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I. Introduction 

A s d s t a n t i a l  amount of e f f o r t  i s  necessarily being devoted t o  the 

perfecting of means f o r  describing pa r t i c l e  and photon transport  phenomena 

t o  the point that ,  f o r  instance, meaningful shield optimization studies 

a re  possible. T t  i s  i n  general true, however, t ha t  the r e su l t s  generated 

by any callculational method, no matter how sophisticated, a re  only a s  

val id  as  the information upon which the calculation i s  based, be it i n  the 

form of boundary conditions i n  the analyt ical  context, o r  correspondingly, 
I t  input" i n  the numerical sense. 

Far gamma-ray transport  purposes, par t  of the problem of providing 

sui table  input information f o r  shield calculations r e s t s  with an adequate 

description of secondary gamma-ray spectra, i . e . ,  spectra resul t ing from 

neutron capture by shield materials. Perhaps the pr incipal  source of 

e r r o r  i n  representations of neutron-capture gamma-ray spectra l i e s  i n  the 

assumption t h a t  has t o  date been v i r tua l ly  inescapable owing t o  lack of 

i n y o m t i o n :  t h a t  neutron-capture gamma-ray spectra a re  invariant  t o  

incident neutron energy, or, more specifically,  t ha t  thermal-neutron 

capture spectra a r e  val id  f o r  epithermal-neutron capture spectra. In  

point  of fac t ,  t h i s  assmption i s  warranted only under rather  well- 

defined circumstances: specifically,  i n  materials f ~ r  whlch the epi- 

thermal-neutron-capture cross section i s  negligible, o r  i n  cases i n  which 

neutron capture exci tes  the compound nucleus t o  i t s  continuun energy 

range where, by definit ion, the nearest  neighbor mean l e v e l  spacing i s  

so small and consequent overlap of s t a t e s  so pronounced tha t  incident 

neutrons of v i r t u a l l y  a l l  feasible  energies and angular momenta f ind 

a var ie ty  of capture channels open t o  them. It then follows tha t  the 

incident energy of a neutron absorbed in to  the compound continuum 

does not define a unique or  even s ignif icant ly probable capture s t a t e  

spin and p w i t y  which, i n  conjunction with spins and p a r i t i e s  of lower 

lying s ta tes ,  would define radiat ive t rans i t ion  r a t e s  and i n  tm a 

charac ter i s t ic  garmna-ray spectrum. Continuum capture i s  expected to be 
predominant f o r  nuclei  whose mass numbers (A) a re  above 70, d t , h  the 

exception of those whose number of protons (z)  and/or number of neutrons 

(N) are magic o r  near-magic. 



Several methods have been advanced for  the calculation of neutron- 

capture gamma-ray spectra resul t ing from capture in to  . the compound nucleus 

continuum. The f i r s t ,  proposed by E. S. T roube t~koy ,~  incorporates dipole 

t rans i t ion  probabi l i t ies  [the r e l a t ive  probabili ty f o r  the exci ta t ion of 

a s t a t e  of energy Ef, given a dipole t rans i t ion  from a s t a t e  of energy 

Ei, var ies  as (E - E ~ ) ~ ]  and the unmodified nuclear evaporation model 
i 

.expression fo r  nuclear l eve l  density. The compound nucleus' l eve l  spectrum 

i s  divided in to  continuum and resolved energy ranges, the l a t t e r  obtaining 

Prom the compound nucleus ground ~ t a t e  t o  an a r b i t r a r i l y  defined energy 

above i t s  highest. known (resolved) s ta te .  

The second method, proposed by Lundberg and  tarf felt,^ i s  similar 

i n  nature t o  the Troubetzkoy method except t h a t  radiat ive t rans i t ion  prob- 

a b i l i t i e s  a re  derived from an approximation t o  the so-called giant  dipole 

resonance by' way of the well-lmown theorem of detai led balance. The 

theorem i n  t h i s  instance r e l a t e s  the photon absorption cross section t o  the 

ground-state radiative t rans i t ion  rate .  An assumption i s  then made t o  the 

e f f ec t  t ha t  the energy dependence of the  ground-state t rans i t ion  prob - 
a b i l i t y  from an excited state,  of energy E obtains between any two s t a t e s  

i 
i n  the nuclear l eve l  spectrum separated by the energy E.. 

3- 

It should be emphasized tha t  radiat ive t rans i t ion  probabi l i t ies  

employed i n  the foregoing two methods a r e  f'unctions of energy only. Thus, 

nei ther  of the methods i s  cagable of describing capture gamma-ray spectra 

where t ransi t ion probabi l i t ies  are  f'unctions not only of energy but a l so  

of spin and par i ty  a s  prescribed by the nuclear select ion ru les .  This 

'E. S. Troubetzkoy, "S ta t i s t i ca l  Theory of Gamma-Ray Spectra Following 
Nuclear Reactions, " Phys . - Rev. 122, 212 (1961) . 
'B. Lundberg and N. S t a r f e l t ,  "Gamma Rays from'the Capture i n  Ta and 

Au of Neutrons from 1 t o  4 MeV, " Nucl. -- Phys. 67, 321 (1965). 



w i l l  generally be t rue  fo r  nuclei  with mass numbers l e s s  than 70 and/or 

for  those with N and/or Z suf f ic ien t ly  proximate t o  the magic numbers. In  

contradistinction t o  the continuum si tuat ion,  mean.leve1 spacings a re  of 

such magnitude t h a t  neutron capture i s  f o r  the most p a r t  effected in to  

s t a t e s  well defined with respect t o  incident neutron energy. The change 

i n  shape of neutron-capture g m a - r a y  spectra with neutron energy i s  then 

a consequence of the capture of neutrons of various angular momenta, 

generally s wave (zero angular momentum) &d p wave (one uni t  of angular 

momentum). A s t r ik ing  example of t h i s  i s  given by Gibbons -- e t  a l .  i n  an 

investigation of epithermal-neutron-capture gamma-ray spectra i n  2s-161 

shell nuclei .' 
This paper i s  devoted t o  the development of a methodology f o r  

the calculation of neutron-capture gamma-ray spectra which accounts 

exp l i c i t l y  f o r  spin and par i ty  e f fec ts  i n  the determination of radia- 

t i v e  t rans i t ion  probabi l i t ies .  The nature of the problem i s  such t h a t  

both the ana ly t ica l  and subsequent numerical formulations of the 

methodology a re  thought t o  be of suf f ic ien t  i n t e re s t  t o  merit ra ther  

detailed exposition. 

11. Cascade Dynamics 

D i ~ c r e t e  S ta t e  Formulation 

In the formulation of nuclear gamma-ray cascade dynamics it i s  use- 

ful t o  introduce the concepts of nuclear l eve l  population, W(E ), and 
i 

gamma p a r t i a l  width, r? (~ , ,  E ~ ) ,  where E denotes the energy of the i t h  
i - 

nuclear l e v e l  and E denotes the energy of the l eve l  from which a gamma n 
t rans i t ion  originates.  In a l l  cases, of course, En > Ei. The p a r t i a l  

width for  a gamma t rans i t ion  from a l eve l  E t o  a lower lying leve l  E n I. 
can be thought of a s  a measure of the frequency w i t h  which a nucleus 

excited t o  i t s  nth l e v e l  de-excites by emitting a gamma ray of energy - 
E - Ei, neglecting nuclear r eco i l  accompanying photon emission. With 
n 

proper normalization the p a r t i a l  widths correspond t o  the probabi l i t ies  

f o r  gamma t rans i t ions  t o  a l l  s t a t i s t i c a l l y  (spin, par i ty)  and energetically 

~ e r ~ & i s t ,  J. A. Biggerstaff, J. H. Gibbons, and W. M. Good, "Neutron 
Resonance Capture i n  2s-ld Shel l  Nuclei," Phys. -- Rev. 5 323 (1965). 



accessible levels.  Clearly, these probabi l i t ies  must sum t o  unity for  

each s tep i n  the gamma cascade. Level populations, when normalized t o  a 

single neutron capture, render the ,expected number of excitations of a 

given leve l  per gamma cascade. 

kt u s . f i r s t  consider a gamma cascade i n  some hypothetical nucleus, 

a l l  of whose levels  are  known. Putting aside f o r  ' the moment the question 

of leve l  spin and pa r i ty  and the associated nuclear selection rules, the 

gamma spectrum would be completely defined by specifications of t rans i t ion  

probabi l i t ies  obtaining between the vari'ous known levels, 
Ei', 

1n tl1is 

instance the cascade can be formulated i n  terms of the 'following relat ion-  

ships : 

wilere L(E,,E~), the Une frequency, denotes the frequency with which the 

gamma l i n e  ( E ~  - E. ) occurs i n  the gamma spectrum per cascade, and the 
1 

operator A denotes an expected increment i n  the indicated quant i t ies  

associated with a t rans i t ion  from the l eve l  En. Equations (1)  exemplify, 

i n  the order of t h e i r  occurrence, the following consequences: (a)  the 

t o t a l  radiation width of a l eve l  i s  the sum of the p a r t i a l  radiation 

widths t o  accessible lower lying energy levels, (b)  an increment i n  the 

l eve l  population of the i t h  l eve l  corresponding t o  a gamma t rans i t ion  - 
originating with the nth l eve l  i s  given by the product of the probabili ty 

tha t  the i t h  otate  be excited i n  .Ule ~lira~lsit lon and the l e v e l  population - 
of the i n i t i a l  s ta te ,  and ( c )  the gamma-ray l i n e  frequency per cascade 

corresponding t o  the energy.E - E i s  enhanced by . the  same amount as i s  
n i 

the i t h  l eve l  population. - 



It should perhaps be emphasized t h a t  the ganrma width has def in i te  

physical significance i n  terms of the  mean lifetime, T ( E ) ,  of a s t a t e  

and, when more than one mode of de-excitation i s  possible, i n  terms of the 
- r e l a t ive  probabili ty of de-excitation by radiat ive t ransi t ion,  B ~ ( E ) .  

I n  par t icular ,  

where -K denotes the r a t i o  Planck's constant, h, divided by 2n, and 

where I'(E) denotes the sum over widths corresponding t o  possible modes O f  

de-excitation of the excited s t a t e  a t  energy E. For calculations i n  which 

other than the re la t ive  magnitudes of p a r t i a l  widths corresponding t o  gamma 

t rans i t ions  t o  various energy s t a t e s  are  desired, widths may be normalized 

by reference t o  a t r ans i t ion  of known strength. In the  calculation of 

neutron-capture g m a - r a y  spectra one i s  generally concerned with r a t io s  

of p a r t i a l  t o  t o t a l  gamma widths as in Eqs. (l), i n  which case such normal- 

i za t ion  cancels out. In  t h i s  context the absolute magnitude of the gamma 

width i s  not of i n t e r e s t  unless it i s  so small as t o  e f fec t  fo r  a l l  

p rac t i ca l  purposes the end of a cascade. 

It follows d i r ec t ly  from the above defini t ions t h a t  

and 

with N denoting the number of s t a t e s  i n  the energy region bounded by the 

compound nucleus neutron-capture and ground s tates .  



Gamma-ray spectrum calculations typical ly  involve nude5 whose low- 

lying levels  have been ident i f ied as to  energy and s t a t i s t i c s ,  but  whose 

intermediate- ( > 2 M ~ V )  and high-energy s t a t e s  remain undefined. Further, 

fo r  nuclei with mass numbers greater than, say, 70 (and f o r  which the 

proximity of Z .or N t o  the magic numbers i s  negl igible) ,  compound nucleus 

exci ta t ion energies following neutron capture a re  well within the nuclear 

energy l eve l  "continuum" where l eve l  spacing i s  so small and the consequent 

overlap of s t a t e s  so great as  t o  make impossible 'the posit ive ident i f ica-  

t i on  of a neutron-capture s t a t e  solely on the bas is  of a knowledge .of the 

capture energy. Consequently, the formulation of gamma-ray cascade 

dynamics for  v i r tua l ly  a l l  materials requires a " s t a t i s t i c a l "  model of 

the nucleus. For present purposes, a par t icu lar ly  applicable review of 

the s t a t i s t i c a l  approach t o  nuclear structure has been given by   old stein.^ 

Continuum or  Unresolved Level Formula.tion 

For compound nucleus exci ta t ion energies f o r  which e i the r  the mean 

leve l  spacing i s  so small t h a t  the l e v e l  can be said t o  form a continuum 

of s ta tes ,  o r  where the s t a t e s  a re  reasonably discrete  but  unresolved as  

t o  energy, spin, and parity, it i s  convenient t o  formulate gamma cascade 

dynamics i n  terms of a l eve l  density, p ( ~ ) .  Here, the sum over discrete  

s t a t e s  i n  Eq. ( L a )  becomes' an in tegra l  of the product of the p a r t i a l  

width f o r  the excitation of a group of levels  contained i n  a u n i t  energy 

in terva l  about some energy E and the leve l  density a t  E. In par t icular :  

the l a t t e r  term accouriting f o r  N resolved levels  below the continuum whose 

lower energy bound i s  denoted by Ec. In the continuum o r  unresolved leve l  

context, l eve l  populations and l i n e  frequencies become, respectively, the 

canposi~1;e populations of a l l  levels  contained i n  some uni t  energy in t e rva l  

(population density) and the co l lec t ive ,  frequency with which garmna t rans i -  

t ions involving i n i t i a l  and f i n a l  s t a t e s  separated by energies common t o  

4 ~ .  Goldstein, " s t a t i s t i c a l  Model Theory of Neutron Reactions and Scat ter-  
ing, " i n  Fast Neutrosl P l~ys lc s ,  P a r t  TI ,  Chapter V.J., lnterscience Pull- 
l ishers ,  1963. 



some uni t  energy in te rva l  ( spec t ra l  density) occur. Both quantit ies are  

presumed normalized t o  a single gamma cascade. 

In what follows it w i l l  be convenient t o  define excitati'on prob- 

a b i l i t i e s ,  T(E,E') ,  given by 

The population density obtaining a t  some energy E following a neutron 

capture tha t  has resulted i n  a compound nucleus excitation energy, En, 

has the form 

with 

The f b c t i o n  E(K)  accounts for  l eve l  excitation a t  E resulting from.an 

i n i t i a l  g p n a  t r ans i t ion  originating with the capture s t a t e .  The . integral 

expression i n  Eq. (5 )  then accounts for  excitations resulting from 

secondary . t ransi t ions i n i t i a t e d  from excited levels  between E and the 

capture s t a t e  a t  En. Discrete l eve l  populations i n  the "resolved" energy 

region below the continuum ( 0  - < E - < E ) are given by 
C 

with N again denoting the number of levels  with known energies and s t a t i s -  

t i c s .  The spectral  density for  t h i s  case i s  a s  follows: 



where ~ (E ,E ' ,E" )  i s  defined t o  be the product of two Heaviside functions, 

Finally, the n o m l i z a t i o n  opccified i n  Eq. (4)  t t s s w e s  that 

. . 
i. e.,' energy has' been "coi~served" i n  the formulation of the gamma cascade 

process. 

Nuclear Spin and Par i ty  

It was pointed out i n  an e a r l i e r  portion of t h i s  paper tha t  the 

pr3mar-y motivation f o r  developing the subject methodology had t o  do with 

the inclusion of l eve l  spin and par i ty  i n  the determination of radiat ive 

t rans i t ion  probabi l i t ies ,  Radiative t ransi t ions between ~ t a t c a  of an 

excited nucleus a re  governed by the nuclear select ion rules  re la t ive  t o  

allowed or (more o r  l e s s )  probable changes i r l  nuclear 'spin and pa r i ty  



accompanying the t rans i t ions .  These selection rules a re  i n  turn a d i rec t  

f'unction of the mult ipolar i ty  and type ( e l e c t r i c  or  magnetic) of the emit- 

ted radiation. 

While it i s  not the purpose of t h i s  paper t o  delve i n t o  the physics 

of nuclear radiat ive t rans i t ions  i n  any de ta i l ,  some cursory consideration 

of the essent ia l s  of the theory would be appropriate a t  t h i s  point.* Gamma 

rays emitted i n  rad ia t ive  t rans i t ions  between nuclear s t a t e s  can be cate- 

gorized i n  terms of an index, 1, which determines t h e i r  angular momentum 

re l a t ive  t o  the emitting nucleus. The .index 1, together with the designa- 

t i on  of the radiation as  e i the r  e l ec t r i c  or  magnetic, determines i t s  

par i ty .  Assuming conservation of angular momentum and par i ty  i n  the 

res idual  nucleus-photon system, one can deduce the spin and pai-iZy of We 

post- t ransi t ion s t a t e  from the  knowledge of the respective pre-transit ion 

s t a t e  and emitted photon angular momenta and par i t ies .  O r ,  considering 

the process from a s l igh t ly  different  standpoint, given a s t a t e  of known 

s t a t i s t i c s  (spin and par i ty)  from which a radiat ive t rans i t ion  i s  t o  take 

place, one may determine the photon angular momentum and pa r i ty  which 

w i l l  y ie ld  a cer ta in  s e t  of residual nuclear l eve l  s t a t i s t i c s .  Energy 

considerations aside then, the probabili ty f o r  exciting a par t icu lar  post- 

t r ans i t ion  s t a t e  i s  proportional t o  the probabili ty f o r  the emission of a 

photon of appropriate description. 

I n  the context of t h i s  paper only dipole and quadrupole radiat ive 

t rans i t ions  w i l l  be of in t e re s t .  Table 1 gives the nuclear select ion 

T R ~ ~ P  1. Nilc1~a.r  Se leck inn  Ri11es f n r  T)ipnle ~ n d  
Quadrupole Radiative TranEi t i o n ~  

- 

Transition Type Allowed Spin Change* Pa r i ty  Change 

Electric dipole 0, - +1 Yes 

Magnetic dipole 0, - +1 No 

Electr ic  quadrupole 0, +1, +2 - - No 

Magnetic quadrupole 0, - +1, - +2 Yes 

*O -* 0 t rans i t ions  a re  forbidden. 

*H. Goldstein " S t a t i s t i c a l  Model Theory of Neutron Reactions and Scat ter-  
ing," i n  Fast Neutron Physics, Par t  11, Chapter V.J. ,  Interscience Pub- 
l i shers ,  1963. 



rules  .pertinent t o  gamma radiation of t h i s  description. I n  the formula- 

, . t ion of g m a  cascaae dynamics one must be concerned not only with the 

t o t a l i t y  of "allowed" transiti'ons, but more par t icu lar ly  with the r e l a t ive  

probabi l i t ies  of spin and pa r i ty  changes within the s e t  of possible t r ans i -  

tions. In addition t o  the s t a t i s t i c a l  aspects of radiat ive t rans i t ion  

probabi l i t ies  ' there are, of course, energy considerations. The re la t ive  

probabili ty fo r  excitation of a l eve l  of energy Ef i n  a t rans i t ion  

originating with a l eve l  of energy Ei i s  given by ( E  - E ~ ) ~  f o r  dipole 
i 

t rans i t ions  and (El - E )' f o r  quadrupole t ransi t ions.  Thus, other con- 
f 

siderations aside, quadrupole t rans i t ions  r e su l t  i n  a "harder" gamma-ray 

spectrum than do dipole t ransi t ions.  

With nuclear selection rules and the energy dependence of dipole 

and quadrupole t rans i t ion  probabi l i t ies  i n  hand, it i s  possible t o  define . , 

mathematically the spin- and.parity-dependent gamma cascade process. .The 

following defini t ions w i l l  be found useful: 

p (E)  = density of spin J pa r i ty  n. .s ta tes  a t  energy E. 
J, n 

W (E) = population density of spin J pa r i ty  n s t a t e s  a t  energy E. 
J, 

b( e/m) .4 (J-J ' ,E) = probabili ty f o r  nuclear spin increment (J-J ' ) , given 

an electric/magnetic radiative t rans i t ion  of polar i ty ,  a, 
originating frm an i n t i a l  spin J s t a t e  a t  E. The 

selection rules require tha t  : 



?(t:/m) (J,,E) = probabi l i ty  t h a t  a radiat ive t rans i t ion  from spin s t a t e  J 

a t  E w i l l  be elec~l;ric/illagnetic of polar i ty  R . ' 

A f ina l  b i t  of notation: (-n)' w i l l  denote a change of pa r i ty  re la t ive  

t o  n if 1 i s  odd, and no change i f  R i s  even. 

It follows d i r ec t ly  from the foregoing defini t ions tha t  

I'he sum over & IrAPlieS that dipole and qua8mpule r t td la~Llu~l  has beell Laken 

i n t o  account. 

A resume of the physics of neutron-capture gamma radiat ion as it 

per ta ins  t o  the phenomenological approach of t h i s  paper must necessarily 

include a br ie f  discussion of the quantum mechanics of a neutron in t e r -  

action with the nucleus. This i s ,  t o  a point, the simplest of two-body 

problems t o  t r e a t  i n  t h a t  the  system potent ia l  vanishes outside the 

( a r b i t r a r i l y  defined) nuclear boundary. The Hamiltonian i s  then jus t  

t h a t  of the kinet ic  energies of the neutron and nucleus i n  the center-of- 

mass coordinate system. The solution of the wave equation under these 
i k z  circumstances i s  a plane wave of the form e , where z denotes the d i s -  

tance between the nucleus and the incident neutron. The l a t t e r  can 'be 

expanded in to  spherical harmonics, o r  so-called p a r t i a l  waves, of order 

1, where 1 i s  an integer  defining the angular momentum associated with 



the p a r t i a l  waves. l?urther analysis resu l t s  i n  a decomposition of the 

neutron-capture cross section in to  various 1 components corresponding t o  

the re la t ive  probabi l i t ies  of the capture of neutrons with associated 

angular momenta. In  addition t o  bringing t o  a reaction d i f fe r ing  angular 

momenta, the p a r t i a l  waves determine, i n  conjunction with the ground-state 

pa r i ty  of the ta rge t  nucleus, the pa r i ty  of the compound nucleus capture 

s ta te .  In  particular,  odd-1 angular momenta r e s u l t  i n  a capture s t a t e  

pa r i ty  change re la t ive  t o  the ta rge t  nucleus ground s ta te ,  whereas even- 

integer  momenta preserve the target  nucleus ground-state pa r i ty  i n  the 

compound nucleus capture s ta te .  Here, of course, the incident neutron i s  

presumed t o  in t e rac t  with the ta rge t  nucleus i n  i t s  ground s t a t e .  

The foregoing discussion has, under cer ta in  circumstances, profound 

implications for  the shape of neutron-capture gamma-ray spectra. The 

nuclear energy leve l  spectrum i s  composed of the superposition of spec- 

t r a  of various angular momenta and pari ty .  An excited s t a t e  de-excites, 

usually t o  lower lying levels  accessible through the application of the 

selection rules of Table 1. For example, consider neutron capture by and 

subsequent de-excitation of a ta rge t  nucleus with ground-state spin and 
1+ par i ty  J' = . Consider first the capture of an s-wave ( J  = 0) neu-' 

tron. The ne11.tron brings t o  the reaotion an i n t r i n s i c  spin angular 

momentum, 112. According t o  the vector addition rules,  compound capture 

s t a t e s  of the following description a re  accessible: J' = 0+, 1'. If a 

0' s t a t e  i s  formed, a ground-state t rans i t ion  ( 0  - 0) i s  s t r i c t l y  for -  
+ bidden. If, on the other hand, a 1 s t a t e  i s  formed, a ground-state 

t rans i t ion  i s  s t i l l  re la t ive ly  improbable since such a t rans i t ion  would 

be e i the r  magnetic dipole or  e l ec t r i c  quadrupole i n  nature. As discussed 

i n  a subsequent portion of t h i s  paper, these a re  generally, though by 

no means always, improbable re la t ive  t o  e l ec t r i c  dipole t rans i t ions .  

Assume next tha t  the ta rge t  nucleus described above captures a p-wave 
I[ 

(,t9 = 1) neutron. Ik.e accessible compound' capture otatcs  are:  J = 0-, 

1-, 2-. The 0- capture s t a t e  cannot r e su l t  i n  a ground-state t rans i t ion  ' ( 0  -, 0) . However, the J = 1- s t a t e  can de-excite by way of a ground- 

s t a t e  t rans i t ion  by e i ther  an e l ec t r i c  dipole or  .a magnetic quadrupole 

t ransi t ion.  The l a t t e r  i s  expected t o  be several orders of magnitude l e s s  



l i k e l y  than the former. I n  swmnation, then, an s-.wave capture would 

r e s u l t  i n  a capture gamma spectrum essent ial ly  devoid of a ground-state 

t ransi t ion,  whereas a p-wave capture spectrum might exhibit  a rather 

strong ground-state l ine .  O f  course, t h i s  s o r t  of an argument i s  relevant 

t o  any compound nucleus s t a t e  and the consequent enhancement or  suppres- 

sion of the  gamma l i n e  corresponding t o  an i n i t i a l  capture s t a t e  t rans i -  

t i on  t o  it. 

The ef fec t  of spin and par i ty  on the re la t ive  probabili ty of high- 

energy gamma t rans i t ions  can be appreciable i n  a s l ight ly  less  obvious 

way. Assa~me f o r  the moment tha t  the re la t ive  probabil i t ies  fo r  spin 

changes consistent with the selection rules (hereinafter t o  be referenced 

as spin branching probabil i t ies)  are  equal for  dipole and quadrupole 

t rans i t ions  for  a l l  spin s ta tes .  In t h i s  simple context the probabili ty 

for  a gamma t rans i t ion  from some i n i t i a l  s t a t e  t o  one of a group of 

accessible f i n a l  s t a t e s  i s  primarily' a function of 'two quantit ies:  

(1) the energy difference between the two states ,  a.rid (2) the number of 

accessible f i n a l  s ta tes .  In general, the more numerous the possible 

t ransi t ions,  the l e s s  the probabili ty for  any par t icu lar  one. The density 

of nuclear spin s t a t e s  i s  expected t o  be spin dependent. In palotfcular, 

DJE) - D&E) f(bl,JIj ~ ( R , . T )  < .I., J > o 
and 

~(E,J') - <: ~(F,,T)> T - > T , 

where D (E)  and D ( E )  are, respectively, the mean level  spacings fo r  spin 
0 J 

zero and spin J s ta tes ,  and ~ ( E , J )  i s  an as  yet undefined function of 

spin and energy re la t ing  the two. l'%us, for  the s tated conditions on the 

spin branching parameters, the hj.gher the spin of an excited state,  the 

lowcr the probabili ty fo r  a radiative t rans i t ion  t o  a given s t a t i s t i c a l l y  

accessible s ta te .  



111. ,Numerical Formulation 

Equations (8) formally define the spin- and parity-dependent gamma 

cascade process. The problem of a t ractable  numerical formulation of the 

methodology, however, s t i l l  remains. The approach taken i n  the calcula- 

t ions exhibited i n  t h i s  paper i s  embodied i n  a d i g i t a l  computer code, 

DUCAL, written i n  the FORTRAN-63 and FORTRAN-A7 languages f o r  use on the 

CDC-1604 and IBM-7090 and -360 machines, respectively. It can perhaps 

be bes t  described i n  terms of FORTRAN-like variables actual ly  used i n  the 

code. Their definit ion, i n  some cases, w i l l  c losely resemble variables 

defined i n  the analyt ical  formulation jus t  discussed. One main difference 

between the analyt ical  and numerical approaches r e s t s  with the f a c t  t ha t  

i n  the l a t t e r  it will be necessary t o  index many variables with respect 

t o  the gamma cascade t rans i t ion  number. 

As 'in the ana ly t ica l  formulation, the index & may take on values of 

one and two corresponding t o  dipole and quadrupole t ransi t ions,  respec- 

tively. The following variab1e.s w i l l  be useful i n  the discussion: 

T(E/M) &(I,J) = spin branching probability, the probabili ty t h a t  an 

e l ec t r i c  /magnetic radiative t rans i t ion  of polar i ty  & 

~rlglfitl.L;irlg With a spfn I s t a t e  exci tes  a spin J s t a t e .  

The angular momentum selection rules  a re  taken i n t o  ac- 

count i n  the calculation of the probabili ty of the 

various spin changes. 

P ( E / % ~ ) Q ~  = re la t ive  probabili ty fo r  an electric/magnetic radiat ive 

t rans i t ion  of polar i ty  .E t o  a resolved energy level .  

P(E/M) iU(1)  = re la t ive  probabili ty fo r  an e l ec t r i c  /magnetic radiat ive 

t rans i t ion  of polar i ty  L? t o  an unresolved l eve l  f o r  the 

I t h  cascade t ransi t ion.  [Note t h a t  the 'cascade t r ans i -  - 
t ion  index appears i n  the unresolved l eve l  t rans i t ion  

probabi l i t ies  but not i n  t h e i r  resolved counterparts. 

The relationship between the two types of probabi l i t ies  

i s  discussed i n  conjunction with Eq. (13). ] 

PPL( I, J) = probabili ty tha t  the I t h  cascade t rans i t ion  originates - 
with an even parity,  spin J s t a t e .  



PMI(I ,J )  - probabi l i ty  t ha t  the  I t h  cascade t r ans i t i on  or iginates  - 
with an odd par i ty ,  spin J s t a t e .  

For compound nuclei  with i n t eg ra l  spins, the f i r s t  indexed s t a t e  corresponds 

t o  a spin zero s t a t e ,  while f o r  odd half  i n t eg ra l  spin nuclei  the index 

"1" denotes a sp in  112 s t a t e .  

From the foregoing def in i t ions  it follows t h a t  

and 

PMI(I,J) = {pElr.ml(J1,J) .PPL(I-l,Jl) + p r n r - m a . ( ~ t ,  J) 

J '-JD 

Note t h a t  no energy dependence i s  associated with PPL(I,J) and PMI(I,J). 

Equations ( 9 )  and Table 2 a r e  presented i n  the  ra ther  detai led form f o r  

i l l u s t r a t i v e  purposes only. Henceforth, an attempt w i l l  be made to keep 

the notation somewhat more compact. Equation (9.2), f o r  instance, may be 

wr i t ten  a s  



Table 2. ,Sum Limits as  a Function .of Nuclear Spin 

Spin State  '(J) J D  . JQ 

where the 'J' .summation extends over a l l  spins of in teres t .  Limits on the 

J '  summation are redundant i n  view of the f a c t  tha t  angular mmentwn 

selection rules have, by definition, been incorporated in to  the spin 

branching probabili t ies.  

Let En and Ec define, as  previously, the neutron-capture s t a t e  

excitation energy and the (arbi t rary)  energy separating the resolved and 

unresolved portions of the compound nucleus l e v e l  spectrum, respectively. 

This in terva l  i s  divided in to  an arb i t ra ry  number of energy subintervals 

o r  bins. Each bin i s  assigned a population, ~ (1 ,  J) , indexed according 

t o  cascade t rans i t ion  number and re la t ive  position (top t o  bottom) within 

the ( E  ,E ) energy -i.nterval. The t rans i t ion  index, I, dcnotea the step n c 
i n  the gamma cascade during which the energy levels  contained within bin 

I are excited W(I,J) "times." Thus, W(I,J)  i s  i n  f a c t  the t o t a l  increment, 

i n  the bin J bounded level  populations associated with I t h  gamma t rans i -  - 
t ions from a l l  higher energy bins [see Eq. (18)l. It i s  perhaps worth 



emphasizing here t h a t  I t h  t rans i t ion  photons can be emitted from a l l  - 
bins, where J - < I, and from a l l  resolved levels .  For instance, the 

f irst  t rans i t ion  from the compound capture s t a t e  w i l l  s ca t t e r  ~ ( 1 , ~ ) ' s  

among all energy bins  and resolved levels.  Each b in  and leve l  then 

becomes a source f o r  second t rans i t ion  photons. 

For the energy range Ec 5 E < En some assqnption must be made about - 
the l e v e l  spectrum. The actual  energy leve l  spectrum of a nucleus i s  a 

composite of s e t s  of levels  characterized by various combinations of spin 

and pari ty .  Level spacings of each spin pa r i ty  s e t  a re  assumed t o  be 

d is t r ibuted  s t a t i s t i c a l l y  i n  energy about some spin- and energy-dependent 

mean l e v e l  spacing. The l a t t e r  were defined f o r  the calculations 

'exhibited i n  t h i s  paper by an expression suggested by ~ewton' for  the 

mean l eve l  spacings of spin zero s ta tes ,  Do. The Newton formulation f o r  

Do takes in to  account pair ing energies (even-odd nucleon ef fec ts )  and 

the e f f e c t  of proximity t o  the magic numbers and the attendant marked 

increase i n  mean l eve l  spacing. The mean l eve l  spacing i s  expected t o .  

vary &th spin, J, roughly a s  ( 2 J  + 1)-l.  loch^ has proposed a somewhat 

more r e a l i s t i c  expression t o  account f o r  the spin dependence of l eve l  

spacing a s  follows: 

a being a slowly varying empirical Yunction oY energy. Wheii the  paramerer 
a i s  available, Eq. (10) spin dependence i s  used i n  spectrum calculations.  

For each gamma t rans i t ion  from e i the r  the capture s t a t e  or  the 

energy b ins  i n  the  compound nucleus exci ta t ion interval ,  E < E < E 
C -  - n' 

a nuclear leve l  spectrum i s  constructed based upon a composite mean 

l e v e l  spacing which i s  dependent upon energy and t rans i t ion  number and i s  

defined by the re la t ion  

'T. D. Newton, "Shell Effects on the Spacing of Nuclear Levels," Canadian 
J. Phys . 34, 804 (1956) . 
7 ~ .  Bloch, Phys. Rev. 93, 1094 (1954). 



where N J  denotes the number of spin s t a t e s  to  be considered and I and J '  

. are, respectively, the t rans i t ion  number and spin. The result ,  by way of 

emphasis, i s  a weighted average of the mean l eve l  spacings of accessible 

spin and par i ty  s t a t e s  f o r  the I t h  - gamma cascade t ransi t ion.  

A s  indicated previously, the superscripts r and u on the symbols 

denoting multipole t rans i t ion  probabi l i t ies  define the probabi l i t ies  fo r  

the indicated types of t rans i t ions  t o  s t a t e s  i n  the resolved.and unresolved 

energy ranges, respectively., The P(E/M) are the probabi l i t ies  t h a t  a re  

predicted theore t i cd ly ,  without, regard f o r  the ava i l ab i l i t y  of lower 

lying s tates .  of appropriate s t a t i s t i c s  t o  which such t rans i t ions  are  

"allowed." They are  not always applicable within the context of the 

composite l eve l  spect&m formulation embodied i n  Eq. (12).  Specifically,  

compound mean leve l  spacings rendered by Eq. (13) are  predicated upon the 

assumption t h a t  the mean l eve l  spacings of s t a t e s  of spin J (even - and odd 

pari ty)  defined'in Eq. (121, obtain over the en t i r e  unresolved energy 

range of the compound nucleus. It may well be, however, t ha t  f o r  cer ta in  

energy bauds wlthin the unresolved region, mean l eve l  spacings of s t a t e s  

of par t icu lar  spin and par i ty  may d i f f e r  s ignif icant ly from t h e i r  expected 

values. Such an eventuality may substant ial ly  influence the shape of 

capture gamma-ray spectra when the ,energy band composes, say, the lawest 

10 percent of the unresolved range, and iwaddi t ion  the spins and pa r i t i e s  

of the affected s t a t e s  render them accessible through capture s t a t e  

t ransi t ions.  

Excitation of unresolved ~ t a t e s  near the resolved-unresolved energy 

boundary i s  heavily favored over the excitation of higher energy s t a t e s  

due t o  the energy dependence of the radiat ive t rans i t ion  probabi l i t ies .  

Thuk the t o t a l  cu~ltr-ibution of unresolved s t a t e s  t o  a par t icu lar  cascade 

t rans i t ion  r e s t s  almost exclusively with access ib i l i ty  of s t a t e s  i n  the 

lower portion of the unrcaolved leve l  spectrum. I n  order t o  account fo r  

the e f fec t  of s ignif icant  loca l  i r r egu la r i t i e s  i n  mean l eve l  spacing 

i n  *hi. s region, spin- and parity-dependent m e a n  l eve l  sgac ing t'11nc t-ions , 



f P,(J), a re  defined. The superscripts + and - refer,  as  usual, t o  s t a t e s  

of even and odd parity,  respectively. The functions are intended t o  

represent ra t ios  of mean level  spacings expected on theoret ical  or  ex- 

perimental grounds t o  those predicted i n  Eq. (12). The relationship 

between resolved and unresolved e l ec t r i c  dipole ' t ransi t ion probabil i t ies  

has the form 

Similar expressions hold f o r  the other ui&solved t rans i t ion  probabil i t ies .  

With the composite mean level  spacing i n  h&d, an actual  nuclear 

l eve l  spectrum i s  constructed by a Monte. Carlo technique by which con- 

secutive l e v e l  spacings are  determined b y  repeatedly' smp11ug f1'0lii & 

Porter-Thomas o r  chi-square dis tr ibut ion with "four degrees of freedom."" 

This probabili ty density function has the form 

where 

S being the variable l e v e l  spacing. The maximum of the dis tr ibut ion (13) 

occurs a t  x = 1/2. The mean value of x i s  unity, which i n  turn yields 

a mean l eve l  spacing equal t o  D(I,E) fo r  the constructed spectrum. In 

pract ice the dis tr ibut ion (13) i s  repeatedly sampled u n t i l  an energy 

below E i s  reached a-t; which poirl-I; the l a s t  leve l  i s  discarded and the 
C 

process termina.ted. Since the sampling equation 

j P(x l )  dx' = p , 

"c. E. Porter and R. G. Thomas, Phys . Rev. 104, 483 (1956) : 



where p i s  a random number - < 1, i s  transcendental  i n  x, the  ac tua l  sampl- 

i ng  i s  ef fected by means of a re jec t ion  t e ~ h n i q u e . ~  

: Finally,  a l e v e l  densi ty  i s  formed by imposing a p robabi l i ty  

densi ty  function i n  t he  form of a chi-square d i s t r i bu t i on  with two 

degrees of' freedome about each s t a t i s t i c a l l y  determined l e v e l  energy. 

, . This d i s t r i bu t i on  function i s  a simple exponential, . i . e . ,  

with x .defined ' r e l a t i v e  t o  the  s t a t i s t i c a l l y  determined l e v e l  energy, Eo, 

a s  . 

Tlie normalization f ac to r  1/2 ensures t h a t  

J"P(..,) dxl ; 2 sm ~ ( x ' )  dx' = 1 . 
-a 0 

The n e t  r e s u l t  i s  thus a s,et of p robab i l i ty  densi ty  functions of the form 

(14) distrib11,ted. a;bm~.t, stt~.t,i,stoi.r.a.lly dis t r ibu ted  midpoints. 

L e t  Ek, Ek+l, and %+2 be four  consecutive l e v e l  probabi l i ty  

density function midpoints generated by random sampling as per  Eq. (14).  

The resu l t ing  " level  density" function f o r  the  I t h  - t r ans i t ion ,  

% --> E 2 % + l a h a s  the  form 

S~erman Kahn, Applications of Monte Carlo, Rand Corporation Report AECU- 
3259 ( ~ p r i l  19, 1954). 



and 

where N denotes the number of s t a t i s t i c a l l y  generated energy levels  i n  

. the in te rva l  E < E < Ek+2. The f'unctions ~ ( n )  represent the contributions 
C -  - 

of levels  above and beiow the energy in terva l  of in teres t .  

Let EJm define the midpoint energy of energy bin J, i. e., 

Then, define 

where x(K) = +1 a t h  Kth energy l eve l  of evenlodd pari ty .  Further, l e t  -- 

I n  terms of these definitions,  the expression fo r  bin populations as a 

function of t rans i t ion  number (I)  and bin index (J) becomes: 



and the transition-dependent level population is given by 

+ inter-level terms. ( 19) 

Equation (18) for the composite level population of the Jth - energy bin is 
the transition-dependent numerical formulation equivalent of its analytical 

counterpart given in ~ q .  (8.a) . 
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