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"Ideal" Directly Executed Languages:

An Analytical Argument for Emulation

Introduction:

In a broad sense, any computer system evaluates user-written (or

source language) programs in two distinct phases.  First, a user program

is  translated  into an "equivalent" program  in some intermediate language

during an initial translation phase.  The resulting program then becomes

a   "surrogate"   for the original user program, being executed  in its place

as often as desired, over any number of subsequent interpretation phases.

In real systems, there are usually several "levels" of intermediate   lan-

guages involved in the translation phase (e.g., "parse-tree code" emitted

by a syntactic scanner, "object code" emitted by a compiler, "relocatable

code"   emitted  by a linkage-editor, and finally the nnachine code" emitted

by  a  loader) . Similarly, there  may   also be multiple "levels" involved  in
an interpretation phase (e.g., the microprogrammed CPU of a model 65 emu-

lating a 360-machine which is executing a 360-code program that is inter-

preting a LISP source program).

In this paper, such complex computing systems are abstracted into

"Two-Phase Processing Systems, " in which all translational processes are

composed into a single compiler component, and all interpretational pro-

cesses are incorporated into a single emulator component.  Any combina-

tion of a source language and base machine defines a Family of Two-Phase

Processing Systems where:

I:     Both the compiler component and the emulator camponent

of any member of a given Family are, in a general sense,
pr6grams which will run on the common base machine of
that  Family.

II: The input medium for the compiler component of any mem-
.I.....

ber of a given Family must be the common source language
for that Family, while its output medium must be an in-

termediate language which also serves as the input medi-
um for the emulator component of that member.

The intermediate languages mentioned in property II are called "Directly
Executed" languages, or DELs for short, since they are the lowest "level"



into which user programs are translated in their entirety prior to inter-

pretation.  Constructing a good Two-Phase Processing System, given a par-

ticular source language and base machine, can be considered as equivalent

to selecting a superior member of the Family defined by that source lan-

guage and base machine.  If the DEL of such a superior member could be as-

certained, then the design of a compiler and emulator for a good system

would be constrained both by the given source language and base machine,

and  by the chosen  DEL.      From this viewpoint,   it is clear   that a rion-triv-
ial emulator will be required iff some language other than that accepted

by the given base machine is selected as the DEL for the final system.

There are many arguments for using a non-trivial emulator to eval-

uate the DEL surrogates of user programs.  For example, it is often stated

that monitoring facilities, automatic error recovery, and dynamic resource

reconfiguration are easier to implement if the interpretation phase mecha-

nism is not completely "hardwired. " Such claims are relatively easy to  es-
tablish on a theoretical basis, but it is the author's opinion that the im-

plementation of these facilities is often not followed through, or at least

that they are seldom actually used by an average source language programmer.

In practice, however, those systems whose DEL has been "tailored" to

a specific combination of source language and base machine show significant

reductions in the space and time required to evaluate user programs (see

[Weber 67], [Abrams 70], [Tucker and Flynn 71], [zaks 71], and [Wortman 73]).

The important observation here is that the choice of DEL is a critical fac-

tor in determining the potential efficiency of any system.

Objective:

Our intent is to analyze the process of interpretation and determine

those technological conditions under which the use of a non-trivial emula-

tor will enhance the performance  of a Two-Phase Processing System.     The

analysis is couched in terms of a search for an "ideal" DEL within a given
Family. This "ideal" DEL would allow the use of minimal overall space and

time in evaluating a typical user program.  There are two obvious choices

for such an "ideal" DEL: the given source language (SL), and the language
accepted directly by the given base machine (ML).  We will show that there
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exist currently plausible technological conditions under which neither SL

nor ML is "ideal" (and hence that the further study of DELs is justifiable

on the basis of space-time considerations alone, without resorting to less

"tangible" arguments) .

Initial Assumptions:

It may be observed pragmatically that user programs are easier to

develop in a "high level" language, while emulator programs are more ef-
ficient when "microprogrammed. " There fore,   we will restrict our atten-
tion to Families of Two-Phased Processing Systems which are constrained

by "high level" source languages and "microprogrammable" base machines.
For our purposes, a "high level" source language is a user-oriented

language whose programs are finite strings of characters, organized into

a physical sequence of syntactic units called "statements," where:

i:           A virtually unlimited  number of symbolic "names"
(e.g., strings like the ubiquitous 'TEMPl ' and
'TEMP2') may be used to identify program variables.

ii: Arithmetic expressions may be written in the tra-
ditional parenthesized hierarchial infix-operator
notation (e.g., as in high school algebra).

iii: The logical sequence of the statements in a source
program may be defined in a "structured" way, using
a few basic constructs (e.g., IF-clauses, DO-loops,

and PROCEDURE-blocks) to build up arbitrarily com-
plex control structures.

A   "microprogrannable" base machine   is a sequential, instruction-

driven device where:

i': There are two levels of addressable memory: (a) Con-
trol   Store,    a "fast memory" whose cycle   time   t   is
less than or (more often) equal to the primitive cy-
cle time of the base machine, and whose access width
wc is at least as large as the width wu of a typical
base machine instructi6n; and (b) Main Store, a ."slow
memory" whose cycle time R·t is usually much longer
than t, and whose access width ill!1 is usually no great-
er than ws· Control Store is usually more costly per

'                          bit than Main Store (since it is typically both widor
and faster), and hence we will also assume that (c)
the size of Control Store is small in comparison with
the size of Main Store (due to economic considerations).
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ii':   Each ML (or micro) instruction (a) contains the same
number of bits:  some of which (b) specify a set of
primitive operations by directly controlling key

"gates" within the execution resource s   of   the   base
machine (these bits form the "op-code" field of a
MI, instruction); and some of which (c) are the ad-
dress(es) of logical successor instruction(s) (these
bits   form the "sequencing" field( s)   of  a ML instruc-
tion).

iii':  Several ML instructions are required in order to du-

plicate the effect of individual, frequently used,
source language operators.

Finally, we are primarily interested in comparing the space and

time required to generate and interpret various forms of DEL code.  In

order to focus in on the pertinent factors, we will also assume that:

*: All DEL surrogates for.a given source program q use the-

same general "algorithm" as q; and in particular, the
storage of program variables (with respect to the size
and placement in memory of their values) will be the
same for any two surrogates for q.

9
SL & DEL:

It is easy to show that SL is not an "ideal" DEL from the stand-

point of program size (a measure of the space required during an inter-

pretation phase). Merely replacing the long symbolic "names" allowed by

1 with well-chosen binary encodings (see below), and replacing the arith-

metic expressions allowed by  i with functionally equivalent "parenthesis
free"  forms (e.g., translating into Polish Suffix), will substantially

reduce the size of a typical SL program.

It is also easy to show that SL is not an "ideal" DEL with respect

to interpretation phase time.  We need only consider the problem of asso-

ciating values with program variables.  There are, in general, far too

many potential symbolic names allowed by l to be able to "pre-assign" a
unique storage cell to each possible name (BASIC may be an exception here);

hence finding or changing the value of a symbolically identified variable

is an inherently indiredt operation.  Replacing symbolic names with binary

encodings which are, in fact, the appropriate cell "addresses" (or are

easily converted into .the correct addresses by simple arithmetic opera-

tions) will eliminate one table look-up per access of a program variable
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during execution.

Assumption iii strengthens this point, both from a space and time

standpoint, since each invocation of a PROCEDURE block can alter the

correspondence between symbolic names and storage cells (as explained by
the Contour Model, [Johnston  71 ] ) . Careful choice of "address formats "
can eliminate an entire level of indirectness in accessing variables  ( "in-
directness" measured in terms of accesses to memory),   and  also can obviate
the need to maintain dynamic, run-time symbol tables (e.g., by using an

implied "base register" to duplicate functions of the Contour Model "environ-

ment pointer'I) .
Note that it is also faster to evaluate a "linearized" expression,

where operators are all treated uniformly (e.g., as in Polish Suffix)

than it is to evaluate the equivalent, parenthesized, hierarchial, infix-

operator expression (as in 1-1).  This is discussed briefly in [Lawson 68]:

having "to scan to locate each instruction and prepare it for execution
is hopelessly inefficient"  (p.  477).

If we also assume that

iv:  the DEL surrogate for a typical source program will be

evaluated several times (or, equivalently, that it con-
tains a "loop" which will be traversed several times in
a single evaluation)

then SL will not be an "ideal" DEL with respect to the overall space and
time needed to evaluate a typical source program; even though it would re-

duce the compilation phase space and time to an absolute minimum.

?
PIL = DEL:

Using similar arguments,    it   is    easy   to    show   that   ML   is   not an "ideal"

DEL with respect to either program size or compilation phase time from

assumptions i' through  iii'. For instance, since several ML instructions
--

are required to implement some individual SL operators (iii'), we could

obviously  find  a more length-minimal encoding  for ML surrogate programs.

Further, the space and time required during the translation phase in order

to make efficient use of the parallelism in ML instructions (ii'b), or to

allocate specific base machine resources to symbolic SL variables, is

clearly much greater than that required to translate SL programs into the

-5-



encoded Polish Suffix mentioned above.

It might seem reasonable, however, to speculate that ML will always

be  an  "ideal"  DEL  from a standpoint of interpretation phase  time.     If we

value reductions in execution time highly enough (as implied by assumption

1v),  then N[L would be a ca.nnonical "ideal"  DEL  for  all the systems under

consideration,   and our search  for an "ideal" DEL would  be  over.

Let us consider a hypothetical system which uses ML as its DEL and

where source language and base machine satisfy l through iii', as illus-

trated in figure 2.  While its emulator may indeed be trivial, its compiler,

uC, is likely to be eminently non-trivial.  Since there are few such com-

pilers currently in existence, we will describe only the properties of the

output of uC, rather than delving into its inner workings.  In the follow-

ing,  let  q  be a "typical" source program,  and  u  =  uC(q)  be  its ML surrogate.

Attributes of u:

One basic attribute of u is that it is "dynamically short" (i.e.,

more instructions would have to be executed in order to evaluate any other

"equivalent" ML program).       It   is well hown, however,   that in general,

the shortest possible program cannot be produced by any deterministic mechan-

ical method.  What we have actually assumed here is that u is the 'rbest

that   can  be done" within the current state-of-the-art.      In a practical sense,

this means that each operation in q is simulated by an in-line "open sub-
routine"   in  u.   and  that the interface between   any two logically adjacent

"open subroutines" has been optimized, at least with respect to redundant

data transfers.

On the other hand, another important attribute of u is that, in gen-

eral, it is statically long, in the sense that it will "fit" within the

Main Store but not within the Control Store.  Essentially, this Situation

results  from the limited  size  of the Control Store (assumption &1(c))  and
the  fact that "programs  tend to expand  to  fill the memory available. "    As

we will see, it is also the primary reason that u may not be the "fastest

possible" surrogate for q.

Methods of Evaluating u:

Even though u cannot be stored entirely within Control Store, there
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are still several possible methods that might be partitioned into two parts:
one part in Main Store and one part in Control Store.  Individual instruc-

tions would be executed directly out of the memory in which they were stored.

In general, the placement of u itself might even be reorganized dynamically
to achieve "optimal" execution times. However,   we will consider   only   two
representative methods of evaluating u:

Method A: The direct evaluation out of Main Store: U is
stored entirely within Main Store and is evaluated
by fetching individual instructions directly out
of Main Store (one at a time) and executing them
within the internal resources of the base machine.
There is no dynamic reorganization of the place-
ment of u in this method.

Method B: The indirect evaluation out of Main Store:  u is
initially stored entirely within Main Store, but
is evaluated by fetching "segments of u" from Main
Store into Control Store upon demand, executing
as many individual instructions as possible direct-
ly out of Control Store in between demands for new
segments (called faults).

Now, since Main Store and Control Store have different physical char-

acteristics, the time in between the execution of individual instructions

could vary from Method A to Method B.  In order to compare these methods,
we must assume that

iv': the effect of executing a sequence of instructions
from u is not affected by arbitrary time delays
between the execution of individual instructions in
that   sequence ;    i.e. ,   no "time dependent "     code   is
generated by uC.

Actually, it is much easier in practice to generate "time independent" code
than it is to generate "time dependent" code which will be correct for any

possible input.  Assumption iv' also appears to be reasonable in light of
the   fact   that   such "time dependencies" would   eith  have   to be fielded   dy-
namically at a fault, or anticipated by uC in order for Method B to be a

viable alternative.

Under these assumptions, let us form an estimate of the execution

time required by each of these methods.  For comparative purposes, we will

focus on the time required to fetch and execute instructions and ignore the
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time needed to access data.  This is an acceptable practice under assumption

15 which assures us that the general algorithm, data storage techniques,

and hence the time needed to access data values will be constant over all

of the methods under consideration.

Time Estimate for Method A:

In this method, u is stored entirely within Main Store, and indi-

vidual ML instructions are fetched and executed, one at a time and in the

proper sequence, directly out of Main Store, as illustrated in figure 2.

The time needed to fetch an ML instruction may be estimated as [wu/wm]·R·t,

where:

wu is the width of an ML instruction (a constant by ii'(a));

wm and R·t are the width and cycle time of Main Store respec-
tively  IE in  &1(b) ) ;

and    [wu/wm] is just wu/wm if the base machine uses "instruction
buffering" and "branch anticipation" (see [Tucker and Flynn 71]),
or is the least integer not less than wu/wm if it does not use
these techniques (denoted by [wu/wml).

Let #u be the total number of ML instructions which must be fetched

and executed during the evaluation of u, and denote the jt!3 ML instruction

so fetched and executed as uj (for j = 1, ...,#u).  Then the total time
needed to evaluate u using Method A is given by:

#11

TA·t  = ' --( [w,4wm] .R  +  e )·t  =  #u· ( [wu/wri] ·R  +  E)
·t, where:

j=1

fjit denotes   the time needed to
execute   u     that   is   not    "over-

lapped"  with a memory access;

and E= (el  +  . . .  + e#u)/#u is
the "dynamic average" execution time

for   a AL instruction.

If the base machine employs an "overlap" logic (i.e., fetches u    in
j +1

parallel with the execution of u.), then E is likely to be close to zero;3
otherwise E is likely to be close to one (although it may assume other val-

ues depending on the architechture of the base machine).
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Time Estimate for Method B:

As illustrated in figure 3, in this case there are two nested 'loops'

which are iterated several times during a single evaluation:  an 'inner

loop' (steps [1], [2a], [3]; [1], ...), during which ML instructions are

fetched directly out of Control Store for execution; and an 'outer loop'

(steps [1], [2b], 'inner loop'; [1], ...), in which fresh segments of u

are brought from Main Store into Control Store so that 'inner loop' pro-

cessing may continue. The dynamic ML instruction stream executed during

'inner loop' processing should be the same as in Method A, since u itself

is unchanged.  This time, however, we denote an individual instruction uj k

in this stream by using a "double subscript" that indicates the 'outer

loop' and 'inner loop' iteration in which it is executed.  The 'outer loop'

index, j, runs from 1 to #f (the total number of segment transfers, or

gaults). The index for the 'inner loop' contained in the jtll iteration of
the 'outer loop,'  k,  runs  from 1  to #uj (the total number of ML instruc-

tions fetched from Control Store between   the   jtll  and   j +1 st. faults).
Note that #u = #ul +. . . +#U#f by iv' (and the definition of u); and

that the "faults" referred  to  in this section  deal  only with instruction

fetches and not data fetches. The time needed to access data will be the

same for any of the methods under consideration and therefore may be safely

excluded from these comparative time estimates.

The  time  used  in  the  jih ' outer loop' iteration, excluding  the  time

used within its nested 'inner loop' (calculated below), will be:

($ j + [ws j/wml ·R + [ws ' j/wml . R) 0 t where:

111 denotes the time needed to determine where the segment
causing the jta fault is located in Main ·Store and where it
should be placed in Control Store (i.e., the decisional "cost"
of the jtll fault);

wsj denotes the. width of the segment to be moved from Main
Store to Control Store;

and  ws'j denotes the combined width of any segments which must be
moved from Control Store to Main Store in order to make roam
for the new segment.

Since this discussion centers on instruction streams rather than data

-9-
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streams, it seems reasonable to assume that no changes are made to seg-
ments while they are in  Control Store, and hence that new segments may

overlay old segments with impugnity.  Under this interpretation ws'j will
be zero.

If we further assume that.all segments are the same size (i.e.,

"pages" in Denning's terminology), then a simple cyclic replacement algo-

rithm may be used at each fault.  In this case wsj=ws, a constant for all

j, and $j need only account for the time needed to calculate the starting

address of the required segment.  This may be accomplished using a simple

mask-and-shift operation followed by a look-up in a "memory-map" table and

an addition; hence we estimate $j=$J=3.  This estimate is based on the

assumption that there is sufficient parallelism in the ML instruction set

so as to allow table updates to be effected during the transfer of the new

segment.
th

The time used within the j-- 'inner loop' may be expressed as:

 ij($4  6  +  [wu/wc]  +  e'. 1')·t, where:
Z       J  A 3,-
k=1

*i,kd denotes   the time needed to determine whether  the  ML  in-
siruction "next to be fetched and executed" (i.e., the logical
successor  of  u ·  &)   is   on a segment currently in Control Store,
or whether a f lit has occurred (in which case the successor of
Uj,k  would be denoted   uj +1,1  ;

[wu/wc] ·t is the time needed to fetch u from Control Store,j,k
as above;

and    el k't is the "unoveriapped" time required to execute uj,k (again,
n8fethat ej,k is usually one for simple base machines and zero
for complex base machines.

It  can be argued  that  $ . . (the "time-cost" of calculating  the  loca-
3'K

tion of the logical successor for u . 1,) should be a constant for all j  and
3,A

k.      Typically, the "virtual address"   of   the  next ML instruction is masked-

and-shifted (one or two t), the result used as an index in a table look-up

(using one t, if the table is kept in Control Store), and then the table en-

try is examined for a fault indication and perhaps combined.with previously

masked-out bits to form the "true address" of the next ML instruction.  We

estimate $. k=$K=3 as a minimal value, but note that this figure may be low
3,

-10-
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(for instance, some of the schemes presented in [Denning 70], pp. 162-163,

would clearly require several primitive machine cycles in order to generate

a "true address"  from a "virtual address").

The total time needed to evaluate u using Method B can be expressed

as a sum of the 'outer loop' and 'inner loop' time estimates derived above:

#f                  #uj

TB·t - -($J + fws/wml ·R +  (* + [wu/wc]  + e'    ))·tj,k

j=1                              k=1

(or more concisely as:

TB t = #f ($J +  [ws/wml R)  t + #u'($K +  [wu/wc]  + Et)·t

where E' is the average value of the ef  ).
J,k

S[, 0 DEL 0 ML:

Now consider a Two-Phase Processing System which uses the same base

machine to evaluate programs in the same source language, but which employs

a different DEL, V, where SL /V 0 ML.  Such a system must contain both a

non-trivial compiler, vC, and a non-trivial emulator, vE.

Let q be a typical SL program, as before, and v = vC(q) be the V sur-

rogate   for q. Whereas   u  is a sequence   of 5-line   Eaa E- subroutines,   v   is
merely a sequence of I. instructions.  During an interpretation phase, these

V instructions are processed, one at a time in logical order, by the emula-

tor vE as follows:

vE determines the address of the next logical instruction
in v to be processed;

thvE fetches this V instruction (say, vj, the j- instruction
in the instruction stream generated by this execution of v)

from the Main Store;

vE decodes v . into an "op-code" and a list of "operands";
J

vE then invokes the semantic routine for the operation indi-
cated in the "op-code" of v ·, passing the "operands" of vj
as parameters to the approp iate closed ML subroutine in
Control Store (see figure 4).

The main body of a semantic routine will be similar to the main body of cor-

responding open subroutines  in  u. They should differ  only  in the "interface

-11 -
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instructions," which were eliminated  from  the open subroutine expansions  in

u during the translation phase by uC, or which were included in the closed

subroutine implementations for the requisite semantic routines in order to

provide an efficiently uniform interface for vE during interpretation phases.

For  consistency,   let  us   call this method of evaluating q .'Method  C. "

Time Estimate for Method C:

As illustrated in figure 4, there are also two nested 'loops' in this
.thevaluation process. During the J-iteration of the 'outer loop' (steps [1],

[2], [3], 'inner loop'; [1], ...), vE determines the address of v.. fetches
3'

it from Main Store, decodes vj into the address of and parameters for the properth
semantic routine, and then invokes this routine.  The j-- nested 'inner loop'

(steps [4], [5] ; [4], · -·) accounts for the execution of this ML routine on
th

the base machine.  In the k-- iteration of this 'inner loop', the ML instruc-

tion  denoted u" is fetched and executed directly out of Control Store; by
j,k

definition
uJ,#rj

causes control to be returned to vE, beginning a new cycle

of the 'outer loop'.  Hence we can compute the time needed to evaluate v using

Method C in much the same manner as we computed the time needed to evaluate u
.

using Method B.

The only real differences are that in 'outer loop' iterations, some

time, denoted A·t, must be expended to determine the address of the next V

instruction (step [1]); some time, denoted D·t, must be expended in order

to decode this V instruction (step [3]); and 22 time need be expended in or-
der to determine the location of succeeding ML instructions (i.e., no $K

term).  The resulting estimate for the time required to evaluate v using

Method C is:

#v             #r j

TC·t  =  -(A  +   [wv /wm] 0R  +  D  + -  ([w'u/wc]   +  e'.'  .   )  )·t
, where:

3,K
j =1                                                                                k=1

6 is the total number of· V instructions processed by vE;

 ¥j is the width of the jth V instruction in the instruc-

tion stream for this execution of v (i.e., the width of vj);

«j is the number of MI instructions executed during the
invocation of the closed subroutine associated with vj;
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and e'.'. ·t is the "unoverlapped" time required to execute u'! 6.-J,K- 7,1,

There is also·a more concise formulation for this time estimate:

TC·t = #v·( A+ [wv/wm] ·R +D+ #r·([wii/wc]  + E") ).t[11 [2] [3] [4] [5]
where wv is the average width of a V instruction, /E is the average number

of ML instructions executed per invocation of a semantic routine, and E"

is the average unoverlapped time needed to execute a ML instruction.  The

bracketed numbers refer to the steps shown in figure 4:  each term in the

equation accounts for the time used during the step whose number appears

beneath it.

Nominal values for A and D might be one and two respectively, cor-

responding to the addition of the width of the current V instruction to a

"V-program" counter  and a look-up  in an "op-code" table in Control Store.
These values could be even lower, however, given an efficient base machine

and  a clever encoding   for the "op-codes"  o f V instructions.

Camparison of TA, TB, and TC:

The point of all these time estimates is that Method C is faster than

Method   A   iff   TA ·t  -  TC ·t >  0, and faster than Method   B   iff   TB ·t  -  TC ·t  >0.

Note that the result of these comparisons is not dependent on either the

time  needed to access data values  (by  *),  or  on the magnitude  of the micro
cycle itself (t cancels out immediately).  As formulated, however, these

equations do depend   on the particular source program selected as "typical.  "

Although it seems fair to expect the "averaged" parameters ws, wv,

E, E', E", and #r to be largely independent of the choice for q (i.e., q is

"typical"  in a meaningful way), there  is no reason to expect absolute  quan-

tities like #u, #v, and #f to be invariant with respect to q.  In order to

factor out these q-dependent variables, we define:

%f  =  100·(#f/#u)   to  be the fault  rate;

and                =   #r  -  (#u/#v)    to   be   the   g-overhead.

Certainly it is  not too objectionable to speak of an "average fault rate; "
and by considering  #u/#v   to  be the "average worth"   of  a V instruction  (in

ML  instructions)   and  #r   as the "average   cost"   of   a V instruction   (also   in

-13-
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ML instructions), we may also view   as being independent of q.  In this

context, the assertion  that   q  is a "typical" SL program merely means   that

the   e stimated values for these "averaged" parameters are valid.
In practice, a reliable estimate for   can probably be formed simply

by counting the number of ML instructions required per semantic routine in

order to establish a "standard interface"   for vE. Typically,   one   such  ML

instruction will be needed for each operand/parameter that must be passed

through this interface, although fewer will be required if individual ML in-

structions allow a high degree of parallelism (especially with respect to

data transfers.  Note that in any case ws, wv, E, E', E", #r, %f, and   are
all   "observables"  in the sense that their values are easily determined either

by direct observation or through simple experiments.

In fact, by substituting   and %f for #u and #f in the comparison form-

ulas above, we find that all of the remaining parameters are both observable

and independent of the choice of q.  Solving for R and %f (as representative

"technological" parameters), we obtain the following results:

[Rl ] Method C will be faster than Method A iff:

( ( #r   -  0)  ·  [wu/wm]      -     [wv/wm])   >  0        and

R >A + D + #r·([wu/wc]+E") - (#r- 0)·E
(#r- 0) · [wu/win]  -  [wv/win]

[R2] Method C will be faster than Method B iff:

((#r -0)·%f· [ws/wm] /100   -    [wv/wm ] ) >  0      and

R>                             ;A  +  D  -  (#r- 0)·(E'-E"+$K+%f·$J/100)  + 0·(E"+[wu/wc])
(#r -0) · %f· [ws/wm ] /1 00   -    [wv/wm ]

or
((#r-0)·%f·[ws/wm]/100 - [wv/wm])<0 and                    '

R <  (#r- )*(E'-E"+$K+%f·$J/100)   -A-D  +   ·(E"+ [wu/wc]) ;
[wv/wm] - (#r - 0) ·%f· [ws/wm]/100

[R3] and/or

%f >
A    +   D   +   [wv/wm ] ·R   -    (#r  -  0) · (E' -  E"  +  $K)    +   0(E"  +  [wu/wc] )

(#r- 0)·($J + R·[ws/wm])

Conclusions:

[Rl] specifies the minimal value of R such that Method C will be

-14-



preferable to Method A.  For existing machines, this limit appears to be

near   two   (i.e. ,   for a "Tucker and Flynn" machine   or a series   360   CPU;   for

a QM-1, the limit is actually less than one due to the extremely horizon-

tal nature of its micro instructions).  This result is essentially based

on a code density argument, and since the required value of R is so low, we

conclude that emulation will remain faster than the direct execution of a

micro surrogate out of Main Store within the forseeable future.  Note that

this equation provides us with an absolute measure of the quality of a DEL

in the sense that if the denominator goes negative, then emulating that

DEL will always be slower than the direct execution of a micro surrogate,

regardless of the value of R.

[R2] provides us with two equations that define minimal and maxi-

mal values for R, respectively.  The first equation is applicable when

the     "fault rate -weighted" time required to transfer a segment    from   Main
Store to Control Store exceeds the time needed to fetch one DEL instruc-

tion.  If the numerator is positive, this equation defines the minimal

value    of   R   such that emulation is faster    than a paged or "cached"    exe cu-

-             tion of a micro surrogate; under the current technology, the numerator is

negative, indicating that the $K factor makes Method C faster than Method

B for any value of R.

The second equation defines the maximal value of R for which Method

C is preferable to Method B, assuming that the time it takes to fetch one

DEL   instruction   from Main Store is longer   than the "fault rate -weighted"

time needed to move a segm nt from Main Store to Control Store.  For the
"Tucker and Flynn" machine, using a segment size of twenty ML instructions

and assuming a fault rate of 1%, we find that R must be greater than about

20 before we should abandon emulation, while for a 360 series model 65 CPU

we must assume a fault rate of 0.25% in order to bring the critical value

of R down below 1 00. These are extremely low fault rates, and certainly
unrealistic values for R.

[R3] is derived from the same comparative equation as [R2] (i.e.,

TB·t-TC·t  0), and specifies the minimum fault rate for which emulation

is faster than a paged or "cached" execution. The current range of values

for R is approximately four to sixteen; given reasonable estimates for #r

-15-
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and 6 (i.e., (#r- )>1 and 0<4), the numerator of this equation is nega-

tive -- indicating that Method C will be faster than Method B for any fault

rate !      Essentially,   this  is   due  to  the   fact that Control Store is implicitly
the    " fastest available" memory device, and hence   that   $K  must  be   of  the   same

order as the total time required to fetch and execute a micro instruction.

Hence, we may conclude that Method C is currently superior to either

Method A or Method B, and that ML is therefore unambiguously not an "ideal"

DEL.  Together with our previous comments, this establishes the plausibility

of the contention that the "ideal" DEL for a contemporary computing system

lies somewhere between its source language and the language accepted by its

base machine.
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Figure 1 : Evaluating a Source Program on a Two-Phased Processing System

Source Language "equivalent"   DEL
[1 ]                                             >  Compiler                      >program q program v

4       :
1

DEL program v used       i
[2].

as    a    "surrogate "                              ;1< 'vC  3-1 <  0S.          S

Emulator Base Machine
>

> Sj ) I   S#V

This diagram illustrates the relation between the three basic com-

ponents of a Two-Phased Processing System:  a base machine; and two pro-

grams which run on the base machine, a compiler and an emulator.  A user

written program  q is evaluated  by  such a system  in two broad steps,   or
phases:

[1  ]            First,   q is translated   into an "equivalent"  DEL
program, v, by the compiler (translation phase).

[2]    Afterwards, v is used as a "surrogate" for q, as
often as desired, being executed directly by the
emulator (interpretation phase).

The input values for a given evaluation of v are determined by the

initial store   s  ( "store"  is  used  here  in the conventional programming  lan-

guage sense to denote a mapping of "program variables " into "values " ) .
th

Each successive store, s , is produced as a result of executing the j-

DEL instruction, v , in the environment of store s -1.(for j from 1 to #v,
the total number of DEL instructions executed during the given evaluation

of v).  The sequence [v ] is called the DEL instruction stream, while the

corresponding sequence of stores, [s ], is called the effect of evaluating

v starting in the initial environment of sQ.  The result of the execution
is normally considered  to  be  only the store  s#v'

The  meaning   of "equivalent" depends   on how finely  the e ffects   o f  ex-

ecuting v are to be observed: two programs are deemed "equivalent" iff a
user  can not distinguish between the effects (or results,   for "weak equiva-
lence") of their evaluations.
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Figure 2:  Evaluating a Source Program Directly out of Main Store ,

ML   = DEL: Method A

Source Language Program q

Compiler           uC

V

ML surrogate u

( u = uC(q) )

'loop':  repeat steps [1]  fetch micro
[1 ]  and   [2 ]  for  #u instruction u.

iterations, j=l t o#u                     
                    J

..
Base Machine

i [2]    Execute
--------------

instruction u.
3
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Figure 3:  Evaluating a Source Program Indirectly out of Main Store ,

ML = DEL:  Method B

Source Language

program q

1.

ML Surrogate u in Main

- si, o"3 sn Store

[2b]  At a fault,
'outer loop':  repeat

<                                                                                steps  [11, [2b], 'innermove a new segment
sj from Main Store 4
into Control Store loop';   [1 ] ... for #f

1 iterations, j=1 to #f.
V A

Accessable                                                  :     6 NO
1

Segments of
[2a] Fetch u1 1- i   Base Machine        '

4 , A
/\u in Control [1 ]  Decide  if  the nextYES

Store micro instruction lies
on a segment now in
Control Store

[3] Execute ul kI ,

9
'inner loop': repeat steps [1], [2a], [3]; [1],
... for #u iterations, k=l t o #u.
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Figure 4:  Evaluating a Source Program by Emulation ,

V = DEL:  Method C

Source Language

program q

   Compiler v C Emulator vE
V Surrogate v    <         j [11 Calculate address of vj <6 - - - ,

in Main

v.     ) [2] Fetch vj                        iStore              J                                            '
1

:

[3] Decode v,
J

pass operands of v. 'outer loop':  repeat steps [1], [2],
as parameters to J

[3], 'inner loop ' ; [1 ]
... for #v

semantic routine
iterations,   j   =  1    to  #v    A,

4/                                                            1

1

Semantic Base Machine

Routines                                                           1[5] Execute ul ,.
in       [4]  tch u3,k -4        1      ..1,1                      1

Control         6                                                    
'

1

Store          i       Iinner loop':  repeat steps [4], [5]; [4], ··· for
I                                                            i

#r  iterations,   k   = 1 to #r


