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Ivar Stakgold
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and Northwestern University

1.    INTRODUCTION

We shall obtain gradient bounds and some global estimates

for the solution u(xO of the nonlinear problem of combined dif-

fusion and reaction

3u
(1) -Au = f(u) ,      x E D ; - + hu = 0 ,  x e eD  .

3v

Here D is a bounded domain in Rn with boundary 3D and outward

normal v, A is the n-dimensional Laplacian, h is a positive con-

stant  (h = oo corresponds to vanishing Dirichlet data) , and f is

such that (1) has a unique positive solution u(x). We assume

throughout that f(z) is continuous for z>0 and that f(0) =0;
-

the forced case f(0) > 0 and the nonlinear boundary condition

. Du/Bv + hu = p(u) will be treated elsewhere.

Problem (1) arises in a variety of applied contexts such

as:  a)  steady operation of a homogeneous, monoenergetic nuc-

lear reactor with feedback - here u is the neutron density;  b)

nonlinear heating such as Joule heating in a homogeneous medium

(with u being the temperature);  c)  nonlinear chemical reaction

combined with diffusion in a biochemical setting - here u is the

concentration of a reactant. It should perhaps be noted that

the equation - div(k(v) grad v) = q(v) corresponding to a non-

linear diffusion coefficient can be transformed to equation (1)
V

by the change of variable u = k(z)dz.
0

.

U-           -
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In the analysis of (1) an important role is played by the
1

-

linear problem

(2) -At =A¢ .,  x E D  ;  ft +.h¢ =0·  ,  x e a D  .
3v

The fundamental eigenvalue Al = 11(h) of (2) is simple, positive,

and increases with h, while the corresponding eigenfunction does

not vanish in D.  We shall let 01(x) be the positive fundamental

eigenfunction whose maximum value is i.  If h < oo, 01 is positive

on the closure of D.

By setting f(z) = Ag(z), we can regard (1) as a branching

problem.  Under suitable conditions on g, (1) will then have a

branch of positive solutions emanating from the trivial solution

at X = Al.  Preliminary results on existence and uniqueness of

positive solutions will be obtained by using monotone methods

(see  KELLER [2], SIMPSON and COHEN  _7], SATTINGER  6 , STAKGOLD

and PAYNE I81) . There is little that is new here apart from

slight improvements in some of the proofs. Next we derive grad-

ient bounds by an indirect use of Hopf's second maximum prin-
/
U

ciple  l .  We find that J(x) ·= |grad u 12 +  f(z)dz abeys an
0

elliptic inequality except where grad u vanishes. A calculation

33hhowd that - < 0 on the boundary so that the maximum of J must
3v

occur at an exceptional point, leading to the desired bound.  We

then introduce level surface coordinates for u, enabling us to

derive a number of isoperimetric norm estimates. Finally, by

'
using ,the volume enclosed  by a level surface  as  a new independent

variable, we obtain an upper bound for the total flux of u through

the  boundary, this quantity having special importance in applica-

tions. In general outline the approach is similar to that in
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some of our previous papers (PAYNE and STAKGOLD G,5,8 ) but
additional difficulties - both technical and conceptual - arise

in virtue of the nonlinearity of the equation and the nature of

the boundary condition.  At the same time we are able to extend

and deepen some of our earlier results, at the sacrifice of res-

tricting ourselves to conveb domains.

2.    EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS

A positive solution of (1) is understood to be a solution

u(x) which is nonnegative but does not vanish identically in D.

Let us set

(3 a) f(z) = Xg(z) X>0

where g(z) is continuous for z , 0 and

(3b) g'(z) is strictly decreasing for z>0

, (3 c) g'(0) = 1 , g(0) = 0

We then define

( lim z/g(z) if this limit is positive
Z+00

(4)

+00 otherwise

The boundary value problem (1) takes the form

(Sa) -Au = f(u) or, equivalently -Au = Ag(u) xED'.
3u

(Sb) - +h u=0  .  x e a D
3v

Remarks. 1.  We do not exclude the possibility that g might become

negative as z increases.

2:  For each X, Al B A< UAl' the curves Xlz and f(z)
intersect at exactly one positive value of z. For any other X,

'.

these curves do not intersect for z > 0.
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Theorem 1. If f satisfies conditions (3), the boundary value pro-

blem (5) has one and only one positive solution for Al <A< BAl

and no positive solution for any other X; moreover, for X < Al  a

solution of (5) can not be positive anywhere in D.

Proof A. Nonexistence.  For (5) to have· a positive solution,

f(z)-Alz must-change sign for z > 0.  Indeed, adding -Alu to both

sides of (Sa) and using the Fredholm alternative we find that

[ E(u)-Al'il¢ldx = 0 which implies that either f(z)-Xlz changes
)D

sign for z>O o r that u i s a constant -a positive zero of f(z)-Alz:

This latter possibility is eliminated because a nonzero constant

does not obey the boundary condition.  Thus positive solutions can

occur only for Al <X< *Al

To prove that solutions for X < Al can not be positive any-

where, suppose the contrary to be true. Then there exists a.pro-

Duper subdomain D' C D with u>O i n D I, - +h u=O o n m'ADD and
3v

u = 0 on the rest of D'.  Let 11 and ¢i be the fundamental eigen-

value and positive eigenfunction of -A for D' with the boundary

conditions just described.  For X < 11' the hypothes.is gives

f(z)-A z<b for z>0 and hence f(z)-A' z<0 since X' >A.1                                                             1                           1        1

Subtracting X u from both sides of (Sa) and applying the Fredholm

alternative, we obtain    (u)-Alu $;.dx = 0, which is a contradic-
JD'

tion.

B.  Existence.  We shall use monotone iteration schemes to con-

struct maximal and minimal positive solutions. Recall that an

upper solution  E(x) satisfies the inequalities

3u
-Au-f(u) > 0 ,  x e D  ;  - - +h E>0  ,  x E D D  ,

Dv                      '-b            -

whereas for a lower solution u(x) both inequalities are reversed.     ..
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For A > 0, the function v = Atl satisfies

FA g(A¢l) 3v

-Av-f(v)    =    AA$1 -1   - Ajl ; - + hv = 0 on ·DD1 3
Since g'(0) = 1, we can, for each X > Al' choose A sufficiently

small so that v i s a lower solution.  We also know that 41 , 6>0

on D so that we can, for each X < uAl' choose A so large that v

is an upper solution.  (The argument must be modified in the

Dirichlet case because  01 now vanishes  on  DD; an upper solution
- -

can then be found in the form A*l where 01 is the positive eigan-

function of (2) corresponding to a large positive value of h).      -

Starting from the lower solution just described we use a

standard iteration procedure to construct a monotonically increas-

ing sequence un which converges to the minimal positive solution

u...  of (5) . Similarly, from the upper solution, we construct a..

decreasing sequence un converging to the maximal positive solution

u* of (5).

C. Uniqueness. Let u  and u* be the minimal and maximal positive"

solutions constructed in part B.  Since u* exceeds A*1 for some

positive A, we have u.,, > 0 in D. We know that u* > u.& ; suppose
.. -..

the strict inequality occurs on D' whereas equality holds on the

remainder of D. Applying Green's theorem to D', we find

I.

f.'.,
(U*)

-   -      "      dx         <             u*              -   u*   - ds       ,

f (u...) r Du* 3 u*I

D'   L u* U* 1 J  a     +0   6            3\1                       
         3\ )

- 1 2 -.

Where a =   DD'
- DD and c is the remainder of DD'.l A 2

The integral over 01 vanishes by the boundary condition (Sb).  On

3 u:'02, we have u* = u* and --2 - B-H_ , O.  By (3b), f(z)/z is strictly
av    av

decreasing which implies that the integral over D' is negative.

This contradiction then shows that D' lias zero measure; by contin-
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uity it follows that u* = u* in D, completing the proof of
"

Theorem 1.

We conclude this section with a simple result.

Lemma 1. Let f satisfy conditions (3) and let u(x) be a positive

solution  of  -Au  =. f(u)  on  0 (no boundary conditions specified).

Then f(u(x)) > 0 on 0.

Proof.  At any point in 0 where the maximum is attained, Au .< 0
so that f(u ) >0.  But f(z ) , 0 implies f(z) >0 for 0<z< z0.m -

3.    GRADIENT BOUNDS.

From here on we shall assume that ,f satisfies conditions

(3) and therefore Lemma 1 is applicable. Although we wish to  

obtain gradient bounds for the unique positive solution of (5)

when Al <A< WAl' we shall hive to proceed by steps.

Lemma 2. Let u(x) be a positive solution of -Au = f(u) on a

domain 0 and let
.

(6) J = |grad u 12 + 2F(u)

where

fU
(7) F(u) = f(z)dz  ;

J0

then J satisfies the elliptic inequality

3Jl
(8)                                   0  1  AJ  + [  2     ak  -1/1 grad  u 2

k=1 3X J
'

·                                                                                        k

'

where the coefficients ak are continuous and bounded on 0.

Proof. Straightforward calculation and use of the Schwarz inequal-

ity (see  8 ).  The fact that f(u(x)) 1 0 on Q plays an essential

role.

Theorem 2. Let u(x) be a positive solution of -Au = f(u) in a

convex domain n with boundary 39 (of class 0 for the time being)
.2+E

on which u is constant. Then
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(9) I
grad   u 1 2   1   2 [F (u m)    -   F(u B

Proof. Introduce a normal-tangential coordinate system in a

neighbourhood of 30.  We have

/2 Ui
(10) J = 1- 1 + | g radt u 1 2 + 2 F ( u )  ,

(3 vi

where gradt u is the tangential component of grad u.  Then

bJ /3'u) /32 ul
(11) -    =    21-11-:1     + 2 gradt    u.        3-   gradt    u   +    2 f(u)    lu3\1 \3Vjl) \)9   3\1   3\1

and, since gradt u=O o n BO,

13 JE                                 -       2

(12)
,-:  =   2-iu  11_-2   +   f(u) ]       .Cavi    Dv 63\), 23 0

By the smoothness assumption on 30 we may apply the differential

equation at the boundary where it takes the form

2

(13) -r + (n-1)K - + 8'u + f(u) =0  ,3 u Du
2Dv            av

- where &' is the surface Laplacian and K the mean curvature. Since

2

u is constant on 30,8'u =  0, and, substituting for ·8-u, in  (12), we
' av

find

6 J \ 'Bu\2
(14) 1-1= -2(n-1)K /-1 <0

1 ev / (Dvi0 '30

because K > 0 for a convex domain.

Since J satisfies (8) its maximum occurs either where

grad u=0 (this includes the case JEconstant) or at a point on

33                                             '
30 where -- > 0 (by Hopf's second maximum principle).  This latter

av                                                        '

possibility is ruled out by (14) so that J has its .maximum where

grad u vanishes and hence (9) follows.
.

Remarks. 1.  The bound (9) is exact for one-dimensional problems.

L.
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2.  By approximating with smooth boundaries, we can

extend Theorem 2 to a convex domain Q with a Lipschitz boundary.

3.  Consider (5) for a convex domain D and Al <'A < PAl '
If h = oo, u vanishes on ·DD and Theor.em 2 is immediately applicable

with 0 = D.  If h < -, u is not necessarily constant on DD, but
3uits maximum value T on DD is certainly less than u since -

m
3v

is. negative on DD.  Thus (9) holds for the domain OCD where u.> T

under the reasonable (but unproved) assumption that 0 is convex if

D is convex. For the purpose of deriving isoperimetric inequal-

ities in the sequel it is sufficient to know that (9) is valid

for  u  > T. Alternatively, for n = 2, we have been able to modify

the proof of Theorem 2 to take into account the fact that for

h < oo neither gradt u in (11) nor A'u in (13) vanishes on 3D.

Theorem 3. Consider problem (5) with D convex, n=2,A l<A< uAl'
Then (9) holds in D.

Proof. Let s be the tangential coordinate which coincides with the

arc length on 3D. The corresponding metric coefficient k(x) is

then identically equal to 1 on BD. We then have from (10) that

(15)
J = Cav,

C3u 2.  /1 au\2+ 1- -1  + 2 F(u)  ,
l]<    3 s)

and (12) becomes

2                        D k\       l 2
(16)

tittj =    2    111  /32    +   fl   -2 <h   +   -  1   (38 1
i Dvi         ev  i Dv     .     /                 ev      i Ds ,, /BD

whereas (13) takes the form

22
(17) -- + --- + f(u) = 0au+Kau  au22av     av   as

2
3 u 3kSubstituting for --2 in (16), we find, on observing that ·  = K , 0,
3v

*                                                                                       2     .'

(18) 22-
[-K av - as2]  '

Cli )                    a u              a u         a   u

(av BD -  av

--
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which differs from (14) by the second derivative term.  We also

have

3J = 2 Du 3221
iI     3 u        3   <1     3 u l                                    B u-·  + 2 ----1 + 2 f(u) -

as     av asju
lk    D s /    Bslk    a s  /                               a s

which.on·3D reduces to

(BJ\                  g. , 2 3 ul
2

(19)
-  2h u + f + 2 ---2 c as i         as                        as9  'DD

A further calculation yields

/2,
(62ulf 2

2,
1 1 3 Ji    = <Du   h23u + 33 aut 3 ul(20)   - ·12j Is         as '   f. .Is    +  l  ·IZ/l h    u,   f  +   9 2/         .2 \Ds , L a s i  C

3D

Let P be the point on the boundary at which J is supposed to have

bJ 332                           2
a maximum.  Then - = 0 and   2 < 0 at P.  If   2 > 0 at P, (19)3 s          Ds                 3s

2Du 3 3
shows that - = 0 and (20) would give --2 > 0, a contradiction.

3 s                           3s

Therefore - --2 < 0 at P, and (18) gives
f-a·J 

< 0 in conflict with
3s

i DY p"

, Hopf' s second maximum principle.    Thus the maximum  of J must occur

where grad u=0 which establishes (9) once more.

Corollary. Let T be the maximum of u on 3D and T* the unique pos-

itive root of

2  2
(21) h T + 2 F ( T ) = 2 F (u )m '

then T  < T*

Proof. At the point on the boundary where u = T, we have

2 2 /3 u\2h  T    =  /- 1    1  1 grad  u 1 2     ,
lav' ...»

but this last term has the upper bound in (9), by Remark 3 follow-

ing Theorem 2.

0
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4.    NORM ESTIMATES.

Using the preceding Corollary and the bound (9) we can

obtain some rough global estimates by integrating (Sa) over D.

It is, however, more fruitful to introduce the level surfaces for

U(X). Let D(t) be the domain where u excedds t; its boundary.,

which may include part of 3D, is denoted by DD(t), and its volume

by v(t). Clearly v(t) is a decreasing function of t with maximum

value V and minimum value O a t t=u.
m

We first note some elementary relations between v(t) and u.

For any continuous function a(z), define

a(t) =  a(u)dx
D(t)

Then Um
(22) a'(t) = a(t)v'(t) ,  act) = a(z)v'(z)dz

t
and

(23) v'(t)  - C |grad u|  ds     t,T
-1

JBD(t)

Lemma 3. Let

' 0(t) =  f(u)dx
D(t)

Then, for t , T,

7 1

(24)
0(t) 1 4(T), (um)-F(t 2  F(um)-F('r -2

Proof. For t , T, BD(t) is the level surface u=t s o that ·

3u
- -- = |grad u|  on DD(t).  Integration of (Sa) over D(t) then

3v

gives

0(t) = C  grad u  ds  ,
13D(t)

while (22) and (23) yield

-1
0'(t) = f(t)v'(t) = -f(t)   |grad u|  ds  ..·

13D(t)

L
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Combining these equations for ¢ and $', and using (9), we find

f(t) f(t)
-0,/0 2                =

max Igrad u12 2  8'('im)-F(t )3xeBD(t)

Integrating this inequality from T to t then gives (24).

Lemma 3 is the basis for the following theorem which yields

a variety of norm estimates.

Theorem 4. Let a(z) be an arbitrary continuous function increas-

ing for z > 0. Then

 f(u)a(u)dx
J D

(25) 1  F(um)-2FCT -iI(T) < -1 ICTS)  ,
ff(u)dx - hT*
J D

where

Ufm
(26)

I ( z ) =   a ( t ) f (t )  2 F ( um ) - 2 F (t   - #dt .
,Z

Proof. Since a(t) is increasing, we can write

(27)
 f(u)a(u)dx = aCT)  f(u)dx +  f(u)a(u)dx)D b-D(T) D(T)

To estimate the last term, let us multiply (24) by a'(t) and inte-

grate from T to u , the integration on the left side being done by
m

parts. Using (22), we find

(28) . f(u)a(u)dx < (1)(T)a('r) + 4,(T) F(um)-2FC·[U 2
-7 -1

D(T)                          uf m                          7 1
  a' (t)  D F(u m) -2 F(t 2 1  2 d t       .
T

When substituting in (27) the first terms on the right of (28)

and (27) combine to give  a(T) f(u)dx ; in the remaining term we
JD

replace $(T) by its upper bound  f (u)dx and integrate by parts to

*-                )D

obtain the first inequality in (25). The second inequality follows    ·
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-1-1from (21) and the observation that  F(u )-2F(zu ·2I(z) is anm.

increasing function of z for z , 0.

Some consequences of (25) are worth noting. If a(u).=

uP/f(u), with  p  a positive integer, we obtain

 f(u)dx  ufm
(29)  updx S JD        tp  F(um)-2F(t -2dt

JD        hT"   TR
1 1

Ash + 00, T* tends to 0 and h-[* + F(um)12, so that, we find for
the Dirichlet problem

U

11 Pdx   -6   'Ii(u)dx    0 »'tp. [2F(um2-i'[2FCum)-2F(tj  -,d-t       .

This last inequality can be applied in the limiting linear case

f(u) = Alu; we then recover, for p = 2, a result of I81:
12 A C
lu dx < -u ludx  .
10   -4 m)D

We conclude this section by deriving a Payne-Rayner type of

inequality complementary  to  (25),  see  I31. We confine ourselves
to the 2-dimensional problem. Multiplying the expressions for 0

and 0' in the proof of Lemma 3, we find, by using the Schwarz

inequality,

d 2   2- - 0 (t) Z .2 f(t)S (t) , 8Af(t)v(t) t Z T
dt

where S(t) is the length of the boundary DD(t), and the classical       '

isoperimetric inequality was used in the last step.  An integration

from t=T t o t=u  then gives
m

02(T) , 81  F(u)dx - BAF(T)v(T)
D(T)

which is used in the chain of inequalities

(

'    F(u)dx <  F(u)dx + F(T) -v(T) )D
D(T)
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<1 2- 4 (T) + F(T)V
8 1T

1 Ff   72<-
   i f(u) dx        +   F(T* )V      ..     +81T     L J D

In the Dirichlet case the last inequality becomes

(30)
'F (u) dx  1  1 flf(u) d»   2       .3 I)           8 A L) D

It is perhaps worth noting that inequalities such as (21), (25)

(29) all become equalities in the one-dimensional case.

5.    ISOPERIMETRIC INEQUALITY FOR THE TOTAL FLUX

To simplify the calculations we confine ourselves in this

Section to the Dirichlet problem. As in Section 4 we let v(t) be

the .volume enclosed by the level surface u = t. Since v(t) ·is a

decreasing function of t, we may use v as a new independent

variable.

With $(t) as in Lemma 3 of the preceding Section, we define

0(V) = 0(t(V))

from which it follows that

(31) 0'(v) = f(t(v))

(32) 0 " (v)     =     f't'     =     L         ,

V'

where v' .can be expressed in terms of  grad u|.from (23). Multi-

plying (32) and the equation obtained from integrating (Sa) over

D(t(v)), we find

-$$" < 2f, (t(v))9(um)-F(t(v))1 0
We establish the inequality

(33)
2 f'(z) (um)-F(z  -2 f'(0)F(um) ·< -f2(z)

by noting that 'both sides vanish at z=0 and that the derivative

on the left side is'smaller than on the right. Hence
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2 2
(34) ($,) -00" < 2 f'(0)F(u ) =a- m

lf we multiply this inequality by .the positive quantity $'/03,

we find
on, 2 r   21'

- ·l c 0 " 0) -1        1    -c t      L i,A    J
which we now integrate from v to V to obtain

2        J
0'(9) < all -

r  0 (v)1
-  L·   02(v)1

Integrating once more, this time from 0 to V, we find

*(V) < 2 aV  '
'IT

or

ff(u)dx

(35)           JD    1 2  f'(0)F(u   1 .V:         A                m l

In the one-dimensional problem the two sides caA be computed

explicitly, the ratio of the right side to the left being /A/Al
which will be small if we are close to criticality (the usual

'.1

situation in applications).  For the linear case, f(u) = Xlu,

F(u)  =  Alu2/2,  and we recover the isoperimetric inequality of I41,

fudx

(36) JE- <2
VU    7r

m
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