UNCLASSIFIED

OAK RIDGE NATIONAL LABORATORY
Operated By
UNION CARBIDE NUCLEAR COMPANY

प[5

POST OFFICE BOX P
OAK RIDGE, TENNESSEE

ORNL CENTRAL FILES NUMBER

DATE: September 6, 1955
SUBJECT: Reactor Studies in Two Dimensions and Two Regions

TO: Listed Distribution
FROM: C. L. Bradshaw

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contrac个 with the Commission.

Photostat Price \$
\qquad
Mierofilm Prico \$
\qquad
Available from the
Office of Technical Services
Department of Commerce
Washington 25, D. C.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

REACTOR STUDIES IN TWO DIMENSIONS AND TWO REGIONS

I. Summary

To gain insight into the reliability and rapidity of convergence of numerical methods that must in general be used for reactor calculations in two dimensions, a rather simple model is chosen and extensively explored. The model is indicated by the following figure, differential equations and boundary conditions.

(III)

$$
\varphi_{x x}+\varphi_{y y}+B^{2} \varphi=0 \quad\left\{\begin{array}{l}
0<x<a \\
0<y<r
\end{array}\right.
$$

$$
\begin{equation*}
\varphi_{x x}+\varphi_{y y}-K^{2} \varphi=0 \tag{I.2}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\mathrm{a}<\mathrm{x}<\mathrm{b} \\
0<\mathrm{y}<\mathrm{c}
\end{array}\right.
$$

(a) $\varphi(0, y)=\varphi(b, y)=\varphi(x, 0)=\varphi(x, c)=0$
(b) $D_{1} \varphi_{1}^{\prime}(a)=D_{2} \varphi_{2}^{\prime}(a)$
(c) $\varphi_{1}(a)=\varphi_{2}(a)$.

The quantities D_{1}, D_{2} and K^{2} are assumed known. The values B^{2} form the eigenvalues of the system and one is interested in finding the fundamental eigenvalue.

This system lends itself to analytic solution, and the results obtained here form the basis for comparison with the results of various numerical procedures. The solution can be written in the form,

$$
\begin{equation*}
\tan a x+L x=0 \tag{IT}
\end{equation*}
$$

with

$$
\begin{equation*}
x=\sqrt{B^{2}-\frac{\pi^{2}}{b^{2}}} \tag{I.5}
\end{equation*}
$$

$$
\text { and } L=\frac{D_{1} \tanh \sqrt{K^{2}+\frac{\pi^{2}}{b^{2}}}(1-a)}{D_{2} \sqrt{K^{2}+\frac{\pi^{2}}{b^{2}}}}
$$

For oimplieity it has hen assumed that $b=c=1$.
II. The Difference Approximation

For numerical solution one would wish to replace the differential system (I.1-1.3) with a finite difference"scheme. As a first approach the following are used:

$$
\varphi_{x} \approx \frac{\varphi_{x+h, y}-\varphi_{x-h, y}}{2 h}
$$

$$
\begin{equation*}
\varphi_{x x} \approx \frac{\varphi_{x+h, y}-2 \varphi_{x, y}+\varphi_{x-h, y}}{h^{2}} \tag{III}
\end{equation*}
$$

These are second-order approximations to the first and second derivatives. By this it is meant that the error terms will involve h^{2} 。 In this note this will be called a crude approximation to the interior points and a crude approximation to the normal derivative at the interface (crude-crude). The difference system resulting from the use of these approximations is as follows:

$$
\begin{equation*}
\frac{1}{h^{2}}\left(\varphi_{i+1, j}-2 \varphi_{i, j}+\varphi_{i-1, j}\right)+\frac{1}{h^{2}}\left(\varphi_{i, j+1}-2 \varphi_{i, j}+\varphi_{i, j-1}\right)+ \tag{II.3}
\end{equation*}
$$

$$
+B^{2} \varphi_{i, j}=0
$$

$$
\begin{align*}
\frac{1}{h^{2}}\left(\varphi_{i+1, j}-2 \varphi_{i, j}+\varphi_{i-1, j}\right) & +\frac{1}{h^{2}}\left(\varphi_{i, j+1}-2 \varphi_{i, j}+\varphi_{i, j-1}\right)- \tag{II.4}\\
& -K^{2} \varphi_{i, j}=0
\end{align*}
$$

With the boundary conditions as given in (I.3), analytic solution of this difference system is possible and the result can be written in the form,

$$
\begin{equation*}
\tan a x+L \sin (h x)=0 \tag{II.5}
\end{equation*}
$$

$$
\begin{aligned}
& L=\frac{D_{1} \tanh (1-a) \gamma}{D_{2} \sinh (h \gamma)} \\
& \gamma=\frac{1}{h} \cosh ^{-1}\left[2+\frac{(h K)^{2}}{2}-\cos \pi h\right] \\
& B^{2}=\frac{2}{h^{2}}[2-\cos (h x)-\cos \pi h]
\end{aligned}
$$

In using a difference scheme one has two choices to improve the accuracy. First, the size of h can be taken smaller, that is more mesh points could be used, or one can seek further improvement by finding a better difference approximation to the differential system. A difference scheme with fourth order accuracy can be written as follows,

$$
\begin{align*}
\left(4+\frac{B^{2} h^{2}}{2}\right)\left(\varphi_{i+1, j}\right. & \left.+\varphi_{i-1, j}+\varphi_{i, j+1}+\varphi_{i, j-1}\right)+\left(4 B^{2} h^{2}-20\right) \varphi_{i, j}+ \tag{III}\\
& +\left(\varphi_{i+1, j+1}+\varphi_{i-1, j+1}+\varphi_{i+1, j-1}+\varphi_{i-1, j-1}\right)=0
\end{align*}
$$

$$
\begin{align*}
\left(4-\frac{K^{2} h^{2}}{2}\right)\left(\varphi_{i+1, j}\right. & \left.+\varphi_{i-1 ; j}+\varphi_{1, j+1}+\varphi_{1, j-1}\right)+\left(-4 K^{2} h^{2}-20\right) \varphi_{i, j}+ \tag{IIID}\\
& +\left(\varphi_{i+1, j+1}+\varphi_{i-1, j+1}+\varphi_{i+1, j-1}+\varphi_{i-1, j-1}\right)=0
\end{align*}
$$

and a fourth order approximation to the normal derivative at the interface,
(II.9) $\quad \varphi_{x} \approx\left(\frac{1}{3 h}+\frac{B^{2} h}{12}\right)\left(\varphi_{i+1, j}-\varphi_{i-1, j}\right)+\frac{1}{12 h}\left(\varphi_{i+1, j+1}+\varphi_{i+1, j-1}-\right.$

$$
\left.-\varphi_{i-1, j+1}-\varphi_{i-1, j-1}\right)
$$

This approximation will be referred to as the refined-refined case. Analytic solution is again possible and the result takes the form,
(II.10)

$$
\tan a x+L \sin (h x)\left[\frac{A_{1}+B^{2} h^{2}}{A_{1}-K^{2} h^{2}}\right]=0
$$

with
(II .II)

$$
\begin{aligned}
& A_{1}=4+2 \cos \pi h^{2} \\
& L=\frac{D_{1} \tanh \gamma(1-a)}{D_{2} \sinh (\gamma h)} \\
& \gamma=\frac{1}{h} \cosh ^{-1}\left[\frac{20+4 K^{2} h^{2}+\left(\frac{k^{2} h^{2}}{2}-4\right)(2 \cos \pi h)}{8-K^{2} h^{2}+4 \cos \pi h}\right] \\
& B^{2}=\frac{20-4 \cos (h x) \cos \pi h-8 \cos (h x)-8 \cos \pi h}{h^{2}[\cos (h x)+\cos \pi h+4]}
\end{aligned}
$$

Since, for numerical solution, the use of the refined approximation for the derivative greatly complicates the problem, it was thought advisable to investigate the possibility of using a refined approximation for the interior points and a crude approximation for the derivative (refined-crude). In a numerical procedure this would be almost as easy to apply as the crude-crude approximation. However, as can be seen from the numerical results in the table at the end of this note, nothing is to be gained by this approach. Analytic solution of the refined-crude approximation gives as a result,

$$
\begin{equation*}
\tan a x+L \sin (h x)=0 \tag{II.12}
\end{equation*}
$$

with

$$
\begin{equation*}
L=\frac{D_{1} \tanh (1-a) \gamma}{D_{2} \sinh (\gamma h)} \tag{II.13}
\end{equation*}
$$

$$
\gamma=\frac{1}{h} \cosh ^{-1}\left[\frac{20+4 K^{2} h^{2}+\left(K^{2} h^{2}-8\right) \cos \pi h}{8-K^{2} h^{2}+4 \cos \pi h}\right]
$$

$$
R^{2}=\frac{20-4 \cos \pi h \cos (x h)-8 \cos \pi h-8 \cos (x h)}{h^{2}[\cos (x h)+\cos \pi h+4]}
$$

A series of calculations were made for each of the four cases referred to above. It was seen that all variations could be observed by varying only one of the parameters D_{1}, D_{2}, K^{2} and a. With this in mind D_{1}, K^{2} and a
were held constant and only D_{2} and the mesh size (h) were varied.
III. Numerical Solution of the Difference System

In general, of course, analytic solution of the differential or approximating difference system is not possible so one must turn to a numerical procedure for the solution of the difference system. One such method was coded for the Oracle so that reliability and computing time could be evaluated. A crude difference approximation was used. The following difference equations are to hold in the various regions:

$$
\begin{equation*}
\varphi_{i+1, j}+\varphi_{i-1, j}+\varphi_{i, j-1}+\varphi_{i, j+1}-4 \varphi_{i, j}+B^{2} h^{2} \varphi_{i, j}=0 \tag{III.I}
\end{equation*}
$$

for points in the fissionable region except on boundaries and

$$
\begin{equation*}
\varphi_{i+1, j}+\varphi_{i-1, j}+\varphi_{i, j+1}+\varphi_{i, j-1}-\left(4+K^{2} h^{2}\right) \varphi_{1, j}=0 \tag{III.2}
\end{equation*}
$$

for points in the non-fissionable region except on boundaries, and

$$
\begin{gather*}
\frac{2 D_{2}}{D_{1}+D_{2}} \varphi_{i+1, j}+\frac{2 D_{1}}{D_{1}+D_{2}} \varphi_{i-1, j} \tag{III.3}
\end{gather*}+\varphi_{i, j+1}+\varphi_{i, j-1}-\left(4+\frac{D_{2} K^{2} h^{2}}{D_{1}+D_{2}}\right) \varphi_{i, j}{ }^{+} .
$$

for points on the interface.
For solution the fundamental eigenvalue (B^{2}) of the following system is required.

$$
A \Phi+B^{2} M \Phi=0
$$

where,

> A is a square matrix whose order is the number of mesh points to be used.
> M is a singular diagonal matrix of the same order as A.

The matrix A is not symmetric, the assymmetry being due to the equation which holds for points along the interface.

An iterative scheme' with the steps as indicated in the following was used:
(a) A vector $\Phi^{(0)}$ is assumed.
(b) The vector $D^{(0)}=B^{2} M \Phi$ is computed where a first estimation of B_{0}^{2} is made.
(c) The system $A \Phi^{(1)}+D_{0}=0$ is solved.
(d) The vector $D^{(l)^{*}}=M \Phi^{(1)}$ is computed.
(e) The quantity

$$
B_{1}^{2} \approx \frac{\sum_{D^{(0)}}}{\sum D^{(1)^{*}}}
$$

is found.
(f) A new $D^{(1)}=B_{1}^{2} D^{(1) *}$ is found and the cycle is reentered at (c) until convergence to B^{2} is complete.

Solution of the system $A \Phi+D=0$ is the major problem as far as computing time is concerned. The method used to solve this system is that of

Richardson as given by Young. It was found that this method was satisfactory in that the B^{2} from the analytic solution could be duplicated to as many as 8 or 9 digits in some 15 minutes of computing time. The computing time was appreciably shortened by a proper choice and rearrangement of the relaxation factors which are used to accelerate convergence in Richardson's method. The overall convergence time can be improved by a proper adjustment of the convergence criteria (ϵ) in the system $A \Phi+D=0$. The best approach seems to be to begin with a very lax \in, since one usually starts with a flat source or at least a rather poor one, and to make this progressively more strict as subsequent passes are made through the major computing loop. As an example it was found that the system $A \Phi+D=0$ had to be iterated on some 500 times for overall convergence if a small ϵ was maintained from the beginning throughout to convergence, while only 300 iterations were necessary for a progressively decreasing ϵ. Throughout all of these investigations approximately 300 mesh points were used.

IV. Conclusions

A survey of results is given in the tables and in the graphs. The tables speak for themselves as regard to the accuracy of the different methods involved. It should be noted that the refined-crude scheme is no better and sometimes worse than the crude-crude approximation. Also, one should note that while the results of the crude approximation always are somewhat below those of the true solution the results of the refined case show values slightly above the true result. This phenomena has been justified by analytic considerations.

[^0]The results would indicate that one would be justified in complicating the computational set-up by using the refined approximation in order to gain the advantage of the increased accuracy with much fewer mesh points.

$\xrightarrow{16}$

$$
a-16
$$

THIS PAGE

WAS INTENTIONALLY
 LEFT BLANK

[^0]: ${ }^{\text {Young, David, "On Richardson'sMethod for Solving Linear Systems with }}$ Positive Definite Matrices", Journal of Mathematics and Physics, 32(1953-4) pp. 243-255.

