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RADIAL VIBRATIONS IN SHORT, HOLLOW CYLINDERS 
OF BARIUM TITANATE 

INTRODUCTION 

Frequently in the use of piezoelectric and electrostrictive mater ials ,  one i s  con- 
cerned with a method of measuring the coupling coefficient of the element for  
some mode of vibration. Normally the shape of the mater ial  i s  that of long rods 
o r  thin plates o r  discs .  The coupling coefficient of a crystal  for shapes such as  
these can accurately be determined by measurement of resonant and anti-resonant 
frequencies of the f i rs t  harmonic. The mathematics for the necessary calculations 
for  these shapes has been previously published. 

Occasionally, however, a use a r i s e s  for  a peculiar shape and,with it,, a need for  a 
method of determining the coupling coefficient of mater ials  of this shape.   his i s  
particularly t rue  since the advent of ele,ctrostrictive ceramics such a s  barium 
titanate. Recently the need has ar isen for a method of determining the coupling 
coefficient of a hollow cylinder of electrostrictive material ,  whose length is small  
compared to its outside diameter. This report concerns .itself with the mathemat-. 
ics  which allows calculation of coupling coefficients for such shapes for  the radial 
mode of vibration. Electrostrictive equations will be used rather  than piezoelectric 
since anyone working with such a shape will probably be working with one of the 
electrostrictive ceramics.  However, it can easily be shown that the resul ts  of the 
electrostrictive case  will c a r r y  over t o  the piezoelectric case. 

RADIAL VIBRATIONS 

The configuration with which we will be concerned i s  shown in Figure 1. Thethick- 
ness  It i s  small  cdmpared with the outside radius a. There will be no restriction 
on the inside radius b. Radial vibrations in a solid disc which has been treated by 
~ a s ~ n '  will become a limiting case  of the present treatment.  

F o r  radial vibrations, it i s  best to  transform the usual electrostrictive equations 
1 into cylindrical coordinates . They then take the following form: 2 

I ~ a s o n ,  W .  P. , Piezoelectric Crystals  and .Their Application to Ultrasonics, 
D. Van Nostrand Company, 1950. 

2 
These equations differ from those appearing in the f i rs t  edition of Mason's' 
book in that a correction te rm to the impermeability constant has been dropped 
after verbal communications with Mason. 



FIGURE I - HOLLOW CYLINDER WHOSE LENGTH 
I S  SHORT COMPARED TO OUTSIDE 
DIAMETER 



In these equations Er, E and E a r e  the component of the electric field in the 8 z 

r ,  0 and z directions, 6 , 6 and 6 a r e  the components of the electric displace- r 8 z 
t h 

ment divided by 4n, Sij and T a r e  the i j  components of the s t rain tensor and 
i j 

s t r e s s  tensor respectively, s .? a r e  the elastic compliance constants measured 
l~ kl 



at constant electric displacement , .$A the dielectric impermeability constants 
( inverse of dielectric constants) measured at constant s t r e s s ,  and Qijno a r e  the 
electrostrictive constants. 

In solving the equations of motion, i t  i s  also necessary to  know the s t rains  in 
t e rms  of the mechanical displacements in the r ,  8 ,  and z directions. ~ e n o t i n ~  
- these  displacements by u,, :u8 and uZ, the str'ains are:  

We will 'assume that the thickness i s  s o  small  that the change of s t r e s s  in the z 
direction i s  negligible. Since the s t r e s se s  a r e  zero  at the surface, we can set 

Furthermore,  since we shall consider only motion that i s  entirely radial; 
Trg = 0 and also ug = uz = 0.  We will consider the case  in which the field i s  ap- 
plied only in the z direction so  that 6, = 68 = 0. The electrostrictive equations 
now become: 



In the case  of electrostrictive ceramics the electric displacement may'be repre-  

sented by = 6z0 + 6ze*t where 6 i s  the remanent electric displacement 
z 0 

caused by polarization and 6 the alternating component. Solving the above equa- z 
tions simultaneously, the alternating component of the s t r e s s  and displacement 

a r e  given by the equations 

where 

and 

and 

E 
- s  / E  '= a is the Poisson's ratio 

1122 s l l l l  

1 = Y ' i s  Young's modulus in which 
0 11 11 



. 'The only remaining equation which i s  needed is the  fo rce  equation which becomes 
fnr t h e  descr ibed conditions 

au U ,  
- r 

Since now - r 
'rr - TF and See - - 

r 

the  equation of motion becomes 

f o r  s imple  harmonic  %motion. 

This  i s  a B e s s e l ' s  equation of the  f i r s t  o r d e r  which has  the  solution 

w r 
I 

w h e r e  Jl (g)' and K1(-) a r e  B e s s e l  functions of the  f i r s t  and second kind. The 
v v 

boundary conditions a r e  that the  s t r e s s  T = 0 when r = a and when r = b, a and b rr 
being the  outside and inside radi i .  



Inser t ing the boundary conditions and solving f o r  a and $ we gel 

This  gives 



Subst i t~l t ing these  values we find that  

2 a2  Y E E  
Ez .- 6 = -  2 ~ 1 1 2 2  z o  o z + Q ~ ~ ~ ~ ~ ~ ~ Y :  [ a t r )  . (:)I 

T T a - J  - + p - K  
4np; V O V  v 0 

n ~ , ,  ( 1  -u) 2 n e l l  (1 - U) 

t 

'The next s t e p  i s  to  obtain a n  express ion f o r  t h e  e lec t r i ca l  admittance.  The  admit-, 

tance  i s  equal to  the  c u r r e n t  into t h e  e lement  divided by the  voltage a c r o s s  i t .  But 

dQ fo r  s imple  harmonic  motion the  c u r r e n t  i s  i = - = joQ where  Q i s  the  s u r f a c e  
dt 

1 i - iwQ . We need now t o  find an charge .  Th i s  g ives ' fo r  the  admittance - = - - - 
EZ1t EZ1t 

express ion fo'r the  su r face  charge  Q.  

Since the  value of 6 a t  the  su r face  is equal t o  the  s u r f a c e  charge  density we can 
Z 

. . find Q by performing the  integration Q = 
... -.. . 

g"d .~ , "  6 z r d r  

Evaluating this  in tegra l  and:making the  substitution 

where  p RC is the radia l ly  clamped impermeabi l i ty  constant ,  we have 11 

2 6 yE The rad ia l  coupling coefficient c a n  b e  expressed  a s  k = 2Ql122 z o  0 
I # -  

Using this  and the two express ions  fo r  the  constants a  and we a r r i v e  a t  the  
formidable 'expression 



(1 -u) [aJl'(y) - b Jl ($)]{[yK:(y) - 1,5 (:) I-[: K o (") v - q . 5  

+[a5.(?)-~b4(?)](,[~ 
X -. 

(1 -cT) 
v 0 v V O V  J1 v - K  2 (1-u)5(?)]fJ ($)-(&$J1($)]fi' (")-T5($)][fJ(%)-e) (%)I [ ( a .  

The resonant frequency occurs when A =op o r  when I 

This means that the function f 

v 

must have two roots for any possible value of the function. C'ne root corresponds 
w a w b  r r 

to A = -- where w i s  the resonant frequency, and the other is B = 7 
v r 

A plot of this function i s  given in Figure 2 .  In this plot, the Poisson ratio of 

barium titanate = .30 i s  assumed. The f i r s t  U-shaped part of the curve cor -  
or 

responds to the f i rs t  harmonic,. It i s  noticed that for  every value of f(-) v there 
o r or 

a r e  two values of - which satisfy this value of f (-). It  i s  a lso noticed that i o r  
v V '  

any6ratio of the crystal  radii  a/b = A/B there i s  one and only one value of the 

function which will have the two roots A and B. This means that i f  this portion 

of the curve i s  plotted carefully, one can find the two roots A and B which co r re s -  
w r  , pond to each value of I(-) and thesevalues of A and B may be plotted' against the v. 





rat io  of the radii a/b. Figures  3 and 4 show such plot. Thus given the values of 
a and b the resonant frequency i s  uniquely determined. 

The other part of the curve in Figure 2 corresponds to higher harmonics. It i s  
'particularly interesting to  note that whereas there i s  a f i rs t  harmonic resonance 
for  any rat io  of a/b, for any higher harmonic there is only a specific rat io  of a 
t o  b which will allow this harmonic to exist. Thus for any crystal  of this shape, 
almost all of the higher harmonics a r e  forbidden. This of course does not apply 
in the limiting case  of b = o in which case  all higher'harmonics a r e  permissible. 

There remains the problem of determining what happens at anti-resonance. This 
occurs when the expression in brackets in the admittance equation reduces to zero. . . 
The frequency separation between resonance and anti-resonance can be obtained 
by developing the Bessel  functions in Taylor se r ies  about the roots A and B. This 
gives 

A €  K (y)  = KO ( A )  - A 4  (A )  - t - - - -  
0 E 

A f J, ($) = Jl (A )  t n Jo (A )  - - Jl (A )  - A €  + - - - -  
f r fr 

where f r  i s  resonant frequency. Similar ex'pressions can be derived for 

w a A f 
J o (*), v K O ( )  , J1 ($) and 5 ($) about the root B. Also we have- = A + A  - 

v f r 
wb and - = J3 + B . Inserting these values into the bracket expiession, we get to 
v fr  

a f i r s t  approximation the second formidable expression 



THE RATIO o / b  
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FIGURE 4 - PLOT OF B s  AS A FUNCTION OF THE 

RATIO a / b  
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If the inner and outer radii and the Poisson's ratio i s  known this equation can be put 
into the form 

where C is> a constant. F o r  barium titanate the value of this constant has been cal- 
culated for various ratios of a/b and i s  plotted in Figure 5. 

EXPERIMENTAL 

.The resul ts  of the preceding section were checked by the following experiments. 
Three barium titanage elements were available which had had holes cut in their 
center.  These elements were .125" thick and had an outside diameter of 1 .04711. 
The hole diameters were .12611, .367" and .49211. Unfortunately no resonance 
measurements were made on these elements before the holes were cut. However 
Several elements of the same batch were available for'measurements, arid these 
elements had radial coupling coefficients of .26 + .01. Using the resul ts  of the 
preceding section, the radial coupling coefficients of the three test  samples were 
.25, .26, and .26. 

The preceding section also predicts that, when compared with the resonant f re-  
quency of the solid disc, the resonant frequency of an element with a hole in the 
middle should decrease with increasing hole diameter if the outside diameter i s  
kept constant. The rat io  of the resonant frequency of a ring to the resonant f r e -  
quency of the solid disc i s  plotted against the ratio a/b a s  the solid line in Figure 
6. The ratios of the resonant frequencies of the three experimental elements to 





8 - EXPERIMENTAL POINTS 

FIGURE 6 - PLOT OF THE RATIO OF THE RESONANT 
FREQUENCY OF A HOLLOW CYLINDER TO 
THE RESONANT FREQUENCY OF A SOLID 
DISC AS. A FUNCTION OF THE RATIO b/a 



the  average  of the resonant  frequencies of o ther  c r y s t a l s  of the  s a m e  batch a r e  
plotted a s  exper imenta l  points. The agreement  i s  within exper imenta l  e r r o r .  

CONCLUSION 

The mathemat ics  h a s  been developed fo r  the 'determinat ion of the  rad ia l  coupling 
coefficient f o r  a hollow cylinder of e l ec t ros t r i c t ive  m a t e r i a l  whose length i s  s m a l l  

k2 
compared to  i t s  outside d iamete r .  The relat ionship is - = C - 

2  
A f  where  

1 - k  
f 
r .  

k i s  the coupling coefficient fr is the  resonant  frequency,  af is the difference in 
frequency between resonant and antiresonant frequencies and C i s  a constant which 
is dependent on the  r a t i o  of outside to  ins ide  d iamete r .  

C .  V .  S T E P H E N S O N  - 5143 
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