
Second United Nations 

International Conference 

on the Peaceful Uses 

of Atomic Energy 

Confidential until official release during Conference 

A/CONF. 15/P/27 
Abstrsct (UNITED KINGDOM: 
18 March 1958 

? 
j 
i ORIGIbJAL: ENGLISH , 

* M. D. Jepson 
R. D. Kehoe 
R. W. Nichol,?!s 
G. F. mattery 

Abstract 

1. 
of technical uranium and certain alloys of interest  f o r  use in natural- 
uranium fuelled reactors are described, 

2. 
technical purity uranium are  first discussed and the time-temperature- 
transformation data resented. Results on binary alloys comprising U/&, 
U/Cr, Uhe, Uho, UA, U/Ti, U/V and U/Zr, contahing up t o  about 2 atomic 
per cent of the a l loy ing  element, a re  described. C r ,  Fe and Z r  were found 
to  be the most dfec t ive  grain refining agents. Al and V were satisfactory 
under some conditions whereas Mo, N% and T i  were ineffective. 

3. 
curves indicated that grain refinement is associated w i t h  depression of the 
temperature of transformation on heat treatment, the extent of' this depression 
for a given cooling-rate being dependent on the alloy content. 
i t  was found that alloys such a s  U/zr and u b e  responded t o  water quenching 

thermal treatment a t  500 to 6OO0C. 

Metallographic and dilatometric studies of the heat treatment behaviour 

The micro-structure and secondary phases present i n  high purity and 

/ 

The grain-size r e d t s  together'with the time-temperature-transformation 

In practice 

4&atments, and optimum refinement of othexs(eeg. U/Cr) resulted f r o m  iso- 

i. 
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INTRODUCTION 

The behaviour of uranium metal f u e l  under i r r a d i a t i o n  i s  discussed i n  
d e t a i l  i n  a number of papers(1).  
important:. 

These show t h a t  t h ree  e f f e c t s  a r e  

(1)  Anisotropic growth or wrinkling 

(2) I r r a d i a t i o n  and thermal creep leading t o  bowing i n  stacked 
elements , 

(3)  Inert  gas d i f fus ion  and swelling. 

All these e i f e c t s  are  s t r u c t u r e  s e n s i t i v e ,  though t o  varying degrees, b u t  
a t tempts  t o  minimise them may lead t o  conf l i c t ing  requirements a s  regards  
t h e  s t r u c t u r e  of t h e  f u e l ,  

Grain s i z e  has a marked e f f e c t  on wrinkling, f u e l  d i s t o r t i o n  being 
minimised by a f i n e  random s t r u c t u r e ;  
favoured by a coarse  gra in  s t r u c t u r e ,  
s i z e  has the re fo re  been a major considerat ion and has necess i ta ted  s tudy of 
t h e  t ransformation c h a r a c t e r i s t i c s  and k i n e t i c s  of  poss ib le  f u e l  a l loys .  

Creep p rope r t i e s  and swel l ing can be s i g n i f i c a n t l y  a f f ec i ed  by t h e  
form and d i s t r i b u t i o n  of  p a r t i c u l a t e  phas s. 
and of g ra in  s i z e  m u s t  a l s o  be assured i f  p rope r t i e s  a r e  t o  be maintained 
over  t he  long per iods required f o r  economic r e a c t o r  se rv ice ,  

on l the  o t h e r  hand creep r e s i s t a n c e  i s  
The measurement and con t ro l  of g ra in  

(I ! '  

The s t a b i l i t y  of t hese  phases 

+ U.K. Atomic Energy Authority,  I n d u s t r i a l  Group 
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Over a number o f  years  a r t l y  i n  conjunct ion with t h e  development of 
more c reep  r e s i s t a n t  a l loys t2P,  s t r u c t u r e  and h e a t  t reatment  da t a  have been 
accumulated on a range of  b inary  and more complex a l l o y s  based on t echn ica l  
p u r i t y  uranium. 
r e s t r i c t e d  a l l o y  content  of ma te r i a l s  of high capture  cross-sect ion,  for use 
i n  n a t u r a l  uranium fue l l ed  r eac to r s .  
normally below 1 a t .  % t o t a l ,  equi l ibr ium da ta  was not  ava i l ab le  i n  any 
d e t a i l  and has  had t o  be e s t ab l i shed .  Many of t h e  phases produced, or 
presen t  i n  t h e  base metal ,  had t o  be i d e n t i f i e d  or techniques developed t o  
d i s t i n g u i s h  them i n  the  presence of  impuri ty  phases of  markedly s imilar  
d i s t r i b u t i o n .  

A l l  t he se  a l l o y s  have been s u i t a b l e ,  because of  t h e i r  

A t  t hese  low levels of  a l l o y  add i t ion ,  

Mn 

15 

This paper presents  a summary of  t he  metal lographic  and d i l a tome t r i c  
information obtained on d i l u t e  uranium a l l o y s  containing one or more of:- 
Aluminium, Chromium, Iron,  Molybdenum, Niobium, S i l i c o n ,  Titanium, Vanadium 
and Zirconium. 

2. TECHNICAL PURITY URANIUM 

2.1 IDENTIFICATION OF SECOND PHASES 

The t e c h n i c a l  p u r i t y  uranium used i n  t h e  present  s t u d i e s  i s  produced by 
t h e  thermal reduct ion  of uranium t e t r a f l u o r i d e  by magnesium and subsequent 
ramelt ing of t h e  r e a c t o r  b i l l e t  and c a s t i n g  i n t o  approximate ly1  inch rods.  
A t y p i c a l  composition (p.p.m,) would be:- 

The inc lus ions  normally present  i n  uranium are:  uranium carb ide ,  oxides 
and n i t r i d e s  and va r ious  i n t e r m e t a l l i c  compounds o f t e n  i n  the  form of a net- 
work. 
with emery papers followed by pol i sh ing  with alumina o r  diamond pas te  on a 
"Selvyt" pad and an e l e c t r o l y t i c  po l i sh  i n  a bath cons i s t ing  of 1 volume 
H2SO4, 1 volume H3pO4, 2 volumes CH3C00H and 1 volume of water. 

convenient ly  descr ibed a s  cuboids, Fig. 1, 
cuboids black. 
examination but  t h i s  does not  exclude t h e  p o s s i b i l i t y  of some UO and UN i n  
so lu t ion .  

h e a t  t rea tments  _ -  b . 

These f e a t u r e s  can be observed meta l lographica l ly  a f t e r  prepara t ion  

Uranium carb ide  inc lus ions  a r e  present  i n  d i s c r e t e  angular  shapes 
Etching i n  50% "03 s t a i n s  these  

The i d e n t i t y  of t h e  cuboids has been confirmed by X-ray 

The amount of  carbon present  is  much g r e a t e r  than t h e  s o l u b i l i t y  
* l i m i t  i n  s o l i d  uranium and thus  t h e  cuboids a r e  unaffected by s o l i d  s t a t e  
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Complex cuboids containing uranium carb ide ,  oxide and poss ib ly  n i t r i d e ,  
which a r e  a l l  isomorphous, a r e  a l s o  observed i n  uranium, Fig. 2, 

Uranium monoxide i s  a l i g h t  po l i sh ing  g lobular  phase which s u f f e r s  edge 
a t t a c k  but  i s  no t  s t a ined  i n  n i t r i c  ac id ,  Fig,  1. 
only  occas iona l ly  observed a s  a l i g h t  grey  cons t i t uen t  i n  t he  v i c i n i t y  of 
s l a g  inc lus ions  and it i s  n e i t h e r  a t tacked nor s t a ined  by n i t r i c  ac id .  
However a s l i g h t  edge a t t a c k  can be obtained with an e l e c t r o l y t i c  e t c h  with 
10% aqueous chromic ac id ,  

Uranium mononitride is  

Uranium dioxide i s  seldom observed a s  an inc lus ion ,  Fig, 3,and usua l ly  
occurs a s  a su r face  contaminant, 
when observed under polar i sed  l i g h t  it d isp lays  a reddish in t e r f e rence  colour ,  

A s  po l i shed , i t  shows a pu rp l i sh  t i n g e  and 

Occasional ly  "flake" type inc lus ions  a r e  observed, These may be 
assoc ia ted  with t h e  presence of uranium hydride,  cons i s t ing  of a sp ine  of 
dark p a r t i c l e s  surrounded by a brown s t a i n ,  Fig. 4. 

The presence o f  network type s t r u c t u r e ,  Fig. 5, i s  due t o  aluminium, 
i r o n  and s i l i c o n  impur i t i e s ,  
and i n t e r g r a n u l a r  bu t  on annealing give a more eu tec to ida l  appearance, The 
"netvmrkg8 can be observed i n  t h e  pol ished condi t ion  but  i s  better def ined by 
etching.  The U A 1 2  phase i s  de tec ted  by an e l e c t r o l y t i c  e t c h  (2% c i t r i c  ac id ,  
-@ n i t r i c  ac id ;  
r e a d i l y  v i s i b l e  by an immersion e t c h  i n  equal  p a r t s  of  n i t r i c  and a c e t i c  ac ids  
f o r  10-15 minutes,  

I n  c h i l l  c a s t  ma te r i a l  t hey  a r e  semicontinuous 

40 seconds with an e,m.f, of 6 v o l t s ) ,  U6Fe is  made more 

GRAIN STRUCTURE 

The g r a i n  s t r u c t u r e  of ,uranium is  best s tudied  using polar i sed  i l lumina- 
t i o n  a f t e r  anodis ing i n  a so lu t ion  cons i s t ing  of 12 g CrO3, 200 m l  H3P04 and 
50 m l  H@ t o  increase  the  g ra in  con t r a s t .  
uranium is  v a r i a b l e  and conta ins  g ra ins  of  up t o  seve ra l  millimetres diameter,  
X-ray microbeam s t u d i e s ( l 1 )  of t echn ica l  p u r i t y  uranium have ind ica t ed  t h a t  t he  
macro-grain s t r u c t u r e  a s  normally observed by microscope is  gene ra l ly  broken 
down i n t o  subgrains  with a c h a r a c t e r i s t i c  s i z e  o f  1-10 microns, and d i f f e r i n g  
from one another  i n  o r i e n t a t i o n  by only  a few degrees.  
i s  unaffected by anneal ing and can be observed under t h e  microscope, Figs.6 a 
and b, 
i n  an e l e c t r o n  bombardment furnace,  and having 
than  100 p a r t s  p e r  mi l l i on )  does not  show t h i s  f i n e  s u b s t r u c t u r e  when 
annealed, bu,t has  a c h a r a c t e r i s t i c  macro-grain s i ze  (i .e , between g ra ins  
d i f f e r i n g  widely i n  o r i e n t a t i o n )  of about 50 microns, 

The g r a i n  s t r u c t u r e  o f  c a s t  

This s u b s t r u c t u r e  

Higher p u r i t y  uranium (produced by an e l e c t r o l y t i c  rou te  and melted 
t o t a l  impur i t ies  o f  less 

The c h a r a c t e r i s t i c  coarse  macro-grain' s t r u c t u r e  of  t he  t echn ica l  p u r i t y  
u r a n i m  requ i r e s  refinement,  Experience has shown t h a t  wrinkling is v i r t u a l l y  
e l iminated by a reduct ion  i n  g r a i n  s ize  dowri t o  0.3 mm or less, i.e. by a f a c t o r  
o f  10 o r  more from t h e  normal g r a i n  s ize ,  
a reduct ion  i n  g r a i n  s ize  is implied by t h e  term "adequate refinement", 

I n  t h e  following paragraphs, such 
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Heat t reatment ,  by quenching from t h e  beta o r  g a m a  phases, does not  
r e f i n e  t h e  g ra in  s t r u c t u r e p f  t h i s  uranium except f o r  a t h i n  sur face  s k i n  o r  
through ve ry  t h i n  sec t ions .  

2.3 TRANSFORMATION CHARACTERISTICS 

Time-temperature-transformation curves have been determined d i l a t o -  
m e t r i c a l l y  on samples o f  1 inch length  and & inch diameter. 
i n i t i a l  soak f o r  30 minutes a t  72OoC vias given followed by quenching i n t o  a 
lead bath f o r  t h e  isothermal  t ransformation.  
temperature wi th in  about f i v e  seconds. 

I n  a l l  cases  an 

The specimen reached t h e  bath 

The T.T.T. curve f o r  t h e  high p u r i t y  uranium cons is ted  of a s i n g l e  loop, 
see Fig,  7. 
t h e  upper being small i n  size and apparent ly  being t h e  e f f e c t  of t h e  in t ro-  
duc t ion  of  add i t iona l  impur i t ies .  This upper loop,with i t s  nose a t  64OoC, 
extends down t o  t h e  break a t  6100C. The nose of  t h e  lower curve i s  below 
57OoC. This curve is  t y p i c a l  of t echn ica l  p u r i t y  uranium and the  changes 
induced by a l loy ing  add i t ions  w i l l  be descr ibed r e l a t i v e  t o  t h i s  s tandard 
curve . 

That of  t he  t echn ica l  p u r i t y  uranium showed two loops, Fig. 8, 

3. BINARY ALLOYS 

3 URANIUM-ALUMINIUM 

I n  t echn ica l  p u r i t y  uranium, aluminium impur i t i e s  a r s  present  i n  the  
semi-continuous network which i s  not  r e l a t e d  t o  t h e  alpha-phase g r a i n  bounda- 
ries. 
UA12  phase completely; more r ap id  t reatments  such a s  c h i l l  ca s t ing  r e s u l t  i n  
incomplete p r e c i p i t a t i o n .  
c o r r e l a t i o n  between the  amount of  network and aluminium content  can be obtained,  
Figs. 9a,  b and c. 

A gama-phase anneal and furnace cool  i s  requi red  t o  p r e c i p i t a t e  t h e  

I n  gamma-phase annealed specimens, a reasonable 

The general  form of the  equi l ibr ium diagram has been published(3). More 
d e t a i l e d  information concerning t h e  uranium-rich end of t h e  diagram up t o  
1.5 a t .  % has been obtained f o r  a l l o y s  based on t echn ica l  p u r i t y  uranium 
(Fig.  10) . 

,occurs a t  a composition of 1.4 a t .  % aluminium. The maximum s o l u b i l i t y  of 
aluminium i n  beta-uranium is  approximately 1.0 a t .  % a t  7 W C .  
evidence f o r  a eu tec to id  decomposition i n  t h e  beta  phase, t h e  s o l u b i l i t y  of 
aluminium i n  alpha-uranium being less than 0.08 a t .  %. Gamma-annealing 
followed by waterquenching  w i l l  r e t a i n  t h e  aluminium i n  so lu t ion .  
subsequent alpha-annealing a t  5 5 0 O C  t he  aluminium i s  p r e c i p i t a t e d  i n  a f i n e l y  
dispersed form which is q u i t e  d i f f e r e n t  from t h e  c a s t  network s t ruc tu re .  
occurs  wi th in  and around t h e  alpha macro-grains and a l s o  de l inea te s  t h e  s u b  
s t r u c t u r e  wi th in  t h e  alpha gra in .  

The eu tec to id  (gamma uranium t o  be ta  uranium + UA12) r e a c t i o n  

There was no 

On 

It 
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Gamma-quenching g ives  more cons i s t en t  refinement than beta-quenching 
and it i s  only l imi ted  i n  p rac t i ce  by the  tendency t o  cracking a t  h igher<  
aluminium leve ls .  
X-ray back r e f l e c t i o n  photographs,and an alpha-anneal of 15 hours a t  5 5 0 O C  
i s  required t o  complete t h e  p r e c i p i t a t i o n  process.  
obtained by quenching i s  s t a b l e  on annealing a t  temperatures up t o  550OC3 
g ra in  boundary p r e c i p i t a t i o n  i s  known t o  r e s t r i c t  g ra in  growth and t h i s  may 
be a cont r ibu tory  fac tor .  

Af te r  quenching, t he  l a t t i c e  is  s t r a i n e d  a s  evidenced by 

The f i n e  g ra in  s t r u c t u r e  

The T.T.T. diagram f o r  the  add i t ion  of p a t .  % aluminium (Fig. 1 1 )  shows 
t h e  two loops of t echn ica l  p u r i t y  uranium but t h e  temperature range of t h e  
upper loop i s  extended, t h e  shear  type of t ransformation s t a r t s  a t  lower 
temperatures and t h e  induct ion per iod i s  increased,  

3.2 URANIUM-CHROMIUM 

Uranium = * a t .  % chromium can be gra in  r e f ined  t o  a uniform equiaxed 
s t r u c t u r e  with a g ra in  s i z e  not  exceeding 0.15 t o  0.2 mm by hea t ing  i n t o  the  
beta  range followed by isothermal t ransformation a t  550°C., see Figs. 12a and 
b. Lowering of t h e  t ransformation temperature decreases  t h e  g ra in  s ize  but 
t h e  g ra in  boundaries become i r r e g u l a r ,  Fig. 13a,  and below 500°C an a c i c u l a r  
s t r u c t u r e  i s  produced, Fig. 13b. 

Uranium - 9 a t .  % chromium appears s i n g l e  phase a f t e r  isothermal  t rans-  
foxmation a t  temperatures between 500°C and 5S°C,but t h i s  i s  not  an equ i l ib -  
rium s t ruc tu re , a s  i s  evidenced by the  f a c t  t h a t  rehea t ing  f o r  12 hours a t  
550OC p rec ip i t a t ed  an un iden t i f i ed  second phase a t  the  g ra in  boundaries, 
Fig. 14. 

The T.T.T. curve f o r  the  * a t .  % chromium a l l o y ,  Fig. 15, c o n s i s t s  of  two 
loops with a wel l  defined break between them. 
a t  575OC. and i s  j u s t  above t h e  optimum isothermal t ransformation temperature 
f o r  refinement . 

The nose of t he  upper loop is  

Compared with t echn ica l  p u r i t y  uranium a considerable  degree of beta  
s t a b i l i s a t i o n  i s  obtained. 
t ransformation a t  a low temperature a t  which t h e  be ta  phase is b r i t t l e ,  and 
t h i s  i n  t u r n  leads t o  severe cracking. 

This is  such t h a t  water quenching leads  t o  

3.3 URANIUM-IRON 

The uranium r i c h  end of t he  uranium-iron equi l ibr ium system (4) (5) has 
been re-examined i n  d e t a i l  up t o  1 a t .  % using t echn ica l  p u r i t y  uranium (Fig. 
16 ) .  The maximum s o l u b i l i t y  of i r o n  i n  beta  uranium was found t o  be 0.5 a t .  
%, the  s o l i d  so lu t ion  decomposing e u t e c t o i d a l l y  i n t o  alpha uranium and U6Fe 
a t  0.2 a t .  % i ron.  
determined . The s o l u b i l i t y . . i n  t he  alpha phase was too  low t o  be 

Good g ra in  refinement was produced by water quenching from 75OoC bu t  
excess of i r o n  r e su l t ed  i n  r e t e n t i o n  of t he  beta  phase and quench cracking 
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t oge the r  with t h e  formation of massive U Fe a t  t he  g ra in  boundaries. 

f i n e l y  dispersed form on a subsequent anneal. 

i r o n  is t o  increase  t h e  induct ion period preceding t ransformation,  t r ans fo r -  
mation by shear  thus  being retarded.  
loop is  s i m i l a r  t o  t h a t  of t echn ica l  p u r i t y  metal. 

At 
lower i r o n  conten ts  t h e  i r o n  was r e t a i n e  8 i n  so lu t ion  but p rec ip i t a t ed  i n  a 

Transformation s tud ie s  (Fig. 1 7 )  i nd ica t e  t h a t  the e f f e c t  of  6 a t .  % 

The temperature range of  the uppex- 

3.4 URANIUM-MOLYBDENUM 

The add i t ion  of a t .  % molybdenum does not f a c i l i t a t e  g ra in  refinement 
on hea t  t reatment  and refinement by beta  - quenching can only be obtained i n  
t h e  t h i n  sec t ions .  The molybdenum r i c h  phase i s  so luble  i n  beta  uranium and 
can be completely r e t a ined  i n  s o l u t i o n  by 'water  quenching, Fig. 18a. 
sequent alpha-annealing causes the  phase t o  be prec ip i t a t ed  i n  a f i n e l y  
dispersed form, Fig. 18b. 

Sub- 

Where t h e  beta-alpha t ransformation occurs isothermally above 55OoC a 
well def ined lamel la r  s t r u c t u r e  i s  obtained (see  Fig,  19a)  simultaneously 
wi th  the  decomposition of t h e  beta  phase i n t o  polygonal gra ins  of alpha 
uranium by nuc lea t ion  and d i f fus ion .  
a s  t h e  temperature of  t ransformation i s  lowered, Fig. 19b. 
temperatures,  where a shear  mechanism of t r ans fo rna t ion  is opera t ive ,  the  
secondary phases a r e  p r e c i p i t a t e d  from supersa tura ted  alpha s o l i d  s o l u t i o n  
subsequently t o  t he  beta  - alpha transformation. 

This lamel la r  eu tec to id  becomes f i n e r  
A t  lower 

The be ta - s t ab i l i s ing  e f f e c t  of  the .$ a t ,  % molybdenum a l l o y  is  only 
s l i g h t ,  and water quenching an a l l o y  from t h e  beta  phase produced only  a 
shallow area  of be ta  phase on t h e  rim of t h e  specimen, 
t h i s  r e t a ined  phase occurs  a t  room temperature by a shear  mechanism, t h e  alpha 
phase growing a s  p l a t e s  and needles along seve ra l  d i r e c t i o n s  wi th in  a beta- 
g r a i n  t o  give smaller  u n i t s  of  u l t imate  alpha phase s t r u c t u r e ,  Figs. 20a, b 
and c. 

A prel iminary survey of  t h e  uranium end of t h e  uranium-molybdenum 

Transformation of 

c o n s t i t u t i o n a l  diagram has been made. A series of a l l o y s  were made by a r c  
melting t echn ica l  p u r i t y  uranium and molybdenum and t h e  structures a f t e r  hea t  
t reatment  were examined metal lographical ly .  The r e s u l t s  i nd ica t e  t h a t  t he  
s o l u b i l i t y  of molybdenum i n  beta  uranium is  b e t w e n  lo00 and 2000 p.p.m. a t  
75OoC and between 2000 and 3000 p.p.m. a t  700OC. 
uranium i s  less than  lo00 p.p.m. a t  625OC and 600°C. 
diagrams previously published (6)(7) the  present  r e s u l t s  appear t o  be more i n  
accordance with t h a t  given by S a l l e r ,  Rough and Vaughan (7). 

The s o l u b i l i t y  i n  alpha 
Of t h e  equi l ibr ium 

Dilatometr ic  work on t h e  8 a t .  % a l l o y  ( see  Fig. 21) shows t h a t  t h e  upper 
nuc lea t ion  and d i f f u s i o n  loop i s  d isp laced  t o  ve ry  much lower temperatures 
than  i n  uranium, extending down t o  45OoC, and a t  t h e  upper end being asympto- 
t i c  t o  about 620OC. 
Again t h s  tendency t o  beta  s t a b i l i s a t i o n  i s  only  s l i g h t .  

-, This i s  i n  agreement with t h e  metallographic evidence. 

. .  
I 

4 
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3.5 URANIUM-NIOBIUM 

Alloys containing less t h a n  1 atomic percent  of niobium do not  r e f i n e  
on hea t  treatment.  
ment but  causes sur face  cracking. Isothermal t ransformations i n  t h e  range 
4!X°C-5500C do not  r e f i n e  t h e  c a s t  g ra in  size,  but may be made e f f e c t i v e  by 
t h e  add i t ion  of chromium. 

With 1 a t .  % niobium gamma quenching g ives  some ref ine-  

3.6 URANIUM=SILICON 

The add i t ion  of  small amounts of s i l i c o n  promotes refinement by water 
quenching from the  beta range. 
gives  a high degree of beta  s t a b i l i s a t i o n  which i s  g r e a t e r  than the  equiva- 
l e n t  f o r  i ron.  
specimens due t o  the  high s t a b i l i s a t i o n .  
toge ther  the  s t a b i l i s i n g  e f f e c t s  a r e  roughly add i t ive ,  

Increasing the  , s i l i c o n  content  t o  0.8 a t .  % 

Quenching from t h e  gamma phase causes cracking of the  
When s i l i c o n  and i r o n  a r e  present  

3.7 URRNIUM-TITANIUM 

The uranium-titanium a l l o y s  up t o  1 atomic percent  t i t an ium were even 
l e s s  responsive than the  uranium-niobium s e r i e s  t o  the  hea t  t reatment ,s ince 
t h e  U + 1 a t .  % T i  d id  not  even r e f i n e  on gamma quenching. 
with t h e  carbon present  i n  the  uranium,altering t h e  composition and form of 
t h e  carbide without s i g n i f i c a n t l y  a f f e c t i n g  its d i s t r i b u t i o n ,  
diagrarn of t he  
67OOC (Fig. 22) down t o  t h e  onse t  of t he  lower loop a t  500°C with ve ry  l i t t l e  
v a r i a t i o n  i n  induct ion period over  t h i s  temperature range, 

Titanium r e a c t s  

The T.T.T. 
a t .  % a l l o y  shows a broad upper loop extending from about 

Uranium-titanium a l l o y s  are not  suscep t ib l e  t o  refinement by isothermal  
t ransformation but ,  as 'with uranium-niobium a l l o y s ,  may be rendered r e f i n a b l e  
by the  add i t ion  of chromium, 

3.8 URANIUM-VANADIUM 

The uranium-vanadium equi l ibr ium diagram is  reported ( 8 )  t o  be a simple 
e u t e c t i c  system with no intermediate  phases. 
so lu t ions  both decompose by eu tec to id  r eac t ions  t o  the  appropriate  uranium 
phase and a vanadium-rich s o l i d  so lu t ion .  
i n  gamma-uranium has previously been quoted a s  10 a t .  %, i n  beta-uranium a s  
2 a t .  %, and i n  alpha uranium a s  1 a t .  %. 
on a l l o y s  based on t echn ica l  p u r i t y  uranium would however suggest t h a t  t h e  , 

s o l u b i l i t i e s  quoted above f o r  t h e  beta  phase and alpha phase a r e  too  high, 
and it i s  now proposed t h a t  t h e  s o l u b i l i t y  -in * e t a  uranium a t  730°C is  less 
than  0.54 a t .  % vanadium and i n  the  alpha uranium it i s  very  much l e s s  than  
t h i s  value.  

Gamma and beta  uranium s o l i d  

The maximum s o l u b i l i t y  of vanadium 

The present  metallographic s tudy  

There i s  a s t rong  ind ica t ion  t h a t  uranium-vanadium a l l o y s  based on tech- 
n i c a l  p u r i t y  uranium a r e  r e f inab le  by standard hea t  t reatments .  
vanadium a l l o y  was re f ined  on gamma-quenching but  no t  beta-quenching3 

A 1 a t .  % 
some 
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a l l o y s  were susceptibl-e t o  beta-retent ion on gamma-quenching. 
i n  t ransformation a t  o r  near  room temperature t o  an i r r e g u l a r  a c i c u l a r  s t ruc-  
t u r e  (Fig. 23); t h i s  transformed s t r u c t u r e  i s  o f t e n  produced during t h e  
metallographic preparat ion.  The uranium & a t .  % vanadium a l l o y  i s  bes t  
r e f ined  by isothermal t ransformation a t  about 500°C i f  cracking i s  t o  be 
avoided. A form of r ap id  induct ion hea t ing  and spray  quenching i s  more 
e f f e c t i v e  i n  promoting refinement from e i t h e r  t he  gamma o r  beta  phase f i e l d s  
than  t h e  normal anneal and tank quench. 
growth of the  high temperature phase a s  a r e s u l t  of t he  sho r t e r  anneal. An 
i n t e r e s t i n g  e f f e c t  was produced i n  a 1 a t .  %vanadium al loy:  
from t h e  gamma-phase range t o  t h a t  of t he  beta  phase produced a heavy 
eu tec to id  structure with another  phase i n  the  form of needles,  (Fig. 24). 
Repeat hea t  t reatment  f a i l e d  t o  reproduce t h i s  needle type s t ruc tu re .  A 
s i m i l a r  s t r u c t u r e  has been observed i n  t h e  2 a t .  %vanadium a l loy .  Attempts 
t o  i d e n t i f y  it using X-ray glancing angle and powder techniques were not  
successfu l .  
s o l u t i o n  and i f  so,  t h e i r  occurrence must depend on the  achievement of some 
ve ry  s p e c i f i c  cool ing condi t ions  over t h e  gamma-beta t ransformation range. 
These condi t ions were presumably s a t i s f i e d  i n  the  f i r s t  hea t  t reatment  but  not  
subsequently. 
obtained i n  a f i n e  g ra in  condi t ion by c h i l l  cas t ing .  

This r e su l t ed  

This may be due t o  reduced g r a i n  

slow cooling 

I t  i s  believed t h a t ,  these  needles a re  a vanadium-rich s o l i d  

The 2 a t .  % vanadium a l l o y  i s  unusual i n  t h a t  it can be 

The upper loop of the  T.T.T. curve of  t he  2% vanadium a l l o y  (Fig. 25), 
i s  depressed by about 7OoC r e l a t i v e  t o  t h a t  of t he  base uranium, with the  
onse t  of t he  lower loop a t  about 540°C. The lower loop i s  remarkable i n  
showing below 5oo°C an induct ion period o f  about 23 seconds which does not  
va ry  with temperature. 

3.9 URANIUM-ZIRCONIUM 

Alloy add i t ions  up t o  2 atomic per  cen t  zirconium gave good refinement 
Zirconium, l i k e  t i tanium, tends t o  form on both beta  and gamma quenching. 

carb ides  i n  the  uranium, even i n  these  low add i t ion  a l loys .  
and beta  phase hea t  t reatments  do not  d i sperse  t h e  carbide but it is  poss ib le  
t h a t  t reatment  high i n  t h e  gamma-phase range may r e s u l t  i n  a f i n e r  dispers ion.  

Normal cas t ing  

4, COMPLEX ALLOYS 

4 .I URANIUM-NLOLYBDEIWCHROMIUM 

Additions of molybdenum enhance t h e  c reep  s t r eng th 'o f  t echn ica l  p u r i t y  
uranium but  t h e  binary a l l o y  cannot be r e f ined  by hea t  t reatment ,  
chromium i s  a good beta-s tabi ' l i s ing element it can be used a s  an a d d i t i o n . t o  
promote refinement. 
s ince  water quenching causes cracking of t h e  mater ia l .  Polygonal g ra ins  of 
alpha-uranium a r e  formed above 500°C whi l s t  a c i c u l a r  type s t r u c t u r e s  a r e  
produced by t ransformation between 500°C and 450°C. I n  the  more h ighly  
s t a b i l i s e d  a l l o y s ,  e.g. 3- a t ,  % Mo + 5 a t .  % Cr refinement i s  obtained a f t e r  

Since 

The t e r n a r y  a l l o y  r equ i r e s  an isothermal hea t  t reatment  

b 
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continuous cool ing a t  3°C/min. from both t h e  beta  phase and gamma phase 
temperature ranges . 
a t  6oo°C f o r  24 hours. 

There is  no observable g ra in  growth on alpha-annealing 

* 

The secondary phases were completely so luble  i n  t h e  beta  phase. The 
s t r u c t u r e  of  t he  binary 
t ransformation above 500°C and t h i s  eu tec to id  s t r u c t u r e  remained unaffected 
by the  add i t ion  of chromium up t o  % a t .  %. 

a t .  % Mo a l l o y  was completely eu tec to id  a f t e r  

. .  

The T.T.T 
9% Mo + &  C r ,  
appear through 

. curves of t h ree  of t hese  t e r n a r y  a l l o y s  have been determined: 
&% Mo + -8% C r  and & MO + & C r ,  and progressive changes 
t h e  series. 

Increas ing  a l l o y  content  widens the  break between the  loops and 

The temperature of  t h e  nose of upper loop 
remains unchanged but t h e  induct ion period increases  from 25 seconds t o  250 
seconds. 
markedly increases the  induct ion per iodsa t  t h e  r e l evan t  temperatures. Th i s  
i s  shown i n  the  curves given i n  Figs,  26a, b and c. I 

I t  is  i n t e r e s t i n g  t h a t  t he  induct ion times f o r  t h e  commencement of 
t ransformation i n  t h e  r i c h e s t  a l l o y  a r e  much g r e a t e r  than t h e  sum of the  
times i n  the  b inary  a t .  % chromium and 8 a t  . % molybdenum a l l o y s  . 
4.2 URANIIIU-CHROMIUM-IRON 

The presence of  i r o n  a s  impurity causes an increase  i n  the g ra in  s i z e  of  
t h e  uranium + h a t .  % chromium a l l o y  f o r  a given isothermal t ransformation 
and depresses  t h e  temperature a t  which an a c i c u l a r  type s t r u c t u r e  is  formed. 
The g ra in  size increases  with i r o n  content  up t o  0.34 a t .  but addi t ions  up 
t o  0.86 a t .  % appear to .have l i t t l e  f u r t h e r  e f f e c t .  I ron  addi t ions  produce 
a phase not  present  i n  the binary U + Q a t .  % chromium a l l o y  a f t e r  isothermal 
t ransformation a t  500°C, Fig. 27. 

a l l o y  is  t o  produce an ove ra l l  reduct ion of induct ion times by a f a c t o r  of 
about five. 
see Fig. 28. 

The e f f e c t  of a 0.2 a t .  % i r o n  addi t ion  t o  t h e  uranium - a t .  % chromium 

The temperature of the nose and t h e  break a r e  lowered by 50W, 

4.3 URANIUM-CHROMIUM-ALUMINIUM 

Aluminium has l i t t l e  e f f e c t  on t h e  g ra in  s i z e  of  U + h a t .  % chromium; 
a l l o y s  up t o  2000-p.p.m. aluminium h a v e , s u b s t a n t i a l l y  t h e  same gra in  s i z e  
a f t e r  hea t  t reatment  a s  the binary a l loy .  

4.4 URANIUM-MOLYBDENUM-IRON 
- .  

The presence of  i ron  is  t o  increase  t h e  s l i g h t  beta s t a b i l i s i n g  e f f e c t  
of  t he  mo1ybdenum:and t h e  combined e f f e c t  is  more than addi t ive .  
addi t ions  of i r o n  do not  a f f e c t  t h e  s t r u c t u r e  of t h e  uranium - 
molybdenum a f t e r  t ransformation and the  s t r u c t u r e  s t i l l  appeared t o  be of 
eu tec to id  composition. 

Small 

The secondary phase of t he  8 a t .  % Mo + 5 a t .  % 

a t .  % 
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Fe a l l o y  was completely so luble  i n  ’beta uranium and could be r e t a ined  i n  
s o l u t i o n  by quenching, 

4.5 URANIUM-SILICON-IRON 

An a l l o y  containing small  addi t ions  of i r o n  and s i l i c o n  has been observed 
t o  transform a t  28OoC a f t e r  beta  t reatment  apparent ly  by a shear  mechanism; 
i n  some g ra ins  shear  took place along only one major d i r ec t ion ,  
ing  alpha g ra in  s i z e  was of s i m i l a r  shape and s i z e  t o  the  parent  beta  gra in ,  
Figs ,  29a, b and c. 
whether shear  is poss ib le  along a s i n g l e  or mult ip le  d i r e c t i o n s ,  I n  s i n g l e  
d i r e c t i o n  shear ,  r e s t r i c t i o n  of t h e  beta  phase g r a i n  s ize  by a l loy ing  or 
s h o r t e r  hea t  t reatments  a t  temperatures low i n  t h e  beta  phase range should 
he lp  t o  l i m i t .  t h e  u l t imate  alpha g ra in  s ize ,  

The r e su l t -  

The t ransformation temperature appears t o  govern 

5. DISCUSSION 

I n  d iscuss ing  t h e  da t a  summarised i n  t h e  preceding sec t ions  of t h i s  
paper it is  not  proposed t o  consider  t h e i r  app l i ca t ion  t o  t h e  design of 
improved f u e l  elements or t h e i r  e f f e c t  on proper t ies .  
t o  consider  t h e  grain-refinement resul ts  a s  a whole t o  t r y  t o  e s t a b l i s h  
general  t r ends  i n  t h e  s t r u c t u r a l  e f f e c t s  produced by a l loy ing  uranium. 

Rather it i s  proposed 

I t  has been shown f a i r l y  convincingly (9) t h a t  t he  mechanism of t rans-  
formation i n  pure uranium i s  a shear  type,  The expression ‘shear type’ is  
taken t o  mean t h a t  a daughter alpha g ra in  i s  nucleated by a shear  process 
involving t h e  co-operative movement of l a t t i c e  planes,  an o r i e n t a t i o n  r e l a t i o n  
thus  being formed between parent  and daughter gra ins .  
may then  grow e i t h e r  by a cont inua t ion  of t h e  shear  process,  or by d i f f u s i o n  
or both combined; 
one of shear  alone. 

The r e s u l t i n g  nucleus 

a t  low temperatures t h e  process would be expected t o  be 

The ease  with which a co-operative shear  movement can occur i s  well 
known t o  be marked1y”decreased by the  presence of impuri ty  atoms,thus it i s  
not  unexpected t h a t ,  i n  t h e  present  work, t h e  shear  mechanism is  re ta rded  
g r e a t l y  by r e l a t i v e l y  small  addi t ions .  The d i f f u s i o n . r a t e  however w i l l  be 
l a r g e l y  unaffected by the  presence of  fore ign  atoms a t  these  low concentra- 
t i o n s  and t ransformation by d i f f u s i o n  can be expected t o  play an increas ingly  
l a rge  p a r t ,  a t  t h e  expense of  t h e  shear  mechanism,as t h e  a l l o y  content  
increases  , 

The work of White(”) on t h e  s e r i e s  of  chromium a l l o y s  and the  present  
TTT work, i nd ica t e  t h a t  t h e  lower loop of a double loop TTT diagram may be 
i d e n t i f i e d  with t h e  s i n g l e  loop of pure uranium, i.e. t o  correspond t o  t rans-  

t o  a nuc lea t ion  and d i f f u s i o n  process and t h e  equiaxed na ture  o f  t he  g ra in  
structure-produced by t ransformation a t  upper loop temperatures confirms t h i s .  
The loop a r i s e s  from the  product of two f a c t o r s ,  a nucleat ion term which 

.formation by shear.  The upper loop i s  of t he  form well known t o  correspond 
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increases  a s  temperature decrpases and a d i f fus ion  term which increases  a s  
temperature increases .  In  the  lowest p a r t  of t h e  loop, a mixed ac icu lar /  
equiaxed s t r u c t u r e  ob ta inswhich  can be taken t o  confirm the  view t h a t  
nucleat ion,  now pro%eeding beyond the  submicroscopic  s tage ,  i s  a shear  
process,  
d i f fus ion  growth r e s u l t s  i n  t h e  development of numerous small  equiaxed gra ins .  

A l l  t h e  a l loy ing  addi t ions  s tud ied  tend t o  depress  the  t ransformation 
temperature a t  any spec i f i c .  cool ing r a t e  and t o  reduce t h e  r a t e  of t rans-  
formation,but t h e i r  e f f i c i p c y  i n  these  r e spec t s  v a r i e s  widely, Chromium 
has a very  marked e f f e c t  while molybdenum i s  l a r g e l y  i n e f f e c t i v e  when added 
i n  s i m i l a r  proport ions,  

,of t h e  equilibFium diagrams: those e,lements which e x h i b i t  a marked change i n  
s o l u b i l i t y  across  a phase change, Fe, S i ,  Cr, f o r  example,have a much g r e a t e r  
e f f e c t  than  those s t i l l  p a r t i a l l y  so luble  i n  the  lower temperature phase such 
a s  Mo and Nb, 
es tab l i shed .  

A t  s l i g h t l y , h i g h e r  temperatures,  t he  high nuc lea t ion  r a t e  and slow 

\ 

Some gene ra l i s a t ion  i s  poss ib le  from a cons idera t ion  

No + a n t i t a t i v e  r e l a t ionsh ip  on t h i s  bas i s  has yet been 

I f  t he  e f f e c t s  of t h e  impurity on the  uranium l a t t i c e  a r e  such a s  not  t o  
i n t e r f e r e  very  g r e a t l y  with t h e  shear  mechanism, t h e  shear  i s  not  c l e a r l y  
separated from t h e  nucleat ion 'and d i f fus ion  loop, 
ob ta in  i n  an equiaxed condi t ion the  f i n e  g ra in  s t r u c t u r e  which forms below 
the  upper nose, s ince  t h e  shear  process takes  p a r t  i n  t h e  g ra in  growth, 

I t  i s  then impossible t o  

The conclusion t o  be drawn, t he re fo re ,  i s  t h a t  i f  t h e  .TIT curve has 
reasonable separa t ion  between t h e  two loops, then an isothermal t ransformation 
a t  a temperature j u s t  below t h e  nose of t he  upper loop w i l l  produce equiaxed 
refinement a s  discussed above, 

Su i t ab le  refinement by quenshing from a higher  phase c l e a r l y  cannot 
r e s u l t  from a d i f fus ion-cont ro l led  growth of t he  nuc le i .  This  is r e f l e c t e d  
i n  the  f a c t  t h a t  t h e  s t r u c t u r e s  obtained have an i r r e g u l a r i t y  not  present  i n  
diffusion-ref ined a l loys .  
of  the gamma quenched U-1 a t .  % V a l l o y  ( F i g .  23) w i t h  t h a t  of the isotherm- 
a l l y  t r e a t e d  U* a t ,  % Cr a l l o y  (Fig,  12b). 
t o  be t h a t  a la rge  number of nuc le i  f o n , a n d  each can the re fo re  grow only  a 
small  amount, The s t r u c t u r e  i s  highly s t r e s s e d  and an anneal,  i n  add i t ion  
t o  re lax ing  s t r e s s e s ,  allows a small  amount of d i f f u s i d n  t o  occur which 
'rounds o f f '  t h e  gra ins ,  I n  high p u r i t y  uranium, annealing r e s u l t s  i n  
r e c r y s t a l l i s a t i o n  and produces an equiaxed s t r u c t u r e ,  When t ransformation 
i s  by shear  and d i f fus ion  simultaneously t h e  system proceeds d i r e c t l y  t o  a 
s t r e s s - f r ee  condi t ion,  and no 'rounding o f f *  then occurs. 
ing  t o  give adequate refinement it i s  e s s e n t i a l  t o  have some depression of 
t h e  t ransformation temperature; 
within the  shear  loop will not  s u f f i c e .  The-TTT curves a d the  quenching 
r e s u l t s  support  t h i s  view, although t ransformation times c ns iderably  s h o r t e r  
than  those determined a r e  more r e l evan t  t o  beta-quenohing 
t h e  diagram shows no s t a r t  of t ransformation i n  10 seconds a t  about 400OC 
beta  quenching can be expected t o  be e f f e c t i v e ,  
i s  so delayed t h a t  it occurs a t  temperatures near  t o  atmos 
s i z e s  may be obtained and quench cracking commonly occurs 
Mo + a t .  % Cr,Fig, 26 ( c ) )  , Cracking results from t h e  resses which a r e  

This can be seen by comparing the  micro-structure 

The reason for refinement seems 

For beta  quench- 

t ransformation a t  a hkgher temperature even 

ondi t ions;  where 

I f  howev r transformation 
e r i c ,  l a r g e r  g ra in  
.go u + 9 at.% 
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-produced by volume changes i n  the  t ransformation occurring a t  a temperature 
where both beta  and alpha uranium a r e  r e l a t i v e l y  b r i t t l e .  
i ng -apprec iab le  de lay  i n  s t a r t  of t ransformation t o  r e l a t i v e l y  low tempera- 
t u r e s  the re  i s  t h e  p o s s i b i l i t y  of g ra in  refinement i n  the  intermediate  cool- 
ing r a t e s  assoc ia ted  with c h i l l  cas t ing .  This was t h e  case f o r  U-2 a t .  % V  
( see  Fig. 25) , 

With a l l o y s  s h o w  

I n  complex a l l o y s  a major item of interest  is  whether t he  e f f e c t s  of  
ind iv idua l  elements can be more than  addi t ive.  That t he re  i s  i n t e r a c t i o n  i s  
very  c l e a r ,  a s  i s  shown by the  f a c t  t h a t  t he  de l e t e r ious  e f f e c t  of i r o n  i n  
t h e  chromium 8 a t .  % a l l o y s  i s  counteracted by aluminium and by t h e  markedly 
cumulative e f f e c t  of  chromium and molybdenum, The l a t t e r  i s  p a r t i c u l a r l y  
s t r i k i n g  i n  view of t h e  very  small  e f f e c t  produced by Mo alone and t h e  
s i m i l a r i t y  t o  t h e  e f f e c t  of  t hese  elements i n  combination i n  steel t reatment .  
The v a r i a t i o n  i n  behaviour from one addi t ion  t o  another , together  with the  
t o o  l imi ted  data,make it impossible t o  e s t a b l i s h  a general  r u l e  on which t o  
p red ic t  behaviour, 

For c e r t a i n  purposes t h e r e  may be l i t t l e  t o  choose between d i f f e r e n t  
a l l o y s  on a bas i s  o f ,  say,  physical  and mechanical properties,and the  choice 
i s  then one based on convenience i n  production. Where the  choice i s  between 
an a l l o y  responding t o  d i r e c t  quenching aga ins t  one requi r ing  isothermal  
t reatment ,  t h e  l a t t e r  has a number of  advantages:. 

(1) 

( 2 )  

The f i n a l  product achieved i s  under c lose  cont ro l ,  

The hea t  t reatment  i s  l i t t l e  a f f ec t ed  by f a i r l y  l a rge  amounts of 
o t h e r  impur i t ies ;  
enr iched or recycled metal ,  

The product is  usua l ly  i n  a s t a b l e  condi t ion,  and p r e c i p i t a t i o n  i s  
complete or can be completed i n  the  same process by extending 
t h e  t ransformation time allowed. 

t h i s  may be p a r t i c u l a r l y  usefu l  i n  handling 

(3) 

Against t h i s , t h e  process i s  slow and r equ i r e s  more'complex equipment than 
a d i r e c t  quenching t reatment .  

I 

. .  

\ 

. .  - . . . .-. . .__ .'. ..- . F. . 
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Fig. 1. F i g .  2. 
Complex cuboids, UC with subsidipry 
oxide ~ n d  n i t r ide .  Etched 5@$ HNO 3' 

Globulpr UO ( l i g h t )  and cubic UC 
inclusions (black). Etched 50% HNO 

(X550) 3' (X550 1 

F i g .  3. F i g .  4. 
Uo2 inclusions (dark) ,znd UO 

inclusions ( l i g h t )  (X550) 
"Flake" type inclusions,  ,probably 
uranium hydride. (X5OO) 

Fig. 5. 
Typical network s t ruc tu re  i n  
uranium. E lec t ro ly t i ca l ly  etched 
i n  n i t r i o - c i t r i c  acid mixture. 

(X550) 
. - ... 



FIG. 7 T.T.T. DIAGRAM OF HIGH PURITY URANiUM 

TIME (SECONDS> 2'. L l  'd 
U'.. 

FIG.8 T T.T DIAGRAM OF TECHNICAL PURITY URANIUM. 
2 2  
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Fig., 6a 

Typical macrograin i n  uranium 

Fig. 6b. 
The 3me gra in  displaying sub- 

s t ruc tu re ,  revealed by ro t a t ing  the 
specimen. (Polsr ised l i g h t ) ,  (X300) 

Fig. 9a. 
Uranium + 0.65 at.$ Al, gama- 

amealed' and furnace cooled. (X250) 

Fig. 9b. 
Uranium + 0.83 at.$ 4.1, same 

treatment.  ( ~ 2 5 0 )  

Fig. 9c. 
Urmium'+ 1.00 at.% Al, same 

treatment.  ( ~ 2 5 0 )  
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RANGE EXAMINED 
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I T.T.T. DIAGRAM OF URANIUM + ;i AT. "lo ALUMINIUM. FIG.II 
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Fig. 12a. Fig. 12b. 
Alloy as above, isothermally transformed 
at  550 C. ku iaxed  structure. (x35) 

1 

uranium + k ate % Cr, cast* (' 35)  

3g. 13a. Fig. 13b. 

Uranium at.  % Cr, Acicular structure uranium + $ at* % Cr, T~ansfomed at  
550 C and reheated t o  500 C for12 
hours. Etched in nitric-citric acid, (noo) 

Fig. 14. 

Uranium t-5 at.  $ C r ,  transformed a t  
500 C. Irregular structure. 
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\ FiQ. 18a. Fig. 18b. 
U r m i u m  + 1,Q at .$  Mo. ';!ater- AS &ov$, annee led  a t  550°C 

quenckied from 720°C. Ztched. (X550) f o r  1 hour. 3 t c k d .  !X55O) 

Room temperature transformation of the  beta phase of a 
U-Mo alloy: 

Fig. 20a. Fig. 20b. 

Trensfomvtion t o  alpha phase pro- 24 hours e f t e r  quenchixg. (Xl5O) 
ceeding along severa l -d i rec t ions  ' 
i n  the  be ta  grain.  20 hours after 
quenching. (X150) 

. 

Fig. 20c. 
Complete t r s n s f o n a t i o n  of the  beta 
grs i n . .  (X150 ) 

. . I. -- 
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FIG.2 1 
THE T.T.T.DIAGRAM O F  URANIUM + AT. 
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FIG. 22 
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Fig. 19a. 

Uraniun + 1/2 et.% 140. Isother-  
mally transformed a t  6 0 0 O C .  Etched. 

(X550) 

Fig. 23. 

Uranium + 1 at.% V, gaama-quenched. 
Etched e l ec t~ ro ly t i ce l ly .  (X 35) 

- 22 - 

Fig. 19b. 

Same alloy. I so themel ly  t rans-  
formed at 550°C. Etched. (X550) 

Uranium + 1 at.$ V, slowly cooled 
from 9 0 0 O C .  Etched e lec t ro ly t ica l ly .  

(X3W ) 
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FIG.2- 

T.T.T. DIAGRAM OF URANIUM + 8 AT 010 MOLYBDENUM 

+$  AT O/o CHROMIUM 
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FIG. 2&b) 

T.T.T. DIAGRAM OF URANIUM + $ AT.% MOLYBDENUM 

+ AT. O 4  CHROMIUM. 

. TIME (SECONDS) 

FIG.26k)TTT. DIAGRAM OF URANIUM + AT. O/O MOLYBDENUM 

+ t  AT, '10 CHROMIUM. 
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THE TTT DIAGRAM OF URANIUM + 2 AT. Ojo VANADIUM 
FIG. 
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Fig. 27. Fig. 29a. 

Urpnium i 1/2 a t .  % Cr' i 0.85 a t .  
% Fe, tre-qsformed a t  50C.OC. Etched 
i n  n i t r i c - c i t r i c  acid. (X4OO) 

Incomplete t r a  ~i.sform>tion e f t e r  
5 rninu'ses ;:t 28C)OC. Alpha phasi 
forming ?long one major dirpction. 

(Q50) 

Fig. 29b. Fig. 29c. 

After  10 minutes a t  S€?O°C. Trans- 
f o r m t i o n  almost complete. formztion complete. 

. After 25 minutes a t  280°C. Trans- . 




