [i.e., during the intervals of time (to,t
8

"> and (tb,t1 ) ], 

the previo\.ls· conditi.ons stated by the maximum principle are valid. 

For the interval (t
8

,ti,) the solution is on a phase-constraint 

boundary and 

S[x(t)] - S(~) - 0. (1.19) 

Equation (1.19) .requires that all time derivatives S(k) must vanish. 

Assume that the required u(t) may be computed from S = 0, where 

[o~x<x>]T - ... > = u f(x;u , (l. 20) 

Furthermore, assume that such required. u(t) is an interior point of U 

(the set of allowable controls). If an optimal trajectory is on a 
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constraint boundary, it is shown in Appendix A that the costate vector 

must be a solution of 

:. 
p = - (1.21) 

where 

( l) as(x;u) ,. o, 
aii 

(2) pn+l = a nonpositive constant, 

(3) p(t +) 
a is a nonzero· vector and p(t +) is not collinear with a 

oS(x)/ox. [The relation between p(ta+) and p(t
8
-) is discussed 

below.] 

Further, for the interval (ta' tb) it is necessary ·that p is non-positive, 

where· 

= afi(~;p;u) [aS(x;u>J-
1

. 
p au au· . (1. 22) 

Equation (1.21) represents n equations of the vector form: 

~ of~x;u) { --p = - -. . ox . 
-- ·- Jl ·- r-T· cf(x;u) [oS(x;u) - [oS(3;u) ·} -

au . au ox · .P 
(1. 23) 

and one equation: 

pn+l = 0, with pn+l $ 0. 

For the whole interval of time (to, t 1 ) the Hamiltonian is 

--X (x;p) - 0. 
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Dui"ing the interval of time '(t ·tb) the maximum principle states 
a, 

..... - - - ..... 
R(x;p;u} = [p,f(x;u)] = 0, 

where u(t) is the control required to keep i(t) on the phase-constraint 

bound~ry. 

Again, for the minimal-time problem let 

.... .... .... 
R(x;p;u)'= R(x;p;u) + pn+l , 

.... .... .... ......... 
where R(x;~;u) = [p,f(x;u)]. Then for the interval (t ·, t ) the 

o a 

maximum principle states as above that 

H(x;:{)) = max R(x;p;u) = a non-negative cons.tant 
uEu.· 

S inc~ :.K = 0 and p = a non~ positive. constant for the· entire interval 
n+1 ... ..... . . . . 

R(:>c;p;u) =a non.,.negative.constant for the interval 
..... 

(ta,tb) , w,he·re u(t) is the con.trol required to keep x(t) on the phase-

....... 
con.s t:raint bound'ary. Aga.in H(x.; p) is. a non-ne.ative constant for all 

timF~ (t0 ~t1). 

From equations (A. 7) and (A.9) with S(x) 
... 

- S (x)., the cos.tate 

variables may be di.scontinuous at the entrance corner to the phase-

constraint boundary,, i.e .. , 

.... 
= p (t +) +. 1-L assx) 

· a o.x (I. 24) 

An alternate equation (A.8) is not needed in. this thesis. Across exit 

co.rner.s '· the, cos tate v.arta ble.s a.re continuous, i.e .•. 

.... 
P(t -) b ' 

1.6 Nuclear-~eactor.proceises 

(1. 25) 

This dis.&ertation is, primarily concerned with the. minimal.:..t±me 

control of a nuclear-.fiss.ion pr()c.e·ss.. The problem is then extended 
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to include a heat-exchange process. A study is made of the optimal 

control of a nuclear rocket engine. In order to understand the 

optimal control of such systems, it is necessary to first consider 

their dynamical behavior and the necessary assumptions to arrive at 

a workable model. 

1.6.1 Neutron kinetics 

The classical one-energy group· spatially independent neutron 

kinetics are heuristically developed below. A similar development, 

as well as a rigorous treatment of this system, is presented in 

reference 16, pages 10-20, and reference 17, pages 223-2J2. Define 

the effective multiplication factor k to be the ratio of the average 
e 

number of neutrons in any one generation to the average number of 

neutrons in the immediately preceding generation for a given reactor 

of finite size. The mean generation time l is the average time which 

elapses between successive neutron generations in a· finite reactor. 

Then, if all neutrons are produced promptly, the average change in 

neutron density n per generation is 

I, dn = (k - 1) n • 
dt e 

Let reactivity ok = k - 1. 
e 

Then 

dn ok 
- =-n dt i, 

( l. 26) 

(1.27) 

The idea of a reactor period T (with T = n/n) sterns from (1.27). A 

portion ~ of the neutrons generated in each fission is delayed. These 

d~layed neutrons are emitted from certain precursors (radioactive 

fission products) which are formed in the fission process of the fuel 
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nuclei~ The rate of formation of delayed neutrons in any group is 

equal to the rate ·of decay of the corresponding precursor and hence 

the rate of formation of all delayed neu:trons is I:A. ·C. , where >... is' 
il.l. l. 

the ·decay ·constant of the _!th delay group wt'th density Ci. Six of these 

prec~rsors have been observed. Hence, from (1.26) the rate of change 

of neutron density dn/dt is given as 

6 

n+.EA..C. 
1.=1 1. 1 (1. 28) 

The rate of change of .the precursor density is the birth rate minus the 

death rate, or 

dC. 
1. 

dt 

k ~ .n 
e '-1 ~- A:.G .. 

_, 1. 1. (1. 29)' 

(i = 1, ..• ,6), where pi is the portion ofneutrons· which is.delayed due 
6 

to the _!th precursor group and -i~l ts
1 

.. _p. For most cases the reactor 

is op.erat_ed• very near k = 1 (this. condition is refer.red to as criti.c·ale 

ity). Then. eq~~tions, (1.28), and (1.29) may be appr.oxirnated very· accurately 

by 

( i = 1. •· •.• , 6) • 

d n = flk- a. 8 5 k 6 
• 

d't n + I: A.·. C . - c. n - I: c 
.<: izl 1. 1 N i•l i 

dC1 IJ'i 
=--;-_n-.- XC' 

d't "" i i 

(1. 30) 

(1. 31) 

Although usually negligible., an· exte-rnal neutr.on source S (used to start 

the chain reaction) would· effect (1'. 30)- as· shown• below: 

d n = 6 k- ~-- n + £ ;, . C . 
dt . l i=k 1. 1 

+. s (1.32)' 
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The following assumptions are made in the derivation of equations 

(1.30) and (1.31): 1) all neutrons are generated at the same average 

energy; 2) space dependent effects are separable from time depen-

dent relations; 3) the system is near criticality; and 4) delayed 

neutrons have exactly the same effect as the total population in 

regards to fissioning fuel nuclei. From assumption (2) it is possible 

to relate the neutron density in a small region to .the total neutron 

population in the reactor by a proportionality constant. This total 

population is then proportional to the number of fissions which in 

turn is p~oportional to the prompt portion of reactor power. A very 

small percentage of the power comes from the decay of va~ious fission 

products and not from the fission process itself. This.post-Hssion 

power fs usually negligible except in the case of large decreases 

from high power. The.properties of delayed neutro~s given off in 

the fission process of U236 by thermal neutrons are given in Table 

This spatially independent model is very adequate for con-

trol analysis (including optimal control) of conventionai reactor designs. 

T bl 1 1 P t t . f _,;a 36 f. . a e . recursor-neu ron proper 1es or u 1ss1on process 
by thermal neutronsl8. 

Part of Total Neutrons Decay Constant 

103 
13i }..i, sec -1 

0.22 0.0124 

1.43 0.0305 

·1. 28 0. I'll 

2.58 0.301 

0. 75 1.13 

0.27 3.00 
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The neutron kinetics as defined by (1. 30:) and (1. 31) ·are linear 

in the dependent variable n for a time. 'specified reactivity function .. 

The system, however, is generally nonau'tonomous. Reactivity ok is the 

forcing function used to control the fission process. This control 

may take the form of mobile poison control rods or poisoned coolant 

in the core which absorb neutrons, reflector cylinders on the core 

periphery which control the reflection of neutrons, or mobile fuel 

rods. 

1. 6. 2 Direct-cycle heat-exchange p.rocess 

T.he heat-exchange· process between the reactor core and coolan.t 

is complicated, nonlinear and distributed in nature but a finite· 

·difference mod(H is frequently utilized to describe the heat-exchange 

dynamics at prescribed points. The: model may be· further simplified 

since reactor c.ores. are generatly designed so that there are no· major 

variations in temperature in the radial direction.. Then the heat-

exchange process may be: represented. by an average model of one cool-

ant passage.. A qualitative description of the heat-exchange dynamics 

may he obtained w,ith a one-stage model of· the reacto;r (no axial or 

radial subdivisions.).. Such a one-stage model is. represented below by 

equatio.ns. (1:. 3J) t·o, (l.. 35). These equat.ions may be formulated 

heuristically by writing; an energy· balan.c·e as follows. The heat rate 

generated f:r.om th.e fiss.ion process is e·qua] to the rat.e at which heat 

is s.tored in the. core (which results in a core ·wall temperature 

change) plus the rate at which heat is. transferred from the core wall 

to the. co.olant. That is, 

Q Me dT' + hA (T· - T. ) = . dt · g It 
(1.33) 
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where 

Q = heat rate generated from·fission proc~ss, proportional to n, 

MC = reactor core effective mass heat capacity, 

T :a average core temperature, 

T = average coolant temperature, g 

A = heat-transfer area, 

h = heat-transfer coefficient 

and 

t = time • 

The rate of heat transfer to the coolant is equal to the rate of heat 

storage in the coolant plus the rate of increase in enthalpy of the 

coolant. That is, 

dT 
hA (T- T ) = w c __& + w c (T0 - T.), g p dt p ~ 

( 1.34) 

where 

w = weight of coolant in ·the core, 

cp = specific heat of coolant, 

w = coolant we'ight flow rate, 

To = coolant temperature at the core exit 

and 

T~= coolant temperature at ,core entrance. 

The average coolant temperature is a weighted average of the inlet 

and exit temperatures, 

T .· + 9T0 
T = ---"~'-:---

g 1 + 9 (1. 35) 

where e is a positive weighting factor dependent on the axial power 

distribution. 
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Equations (1.33) and (1.34) are generally nonlinear since 

the coefficients are functions· of the corresponding tempe'rature. For 

gaseous coolants the mass heat capacity term wc·t is negligible 
p g 

and at .high temperature the coefficients are nearly constant with the 

exception of the heat-transfer coefficient. In nuclear reactors the 

resistance to heat transfer due to co~duction through the core is 

usually negligible compared to the resistance due to convection through 

the fluid film. If the coolant is a gas and the flow is turbulent, the 

convective heat-transfer coefficient is approximately proportional to 

·o 8 19 w · • With these assumptions and with the coolant weight flow rate 

specified as a function of time, the he.at exchanger is a linear non-

autonomous system. 

From (1.34) and (1.35), with the coolant mass heat capacity and 

inlet temperature negligible; it is seen that 

(1. 36) 

Substitution of (1. 36) into (1. 33) with Tg related to T
0 

by (1. 35) 

shows, that 

h ( ·o 8 • w ere since h ex w. ~ w) 

and 

dT ....,SL 
dt .... MC 

+_L] hA 
1 

F:::·---. 
aw 

a= a·heat-transfer coristant.· 

(1.37) 

(1. 38) 
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Notice that (1.37) is approximately bilinear in wand T. This simple 

model is found to be a good approximation of the actual process if· 

the effective mass heat capacity is selected according to the axial 

position of the temperature o{ interest. 

Heat-exchange processes·.· (including the foundation of the above 

model) are discussed in detail in Reference 19. 

The heat-exchange process is usually coupled to the neutron 

kinetics by temperature reactivity. As the core temperature increases 

the core expands and more neutrons escape·. Also the various neutron 

cross-sections change with core temperature. The net effect is usually 

a negative reactivity feedback which may be approximated by 

( 1. 39) 

where ct is a temperature coefficient of reactivity (usually negative). 

This coupling has a stabilizing effect on the power reactor. It is 

important to realize that the coupled neutronics heat-exchange 

process is a nonlinear system even if the heat-exchange p.rocess is 

linear. 

1. 6. 3 Ihe., .nuclear· rocket . engine 

Conventional control and dynamic analysis of nuclear rocket 

engines are treated in Reference 20. Such a system can be approxi-

mated by the equations given below along with. the above neutronics 

heat-exchange dynamics equations. 

Thrust and specific impulse are variables of prime interest to 

any rocket engine. Thrust F is approximately derived from the stag-

nation pressure at the nozzle entrance P and the nozzle throat area 
c 
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21 
At That is, 

F ~ c~tpc , (1.40) 

where cf is a nozzle constant. Coolant or propellant temperature at 

the nozzle entrance (reactor exit) determines specific impulse I sp 

as shown by 

I sp 
F =• w (1.41) 

where cs = a constant for the nozzle and MW = propellant molecular 

. h 21 we1.g t • Equation (1.41) shows the importance of specific impulse 

to rocket propulsion. The promise of nuclear.rockets and hydrogen 

propellant for· space travel is shown by (1.41). Hydrogen is a good 

moderator and hence a derisity reactivity.further couples the heat 

exchanger to. the neutron kinetics. Assume. that the propeilant is 

gaseous in the core. Then the density may be comput~d from the gas 

equation: 

where 

and 

p = P/RT 
g 

p = average propellant density in the core~ 

R = ga~ constant 

P = average propellant core pressure •. 

(1.42) 

The density reactivity contribution is computed by the follm.;ring: 

(1.43) 

where 

kp = propellant density coefficient of reactivity (positive) 

and v = reactor core void volume. 
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The flow is assumed choked through an exit nozzle and static 

conditions are approximately equal to stagnation conditions due to 

the low core exit mach number. Then pressure at the core exit is 

. i P ~ c w T0 , 
c ·n (1.44) 

21 
where c = a nozzle constant • · With the approximations: P ~ Pc and 

n 

T ~ T , the propellant density reactivity is g . 

(1.45) 

Wh"ere cp = a constant. The magnitude of propellant reactivity may 

very well be greater than that of the classical temperature reactivity. 

Although the reactivity of the propellant is positive, its derivative 

with respect to temperature is negative. This fact further enhances 

reactor stability. 

A hypothetical nuclear rocket engineconfiguration (at rated 

design conditions) is presented in Table 1.2. The dynamics of the 

propellant flow system will be neglected in this study but constraints 

due to pump cavitation and stall are discussed in Chapter III. 

The computer studies which are to follow in Chapters II and III 

utilize the data given by Tables 1.1 and 1.2 unless otherwise specified. 
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Table 1.2 Hypothetical nuclear rocket rated desig~ c~nditions 20 . 

Thrust, F 

Specific impulse (with losses), I 
sp 

Reactor power , Q 

Propellant flow rate, w 

ioo,ooo lb 

760 sec 

2260 megawatts 

130 lb/sec 

Reactor exit propellant temperature, T 4500° R 
0 

Nozzle throat are~ At 

Nozzle expan:sion ratio, 

2 
61 in. 

20 

Heat exchanger thermal time constant, 1h 1.5 sec 
. . 

Inlet propellant temperature, T. 
1 

Neutron mean-effective lifetime , t 

Propellant reactivity, ok 
p 

Temperature reactivity , okt 

3 (10)- 5 

0.00,65. 

-0.0065 

sec 

Effective core mass heat capacity, MC 1140 --~~~i~u~ 



Chapter II 

OPTIMAL NEUTRONICS CONTROL 

The optimal-control problem emphasized in this chapter may be 

stated as follows: (1) given an.initial state of the neutron kinetics, 

find the allowable control reactivity which transfers the system to a 

desired state in minimal time; (2) it is required that the system have 

steady-state initial conditions and a steady-state terminal neutron 

level; (3) the allowable control r·eactivity is defined by l5k I · ~ y~, 

where y is a constant and ' is the amount of reactivity required to 

make the reactor prompt critical. (Prompt criticality exists when 

the system is critical without the presence of any precursor neutrons.) 

The value of y depends on the system design and its application. It 

will be assumed that the control reactivity is a linear function of con

trol position for the reactivity required. Reactivity 5k is replaced 

by u, the control variable, in the following analysis. -

Although the negative reactivity constraint may safely be less 

than the positive constraint, symmetrical limits are assumed for con

venience. This.assumption allows the forthcoming equations to be 

written more compactly without ~ppreciably affecting the results. 

Furthermore as u becomes greatly negative, control ·effectiveness is 

lost due to precursor dominance. Hence, it doesn't make the system 

much f~~tP.r. if a large negative reactivity constraint is allowed. 

This lack of controllability foi large negative reactivity is shown 

by Figure 3.2 on page 31 of Reference 16. 

23 
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Minimal-time startup and shutdown are especially desirable for nu

clear rocket engines and nuclear-reactor power generation in space. 

Physically, the reactivity may be changed very rapidly and control rate 

of change constraints, particularly for space applications, are frequen

tly negligible. In some instances however (primarily in regard to com-

mercial _rea~tors), safety dictates a low constraint on control velocity. 

Furthermor~, physical constraints require that the neutron density must 

be positive and less than some maximum. 

Time-optimal control will be considered for the prompt neutron kin-

etics prior to the study of the one-precursor-group model. After a 

detailed analysis of.the one-precursor model, comparisons are made with 
. - . 

the six-precursor model. 

From physical arguments, one mig~t ~xpect the time-optimal control 

of these_neutronic processes to be maximum allowable effort. The 

following analysis shows that such control is time optimal but the 

analysis_presents details of the control process which are not so ob-

vious. 

2.1 Prompt-neutron kinetics 

In order to introduce the more complicated neutronic optimal-

contrcl processes, _it is convenient to first consider the prompt-

neutron kinetics: 

(2.1) 

. 
This approximation to the neutron kinetics is valid for C which is 

small compared to n [see (1.30)and (i.31)]. Assume that the system is 

originally at steady-state with u = o and n(t0 ) = no. The optimal

control process is to take the neutron level to some prescribed steady-
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state level in such a manner as to minimize the time elapsed. The 

following analysis will give consideration to constraints on reactivity 

and the rate of change in reactivity. 

2.1.1 Bang-bang control 

The inner product 
.... 

(p,f} for this system (2.1) is 

u 
R.(n; p ;u) • JDP 

and the adjoint equation of the system defines the costate: 

!!I! = • l!p 
r1t .e 

(2.2) 

(.2. 3) 

Let the allowable control set U be defined by I u I ~ y~ (this 

constraint is seen to limit the inverse reactor period in direct 

pro.portion). Again, as shown by (1.15) '· the Hamiltonian is a non-

negative constant: 

H(n;p) = max R.(n;p;u) 
uEU 

(2.4) 

and the control which maximizes R lies on the boundary of·the allow-

able set. Hence, the op'timal control is a bang- bang process such that 

u 0 = y~ sgn np (sgnF=F/IFI> (2.5) 

for t 0 < t < t 1 • Since n(t) > 0~ switching is determined by the sign 

of the costate variable p. In other words, 

u 0 = yp sgn p . (2.6) 

Therefore, since p [the solution. to (2,. 3)] cannot change sign for this 

piecewise-constant control, the optimal increase or decrease in neu-

tron level reqvires constant maximum or minimum reactivity until the 

desi~ed terminal neutron level is reached, At the terminal phase, 
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reactivity is returned to the null_position to maintain steady-state. 

The absolute value of the inverse reactor period is at the maximum 

value of y~/L between end points. 

Although (2.6) indicates the form of the optimal control, the 

corresponding state and costate trajectories must be solutions to (2.1) 

and (2.3). The solutions of these equations, 

and 

n = ~ exp (1: do/L) 
(2. 7) 

p = Po exp (- ( u do/£) , (2.8) 

provide a constant non-negative Hamiltonian, Y!3Ilo I Po f/ £, with 

p{to) = p0 positive for increasing neutron level and negative for de-

creasing level. Only the bang-bang control process, however, makes 

the Hamiltonian a maximum. Furthermore, since only one bang-bang con-

trolled trajectory connects the desired end points, the optimal solu-

tion is obvi.o~sly unique if it is assumed that an optimal control 
., 

exists.· Typical optimal trajectories are shown in Figures 2.1 and 2.2. 

Although one variable uniquely defines the state of a first-order 

system, a plot of n vs n is introduced since such plots are used later 

to treat the one-delay group case. For u0 =.:!: y~ the optimal time 

solutions to (2.1) and (2.3) are 

n = no e .:!:YP ( t- to) I£ 
(2.9) 

and 

p = Poe .:!:Y13(to-t)/.2 
(2.10) 
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SLOPE A = ~ 
0- a : u = y/3 
a-l:u=O 

A 

FIGURE 2.1 TIME-OPTIMAL 

INCREASE OF PROMPT

NEUTRON DENSITY 

SLOPE . B = - :tj
q - a : u = - y/3 
a-1 ~ 4=0 
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FIG.URE 2.2 TIME-OPTIMAL · 
DECREASE OF PROMPT
NEUTRON DENSITY ·' . 

n 

FIGURE 2.3 TI'ME-OPTIMAL 
· STARTUP OF PROMPT

NEUTRON KINETICS WITH 

VELOCITY-LIMITED 

CONTROL 

. r 
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2.1.2 Velocity-limited control 

Velocity constraint is sometimes required due to the possibility 

of failures in the control syst~m. (see pages 226-236 of Reference 16). 

After the previous. analysil? it would be expected that the time-

optimal control process with velocity-limited control would still be 
. . 

maxirrum allowable effort. In other words, for a mi.nimal-time increase 

in neutron level one might hypothesize that reactivity should be in-

creased at its maximum allowable rate until it reaches a maXimum 

allowable value at t = ta. Then at some appropriate time tb' reactivity 

should be decreased at its minimum allowable rate until reactivity is 

zero at t = t 1 • This zero value should be held to maintain t}le desired 

neutron level for t ~ t 1 • For a> me problems n( ti) -n( t 0 ) or the allowable 

rate of change of reactivity may be so small that it is necessary to 

decrease reactivity at the minimum allowable rate .before the reactivity 

magnitude constraint is reached. The fc;>llowing analysis shows for 

either case that such trajectories do satisfy the necessary conditions 

set forth by the maximum principle. 

Control processes which only use two values, the maximum and mini-

mum allowable velocity, .without uaing the control-magnitude conatraint 

value frequently are called pan--pang control. Similarly,. processes 

which only take on the valuea :.of control-velocity con~traint and control-
'·. 

magnitude constraint frequently are referred to as pang-bang processes. 

With control velocity constra~nt, it· is ~onvenient to defi.ne the. 

velocity as a control variable u and the reactivity aa a new state 
. ~-

variable &k. Then the system is represented ~Y 

~; 
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6k n=r 
. 

6k = u. 

(2 .11) 

with n(to) = no and 6k(t0 ) = 6ko. Here it is desired ·to find the time-

optimal control which forces the process from some steady-state 

initi.al. condition, n(to) = no and ~(to.) = 0 [5k(to) = 0], to some higher 

steady~state ·terminal condition, n(t1 ) = n1 and ~(tl) =.0 [6k(t1 ) = 0]. 

Here lui $ ~~ is a control constraint and loki $ y~ is a phase con-

straint. Then the phase constraint boundary is defined by 

s = loki y~ = o. 

While loki < y~. t < t < t or t < t < 
b 

t and the maximum prin-
0 a 1 ...... 

ciple may be applied to this problem. The inner product (p,f) and 

adjoint equations are 

and 

. 
P:t= 

-Pt6k 
l 

. ~ 
Pa = - l 

Maximization of (·~12) requires a pang-bang proces~ such that 

1l = 11~ sgn P:a , for lo kl < Yl3 

and 

for 1 ok I = Y~ and s = o • 

(2.12) 

(2.13) 

(2.14) 

With&= ~~(t-to) < yl3, the solutions of (2. 7)_, (2.8), (2.12) and 

(2.14) yield the following for che initial portion of the trajectory: 

.·' 



30 

n = Ilo exp [5k(t-t0 )/2.e]., (2.15) 

Pl = Pl 0 exp [-Bk(t- to) I z.e J , 
(2.16) 

P2 Pa o - P1 o no (t- to ) 
.R, 

and 

H = I p2 0 I ll~ ~ 0 (2.17) 

where· the o subscripts refer to the initial state and costate, t 0 < t < ta, 

and ta ·= to + y/1). Also, p10 and Prao are positive for no < n1 • 

The problem of minimal;..time increase in neutron level has the 

solution which is given below and presented by Figure 2.3. The neutron 

level for the· initial .po:rtion of.the ·traJectory is 

(2.18) 

where to s; t < t ,First, suppose that ·llo and n1 are such that 
a 

·Bk= y·j3 for ta S: ~ :5: tb. Then n( ta) is 

n = no exp <l:~/21\l) a 
(2.19) 

and 

(2.20)· 

for ta .:5: t < 't,b . At the constraint .exit point, the neutron level 

nb = n(tb) is coinputed by solving (2 .11) from t 1 and n1 with time 

:reversed. Hence, 

(2.21) 

where n,1 = n(t1 ) and t 1 = terminal time. Then the log of equation 

(2. 20) shows. that the time transpired while the trajecto.ry is on the 

state..:.variable cons.traint Bk_= y~ is computed by 
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'.t nb 
t = t +- log-
b a y~ na 

(2. 22) 

During the final negative control ramp to 5k = 0, the neutron level 

[as computed from (2.7)] is 

n ,_ n exp) ] [<t-tb) -. T\~(t:-t~)J l , 
- b l J, \ 

(2. 23) 

The maximum principle requires that the adjoint equations have a 

solution. These solutions are given· by (2.16) with 5k = 'flJI(t-t0 ) and 

t
0 

s t < t
8

• At t = t~ and t = tb the adjoint vector ~ust satisfy 

certain constraint corner conditions. These conditions are given by 

(1.24) and (1.25). Although the Hamiltonian is constant and defined. 

by (2.11) for t 0 s t s t 1 , the r.ostate may· be discontinuous across the 

entrance corner, i.e., 

where 

... 
p(t -) = a 

;(t +) + dS 
. a IJt"':; 

dx 

dS [ o J ~ = sign 5k • 
dx 

,Across the exit corner the costate .is continuous, as shown by 

( 2. 24) 

( 2 .• 25) 

Then, since n(t) and Hare continuous for to~ t s·t1, it is necessary 

from (2.17) that 

Pla = p (t +) = i.'flPao • p (t -) . 
1 a yn 1 .a 

a 
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Therefore, from ( 2.15) and (2.16) 

and 

p (t -) • 0 . 
2 a 

From (2.24) p (t +) = IJ. = p n· (tb-t )/L. . Since cS/o; = [oo] , it is 
2 a 1a a a 

seen from (1.21), (2.25) and (2.16) that for the interval {ta,tb) 

and 

p
1 

= p
1

a exp [-y~(t-ta)] 

= P1o exp [-'{j3(t-to)] 

(-~---- ·r 

P< =i 1-4 - P1 ana ( t- ta) I£ 
( . 

J Pioilo(tb-:t)/.2 • 

(2.26) 

Hence, since p
2

(tb).,. 0, p3 (t;+>~-~~_~= p1 ~n~~(tb-ta)/L • PtoDo(tb~ta)/i. 

Since ~ (t) is piecewise-constant of one value, ut(.t}--can only __ 

change sign once if the trajectory is to satisfy the necessary condi-

tions at t
0

, ta, tb and t
1

• 

During the interval (tb,~ ), the adjoint variables are again 

defined by (2.16) with ok = Yl3- ~~(t-tb). 

As shown in Figure 2.3, the adjoint variable p1 is initially selected 
\ 

to be any positive value. Along with p10 , the complete solution is 

determined by no and n1. Similarly, a solution could be generated for 

minimal-time decrease in neutron level with p1 (t0 ) of arbitrary nega-

tive value. 

Next, consider a time-optimal startup but suppose no and n1 are 

such that u(t) never reaches the constraint boundary y~; in other words, 
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nb from (2.21) is less than na from (2.20). Then the maximum principle 

can be applied as before with u·0 = i)p sgn Psl• Furthermore, since ~ (t) 

is constant [from (2.13)] there is only one sign reversal of U
0
(t). 

For this case: t s t < t o a 

- Tif3 t < t s t 
a 1 

t is computed below and then may be related to t by t = t + 2t • a 1 1 o a 

The time solutions, (2.15) to (2.17), are again valid with 

o ks:: Tj~(t-t0 ) for t
0 

s t < ta. The same solutions describe the time 

response for t < t s. t if the o subscripts are replaced by 1 sub-
a 1 . 

...... - ... 
scripts and time is reversed. Observe that l1>21] = IPiaol· 

Equating the two solutions n(t) (i.e., the solution.for 

t
0 

s t < ta is equated to the solution for t
8 

< t s t
1

) one can compute 

ta by 

Time-optimal shutdowns may be computed similarly. 

The above results may be applied to the neutron kinetic process 

in which most of· the delayed neutrons are lost to the process.· Such 

systems may be approximated by 

where u' = ok- fL 

dn 
dt 

u' 
= J. n 

2.2 Single-precursor group.neutron kinetics 

(2.27) 

For many applications and to obtain a qualitative description; 

the six-group neutron kinetics [as given by (1.30) and (1.31)] may be 

approximated by a one-delay-group model: 
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dn - ..!:!.:..ft n + ;\.C = .!! - C dt - ~ 2 n 

and (2.28) 

dC ] 
dt = ~ n - A.C , 

where A. is an average decay constant (computed so that the one-group 

model approximates the six-group model), lui s. y~, n(t0 ) ·.., no and 

C(t0 ) = C0 • Equation (2.28) may be represented by the vector equation: 

-t .... -t .... 

x • A(u)x • f(u,x) (2.29) 

where luI s. yj!, x1 =- n, JCa = C, and ;;(to) = ~. This system will be 

analyzed in some detail since it is of low order and closely· approxi-

mates the higher-order system for fast control. 

2.2~1 Time-optimal control with the two state variables nand C 

The logical choice of state variables, following equations (2.28), · 

is neutron density n and neutron-precursor density C. Then the costate 

is defined by the adjoint system: 

.:. T -. 
p a -A (u)p (2.30) 

where p(to) =Po and lui s. yp. The optimal trajectory is to connect an 

initial steady-state no, Co to a terminal steady-state n1 , C1 in mini-
-. ... 

mal time. The inner product of (p, f) for this .system is 

(2.31) 

. 
where C is not an explicit function of u. Again R becomes a maximum 

on the boundary of the allowable control set with a bang-bang process 

producing the time-optimal control. Since n is positive, the control 

is determined by 
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(2.32) 

... 
and the Hamiltonian is a non-negative constant evaluated on x(t) and 
... 
p(t). That is, 

.Y§ • 
H(n,C;p) = :t n.j PJ I + C (p2 -pl) ~ 0 .. (2.33) 

The solutions to (2.28) for u =! y~ are given in Appendix B and 

are characterized in the phase plane by.a saddle point (for u ~ y~) and 

a stable node (for u • -y~). Such a phase portrait of n vs Cis pre-

sented in Figure 2.4. Although trajectories .converge sharply to the 

eigenvectors (to be computed below) in all the phase planes presented 

in this chapter, it must be realized that each phase trajectory repre-

sents a unique solution of the state differential equations (with time 

eliminated). Hence trajectories really don • t coincide and points b, c, 

d and g (in Figure 2.4 and other. forthcoming phase portraits) are on 

their appropriate trajectory and a very small distance away from the B 

or D eigenvector. Since the eigenvectors of the A matrix help determine 

these phase-plane trajectories, their computation wi.ll follow .. 
I 

The eigenvalues of the A matrix for con~tant u (i.e., the roots 

of the determinant jA-Ip~ = 0) are given by 

where 

b· + ·(ba + '4c)j 
2 

b = u ~ 8 - A and c = ~A 

(2.34) 

If 4c << b2
, then the Taylor serhs fo1: (2.34) indicRteR that 

P1 ~ -c/b and P2 ~ b Furthermore, assume that Al << p - u in 
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c 

. · ( .), = 0. I ) 

. n, 

0- EQUILIBRIUM LINE u:e. C= 0 AND ~ = 0 WITH u = 0) 

wiTH C= An 
A- EIGENVECTOR FOIR u = 0.25/3 

B·- EIGENVECTOR FOR u =·0.5/3 
C - EIGENVECTOR FOR u = 0.~{3 
D - EIGENVECTOR FOR u = -0.5/3 
E - EIGENVECTOR FOR u = -0!_9/3. 
SOLID TRAJECTORIES ARE FOR u = 0.5/3 

SMALL DASHES ARE FOR u = -0.5f3 

FIGURE 2.4 NEUTRON DENSITY. VS NEUTRON-:-PRECURSOR 

DENSITY MINIMAL-TIME TRAJECT.ORIES 

f 
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the above equation for b. (For most reactors Al is less than about 

4 ' 
~o- seconds.) Then these eigenvalues may be approximated by the 

following: 

A\,1 .± AY 
P1 ~ = 

J!-u (1+"() 

(2.35) 

u-~ ~(.± y-1) 
= 

If u-p »At, the first assumption (i.e., 4c << ba) requires 

that 
2 ' 

(u-~) /u » 4~t. This assumption is valid for all values of 

negative reactivity. For positive reactivities, the accuracy of this 

approximation depends on .£ and u. For values of u less than 0. 6 8 this 

approximation is good for most reactors but for larger values of 

u the approximation is limited to lower values of t {or neutrons of 

higher energy). If u = 0.9f3. for .example, the approximation is only· 

accurate if t should be of the order of 5{10)-5 sec or less. Hence, 

the.approximation is accurate for many applications such as the 

nuclear rocket reactor·. 

The eigenvectors corresponding to these real and dist'inct roots 

of the characteristic equation are computed by ~ppendix equation 

(C. 6). With u = .:t yp' the tangents of these eigenvectors are given 

as follows: 

P1 -al -"( p (l+·o 
sl - ~ + £'A ~ (ytl) 

and ( 2· 36) 

Pz·a1 
S:a = ~ 0 . 

~ 
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For typical values of t 

where a1 = (u-~)/i. and a2 =A.. Table 2.1 presents evaluations of these 

eigenvector tangents and eigenvalues for y =. 0.5 and y = 0.9. From 

(2. 34), it is readily seen th~t P2 is slightly smaller than (2. 35) 

indicates for u .. -y~ and slightly larger for u = yB. Thus, S2 is 

slightly negative for u = -yf3 and slightly positive for u = YIL 

u 

P1 h 

•.tp2 

.tA.Sl 

Table 2 .1 

Approximate one-delay group neutronic eigenvalues and 
eigenvector tangents 

0.5 ~ -0.5 -~ 0.9 ~ -0.9 

1 -0.333 9 -0.47 

-0.5 ~ -1.5 ~ -0.1 p -1.9 

0.5 ~ 0.15 ~ 0.1: ~+9.tA. 1.9 

i.S2· . 0+ 0- 0+ 0-

0.5 

0+ 

For the adjoint system 

.1.5 

0-

0.1 + ~ 
0+ 

. . . 

1.9 

0-

f3 

~ 

~ 

Equation (2.29) indicates that the optimal switching is deter-

mined by the adjoint system. Hence, it is of interest to exattdne the 

behavior of the costate.variables. The time. solution to the adjoint 

system (2.30) is presented in Appendix B. 

The eigenvalues of -AT(u) in equation {2.30) are equal in mag-

nitude but opposite in sign to the eigenvalues of A(u). Despite this 

•. 
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similarity, the eigenvectors are generally very different than those 

of A(u) as sho~ by their tangents: 

(2.37) 

and for typical values of i 

These eigenvector tangents are evaluated for y = 0.9 and y = 0.5 

in Table 2 .. 1, 

Figure 2.5 describes the phase behavior of the adjoint system 

with u = 0.9~ for positive p1 and u = -0.9~ for negative p1 • The 

phase in the right-half plane is described by a saddle point· while 

that in the left-half plane is typical of· an unstable node. Since 

these adjoint variables are continuous without phase-plane constraints, 

it is seen from Figure 2.5 that p1 can only have one zero in finite 

time. For any value of y, the eigenvectors· for the one-delay-group· 

kinetics are similar to those shown in Figure 2.5,J i.e., they are 

always in the quadrants shown and with the directions indicated. Hence.· 

there cannot be more than one switching for the time-optimal bang-bang · 

process. 

Since the constant u trajectories are unique solu~ions of the 

differential equations of the system, Figure 2 .• 4 indicates there is only 

one possible trajectory which joins ariy reachable state from some initial 

state with a maximum of one switching and therefore !)UCh a trajectory 



40 

---------~-+----·-------::::~ stA 

_j_ 

J 
I 

SIA PI > 0. u :. 0. 9/3 

p < 0. u = -0.9/3 
I . . 

Fl GURE. 2.5 ONE -PRECURSOR -GROUP ADJOINT TRAJECTORIES 
\ 

FOR A BANG.:.BANG REACTIVITY PROCESS 

--- u: -0.5/3 
--- u: 0.5/3 (. A = 0. I , ~ = 3 ( I 0)- 4 ) 

FIGURE 2.6 NEUTRON~PRECURSOR DENSITY VS TIME RATE 
OF CHANGE OF NEUTRON-PRECURSOR DENSITY FOR A 

BANG- BANG REACTIVITY PROCESS 

(LABELLED POINTS REFER TO SIMILAR. POINTS IN 
FIGURES 2.4 AND 2.7) 

l' I I 

I 
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must be optimal (e.g., trajectory a-d~f has u • yp from a to d and 

u • -yp from d to f). Also the principle of optimality (viz., any por-

tion of an optimal trajectory is optimal) shows that if a desired ter-

minal state can be reached. from a given initial state with no switchings 

and luI • Yll, then the joining trajectory is optimal. 

An example optimal-·startup trajectory, linking an initial steady-

state phase no, C0 with a desired terminal steady-state phase n1 ,.C1 

is represented by trajectory a·-d-f in Figure 2.4. Initially, the 

system is in ste~dy-state with zero reactivity. Then reactivity is 

made equal to the maximum positive constraint Yll while p1 is positive. 

At ·point d, p1 goes through zero and becomes negative as reactivity is 
..... · . 

switched to the minimum negative constraint. When the desired phase 

point f is reached, reactivity is returned to zero to maintain quies-

cence. A time-optimal decrease in state i.s analyzed similarly with 

Pl. 0 negative. For steady- state end conditions, the Hami 1 toni an has the 

positive value given by the following equation: 

(2.38) 

where the o subscript represents initial values·and the 1 subscript 

represents terminal values. 

The switching point' for the time-optimal stat;'tUp proce~s is con-

veniently determined by the neutron level n (or the neutron-precursor 

level C) at point d. Since the trajectory is asymtotic to the eigen-

vector Bin Figure 2.4, for any significant difference, (n1 -no, the 

switching point is nearly independent O·f the initial state. In many 

physical systems, it might be desirable to switch to a simple control 

law which is a continuous function of the system state within some 
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small pred~~e_rmined region of .the. de$ired terminal phase. . The size 
. . 

and shape of this region could be determined by the accuracy of the 

equations in defining the physical process, the accuracy of the measur~ 

ing devices and the capability of the new closed-loop control. Hence, 

the exact switching point might not be too important • 

.Time may be. el.iminated from the solutions given by (B. 7) if a 

knowledge of the exact switching point .is desired. Then the trajectory 

passing through any desired phase may be tomputed as shown in Appendix 

D. If the des.ired terfuirtal phase is n1 , C1 , the following equation 

(2. 39) must be satisfied at point d in Figure 2 .4._ 

where the second subs~ript :a of·p refers to u.= -y~. However, as 

shown in Figure 2.4, C ~ C1 .at the switching point. 

A time-optimal shutdown is shown in Figure 2.4 by trajectory 

f-g-a. Again the switching poirtt is almost independent of 

the initial state and can be determined by n at point g. The exact 

switching ·point g, however, touid be determined by the equation given 

below, which is similar to (2.39) with the eigenvalues replaced by 

Pu and p21 ·, i.e., those for positive reactivity y ~· 

(2.40) 
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For example, equation (2.39) describes a switching line for a time-

optimal startup to a desired terminal phase (n1 , C1 ). Below this line 

u = y~ and when this line is reached u = -y~ until the desired terminal 

phase is reached. Similarly, equation (2.40) defines a switching line 

for a time-optimal shutdown with u = -yp above the switching line. 

If a knowledge of n and C are available, an on-line computation 

could be made (e.g., digitally or by means of an analog function 

generator and a comparator) to determine the switching point from 

(2.39) or (2.40). 

2.2.2 Time-optimal control of neutron level 

In practice it is generally desirable to traverse from some 

iniiial steady-state neutron level to a ter~inal steady-state neutron 

level in minimal time without the terminal precursor level necessarily 

being at steady state. This problem n~y be specified by merely de-

fining the terminal set t9 be a linen= n1 in'the n vs C phase plane 

shown in Figure 2.4. Optimization problems with a variable terminal 

point belonging to a specified hypersurface were discussed in Chapter I, 

page 8. In general, the costate vector must be orthogonal to the tan-

gent plane of the terminal hypersurface at the free terminal state. 

In regards to this neutronic control problem, the terminal' hyper-

surface is simply the 1 ine n = n1 in the n vs C phas·e plane. Hence, 

the adjoint vector must be perpendicular to this terminal line . 

Wltlt P:a (t,i) = 0 and time revereed, it is seen from Figure 2.5 

that p1 ( t) can have no zeros for t < t 1 • Similar plots, with the 

eigenvectors in the same quadrants, could be obtained for other values 
{ 

of y. Hence, the time-optimal control with a reactivity constraint 
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is constant for t 0 < t < t 1 • This fact is substantiated by the. solu-

tion to the, adjoint system with time reversed which is similar to the 

neutronics solution (B.7). 

With P.a (t1 ) :a 0 and time reversed (t s; t 1 ) 

pll 
(2.41) 

where P1(t1) = P11, Pa(tl) = 0, ci1 = P;a +~ (l.f.y), crl = -[pl~(l.f.y)J 

and u =! y~. Then, from (3.35) and (B.6) [with p2 slightly larger 

than (3.35) predicts for u = yjJ and slightly smaller for u = -yji] 

ci 1 :::::; 0.:!: and cfl :::::; - [.:!: ~ + 1 (l.f.y)l 
(l+y) J (2.42) 

Order of signs is read according to order of u •! y~. 

For u = -y~, both coeff~cients· of the exponential terms in (2.41) 

are of the same sign and p1 (t) cannot have any zeros. Also, for 

u = -yf!, both coefficients are negative; hence, p1 (t) can have no.zeros 

and there can be no switching in the control process. 

The time-optimal solution to the neutron kinetics [equation (2. 28)] 

is again given by (B. 7) on the interval (to, t 1 ). 

At the terminal time the neutron-precursor level is not yet at 

steady-state. Therefore, reactivity must be different fr.om zero to 

maintain constant neutron leve~ n(t) = n1 for t ~ t1 . From equation 

(2.28) it is seen that the following equation is required to ·hold the 

neutron level constant: 

( 

.. 
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For constant neutron level n1 and t 1 s t, the solution to (2.28) is 

C L ' + C ( tl ) - H l e-A. (t-tl ) 
[ 

~n ] . 
= i,A_nl Nf\ (2.44) 

Then 

(2 .45) 

and 

(~.46) 

With reference to a typical startup trajectory a-b-f, as pre-

sented in Figure 2.4, it is seen that C diminishes according to (2.45) 

and Figure 2.6 (phase plane of C vs C) for n = n1 and would only be

come zero at C(t) =~A~~, according to equation (2.28). This state 

is never reached in finite time, as shown by (2.44). 

It is interesting to recognize the similarities in the optimal 

control of the prompt· kinetics· and the single-precursor-group kin-

etics; e.g., both require no switching, except at the.end points, to 

vary neutron level from one state to another in minimal time. 

2.2.3 Admissibility of the terminal 'control 

The allowable set of controls for the optimization process.has 

been defined by lui s y~. To assure that the terminal control is 

contained in the ·set of allowable controls for the· case of unsynnnetri-

cal limits, let reactivity be limited by -~1 ~ s u ~ y2 ~. From the 

following analysis it will be seen that the required terminal control 

belongs to this allowable set for initial equilibrium conditions. 

From equation (2.46), it is seen that 
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- (1 + ·yl) :::;; - (2 .~7) 

or 

nl p nl ~ 
(l-y2 ) if... ~ C(t1) :::;; (l+y1 )lA . (2.48) 

In other words, if C(t1 ) satisfies (2.47), the terminal control is 

in the allowable set. The first of equations (2.36) along with (2.34) 

shows that, for u = y2 ~, the left side of (2.48) is true for any 

trajectory which starts from the left side of the B eigenvector in 
•. 

Figure 2.4. That is, since the eigenvector cannot be crossed, the 

following inequality is valid: 

C(t) 

Then certainly C(t1 ) > 

u(t) < Yzl3 • 

Y-c 
+ -·- n 

1-y:z 

and the terminal control 

(2.49) 

From "the eigenvector D in Figure 2.4 (for u =-y1 13) it is seen 

that for any tra_iectory which starts to the right of D, the following 

inequality must be satisfied: 

Y1 
C(t) :::;; -··-·-· 

1. +o,., . l_l 
(2.50) 

Then certainly C(t1 ) < ~ (l+y1 )nl and the terminal control u > -y1 p. 

Hence, there is always a step change in reactivity from. the boundary 

and into the allowable set when n(t) = n1 and the required terminal 

control is in the allowable set thereafter. 

'· 
2.2.4 Consideration Of othe~ state variables 

Since the rate of change of neutron level has physical interest 
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and is usually measured, one would suspect that n and n would be a 

good selection of state variables for control purposes. With state 
. 

variables nand n, equation (2.28) may be represented as follows: 

= (-T (2.51) 

This equation may be written conveniently in vector form (with x1 = n 

and ~ = rv as' . ..... 
A(u, u) 

.... 
X = X (2.52) 

whPrP 

A(u, u) 
= [ ~~~ 1 

- ~ .!!:1 
t 

(2.53) 

Since the eigenvectors of (2.53) for constant u lie in such a manner 

that the position vector and velocity vector point in the same dir'ec-

tion (see Appendix C), it fs apparent that the eigenvectors have slope 

equal to the eigenvalues of (2.53~ These eigenvalues are given by 

equation (2.35) . 

Although not drawn to any scale, Figure 2.7 gives a qualitative 
. 

description of several piecewise continuous n vs n phase-plane trajec-

tories, which approximately correspond to continuous trajectories 
. ) 

presented in Figure 2.4. In this phase plane, t 1 - to =(nl J dn 
Jr~o n 

and thus the above time-optimal process is substantiated by the fol~ 

lowing argument: With maximum or minimum allowable reactivity (i.e., 

u =! y~), the trajectory is farthest away from then axis that the · 
' • ' r 

control constraint allpws. T~en. the time evolved in changing neutron 

level between steady-state conditions is minimized by the bang-bang 
. . 

process with no switching between the end states. 
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TRAJECTORY I : 

+ b+ 0 • D a -a - 0 u = y~ 

b•-b:u=~ 

TRAJECTORY 2 : 

a • c,. : u = y/3 
• 

c• -e : u = I. nc 

e•t'-:u=--y/3 

f-..:.t:u=O 
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I 
I 

·t 
I 
I 
I 
I 
I 

• • v/3 o• : c = o, n = -T n 

TRAJECTORY 3: 

a-d• : u = y 13 
ct-r: u = .... r/3 
f--t: u = 0 

Fl.GURE 2.7 n. VS ~ BANG-BANG CONTROLLED PHASE-PLANE 
TRAJECTORIES 

( LABELLED POINTS REFER TO SIMILAR POINTS ·IN 
FIGURES 2·. 4 AND 0 2.6) 
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The discontinuities inn at the switching points, however, 

generally make it an undesirable state variable for the bang-bang 

controlled process. As shown by equation (2.28) and again below 
. 

by (2.54), the·rate·of change of neutron-precursor level C is gener-

ally continuous for piecewise-continuous reactivity. 

+ (2.54) 

. 
The continuity of C makes it interesting to study the C vs C 

phase plane. For constant reactivity, the C vs C trajectories are 

identical to the n VS n tro!).j~ctories but the former trajectories 

have the convenience of continuity between the saddle-point portrait 

. I 
and the stable-node portrait at the switching points. An. exa:nple of 

such·a superposition is presented in Figure 2.6. Figure 2.8 shows 

the effect of the neutronic source term (which is generally negli-

gible) as it appears in equation. (1. 32). 

Consider the problem of traversing from some initial steady-state 

precursor level C0 to a desired steady-state precursor level C1 (see 

Figure 2.4). Again, when the trajectory for maximum or minimum 

reactivity inte~sects this set, the adjoint vector is perpendicular 

to the line C = C1. Therefore, Pl(t1 ) = 0 and hence from Figure 2.5 

with time again reversed, it is seen that there can be no switching 

in reactivity fort< t 1 • The control required to hold the neutron

precursor level constant is u = (£n)/n. Again, the time-optimality 

of this process is substantiated by the convenient time relationship 

in the C vs C phase plane. However, the·time traversed in going from 
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\-~1-D 
\ 
\ 
I 
I 
\ 
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FIGURE 2.8 BANG- BANG CONTROLLED TRAJECTORIES 

SHOWING THE EFFECT OF NEUTRON SOURCE 
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point d to point f with u = ''(~ in Figure 2.4 and Figure 2.6 is very 

small and thus the bang-bang control discussed previously (i.e., 

no ! C0 to n1 , C1 via trajectory a-d- f) is nearly optimal for this 

new problem also. 

2.2.5 Time-optimal control with phase-plane constraint 

Another neutronic optimization problem pertains to the analysis 

of the· time-optimal trajec~ory which links steady-state~, Co with 

a desired terminal steady-state n1 , C1 (see 2.2.1), while including 

an additional constraint on the amount of overshoot in neutron level. 

Suppose there is a requirement of no overshoot in n. It is seen 

from Figure 2.6 (e.g., see trajectory a-b-f) that neutron-precursor 

level cannot be increased in such a manner in finite time, because 

(with 6t = fc~1 1 c dC) any steady-state phase (C = O) can only be 

reached or left in finite time by trajectories perpendicular to the 

axis at C = 0. A phase very close to the desired phase (see e 

in Figure 2 .. 6), however, may be reached in finite time. ·This point 

e could be reached by a constant reactivity yB followed by the varia-

tion similar to that defined by (2.43) for the proper n. At point £ 

the trajectory would continue to approach the steady-state terminal 

phase or a conventional closed-loop control could be introduced so 

that the phase would approach point f. The optimal trajectory, a-b-e, 

is shown below to satisfy the necessary conditions 'of the maximum 

principle and the optimization techniques with phase-space constraints. 

The initial portion of the trajectory (i.e., for n s n1 ) was 

analyzed by the maxiinum principle in Section 2.2.1. 

Then, in order that the trajectory does not cross the constraining 

line n = n1 but coincides with this line, it is necessary that the 
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corttrol be genera~ed according to eq~atidfi (2.43). Fdllowirtg the 

designation used in Chapter t, the constraint boundary is represented . . 
by S ~ rt~rtl = 0 and S ~ rt ~ (u·~) rt/£ + ~C. As discussed irt Chapter 1, 

the Hamiltonian is constant across the entering corner to the constraint 

line (point b in Figures 2.4 and 2.-6). Renee, 

H(n;C;i) It _ ~ H(n,c;;) It + ~ 0 (2 • .55) 
a a 

._, 

With the constraint explicitiy i!ldependent of C, equation (L 24) 

indicates that the following equations nrust also be satisfied at the 

entrance corner. 

Pi (ta-) = l'l, (ta+> + ~ 
anti (2.56) 

. (t )' .. .. (t +) 
P2 ·a"" = P2 a 

:Ftorn eG[uaUons (2.55) and (2.38)j t11ith rt(t+)- 0; it is seen that 
a 

. .. • It It+ • Cp:;: Cp2 I{ na + = -- ( 2. 57) -a a 

where. 

• ( 2. 58) 

Furtherrnofe; siti.te G(ta"')- C(ta+) a:rtd p~(t8-) = p
2

(t
8
+); it is seen 

from ( 2, 57) that 

·p' (t -) - (); 
l .. a (2. 59) 

.... * Fat the sake o£ brevity, the a:tgtitnents of a function; e.g., H(n,C ;p), 
ar·e ofteh dropped in this dissertat=ion where they are obvious or 
preViousiy defined. 
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Therefore, it is indicated by Figure 2 .. 5 that the optimal control has 

no switchings for t < t . For the optimal trajectory to correspond 
a 

to the. constraining line, one sees from equation (1. 23) that the co-

state dynamics must behave according to 

. -p = -[0~ -
ax 

For the problem at hand [see (2.28) and (2.29)j: 

-of 
- [~ ), ] = A(u) - - £, 

ox 
~/J, -A. 

-1 -of = [ n~ £,] [~~] = i./n 
ou 

and 

[:~r = [ u~e A] 

(2.60) 

(2.61) 

(2. 62) 

(2.63) 

Therefore, the co~tate is defined by terms appearing in the adioint 

equation· (2.30) plus other terms given above, which yield 

• B 
P1 = --:e 1'2 

and (2.64) . 
P:a = "-1>2 

for t > t • The solutiori to (2.6~) for t ~ t is 
a a 

P2 = PGae 
A.(t-ta) 

and 
13P:? a 

(2.65) 
A. ( t- t ) 

(pl a + EP:aa> P1 = e a + 
lA. 
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p = p ( t +) _and p = p {t +:) 
._2,a 2 a 1 a 1 a 

In order to satisfy '(2 • .56.) to ( 2.58), .it is seen from equation ;('2 .. 45) 

' that p (t +) ·= ·· ~-and 
1 a 

H 
P..~,a ·- ~( B \ 

. "':'n - A.C :} .t 1 .a 

Hhere 

or 

\Where 

Yllo 
.A = 

r- tACa] n 
flnl . . 1 

~ 0, 

. ... . 
Rcco~nj:c that o.Slou is nonzero for.(ta,tb) and p(ta+) is 

.... 

(2·. 66) 

(2. 67) 

nonzero .:md noncollinear with oS./ox as required· in Section 1.4. 

·Furthermore, since ·P2 a is non-negative, substitut}i.on •of {2 .65) into 

(2,.64) .shows that P~(t) = p1 {t) is non-.positive .for (ta • tb). as required 

in Section 1.4. 

The optimal-time responses are defined by •equations (2.44), 

(2.65) and (2.67) for n(t) = n 
1 

and t < t. 
a 

Then substitution of 

p1 a = 0 into the solution of the adjoint equations (see Appendix B) 

fort< t (with time reversed), yields the following: 
a 
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(2.68) 

and 

P2 ( t) = Alr,ol [<p~+f..)epl(ta-t) __ (pl+A.)ep2(ta-t)l 
Pa ··P1 J 

(2.69) 

Therefore, [from (2. 69) J the necessary relation be'tween the initial 

costate components is 

Pao 

The time solutions of the state variables for t ~ t are given Ly a 

equation (B. 7) and corresponding optimal phase:..plane trajectorie-s 

are designated as a-b-e in Figures 2.4, 2.6 and 2.7. 

Suppose neutron level is allowed to overshoot n but ·not n . 
m 

Then from the previous .analysis, along with the 6t relation-for 

Figure 2.6, it is readily deduced that trajectory a-c-e-f is a 

minimal-time trajectory between points a and f with the added 

constraint of n(t) s n • Also, part of this trajectory is the 
m 

time-optimal trajectory between n
0 

and nm. 

An actual example as obtained from the analog computer is shown jn 

Figure 2.9, where the reactor is started with steady-state initial power 

level and precursor level. The data may be interpreted as the time-

optimal process between the given_ initial condition and a desired · 

terminal steady-state power level and steady-state precursor level 

with a power constraint, Q s Q = 4.28(10) 6 Btu/sec; or the process 
m 

may be considered as time optimal between the given initial condition 

and a desired terminal steady-state power level Q . With y = 0.9 . m 

and £ = 3(10)-4 sec, it is seen in Figure 2.9 that the time elapsed 
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to quadruple the power level is about 0.2 sec. The time elapsed to 
I 

double the neutron level and force the precursor level to steady-

state along with the neutron level at the terminal point is about 

4.4 seconds. Such minimal-time startup transients were simulated 

by the analog computer schematic diagram shown in Figure 2.10. 

Although an exit gas temperature is recorded, temperature and 
. 

propellant reactivity coupling-were neglected. Notice also that 

the pr~cursor level is still represented by C· but the units of 

c must be uni:t"s of power to be consistent with (2. 28). 

Various optimal trajectories are plotted in Figure 2.11 with 

the circuit diagram shown in Figure 2.10. Elapsed times, between end 

points, are listed in the accompanying table. Trajectories· 1, 2~ 3 

and 5 merely compare time-optimal trajectories between various initial 

'quie~cent states to a desired terminal quiescent state with 'the same 

constraint on neutron level (or power level). Trajectories 4 and 5 

show the decrease in transition time for an increase in the maximum 

neutron level constraint. Trajectories 4, 6 and 7 compare transition 

times for various constraints in reactivity. Again, these trajec-

tories may be considered as optimal between no, C0 and n or between 
m 

no, C0 and n1, C1 . These data indicate a consider-able reduction in 

transition time·, t 1 - t 0 , may. be obtained by increasing y to 0.9. 

2.2.6 Singular solutions 

In the event that the switching·· function of the control equation 

[e.g., P1 in (2. 31)] should vanish for any finite period of time, the 

co~trol _is undefined and is classified as a singular control. If 

such a singular solution satisfies the necessary conditions of the 
. -

maximum principle along with the boundary values of the problem, 
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the singular control (as indicated in Referenc~ '22) ·'is a candidate 

for the optimal process. ·such control, how.ever, has not appeared· 

in the above optimal-control problems. 

·Indeed the only possibility of a singular sdlution to exist in 

the aboV;e :neutronic processes is for p1 , the switchi,ng function in 

(2.32), to vanish for: some finite interval.of time. If n f. 0, u· is 

s·een ·from .the adjoint equatiort [see (2. 30) J, 
• u B 
P1 = ::e np1 + (£ n - A:C) (p2 - P1 ) , (2. 71) 

that :P1 .cannot .vanish for any finite time. Hence a ·singular solution 

cannot -exist since the -neutron -level e1nd precursor level is pps.i.tiv~. 

Once .the numer.ical value of the Hamil toni an has ~een es t~blished, 

then .as .is shown in ·Reference 22 · (see statem,ent 1, page p), any c:on-

·troT 'ivhich renders such a .va'lue for 'R is a candidat.e fqr the optimal 

control. 
• 

_.Su.ppose _,p1 i(t) ·= 0_, -~ - o, ti = .ec and n(t)'-.n na·• 'for ·t · ~ t < t · ··a · b' 

then, from .!(.2 .'Jl') , 

:R - P:3-C 

Hence Lfrom (2. 28)]., 

C -= ~ n - A.C , 
. .R, .a 

·(2. 73) 

. 
='0 ·;pl 

and . (2.74) 

P:a = "-P2 

The -solu.t'ions ;to ,(_2 .• 7'3) ·and ( 2. 74) ar.e: 

,c ·=·]_ ·n 
JlA. ,_a 

-A(t-t'). 
·e· a (2 .. 75) 
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bl 

[where C = C(t )] , 
a a 

and (2 . 76) 
n.. A.(t-t ) 
r;o =Pea e a 

'"here P1 a = p(t) and Pea= Pc(ta). Substitution of (2.73), (2.75) a, 

and (2.76) into (2.72) yields 

R - [] n - t..ca] P2 a - .t a (2. 77) 

Then R = H if 

Pea = H 
] 

na - A.Ca I. 

(2.78) 

For example, \-lith the Hamiltonian given by (2.38): 

P:aa = (2.79) 

For steady-state initial conditions, the denominator of (2.79) is 

positive for time-optimal increases in n ·and is negative for time-

optimal decreases in n. The adjoint trajectories given in Figure 2,5 

indicate the possibility of p1 = 0, (with P2 positive for .u = yS a a 

and negative for u = -y~) and hence, along with ( 2.79), a singular 

type of solution does exist for n = 0. With respect to the previous 

analyses, such a solution is only optimal for the problem with 

neutron-level constraint and the problem with a free terminal 

state. However, the optimal control of these processes was obtained 

properly in a different manner, as analyzed in sections 2.2.5 and 

2.2.3 respectively. Notice that the optimal control problem with 

phase-plane constraint also allows a jump discontinuity in p1 at 
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t = t • Other singular solutions do not meet the required end 
a 

conditions. 

Even though singular control is of little significance for the. 

minimal:...time neutronic control problems, it can be important for other 

neutronic opti~ization problem~. Since t~e neutron kinetic equations 

(2. 28). are linear in the control, it is readily seen from the maximum 

principle that a bang-bang reactivity variation is a candidate for the 

op'timal control if the cost function is linear in the control. For 

these problems singular control could be important and it is generally 

possible to construct singular control surfaces by means of the equations 

developed in Reference 22. 

Although the conditions required by the maximum principle have 

only been necessary for the control to be optimal, consideration of 

singular solutions and the dynamics of the system substantiates .the 

uniquene~s of the optimal process. The simple relations for the time 
. 

changes in the n vs n and c vs c phase planes have been very useful 

in thts respect. 

2.2. 7 :Reachal>le .. zo·nes of. the time optimal controlled neutronics 

From Figure 2.4 it is seen that for bang-bang control processes, 

any steady-~tate condition is reachable from any state with physical 

const·raints of C<::O' n<::O and I u js:y~. Typical trajectories are shown in 

Figure 2.4 for y = 0.5, along with several first quadrant eigenvectors 

for vari"ciu's values of y. Note, howe~er, that states to the right o.f the 

eigenvector for positive .rea·ctivity are not reachable from states to the 

left of the ~arne eigenvector (e.g.~ eigenvector Bin Figure 2.4). 

Similarly~ states to the left of the eigenvector for negative reactiv-

ity (e.g., eigenvector D in Figure 2.4) are not reachable fro~ states 
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to the right. The eigenvectors of interest are approximated by equa

tion (2.36). Thus the zones which are unreachable are set off py 

lines whose slopes are approximately proportional to 1 - Y for u = yp, 
£ 

1 + y 
and to £ for u·= -yp .. However, any physical limit of n 5 nm con-

strains the reachable zones to.the left of n. In practice, one would 
m 

not be interested in attaining these unreachable states anyway. In 

fact, constraints have been a~plied td guarantee that we can't attain 

these undesirable states. 

These limitations on the reachable zones are also obvious from 

Figures 2.6, 2.7 and 2.11. . 
For example, in the phase plane of n vs n, 

it is not possible to reach states above the line n = (y~[t)n or below 

the linen~ -(y~/t)n from the steady-state and only can these lines 

be reached with an abrupt change .in u = ~ y~. A small constraint in 

control velocity further'limits· the reachable zone to periods somewhere 

between ~he eigenvectors of slope. given by (2.34) and shown by lines 

B and D in Figure 2.4. The line of C = 0 has the equation n = (u/£)n 

while n = 0 requires that C = (u/L)n, but n and C can only be zero if 

u = 0. From Figures2J and 2.11, it is seen that from states between 

the eigenvectors only s~milar states can be reached. Again, the 

reachable zones are further constrained by the line of.constant n or 
m . 

C = ~/£ n - AC. Obviously, zones for negative n or C are physically m 

unreachable. The lines of n = 0 and C = 0 have.slopes of -A and 

-(1 + y)B 
t in Figures 2.11 and 2.7 respectively. The source term in 

the netitronics equations (1.32) does increase the reachable zones 

slightly as shown by Figure 2.8 (e.g., n = 0, C = 0 can be left in 

finite time). 
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tn g~neral then, in addit.ion to the mean neutron generation time, 

the reachable zones are ·limited by co:nstrai.nts in reactivity and neutron 

level. These constraints .are ca.used by phys·ical and safety con-

siderations. The eigenvectors in Figu~es 2.6 and.2.7, however, have 

their. slopes approximat,ed by (2. 35). H~nce, if the lower limit can 

be reduced, the. unrea~hable -zones below line D in Figures 2 . 6 and _ 

2. 7 and, to the left in F:i,gure 2.4 may be further reduced. The mean · 

neutron genet;'ation time £, in addition to affecting reachable zones, 

also ~ffects the .switching point of the .bang-bang control process. 

Thj.s ·resul.t is obvious from the effect of i. on. the indicated eigenvectors 

in Figure 2.4; i.e., since the slope is approximately inversely proper~ 

tional .to i.. [see (~. 36).] the neutron level at the switching point is 

also .approximately i~versely proportional to i. Also from (2.34) and 

Figure$ 2.6 and 2.7, the total elapsed time varies di,rectly with 1. 

The neutronic system is controllable in the sense that any 

steady-stat.e ca.n be. transferred to any otl;ter steady-state in finite 

time (-i.e., for 0 :5; n :5; n and 0. s; C). From (2.34), it can be seen 
m 

that .the control variable has little effect on one mode of response 
.. 

fo.r u << p. With the terminal control u = I...C/n1 , it is seen from 

. 
Figure 2.6 that the state C = 0 is not reachable in finite time. 

2.3 Six-precursor group neutron kinetics. 

The one-energy-group neutron kinetic equations were introduced 

in Chapt~r ~ along with the assumptions made for this classic six-

delay group model. For the minimal-time control problems, these 

equations are repeated below for convenience. 
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(2.80) 

(2~81) 

R is again a maximum for the control on the constraint boundary of the 

allowable ~ontrol set and hence, for ·motion evaluated on the interval 

~ .. 
H(n,Ci;p) a max R(n,Ci;p;u) ~ 0 • 

uEu 
(2.82) 

:rhe optimal control is again bang-bang with the form of solution given 

by ( 2. 83) 

since n(t) > 0. 

It is necessary that the ~ostate 'be defined by the adjoint. 

equations: 

and (2.84) 

Again, the problem of most physical interest is one for which the term-

inal set is a hypersurface n = n1 in a seven dimensional phase space 



66 

whil.e the initial state is .usually :a ,fixed point. The ·cos.tate vector is 

thEn orthogonal to the tangent plane of the termina'l :hypersurface which 

implies that 

A computer search for various value·s of y with time r.eversed shows 

that p1 {t) the solution to (2.84) with u given by· (2.83), cannot 

change ~ign for t < t 1 if (2.85) is satisfied. Hence, there can be ·no 

switching in reactivity. Various such .transients obtained .from an 

anaLog •computer simulat:Lon ar.e shown in .Figure 2.12. From '(".2.85) we see 

that it is unne~essar.y to check other terminal magnitudes of p1 .since 

the value of y alone determines ·the form of solution and therefore the 

.number o.f zeros.. This is seen from the solution to (2. 84) for a fixed . f . 

u, Pl(h) .La1 exp P1 {t-.tl) + ... +a7 exp P?(t-t1 )J, where .t decreases 

from t 1 .and :the constant coefficients a. and P. {.i=l, ... , 7) depend ·on 
. . 1 1 

u, but ,are inde.pende.nt o.f p1 ( t1) . Here Pl ( t 1 ) is positive for u ( t 1 ) 

posit1ve and negati,ve for u(t1 ) ne,gative. But there is no change in 

sign of P1 (.t) or ,s.witching of u(t). 

An analog computer circuit diagram of the neutronics adjoint 

sys.tem which :was used to obtain Figure 2.12 is presented in Figure 2.13. 

The terminal .control requir~d to maintain steady-state conditidns 

• ,a.t the tt.erminal set n( t) = n1 is obtained from (2. 80) with n = 0. This 

theoretical terminal control is given by 

J. 6 . 
u = r: c. 

nl 1. .. 
i= 1 

(2. 8E) 

The following analysis shows that with initial steady-state con-

ditions the above terminal control satisfies the inequality constraints, 

-y1 fS $ u ::::. y2 p. Inequality constraints are considered to show that the 
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arguments are general in this respect. The solution to (2.80) for 

t1 < t with n(t) = n1 is 

(2. 87) 

then 

u(t) = (2. 88) 

If equation (2.88) is substituted into the control constraint in-

equality, it is seen that the following relation is necessary for u(t) 

to belong to the allowable set: 

6 

1~1 A.ici (tl > ~ Y:a 

or 

(2.89) 

Although this condition only shows that u(t) satisfies the 

constraints at t = t 1 , it is shown next that the terms enclosed by 

brackets in (2.88) are all negative or all positive hence proving 

the inequality at t = t 1 proves it for t > t 1 . 

Suppose n and C. are at steady-state initially and u = y2 ~ > 0 
l. 

for the interval (t0 , t1). Then, since neutrons are born at a faster 

rate than they are lost for positive reactivity, n(t) is positive. 

(This is substantiated by the responses given on pages 29-31, Reference 
0 

16.) Furthermore, if n(t) is positive, and c
1
(t

0
) is zero,each 

precursor level increases since precursors are born at a faster rate 

than they decay for positive reactivity. That is A.C.(t) < p . n(t)/~ 
l. l. l. 
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[ or Ci(t) is positive] and Ci(t
1

) < [~ 1n(t1 )]/(J.Ai). Then if 

n( t 1 ) = n1 , 

and certainly 

Furthermore, since n( t1-) is positive .. (for u = Ya ~ from to to t1), 

and n(t) and C.(t) are continuous at t = t 1 , (2.80) shows that 
~ 

~n1 e 
(1- y~, ) < E A. C (t ) 

l i=l i i l . 

A similar argument can be made for u = -y 1 ~ and no > n1. Hence, 

C.(t) is negative and from (2.87) 
~ 

Then certainly 

Also, since n(t1 -) is negative, (2.80) shows that 

6 

.L A..c
1
(t) s (l+A. )~n1 

~=l 1 1 1 J. 

Summarizing these results, the equation 

6 

(l+yl ~ n1 > i~ A.iCi (tl) > (l- "-a) ~l ' (2.90) 

is a valid relation for time-optimal increases or decreases in state 

with steady-state initial conditions. Hence, the terminal control 

satisfies the required inequality constraints. 

The above analyses of this section produce the same results that 



7l 

were obtained for the single precursor model. Furthermore, in many 

cases time response of the single-precursor model can closely approxi-

mate that of the six-precursor model. A comparison of such optimal 

responses for six-precursor groups and one-average-precursor group is 

presented in Figure 2.14. Notice that n(t) is held essentially con-

stant by a multiple bang-bang or dither control process. Such a process 

is discussed below. Utilization of the arithmetric average decay 

constant shows that there is hardly any noticeable difference for such 

fast transients. If slower transients are of interest, it is necessary 

to reduce the average A in order to closely approximate the reactor 

neutron kinetics. Then one would generally expect the optimal-control 

analysis of the one~ average-precursor-group model to apply to the 

actual six-precursor-group system. 

2.4 Terminal control synthesis 

It has been shown that the theoretical control required to maintain 
6 • 

a constant terminal neutron level n(t) = n1 is u = i .~1 C./nl. Such 
1= 1 

a variation in reactivity, howeve~ is open loop and cannot be imple-

mented in practice due to errors in measurement and synthesis. 

If there exists a small error in the measurement of n, then the 

following analysis shows a divergence in neutron level. Suppose the 

error in the measurement is represented by 6n, and the theoretic 

terminal control can be engaged in zero time at t • t • 
a . 

delay-group neutronics approximation with u • ~C/n1 is 

dn = 
dt 

The one-

(2.91) 

fort ~ t. Let n • n1 + 6n and C • C1 (t) + 6C. Then neglecting a 
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second-order terms (2.91) becomes 

(2.92) 

which baa the following solution: 

(2.93) 

where 6n • n(t)- n1 and C1a • C1 (t ). Prom (2.28) the response a a a 

in precursor level C1 (t) due to the theoretical terminal control is 

(2.94) 

If (2.93) is approximatea ·by the linear terms of a Taylor series for 

(2.95) 

Hence, one might expect the divergence in neutron level to vary in a 

manner similar to the variation in precursor level for small changes 

in 6n(t) and C1 (t)- Cla• The following argument, however, shows that 

for certain conditions the divergence of ~(t) may be described by 

a time constant that is smaller than 1/A. 

or 

Consider (2.94) for (t-t ) << 1/A: a 
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Then, from (2.93) 

(2.96) 

At equilibrium C = (p/lA)n, but thereafter n(t) increases faster than 

C(t) for positive reactivity (e.g., see trajectory a-b, Figure 2.4) 

and decreases faster for negative reactivity. Equation (2.36) and 

Figure (2.4) show that if n1 is much larger than no then p/~A is 

much more than C1 a/n1. For example, consider trajectory a-b-f in 

Figure 2.4 with C at point b equal to C1 a. Using the approximations for 

(2.36) C1a/n1 ~ (1-~)~/~A. Hence the rate of divergence of 6n(t) depends 

on cla/nl, but for nl >>no the divergence can be considerably faster 

than that predicted by (2.9s). Such an instability is not surprising 

since the basic problem is the failure of an open-loop control. The 

same problem exists in attempting to ~intain constant n(t) with 

steady-state initial conditions. 

The failure of this control is shown more accurately by Figure 

2 .15. These various power transients were obtained from an analog 

computer simulation for very small changes in the constant term of 

the theoretical terminal control. The initial dropoff or rise in 

power n (when terminal control is engaged) is due to negative or posi-

tive 6n , as explained by (2.96). The subsequent long-period rise, 
a 

however, is due to the r~tivity not decaying to zero as it should, 

but decaying to a small positive value due to inaccuracies in computer 

equipment. (It could just as well be negative, in which case Q would 

would finally decrease exponentially . ) In a similar manner, analog 

computer solutions show that use of n(t) instead of n1 in the denomi-

nator of the terminal control yi elds an unstable solution. 



('I 
........ 

a:: 0 
IJJ Q) 

:;: en 
0 ....... 

J 
Q,. -a: m 
OCD 
I-I 
u 0 
<% _.. 
IJJ 
a:: 

0 

a::""o 
IJJ Q) 

:;:en 
0 ....... 
a.. ~ 

ID a:: 
OCD 
I-I 
u 0 
<% -
IJJ 
a:: 

0 .. a:: ..... 
IJJ 0 

:;: ~ 
o ....... 
a.. J -a:: CD 
OCD 
I-I 
u 0 
<% -
IJJ 
a:: 

75 

3 

2 

0 

5 

4 

3 

2 

0 
I----JIO Sec 

FIGURE 2.15 FAILURE OF THE THEORETICAL TERMINAL 

CONTROL POWER RESPONSE DUE TO SMALL CONTROL 

SYSTEM ERRORS Lt = 3(10)-4 , y = 0.4 

AND SIX PRECURSOR MODEL) 



76 

The terminal control for the simulation shown in Figure 2.15 was 

switched into the simulation (which has time slowed down by a factor 

of ten) by a fast acting differential relay system. This relay 

system has a frequency variant hysteresis characteristic, which is 

shown in Figure 2.16. The input to the differential relay was a 

sawtoothed wave of various frequencies, for the results shown in 

Figure 2.16. Just as this characteristic enters into the simulation, 

it could enter into the actual control synthesis of a physical 

reactor. 

Since failure of the theoretic terminal control may be attributed 

to its open-loop nature, closed-loop control should certainly be 

investigated. Such control is studied below in Section 2.5 but for 

the moment consider a control which is more closely related to the 

above theoretic terminal control. 

Although the theoretic terminal control is unstable, intuitively 

it might be expected that a multiple bang-bang type of control (which 

switches to values above and below the theoretical value) is worth 

investigation. The following discussion presents an example of such 

control, which was successfully tested on an analog computer and is 

called a dither control process. For a time-optimal startup followed 

by such a dither process, reactivity should be y~ until n(t) = n1 + 6, 

where 26 is a predetermined amount of hysteresis (see Figure 2.17) of 

very small positive magnitude. At this time reactivity switches to a 

low approximation to the theoretically required process [i.e., u(t) 

is smaller than but approxin~tely defined by (2.86)] until n(t) = n1 - 6. 

Then reactivity is switched to y ~ again and the process continues 
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repeatedly. The synthesis of this control process (which utilizes 

a differenti&relay with hysteresis is presented in Figure 2.17. 

During the dither process, relay A in Figure 2.17 oscillates 

between the positive and negative positions. That is, relay A is in 

the positive position with u = · ~, for n ~ -6 and in the negative 
e 

position with u = kC for n ~ 6. k is set so that the parallel compen
e 

sation output kC is slightly lower than that of the theoretic. control. 

The dither process as it results from hysteresis in the differential 

relay is shown at the bottom of Figure 2.17. 

Typical reactivity pulses and power transients of such an actual 

dither process, ·as obtained using the analog computer to mechanize 

Figure 2.17, are shown by Figures 2.18 and 2.19. Although finite 

switching time was not discussed above, it is included in this syn-

thesis of the dither process. The simulation was slowed down by a 

factor of ten (from that of the original simulation) in order to 

study the frequency variant effect of the relay system. It is seen 

that power variations are reduced considerably by slowing down the prob-

lAm R.nd effectively decreasing the hysteresis. The hysteresis character-

istic of the differential relay is presented in Figure 2.16. The lack 

of symmetry of the reactivity pulses in Figure 2.18 is caused by the 

spring forcing of the relay in one direction and the magnetic forcing 

in the opposite direction. Application of solid-state devices to the 

synthesis of such a physical system would be very desirable. 

The results of analog computer simulated time-optimal startups 

have been shown by Figures 2.9 and 2.14. Both of these systems actually 

utilized the dither terminal control system to maintain a neutron 
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density that is essentially constant; only the theoretical control, 

however, is recorded in Figure 2.9. 

2.5 Optimal control and conventional control 

The key to the synthesis of the time-optimal control appears to be 

the ability to maintain neutron density essentially constant while the 

precursor level is not near steady-state. 

Although the bang-bang neutronic control is synthesized very 

simply, the required terminal control is slightly more complicated. In 

many cases a conventional type of closed-loop control is satisfactory 

and may even approach the performance of the optimal process. Even 

for these cases, however, the optimization analysis provides a yard

stick of performance. One convenient technique of approximating the 

optimal process is to synthesize a continuous feedback control system 

which is fast acting but limited in control variations. The startup 

of such a system is shown in Figure 2.20. Initially, the system is at 

steady-state with a neutron level of less than one-twentieth of the 

terminal level. Then 0.9, of reactivity is added until the neutron 

level is about one-eighth of the terminal value. At that time, a pro

portional-plus-integral type of feedback controller replaces the con

stant control process. The controller was introduced at that time to 

limit the maguitude of the controller integral signal. (Below, in 

Section 2.5.1, it is shown that by controlling the log of power the 

loop may be closed for the entire run. Also, if integral control were 

limited separately, a limited effort proportional-plus-integral control 

could probably be introduced immediately.) This controller is defined 

as follows: 
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(2.97) 

where Qe c Q1 - Q Btu/sec and Q ~ n. Due to the high gain of the system, 

the reactivity stays at its constrained value of 0.9p until the termi-

nal state is approached. After this small rise time, Q(t) has a small 

overshoot followed by a slow decay toward the desired steady-state 

value. The slow decay is caused by the slow birth of precursor neutrons. 

For most applications such small overshoot is insignificant and this 

simple suboptimal closed-loop control could be utilized. Nevertheless, 

the dither terminal control (as shown in Figure 2.14) maintains constant 

power more accurately. 

The describing function N for the simple limiting nonlinearity is 

23 given in Table 2.2 . Then Figure 2.21 presents Nyquist plots of the 

open-loop transfer function. The limiting nonlinearity is represented 

by the critical-point locus, -1/N(A). Transfer functions of changes 

in power with respect to both changes in reactivity [plot (a)] and 

changes in power error [plot (b)] are plotted there. Sketches (a) 

and (b), shown at the top of Figure 2.21, approximate 6Q/6u(jw) and 

6Q/6Q (jw) mappings of the s-plane contour shown in sketch (c). Sketch 
e 

(a) also approximates the shape of 6Q/6Q (jw) for proportional control. e 

Applying the Nyquist stability criterion (with the -1 point replaced 

by -1/N in Figure 2.21) indicates that the system cannot have a limit 

cycle. 

The transient response of a system with only proportional control 

is presented in Figure 2.22. In this case, the simple control was 

carefully engaged at the desired terminal power but due to the precur-

sor neutrons the error again approaches zero very slowly. The lack of 
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integral control causes the residue of this slow mode to be slightly . 

larger and its response slower than that of Figure 2.20. Notice, how-

ever, that Figure 2 •. 21 shows that the neutron kinetics with simple, 

proportion~l closed-loop control is more stable than if the system is 

controlled according to (2.97). 

In addition_to the usual precautions, which must be taken in 

making conclusions based on describing-function analysis, it should 

be realized that the neutron kinetics as defined by (2.28) represent 

a structurally unstable system24 (i.e., any small change in reactivity. 

from zero, changes the qualitative phase behavior). At zero reac-

tivity, the neutronics .Phase plane shown in Figure 2.4 has a border~ine 

sort of portrait and t?ere exists a line of equilibrium points. 

Similarly, for the six-delay-group neutronics there exists an equi-

libr'ium line in a 'seven-dimension phase· space. For a slight positive 

reactivity the C vs n portrait is characteristic of a saddle point 

and for a slight negative reactivity the phase-plane portrait is 

characteristic of a stable-node type of behavior. For the problems 

considered-here however, the response is of such short duration that 

the transfer-function analysis is a good approximation. Furthermore, 

the describing function approach is a valid approximation since (1) the 

limiting non-linearity is time invariant and (2) harmonics greater 

than the first are attenuated. 

Although an average core temperature is computed in the analog 

computer simulation and shown in Figures 2~14 and 2.22, no reactivity 

coupling was considered at this time. Coolant mass flow rate was held 

at a minimum constant value but was increased to maintain steady-state 

at the terminal point. Such variations in flow rate will be discussed 
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as optimal in Chapter III. Notice that the temperature transient 

indicates a desirable type of response. 

Figure 2.23 shows that the dither control is adequate for a start-

up time as low as 9 ms, where the terminal power is again more than 

twenty times the initial power. 

2.5.1 Time-optimal. _suboptimal logarithmic. and conventional logarith-

mic control of a Kiwi-B system 

The variations in dynamic behavior of the neutron kinetics with 

neutron level nor power level Q, may be seen crudely from a transfer 

function of the linearized neutron kinetics 16 • This function is 

~= 
6u 

where 6u is a perturbation about zero reactivity which causes a power 

perturbation, 6Q, about some steady-state power Q0 ; s is the Laplace 

transform complex variable; and r. locates the poles of the transfer 
1 

function. By feeding back the logarithm of power, the dynamics are 

roughly independent of power as shown by 

D,log Q ~ 6Q/Q0 
6 u 6u 

Using this type of control, conventional design procedures pro-

vide good performance for extremely low powers as well as for high 

power levels. In this section logarithmic proportional-plus-integral 

control is compared to a time-optimal process. 

A Nyquist plot [see Figure 2.21, plot (b)], indicates that 

stability of closed-loop neutronic systems, which employ proportional-

plus-integral control, increases with loop gain. Systems with high 

gain, however, require more reactivity than those of low gain and as 
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discussed previously, reactivity should be limited for safety reasons. 

For nuclear rockets, a limit of 0.9p is a safe constraint. 

Various logarithmic proportional-plus- i ntegral controller designs 

•· are shown by Table 2.3. Then Figures 2.24 and 2.25 present startup 

data for a Kiwi-B (nuclear rocket test reactor) system which uses these 

closed-loop control systems. In all cases, logarithmic power demand 

is stepped from steady-state log Q0 to about log 24 Qb at the initial 

time. Figures 2.24 and 2.25 are plotted against such a slow time scale 

so that the slow mode of response may be examined. These data are 

compared below to time-optimal startups shown in Figure 2.26. 

Table 2.3 - Controller gains for data presented in Figures 2.24 and 2.25 

Proportional Gain Integral Gain 
k k., sec-1 

1 

Run No. 

1 6.5 (10)- 3 
1.3 (10)- 4 

2 3.25 (10)- 3 3.9 (10)- 4 

3 5.71 (10)- 4 1.17 (10)- 2 

4 2.6 (10)- 3 
2.6 (10)- 2 

5 3.25 (10)- 3 
6.5 (10)- 3 

6 6.5 (10)- 3 3.25 (10)- 3 

Control Equation: 

The minimal-time startup wi th u = 0.9~ is given in Figure 2.26 

and requires about 0.12 sec to increase power by a factor of twenty 

four. Again, in Figure 2.26, the desired terminal power is _maintained 
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by a dither process. Two suboptimal startups, with the same end con

ditions as those given in Figure 2.26 are shown by Figure 2.25. Though 

similar to the suboptimal controller discussed above [see equation (2.97) 

and Figures 2. 20 and 2. 22], the use of a fast-correcting logarith'lli.c 

controller (with reactivity limited to value's less than 0.9~) allows 

the loop to be closed during the entire operation. Controller gains 

for these sub-optimal designs are given under runs 5 and 6 in Table 2.3. 

Again, the suboptimal control requires the same time difference as the 

optimal control to reach a value close to the desired terminal value 

for runs 5 and 6. This initial fast rise is followed by a slow decay 

toward the desired terminal ·value. This slow decay is again caused 

by the slow birth of precursor neutrons. For most applica.tions either 

run 5 or 6 would be very satisfactory.· In other cases (e.g., in fast 

reactors with low thermal time constants) very little overshoot, if 

any can be allowed and run 6 would be more desirable. 

By cut and try, a controller of the suboptimal category {e.g., as 

given in Table 2.3 under run 4) can be designed which requires no more 

than a specified amount of reactivity. The suboptimal startup with 

reactivity less than 0.9p is presented by run 4 in Figure 2.25. For 

run 4, however, reactivity never quite reaches 0.9p and rise time is 

slower than that of runs 5 and 6. 

For many applications such suboptimal startups would be sufficient. 

Though the suboptimal control is synthesized in a simple manner and may 

be more desirable for these cases, the optimal startup has still pro

vided a measure of performance. 

Various nonoptimal s;tartups are presented in Fi~ure 2. 24. Notice 

that runs 1 and 2 require approximately 0.9p of reactivity at the 
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start and exhibit performance that is far from time optimal. Without 

knowledge of the.time-optimal startup; a designer could u~wittingly 

use· such a nonoptj.mal controller. 

A conservative nonoptimal startup (to a s.tep i~c~ease in logarith-

mic .power demand). wit.h t::e.activity always ~ess. than o..s_p, is exhibited 

by run~ in Figur~ 2.24 •. ~he corr~sp9nding control~er desig~ is·given 

in,Tabh 2.3. After reaching the desired power in:~b<?Ut 0.6 sec, . 

the power or neut.ron l~vel overshoots the desired val~e by ~bout 8 

pe~cent and slowly decays toward t.h~ desi,red termina~ power (h. • 24 Qo .. . '• . 

Such response i~ f~r from optimal. for the ~,t~inimal.., time startup,. with 

y ~ 0.5, is pre.~ented in Figu~e 2.26 and·req~ire~ aQout.~O.l7. sec.· · 

Summarizing tqes~ comp4risons we see that it is possible to desi~n 

an.4 synthesize a subopti~.l neutronic cont.rol. by c0nve:qtion,al, means. . . ' . ' . . 

Knowled~e. o~ the opti~l perforJDSI\Ce, however, is required.t;Q evaluate-

the conventional. cont~oller. Further, the s~ll termin~+ transient. of 

slow _decay (w~ich· always exists for simple suboptimal cc;mtrol. with. 

finite gain) ha.rd~y appears i,f the te~inal control is a closed-loop 

dither process. 



Chapter III 

OPTIMAL CONTROL.OF NUCLEAR-REACTOR DIRECT-CYCLE HEAT-EXCHANGE PROCESSES 

As discussed previously, the heat exchanger and neutronics as 

separate processes are bilinear in the state variables and the control 

variables (reactivity and coolant weight flow rate). As a coupled 

process the system is generally nonlinear, but in any event, the system 

is approximately linear in the control variables. Hence, with reference 

to the maximum principle, the bang-bang control may be optimal for a 

class of performance indices if the control is constrained. Again, 

for trajectories on state variable constraint boundaries, for periods 

of singular solutions or when the desired phase is reached, the_optimal 

control will not generally be bang-bang. 

The assumptions and dynamic equations of the heat-exchange · 

model are discussed in the introduction. This ·model is most impor

tant to describe the state of high-power reactors. The optimal

control problem considered below may be stated as follows: Given an 

initial reactor steady-state, bring the system to a desired terminal 

steady-state so as to minimize the consumption of coolant. For a 

ntJr.lP.."'r rocket engine, pounds of propelhnt saved will allow less 

bulky propellant tanks and more payload. Although nuclear rockets 

allow a much higher specific impulse than chemical rockets~ their engines 

are heavier and more complex than their chemical counterparts. 

Minimization of the nuclear system weight becomes necessary. 

With a negligible inlet ·temperature, the time rate of change 

of average core temperature as presented by (1.~7) is 

97 
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dT = ~ 
d-t MC 

T ,. . 
. h 0.1) 

where T(t0 ) = T0 , T(to) = 0. Here Tis the-average core temperature and Q 

is the rate of heat generated in the reactor. Letting the weighting. 

factor Q = 2 in. eq~ation (1. 38) (this value of Q is f~und to be 'a 
go-~d -~stima:te for many reactors

20 >-, we obtain the' following expression 

for the thermal time constant Th: 

3.1 Optitnal heat~ex<:hange. process 

1 
~--aw (J.2) 

Consider the optimal control of ( 3.1) between_ steady-state end: 

points SO as to minimiZE7 COOlant consumption With ·flow rate 

constrained as follows: 

(3. 3) 

= u • 
a 

u is a minimum flow rate necessary to insulate sub
a 

standally .the reactor from its· outside pressure she 11. This outside 

shell is. necessary to hold a high-pres"sure reactor together but can'-

not withstand extremely high. ten'lperature. 

powe·r, it may' be necess'ary to increase 'U 
a 

For gross decreases in 

in order to remove the . . 

-po~t-fis~ion af~er-heat. 
.. . 

ub is· the maximUm flow rate the coo.lant 

system can develop.· 

· · For the· time being, assume that the reactor power Q can be 

changed instantly with the followl.ng ·constraint:. 

0 s Q S;; Q 
m 

and (3~4) 
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where~ is the rated design power of the reactor. The cost 

for this problem is coolant flow rate. Then, with reference 

[equation (1.7)], (p,f) is 

R(T;p;Q,~) = ~Q 
. 

Tp1 + WP:c! • - awT P1 + WP:c! 

and the Hamil ton ian is 

lC(T; p) • max R(T;p;_Q,~) 

;eu 
Equation (3.5) is made a maximum· by 

Qm for P1 > () 
qo 

0 for P1 < 0 

and 
u for P2 - aTp1 < 0 . a wo = 

~ for P2 - aTp1 > 0 

The costate is defined by the adjoint equatiori: 

P1 = a w P1 

and p2 is a non-positive constant. The solution 'to (3.9) is· 

t • 
p1 = P1o exp (a Jt w·da ,. 

0 

function 

to Chapter 

(3.5) 

(3.6) 

(.1.7) 

(3.8) 

(J. 9) 

(3.10) 

where p1 0 = p1 ( t 0 ) • p1 cannot change sign since aw is always positive 

I 

and there is no switching for to< t < t 1 • Hence, to inc~ease temperature 

it is required that 

( 3.11) 

for t 0 < t < t 1 and p10 is positive. 

Since the system .(3.1) is initially at steady-state with the 

minimum coolant flow rate .[i.e., w(to) = u ], the required initial 
a 

power is 
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(3.12) 
., ' 

At the terminal time it is desired that T(t1 ) = 0, T(t1 ) = T1 and 

Q ( t 1 ) = Q1 ; then- from ( 3. i)' · 

... (3.13) 

Since temperature is increased most-rapidly by_low coolant flow rate w 
and high reactor power Q [see (3.1) and (3.2)]; it is obvious that the 

. 
minimal coolant trajectory uti.lizes w = u between end points. Thus 

a 

from ( 3. 10) 

(3.14) 

on the interval .(t0 , t 1 )., .Aft~r d.iscussing the t'emperature transient, 

I 
it is shown below that this constant coolant flo~ process along with 

(3.14) satisfies the maxi~n\lm pri':lciple~ Thus the ,optimal process in-

volves constant maxinrum' power and constant mininrum propellant flow rate 

between end points. Switching occurs at the end points ~o leave or 

reach the steady-st~te conditions .. Ail optimal decrease in state with 

th~ 'above initial and terminal con:dit'ions reversed is caused. by the 

abbve vad.at'ion 'i~ power· and flow rate with time reversed. 

" '·soh.itions to '(3;1) f'or constant coolant flm~ rate are discussed 

next so that the core temperature transient may be defined for •the 

dptim~l process analyzed above and b~low in sectton 3.2. Equation 

(3.1) is a linear-differential equation of first otd~r if Q(t) and 

. 
u(t) arc functions' of 'time•. This· equation is made exact by multi-

plicatr'on: by arf integr·ating factor· exp[Jawdt]. ·Then the-solution 

to ( 3.1) is 
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exp(-a/;, dt) I J. J. 
T • MC exp(a w dt) Q dt + c exp(-a v dt) (3.15) 

(c is a constant of integration) 

If w is constant and Q(t) is d'efined for t ;:: to, equation (3.15) may 

be written as 

. 
T = T ( to ) e- aw ( t- to ) + e-awt 

MC !~ 
. 

aWCJ 
e Q do • 

Then for a step change to the power level Qm applied at t • to , 

(3.16) 

T = [T(t)- Qm. ] e-aw(t-to) + Qm. (3.17) 
0 MC aw MC aw 

For very small coolant flo~ --;-~t-~-~-~(3:17) -~y be' represented by the 

linear terms of a Taylor series. Then_ the ~olution to (3.1) is 
I 

Optimal sta:rtup trajectories (for the idealized problem analyzed above) 

J 
are presented in Figure 3.1 . 

. 
That w • u (for t s t < t ) satsifies the adjoint system, is a o 1 

shown by substituting (3.14) anct (1.17) into the switching t\anction 

p - aTp • With p > 0, this function has ·no zeros. Also :K = 0 
2 1 10 

[see (3.6)] requires that 

P2o = P1o { aT(to) - [Q(td - Q(to)]/K: ua} (3.19) 

From these trajectories, another physical constraint can be 

conveniently considered.· Thermal stresses in the reactor core are 

roughly minimized by utilization of a lineai increase in average 

core .temperatt~re. These thermal stresses however, frequently 
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. 
necessitate a constraint on T. At ~ow flow rates equation (3.18) 

shows that this new con~traint may be approximated by a constraint on 

power. (Such a power constraint Q may very well be less than the m . . 

rated design power.) 
. . 
It is obvious from the system dynamics that the above minimal-

propellant process is also one of minimal heat energy and minimal time. 

Although 'the power and coolant flow rate cannot be changed instantly, 

their change can be very rapid compare~ to the temperature response 

(see the minimal~time neutronics control as analyzed in 2.2.2). Core 

temperature reactivity and coolant density reactivity coupling as 

discussed below complicates the process somewhat. 

3.2 Optimal neutronics heat-exchange process 

Suppose the rate of change of the precursor-neutron densities and 

the reactivity coupling are negligible. Then the neutronics heat-

exchange process may be represented by the following equations: 

. and 

where 

and 

u =·reactivity, &,k 
1 . 

u
2 

= coolant weight ·fl9W rate, w 

The allowable control set is defined by: 

and 

where u > 0. 
a 

lu I s; Y1J 
1 

(3.20) 

(3.21) 
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Cotisider.the optimal progralilming problem with given initial and.term

~al steaciy.;.state co~dition.s such_that. T(t.)' = T , u (t ) = ua' 
o o a o 

T(t
1

) ~ T and Q(t ) = Q • 
. . . 1 1 1 

:F.·ind the optimal· trajectories if the cost 

function is f
3 

= u
2 

and there is no constraint on power. Then (p,f) is 

(3.22) 

R is made a maximum by a bang-bang process such that 

U: = yp sgn p
1

, (3.23) 

u = ub , for p -. aTp > 0 
2 . 3 2 

and 

u = u , for p· - a·Tp < 0 ~ 
2 a 3 . a 

The costate is· defined'·.by the· ·~djoint. system: 

and. (3.25) 
P3 = () · 

The soiution to (3.20) ·(for constant control with t 0 s 0) is com• 

puted as follows: 

Q = (b exp(u1 t/i.), (3.26) 

where 

Q(O) = Qo = MCai12 (O)T(O) • 

The average core temperature is obtained from (3.16). Then 

(3.27) 

where 

T(O) = To • 
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Similarly, the solution to (3.25) is 

p3 • a constant ~ 0, (3.28) 

(3.29) 

(o) do] . • · : 
(3.30) 

or 

/ 

(3.31) 

wher.e .I 

P1 (0) = P1o and Pz(O) = P2o 

These solutions, (3. 26) to (3. 31), are substituted into (l .. 22) to ob-

tain 

+ ~ P3 - aLia P:ao 
(3 .32). 

where 

u. . 
p = l + a~ • 

It is necessary however, that the Hamiltonian is zero; ~, .. C.,· 

K (Q,T;p) =o. (3.33) 

Equation (3 .33) can only be satisfied if 

(3.34) 
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.and 

_ul t: 
P1 - P,1:0 e l . ,, 

where, from ~3.32), 

P1o ('3.'36) 

Tl)_en for ,o_ptimal st.artup p10 > 0 .and fo-r optimal s'h1-1tdown 

p,10 < 0. Sinq~ the s~i.tching functi,ons in (3.2.3) and (3- .. 24) canno.t 

,change .l?i:gn_,·the optima.l <::-ont-rol bet::ween end ,Po~n·t·s is cons.tan,t with 

ui ·.= y~ f,o:r s.tar.tup_s, ui = - yf3 for s'butdowns a:nd u; ·= u for eicther. 
a 

At the ·termi·nal end it is ·p.e~essary tl)at u; be instantly increased to 

Q1 /MC.;tT1 for st.artup and u; is decreased instantly .to .ua at the initial 

q.me tor ·sh~t.down.. Q is <::omputed fr.om ( 3.,26). The .c.orr.esponding termi-

f:lal r~~c~i.vit-y .and it)iti?l reactivity are zero for steai,iy-s·tate 

_gond H i.qns . 

The ~hove .an!ibsis establishes a background for .optimal control 

.,of the mor.e involved six-delay-grOJ.lJ' neutronics he!it-exchange processes 

~.hi~l;l ar.e t9 follow. Ra.t.her than an~lyze the complicated costate of 

t:f1e .sy,stem, the fo~l,owing analysis :will depend on an understanding of 

t:be system dyn?miq;, as well as the maxir:num pr~nciple, .in order to 

ob~.ain optimal traje<::.tories. Tota~ reactivity and coolant weight flow 

rate :wtll be treat;.ed as control. variable$ with magnitu9e constraints 

,o:n ;flow, rate an!=l total re.;tctivity. The end points of these control 

yal;'iab.~es ~ill be specifted by the en<;l states in. questiop.. Fur'ther-
. . . 

more, pow.er is .constrained to }lave no over~hoot. Again total consump-

!:i,on of ~oo~~nt is the pepfQr!Ilance inde.x to be minimized in the 
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The neutronics heat-exchange process may be approximated by a 

mono-energetic neutron kinetics and a single-lump heat-exchange model. 

This model is discussed in the introduction and is very accurate in, 

defining the temperature at any point if the proper mass heat .capacity 

is utilized. Such a ,model with inlet coolant temperature neglected, is 

described by the fo~lowing system of equat~ons: 

e e 
I: A.i ci = ~ Q - t 
i~ iq 

(3 .37) .. 

dC; r.~. 
... .!:1. Q '\ c d"t" = J, - ll.i i 

( i=l ' •• ·:.' 6) (3 ~ 38) 

and 

dT ~ 
d t JYlC L = ..lt.MC - a~ T ' 

'T'h 
. (3. 39) 

where 

-l 
'T'h ~ (aUra) ' 

Sk = u1 = uc: + 5kt + &k ' , 
. p 

5kt ~ ct T t 

5kp :::::1 Cpi\l:a ·, 
T~ 

(3 .40 )· 

(3.41) 

(3.42) 

(3.43) 

u1 = total reactivity, u = control reactivity and U:a = coc;>lant flow 
c 

rate 
. = w. Generally ct < 0 and cp > 0. Notice that n has been 

replaced by Q (power), and C. must have units of power in (3.37). 
~ 

Suppose it is desired again to startup the system, from some 

initial steady-state Q0 , T0 with Ua = u, to some desired terminal 
a 

steady-state ~ , T1 with power constrained and with coolant con-
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sumption held to a minimum such that Q s Q~. The~ the cost fu11ction .. 

(p,f) 
; 

for this problem is .~ and is 
i·.·. ; '· '. 

It ,(;;p)=, 
..,. Pi Qul 

I (x;p) + +. (pg ap8 T) (3.44) .. 
£ - U:a 

wh~re · th~ components' of x are Q, C1 ; ••• ,Cs, T and u2 ; 
_. -

I (x;p) i's 

that ·part o'f R not irivolvi~g the control expll:citly. Again. the flow 

rate u~ is constrained by·· (3~ 3) •. The constraint on the neutronics 

control is on total rea~tivity ok rather than control reactivity. For 

this reason 6k is tie~ted ... as a control variable in the following 

discussion. Such reactivity constraint is discussed in Chapter II 

;:md appears as 

lu1 I s Y ~· (3.45) 

Then (p,f) is maximum forti on the constraint boundary of the allow-

abie control set. That is, the optimal .reactivity process is uf = y~ sgn p1 

or the optimal control .. reactivity :l.s 

(3.46) 

L6kt t 6kp is computed from (3.42) and (3~43). J 

and 
_. -

u for F(x,p) < 0 
a 

u' 
:a = (3.47) 

ub fo~ 
_. -

F(x,p) > 0 
: ~ . 

where from (3.44) 
.:· .. 

_. -
F(x;p) ;a P9 ;: apaT. (3.48) 

Meanwhile the Hamiltonian is 

~. ( .. - -4 

lC(x.;p) .;. max ft (x;p;u) .. 0 
itEu 

(3.49) 
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The costate is defined by the adjoint equation while the traj-

ectory is within the phase constraint boundary. When the trajectory 

is on the phase constraint boundary, however, the costate is con-

siderably complicated by the presence of vector control. Such pro-

blems are discussed in Reference 8, Chapter 6 and briefly treated 

in Appendix A. In Appendix E it is shown that the necessary costate 

equations are satisfied by proper selection of p(t0 ). 

It is not necessary, however, to solve the costate equations 

along with the two-point boundary-value problem in order to arrive 

at the optimal process. With reactivity coupling the heat-exchange 

process to the neutron kinetics, equations (3.37) and (3.43) show 

that either of the control variables could be utilized to change 

power level. Since there is a constraint on total reactivity, however, 

no increase in· flow rate ~ would permit a faster change of state 

than does u1 = yp for startups and u1 = -y~ for shutdowns. Hence, the 

power is changed in minimum time if ju1 I = yp and any increase in 

flow rate~ would require the system to consume more coolant. Optimal-

ity of this process is not surprising; after the analysis of the pre-

vious problem~ one would again suspect the optimal process to require 

a time-optimal power change. 

At the constraint surface Q(t) ~ (d , it is necessary to maintain 
6 • 

steady-state power. Theoretically, this requires that u
1 

= Li~ Ci/Q
1 

but again such open-loop control is unstable. A closed-loop dither 

type of control, however, is found to do the job adequately. In this 

case, the rod reactivity uc dithers between! yp- (Bkt+Bkp) and a rough 

approximation to the theoretical terminal control. The optimal start-

up of such a system is given by Figure 3.2. At the desired terminal 
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core temperature, coolant flow rate is increased from u~ = ua = 20 lb/sec 

to the required terminal value: u (t ) • Q]. /MCaT1 = 130 lb/ sec in order 
a 1 

to maintain T a 0 in equation {3.39). In practice it would be simpler 

to increase the constraint y on reactivity (if this can be allowed) 

at low temperatures and neglect the corrections due to reactivity 

coupling from the heat exchanger. This is relatively safe for some 

applications with weight flow rate low because the negative temperature 

reactivity causes the net total reactivity to steadily decrease as temp-

erature increases. Such a system is really in the suboptimal category 

but approximates an optimal solution. Figures 3.3 and 3.4 show such 

a response with y = 1.5 and y = 1.6. These figures indicate that for 

the model considered (see Table 1.2), it is not necessary to compensate 

for the feedback reactivity as long as y is at least 1.6. If the temp-

erature reactivity were less or the propellant reactivity were more than 

that used for this system, then the reactivity required to keep the 

pr.ocess optimal and yet so simple would be less. 

The analog computer simulation used to obtain these data utilized 

a circuit diagram that is similar to Figure 2.10 with the addition of 

a six-delay-group neutron kinetics. The heat-exchanger time constant 

is varied according to equation (3.2). 

For most systems the power response is so rapid that any sub-

optimal power control has little effect on the slower temperature re-

sponse. Hence, such closed-loop suboptimal systems as discussed in 

Chapter II are adequate for most minimal coolant processes. 

Notice from Figure 3.2 that temperature increases approximately 

linearly for the interval (to,t1 ) . For small flow rate, (3.39) predicts 
. 

that T ~ (h/MC and substantiates the response shown in Figure 3.2. 
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Hence, as mentioned in Section 3.1 power magnitude constraint may also 
. 

be interpreted roughly as a T or core thermal-stress constraint for 

such minimal-coolant processes. This constraint may require that 
. 
T ~a ~ o /MC, where Q may be less than o • 

m. "'In m '1 

In addition to power constraint the coolant pumping system may 

be constrained. Such constraints are treated in the following section. 

3.3 Flow system constraints 

The coolant may be supplied from a pressurized tank or may be 

pumped from a low pressure supply tank. With regards to nuclear 

rockets, the latter is more desirable due to the saving in tank 

weight and the pump is driven by a gas turbine. The output flow rate 

of the system is constrained by the velocity of the flow cor.trol valve 

(which is very fast), mechanical stresses and certain.regions of 

performance on the pump map. The following discussion assumes the 

first two constraints are negligible. 

A hypothetical pump ·performance map is presented in Figure 3.5. 

This is a plot of pressure r·ise across the pump (approximately propor-

tional to nozzle entrance press~re) vs pump flow rate. Constant 

specific-speed lines are parabolic on this map25 Temperature lines 

refer to the nozzle entrance and are approximately linear due to the 

nozzle equation (1.44). The quantity, specific speed, is defined 

according to 

(3.49) 

where N =pump speed (rpm), Q =·flow rate (gpm) and H =pump pressure 

head (ft.) 25 • 

The importance of specific-speed may best be explained by a 

pump map (See Figure 3.5). Here the flow system is constrained by 

\ 
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reg·ions of stall and cavitation. Above some specific speed N the ss 

pump stalls and below some specific-speed N cavitation exists. sc 

Operation in either of the regions is not tolerable for any finite 

time. A typical optimal trajectory o-d-e-c in Figure 3.5, with a 

bang-bang flow variation,shows a pump constraint violation. For such 

a case the temperature could only be allowed to increase to T . At 
s 

point s mass flow rate and temperature would have to be increased so 

as to maintain constant specific-speed N. 
ss 

If flow rate were increased 

at some lower temperature or power, more coolant would be consumed 

upon reaching the desired terminal temperature. At point e mass flow 

rate could be stepped to point c. 

Suppose the pressure during stall specific-speed operation is. 

approximated by 

p = b w ~ 
s (3.50) 

where b is a constant: Substitution of the nozzle equation (1.44) into s 

0.50) (Hith T ex: T0 ) yields 

C I 
l 

T2 
w = n 

b 
(3.51) 

s 

where c' is a c9nstant. 
n Then for T > T , the optimal trajectory 

8 

(as discussed in section 3.2) is altered as follows. At T (t ) = T 
. s . s 

1 

c'~ 
uo = ....!!...! 
2 b 

8 
(3.52) 

Assume ~ ( t). remains so small that temperature increases nearly . 

linearly; i.·e., T ~a. (t - t ) +. T , where a· = Q1 /MC. Then it is 
m s s m 

seen from (3.51) that 

c' 
~(t}~b.n [a(t- t) +T ]~ 

s . m s s 
(3. 53) 
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for t < t < t 1 • At the terminal end, T = T1 , and Q - Q1 ; then from s . 
(3.39) with T = 0 recognize that flow rate must be increased to 

Ura ( t) = ...... Q.;wl.__ 
. MCaT1 

In .summary then, the optimal-control process as defined in 

Section 3.2 should be pieced together continuously with (3.50) to 

(3.53) if the pump stall constraint must be conSidered. 

It i~ possible to bypass some of the coolant back to the tank 

(3.54) 

and only send the minimum mass flow rate to the reactor but increased 

energy is required to pump this bypass flow. In a bleed-cycle or 
·~ ., . . 

topping-cycle nuclear rocket, the turbine gets tpis energy from the 

20 reactor In practice such a process requires more coolant than the 

previous one due to energy losses. 

The arguments present~d in this section are not rigorous, but 

the constraint problem is so complicated (involving vector control 

with a constraint explicitly including both control and phase) that 

physical arguments are much simpler. Furthermore, Xhe theory 

developed in Reference 8 and discussed in Appendix A does not apply 

to optimization problems with constraints which involve both phase 
. . 

and conirol jointiy. 

Again in practic·e, a simpfe c·losed-loop suboptimal process would · 

be desirable for most applicat~ons. Such closed-loop systems for a· 

nuclear rocket engine are presented in Figures 3.6 and 3.7. There the 

inputs are 'limited·· to• ·meet the ne.cessary constraints that were dis-

cusse·d· above. Though the latter control system is simplified by the 

coupling from propellant reactivity (i.e., an increase in flow rate 

causes an increase in (>Ower), the more complicated system allows the 

necessary constraints to be applied in a ·simpler manner. Notice 
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that control reactivity still a,ppears in Figure 3. 7 and may be used 

to bias appropriately the.total reactiVity. 

As mentioned in Chapter 1, specific impulse (or temperature) and 

thrust (or pressure) are the variables of most interest to a rocket · 

engine. Hence, these are the variables controlled directly in Figure 

3.6. Temperature .and pressure determine flow rate from the nozzle 

equation. (1. 44). · Therefore, How ·rate can be held approximately con

stant by programming pressure ·demand from temperature according to 

the nozzle equation for constant flow rate. An alternate subop!:imal 

scheme could us~ a closed ~ loop. Notice from Figures 2&22 and 3.2 

that the variatibrt of the suboptimal power trajectory from that of 

the minimal time'case has no noticeable effect ori the temperature 

trajec~ory. 

... 



Chapter IV 

CONCLUSIONS 

Optimal control of nuclear-reactor processes has been analyzed and 

synthesized above by means of physical considerations as well as mathe-

matical arguments. Moder~ techniques of optimal-control theory, along 

with the state-variable approach and computer analyses, have been, 

applied to this problem. 

Although safety limitations of many conwercial reactors require 

more .stringent constraints than those given here, the techniques may 

still be applied to the optimal-control design. 

Based on the above study, the following conclusions are of partie-

ular value: 

1. The time-optimal startup or shutdown of neutron density (with 

steady-state conditions at the initial state and terminal state) requires 

no switching in control between end points (see Section 2.1.2). The 
.. 

key to this time~optimal neutronics control is the ability to maintain 

essentially steady-state neutron density at the desired termin~l le~el 

while the neutron-percursor densities are not near steady state. The 

theoretical terminal control, being open loop, is unstable in practice; 

a closed-loop dither type of control, however, is found to be stable 

(see Section 2.4). Furthermore, a continuous type of terminal feed-

back control, although suboptimal, is analyzed in Section 2.5 and 

found to·be satisfactory for most practical purposes. A describing-

function analysis indicates the stability limitatioh of such systems. 

2. The minimal propellant consumption control of neutron dynamics 

direct-cycle.heat-exchange processes, such as that of the nuclear 

119 
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rocket engine, is at least partly a bang-bang process. Though osten

sibly a minimal propellant proces~, this problem lead~ to a minin1~~-

time cot'ltrol process, as. analyzed in Chapter III. 

3. Physical constraints on maximum power level, (approx~mately 

equivalent tD c~mstraints on rate of change of core temperature or 

co.re thermal stress) a~d the coolant flow sys~em performance are dis-

cu~sed above. These constraints, as analy~ed in Sections 2~2.5, 3.2 

and 3.3, cause the opti~l control trajectories to be a connection 

of those due to bang~bang and continuous typ~s of control. 

4.1 Suggest ions for further work 

The optimal control of more complicated reactor models should be 
' . 

analyzed. In particular, distributed moqel core hea~-exchange processes 

with thermal-stress constraipts should be studied along with optimal 

reactor processes. lnpeed, the optimal process is only as good as the 

ccmstraints and the mode~. Vibrations (such as those experieq.ced in 

nuclear rocket reactor cores) may require consic)eratiop 9f constraints 
. . 

thus far ignored. Furthermore, the ~tability of these. optimally 

controlled systems could be analyzed by su~h techniques as Liapunov's 

direct method. The effects of reactor noise should also be studied. 

-Bilinear systems (i.e., systems for which the state x and control 

u appear linearly but for which products of these line~r terms may 

exist) in g~neral seem to be a fru~tful area for future research. 

The neutron kinetic e~uations, (1.30) and (1.31), describ~ a particplar 

pilinear system. Since {wit~ reference to the maximum principle) the 

bang~bang process is a candidate for the optimal control for a broad 

class of problem~ it would be worthwhile to compute the maximum number 

of possj.ble switchings. It is apparent that there can be more switchings 
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than the maximum for the system jointly linear in the state and the 

control. Sufficiency of the maximum principle should be rigorously 

proved for a.t least a sub-class of optimization problems relative to 

the bilinear system. 



APPE;NDIX A 

. . 
OPTIMAL PROCESSES WITH CONSTRAINED STATE VARIABLES 

For ~ny problems, not only the region of admisslble control, 

but also the region of allowed phase values, must be restricted. In 

these cases, the optimization problem consi~ts of selecting an ' 
..... 

allowable control whose phase trajectory x lies in a given fixed 
..... 

r~gion B of the n-dimensional phase space. x also satisfies the equa-

tions of state (along with necessary end conditions) and minimizes 

a performance index J (see equations 1.1 and 1.5). 

The object_of this formal presentation is to su~rize the 

necessary conditions which are used in this thesis. 'rhe reader is 

referred to Chapter 6 of Reference 8 for detailed theorems and the 

necessary assu!IIptions. 

' In addition to the restrictions placed on the allowable control . 
..... 

region U in SectiQn 1.2, assume that u(t) is compo~ed of piecewise smooth 

components and furthermore, that the admissible control set satisfies 

certain "regularity" conditions in a neighborhood of its boundary points. 

These regularity conditions are defined below. 

Let u1 be an arbitrary bou~dary point of U which belongs to U and let 

-+ 
q1 (u)(i=l, ... ,s) be continuously differentiable scalar· functions such 

-+ -. 
that U is given by q1 (ul) = 0 (i=l, ... ,s) in the neighborhood of u1 • 

-+ 
Furthermore, the vectors oqi /ou· (i=l, ... , s) are linearly independent. 

Let the closed region B (in the n-dimensionai phase space) be 

smooth and defined by 

s (;z) ~ 0. 
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... 
S(x), also, must have continuous second partial derivatives near the 

... ... 
boundary S(x) = 0 and the vector oS(x)/ox must not vanish on the 

boundal"y. 

As in Chapter I, the system is made tO have order n + 1 by letting .. ... .. ~ 
xn+l • fn+l (x;u) • C(x;u), with xn+l (to) • 0 and xn+l (t1 ) = J. The 

optimal trajectory must connect ~(to) = [~<to)] with X( t,) = [ :~:~ ~ t, ) J 
somat xn+l(t1 ) takes on the minimum possible value • 

... 
Every function which depends on x can be considered to be a 

- ... -function of x; e.g., S(x) = S(x). Hence, let the closed region Gin the 

(n+l)-dimensional phase space be defined by S(x) ~ 0. 

For S(x) negative, i.e., optimal motions not on the phase con-

straint boundary, the previous conditions stated by the maximum principle 

are valid. Necessary conditions br solutions to be optimal on the 

phase-constraint boundary, 

s[~(t)] -
... 

S(x) ·- s<i> - o, (A.l) 

are discussed below. 

Equation (A.l) requires that all the time derivatives S(k) must 
... 

vanish. Assume that the required u(t) may be computed .from S = 0, where 

(A.2) 

Also, assume that the phase trajectory x is "regular''. with re-
... 

spect to u1. That is, for each x on the trajectory· x is regular, where 

regular means the following conditi.ons are satisfied: 
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. ~ ~ . ... 
(1) S(x;ui) = S(x;'ui') • 0 , 

. - ..... 
(2) oS(x;u;) 

att :/: 0 

and 

(i= 1, ... , s) 

arc linearly independent. If~ [as determined .by (A.2)J is an interior 

point1 condition (3) doesn't appear. Let w(i) designate the set of all 

- . 
admissible controls for which x is regular. If u1 is an interior 

point, w(i) is a point. 

With these assumptions, the maximum principle may be extended as 

follows (see page~ 267 and 268 of Reference 8). If i(t) is an opti-

.a - ~ ~ ' .... 
mal trajectory of x = f(x; u) for corresponding u(t) and x is located 

enti~ely on the boundary of G, th~n a continuous p(t) and a piecewise 

smooth p(t) exist such that 

.:. - -t ..... 
f(x;u) 

-t - ..... 

= oR(x;p;u) 
op (A. 3) X :;: 

.! 
.... - .... . - .... 

oR(x;p;u) oS(x;u) 
ox + p OX (A.4) p = -

~nd 

:K[~(t);p(t)] = max 
..... - ..... 

R[x(t);p(t);u(t)] = 0~ 
i1Ew(x) (A. 5) 

where as before R(;; p; ~) = [p, f(~;tt)]. p(t) is determined from 

. - ... .... 
(A.S) as a Lagrange multiplier for oS(x;u)/ou in 

-t - -t 
oR(x;p;u) 

au (A. 6) 
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Also, pn+l(t) is a nonpositive constant; p(ta+) is a nonzero vector and 

is not collfnear with as(;);a; and ~(t) ls nonpositive. t + is the 
a 

time at which the trajectory ;(t) initially is on a phase-constraint 

boundary. 

We now have necessary conditions for optimal trajectories on 

phase-space constraint boundaries. For interior points the maximum 

principle as presented previously yields the appropriate necessary 

conditions. Next consider the necessary conditions such optimal 

trajectories must have at their junction points (i.e., points where 

phase trajectories meet phase-constraint boundaries)., Consider a junction 

time t such that the trajectory is on a phase-constraint boundary for 
a 

t > t
8 

and is not on a phase-constraint boundary for t < t
8

• Then either 

p(t -) = p(t +) + ~as<;> 
a a ox 

or 

-p(t -> _ "· as<i> = 
,a, ,.. ox 0 • 

t = t a 

(A. 7) 

(A.8) 

where~ is some real number~£ opposite sign to that of Reference~. 

Hence, p{t) may be discontinuous at the junction time. 

In References 8 and 15, it is noted tha~ an arbitrary jump [pro

portional to oS(x)/ox] can be added top during (ta,tb). This arbi

trary jump can be utilized (as is done in Reference 15) so that'if the 

phase leaves the phase-constraint boundary at t = tb, then p(t) can be 

assumed continuous at t = tb. The necessary costate conditions at t 
a 
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and tb could be interchanged but following the convention of Reference 15, 

assume this arbitrary jump is utilized to i'\lake p(t) contipuous at the 

exit corner, t = tb. 

H~nce·, · 

(A.9) 

... - ... 
It is shown in Reference 15, also, that R(x;p;u) is continuous 

at both .entrance corners and exit corners. 

Time-optimal neutronic processes with phase-constraint and scalar 

control are discussed in Chapter II. For these processes u is an 

interior point of the allowable·controls. Hence, from (A.6) 

P ~ o~(~;p;u) [as(x;u)J-1 

. au - ou ~ (A.lO) 

Substitution of (A.lO) into (A.4) shows that the optimal trajectories 

on the phase-constraint boundary must satisfy, 

Since ~ 

.:. 
p = 

-T= f p 

_....... _._ 
oK(x;p;u) + o~(x;p;u) 

ox au 
(A .11) 

- ... 
af(x;u) 

au [ · -· J-1 [ . - J T~T oJ(x;u) as(x;u) -
ou ox p · (A.l2) 

Thus, for such problems equations (A.4) and (A.6) combine and simplify 

to yield (A.l2). 
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Appendix B 

SOLUTION TO THE SINGLE-PRECURSOR NEUTRON KINETICS 
AND THE NEUTRONIC ADJOINT SYSTEM FOR 

CONSTANT REACTIVITY 

The solution to the neutronic ·system (2.28) for u =±~~may be 

obtained by conventional means (e.g., s:ee Chapter II of Reference 26) • 

This'systein may be written·in vector form as .. 

• - .... 
X = A X (B .1) 

where x1 = n, X:a = C and A is a constant matrix defined by:· 

A = [
!!.:..!!.] t ). . 
.[ 1 for u ( t) constant 

. t -A. 

(B. 2) 

The solution to this autonomous system (B .1) for u(t)· constant is 

..:. A(t.-t ) .... 
x=.e · 0 ·Xo 1. (:b. 3) 

where~=; (to)2~ The transition matrix eA(t-to) is the. solution 

to the matrix equation 
.. 
X = A X (B .4) 

with X(t0 ) = I, the identity matrix. 

Elements of the exponential transition matrix for the neutronic 

system are as follows: 

(:S • 5) 

where the ij subscript refers to the i, Jlth element of the matrix and 
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1 
Pa + ~ (1 +. y) C11 = 1-

;a 
-[P1 + J! (1 + y)l ell -· £, 

;a = k 1 
" · C12 = - c' l;a 

2' ~· = ·cl C21 = -i, 21 

l 
C2a = )... + p2 

2 ()... + pl) C22 = 

Her.e t;:he order of signs· i:s read according to u = :!:': y~. 

P1 and P2 are computed by (2.34) or approxima,ted by (2.35). 

Hence the soJ.:u·tion may be wr,itten as. follows: 

J •: 

and· 

C = (c~lno + c~2C0)· epl(t-to)+ (~lllo +C::aCo)ep2(t-to) 

Pa - P1. 

(B .'6) 

(B. 7) 

If.~. i~ initially zero then ~ no = )...C0 [see (B.1) a.nd (B. 2) J and the 

solution (B.1) n;tay be written. as: 

and· (B.8) 
to) 

c = 

• 

• 
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• . ~ T-
The solution to the adjoint syst.em p = -A p is (see p. 27 of Reference 28-) 

~ ~ 

~ -T A(to.;.t) 
P = Po e (B .• 9) 

where Po = p (to). Hence, the adjoint solution is given by· (B .9) where· 
. . 

the ·exponential matrix is defined by (B.S) and (B .6) but the argument 

(t-to) is revers~d in sign. In other words, the adjoint solution is 

similar to 'the solution of the original system with time reversed • 



Appendix c 

PHASE-PLANE EIGENVECTORS 

0 .. .. 
Consider the ~ystem x = A x. Foi this system to have a nontrivial 

solution of the form. ;(t) = Cept it is necessary and sufficient tha·t p 

be a root of the characteristic equation: 

lA- pii = 0 ( C.l) 

fuppose the s~stem is of order n ~nd there are ri real and di§tinct 

characteristic roots or eigenvalues~ Then there are n principal direc-

. 29 
tions or eigenvectors along which 

. .. .. 
x = px (c.2) ... 

These eigenvectors xl must satisfy the following relation: 

[A - p.I] 
l. 

= 0 (C.3) 

where 1 = l, ... ,n. 

Consider the second-order sys tern with A .. components of the A rna trix 
. l.J 

and with real .and distinct eigenvalues p1 and p2 • The eigenvectors must 

satisfy 

or 

i i 
(Au - P ·) xl + A12 Xa = 0 

1 

. i i 
~ 1 x1 + (~2 - P · ) ~ = 0 1 . 
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= 0 (C .4) 

(C.5) 

., 

• 

• 
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Hence, the tangents of the eigenvectors are 

i 
P:L-Au X:c! 

i= = 
xl A12 

Ael 
(C .6) 

where i = 1, 2 

• 



Appendix D 

COMPUTATION OF PHASE-PLANE TRAJECTORIES 

Computation of phase-plane trajec.tot:ies for constant reactivity 

.. 
may be made as follm~s. The anC!lysis is valid for x1 = n or x1 = C. 

The form of solution_with ~ = ·o is 

p ·t p ·t x - c1 . e 11. +f'- . e 2 l. 1- .l. 'C!l. 

and· 

0 

where i = 1 for u = yl3 and i = 2 for u -yl3. 

Then 

or 

Similarly 

Eliminate t from (D..2) and (:p. 3): 

Let x1 i (0) = x10 and Xa i (0) = X:ao, then 

P~ iXto - X:co 

P:a i - , Pt i 

132 

(D.l) 

(D.2) 

(:D.3) 

(D.4) 

. '-~ 

• 
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and 

~i = pli~lO - X:clo (D.S) 

,. P1 i - P:a i 

-~ Hence, 

[Po iXl - X, r·i [Plixl - X, r,, 
= 

P:?. iXlo -x.:ao P1 ixlo X:clo 
(p,6) 

Furthermore, t = to = 0 can apply to any given point for this piecewise 

autonomous system. 

Then compute the trajectories for the phase plane n vs C by substi-

tuting the C c X2 equation (2.28) into (D.6) with_xl =C. 

Hence, 

~ 

(D. 7) 
J • 

where n(O) = no and C(O) = Co but t = to = 0 can app~y to any given 

point. If Ilc, Co is a given point on the trajectory, then all n and C 
; 

on'this trajectory must satisfy (D.7)._ 

• 



Appendix E.· · 
. ' 

NEUTRONICS MEAT-EXCHANGE SWITCHING PROBLEM FOR OPTIMAL STARTUP WITH Q s ~ 

It is seen from equation (3.44) that 

R • I(~; p) + ~ + .(Pe. - apeT)~ . (E.l) 

Hence, the optimal control is described by 

0 = 5k0 Yl3 Ul = sgn P1 (E.2) 

and 
u fot F < 0 

' 0 a 
~ 

- ,. (E. 3) 

ub for F > 0 

where 

F = pg - aTp8 
(E.4). 

The costate .is defined .by the· adjoint ~ystem for an inter.va-1 o.f no phase' 

constraint.(i.e .. , t <taL 

p.j· • A.j (pj-p·) -1 . 1 

(j"" 2, •.•. ,7), 

Ps • a~ Pe (E~S) 

and 

Pe c 0. 

Also, pg is non-positive . 

Equation (E.S) shows that F as given by (E.4) cannot change sign 

if Pe (to) is non-negative since aT is positive. Also the behavior of • 
p1 is only. changed slightly (from that of Chapter II) by the addition 

of a particular solution of slow transient due to p8 (t), if p6 (t0 ) is 
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-selected small enough. Hence, one would expect that p(to) may again be 

chosen so that p1 (t) does not-change sign~ 

It is shown below in (E.14) that p/ta) = 0 for .1 = 2, ... , 7. 

is also the terminal condition that yields no zeros for P1(t) in 

Chapter II (see Figure 2.12). 

While Q(t) = Ql, it is seen from (A.4) that with t
8 

< t < t 1 , 

.a oR-
P "' .- ox + (E. 6) 

where S = Q - Q1 • Since as/ox = 

~6 
0 

p-ul 6 ~i PB (ul- p) 
l\ = -pl - I: pi+1 -- + p ' ;. 1•1 .t MC £ 

(E. 7) 

(j=2, ••• ,7) 

. 
Pe = a~Pe 

and 

P9 = 0 • 

This 

As hypothesized in Chapter III, let u = 
1 

.., w·= u 
a 

for the interval (t
8

,tb). Then from (A.6) 

. . 
.Q!! P M + .,, E.g .. au = au v au , (E. 8) 

where 
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Substituting (E.l) into (E.8) one obtains: 

=~ (E. 9) 

and 

F = (p9 ~. ap8 T) =- u. 

Hencej from (E.9) 

P - P1 (E .10) 

and from (E. 7) 

where p
8

a = p
8

(ta+.> is the value of p8 ""at the poi~t where t:he trajectory 

enters·the phase constraint boundary. Therefore, 

P ~ p0 - ap88 T(t) exp [a-1: ">(a) da J (E. i 1) 

Then since T and~ are positive, the ·switching function, (E.ll), 

c.<uinot change sign if Pea is non-negative. 

where 

or 

The ~ther switching function p1 is described by 

p 
---A ' MC 

(j- 2, ••• , 7) 

(E .12) 

, .. 
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Sirice the terminal manifold is defined by T (t1 ) = Tl and Q(tl) = Ql' 

. Pj(t1 ) = 0 (for j = 2, ••• ,7). Then 

pj(t) = 0 (E .14) 

and 

P1 = _b_ 
· MC 

or 

1 lt (o) do (E .15) . pl • pl a - MC Pe ' 
ta 

where t < t ~ tl and Pla • p (t +). Substituting (E.lO) into (E.l5), 
a 1 a . 

(E.l6) 

From (A. 7), 

Pj<ta-) = pj(ta+) (E .17) 

(j=2, ••• ,9) 

and 

where, since there is no constraint 'exit corner, ~ may be set to zero. 

Hence, by selecting p
1
a large compared to p or p

1 
large compared to 

ea o . . 

Peo, P1 (t) remains positive. Furthermore, P·(t) = f>t (t) is non-positive 

for ta < t < t
1 

and p(ta) is not collinear with oS(x)/o~ (as required) . 

. In summary then the costate system of equations is sa~isfied by 

the optimal startup control if: 1) p6 (to) is a small non-negative 

number; 2) Pe is a negative constant; 3) p1 (to) is selected positive 

and considerably larger than p6 (to) so that p1 (t) doesn't change sign; 
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4) Pj(t
1

) = 0, j = 2, ..• , 7; and 5). the actual initial values of p1 , · p8 , 

and P9 should be selected so that K = o. 

The actual solution of the costate equation should again progress 

from the terminal end. By selecting the above conditions (1), (3) and 

(5) Caloli.g with (4) at the terminal end], the costate equations can be 

solved and there are no switchings in control between end points. 

An example startup trajectory with steady-state power and tern-

perat6re at the end points is. pregented in Table E.i. Recognize that 

the switching functions P.(t) anci F(t) = pg - a T p8 are positive and 
1 

negative respectively, between end points and hence the hypothesized 

constant control satisfies the maximum principle. These data were 

obtained from an IBM 7090 compute:i:'. 
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Table E.l Optimal reactor startup trajectory with Q(t) ~ Ql 

Input Data: 

to 

t a 

tl 

u1. = 0, t < 0. 1 sec = to 

U1 "'0.9 ,.; t ~ 0.1,_ Pl. > 0 and Q <CO. = 2.142(10) 6 Btu/sec 

• • 
u1 = .x, 1[\ c1 I~ , Q • ~ 

~ = u = 2 lb/sec, T < T1 and F < 0 a 

· :K = 0 , t 0 < t < t 1 

a= 1.153{10)-2
, T(O) = 500° R, 0(0) = f(O) = 0 = f (0) (i = l,; •. , 6). 

. i 

f(tl) = Q(t1 ) = 0, other data given·by Table 1.2 

Time Power Temperature· P1 (t~ Pe (t) 
sec 10-4 Btu/ sec 10-2 0 R 106 sec /Btu 104 sec/ 0 R 

0 1. 3144 5.0000 

= 0.1 1. 3144 .5.0000 11.946 7. 2139 

0.2 13.253 5.0651 9. 2838 7.2306 

0.4 24.889 5.3720 5.6093 7.2640 

0.6 . 42.642 5.9257 3. 3932 7.2976 

0.8 71.793 6.8790 2.0589 7.3313 

1.0 119.91 8.4903 1. 2663 7.3652 

= 1. 24 214.20 11.911 5.0718 7.4101 

1.4 214.20 14.868 4.9676 7.4375 

1.6 214.20 18.549 4.8368 7.4718 

1.8 214.20 22.213 . 4. 7054 7 .. 5064 

2.0 214.20 25.860 4.5734 7. 5411 

2.2 214.20 29.490 4.4408 7.5759 

2.4 214.20 33.104 4'. 3076 7.6110 

2.6 214.20 36.701 4.1737 7.6461 

2.8 214.20 40.281 4. 0393 7.6815 

= 3.08 214.20 45.011 3.8500 7.7751 
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