A0 : ‘ N : -

——
0 LEGAL NOTICE
i This report was prepared as an account of Government sponsored work. Neither the AECU- 522 E
! United States, nor the Commission, nor any peron acting an hehalf of the Commission: !

A. Makes any warranty or representation, express or implied, with respect to the ac-
curacy, completeness, or usefulness of the information contained in this report, or that the
use of any information, apparatus, method, or process disclosed in this report may not in-

fringe privately owned rights; or
1 B. Assi..lmes any liabilities with respect to the use ?f, or for dum::ges resulting from the Photostat Price $ E A z 0
use of any information, apparatus, method, or process disclosed in this report, 4 D)
§ As used in the above, “person acting on behalf of the Commission” includes any em- Microfilm Price $ J -
ployee or contractor of the Commission to the extent that such employee or contractor
| prepares, handles or distributes, or provides access to, any information pursuant to his em- Available from the
ployment or contract with the Commission. Office of Technical Services
. Department of Commerce
il Washington 25, D. C,

RADIAL VIBRATIONS IN SHORT, HOLLOW CYLINDERS
OF BARIUM TITANATE

C. V. Stephenson - 5143

ABSTRACT

A T'he mathematics has been developed for the determination of
> the radial coupling coefficient for a hollow cylinder of electro-
' strictive material whose length is small compared to its out-
side diameter.
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RADIAL VIBRATIONS IN SHORT, HOLLOW CYLINDERS
OF BARIUM TITANATE

INTRODUCTION

Frequently in the use of piezoelectric and electrostrictive materials, one is con-
cerned with a method of measuring the coupling coefficient of the element for
some mode of vibration. Normally the shape of the material is that of long rods
or thin plates or discs. The coupling coefficient of a crystal for shapes such as
these can accurately be determined by measurement of resonant and anti-resonant
frequencies of the first harinonic. The mathematics for the necessary calculations
for these shapes has been previously published.

Occasionally, however, a use arises for a peculiar shape and, with it, a need for a
method of determining the coupling coefficient of materials of this shape. Thisis
particularly true since the advent of electrostrictive ceramics such as barium
titanate. Recently the need has arisen for a method of determining the coupling

- coefficient of a hollow cylmder of electrostrictive material, whose length is small
compared to its outside diameter. This report concerns . itself with the mathemat-.
ics which allows calculation of coupling coefficients for such shapes for the radial
mode of vibration. Electrostrictive equations will be used rather than piezoelectric
since anyone working with such a shape will probably be working with one of the
electrostrictive ceramics. However, it can easily be shown that the results of the
electrostrictive case will carry over to the piezoelectric case. '

RADIAL VIBRATIONS

The configuration with which we will be concerned is shown in Figure 1. The thick-

ness 1 is small cdmpared with the outside radius a. There will be no restriction

on the inside radius b. Radial vibrations in a solid disc which has been treated by
Mascm1 will become a limiting case of the present treatment.

- For radial vibrations, it is best to transform the usual electrostrictive equations

into cylindrical coordinates™. They then take the following form:

1Mason, W. P:, Piezoelectric Crystals and Their Application to Ultrasonics,
D. Van Nostrand Company, 1950.

2 e
These equations differ from those appearing in the first edition of Mason's’
book in that a correction term to the impermeability constant has been dropped
after verbal communications with Mason.
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In these equations Er’ Ee and Ez are the component of the electric field in the
r, 8 and z directions, Gr, 69 and 6z are the components of the electric displace-
ment divided by 4, Sij and Tij are the ijth components of the strain tensor and

stress tensor respectively, s.D

ikl are the elastic compliance constants measured
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at constant electric displacement, ﬁrgn the dielectric impermeability constants

(inverse of dielectric constants) measured at constant stress, and Qijno are the
electrostrictive constants.

In solving the equations of motion, it 1s also necessary to know the strains in
terms of the mechanical displacements in the r, 8, and z directions. Denoting
‘these displacements by u,, ug and uz‘t'he strains are:

aur
Srr =8r
S _lﬁ.FiI:
66 ~ r 9o r
s -
zz 9z
s - Y, 1%
M ~ oar r r 9
aur au
= — + 2%
rz 0z ar
A R L)
8z ~ r 98 9z

We will ‘assume that the thickness is so small that the change of stress in the z
direction is negligible. Since the stresses are zero at the surface, we can set

T = T = T = 0.
ZZ rz 8z

Furthermore, since we shall consider only motion that is entirely radial,

Trg =0 and alsoug = uy =0. We will consider the case in which the field is ap-
plied only in the z direction so that 8, = 8g = 0. The electrostrictive equations
now become:

D D 2
Sr = S1111 Trr * S1122 Toe T Qu1229,
) D D 2
See = S1122Trr * S1111T08 T Qu1229,
E = 4np 6 - 2 6 -T + T,
Z - T'Bllz ' Q1122 z\ rr 86
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In the case of electrostrictive ceramics the electric displacement may be repre-
sented by 6, = 6zo + Gzejwt where Gzo is the remanent electric displacement
caused by polarizatiqn and GZ the glternating component. Solving the above equa-
tions simultaneously, the alternating component of the stress and displacement

are given by the equations

vE 2Q....6 YCE
(o} 11227z0 "0 "z
Trr =\ 2 ] Srr + USOO i T
l-¢ 4ng (1 -90)
11
vE : 2Q,...8 Y'®m
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11 11
where
s / E = ¢ is the Poisson's ratio
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.The only remaining equation which is needed is the force equation which becomes

far the described conditions

aTrr + (Trr B TGG) ':

pur = ar r
Bur u

Since now S = — and S, = —

rr 08 r
the equation of motion becomes

C2
YE 9 u du u azu
(o} r + l _r T =
> =

1 -0 ar rooer rZ ot

for simple harmonic .motion.

This is a Bessel's equation of the first order which has the solution

: 2 .
ur=aJ1<_w_j) + 5K1 (%‘-) p oV E
7

YE
o

‘where J1 (E)' and Kl(w—-5) are Bessel functions of the first and second kind. The
v .

boundary conditions are that the stress .Trr =0 whenr =a and whenr =b, aandb

being the outside and inside radii.

' _Yo [w (wr (l-o-)J wr + 'wK w
Trr—1 ZQ;JOT,_ r 1\v B'\70_

E
Q1 122 620Y0 Ez

208Y (1 -0)
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Inserting the boundary conditions and solving for a and B we get
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Substituting these values we find that
E E

E, 2Q11225 Y, E, Q12286 Y0 w . [or ‘@ wr
8 = T - * T T\ BT RN\T
4n 511 '"ﬁll (1 -1“) | 2 (1 -0) .

[
The next step is to obtain an expression for the electrical admittance. The admit-

tance is equal to the current into the element divided by the voltage across it. But

.. _ d . .
for simple harmonic motion the current is i = ?Q = jwQ where Q is the surface
. R : . 1 i iwQ .
charge. This gives for the admittance 25 BT °F1 We need now to find an
o 4 zZt z't ' ‘

expression for the surface charge Q.

Since the value of 6z at the surface is equal to the surface charge density we can

w a
find Q by performing the integration Q = S dBI 52 rdr

Evaluating this integral énd:making the substitution

2 _E
S 2Q1122 %0 Yo | _ 1
T T = TToRC
n - n
B Bip 1 -0) 4vB

where B RC is the radially clamped impermeability constant, we have

2 .2 E '
E (a B b) Q122 6ono [ Ga wb wa [wb
Q = »4B?1C - + ﬁT 1 - o) a aJ1 (—v—)- le(T):I+ ﬂ[al{l(—v—)— bKl(-V-)] .

2QllZZ 6zo Yo

(1-6)

The radial coupling coefficient can be expressed as kZ =

o

Using this and the two expressions for the constants a and B we arrive at the
form1dable expression
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_The resonant frequency occurs when A =o<or when
wa wa wa wb wb wb
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This means that the function f|l—] = -
v wr wr wr
—J [—}-{11-¢0)d [—
v o\v 1 {v:

must have two roots for any possible value of the function. Cne root corresponds
w_a w b

to A = —5— where W, is the resonant frequency, and the other is B = —5— .

A plot of this function is given in Figure 2. In this plot, the Poisson ratio of

barium titanate ¢ = .30 is assumed. The first U-shaped part of the curve cor-

reéponds to the first harmonic. It is noticed that for every value of f(%) ther'e

are two values of % which'satisfy this value of f(%l:).' It is also noticed that for

any ratio of the crystal radii a/b = A/B there is one and only one value of the

function which will have the two roots A and B. This means that if this portion

of the curve is plotted carefully, one can find the two roots A and B which corres-

., pond to each value of f( %) and these values of A and B may be plotted. against the

. 11
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FIGURE 2-PLOT OF FUNCTION f(-(’:/ir) WHICH OCCURS IN RESONANCE CONDITION
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ratio of the radii a/b. Figures 3 and 4 show such plot. Thus given the values of
a and b the resonant frequency is uniquely determined.

The other part of the curve in Figure 2 corresponds to higher harmonics. It is
‘particularly interesting to note that whereas there is a first harmonic resonance
for any ratio of a/b, for any higher harmonic there is only a specific ratio of a
to b which will allow this harmonic to exist. Thus for any crystal of this shape,
almost all of the higher harmonics are forbidden. This of course does not apply
in the limiting case of b = 0 in which case all higher harmonics are permissible.

There remains the problem of determining what happens at anti-resonance. This
occurs when the expression in brackets in the admittance equationreduces to zero.
The frequency separation between resonance and anti-resonance can be obtained
by developing the Bessel functions in Taylor series about the roots A and B. This
gives ,

v
() n a0 4
3 (—“-",3 =3, (8) + AT (8) %f— -3 (A)fi:— +oaeen

= K (A)+ AK_(A) ?—:- 'IS(A)AT:.f+ -

where f,. is resonant frequency. Similar expressions can be derived for

J (m—b), K (w_b) y J (ﬂ) and K1 (w_b) about the root B. Also we have — = A +A At
o\v ‘o\v 1\v /[ v v fr
wb af . . : .
and v - B+B T Inserting these values into the bracket expression, we get to
r :

a first approximation the second formidable expression
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If the inner and outer radii and the Poisson's ratio is known this equation can be put
into the form N

where C is a constant. For barifum titanate the value of this constant has been cal-

culated for various ratios of a/b and is plotted in Figure 5.

EXPERIMENTAL

The results of the preceding section were checked by the following experiments.
Three barium titanage elements were available which had had holes cut in their
center. These elements were .125" thick and had an outside diameter of 1.047".
The hole diameters were .126", .367" and .492". Unfortunately no resonance
measurements were made on these elements before the holes were cut. However
several elements of the same batch were available for measurements, and these
elements had radial coupling coefficients of .26 + .01. Using the results of the
preceding section, the radial coupling coefficients of the three test samples were
.25, .26, and .26.

~

The preceding section also predicts that, when compared with the resonant fre-
quency of the solid disc, the resonant frequency of an element with a hole in the
middle should decrease with increasing hole diameter if the outside diameter is
kept constant. The ratio of the resonant frequency of a ring to the resonant fre-
quency of the solid disc is plotted against the ratio a/b as the solid line in Figure
6. The ratios of the resonant frequencies of the three experimental elements to

[77-




FlGURE 5 E CONSTANT C WHICH OCCURS IN THE
EQUATION AS A FUNCTION OF THE RATIO a/b
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" the average of the resonant frequencies of other crystals of the same batch are
plotted as experimental points. The agreement is within experimental error.

CCNCLUSION

The mathematics has been developed for the ‘determination of the radial coupling

coefficient for a hollow cylinder of electrostrictive material whose length is small
. . . . - k Af

compared to its outside diameter. The relationship is ———= = C —— where

1 -k2 fr

k is the coupling coefficient f. is the resonant frequency, af is the difference in

frequency between resonant and antiresonant frequencies and C is a constant which
is dependent on the ratio of outside to inside diameter.

C. V. STEPHENSON - 5143
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