

UNCLASSIFIED
$y-200-1$

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

IESIGN OF PROTECTIVE STRTJCMURES

(A New Concept of Structural Behavior)
The design of protective structures is no longer confined to the
exclusive domain of military construction. As a result of atomic
tary objective, protective design is now a common problem for both
the military installations as well as for civil and industrial
buildings. Presently there is but little information available
to serve as a guide for the design of such structures. With the
objective of providing some aid to the structural engineer in his
new and difficult task, this paper presents certain data and de-
sign procedure. The presentation is made in two parts: The first

Statements regarding proof construction often convey wrong impressions of strength and structural adequacy. This is due mainly to improper or unqualified use of such stock phrases as "bomb-proof," "atomic-proof," "blast-proof," "splinter-proof," and other expressions of similar generality.

The designation of a building or'a structure as proof against a weapon, without complete qualifications regarding the physical and ballistic properties, as well as the range and the orientation of the weapon, is meaningless. Even with such qualifications, no true appraisal can be made of the obtainable protection without a change in our conventional concept and undetstanding of strength and resistance.

Unlike structural behavior anticipated and obtained in conventional design, the extent of damage due to weapons' loading in a protective construction cannot be fully or clearly determined. In conventional work, a structure is designed to sustain a given condition of loading within limits of elastic. strain. Except for rare instances, the intensity of a loading sustained by a building during its service life is not appreciably surpassed by that contemplate in the original design. In contrast, there is no control on the loading which may be imposed on a protective structure. There is no assurance, except that given by the laws of probability. that the condition and the severity of loading as assumed will prevail.

Consequently, the extent of damage may be far beyond the range conceived in design. As a practical corollary, we may have to assume that a building will suffer maximum damage which, in turn, may be taken as a condition short of collapse of local or individual memberg of framing.

The analysis of the strength of a structure under atomic blast presented here is predicated on this concept of structural behavior. It may be considered as a limit design where locally use is made of the full dynamic resistance of members under ream tively large plastic deformations. However, such local overstreses, or even nome failures, not necessarily mean a serious impairmont of overall structural adequacy of a building, since in most cases, by proper arrangement of framing, it will still be possible to retain the needed strength and the stability of the structure as a whole.

The two methods of analysis given in the paper-one for inpact penetration and the other for blast resistance-are adaptable for practical use. No claim is advanced regarding the exactness of either method. However, owing to the many indeterminate factors affecting the conditions of loading and assumptions of behavior, such exactness is neither deemed feasible of attainment nor essentia for a practical or adequate solution of the problem.

For the needed brevity, the scope of the paper is limited primarily to design problems of surface structures built of reinforced concrete.

For purposes of structural analysis, weapons of modern varfare may be classed in two general groups:

1. Those which cause greatest damage by the impact of their penetrating mass, and
2. Those which cause greatest damage by the blast of their explosive mass.

The first category, which may be referred to as weapons of impact, includes projectiles fired from grus, conventional bombs having a charge-to-weight ratio smaller than 20%, rocket-assisted bombs and guided missiles. The other class, which may be referred to as weapons of blast, includes atomic bombsand high explosive or conventional bombs having a charge-to-weight ratio higher than 20%. In general, weapons of impact cause severe damage locally, while the effect of weapons of blast is characterized by overall damage of relatively leas severity.

PART I. RESISTANCE TO IMPACT

Concept of Protection.- The primary objective of a bomb or projectile, as a weapon of offense, is to breach a barrier of defence. The barrier may consist of a barricade, a shield, an outer shell of a structure, or some combination of the three. When the breaching or the penetration is complete, the weapon is said to have attained its optimum offensive efficiency. This efficiency
is usually ascertained by actual tests at arms proving grounds. Fence, the obtained depth of the penetration is called the proof or limit thickness of the weapon. Accordingly, for protection from a weapon of this category, it will be necessary to provide a struttural shell where the minimum thickness exceeds that of the proof with a margin of safety yet to be determined.

Penetration.- There are three main factors governing the penetration of the missile into a resisting mass. These, are:

1. The velocity of the missile at impact,
2. The physical properties of the missile, and
3. The material's characteristic of the resisting mass.

These factors have been combined in various forms to obtain an empirical expression for penetration by a number of authorities in ballistics. One of these relations, the modified Retry formula, expresses proof thickness as follows:

$$
\begin{equation*}
D=k A_{p} V^{\prime} \tag{I}
\end{equation*}
$$

in which D is the depth (in feet) of penetration, k is an expermentally obtained material's coefficient for penetration (see Table 1*). A A_{p} is the sectional pressure, obtained by dividing the weight of the missile by its maximum cross-sectional area (expressed as pounds per square foot), and V^{\prime} is a velocity factor which, in turn, is given by the expression

$$
\begin{equation*}
v^{\prime}=\log _{10}\left(1+\frac{v^{2}}{215,000}\right) \tag{2}
\end{equation*}
$$

* from "Civil Protection," by F. J. Samuely \& C. W. Haman, the Architectural Press, London, 1939.
where ∇ represents the terminal or striking velocity (in feet per second) of the missile. (Values of W may be obtained from the curve in Fig. 1.)

The striking velocity, V, of a bomb dropped from a plane is computed from its vertical and horizontal components. The vertical component is due to gravity. Neglecting the effect of air resistance or the aerodynamic characteristics of the bomb, it may be expressed as

$$
\begin{equation*}
V=\sqrt{2 g H} \tag{3}
\end{equation*}
$$

where g is the acceleration due to gravity (in feet per second per second) and H is the height of fall (in feet). The horizontal component is given by the velocity of the plane at the time of release of the bomb. The striking velocities of bombs released at various altitudes from planes flying with various speeds are given in Fig. 2. It is to be noted that the actual velocities are somewhat less than that indicated, due to the compressive and frictional resistances of the air, both of which depend upon the shape and weight of the bomb. These factors have the effect of limiting the velocity to a terminal or maximum possible value, no matter at what height the bomb may be released. This effect would vary according to the type of the bomb, being as a rule greater for heavy bombs. For example, a $200-16$ incendiary bomb may have a terminal velocity of only 400 ft per sec, whereas a $500-1 \mathrm{~b}$ bomb may reach 1600 ft per sec, a $1600-1 b$ bomb, 1100 or 1200 ft per sec, and a 2000-1b bomb, 1300 ft per sec. It is estimated that a 2000-1b A.F. bomb, released from an elevation $16,000 \mathrm{ft}$, would attain a
striking velocity of approximately 1000 ft per sec.

Angle of Impact.- Owing to its two components, a bomb will land on its target at an angle with respect to a normal, when released from a plane. The angle of incidence is dependent on the height and the speed of the plane. In addition, the angle of incidence is somewhat dependent on the ballistic properties of the bomb. Approximate angles of impact of bombs released from levelflying planes at various altitudes and air speeds are given in Fig. 2. In these curves, air resistance and the aerodynamics of the bombs have been neglected.

It is estimated that a $2000-1 b$ A.P. bomb released from a plane flying horizontally at 250 miles per hour, at approximately 16,000 ft elevation, attains a striking velocity of 1000 ft per sec, and lands at an angle of impact approximately 70° to the horizontal or with an obliquity of 20°.

From the foregoing, it is evident that bombs may strike both the roof as well as the walls or the sides of a building, and that a pitched roof having a slope of 20° may sustain normal hits from bombs.

The Effect of Relative Thickness on Depth of Penetration.The penetration formula given in Eq. (1) is applicable only to slabs where the thickness of the slab is many times larger than the depth of penetration. Experiments indicate that for a given condition of impact loading, there will be a minimum depth
of penetration when the thickness of the resisting slab attains a F minimum value. Depressed in terms of the depth of minimum peretration, D, this minimum thickness of the resisting slab is about 3D. That is to say, in slabs having a thickness $3 D$ or more, the depth of penetration under a given projectile of a stated terminal velocity will remain about constant. However, if the thickness of the resisting slab is less than $3 D$, the depth of penetration, $D^{\text {t }}$ will be larger than D. With the decrease in the thickness of the slab, the depth of penetration will increase until perforation is obtained. This is the condition where the resisting slab has a thickness of only 2D. According to the Navy* experiments; the relation between slab thickness and depth of penetration may be expressed by

$$
\begin{equation*}
D^{\prime}=D\left[1+e^{-4\left(a^{\prime}-2\right)}\right] \tag{4}
\end{equation*}
$$

This relation is shown diagramatically in Fig. 3 and also by a curve in Fig. 4.

Penetration Due to Explosive Charge.- As discussed above, the efficiency of an impact bomb is gage by its power of penetration which, in turn, is reflected by the cross-sectional weight of density. For a given weight of bomb, the heavier the casing the larger is the penetration. Since the amount of explosive charge contained in a bomb is obtained by a corresponding reduction in the thickness of the casing, the weight of the explosives in A.P. (armour-piercing) and S.A.P. (semi-amour-piercing)

[^0]types of bombs is kept to a minimum. The total penetration of a bomb with a charge may be assumed to be the sum of two separate penetrations; one due to impact and the other to explosion. In the Navy experiments, the effect of such bombs was simulated by first firing an inert projectile into the resisting model, then placing a charge in the impact crater and exploding it.

An approximate value for depth of penetration due to explosion of a TNY charge in a concrete slab of great thickness (about 3 to 4 times the depth of the resulting penetration) may be obtained from the relation

$$
\begin{equation*}
D_{e}=c^{\prime} \sqrt[3]{c} \tag{5}
\end{equation*}
$$

where D_{e} is the depth of penetration (in $f t$) C, is the weight of the charge (in pounds) and c " is a penetration constant. In "Civil Protection" the following values are given for $c^{\prime \prime}$: mass concrete, 0.26; ordinary reinforced concrete, 0.22 ; specially reinforced concrete, O.8. The value obtained in the Navy experiments, where use was made of special reinforcing and a concrete having an actual 28-day strength of about 4000 psi. was about 0.2.

Extent of Damage in Concrete Slabs Due to Impact and Explosion eWhen a bomb or projectile strikes a concrete slab, there results a crater of rather irregular shape. In addition to the cavity in the face of impact, there may be considerable cracking in the opposits face of the slab. The severity of such cracking increases with decreased thickness, becoming critical in the form of scabbing and spalling when limit or perforation thickness is neared. Figs.

5 to 8 illustrate typical cases of damage obtained in'the Navy tests concrete in both faces of the slab tends to break and displace outwardly. This is due to the inherent weakness of concrete in tension to resist the scouring action of the reflected shock wave in the impact face and the scabbing effect of the propagated wave in the opposite face. The extent and tendency of failures of this type may be minimized by the use of special systems of reinforcing to provide the needed tensile strength. Fig. 9 shows the details of such a system of reinforcing utilized by the Navy in its bomb-resistant structures built during the last war. The arrangement, consisting of welded bar trusses, is obtained by joining the main reinforcing of two faces of a slab and the zigzag webbing to form a Warren truss. The limited extent of scabbing and the pattern of failure observable in Fig. 7(b) are traceable to the use of this type of reinforcing in that particular test slab.

The Principle of Divided Thickness of Protectione- Since it is not feasible to eliminate scabbing entirely, a roof slab possessing sufficient thickness for minimum penetration will still fail to provide full protection against the possibility or hazard of falling debris from the ceiling. For the needed safety, in some cases use is made of a so-called anti-scabbing plate, consisting of a steel plate attached to the ceiling by means of anchors cast in the slab. Another method for securing the desired protection is to use a double-slab construction. For this purpose, the design
thickness is divided into two parts; one thickness for an outer or roof slab and another for an inner or ceiling slab. The outer slab is designed for impact perforation, that is, a thickness of about 2D. while the inner slab is designed for minimum penetration due to the explosive charge or a thickness of about $3 D_{e}$.

The basic advantage of this arrangement is that no appreciable strains due to the impact shock wave are imparted to the inner slab. Should explosion occur on contact or during penetration of the bomb Into the outer slab, the inner slab will be protected also against the strains from this source. On the other hand, should explosion occur after perforation, that is, the charge exploding in the gap provided between the two slabs, its scabbing effect will again be minimized to the extent of difference of severity of shock of an open va. confined explosion. As an additional advantage, by localizing the main damage in the outer slab, the work necessary for subsequent repairs is simplified, and the continued use of the affected building is assured during such repair operations.

PROCEDURE OF DESIGN

Design Date.- Complete information is needed regarding the against weapons and the conditions of impact/which protection is to be proviced. This information, which may be called the basic design data, should include the weight, charge and sectional properties of the missile, and the velocities and angles of anticipated impact. In most cases, the critical loading for the roof and the walls of a
structure will differ. For example, if the building is to be located near the shore, within the range of naval ship guns, then
(b) A.F. type projectile.

Weight $=200 \mathrm{Ib}$ (8-inch projectile); sectional pres sure $=745 \mathrm{lb}$ per sq ft ; terminal velocity $=1,300$ ft per sec; angle of impact, normal hit.

Computation of Thicknesses.- The total thickness to be proTided for each part of a framing will depend on the minimum depth of penetration and the desired degree of protection.

The minimum depth of penetration under impact and explosion are given by Eqs. (1) and (5), respectively. Assuming that use will be made of special reinforcing and class \mathbb{E} concrete, having a nominal 28-day compressive strength of $3,000 \mathrm{psi}$ and an actual
strength of 4000 psi , the factor in Hq . (1) may be taken as $k=0.0028$. For other strengths of concrete, an approximate value for k may be obtained from Fig. 10. For the bomb and the conditions of impact specified in (a) above, we will have:

$$
\begin{aligned}
& D=0.0028 \times 1500 \times 0.75=3.15 \mathrm{ft} \\
& D_{e}=0.2 \sqrt[3]{300}=1.34 \mathrm{ft}
\end{aligned}
$$

The axis of the crater in a slab will about coincide with the direction of the force of impact. Since the bomb is assumed to land at an angle of 20°, the depth of penetration measured normal to the face of a slab in a given position will then be

1. Slab in a horizontal plan:
$D_{h}=D \cos 20^{\circ}=2.96 \mathrm{ft} .$,
$D_{e h}=D_{e} \cos 20^{\circ}=1.26 \mathrm{ft}$.
2. Slab in a vertical position:
$D_{v}=D \sin 20^{\circ}=1.08 \mathrm{ft} .$,
$D_{e v}=D_{e} \sin 20^{\circ}=0.46 \mathrm{ft}$.
The condition of impact specified in (b) is that of a horizontal hit. The depth of penetration in a vertically placed slab is then

$$
D=0.0028 \times 745 \times 0.95=1.98 \mathrm{ft} .
$$

To obtain the design thicknesses, we must now apply a thickness factor against the minimum penetration corresponding to each condition of impact.

* In the Navy tests the actual 28-day compressive strength of this class of conrete varied from 3500 to 4500 psi , and the obtained average k value was about 0.0028 .

If a double-slab roof framing is to be used, the factor of thickness for the outer slab will be 2 , which would result in perforation due to impact penetration of the bomb. The required thickness is then

$$
T_{t}=2 \times 2.96, \text { or about } 6 \mathrm{ft} .
$$

For the inner slab, a factor of 3 will be ample for protection against the explosive charge of the bomb. Accordingly,
$T_{b}=3 \times 1.26$, or about 4 ft .
In the case of a roof composed of a single slab, the factor of thickness, to be applied against the total penetration of the bomb, may vary from 2.5 to 3 , depending whether an anti-scabbing plate is to be used or not. The required design thickness will correspondingly be

$$
T_{1}=2.5(2.96+1.26), \text { or about } 11 \mathrm{ft} .
$$

and

$$
T_{2}=3(2.96+1.26), \text { or about } 13 \mathrm{ft}
$$

For the walls of a building a thickness factor of 2.5 will suffice. Then, if the wall is to be protected against shell fire, the required design thickness is

$$
T_{1}=2.5 \times 1.98, \text { or about } 5 \mathrm{ft} .
$$

If the wall is not oriented towards the sea, or located within critical range of naval gun fire, then the required design thickness for protection against oblique hits from bombs will be

$$
T_{2}=2.5(1.08+0.46), \text { or about } 4 \mathrm{ft}
$$

The design thicknesses for protection against other impact weapons may similarly be computed. The procedure may also be used
for determining protective thickness against bomb fragments and missiles of various type, provided reasonably satisfactory essumptions can be made regarding their weights, shapes and the velocities at impact.

Where steel plates are to be used in combination with concrete, in protective value l-inch thick ordinary structural grade steel may be taken as equal to 12-inch thick concrete of about 3000 psi strength, and for specially-treated steel the equivalence is about 18 inches of concrete.

Arrangement of Framing.- A typical arrangement for a bomb-resistant structure is show in Fig. 11. The building, the Navy's bomb-resistant personnel shelter, was designed in accordance with protection criteria outlined above. The main features of framing include the following.

The roof consists of two slabs: an outer slab of 6-ft depth and a ceiling slab of 4-ft depth. The outer slab, supported on a series of piers at the walls, projects 5 feet beyond the wall line to form a protective canopy over the ceiling slab against a direct hit.

All walls, including the barricades sheltering the entrance passage ways, are 4 ft thick.

A 4-ft slab is also used in the floor to resist underground explosions. In addition, a 20-ft wide burster slab provides protection against under-floor penetration of light-case, high-explogive bombs.

Typical details of reinforcing are shown in Fig. 9. The arrangement marked Type A, with sizes as indicated in Detail 1, may be considered as minimum reinforcing. Should the elastic analysis of the framing under dead, snow, wind and other live loading indicate the need of additional reinforcement, Type B arrangement, with proper size of reinforcement, may be used.

PART II. RESISTANCE TO BLAST

A. DESIGN DATA

Atomic Blast.- With the development and use of the atomic bomb, a new criteria is introduced in the design of protective structures. The efficiency and destructive power of this new weapon is more vividly illustrated by equivalence or comparison of its energy of fission to that resulting from conventional explosives. For an atomic bomb of the type dropped in Japan, the equivalence is 20,000 tons of TNT. Hence, this bomb, which serves as a basis for establishing a design loading for blast, is referred to as a 20 kilo-ton bomb.

A great deal of information is now available regarding the nature and effects of atomic explosion*. The destructive effects of the fission are caused by the shock wave and the thermal and

[^1]nuclear radiations associated with the phenomenon. From the point of ∇ iew of structural adequacy, resistance to the shock wave constitutes the primary problem in protective construction.

A shock wave is essentially a pressure wave initiated by the energy released during an explosion. The general pattern of this pressure wave is shown in Fig. 12. As will be noted, it is characterized by a shock front, where the intensity of pressure sharply rises from atmospheric to a maximum or peak value, followed first by a positive then a negative phase. The intensities of the pressures and their durations decrease with the propagation of the shock wave. Similarly, the velocity of the shock front decreases from an indeterminate maximum near the center of the explosion to the velocity of sound at a distance of about $10,000 \mathrm{ft}$. For design purposes, in the distance range of 2000 ft to $10,000 \mathrm{ft}$ from the center of explosion, the velocity of the shock wave may be considered as constant and equal to 1400 ft per sec. The variations in peak pressures in this range, and corresponding to a 20 kilo-ton bomb, are shown in Fig. 13*; and the durations of the positive phase are given in Fig. 14*.

In the following analysis, the investigation will be confined to the positive phase of the shock wave. Since the pressures in the negative phase are relatively small, no investigation for this period is required.

Blast Pressures on a Structure.- When a shock wave encounters

[^2]an obstruction in its path, such as a structure, the pressure pattern is disturbed. The extent of the disturbances will vary at the various faces of the structure in accordance with the angularity and orientation of the element or the created interference. Owing to the many variables involved, the disturbance is in the form of a complex phenomenon for which complete information is as yet not available. Presently the most convenient and practical method of studying the disturbances caused by obstacles in the path of a blast wave is by means of "shock tubes." A number of investigations in this field have been made, of which those at Princeton University* constitute a valuable source of information. The pressure disshown tribution curves//in Figs. 15, 16, and 17 are based primarily on these data. In this connection, the following are to be noted. All pressures represent an average condition over each face of the structure. In Fig. 15, a factor of 3 was applied to peak pressure, p_{0}, to obtain the maximum reflected pressure on the front wall. This corresponds to an angle of incidence of about 70° **. The stagnation pressure at the end of the period t_{1} is taken as equal p_{0}. To simplify the analysis, the variations in pressure in both time intervals t_{1} and t_{2} are assumed to be linear. This assumption was also made for the pressures/in Fig. 16 and 17 . In

[^3]Fig. 16, the initial pressure at any transverse section of the roof is taken as p_{0}, dropping to a value of $\frac{1}{3} p_{0}$ in the time required for the vortex to reach that section. The vortex velocity is assumed to be constant and equal to $\frac{1}{7}$ of the shock velocity. In Fig. 17, an initial pressure of $\frac{2}{3} p_{0}$ is used.

B. ANALYSIS

General Phases of Investigation.- The analysis of a structure under blast involves two main investigations: (1) Strength, and (2) Stability.

The strength computation, in turn, may be divided in two parts: (a) Local strength or the resistance of individual members, and (b) Overall strength of the framing or assembly.

The investigation of stability will include: (1) a study for stability against sliding, and (2) a study for stability against rotation or overturning.

LOCAL STRENGTH

Concept of Deformation.- To ascertain the strength of a froming arrangement, we must first consider the strength of each indvidual member. Assuming that the member will have adequate supports for transfer of its load, then the problem becomes a study of anticipated deformations of the member relative to its supports. Under an impulse loading, the strength behavior of the member, or its capacity to absorb an impulse loading, will be governed in a large measure by its ductility. That is to say, the larger the de-
formation or its axial elongation and the corresponding sag or deflection, the greater its capacity to absorb the imposed loading. The ductility of a reinforced concrete member to produce desired deformations for resistance is governed by the ductility of its reinforcement.

When a reinforced concrete member is subjected to an impalse loading many times greater than its elastic resistance, the member will pass through three stages of deformations: (a) an initial stage corresponding to elastic behavior; (b) en intermediate stage of partly elastic and partly plastic behavior; and (c) a final stage of wholly plastic behavior. In the first stage, the member will behave as a fully restrained element, developing maximum resisting moments at the supports. This period of elastic behavior terminates when the end moments reach the ultinate elastic capacity of the section. As the deformations increase, the resisting moments at the supports will increase to the plastic capacity of the section and the reinforcing will deform locally to form plastic hinges at these locations. As a result, the ends will rotate and the nember will deflect as in the case of a simply supported beam. This is the second stage of deformation. When the plastic moment capacity of the section at the center of the span is reached, the member enters into its fingl stage of deformation, characterized by extensive cracking and by overall elongation of the reinforcement. The passage from the intermediate to the final stage of deformation is accompanied by a loss in moment capacity and an increase in the axial tension. With continued deformations, the
moment resistance rapidly diminishes to a negligible value and the member axially elongates in the form of a simple parabolic curve. Failure will generally occur by rupture of the reinforcement simplar to a bar in tension. If a factor is applied against the maximum deflection to prevent such failure, then the resulting deformation may be considered as a limiting condition in obtaining a practical or working resistance in design. This deformation may be stated in terms of axial elongation, or by unit strain. Assumeing that the reinforcement will elongate uniformly, then the unit strain could be obtained by dividing the total elongation of the reinforcement by the overall length of the member. A maximum deflection of one-tenth of the span length is suggested as a limiting value. This corresponds to an average elongation of about 2.8 percent.

Modulus of Resistance.- Fig. 18 illustrates the foregoing concept of deformation of a member. The deflection curve shown in Flg . 19 (a), corresponding to the first stage of deformation, may be considered as that due to a uniformly distributed load q_{a}. The deflection at the center of the span, Y_{a}, will then equal

$$
y_{a}=\frac{1}{384} \cdot \frac{q 1^{4}}{E_{c} I_{c}}
$$

in which E_{c} is the modulus of elasticity and I_{c} the moment of inertia per unit width of member. From which

$$
q_{a}=\frac{384 E_{c} I_{c}}{1^{4}} \cdot y_{0}
$$

In Fig. 18 (b), the deformation indicated by the dashed In e represents the beginning of plastic deformation where the moments at the supports have reached their ultimate plastic or yield value,
$J=200-22$

Mr. The full line represents the beginning of the transitional period. At this point the deflection is $y_{b_{1}}$, which again may be considered as produced by the load $q_{b_{1}}$. The relation between q_{b} and y_{b} is then given by

$$
\begin{equation*}
q_{b 1}=\frac{192 E_{c} I_{c}}{1^{4}} \cdot y_{b 1} \tag{6}
\end{equation*}
$$

Fig. 18 (c) shows the transitional stage in which it is assumed that the member continues to deflect under a constant load q_{c}. The value of this load may be expressed either in terms of M_{r} obtained at the beginning of the period or in terms of a reduced moment, M_{r}^{\prime}, and an axial tension, $S^{\text {s. }}$. It is known that the total stress in the reinforcement resulting from both sources of strain will remain constand and equal to the yield value strength of the steel in this period. However, since the relation between M_{r}^{\prime} and S^{1} cannot be clearly defined and conveniently expressed, the value of y_{c} may be obtained from Mr alone. Thus

$$
\begin{equation*}
q_{c}=\frac{16 M_{r}}{1^{2}} \tag{7}
\end{equation*}
$$

Fig. 18(d) shows the final stage of deformation where, owing to extensive cracking, no appreciable resisting moments exist. The relation between deflection and load will then become

$$
\begin{equation*}
q_{d}=\frac{8 S}{1^{2}} \cdot y_{d} \tag{8}
\end{equation*}
$$

in which S is the ultimate yield strength of the reinforcement per unit width.

In the relations given above, the load q is a measure of strength of the member and accordingly may called the "modulus of resistance of the member, or simply the "resistance."

The relation between resistance and deflection, throughout the full range of deformations is shown diagrammatically in Fig. 18 A. Here the line O A indicates the first or elastic stage; $A B$, the partly elastic and partly plastic stage; BC, the transitional period; and $C D$ the final or fully plastic stage of deformation. At point C, q_{c} is equal to q_{d}. Hence, from Ens. (7) and (8)

$$
\frac{16 M_{r}}{1^{2}}=\frac{8 S}{1^{2}} \cdot y_{c l}
$$

from which

$$
\begin{equation*}
y_{C 1}=\frac{2 M_{r}}{S} \tag{9}
\end{equation*}
$$

If the effect of resisting moments is neglected, then the de-flection-load relation will be represented by the straight line 0 CD. This is the case for a relatively thin element supported on two ends:

In the case of a thin framing element supported on four sides, Fig. 19, such as a reinforced concrete slab of small depth, or a steel plate, the moments M_{r} will have only a negligible effect on the resistance of the member, and, hence, may be omitted in the resistance equation. Under large plastic deformations, such an olement will deflect as a membrane. The deflection y^{\prime} at any point (x, z) is given by

$$
y^{\prime}=\frac{4 q 1_{1}^{2}}{\pi^{3} S} \sum_{n=1,3,5}^{n=\infty} \frac{(-1)^{\frac{n-1}{2}}}{n^{3}} \cdot\left(1-\frac{\cosh \frac{n \pi z}{l_{1}}}{\cosh \frac{n \pi l_{2}}{2 q_{1}}}\right) \cos \frac{n \pi x}{l_{1}}
$$

and at the center

$$
y=\frac{4 q 1_{1}^{2}}{\pi^{3} S} \sum_{n=1,3,5}^{n=\infty} \frac{(-1)^{\frac{n-1}{2}}}{n^{3}} \cdot\left(1-\frac{1}{\cosh \frac{n \pi l_{2}}{21_{1}}}\right)
$$

From which the modulus of resistance, q, is obtained as

$$
q=\frac{\pi^{3} s y}{4 L_{1}^{2} \sum_{n=1,3,5}^{n=\infty} \frac{(-1)^{\frac{n-1}{2}}}{n^{3}} \cdot\left(1-\frac{1}{\cosh \frac{n \pi l_{2}}{2 l_{1}}}\right)},
$$

or.

$$
\begin{equation*}
q=\frac{V s y}{L_{1}^{2}} \tag{10}
\end{equation*}
$$

Values of the resistance factor, V, are given in Fig. 20.
Fundamental Relation of Motion.- The effect of q is that of a negative force, acting in an opposite direction to the applied load p. The net force f, equalling $p-q$, will then represent the accelerating force of a unit mass, w/g. Thus

$$
f=p-q=\frac{w}{g} \alpha ;
$$

which is the fundamental relation of motion.
For a unit area located at a distance x from the supports, the displacement, y^{\prime}, will diminish from y to 0 . Assuming that the ratio of y^{\prime} to y during the period of motion remains constant, it is then possible to express the motion of any point in terms of the motion at the center line by means of a reduction factor applied to the unit area and the unit mass at that point. That is to say, the equation of motion for a unit area having a displacement y^{\prime} may be written as that of an equivalent reduced area having the same displacement y at the center and an equivalent reduced mass hating the the corresponding acceleration α : Thus

$$
f^{\prime}=\beta(p-q)=\beta, \frac{w}{g} \alpha ;
$$

where β is the reduction factor for area, and β for mass. Then the expression of motion for the entire member becomes

$$
\begin{equation*}
F=\beta A(p-q)=\beta \frac{W}{g} \alpha \tag{11}
\end{equation*}
$$

in which A is the total surface of the member, W its total weight,

$$
\beta=\frac{\int y^{\prime} d A}{y A} \text {, and } \quad \beta_{1}=\frac{\int\left(y^{\prime}\right)^{2} d w}{y^{2} w} .
$$

For one-way slabs or beans $\beta=\frac{2}{3}$ and $\beta_{1}=\frac{8}{15}$. For two -way slabs values of β and β_{1}, for various length-to-width ratios, are given in Fig. 20.

APPLICATIONS

Having established the fundamental relation of motion pertaining to a local element, the next step of the analysis consists of the application of the relation to various conditions of blast loading. For this purpose, use will be made of a simple rectanguar building having vertical walls and a flat roof, as shown in Fig. 15. The critical condition of each wall would be an orientetion or exposure to frontal attack of the blast wave.

Case I. Front Wail.

Condition 1. Moment Resistance Neglected.- The relation between load and deformation is given by the straight line $O D$ of the resistance diagram shown in Fig. 18 A. The pressure-time curve for this case is shown in Pig. 15. The pressure p_{1}, in period t_{1}; is given by

$$
\begin{equation*}
P_{1}=P_{0}\left(3-2 \frac{t}{t_{1}}\right) \tag{12}
\end{equation*}
$$

and that in the period t_{2} is

$$
\begin{equation*}
P_{2}=P_{0}\left(\frac{\tau-t}{t_{2}}\right) \tag{13}
\end{equation*}
$$

Assuming that the wall framing consists of a slab reinforced in one direction (in the direction of h), the equation of motion corvesbonding to the two time periods is then obtained by substitution of the values of p, given by Ens. (12) and (13) and q, given by Eq. (8), in Eq. (11),

$$
\begin{align*}
& \beta A\left[P_{0}\left(3-2 \frac{t}{t_{1}}\right)-\frac{8 S}{h^{2}} y\right]=\beta_{1} \frac{W}{g} \alpha ; \tag{14}\\
& \beta A\left[P_{0}\left(\frac{\tau-t}{t_{2}}\right)-\frac{8 S}{h^{2}} y\right]=\beta_{1} \frac{W}{g} \alpha, \tag{14a}
\end{align*}
$$

or in the general form

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+r^{2} y=a-b t \tag{15}
\end{equation*}
$$

In which $\frac{d^{2} y}{d t^{2}}$ is the acceleration $\alpha, r^{2}=\frac{8 \beta g A S}{\beta, h^{2} W}$, and a and b, for the periods t_{1} and t_{2}, are:

$$
\begin{array}{ll}
a_{1}=\frac{\beta g A}{\beta_{1} w} \cdot 3 p_{0} & , \quad b_{1}=\frac{2 \beta g A}{\beta_{1} w t_{1}} \cdot p_{0} \tag{16}\\
a_{2}=\frac{\beta g A}{\beta_{1} w} \cdot \frac{\tau}{t_{2}} p_{0} & , \quad b_{2}=\frac{\beta g A}{\beta_{1} w t_{2}} \cdot p_{0}
\end{array}
$$

The general solution of this ordinary differential equation is in the form

$$
\begin{equation*}
y=c_{1} \sin r t+c_{2} \cos r t+\frac{a-b t}{r^{2}} \tag{17}
\end{equation*}
$$

and $\quad \frac{d y}{d t}=r\left(c_{1} \cos r t-c_{2} \sin r t\right)-\frac{b}{r^{2}}$
The values of the two constants, c_{1}, and c_{2}, are obtained from the consideration

$$
\begin{aligned}
& t=0, \quad y=0 \\
& t=0, \quad \frac{d y}{d t}=0
\end{aligned}
$$

which gives

$$
c_{1}=\frac{b_{1}}{r^{3}}, \quad c_{2}=-\frac{a_{1}}{r^{2}}
$$

Substituting these values in Eqs. (17) and (18), the displacement and velocity equations,

$$
\begin{align*}
& y=\frac{1}{r^{2}}\left[b_{1}\left(\frac{\sin r t}{r}-t\right)+a_{1}(1-\cos r t)\right] \tag{19}\\
& \frac{d y}{d t}=\frac{1}{r^{2}}\left[b_{1}(\cos r t-1)+a_{1} r \sin r t\right] \tag{20}
\end{align*}
$$

Similarly, in the period, t_{2},

$$
\begin{align*}
y & =c_{3} \sin r t+c_{4} \cos r t+\frac{a_{2}-b_{2} t}{r^{2}} \tag{21}\\
\frac{d y}{d t} & =r\left(c_{3} \cos r t-c_{4} \sin r t\right)-\frac{b_{2}}{r^{2}} \tag{22}
\end{align*}
$$

The constants c_{3} and c_{4} are determined from the consideration that at the beginning of this period the displacement and velocity will be the same as the respective values at the end of the first period, as given by Eqs. (19) and (20), and where $t=t_{p}$ Let Δ_{1} indicate the displacement y, and V_{1} the velocity $\frac{d y}{d t}$ at the end of the period t_{1}, then

$$
\begin{aligned}
& c_{3} \sin r t_{1}+c_{4} \cos r t_{1}=\Delta_{1}-\frac{a_{2}-b_{2} t_{1}}{r^{2}}, \\
& c_{3} \cos r t_{1}-c_{4} \sin r t_{1}=\frac{v_{1}}{r}+\frac{b_{2}}{r^{3}},
\end{aligned}
$$

Prom which

$$
\begin{equation*}
c_{3}=\sin r t_{1}\left(\Delta_{1}-\frac{a_{2}-b_{2}^{\prime} t_{1}}{r^{2}}\right)+\cos r t_{1}\left(\frac{v_{1}}{r}+\frac{b_{2}}{r^{3}}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{4}=\cos r t_{1}\left(\Delta_{1}-\frac{a_{2}-b_{2} t_{1}}{r^{2}}\right)-\sin r t_{1}\left(\frac{v_{1}}{r}+\frac{b_{2}}{r^{3}}\right) \tag{23a}
\end{equation*}
$$

The motion may stop either in the first or second period. Assuming that the latter is the case, the value of t, the time in the period t_{2} when motion stops, can be obtained from Eq. (22),

$$
\begin{equation*}
\frac{d y}{d t}=r\left(c_{3} \cos r t-c_{4} \sin r t\right)-\frac{b_{2}}{r^{2}}=0, \tag{22a}
\end{equation*}
$$

or an approximate value from the relation

$$
\begin{equation*}
\cos r t=\frac{1}{ \pm \sqrt{1+\left(\frac{c_{3}}{c_{4}}\right)^{2}}} \tag{24}
\end{equation*}
$$

In general, the motion of walls reinforced in one direction will stop in the second period. On the other hand, in the case of a thin slab or a steel plate supported on four sides, the motion will generally stop in the first period. However, an investigation should be made in all cases to ascertain whether or not the motion stops during the first period. This can be accomplished by equating $\frac{d y}{d t}$ in Iq. (20) to zero and solving for t. If the smallest value of t thus obtained is less than' t_{1}, then the motion stops in the first period and the magnttude of the final displacement is obtained from Fq. (19).

In the case of a slab supported on four sides, the derivations presented above apply, with due allowance for the changes in the resistance factor γ, and reduction factors β and β,

Condition 2. Moment Resistance Considered.-

The relation between load and deflection for this case is shown by the broken line 0 AB CD of the resistance diagram in Fig. 18 A. It is to be noted that part O. A B is predicted on the use of a constent moment of inertia, I_{c}. Obviously this condition of constant. moment of inertia cannot prevail throughout this range of the deformation owing to the continued cracking of the concrete. If I_{c} at each stage of the deformation is modified to its actual value, lIne 0 A would tend to shift towards line $O B$, that is to say, for the same load there would be larger deflections than indicated by the diagram. Since it is not practicable to determine the true position of the resistance line, it may be taken as the straight line $O B$, using a constant value for I_{c} predicated on the full section of the member. In the period represented by the line $O B$, the relation between deflection and load is then given by

$$
\begin{equation*}
q_{b}=\frac{192 E_{c} I_{c}}{l^{4}} \cdot y_{b} \tag{6a}
\end{equation*}
$$

The purpose of the analysis is to determine the extent of maximum deflection which, as explained above, occurs when the motion in the direction of the applied pressure stops; that is when $\frac{d y}{d t}=0$. Were the resiatance-deflection and pressure-time relations continueonus functions, it would be possible to determine the maximum deflecLion in one operation by placing the value of $\frac{d y}{d t}$ In. Sq. (20) equal to zero and solving for y by Eq. (19). However; due to the discontinuity of the resistance line at points B and C. it becomes necessay to determine the time and the attained velocity at these two points before proceeding to the next stage of deformation.

In addition, as in the previous case, owing to the discontinuity in the pressure-time curve, it will also be necessary to determine the deflection and the attained velocity at the time t_{1}.

The analysis of motion corresponding to the resistance line $O B$ in Fig. 18 A , is the same as in the preceding case. During this period the resistance q is given by Fiq . (Ga). Accordingly,

$$
r^{2}=\frac{\beta g A}{\beta_{1} W} \cdot \frac{192 E_{c} I_{c}}{h^{4}}
$$

and the values of a, and b, remain the same as given by His. (16). Substituting the value of y_{b} for $y_{\text {, }}$ in \mathbb{R}_{q}. (19),

$$
\begin{equation*}
y_{b_{1}}=\frac{1}{r^{2}}\left[b_{1}\left(\frac{\sin r t_{b_{1}}}{r}-t_{b_{1}}\right)+a_{1}\left(1-\cos r t_{b_{1}}\right)\right] ; \tag{19a}
\end{equation*}
$$

From this equation the value of t_{b} is obtained by trial. The veloceits, $\nabla_{b l}$ a at the end of this period is determined by substituting the value of $t_{b i}$ in Hq. (20).

In the period corresponding to the resistance line $B C_{*}$ the resistance is constant and the equation of motion takes the following form:

$$
\begin{equation*}
\beta A\left[P_{0}\left(3-2 \frac{t}{t_{i}}\right)-\frac{16 M_{r}}{h^{2}}\right]=\frac{\beta_{1} w}{g} \alpha \tag{25}
\end{equation*}
$$

If the discontinuity in the pressure-time relation should occur in this period, then during the interval t_{2} Eq. (25) becomes:

$$
\begin{equation*}
\beta A\left[P_{0}\left(\frac{\tau-t}{t_{2}}\right)-\frac{16 M_{r}}{h^{2}}\right]=\frac{\beta_{1} W}{g} \alpha \tag{25a}
\end{equation*}
$$

Eqs. (25) and (25a) may be written in the general form

$$
\frac{d^{2} y}{d t^{2}}=a-b t
$$

In which b for the periods t_{1} and t_{2} is given by Fq_{q}. (16) and a is given by

$$
\begin{equation*}
a_{1}=\frac{\beta g A}{\beta_{1} W}\left(3 p_{0}-\frac{16 M_{r}}{h^{2}}\right), a_{2}=\frac{\beta g A}{\beta_{1} W}\left(\frac{\tau}{t_{2}} p_{0}-\frac{16 M_{r}}{h^{2}}\right) \tag{16a}
\end{equation*}
$$

The general solution of this ordinary differential equation is in the form

$$
\begin{equation*}
y=c_{1}+c_{2} t+\frac{a t^{2}}{2}-\frac{b t^{3}}{6} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d y}{d t}=c_{2}+a t-\frac{b t^{2}}{2} \tag{27}
\end{equation*}
$$

The values of the constants c_{1} and c_{2} are obtained from the considaeration

$$
t=t_{b_{1}}, y=y_{b_{1}}, a n d, \frac{d y}{d t}=v_{b_{1}}
$$

which gives

$$
c_{1}=y_{b 1}-c_{2} t_{b_{1}}-\frac{a t_{b 1}^{2}}{2}+\frac{b t_{b 1}^{3}}{6} \text { and } \quad c_{2}=v_{b_{1}}-a t_{b_{1}}+\frac{b t_{b 1}^{2}}{2}
$$

The values of the displacement Δ_{1} and the velocity ∇_{1} are found by substituting t_{1} for t in ERs. (26) and (27).

The time t_{C} and the velocity $\nabla_{C l}$ corresponding to the end of this period, at point C on the resistance line, are obtained as in the preceding stop by replacing the constants c_{1} and c_{2} by new constints C_{3} and c_{4}. Thus

$$
\begin{equation*}
y=c_{3}+c_{4} t+\frac{a_{2} t^{2}}{2}-\frac{b_{2} t^{3}}{6} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d y}{d t}=c_{4}+a_{2} t-\frac{b_{2} t^{2}}{2} \tag{29}
\end{equation*}
$$

The values of c_{3} and c_{4} and $t_{C 1}$ and $V_{c 1}$ are obtained in the same manner as before.

In the final period of deformation, indicated by the resistance line C. D, the equation of motion is

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+r^{2} y=a_{2}-b_{2} t \tag{15a}
\end{equation*}
$$

Y-200-32
in which

$$
r^{2}=\frac{8 \beta g A S}{\beta_{1} h^{2} W}
$$

and a_{2} and b_{2} are given by Iqs. (16).
The solution of Eq. (15a) is
and

$$
\begin{equation*}
y=c_{5} \sin r t+c_{6} \cos r t+\frac{a_{2}-b_{2} t}{r^{2}} \tag{17a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y}{d t}=r\left(c_{5} \cos r t-c_{6} \sin r t\right)-\frac{b_{2}}{r^{2}} \tag{180}
\end{equation*}
$$

Values of the constants c_{3} and c_{6} are determined from the condition at the beginning of this period, when

$$
y=y_{c l}, \quad t=t_{c l} \quad \text { and } \quad \frac{d y}{d t}=V_{c l}
$$

The maximum deformation is then found by determining the time at which $\frac{d y}{d t}=0$ in Eq. (18a), and solving Hq. (17a) for y using the obtained value of t.

In the foregoing analysis it was assumed that the point of discontinuity of the pressure-time curve, corresponding to time t_{1}. would occur in the period defined by the resistance line B C in Fig. 18 A. However, it may occur in any one of the three periods. As the time in each step is determined a comparison with the time t_{1} will indicate whether the pressure discontinuity occurs in that period.

It is to be noted that the motion may stop in any one of the three periods of resistance. Should it occur in the first period of resistance, indicated by line 0 B in Fig. 18 A , the member may be considered as over-designed; necessitating a revision of the section. If it should occur in the second period of resistance, indicated by line $B C$, the design may be considered conservative.

For an economical design it would be desirable to so proportion the section that the motion will stop in the third period of resistance, indicated by line C D, provided that the maximum allowable deformation is not exceeded.

For an approximate analysis the resistance line 0 D in Fig .18 A may be substituted for the broken line $O B C D$, in which case Gondition I will apply.

Case II. Roof.
The pressure-time curve for this case is shown in Fig. 16. The pressure p_{1}, in period t_{x}, is given by

$$
\begin{equation*}
p_{1}=\frac{p_{0}}{3}\left[3+\frac{2}{t_{x}}\left(\frac{x}{v^{\prime}}-t\right)\right] \tag{12a}
\end{equation*}
$$

and in the period τ - t_{x} by

$$
\begin{equation*}
p_{2}=\frac{P_{0}}{3}\left[\frac{\tau+\frac{x}{v_{1}}-t}{\tau-t_{x}}\right] \tag{13a}
\end{equation*}
$$

It will be expedient, in this case, to measure the time from the instand the shock wave reaches the section x under consideration. That is, for $t=0, p_{1}$ is equal to p_{0} and Eqs. (12a) and (13a) become:

$$
\begin{equation*}
p_{1}=\frac{p_{0}}{3}\left(3-\frac{2 t}{t_{x}}\right) \tag{12b}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}=\frac{P_{0}}{3}\left(\frac{\tau-t^{x}}{\tau-t_{x}}\right) \tag{13b}
\end{equation*}
$$

The analysis is carried out in the same manner as for Case I. The time t_{1} now becomes t_{x} and t_{2} becomes $\tau-t_{x}$; and Figs. (12b) and (13b) replace Eqs. (12) and (13) in computing the values of the constants a and b.

Since the drop in pressure is a function of t_{x} which, in tran, varies directly with the distance x measured from the front face of the building, the most severe condition of loading will occur over the area of the roof adjacent to the rear wall.

If the main reinforcing is parallel to the short dimension of the roof, d In Hig^{2}. 16, the orientation of the blast wave should be parallel to the long sides. The dimension x will then be taken as slab
I. Since the roof/will receive support from the end wall, the value of x should be taken as somewhat less than L, say, I minus 6 times the thickness of the roof slab.

It should be noted that the pressures shown in Pig. 16 are for transverse sections of the roof, and that for the unit strip used in the analysis the pressure will, in reality, be variable across the width of the strip. This variation could be neglected in the analysis and the pressures are given by His. (12b) and (13b) may be assumed constant across the width of the strip.

Numerical Examples.
Example 1.- Front Wall, Moment resistant neglected: Let $h=10 \mathrm{ft}$; $d=20 \mathrm{ft} ; \mathrm{I}=40 \mathrm{ft}$ and $p_{0}=10 \mathrm{psi}$ or $1,440 \mathrm{psf}$. From Figs. 13 and $14, \tau=0.58$ sec, and from Fig. $15, t_{1}=\frac{1}{35}$ sec.

Assuming a 6 in. thick concrete wall with one-way reinforcing of $\frac{3}{4}{ }^{1 \phi}$ bars spaced vertically at 6 in. centers at the center of the slab, for a strip one foot wide we have:
$A=10 \mathrm{sq} \mathrm{ft} ; W=750 \mathrm{lb} ; A_{\mathrm{s}}=0.88 \mathrm{sq}$ in and, using a yield value of $50,000 \mathrm{psi}, \mathrm{s}=44,000 \mathrm{Ib} ; \beta=\frac{2}{3}, \beta_{1}=\frac{8}{15}$ and $\mathrm{g}=32.2 \mathrm{ft}$ per $\sec ^{2}$.

Then $r^{2}=1,889 ; \dot{a}_{1}=2,318 ; b_{1}=54,096 ; \Delta_{1}=0.6359 \mathrm{ft}:$ $\nabla_{1}=31.086 \mathrm{ft}$ per sec; $a_{2}=813 ; b_{2}=1,401 ; c_{3}=0.4512 \mathrm{and}$ $c_{4}=-0.6198$. From Eq. (22a) the motion stops when $\sin (r t)=0.6064$ and $\cos (r t)=-0.7952$, from: which t is found to be 0.0573 sec and the final value of y is 1.18 It which is slightly over the allowable value.

For comparison, the same member will be reviewed taking into consideration the resisting moments.

Example. 2.- Front Wall, Moment resistant considered: Assuming $\mathbb{F}_{c}=4,000,000 \mathrm{psi}$ and $f_{c}^{\prime}=4,000 \mathrm{psi}, \mathbb{E}_{c} I_{c}=6,000,000 \mathrm{lb} \mathrm{ft}^{2}$. and $M_{r}=9,000 \mathrm{ft} \mathrm{lb}$, then $\mathrm{J}_{\mathrm{bl}}=0.0125 \mathrm{ft} ; q=115,200 \mathrm{y} ; \mathrm{r}^{2}=61,824$; $a_{1}=2,318$ and $b_{1}=54,096$. Solving Eq. (19a) by trial, $t_{b 1}=0.003433 \mathrm{sec}$ and from $\mathbb{I q}_{\mathrm{q}}$ (20); $\nabla_{b l}=6.7263 \mathrm{ft}$ per sec. Then $\mathrm{y}_{\mathrm{c}}=0.4091 ; q_{c}=1,440$; $a_{1}=1,546 ; b_{1}=54,096 ; c_{1}=-0.0022$ and $c_{2}=1.7377$. Placing $y=y_{c}=0.4091$ in Eq. (26) the value of t is found to be 0.02609 sec. Since this value of t is smaller than t_{1}, the point of discontinuity of the pressure-time curve occurs in the final period of deformation. From Iq. (27) $\frac{d y}{d t}=26.6615$ at point C. The value of r^{2} in the final period is 1,880 and from His. (16), $a_{1}=2,318 ; h_{1}=54,096 ; a_{2}=813$ and $b_{2}=1,401$. The values of the constants, determined from the conditions at the beginning of this period, are $c_{3}=0.4450$ and $c_{4}=-1.1203$. For $t=t_{1}, \Delta_{1}=0.4680 \mathrm{ft}$ and $\nabla_{1}=23.6883 \mathrm{ft}$ per sec. The constants c_{5} and c_{6} are then determined from ERs. (17a) and (18a) using the known values of z and $\frac{d y}{d t}$ at the time t_{1}. from which, $c_{5}=0.2373$ and $c_{6}=-0.5130$. The motion stops when $t=0.0616$ sec and the final value of \bar{y} is 0.95 ft . Since this value is less
than $\frac{1}{10}$ of the span, the design is considered to be adequate. Fxample 3.- Front Wall, Slab supported by heavy members on 4 edges. Let $h=10 \mathrm{ft} ; \mathrm{d}=20 \mathrm{ft} ; \mathrm{L}=40 \mathrm{ft}$ and $p_{0}=20 \mathrm{psi}$ or $2,880 \mathrm{psf}$. We find $\tau=0.49$ and $t_{1}=\frac{1}{35}$ sec. Assuming a $\frac{3}{16}{ }^{\prime \prime}$ steel plate 8 ft high and 4 ft wide in the front wall, $A=32 \mathrm{sq} \mathrm{ft;} \mathrm{~W}=244.3 \mathrm{lb}$; $S=67,500 \mathrm{lb}$ per ft (yield value of $30,000 \mathrm{psi}$ is taken for plate steel); $\frac{i_{2}}{i_{1}}=2.0$ and Irom Fig. 20, $\gamma=8.8 ; \beta=0.5$ and $\beta_{1}=0.338$. Then $r^{2}=231,128 ; a_{1}=53,790$ and $b_{1}=1,255,100$. Equating $\frac{d y}{d t}$ in Eq. (20) to zero, $t=0.00633$ which is less than t_{1}. Hence, the motion stops in the first period and y at the end of motion is 0.43 f.t. Since this value of y is only slightly larger than $\frac{1}{10}$ the short span, the design is considered as adequate.

OVBR-AJCL STREHNGIH

In the local investigation of strength, it was assumed that the members would have adequate support and anchorage to justify the concept of deformation and the mode of failure outlined in the preceding analysis. This requirement will be met by making the reinforcing of the member continuous, or spliced for full strength, between its supports, and by providing an end anchorage capable of development of the full or ultimate strength of the reinforcing.

In addition, it was assumed that the supports would not displace during local bending of the member, and that there would be no appreciable participation in the overall bending of the framing as a whole. Insofar as the first condition is concerned, it is an assumption on the conservative side and wholly justifiable for members framed to strong elements, such as transverse walls and floors. The other assumption will be satisfied if the framing is so arranged that under a lateral loading the deformations of frames composed of floors and transverse walls became very small in comparison with the corresponding deformations of bents composed of local elements.

In connection with the latter consideration, it is to be noted that in order to provide the necessary strength to resist strong atomic blast, the use of strong frames comprising structural floors and transverse walls becomes almost mandatory. The analysis presented here contemplates the use of this type of framing.

In conformity with the foregoing concept, floors are considore as girders, transmitting the loads from local members to the transverse walls. These loads are then carried to the foundations through the walls, either by frame or cantilever action. If the transverse walls are placed no farther apart than, say, three times the width of the floor, then the problem of strength will be primarily that of shear. Accordingly, the needed investigation may be confined to shear strength only.

There is but little information available regarding the shear strength of materials under dynamic loading. Until such data are
obtained, use will be made of values deduced from static tests. For reinforced concrete, an allowable working value for shear is given by the following formula*

$$
\begin{equation*}
v_{a}=f_{s}(0.005+r), \tag{30}
\end{equation*}
$$

in which, v_{a} is allowable unit shearing stress, f_{s} is allowable stress in steel and r is the ratio of the volume of steel to the volume of concrete. In this investigation f_{s} may be taken as the yield value of the steel, and the unit shear is computed by dividing the total shear by the cross sectional area of the floor or wall.

The maximum shears in the floors and walls occur at the instan the shock wave strikes the front wall. In obtaining the totail load, the maximum value of the reflected pressure is used.

To illustrate, consider the building shown in Fig. 21. The total maximum load, p_{H}, obtained from the reflected pressure is

$$
P_{H}=3 P_{0} h L
$$

Assuming that this total load is carried to the foundations by the two end walls only, the corresponding unit shear. in the concrete, ∇_{C}, will then be

$$
\begin{equation*}
v_{c}=\frac{3 p_{0} h L}{2 d T}, \tag{3.1}
\end{equation*}
$$

where T is the thickness of the wall.

STABILITY

Stability Against Sliding.- When a shock wave hits the front

[^4]face of a structure, the reflected pressures will tend to move it by bodily displacement and rotation. The tendency to displacement will be resisted first by the developed friction under the base or foundations and the passive pressures of the surrounding earth, then, as the blast wave envelopes the structure, by the additional aid of the blast pressures on top and the rear face.

To develop the relations of motion needed for this investigation, consider the simple rectangular building shown in Fig. 21. The applied force tending to move the building is the total blast pressure F_{H} on the front wall, and the total force resisting sliding, R, is given by

$$
\begin{equation*}
R=P_{H 1}+R_{e}+c_{f} \cdot\left(W+P_{V}\right) \tag{3.2}
\end{equation*}
$$

where R_{e} is the passive resistance of the earth (assumed to be constant during the notion), c_{f} the coefficient of friction, W the total weight of the structure, including the footings, and P_{v} is the total pressure on the roof. The resulting equation of motion is

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=\frac{g}{W}\left(P_{H}-R\right) \tag{33}
\end{equation*}
$$

in which x is the distance moved by the structure. The forces P_{H} and $P_{H I}$ are given by,

$$
P_{H}=h L p_{1}^{\prime}
$$

and

$$
P_{H I}=h L p_{2}^{\prime}
$$

in which p_{1}^{\prime} and p_{2}^{\prime} are obtained from the pressure-time curves shown in Figs, 15 and 17.

$Y-200-40$

The expressions for $P_{H}, P_{H I}$ and P_{V} will vary for the various time intervals. These time intervals may be defined as follows:
$t_{a}=$ Time for wave to reach rear edge of roof;
$t_{b}=$ Time for wave to reach center of rear wall;
$t_{c}=$ Time for pressure on front face to drop to value of $p_{0}\left(=t_{1}\right.$ in FIE_{ξ}. 15);
$t_{d}=$ Time for wave to reach Td;
where all times are measured from the instant the shock wave strikes the front wall. Accordingly,

$$
\left.\begin{array}{l}
t_{a}=\frac{d}{v^{\prime}}, \\
t_{b}=\frac{2 d+h}{2 v^{\prime}}, \\
t_{c}=\frac{4 h}{v^{\prime}}, \\
t_{b}=\frac{2 d+L}{2 v^{\prime}}, \\
t_{c}=\frac{2 L}{v^{\prime}}, \\
t_{d}=\frac{7 d}{v^{\prime}} .
\end{array}\right\} \text { for } h<\frac{L}{2}
$$

The values of P_{V} for the various time intervals are given in Fig. 22. Here Case 1 is for $0 \leqq t \leqq t_{a}$; Case 2, for $t_{a} \leqq t \leqq t_{d}$; and Case 3 , for $t>t_{d}$.

Since $P_{H}, P_{H I}$ and P_{V} are functions of t and t^{2}, the general equation of motion, Eq. (23), may be expressed as

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=a_{2}+b_{2} t+c_{2} t^{2} \tag{34}
\end{equation*}
$$

The solution of this equation is

$$
\begin{equation*}
x=c_{2 n-1}+c_{2 n} t+\frac{a_{2} t^{2}}{2}+\frac{b_{2} t^{3}}{6}+\frac{c_{2} t^{4}}{12} \tag{35}
\end{equation*}
$$

in which $c_{2 n-1}$ and $c_{2 n}$ are constants of integration.
Differentiating Eq. (25) we have,

$$
\begin{equation*}
\frac{d x}{d t}=c_{2 n}+a_{2} t+\frac{b_{2} t^{2}}{2}+\frac{c_{2} t^{3}}{3} \tag{36}
\end{equation*}
$$

If Δ_{n} and ∇_{n} represent the displacement and velocity, respectively, at the beginning of any period at the time t_{n}, then the constants of integration for the equation of motion during that period are found from the relations,

$$
\begin{align*}
& c_{2 n}=v_{n}-a_{2} t_{n}-\frac{b_{2} t_{n}^{2}}{2}-\frac{c_{2} t_{n}^{3}}{3} \tag{37}\\
& c_{2 n-1}=\Delta_{n}-c_{2 n} t_{n}-\frac{a_{2} t_{n}^{2}}{2}-\frac{b_{2} t_{n}^{3}}{6}-\frac{c_{2} t_{n}^{4}}{12} \tag{38}
\end{align*}
$$

The motion stops when $\frac{d x}{d t}=0$. The total distance moved may then be determined by setting the right side of Eq. (26) equal to zero, solving for t and substituting this value of t in Eq. (25).

It is to be noted that the pressures on those parts of the footing which extend beyond the wall lines are not included in the above analysis. Inclusion of these areas is not warranted except in unusual cases.

Numerical Illustration.- The building shown in Fig. 21 will be investigated for stability against sliding under a peak overpressure of $10 \mathrm{psi}=1440 \mathrm{psf}$, which corresponds to a distance of approximately one-half mile from center of explosion of a 20 kiloton bomb. The coefficient of friction is assumed to be 0.5 , and
the total passive resistance of the earth, 39,000 lb. From Figs. 13 and 14, $\tau=0.58 \mathrm{sec}$. The values of the time intervals are:
$t_{a}=\frac{1}{70}$ sec; $t_{b}=\frac{1}{56}$ sect; $t_{c}=\frac{1}{35}$ sec and $t_{d}=\frac{1}{10}$ sec. The numetrical work is show in tabular form in Table 2. It is to be noted that the motion stops in the time interval $\frac{1}{25} \leqq t \leqq \frac{1}{10}$ The time when the motion stops is found from Eq. (26),
$\frac{d x}{d t}=c_{8}-98.70 t+713 t^{2}-2,363 t^{3}=0$,
from which $t=0.0774 \mathrm{sec}$. Substituting this value of t in Eq. (25), the total sliding motion is found to be 0.10 ft , or about $I \frac{1}{4} \mathrm{in}$.

Stability Against Overturning.- The reflected pressures on the front face, in addition to causing the structure to slide, will tend also to rotate the structure as a unit about the rear edge of the footing. Referring to Fig. 21, the force tending to produce rotation about an axis through 0 is P_{H} and the forces tending to resist such motion are $P_{V}, P_{H I}$, and the total weight of the structire W. For small angles of rotation, 0 , expressed in radians, the overturning moment, M_{T}, causing the rotation is given by,

$$
\begin{equation*}
M_{T}=\left(\frac{h}{2}+h^{\prime}\right)\left(P_{H}-P_{H}\right)+M_{P}-\left(d+d^{\prime}\right) P_{V}-\left(\frac{d}{2}+d^{\prime}\right) W \tag{39}
\end{equation*}
$$

in which
$h^{\prime}=$ depth of rear footing below around level;
$d^{\prime}=$ extension of rear footing beyond rear wall and
$M_{P}=$ moment of P_{V} about front edge of roof, (see Fig. 22). The general equation of motion is given by

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=\frac{M_{T}}{I_{m}} \tag{40}
\end{equation*}
$$

In which I_{m} is the mass moment of inertia of the structure about an axis through 0 .

As explained in the preceding section, $P_{H}, P_{H I}, M_{V}$ and P_{V} are functions of t and t^{2}. Accordingly, Hq. (30) will take the form,

$$
\begin{equation*}
\frac{d^{2} \theta}{d t^{2}}=a_{3}+b_{3} t+c_{3} t^{2} \tag{41}
\end{equation*}
$$

The solution of this equation is found in the same manner as that given for sliding, Eq. (24). The maximum value of θ occurs when $\frac{d \theta}{d t}$ changes sign or when $\frac{d \theta}{d t}=0$. The maximum uplift, 8 , at the front edge is then simply

$$
\begin{equation*}
\delta=\left(d+2 d^{\prime}\right) \theta \tag{42}
\end{equation*}
$$

Numerical Illustration.- The building shown in Fig. 21 will now be investigated for stability against overturning under the same peak overpressure as used in the investigation for sliding, namely 10 psi. The mass moment of inertia about an axis through 0 is assumed to be $1.5 \times 10^{6} \mathrm{Ib} \mathrm{sec}^{2} \mathrm{ft}$. The numerical work is shown in tabular form in Table 3. It can be seen that the maximum value of θ occurs in the time interval $\frac{1}{56} \leqq t \leqq \frac{1}{35}$. The time when θ is a maximum is found from the relation,

$$
\frac{d \theta}{d t}=c_{6}-2.215 t-44.46 t^{2}-149.46 t^{3}=0
$$

From this equation $t=0.0205 \mathrm{sec}$ and $\theta_{\text {max }}=0.000337$ radian. The maximum uplift at A is found to be 0.0074 ft or about $\frac{1}{10}$ in.

From the small values obtained in the above examples, it may be concluded that the structure possesses adequate stability against sliding and overturning. Obviously, the extent of displacements which may be deemed as permissible will vary with the type and functional requirements of the structure.
$1 \div 200.44$

CONCLUSION

The possibility of an atomic warfare has made every one protection conscious. Having survived the initial shock of impications related to the power of this new weapon, we are now able to give at least a qualified reply of assurance to the inevitable question, "can we provide protection?" The answer may be summarized as follows:
(a) No complete or unqualified structural protection against the A-bomb, as well as some of the conventional bombs, is feasible.
(b) Within the critical range of explosion, all buildings, regardless of type of framing, will suffer some damage, varying in severity in accordance with their proximity to ground zero.
(c) In general, the design criteria for protection against an atomic bomb of the presently known type are not as severe as those required for some of the conventional weapons of the last war. Assuming the bomb is to explode at an altitude corresponding to its maximum range of damage, for the needed protection, the changes to be introduced in conventional designs of reinforced concrete will be relatively mall.
(d) By proper arrangement of framing and details, adequate overall strength can be provided for a structure to avert collapse, even though there may occur severe local damage in the form of large plastic deformations or failures. (ant)
(e) With certain assumptions of probable structural behavior, the adequacy of overall strength of a framing and the extent of
damage to local members can be satisfactorily ascertained. For this purpose, the procedure presented above may be used as a practical method of design.

As a concluding thought, it should be remembered that protecfive design, as a measure of defense, can only follow the progress of weapons of offense in a vicious circle of continued improvement. For what is devised now to be adequate against weapons of today, is apt to be inadequate for weapons of tomorrow. This sad reflection should serve as a sobering influence against the creation of a false sense of future security.

Part I

\mathbf{A}_{p}	Sectional pressure of a bomb or projectile;
a^{\prime}	A ratio, $=T / D$
C	Weight of charge in a bomb or projectile:
c^{\prime}	$=$ Penetration coefficient for explosion;
D	Impact penetration in an infinitely thick mass;
D'	$=$ Depth of penetration due to impact in a slab of thickness. T;
D_{e}	Depth of penetration due to explosive charge of a bomb or projectile;
5	$=$ Acceleration due to gravity;
H	Height of fall of bomb;
K	$=$ Thickness ratio, $=D^{\prime} / D^{\prime}$;
k	$=$ Penetration coefficient for impact;
T	$=$ Thickness of resisting slab;
V	$=$ Impact velocity;
∇^{\prime}	$=$ A function of $\nabla_{\text {: }}$

Part II
$A \quad=$ Surface area of a slab or beam;
$A_{s}=$ Area of tensile reinforcement;
$c_{f}=$ Coefficient of sliding friction of structure on ground;
d $=$ Width or depth of a rectangular structure;
$d^{\prime}=$ Extension of footing outside of wall;

$\mathbb{E}_{\mathbf{c}}$	=	Modulus of elasticity of concrete.
If	=	Total force acting to move a structure or a component;
f	$=$	Net Iorce causing motion of a unit area;
f_{c}^{\prime}	=	UTimate compressive strength of concrete;
h	=	Height of a rectangular structure;
h^{\prime}	=	Dopth of footing;
I_{c}	$=$	Moment of inertia of unit width of concrete member;
I_{m}	=	Mass moment of inertia of a structure about an axis of rotation;
I	=	Length of a rectangular structure;
1	=	Lencth of a one-way slab or beam;
i_{1}	$=$	Length of short side of two-way slab or plate;
l_{2}	$=$	Length of long side of two-way slab or plate;
M_{p}	$=$	Total moment of roof pressure about front edge of roof;
M_{r}	=	Resisting moment at yield stress per unit width of slab
		or beam;
M_{T}	=	Total overturning moment on a structure;
P_{H}	=	Total pressure on front wall;
$P_{\text {HI }}$	$=$	Total pressure on rear wall;
P_{v}	=	Total pressure on roof;
p	$=$	Unit pressure, above atmospheric, on a surface;
p_{0}	*	Peak pressure, above atnospheric;
q	$=$	Modulus of resistance;
R	$=$	Total resistance to motion of a structure in translation;
r	$=$	Ratio of volume of reinforcing steel to volume of concrete; also a constant used in the solution of equations of motion

${ }^{1}$ Mass concrete with a crushing strength of 2,200 pounds per square inch.
${ }^{2}$ Normal reinforced concrete with a crushing strength of 3,200 pounds per square inch and 1.4 percent of reinforcement.
${ }^{3}$ Specially-reinforced concrete with a crushing strength of 5,700 pounds per square inch and 1.4 percent of reinforcement.

TABLE I. - Values of penetration coefficient (k) for various materials.
1)-200-50

TERM			TIME INT	RVAL In SECONDS	
		$0 \leq t \leq \frac{1}{70}$	$\frac{1}{70} \equiv t \leq \frac{1}{56}$	$\frac{1}{56} \cong t \leq \frac{1}{35}$	$\frac{1}{35} \leqq t \leqq \frac{1}{10}$
$\mathrm{P}_{\mathrm{n}} \times 10^{-*}$		1.728-40.32	. $1.728-40.32 \mathrm{t}$	1.728-40.32t	0.606-1.045 t
$\mathrm{P}_{\mathrm{M1}} \times 10^{-6}$		\bigcirc	0	0.396-0.662	0.396-0.662 t
$P_{v} \times 10^{-8}$		63.141 t	1.107-15.402t+73.382 t^{2}	$1.107-15.402 \mathrm{t} \cdot 73.382 \mathrm{t}^{2}$	1.107-15.402t ${ }^{\text {a }} 73.382 t^{2}$
$\mathrm{R} \times 10^{-6}$		0.159 • 37.885 t	-0.823-9.241t + 44.029 t^{2}	$1.219-9.903 t \cdot 44.029 t^{2}$	$1.219-9.903 t \cdot 44.029 t^{2}$
$\left(P_{H}-R\right) \times 10^{-6}$		- $1.569-78.205 \mathrm{t}$	0.905-31.079t-44.029 t^{2}	0.509-30.417t-44.029 t^{2}	$-0.613 \cdot 8.858 t-44.029 t^{2}$.
Equation of Acceleration	$\frac{d^{2} x}{d t^{2}} .$	252.62-12591t	145.71-5004t-7089 $\mathbf{t}^{\text {2 }}$	81.95-4897t-7089 ${ }^{2}$	$-98.70+1426 t-7089 t^{2}$
Equation of Displacement	$x \cdot$	$C_{1}+c_{2} t+126.31 t^{2}-2098.5 t^{3}$	$C_{3}+C_{4} t \cdot 72.855 t^{2}-834.0 t^{3}-590.75 t^{4}$	$C_{6}+C_{9} t \cdot 40.975 t^{2}-816.17 t^{5}-590.75 t^{4}$	$C_{7}+C_{t} t-49.35 t^{2}+237.67 t^{3}-590.75 t^{4}$
Equation of Velocity	$\frac{d x}{d t} .$	$C_{2}+252.62 t-6295.5 t^{2}$	$C_{4}+145.71 t-25 C 2 t^{2}-2363 t^{3}$	$C_{6}+81.95 t-2448.5 t^{2}-2363 t^{3}$	$C_{8}-98.70 t+713 t^{2}-2363 t^{8}$
Volues ot beginning of period	$\begin{gathered} x= \\ \frac{d x}{d t} . \end{gathered}$	0 0	0.0197 ft . $2.3241 \mathrm{ft} / \mathrm{sec}$.	0.0284 ft . $2.5507 \mathrm{ft} / \mathrm{sec}$.	$0.0542 \mathrm{ft} .$ $2.1690 \mathrm{ft} . / \mathrm{sec}$.
Values of Constants in equations		$\begin{aligned} & c_{1}=0 \\ & c_{2}=0 \end{aligned}$	$\begin{aligned} & c_{3}=-0.0036 \\ & c_{4}=0.7600 \end{aligned}$	$\begin{aligned} & c_{g}=-0.0136 \\ & c_{6}=1.8815 \end{aligned}$	$\begin{aligned} & c_{7}=-0.0382 \\ & c_{8}=4.4621 \end{aligned}$
Values of end of period	$\begin{gathered} x \\ \frac{d x}{d t} \end{gathered}$	0.0197 ft . $2.3241 \mathrm{ft} . / \mathrm{sec}$.	0.0284 ft . $2.5507 \mathrm{ft} / \mathrm{sec}$.	$\begin{gathered} 0.0542 \mathrm{ft} . \\ 2.1690 \mathrm{ft} / \mathrm{sec} . \end{gathered}$	$\begin{gathered} 0.0931 \mathrm{ft} \\ -0.6409 \mathrm{ft} / \mathrm{sec} \end{gathered}$

TABLE 2. COMPUTATIONS FOR STABILITY AGAINST SLIDING

TERM		$0 \leq t \leq \frac{1}{70}$	E INTERVAL IN SECONDS		
		$\frac{1}{70} \leq t \leq \frac{1}{56}$.	$\frac{1}{56} \leq t \leq \frac{1}{35}$		
$P_{H} \times 10^{-8}$			$1.728-40.32 t$	$1.728-40.32 \mathrm{t}$	1.728-40.32 t
$\mathrm{P}_{\mathrm{H1}} \times 10^{-6}$		0	0	0.396-0.662t	
$\mathrm{P}_{v} \times 10^{-6}$		63.141 t	$1.107-15.402 t+73.382 t^{2}$	$1.107-15.402 t+73.382 t^{2}$	
$M_{p} \times 10^{-6}$		- $51029 t^{2}$	$12.8-179.2 t+868.43 t^{2}$	$12.8-179.2 \mathrm{t}+868.43 \mathrm{t}^{\mathbf{2}}$	
$M_{T} \times 10^{-6}$			-0.551-138.0t-672.59 t^{2}	$-3.323-133.364 t-672.59 t^{2}$	
Equation of Acceleration	$\frac{d^{2} \theta}{d t^{2}}=$	$6.597-1072 t+34019 t^{2}$	-0.367-92t-448 t^{2}	$-2.215-88.9 \mathrm{t}-448 \mathrm{t}^{2}$	
Equation of Displacement	θ -	$c_{1}+c_{2} t+3.2985 t^{2}-178.67 t^{3}+2835 t^{4}$	$C_{3}+c_{4} t-0.1835 t^{2}-15.33 t^{3}-37.37 t^{4}$	$C_{6}+C_{6} t-1.1075 t^{2}-14.82 t^{3}-37.37 t^{4}$	
Equation of Velocity	$\frac{d \theta}{d t}=$	$C_{2}+6.597 t-536 t^{2}+11340 t^{3}$	$C_{4}-0.367 t-46 t^{2}-149.5 t^{3}$	$C_{6}-2.215 t-44.5 t^{2}-149.5 t^{3}$	
Values at beginning of period	$\begin{gathered} \theta= \\ \frac{d \theta}{d t}= \end{gathered}$	0 0	0.000270 rad. $0.017915 \mathrm{rad} / \mathrm{sec}$.	0.000322 rad. $0.010908 \mathrm{rad} / \mathrm{sec}$.	
Values of Constants in equations		$\begin{aligned} & c_{1}=0 \\ & c_{2}=0 \end{aligned}$	$\begin{aligned} & c_{3}=-0.000117 \\ & c_{4}=0.032981 \end{aligned}$	$\begin{gathered} c_{B}=-0.000406 \\ c_{6}=0.065490 \end{gathered}$	
Values af end of period	$\begin{gathered} \theta= \\ \frac{d \theta}{d t}= \end{gathered}$	0.000270 rad . $0.017915 \mathrm{rad} / \mathrm{sec}$.	0.000322 rad. . $0908 \mathrm{rod} / \mathrm{sec}$.	0.000192 rad. $-0.037576 \mathrm{rad} / \mathrm{sec}$.	

TABLE 3. COMPUTATIONS FOR STABILITY AGAINST OVERTURNING

FIG.I VELOCITY FACTOR (V ') FOR IMPACT PENETRATION

$$
y-200-53
$$

FIG. 2 FLIGHT CHARACTERISTICS OF BOMBS (AIR RESISTANCE NEGLECTED)

J-200-54

Slab Thickness in terms of D

FIG. 3 DIAGRAMMATIC REPRESENTATION OF RELATION OF RELATIVE SLAB THICKNESS TO PENETRATION

Y-200-55

fig. 4 RELATION OF RELATIVE SLAB THICKNESS TO PENETRA,ION

Fig. 5 Types of Domage in Impact Face of Concrete Slab
(a) Complete Penetration
(b) Nearly Complete Penetration

Y-200-57

(a)

(b)

Fig. 6 Types of Damage in Impact Face of Concrete Slab
(a) Partial Penetration Due to Impact
(b) Additional Penetration Due to Charge Exploded in Crater of (a)

1-200-58

(a)

(b)

Fig. 7 Types of Damage in Rear Face of Concrete Slab
(a) Partial Penetration Due to Impact
(b) Nearly Complete Penetration Due to Impact

Fig. 8 Types of Damage in Rear Face of Concrete Slab
(a) Charge Exploded in Open Crater
(b) Charge Exploded in Confined Crater
$y-200-60$

FIG. 9 ARRANGEMENT OF REINFORCING IN SLABS OF BOMB-RESISTANT STRUCTURES.

FIG.IO VALUES OF PENETRATION COEFFICIENT (k) FOR REINFORCED CONCRETE
$15-200-62$

FIG. 12 PRESSURE - DISTANCE CURVE AT A GIVEN INSTANT SHOWING POSITIVE AND NEGATIVE PHASES.

FIG. 13 PEAK OVERPRESSURE AT VARIOUS DISTANCES FROM CENTER OF EXPLOSION

$$
y-200-65
$$

FIG.I4 DURATION OF POSITIVE PHASE OF SHOCK WAVE
$2-200-66$

FIG. 15 PRESSURE-TIME RELATION FOR FRONT FACE OF STRUCTURE

1
1
1
0
0
1
∞

PRESSURE

Direction of Shock Front

$$
t_{x}=\frac{6 x}{v^{\prime}}
$$

FIG. I6 PRESSURE - TIME RELATION FOR ROOF OF STRUCTURE

$$
\begin{aligned}
& t^{\prime}=\frac{1}{v^{\prime}}\left(d+\frac{h}{2}\right), \text { for } h \leqq L \\
& t^{\prime}=\frac{1}{v^{\prime}}\left(d+\frac{L}{2}\right), \text { for } h>L
\end{aligned}
$$

FIG. I7 PRESSURE-TIME RELATION FOR REAR FACE OF STRUCTURE

For: $\mathbf{0} \leq \boldsymbol{t} \leq \boldsymbol{t}_{\boldsymbol{a}}$ $q_{0}=\frac{384 E_{c} I_{c} y_{a}}{\mathfrak{l}^{4}}$

(a)

For: $t=t_{b l}$ $q_{b 1}=\frac{192 E_{c} I_{c} y_{b 1}}{i^{4}}$

For: $t_{b l} \leq t \leq t_{c 1}$

For: $t \geqq t_{\text {ct }}$ $q_{d}=\frac{8 S \cdot y_{d}}{\mathfrak{l}^{2}} \quad S$

$\mathcal{Y}-200.70^{\text {FIG. } 18 \text { DEFORMATIONS OF A BEAM UNDER }}$ A UNIFORM LOADING

For: $\mathbf{O} \leqq y \leqq y_{b 1}$ $q_{b}=\frac{192 E_{c} I_{c} \cdot y_{b}}{l^{4}}$

For: $y_{b l} \leq y \leq y_{c l}$
$q_{c}=\frac{16 M_{r}}{i^{2}}$

For: $y \geq y_{c ı}$
$q_{d}=\frac{8 S \cdot y_{d}}{t^{2}}$

FIG. I8A RESISTANCE-DEFLECTION RELATION FOR A REINFORCED CONCRETE MEMBER

$$
y-200-71
$$

FIG. 19 PLASTIC DEFORMATION OF A TWO WAY THIN SLAB UNDER A UNIFORM LOADING (q) y-200-72

For: $0 \leqq y \leq y_{b_{1}}$

$$
q_{b}=\frac{192 E_{c} I_{c} \cdot y_{b}}{l^{4}}
$$

For: $y_{\mathbf{b}_{1}} \leq \boldsymbol{y} \leq \boldsymbol{y}_{\mathbf{c}}$
$q_{c}=\frac{16 M_{r}}{q^{2}}$

For: $y \geqq y_{c 1}$
$q_{d}=\frac{8 S \cdot y_{d}}{l^{2}}$

FIG. I8A RESISTANCE-DEFLECTION RELATION FOR A REINFORCED CONCRETE MEMBER

Y-200-73

(b) RESISTANCE FACTOR

FIG. 20 REDUCTION FACTORS (β AND β) AND RESISTANCE FACTOR $(\boldsymbol{\gamma})$ FOR TWO-WAY SLABS

FIG. 21 TYPICAL STRUCTURE IN SHOCK WAVE
$y-200-76$

$d \leq v i t i d$
CASE 2

$v^{\prime} t \equiv 7 d$ CASE 3

CASE	1		$\begin{aligned} & M_{p}=L p_{0}\left\{\frac{113}{252}\left(v_{i}\right)^{2}-\frac{7 v \tau-6 v_{t} t}{108}\left[\frac{v_{t} t}{7}+\frac{v_{t}}{6} \log _{0}\left(\frac{7 \tau-8 t}{7 \tau}\right)\right]\right\} \\ & M_{p}=0.452 L p_{p}\left(v_{i}\right)^{2} \end{aligned}$
CASE	2	$\begin{aligned} & P_{v}=L_{0}\left[\frac{10}{9} d-\frac{v i t}{6}-\frac{7 v \tau-6 v i t}{108} \log _{0}\left(\frac{7 \tau-6 t}{7 \tau}\right)-\frac{V t}{9} \log _{0}\left(\frac{7 d}{v t}\right)\right] \\ & P_{v}=L_{p_{0}} d\left[0.961-0.191 \frac{v_{i}}{d}+0.013\left(\frac{v i}{d}\right)^{2}\right] \end{aligned}$	$\begin{aligned} & M_{p}=L p_{0}\left[\frac{(v)^{2}}{252}-\frac{7 v \tau-6 v t}{108}\left[\frac{v_{t}}{7}+\frac{v_{t}}{6} \log _{0}\left(\frac{7 t-6 t}{7 \tau}\right)\right]+\frac{d}{9}(5 d-v t)\right\} \\ & M_{p}=L p_{0}\left[\frac{d}{9}\left(5 d-v_{t}\right)+\frac{(v i t)^{2}}{130}\right] \end{aligned}$
case			$\begin{aligned} & m_{p}=L p_{0}\left\{-\frac{d^{2}}{36}-\frac{7 v t-6 v i t}{108}\left[d+\frac{v t}{6} \log \left(\frac{v i t}{v i t}\right)\right]\right\} \\ & m_{p}=L p_{0}(d+1.03)^{2}[0.168-0.0036 \mathrm{vit}] \end{aligned}$

$P_{v}=$ Total pressure on roof.
$M_{V}=$ Moment of P_{v} about front odge of roof.
(. Approximate values are for $\mathrm{V}^{\prime}=1400 \mathrm{ft}$. per second, $0.5 \leq \tau \leq 0.75$ sec., and $\mathrm{d} \mathbf{5} 50$ feet.

Shock wave moves from left to right, L : length of structure.

FIG. 22 TOTAL ROOF PRESSURES a MOMENTS OF TOTAL PRESSURES

[^0]: * All references to Navy pertain to the Bureau of Yards and Docks of the Nave Department.

[^1]: * "The Effects of Atomic Weapons," by Ios Alamos Scientific Laboratory; Gort. Print. Office, Aug. 1950.

[^2]: * From Mrhe Dfects of Atomic Weapons" pp. 52 and 54.

[^3]: * "The Diffraction of Shock Waves Around Obstacles and the Translent Loading of Structures," by Walker Bleakney. Princeton University, Dept. of Physics. March 16, 1950.
 ** "The Effects of Atomic Weapons," p. 123.

[^4]: * "Principles of Reinforced Concrete Construction," Turneaure and Mauser. John Wiley \& Sons. p. 103, 1936.

