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1. INTRODUCTION

We shall obtain gradient bounds and some global estimates
for the solution u(x) of the nonlinear problem of combined dif-

fusion and reaction

(1) -bu = f(uw) , x €D 2u + hu = 0 , x e 3D .
: . v : .

Here D is a bounded domain in Rn with boundary 9D and outward

“normal Vv, 4 is the n-dimensional Laplacian, h is a positive con=

stant (h = correspoﬁds to vanishing Dirichlet data) , aﬁd f is
suchithat (15 has a unidue ?ositive solution u(x). We assume
throughout that £(z) is continuous for z i 0 and that £(0) = 0;
the forced case £(0) > 0 and the noniinear'bdundary condition
du/dv + hu = ﬁ(u) will be treated elsewhere.

Problem (1) arises in a variéty of applied contexts such

as: a) steady operation of a homogeneous, monoenergetic nuc-

- lear reactor with feedback - here u is the neutron density; b)

nonlinear heating such as Joule heating in a homogeneous medium
(with u being the temperature); c) ﬁonlinear chemical reaction
combined with diffusion in a biochemical setting - here u is the
concentratibn of a reactanf. It should perhaps be noted thét
the equation - div(k(v) grad v) = q(v) corresponding to a non-

linear diffusion coefficient can be transformed to equation (1)

. S Y/
by the change of variable u = J k(z)dz.
0
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In the analysis of (1) an important role is played by the

linear problem '

(2) 06 = A¢ 5, xeD 3 Lirnpg=0 , xe oD .
Y

The fundamental eigenvalue A, = Al(h) of (2) is simple, positive,

1

and increases with h, while the corresponding eigenfunction does

not vanish in D. We shall let ¢1(x) be the positive fundamental

eigenfunction whose maximum value is 1. If h < o, ¢1 is positive
oﬁ the closure of D.

By setting f(z) ='Ag(z), we can regard (i) as a branching
prdblem. Under suitable conditions on g, (1) will then have’a
branch of positive solutions emanating from the trivial solution
at A = Al. Preliminary results on existence and uniqueness of
positive solutions will be obtained by using mbnbtone methods
(see KELLER [2], SIMPSON and COHEN [7], SATTINGER [6], STAKGOLD
and PAYNE [8]). There is little that is new here apart from

slight imprbvements in some of the proofs. Next we derive grad-

ient bounds by an indirect use of Hopf's second maximum prin-
) u

ciple[}]. We find that J(x) = |grad u|® + | f(z)dz obeys an

' 0

elliptic inequality except where grad u vanishes. A calculation

shows thaf k) < 0 on the bbundary so that the maximum of J must

AY
occur at an exceptional point, leading to the desired'bound. We
then introduce level surface coordinates for u, enabling us to
derive a number of isoperimetric norm estimates., Finally, by
‘using the Qolume enclosed by a level surface as a new independent
variable, we obtain an upper bound for the total flux of u through
thé boundary, this quantity having special importance in.applicaf

" tions. In general outline the approach is similar to that in




- 3 -

some of our previous papers (PAYNE and STAKGOLD [},5,@]) but

addltlonal dlfflcultles - both technlcal and conceptual - arise

in v1riue of the nonlinearity of the equation and the nature of

the boundary ‘condition. At the same time we are able to extend
and deepen some of our earller results, at the sacrlflce of res-

tricting ourselves to convex domains.

2, | “EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS

A positive solution of (1) is understood to be a solution
u(x) which is nonnegativé but does not vanish identically in D.
Let us set

(3a) £(z) = Ag(z) , A >0 ,

where g(z) is continuous for z > 0 and

(3b) - g'(z) is strictly decreasing for z > 0 -,

. (3¢) | ') =1 , g(0) =0 .

We then define
lim z/g(z) if this limit is positive
(4). B o= 2

+ otherwilse

The boundary value problem (1) takes the form

(5a) -Au- = f(u) or, equivalently -Au = Ag(u) , x € D,
(5b) | % w0, xedn .
' . LAY

Remarks. 1. We do not exclude the possibility that g might become
negative as z increases.
2. For each ), Al < AA< uiy> the curves A4z and f(z)

intersect at exactly one positive value of z.  For any other A,

L

"these curves do not intersect for z > 0.



Theorem 1. If f satisfies conditions (3);'thé'boundary valué pro-
- blem (5) has one and only one positive solution for X1'< X < uki

and no positive solution’fdr‘any other A; moreover, for A < Ai a

solution of (5) can not be positive anywhere in D.

Proof A. donexistence. For (5) to have a positive solution,

f(z)-Alz must-éhange sign for z > 0. Indeed, adding fllu to both
sidesvof (5a) and using the Fredholm alternative.We find that
_Iéf(u)—klél¢1dx = 0 thch implies that either f(z)mkli changes.

sign for z > 0 or that u is a cdnstant - a positiQe zero of f(z)—klz;
This latter possibility is eliminated because a nonzero constant

does not obey the boundary condition. Thus positiQe solutions can

occur -only for A 1

1<)\<p}\

To prove that solutions for A i‘kl can not be positive any-

where, suppose the contrary to be true. Then there exists a.pro-

'per subdomain D' D with u > 0 in D', fu hu = 0 on aD'/} 3D and
: oV .
u = 0 on the rest of D'. Let Ailand ¢i be the fundamental eigen-

value and positive eigenfuﬁction of -A for D' with the boundary -
conditions just described. For A < A-, the hypothesis givés
lf(z)-Alz < OIfor z > 0 and hence f(z)-Ai z < 0 since A1.§ xl"
Subtracting A'u from both sides of (5a) and applying the Fredholm

1 .
alternative, we obtain I E(u)—ki@}¢idx = 0, which is a contradic-
- tion.
B. Existence. We shall use monotone iteration schemes to con-

struct maximal and minimal positive solutionms. Recall that an

upper solution u(x) satisfies the inequalities

~A3-£() >0 , xeDdD 3 ¥ ymu>0 , xe 3D ,

- - . ' oV

whereas for a lower solution u(x) both inequalities are reversed.



For A > 0, the function v = A¢1 satisfies.

Ai g(A¢i) oV

-Av-£(v) = aAg | - —| 5 =X+ hv=0ondD .
' A A¢1 . AV '
Since g'(0) = 1, we can, foﬁ each kli Aps choose A sufficiently

small so that v is a lower solution. We also know that ¢1 >8>0
on D so that we can, for each A< ukl, choose A so large that v
is an upper solution. (The argument must be modifiéd in the

Dirichlet case because ¢1 now vanishes on 3D; an upper solution

~

can then be foupd in the fdrm A¢1 where 51 is the positive eigen-
function of (2) corresponding to a large positive value of h).

Stafting from the lower solution‘just described we use a
sténdardjierétidn:procedure to construct a monotdnically increas--
ing sequence u which convérges to the minimal positive solution
u, of (5). Similarly, from the upper solution, we‘construct'a
decreasing sequence Gn cenverging to the maximal positive solution
u® of tS). |

C. Unigqueness. Let u, and u®* be the minimal and maximal positive

solutions constructed in part B. Since u, exceeds A¢1 for some
positive A, we have u, > 0 in D. We know that u* > u, ; suppose
the strict inequality occurs on D' whereas equality holds on the

remainder of D. Applying Green's theorem to D', we find

oy fQuy) du,, .
Iu*u* £Qu*) | ~—|dx = J {P*'——l - u, %) s s
% o} v ” .

D! u~ W, 1+02 3V N

o~

= an/\ 9D and o, is the remainder of BD‘.‘

whgre 01 9 ,
The integral over 01 vanishes by the boundary condition (5b). On
L o ’ ou % A - ' .
g,» We have u*® = u, and —— - 9u” > 0. By (3b), f(z)/z is strictly
' v v '

' decreésing which implies that the integral over D' is negative.

this contradiction then shows that D' has zero measure; by contin-



uity it follows that u, = u®* in D, cbmpleting the proof of

Theorem 1.

-

We conclude this section with.a simple result.

Lemma 1. Let f satisfy conditions (3) and let u(x) be a positive

solution of -Au =. f(u) on @ (no boundary conditions specified).

Then f(u(X)) 3.0 on f.

Proof. At any point in Q where the maximum is attained,.Auui o

so that f(u ) > 0. But f(zg) 20 implies f(z) > 0 for 0 < z < Zge
3.  GRADIENT BOUNDS.

From here on we shall assume that f satisfies conditions

(3) and therefore Lemma 1 is applicable. Although we wish to

-obtain gradient bounds for the unique positive solution of (5)

when A, < A < pA,, we shall have to proceed by steps. .

Lemma 2. Let u(x) be a pbsitive solution of -Au = f£(u) on a

domain € and let

'(6)v4 ' J = |grad u|2 + 2r(u)
where | '
. B . _
(7)) : F(u) = J f(z)dz
‘ , 0

- then J satisfies the elliptic inequality

. A ‘ . : n
(8) ‘ 0 < AJ +]. & & a—J—l/|grad u[%
: ' k=1 Bxk *

where the coefficienté ay ére coﬁtinuous and bounded on .

Proof. Straightforward calculation and use of the Schwarz inequal-
ity (see [8]), The fact that f(u(x)) > 0 on Q plays an essential
role; | -

Theoreém 2. Let u(x) be a positive solution of -Au = f(u) in a

G2+e

convex domain @ with boundary 30 (of class for the time being)

on which u is constant. Then
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- (9) v |grad ul® < 2[?(um). ;(u) .
Proof. Introduce a normal-tangential coordinate system in a

neighbourhood of 3. We have

(10) J = 6&5 + Igradt'ulz‘+ 2F(u)
- . LAY ‘

where gr_adt u is the tangential component of grad u. = Then

_ o o _
(11) 3d . 2GE%FL% + 2grad_ u. A gradt u + 2£f(u) du
v EAVACAYS ' AV . v
and, since_gradt u = 0 on 39,
| fodi  Zdu [a%u -
(12) | e fﬁlﬂ
: \BQ%Q ov kv

By the smoothness assumption on 99 we may apply the differential
equation at the boundary where it takes the form

7

(13) B2y -k &y aus f) s 0,
v LAY
“ where A' is the surface Laplacian and K the mean curvature. Since
: : ‘ : : 32
u is constant on 3Q,A'u = 0, and, substituting for —*%,in (12), we
' Y :
find
o : oJ | " [ou 2
(14) 4 ~—J= -2(n-1)K ——) <0
o ¥/ ov

because K > 0 for a convex domain.
Since J satisfies (8) its maximum occurs either where

grad u = 0 (this includes the case J = constant) or at a point on

90 where 3 5 g (by Hopf's second maximum principle):. This latter

av
possibility is ruled out by (14) so that J has its maximum where
grad u vanishes and hence (9) follows.

3

Remarks. 1. The bound (9) is exact for one-dimensional problems.
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. : 2. By approXimating with smobth bduﬁaaries, welcan
extend Theorem 2 to a convex domain wifh a Lipschitz boundary.
'3; Consider (5) for a ¢on§ek(ddmain D and Al <A< pxl
LIf h % ©, u vanishes on 3D and Theorem 2 is immediately applicable
with @ = D. If h < w,uu is not necessafily constant on 3D, but

its maximum value 1T on 3D is certainly less than uo since 3%

is negative on 3D. .Thué (95 holds for the domain QQ:'D"whgze u > T
under the reasonable (but unproved) assumption that § is convex if
D is convex. :Fbr_the pufpoée of'debiving isoperimetric inequal-
ities in the sequel it is sufficient to know that (9) is valid
for u > T. Alternatively, for n = 2, we have been able to modify
the proof of Theorem 2 to take into account the fact that for

h < « neither grad, u in (11) nor A'u in (13) vanishes on 8D.
Theorem 3. Consider problem (5) with D convex, n = 2, Ay <A <
Then (9) holds in D.

22995' Let s be the tangential qoordinate which coincides with the

arc length on 3D. The corresponding metric coefficient k(x) is

then identically equal to 1 on 9D. We then have from (10) that

- | 2. 2
(15) go= {29\, (L AuN L orny
: oV k‘Bs : '

-and (12) becomes '

, ‘ 2. . 42
(16) (3‘1)= 2ﬂ(3—'2‘%+f) —2(h+—8——}53 (-3-9-3

avaD ov L ov . S AV) 9s
whereas (13) takes the form

(17) 3—% + KEE + E—% + f(u) = 0 ..
av LAV 3s
3%y . ) : ok
Substituting for — in (16), we find, on observing that 3 - K20,
v '
- ) o | 3u T
(18) =1 22 = )K= -
: LAY 5D AV oV ds

1"



-9 -
" which differs from (14) by the second derivative term. We also
have

._a...‘.]_:': 2 ig .____a u_ + 2 .:.L. ._a_.lﬂ ...9_.(.1‘. QH -+ 2f(u ) 19
9s oV 9SaVv

which on 8D reduces to

’ 2
(19)- 3 = (2h2u+-f + 2 g—%)_
9s 5D 3s ’ 9s

A further calculation yields

(200 1 (3—%)
2 '\3s

‘3 2 2ﬂ
(Bu)chBu_FB 3_+f,8u) +(a g)(h2u4_f+ 3 g) .
9s ds 9s 3s 9s ds

Let P be’the'point on the boundary at which J is supposed to have

oD

2 2 :
a maximum. Then 2% - 0 and E—% < 0 at P. If §~% >0 at P, (19)
- ds ds 98 '
3u 3% ' s
shows that — = 0 and (20) would give —% > 0, a contradiction.
98 : ds : -
3Zu . aJ . . .
Therefore —= < 0 at P, and (18) gives (-). < 0 1in conflict with
' 9s LAY P

. Hopf's second maximum principle. Thus the maximum of J must occur

Where grad u = 0 which establishes (9) once more.

Corollary. Let T be the maximum of u on 3D and 1% the unique pos-

itive root of

(21) o nfdt e o) = 2R )

then A : T < %

T, we have

Proof. At the point on the boundary where u

) 2 !
h? - (33) < |grad u]2

- -

av

. W

but this last term has the upper bound in (9), by Remark 3 follow-

ing Theorem 2.



‘4. NORM ESTIMATES.

Using fhe preceding Corollary and thé bound (9) we can
obtain some rough global estimateé by in{egratiﬁg (5a) over D.
it is, however, more ffuitful to introduce the level surfaces for
culx). Lef D(t) be the domain wheré u exceéds t; its boundary,
which may-include part of 3D, is denoted by 3D(t), and its volume
by v(t). Clearly v(t) is a decreasing function of t with maximﬁm
value V and minimum value 0 at t = u . ) |

We first note. some eleméntary relations between v(t) and u.

For any continuous function a(z), define

a(t) = ra(uldx
, . D(t)
Then | ' 'A‘ - | . dm .
(22) . at(t) = a(t)v'(t) , alt) = - J a(z)v'(z)dz ,
ot '
and
(23) | v’(t)‘= - f lgrad ulnids' , Tt >T .
_ , ‘ oD(t) '

; Lemma 3. Let
tet) = Jf(ﬁ)dx
D(t)

Then, for t > 7,

(24) $Ct) < ¢ (1), F(um)—F(t):)%[P(um)_F(T)]_% ._

Proof. For t'zit, oD(t) is the level surface u = t so that

-2 |grad u| on 3D(t). Intégratidn of (5a) over D(t) then
v o
gives
o(t) = I fgrad u| ds ,
ab(t) :

while (22) and (23) yield o D

o' (£) = £(t)v' (£) = -F(t) |grad u| tds ...

jBD(t)
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Combining these equations for ¢ and @ia‘and using (9), we find

£(£) £(t)

¢/ > —= = ~
max |gyad u]z Z[F(um)ff(tf} ’

xe3D(t)
Integrating this inequality from.r to 't then gives (zu)}
.. Lemma 3 is the basis for the following theorem which yields
a variety_of norm estimates.
Theorem 4. Let é(z)_be an arbitrary cbntinuous function increas;-

ing for z > 0. Then

If(u)a(u)dx : : §
Ip -1 1 -
(25) — < J2F(u _J)=-2F (1)} 2I(1) < — I(t%) ,
f(uydx ~ [* m ] he®
D .
where
u . , ‘ o
m -1
(26) ’ I(z) = J a(t)f(t)[?F(u )-2F0ta 2dt .
_ ” m’ |
Proof. Since a(t) is increasing, we can wfite
(27) Jf(u)a(u)dxlz a(T) !f(u)dx +[f(u)a(u)dx .
D -D(1) D(t1) |

To estimate the last term, let us multiply (24) by a'(t) and inte-
grate from T to us the integration on the left side being done by

parts. Using (22), we find

' . -1
(28) Jf(u)a(u)dx < ¢(t)alt) + ¢(T)[?F(um)—2F(Tﬂ 2
D(m) T . u
m 1
.Ja'(t)[gF(um)—ZFCtﬂ-zdt
T ‘

When substituting in (27) the first terms on the right of (28)

and (27) combine to give .a(T)ff(u)dx ; in the remaining term we
D

replace ¢(1t) by its upper bound ff(u)dx and intégrate by parts to-
. \ D - -

‘

obtain the first inequality in (25). The second inequality follows

s
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from (21) and the observation that [?F(u )= 2P(zi] 2I(z) is an
increasing fuﬁctlon of z for z > 0.
Some consequences of (25) are.worth noting. If a(u).=
up/f(u), with p : a positive integer, we obtain
_ : f(u)dx u
(29) Jupdxf_ 9—-—[ € [27 (u )-2F ()] “2at
D ht#  Jyx. m |
v | | ) ‘
As h » «, 1% tends to 0 and ht*® *[2F(umi12, so that, we find for

the Dirichlet problem

- m . ~1 F ' ’ -1 .
Jupdx < Jf(u)dx I 2 27 (u )] 5[2F(um)—2f‘(ti] gt .
D D 0 A o

This last inequality can be applied in the limiting linear case

f(u) = Alu; we then recover, for p = 2, a result Qf [8]:

'Jude < IT-u fudx
D y ™ Jp
' We conclude this section by deriving a_Payne—Raynef'type 6fA
"~ inequality complementary to (25), see [3]. Wde confine ourselves
to the 2-dimensicnal problem. _Mulfiplying the expressions for )

and ¢' in the proof of Lemma 3, we find, by using the SchWarz

inequality,
S d 2 2 v .-
= == ¢ (t) > 2£(E)8T(t) > smE(Iv(t) , t > 1T
dt _
where S(t) is the length of the boundary BD(t), and the classical !

isoperimetric inequality was used in the last step. An integration u

from t = 1 to t = u then gives

¢2(r) > 8w JF(u)dx - 8TWF(T)v(T) .,
D(1)

which is used in the chain of inequalities'

(
IF(u)dx < JF(u)dx + F(T)Ev v(Tﬂ
D(1)



In the Dirichlet case-the last inequalify becomes -

..'13_

L 620ty ¢+ POV
8,n, . .

I A

t

<L Ufm)ds&]z ¢ F(TR)Y L .
8n D 1 _ - .

(o) [Hu)dx:i—ff(u)dy}z
' D . 8mwj/D

It is perhaps worth noting that inequaiities such as (21), (25)
(29) all become equalities in the one-dimensional case.

5. ISOPERIMETRIC INEQUALITY FOR THE TOTAL FLUX

To simplify the calculations we confine 6urselves in.this_
Secfion to the Dirichlet problem.4 As in Section 4 we let v(t) be
the .volume enclosed by the level surface u = t. Since v(t) is a
decreasing function of t, we may use Q as a new independent |
variable. |

With ¢(t) as in Lemma 3 of the preceding Section, we define

B(v) = ¢t (v))
from which it follows that
(31) - Dt (v) = £(t(v))
(32) L ey = e o= EL
-y o

where v' can be expressed in terms of | grad uf from (23). HMulti-
plying (325 and the'équation obtained from integrating (5a) ovef.m
D(t(v)), Qe find , |

—00" < zf'<t<v‘>>[}“<um>;r<t(v>>] .
We establish the.inequality |
(33) 2f‘(z.)‘[F(um)-F(z§l -2E1(0)F(u ) < ~£7(2) |
by noting that 'both sidés vanish at z = 0 and that the derivative

on the left side is'smaller than on the right. Hence
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2

(34) (8')% -oe" < 28" (0)F(u ) = of .
1f we multiply this inequaiity by the po;itive quantity @'/@3,
we find , | ) | . | | -
| -,[(@"/.q;)pl' < -a?f1re?]"
" which we now integrate from v to V to obtain
_ _ A
o1 (v) < OLE - QE_(V_)_}?
9T (V)
Integrating once more, this time from O fo v, we find
| é(V) < 2 ay R

m .
or

Jf(u)dx

—D-—¥———<g&f'(0)}“(uﬂ§ .
R DFCu |

- (35)

‘In the one~dimensional problem the two sides can be computed
‘explicitly, the ratio of the right side to the left being /A/Al

‘which will be small if we are close to criticality (the usual .

“situation in applications). For the linear case, f(u) = Aiu,
;F(u) = A1u2/2, and we recover the isoperimefric inequality of [u],
Judx
(36) D_ .z
Vu U
m
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