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I. Introduction

A subétantial amount of effort is necessarily being devoted to the
perfecting of means for describing pérticle and photon transport phenomena
to the point that, for instance, meaningful shield optimization studies
are possible. It is in general true, however, that the results generated
by any calculational method, no matter how sophisticated, are only as
valid as the information upon which the calculation is based, be 1t in the

form of boundary conditions in the analytical context, or correspondingly,

"input" in the numerical sense.

For gamma-Yay transport purposes, part of the problem of providing
suitable input information for shield calculations rests with an adequate

description of secondary gamma-ray spectra, i.e., spectra resulting from

. neutron capture by shield materials. Perhaps the principal ‘source of
error in representations of neutron-capture gemma-ray spectra lies in the
assumption that has to date been virtually inescapable owing to lack of
intormation: +that neutron-capture gamma-ray spectra are invariant to
incident neutron energy, or, more specifically, that thermal-neutron
capture spectra are valid for epithermal-neutron capture spectra. In
point of fact, this assumption is warranted only under rather well-
defined circumstances: specifically, in materials for which the epi-
thermal-neutron-capture cross section is negligible, or in cases in which
neutron captufe excites the compound nucleus to its continuum energy
range where, by definition, the nearest neighbor mean level spacing is
so small and consequent overlap of states so pronounced that incident
neutrons of virtuaslly all feasible energies and angular momenta find
a variety of capture channels open to them. It then follows that the
incident. energy of a neutron absorbed into the compound continuum
does not define a unique or even significantly prébable capture state
spin and parity which, in conjunction with spins and parities of lower
lying states, would define radiative transition rates and in turn a

characteristic gamma-ray spectrum. Continwm capture is expected to be

predominant for nuclei whose mass numbers (A) are above 70, with the

exception of those whose number of proﬁons (2) and/or number of neutroﬁs
(N) are magic or near-magic.
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Several methods have been advanced for the calculation of neutron-
capture gamma-ray spectra resulting from capture into the compound nucleus
~continuum. The first, proposed by E. S. Troubetzkoy,l incorporates dipole
"transition probabilities [the felative probability for the excitation of
a state of energy Ef, given a dipole fransition from a state of energy
Ei’ varies as (Ei - Ef)s]'and the unmodified nuclear evaporation model
expression for nuclear level density. The compound nucleus' level spectrum
is divided into continuum and resolved energy rahges, the latter obtaining
from the compound nucleus ground state to an arbitrarily defined energy

above its highest. known (resolved) state.

' The second method, proposed by Lundberg and Starfelt,2 is similar
in nature to the Troubetzkoy method except that radiative transition prob-
abilities are derived from an approximation to the so-called giant dipole
resonance by way of the well-known theorem of detailed balance. The
theorem in this instance relates the photon absorption cross section to the
ground-~-state radiative transition rate. An assumption is then made to the
effect that the energy dependence of the ground-state transition prob-
ability from an excited state of energy Ei obtains between any two states

in the nuclear level spectrum separated by the energy Ei.'

It should be emphasized that radiative tranéition probabilities
emplbyed in the foregoing two methods are functions of‘energy_only. Thus,
neither of the methods is capable of describing capture gamma~-ray spectra
where transition probabilities are functions not only of energy but also

of spin and parlty as prescrlbed by the nuclear selectlon rules. Thls

g, S.-Troubetzkoy, "Statistical Theory of Gamma-Ray Spectra Following
Nuclear Reactions," Phys. Rev. 122, 212 (1961).

2R, Lundberg and N. Starfelt, "Gamma Rays from:the Capture in Ta and
Au of Neutrons from 1 to 4 MeV," Nucl. Phys. 67, 321 (1965).
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will generally be true for nuclei with mass numbers less than T0 and/or
for those with N and/or Z sufficiently proximate to the magic numbers. In
contradistinction to the continuum situation, mean level spacings are of
such magnitude that neutron capture is for the most part effected into
states well defined with respect to incident neutron energy. The change
in shape of neutron-capture gamma-ray spectra with neutron energy is then
a consequence of the capture of neutrons of various angular momenta,
generally s wave (zero angular momentum) and p wave (one unit of angular
momentum). A striking example of this is given by Gibbons et al. in an
investigation ot epithermal~-neutron-capture gamma-ray spectra in Zs-1d
shell nuclei.®

~ This paper is devoted to the development of a methodology for
the calculation of neutron-capture gamma-ray spectra which accounts
explicitly for spin and parity effects in the determination of radia-
tive transition probabilities. The nature of the problem is such that
both the analytical and subsequent numerical formulations of the
methodology are thought to be of sufficlent interest to merit rather

detailed exposition.

II. Cascade Dynamics

Discrete State Formulation

In the formulation of nuclear gamma-ray cascade dynamics it is use-
ful to introduce the concepts of nuclear level population,‘W(Ei), and

gamma partial width, Fy(En’Ei)’ vhere E, denotes the energy of the ith

nuclear level and En denotes the energyiof the level from which a gamma
transition originates. In all cases, of course, En > Ei' The partial
width for a gamma transition from a level En to a lower lying level E1
can be thought of as a measure of the frequency with which a nucleus
excited to its nth level de-excites by emitting a gamma ray of energy
En - Ei’ neglecting nuclear recoil accompanying photon emission. With
proper normalization the partial widths correspond to the probabilities

for gamma transitions to all statistically (spin, parity) and energetically

51 Bergduist, J. A. Biggerstaff,.J. H. Gibbons, and W. M. Good, "Neutron
Resonance Capture in 2s-1d Shell Nuclei," Phys. Rev. léb 323 (1965).
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accessible levels. . Clearly, these probabilities must sum to unity for
each step in the gamma cascade. Level populations, when normalized to a
single neutron capture, render the expected number of excitations of a

given level per gamma cascade.

Let us first consider a gamma cascade in some hypoéhetical nucleus,
all of whose levels are known. Putting aside for the moment the guestion
of ievel-spin and parity and the associated nuclear selection rules, the
gamma, spectrum Vould be campletely defined by specifications. of transition
probabilities obtaining between the various known levels, Ei’. In this
instance the cascade can be formulated in terms of the following relation~
ships:

n-1

T(E) Z r.(E_,E,) , (1.8)

7' n’
i=1

il

Ly ( EpyE;)

AW(En:Ei), = W W(En) (1.b)

L (EEy)

—ﬂj— W(En) s - ' (l.C)

E
7 n .

AL(En,Ei)

where L(En’Ei)’ the line frequency,'denptes-the frequeﬁcy with which the
gamma line (En - Ei) occurs in the gamma spectrum per cascade, and the
operator A denotes an expected increment in the indicated quantities
associated with a transition from the level E . Equations (1) exemplify,
in the order of thelr occurrence, the following consequences; (a) the
total radiation width of a levellié the sum of the partial radiation
widths to accessible lower lying energy‘levels, (b) an increment in the
level population of the ith level corresponding to a gamma transition
originating‘with the nth level is given by the product of the probability
that the ith otate be exeited in the transition and the level population
of the initial state, and (c) the gammé-ray line frequency per cascade

corresponding to the energy.En - E, is enhanced‘by.the same amount as is

1
the ith level population.
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It should perhaps be emphasized that the gamma width has definite
physical significance in terms of the mean lifetime, 1(E), of a state
and, when more than one mode of de-excitation is possible, in terms of the
relative probability of de-excitation by radiative transition, B7(E).

In particular,

e |

—~~
t=h
~—-

where I'(E) denotes the sum over widths corresponding to possible modes of
de-excitation of the excited state at énergy E. For calculations in which
other than the relative magnitudes of partial widths corresponding to gamma
transitions to various energy states are desired, widths may be normalized
by reference to a transition of known strength. In the calculation of
neutron-capture gamma-ray spectra one 1s generally concerned with ratios

of partial to total gamma widths as in Egs. (1), in which case such normal-
ization cancels out. In this context the absolute magnitude of the gamma
width is not of interest unless it 1s so small as to effect for all

practical purposes the end of a cascade.
It follows directly from the above definitions that

N ,

Ny r(By E)
W(Ei) = /. —ITT— WCER, (_2-84)
- k=i+l

and

X r(E ,E ,) |
L(En,Ei) = Z Z —Ellf(gk-j—WE ) S[E -E, - (En - Ei)] , (2.pb)

k=1 k'=1

with N denoting the number of states in the energy region bounded by the

compound nucleus neutron-capture and ground states.
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Gamma-~ray spectrum calculations typically involve nuclei whose low-
lying levels have been identified as to energy and statistics, but whose
intermediate- ( > 2 MeV) and high-energy states remain undefined. Further,
for nuclei with mass numbers greater than, say, 70 (and for which the
proximity of Z or N to the magic numbers is negligible), compound nucléus
excitation energies following neutron capture are well within the nuclear
energy level "continuum" where level spacing is so small and the consequent
overlap of statés so great as to make impossible the positive identifica-
tion of a neutron-capture state solely on the basis of a knowledge of the
capture energy. Consequently, the formulation of ganma-ray cascade
dynamics for virtually all materials requires a "statistical model of
the nucleus. For present purposes, a particularly applicable review of

the statistical approach to nuclear structure has been given by Goldstein.?

Continuum or Unresolved Level Formulation

For compound nucleus excitafion energies for which either the mean
level spacing is so small that the level can be said to form a continuum
of states, or where the states are réasonably discrete but uhresolved as
to energy, spin, and parity, it is convenient to formulate gamma cascade
dynamics in terms of a level density, o(E). Here, the sum over discrete
states in Eq. (l.a) becomes an integral of the product‘of the partial
width for the excitation of a group of levels contained in a unit energy
interval about some energy E and the level density at E. In particuiar:

. | N . ‘
i) = [ieu ey @+ ) rEE) L ()
Ec o k:l

the latter term accounting for N resolved_ievels below the continuum whose
lower energy bound is denoted by Ec. In the coptinuum or unresolved level
context, level populations and line frequencies become, respectively, the

composite populations of all levels éontained in some unit energy interval
(population density) and the collective frequency with which gamma transi-

“tions involving initial and final states separated by energies cbmmon to

“H. Goldstein, "Statistical Model Theory of Neutron Reactions and Scatter-
ing," in TFast Neutron Physics, Purt IT, Chepter V.Jj., Interscience Pub-
lishers, 1963. . v
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some unit energy interval (spectral density) occur. Both quantities are

presumed normalized to a single gamma cascade.
In what follows it will be convenient to define excitation prob-

abilities, T(E,E'), given by

T(E,E') = F(EJE%%)Q(E') . (4)

The population density obtaining at some energy E following a neutron
capture that has resulted in a compound nucleus excitation energy, En’-

has the form

E
W(E) = S(E) + f w(E') T™(E',E) 4E' |, (5)
E

with
~ r(En,E)

S(E) =WE—)'— .

The function S(Ii) accounts for level excitation at E resulting from an
initial gamma transition originating with the capture state. The integral
expression in Eq. (5) then accounts for excitations resulting from
secondary transitions initiated from excited levels between E and the
capture state at En. Discrete level populations in the "resolved" energy

region below the continuum (O < E.S Ec) are given by

n

‘ N
W) < s(m) + [ WE) NELE) @+ ) WE,) E,EB) , (6)

E k'=k+1
[¢]

with N again denoting the number of levels with known energies and statis-

tices., The spectral density for this case is as follows:
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, E E!
L(E) = f ag! f aE" W(E') T(E',E") h(E,E',E")
o4 (e} :

N E :
. n
| .+-«§; »»U/\ W(E") T(E',Ek) h(E,E',Ek);dE'

k=1 E
[¢]
N  k ,
+ ZE, E; W(Ek)'T(Ek,Ek,) h(E,Ek,Ek,) , (7

k=1 k'=1

where h(E,E',E") is defined to be the product of two Heaviside functions,
" n(B,E',E") =H[(E' -E") - (E-HIH(E+3D -E -E)] ,

 with
0, x<0

H(X) = . .
1, x>0

Finally, the normalization spccified in Ey. (4) assures that
B
u[\ L(E') &&" = B

0]

1l.e., energy has been "conserved" in the formulation of the gamma cascade

process.

Nuclear Spin and Parity

Tt was pointed out in an earlier portion of this paper that the
primary motivation for developing the subject methodology had to do with
_the inclusion of level spin and parity in the determination of radiative
transition probabilities, Radiative transitions betweén statcs of an
excited nucleus aré governed by the nuclear selection rules relative to

allowed or (more or less) probable changes in.nuclear'spin and parity
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accompanying the transitions. These selection rules are in turn a direct
function of the multipolarity and type (electric or magnetic) of the emit-

ted radiation.

While it is not the purpose of this paper to delve into the physics
of nuclear radiative transitions in any detail, some cursory consideration
of the essentials of the theory would be appropriate at this point.? Ganma
rays emitted in radiative transitions between nuclear states can be cate-
. gorized in terms of an index, 4, which determines their angular momentum
relative to the emitting nucleus. The index £, together with the designa-
tion of the radiation as either electric or magnetic, determines its
parity. Assuming conservation of angular momentum and parity in the
residual nucleus=~photon system, one can deduce the spin and parity of the
pPost-transition state from the knowledge of the respective pre-transition
state and emitted photon angular momenta and parities. Or, considering
the process from a slightly different standpoint, given a state of known
statistics (spin and parity) from which a radiative transition is to take
place, one may determine the photon angular momentum and parity which
will yield a certain set of residual nuclear level statistics. Energy
considerationé aside then, the probability for exciting a particular post-
transition state is proportional to the probability for the emission of a

rhoton of appropriate description.

In the context of this paper only dipole and quadrupole radiative

transitions will be of interest. Table 1 gives the nuclear selection

Tahle 1. Nurlear Selectinn Rules far Nipnle and
Quadrupole Radiative Transitions

Transition Type Allowed Spin Change*  Parity Change
Electric dipole 0, +1 ' - Yes
Magnetic dipole 0, +1 No
Electric quadrupole 0, #1, +2 No
Magnetic quadrupole 0, +1, +2 " Yes

*0 -» O transitions are forbidden.

“H. Goldstein "Statistical Model Theory of Neutron Reactions and Scatter~-
ing," in Fast Neutron Physics, Part II, Chapter V.J., Interscience Pub-
lishers, 1963.
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rules pertinent to gemma radiation of this description. In the formula-

_tion of gamma cascade dynamics one must be concerned not only with the

totality of "allowed" transitions, but more particularly.with the relative
probabilities of spin and parity changes within the set of possible transi-
tions. In addition to the statistical aspects of radiative transition
probabilities'thefe are, oficourse, energy considerations. The relative
probability for excitation of a level of energy Ef in a transition
originating with a level of energy Ei is given by (Ei - Ef)3 for dipole
transitions and (Ei - Ef)5 for quadrupole transitions. Thus, other con-
siderations aside, quadrupole transitions result in a "harder" gamma-rey

spectrun than do dipole transitions.

With nuclear selectidn rules and the energy dependence of dipole

- and quadrupole transition probabilities in hand, it is possible to define

mathematically the spin- and. parity-dependent gemma cascade process. The

. following definitions will be found useful:

pJ‘n(E) = density of spin J parity n states at energy E.

2 . .

Wy Tt(E) = population density of spin J parity n states at energy E.
2 .

E . ' N :
Ty 5,al®) = f(E-E)E"'+l o (') @B’ + Z (B-E, ) 8(x-m, ) 8(30,)-
E k'=1 '
3 |

2441 oo
o5, BTy 5, (E)

1]
T!,,J,n(E’E )

(E-E")

b(e/m)s (J-J',E) = probability for nuclear spin increment (J-J'), given

an electric/magnetic radlative transition of polarity, £,
originating from an intial spin J state at E. The
selection rules require that:

J=J'=0

J' <0’ .Z:l,.?,'

b(e/m)s (J-J',E)

]

0,

ble/m)l (J~J',E) = 0, |J~7'| >1,

0, |g-3Y >2; |

b(_e/m)'a (3~J',E)
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»(=/m) £(J,E) = probability that a radiative transition from spin state J
at E will be electric/magnetic of polarity £.

A final bit of notation: (-ﬂ)z will denote a change of parity relative

to n 1f £ is odd, and no change if £ is even.

It follows directly from the foregoing definitions that

(E) —Z Z j ag’ {pez(J E' bez(JJE)TzJ( )g(E E)

+ pm(J',E') bmg(J*-J,E') T 2,30 n)m_l(E E)} (8.a)

I(E) = Z Z f ag! f dE"W (B") h(E E!',E") {peZ‘J,E') '
E, . ,

J,n J'

-be,@(J-J',E') TZ;J'(—H)’Z(E"E,')

+ pmz(J,E') bug (J=T',E") T}z,J,(_n)z=l(E',E")} (8.9

''he sum oVer 2 implies that Alpole and quadrupole radlallon hias been Laken

into account.

A resume of the physics of neutron-capture gamma radiation as it
pertains to the phenomenological approach of this paper must necessarily
include a brief discussion of the quantum mechanics of a neutron inter-
action with the nucleus. This is, to a point, the simplest of two-body
problems to treat in that the system potential vanishes outside the
(arbitrarily defined) nuclear boundary. The Hamiltonian is then just
that of the kinetic energies of the neutron and nucleus in the center-of-
méss coordinate system. The solution of the wave equation under these
circumstances is a plane wave of the form eikz, where z denotes the dis-
tance between the nucleus and the incident neutron. The latter can be
expanded into spherical harmonics, or so-called partial waves, of order

£, vhere £ is an integer defining the angular momentum associated with
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the partial waves. Further analysié results in a decomposition of the
‘neutron-capture cross section into various £ components corresponding to
the relative probabilities of the capture of neutrons with associated
angular momenta. In addition to bringing to a reaction differing angular
momenta, the partial waves determine, in conjunction with the ground-state
parity of the target nucleus, the parity of the compound nucleus capture
state. In particular, odd-£ angular momenta result in a capture state
parity change relative to the target nucleus ground state, whereas even-
integer momenta preserve the target nucleus ground-state parity in the
compound nucleus capture state. Here, of course, the incident neutron is

presumed to interact with-the target nucleus in its grouwnd state.

The foregoing discussion has, under certain circumstances, profoﬁnd
implications for the shape of neutron-capture gamma-ray spectra. The
nuclear energy level spectrumbis composed of the superposition of sbec-
tra of various angular momenta and parity. An excited state de-excites,
usually to lower-lying levels accessible through the application of the
selection rules of Table 1. For example; consider neutronAcapture by and
subsequent de-excitation of a target nucléus with ground-state spin and
parity J" = %*. Consider first the capture of an s-wave (£ = 0) neu-p
tron. The neutron brings to the readtion an intrinsic spin angular
momentum, 1/2. According to the vector addition rules, compound capture
states of the following -description are accessible: Jﬂ = O+, l+. If a |
ot state is formed, a ground-state transition (O - 0) is strictly for-
bidden. If, on the other hand, a 1% state is formed, a ground-state
transition is still relatively improbeble since such a transition would
be either magnetic dipole'or eleétric’quadrupole in nature. As discussed
in a subsequent portion of this paper, these are gecnerally, though by
no means always, improbable relative to electric dipole transitions.

Assume hext that the target nucleus described above captures a p-wave

(£ = 1) neutron. The accessible compound capture ctatcs are: JIt = O-,

1, 2°. The O capture state cannot result in a ground~-state transition
(0 -~ 0). However, the J" = 17 state can de-excite by way of a ground-
state transition by either an electric dipole or a magnetic quadrupole

transition. The latter is expected to be several ofders of magnitude less
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likely than the former. In summation, then, an s-wave capture would
result in a capture gamme spectrum essentially devoid of a gfound-state
transition, whereas a p-wave cgpture spectrum might exhibit a rather
strong ground-state line. Of course, this sort of an argument is relevant
to any compound nucleus state and the consequent enhancement or suppres-
sion of the gamma line corresponding to an initial cabture state transi-

tion to it.

The effect of spin and parity on the relative probability of high-
energy gamma transitions can be appreciable in a slightly less obvious
way. Assume for the moment that the relative probabilities for spin
changes consistent with the selection rules (hereinafter to be referenced
as spin branching probabilities) are equal for dipole and quadrupole
transitions for all spin states. In this simple context the probability
for a gamma transition from some initial state to one of a group of
accessible final states is primarily a function of two quantities:

(lj the energy difference between the two states, and (2) the number of
accessible final states. In general, the more numerous the possible
transitions, the less the probability for any particular one. The density

of nuclear spin states is expected to be spin dependent. In partlcular,

DJ(E) - DO(E) f(E,T), £I®,T) <1, T>0
and

£f(B,J') < f(R,J), T >T ,

where DO(E) and QJ(E) are, respectively, the mean level spacings for spin
zero and spin J states, and f(E,J) is an as yet undefined function of
spin and energy relating the two. Thus, for the stated conditions on the
spin branching parameters, the higher the spin of an excited state, the
lower the probability for a radiative transition to a given statistically

accessible state.
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III. DNumerical Formulation

Equations (8) formally define the spin- and parity-dependent gamma
cascade process. The problem of a tractable numerical formulation of the
methodology, however, still remains. The approach taken in the calcula-
tions exhibited in this paper is embodied in a digital computer code,
DUCAL, written in the FORTRAN-63 and FORTRAN-IV languages for use on the
CDC-1604 and IBM-T090 and -360 machines, respectively. It can perhaps
be best described in terms of FORTRAN-like variables actually used in the
code. Their definition, in some cases, will closely resemble variables
defined in the analytical formulation just discussed. One main difference
between the analytical and numerical approaches rests with the fact that
in the latter it will be necessary to index many variables with respect

to the gamma cascade transition number.

As in the analytical formulation, the index £ may take on values of
one and two corresponding to dipole and quadrupole transitions, respec-

tively. The following variables will be useful in the discussion:

T(E/M) £(I,J) = épin branching probability, the probability that an
electric/magnetic radiative transition of polarity £
orlgluatlng with a spin I state excites a spin J state.
The angular momentum selection rules are taken into ac-
count in the calculation of the probability of the

various spin changes.

P(E/‘.M),Br = relative probability for an electric/magnetic radiative
: transition of polarity £ to a resolved energy level.

P(E/M) £X(I) = relative probability for an electric/magnetic radiative
transition of polarity £ to an unresolved level for the
Ith cascade transition. [Note that the cascade transi-
tion index appears in the unresolved level transition
probabilities but not in their resolved counterparts.
The relationship between the two types of probabilities

is discussed in conjunction with Eq. (13).]

PPL(I,J) = probability that the Ith cascade transition originates

with an even parity, spin J state.
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PMI(I,J) = probability that the Ith cascade transition originates
with an odd parity, spin J state.

For compound nuclei with integral spins, the first indexed state corresponds

to a spin zero state, while for odd half integral spin nuclei the index
"1" denotes a spin 1/2 state.

From the foregoing definitions it follows that

J+l
PPL(I,J) = PEL"-TEL(J',J) -PMI(I-1,T') + Per-TMl(J',J)-PPL(I-l,J')}
J'=JD
N+2
+ 2; {%EZ .TE2(J',J) .PPL(I-1,J")
J'=JQ
+ PMET-TME(J',J)-PMI(I-l,J’)}- (9.a)
and
J+1
PMI(I,J) = 2 {PElr-TEl(J',J)-PPL(I-l,J') + et .mML(3, )
J'-JD
J+2
DMI(I-l,J')}- L) {%EEr-TEE(J',J)-PMI(I—l,J')
J'=JQ
+ PMEr-TME(J',J)-PPL(I-L,J')}- s (9.)

Note that no energy dependence is associated with PPL(I,J) and fME(I,J).

Equations (9) and Table 2 are presented in the rather detailed form for
illustrative purposes only.

Henceforth, an attempt will be made to keep
the notation somewhat more compact.

Equation (9.2), for instance, may be
written as
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| Table 2. Sum Limits as a Function of Nuclear Spin

Spin State (J) . Jp JQ
0 2 : 2
1
= 1
5 1
1 1 1
2 1
5 1

> 2 J-1 J-2
2 - o gae
25 J-1 :

PPL(I,J) ==§; }: {%Eir TEJ(JF;J) [PMI(I-1,J') 5(#-1) + PPL(I-1,J') 8(£-2)1"

+ e’ TMﬁ(J';J) [PMI(I-1,T") 5(1-2)‘+ PPL(I-1,J') 5(5-1)]}- , (10)

" where the J' sumation extends over all spins of interest. Limits on the
J' summation are redundant in view of the fact that angular momentum
selection rules have, by definition, been incorporated into the spin

branching proébabilities.

Let En and Ec define, as»prefiou;ly, the neutron-capture state
excitation energy and the (arbitrary) energy separating the resolved and
unresolved portions of the compound nucleus ieVel spectrum, respectively.
This interval is divided into an arbitrary number of energy subintervals
or bins. ZEach bin is assigned a population, W(I,Jj, indexed according
to cascade transition number and relative position (top to bottom) within
the (En,Ec) energy interval. The transition index, I, denotes the step
in the gamma cascade during which the energy levels contained within bin
I are excited W(I,J) "times." Thus, W(I,J) is in fact the total increment
in the bin J bounded level populations associated with Ith gamma transi-

tions from all higher energy bins [see Eq. (18)]. Tt is perhaps worth
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emphasizing here that Ith transition photons can be emitted from all
bins, where J < I, and from all resolved levels. For instance, the
first transition from the compound capture state will scatter W(I,J)'s
among all energy bins and resolved levels. Each bin and level then

becomes a source for second transition photons.

For the energy range Ec <EXL En some assumption must be made about
the level spectrum. The actual energy level spectrum of a nucleus is a
composite of sets of levels characterized by various combinations of spin
and parity. Level spacings of each spin parity set are assumed to be
distributed statistically in energy about some spin- and energy-dependent
mean level spacing. The latter were defined for the calculations
‘exhibited in this paper by an expression suggested by Newton® for the
mean level spacings of spin zero states, Dg. The Newton formulation for
Do takes into account pairing energies (even-odd nucleon effects) and
the effect of proximity to the magic numbers and the attendant marked
increase in mean level spacing. The mean level spacing is expected to -
vary with spin, J, roughly as (2J + 1) 1. Bloch? has proposed a somewhat
more realistic expression to account for the spin dependence of level
spacing as follows: A

-J2 [20° -(J+1)2 /202
F(T,E) ~ e - e , (iL)

o being a slowly varying empirical function of energy. When ‘the parametey

g is available, Eq. (10) spin dependence is used in spectrum calculations.

For each gamma transition from either the capture state or the
energy bins in the compound nucleus excitation interval, EC <EXL En’
& nuclear level spectrum is constructed based upon a composite mean
level spacing which is dependent upon energy and transition number and is

defined by the relation

®T. D. Newton, "Shell Effects on the Spacing of Nuclear levels," Canadian
J. Phys. 34, 804 (1956).

7C. Bloch, Phys. Rev. 93, 1094 (1954).



21

NJ ‘ :
D(I,E) = Z } {PPL(I,J') + PMI(I,J')} ,DO(E) £(E,J) , (12)
J'=1 o

where NJ denotes the number of spin states to be considered and I and J'
: ,aré, respectively, the transition number and spin. The result, by way of
emphasis, is a weighted average of the mean level spacings of accessible

spin and parity states for the Ith gamma cascade transition.

As indicated previously, the superscripts r and u on the symbols
denoting multipole transition probabilities detfine the probabilities for
ﬁhe indicated types of transitions to states in the resolved and unresolved
energy ranges, respectively. The P(E/M)rz are the probabilities that are
predicted theoretically, without regard for the availability of lower
: lying states of appropriate statistics to which such transitioﬁs are

"allowed." They are not always applicable within the context of the
composite level spectrum formulation embodied in Eq. (12). Specifically,
compound mean level spacings rendered by Eq. (13) are predicated upon the
assumption that the mean level spacings of states of spin J (even and odd
parity) defined‘in Eq. (12) obtain over the entire unresolved energy

range of the compouhd nucleus. It may well be, however, that for certain
energy bands within the unresolved region, mean level spacings of states
of particular spin and parity may differ gignificantly from thelr expected
values. Such an eventuality may substantially influence the shape of
capture gamma-ray spectra when the.enefgy band composes, say, the lowest
10 percent of the unrésolved range, and in-addition the Spins and parities
of the affected states render them accessible through capture state

transitions.

Excitation of unresolved states near the resolved-unresolved energy
boundary is heavily favored over the ekcitation of higher energy states
dﬁe to the energy dependehce of the radiative ﬁransition probabilities.
Thus the total contribution of unresolved states to a particuléf cascade
transition rests almost exclusively with accessibility of stétes in the
lower portion of the unrcsolvéd level spectrum. In order to account for
the effect of significant local irregularities in mean level spacing

in this region, spin- and parity-dependent mean level spacing functions,
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pﬁ(J), are defined. The éuperscripts + and - refer, as usual, to states
of even and odd parity, respectively. ‘The functions are intended to
represent ratios of mean level spacings expected on theoretical or ex-
perimental grounds to those predicted.in Eq. (12). The relationship
between resolved and unresolved electric dipole transition probabilities

has the form

PE1"(I) EZ 2 [PPL(I,3) o (J") +(PMI(I,J).p;(J‘)]-'TEl(J,J')-PElr .
J J

Similar expressions hold for the other unrésolved transition probabilities.

With the composite mean level spacing in hénd, an actual nuclear
level spectrum is constructed by a Monte Carlo technique by which con-
secutive level spacings are determined by repeatedly saumplluyg Lfrom &
Porter-Thomas or chi-square distribution with "four degrees of freedom."8
This probability density function has the form

P(x) ax = bx e X ax , -  (13)

where
x = 5/D(I,E) |,

S being the variable level spacing. The maximum of the distribution (13)
occurs at x = 1/2. The mean value of x is unity, which in turn yields
a mean level spacing equal to D(I,E) for the constructed spectrum. In °
practice the distribution (13) is repeatedly sampled.until an energy
belowEc is reached at which point the last level is discarded and the
process terminated. Since the sampling equation
X
jP(x') ax' = p ,

o

8C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).

el
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where p is a random number < 1, is transcendental in x, the actual sampl-

ing is effected by means of a rejection technique.®

Finally, a level density is formed by imposing a probability
density function in the form of a chi-square distribution with two
degrees of freedome sbout each statistically determined level energy.

This distribution function is a simple exponential,.i.e.,

=X

P(x) d&x = = e . dx , | | (1k)

-

with x defined relative to the statistically'determined level energy, Eo,

as

|E - B0l / D(1,E) .

W
i

The normalization factor 1/2 ensures that

o oo
;/\ P(x') ax' ; 2 L/\ P(x') ax' =1 .
-00 el .

The net result is thus a set of probability density functions of the form
(14) aistributed about statistirally distributed midpoints.

Ilet Ek-l’ Ek’ Ek+l’ and Ek+2 be four conegecutive level probaebility
density function midpoints generated by random sampling as per Eq. (14).
The resulting "level density" function for the Ith transition,

E 2E>E ., has the form

o(E) = Hw) éxk—l + eXk + e-Xk;;. + FkN) Ko
P EDNLE DS - TNLE) T DNLE,) CDLE,) e , (15)
wi.th

X, = (B - £)/D(L,E) ,

SHerman Kahn, Applications of Monte Carlo, Rand Corporation Report AECU-
3259 (April 19, 195L).




and
m
Z-z
= e
£=0

where N denotes the number of statistically generated energy levels in

the interval E <EC<L Ek o0 The functions F(n) represent the contributions

of levels above and below the energy interval of interest.

Let EJm define the midpoint energy of energy bin J, i.e.,

Then, define

s dJd
62(1,d) EZ [PEe™(T) + PMe™(T) . f m(EJm - ) o(1,mY) v
. E *

c

N W
Z y - B(x) 1%*T [pPL(1-1,1) + PMI(I-1,1)]
X1 1ol '

{Pm «TEL [L,J(K) ] [a(z -1) 6[l-+ n(K)] + 8(¢ - 2) 8[1 - n(K)]]
+ lPMzr(L)-TMB (L,J(K) ] [a(z - 1) 3[1 - n(X)]
+8(s -2) 8[1 - it(K)]:'} (16)
where n(K) = +1 with Kth energy level of.everi/bdd parity. Further,‘ let

Jdm
Kz[(I,J’,J)] = f (EJm - g4+t o(I,E') 4E' / Ge(L,J) . (17)

E
c

In terms of these definitions, the expression for bin populations as a

function of transition number (I) and bin index (J) becomes:
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]

J+l

w(1,J) = Z I-1,J') Z Z {PEI, (1) +HPM2. I)} Ke(T, LJ) , (18)’

J'= £ L=l

and the tranéition-dependent level population is given by

NB : CNT : o
CWL(I,K) = Z W(I-1,J3') Z Z [[PE_z‘_‘(I) +‘PMzu(I)] Bim = E(X) 2t+l
' g1 L Ie1 -
[EJ' - E(K)]z’”l / Ge(1,3! )} [PPL(J,L) + PMI(I,L)]

{mr 50 (L, 3() ] [s(z S 1) B[+ n(K)] + 8(4 - 2) B[1 - x(K)] }

, + PMzr TM[L,J(K)] [5(,@ - l)',a[l -n(K)] + 8(e - 2) 8[1 + n(K)] ]}

+ inter-level terms. , (19)'

Equation (18) for the composite level population of the Jth energy bin is
the transition-dependent numerical formulation equivalent of its analytical

counterpart given in Eq. (8.a).



THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



62.
| 63.
6h.
65.
66.

67-81.
82.

-27-

ORNL TM-1867
Internal Distribution

S. Abbott 13-32, K. J. Yost.
G. Alsmiller, Jr. 3%, G, Dessauer (consultant)
R. Cain 34, B. C. Diven (consultant)
C. Claiborne 35. M. H. Kalos (consultant)
E. Clifford 36. L. V. Spencer (consultant)
H. Clark 37-38. Central Research Iibrary
H. Gibbons ' 39. Document Reference Section
C. Maienschein 40-59. Laboratory Records Department
W. Peelle ‘ o 60. TIaboratory Records ORNL RC
A. Straker ‘ 61. ORNL Patent Office '
K. TI'U.bey

External Distribution

P. B. Hemmig, Division of Reactor Development and Technology, U. S.
Atomic Energy Commission, Washington, D. C. 20545

I. F. Zartman, Division of Reactor Development, U. S. Atomic
Energy Commiss1on, Washington, D. C. 20545

H. Goldstein, Columbia University, Mudd Building, New York,
New York

C. P. McCallum, Jr., Division of Space Nuclear Systems, U. S.
Atomic Energy Commission, Washington, D. C.

M. B. Wells, Radiation Research Associates, Inc., 1506 West
Terrell, Fort Worth, Texas  T610W

DlVlSlon of Technical Information Extension (DTIE)

Division of Research and Devclopment (ORO)





