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Abstract

The non-relativistic current algebra with conserved current consisting

of p (J), the particle number density and J.(39,  the flux density of particles,

is studied.  The Hamiltonian for any time reversal invariant system of spin-

less particles, interacting via a two-body interaction potential, is ex-

pressed as a hermitian form in the currents.  This leads to a functional

equation for the generating functional, which is the ground state expecta-

tion value of exp[ijdxNx)f (x) ].  In the N/V limit an expression for the
.. ,4 -.

.,

generating functional in terms of correlation functions is given.  Represen-

tations of the exponentiated current algebra which are translation invariant,
.

satisfy the cluster decomposition property and which have different Hamil-

tonians are shown to be unitarily inequivalent.

e
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1. Introduction.

1-5
Several physicistj   have investigated the possibility of expressing

field theory in terms 6f local currents instead of the canonical fields.               '

To gain further insight into writing field theory in terms of local currents,

we study in this paper the non-relativistic equal-time current algebra con-

sisting  of  p(3) , the particle number density and /(39,  the flux density o f.

particles.    We  seek to determine representations  o f the current algebra  suit-

able for describing physical systems associated with a specific Hamiltonian

H.  A generating functional is used for this purpose.  The representation in-

corporates certain general physical constraints on the system, such as

current conservation, time reversal invariance and translation invariance.

The dynamics, which is not studied here, would be obtained by considering

itH -itH
the time dependent local currents, pOst) = e p(3Qe and  Jil(x, t)    =
itH -itH

e           3 (29
e , in the representation determined by the equal-time current

algebra and the Hamiltonian.

In this approach we start with non-relativistic quantum mechanics in

second quantized form.  Then p(J) and J(x) can be written in terms of the
MI P<,1/

canonical annihilation and creation field operators, and their commutation

relations computed. The commutation relations between p ) and J(x) are-I:MI

1taken as 'our starting point  .   We will be especially interested in represent-

ations corresponding to the"N/V limit", since they describe systems with

"an infinite number of degrees of freedom" and have many features similar to

those of quantum field theory.  In this case the quantum mechanics of N

         particles in a box

of volume V is considered. The limit is taken as N-'°° and

V-* 00 in such a way that N/V-' p, the average density of the system.  In sta-
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tistical mechanics this is known as the thermodynamic limit.  It is applic-

able to systems with a large number of particles when surface effects can

be neglected.  In this paper we deal only with the case of zero temperature.

In section 2 the p, J current algebra is defined as in reference 1.

For our purposes it is more convenient to deal with the group obtained by ,

exponentiating the currents.  This is reviewed along with its unitary re-

6
presentations as given by Goldin .  The generating functional L(f), the

ground state expectation value of exp[ij'dip(29 f (35) ]   , is introduced  and  its

use in defining a representation is discussed.

In section 3 we consider the Hamiltonian for a time reversal invariant

1
system of spinless particles.  Dashen and Sharp  have given a formal express-

i6n for the Hamiltonian in terms of currents as the sum of a kinetic energy
.

term plus a potential energy term.  A rigorous definition for the kinetic

7
energy term has been given by Goldin and Sharp  for the Hamiltonian of a

system of free bosons by considering it as a densely defined hermitian form.

We generalize this form to obtain the Hamiltonian for a system of interacting

particles.  The resulting expression for the Hamiltonian combines the kinetic

energy and potential energy into one factored term.  Two points of view may

be taken in this section:

(i) Given a representation in which a Hamiltonian exists, the Hamiltonian

is expressed in terms of p(a)  and .:IQ )  as a densely defined hermitian

form, or

(ii) Given a representation, an operator with all the properties of a Hamil-

tonian is defined from a densely defined hermitian form.

The form of the Hamiltonian leads in section 4 to a functional equation
.
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for the generating functional.  Supplemented by the appropriate boundary

conditions, this equation determines a representation associated with the

Hamiltonian.

In section 5 the generating functional for a representation correspond-

ing to a system of N particles is expressed in terms of correlation func- 3

tions.  This form of the generating functional is extended to the N/V limit

representations.  Next, we consider the consequences of translation in-

variance and the cluster decomposition property.  The results are analogus

8
to those in field theory ; the ground state is unique and is the only

momentum eigenfunction.  Furthermore, it is shown that representations

         corresponding to different Hamiltonians are unitarily inequivalent.

Finally, the particle nature of the N/V limit representations is studied.

The representation restricted to a finite volume is found to be the direct

sum of N-particle representations.  Thus the N/V limit representation is

"locally Fock".

These results are illustrated by examples in the following paper where,

in the N/V limit, the generating functional along with the Hamiltonian and

functional equation are given exactly in the following cases: (i) Free Bose

Gas, (ii) Non-interacting Bosons in an external potential, (iii) Free Fermi

Gas, (iv) Bosons  in one dimension  with  the  two body .interacting potential '

2
U(x) = 2/x

2. Review of the Non-Relativistic Current Algebra.

This section contains a brief review of the non-relativistic current

algebra and its representations. (For a more extensive review see Refs.

7 and 9.)

..
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In terms of the canonical field operators * QQ and  t (6) which satisfy

either the commutation (-) or anti-commutation (40 relations

[* CE), 4 (z)]i  =  [*.t (r), lit (I) li  = 0
EW  (3&),  1.r  (1)]a   = 6(£-71 (2.1)

the particle density and flux density are given by:

t

p  (19=  4     (19*(10

J(x)  = 1   Lut  (,x).3 4  (s)  -  1 *t  (&)  9 (*] (2.2)... .". 2im

Henceforth the mass of the particles and h will be set equal to 1. Dashen

1
and Sharp  showed that the equal-time commutation relations between p(x).A

and J(y) are given by:
%4.  V%4•

.

Ip(fl)' P(f2)1 = 0

[p(f)  ,  J  (g) ]  = i P(&·Vf) (2.3)
*'.

[J(5) 'J(,52)1 = iJ(121,3 1 - 3.10•3• 2)
for both bosons and fermions. We have used the smeared currents

p(f) = j'*.. P (1 ) f(x,)-and J(gj = J.dis. 2..(9 'S.f,9 , where f (  and each
component of g(x) belong to a suitable class of test functions; for example,

AM *'R,

Schwartz' s space J, the set of C functions of fast decrease at infinity.

The commutation relations (2.3) will be taken as the starting for the

'

work of this paper.  We will also assume current conservation,

d:  p(x, t) +V•J(x,t) =0. This is expressed in terms of a Hamiltonian
a L 4% 4% Q,Irk,

by:  CH,p (f)] E -iJ f) (2.4)

Since the local currents correspond to physical observables we require

them  to be self-adjoint operators;   p(f   =  p(f)     and  J(g)t=   J(g) . However,
..M ../

they may be unbounded operators.  For this reason it is convenient to work

6
with the unitary operators formed by exponentiating the currents ,
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U(f) = e andip (f)

V (43 4)    =    eit J
(g) (2.5)

4-  L

where   i   (0 5- (x)  = go e &(x) .  (2 5(x)  = x,  and "o" stands for composition,d t  **   t ,+- ·4.-   ** t  •v ' .v,« U  , k       ' u

i.e.  .go  Z  ( 9    -g(:2( )    )    ·

Remark: 9.1 (x) is the flow corresponding·to the vector field g(x).  This
'.. t ..

.'AR  ·*

has the following physical interpretation.  Imagine a fluid with velocity

field v = g(x)  .   Then e  (x)  is the position of a particle which starts at94 4"/ 4 -%99  L  ·'A

point x, after a time t.
V../

The exponentiated currents form a group with the following multiplica-

tion law:

U(fl)U(f2) = U(fl + f2 )

V((2) U(f)  = U(foo) V(o) (2.6)
V,. ....      .,I'

4    ,2 - v£I»  st'V (40   )V (93  1   -\ ·'/ '.0.  5  ·'*)

Throughout the rest of this paper we will be concerned with rep-

resentations of the group of exponentiated currents.  Goldin6 has analyzed

these representations using  the Gel' fand-Vilenkin formalism for "nuclear  Lie
..10groups-  . The results listed below will be used in our study.

The Hilbert Space for every continuous representation of U(f) and V(j€)

is unitarily equivalent to one with direct sum decomposition,

31   =    jed '1(F) WF
F EJ'

where B is a cylindrical measure on 11, the continuous dual of J.  (i.e. 1'
is the set of continuous real linear functionals on J.)  For physical

reasons explained below we will only be concerned with the case when

dimp  = 1. The Hilbert Space is then the space of square integrable

2functions on X with respect to the measure 11; i.e. £ = L (021)   .
Al
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U(f) acts as a multiplication operator on elements of *, i.e.

i (F f) (2.7)U(f)*F) =e   '  b (F) , V'D (F)€ 31
*

In  order to express the action  of  V (2)  we  need the mapping  (P                                    i
*'ll

from A onto A defined by

(VF,f) = (F,fo(p) , ¥FE# and f€J
W. V..

The action of V(2) is then given by

*         Id,1(QF) 1 (2.8)
-1 

V( #(F)  =  ) t (F)* (,if)Ld,1(F) 3     '  v'KF)€)1* *
where dg( £ F) /df(F)   is the Radon-Nikodym derivative  of  *( , F) with respect  to

4(F)   and 34(F), called the multiplier,   is a complex valued function  of
h.

modulus one.  In order for the Radon-Nikodym derivative to exist the

.

measure 0 must be quasi-invariant with respect to the set of flows;  i.e.
*

for any measurable set Xc=0 and any flow cp , b.1(X) =0 iff  1(J21X) =0.
I.WI

The group law requires the multipliers to satisfy the equation,

*
(2.9)

43  (F))6. (32  F)   =   )6  004(F)   a.e.*2 41 r.,4 1 e.c

A representation of U(f) and V(o) is thus completely determined by aA.,4

measure 4 and a system of multipliers Ko(F).
.-/

The representation corresponding to the Quantum Mechanics of N identical

6.11
particles has a measure concentrated on delta functions '  ; i.e. the

measure is only non-zero on functionals of the form
N

FQQ   =E d(x-   x )   and   dbi(F)   =  dc(14 'x2'   . . . ' J)N)    .*.   V.

j=1

By a suitable choice of measure the ground state for a given Hamilton-

ian may be taken as  61 (F) =1.  (In the N-particle representation the

measure is given by dg(F) = dl'lt (351 . . .23N) where 9 (351 . . . •741) is the

ground state wave function.)

Remarks:  (1) The ground state  1 62>, is cyclic with respect  to U(f),
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In other words, the set of states of the form
N

E al U(fl) 10> is dense in )1 =
L2w

(J')   .    The  continuity  of  the
j=1

representation then implies * is separable.

12
(2) Dicke and Goldin have proposed a definition of statistics for rep-

resentations of the exponentiated current algebra based on the multipliers.

They found that the only "well behaved" irreducible representations of

U(f) and VQ) with dim£  = 1 are those corresponding to either Bosons or

Fermions.

(3) )6(F) = 1 always satisfies eq(2.9) . This corresponds to a representa-

12tion for Bosons  .  Thus a Boson representation can be completely defined by

giving a measure 4 and setting )g(F) =1. There may be other systems of
W.

multipliers corresponding to Bosons.

(4) The representations with dim)1 >l have the following physical

significance:

(i) If U(f) and VQ) are reducible the representation can correspond to

particles with different masses or with internal degrees of freedom

(e.g. spin).  In the latter case, additional local currents need to be

added to obtain a complete set of observables (e.g. spin density).  Spin.

13           6
has been treated briefly by Grodnik and Sharp and Goldin .

(ii) If U(f) and VQ) are "well behaved" and 'irreducible the representation

14
corresponds to parastatistics

Thus by restricting ourself to the case dim · = 1, we only will be

considering identical spinless particles (either Bosons or Fermions).

Much information about the representation can be obtained from the

ground state expectation value of U(f).  This is known as the generating

functional and is denoted by L(f). Thus,
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L(f) = (4 'U(f)£2) = 11(F) e
i(F,f) (2.10)

The generating functional for any representation has the following

properties:

*
(i) L(f) = L(-f) (2.11)

This follows from the relation U(f)t.= U(-f) .

(ii) L(0) = 1                                                          (2.12)

Since the ground state is normalized, (61,0)=1.
(iii) L(f) 5 1 (2.13)

This follows from the condition that U(f) be a unitary operator.

(iv) L(f) is a positive functional.  This means
N

jEk=laj*ak L(fk - fj) 2 0, Vaje C , fj€ J and finite N. (2.14)

.
This property follows from the requirement that the inner product on X be

NN
positive: i.e. (E ajU(fjlfl,  E akU(fklfl) 2 0.

j=1 k=l

It can be shown that a continuous functional L(f) satisfying the above

6

four properties determines a measure B for a representation of U(f) .

If B is a quasi-invariant measure and the multipliers are known (e.g. this

is  the case for Bosons), a representation of both U(f)  and V(e is completely

determined. Otherwise, it is necessary to know, L(f,(p) = (0 , U(f)V(2? 0) ,*k

in order to completely determine a representation of the exponentiated

currents.

Remark:  The exponentiated algebra and generating functional techniques we

8
will be using are similar to those introduced by Araki  in studying the

'         CCR's.  They have been applied to find representations of the canonical

commutation relations describing a non-relativistic infinite free bose gas
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15
by Araki and Woods  .  A similar approach was used in a study of the CAR's

16
by Araki and Wyss  .

3.  The Hamilionian expressed in terms of Currents.

In this section we will express the Hamiltonian of a physical system

in terms of the currents  p (&)  and J(x). A formal expression for  the
VW V*

Hamiltonian abstracted from canonical field theory was given by Dashen and

1
Sharp .

In terms of the canonical field operators (satisfying either the

CCR's or CAR's) the Hamiltonian for a system of particles with a two body

interaction potential V(x) is given by:*t.

t.H =  lij' d  L .4  . 99  0  2  4 (:9  + Al JI dfdz. *t (5) 41(t)V (rx) * (I) 0 (19  (3.1)

The potential energy term can be written as,

P.E. = & f.1 d *. p (x)  [p(y) - 6 (1-1)1 V(ir:9 (3.2)

To obtain the kinetic energy term we introduce the quantity

K(x) =V p (x) + 2iJ(x) .In terms.of the canonical fieldsV- VY, '  '.'41 .., 'VB.

K(x) = 2 *f(x V i (x) 0. Then formally the kinetic energy is given by,
'9 4* ... .V.    4 I.

K.E.  =  (148)j'dl, 1(,19 t ...i Ili( ) (3.3)

Combining eqs. 3.2 and 3.3 the Hamiltonian is given by,

H =  (1/8),|'d . S(x)1-    p(t) · (io  +  6  il·d-fdy  P(.4)(P(,32-6(rz,) ]V(ls-x)(3.4)

In the N/V limit there are two problems with writing H as the sum of

the total K.E. plus the total P.E. :

(i) The K.E./particle and the P.E/particle are finite.  However, the total

K.E. and the total P.E. are infinite.  Therefore, it is unclear just how

each term in eq. 3.4 is to be defined.

(ii) From statistical mechanics the ground state energy is proportional to

the number of particles; Ed & N as N becomes large.  In the limit, EO=COO
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         Thus, the sum of the two terms in eq. 3.4 is also ill defined as it stands.

These problems  lead us to consider an alternative expression for  the

1Hamiltonian. First, it is necessary to define the quantity " - " which
p (29

appears in the kinetic energy term.  In the representation corresponding to

7
a Free Bose Gas, a rigorous definition has been given by Goldin and Sharp .

By extending their definition we can combine the K.E. and P.E. into one term

and obtain a well defined expression for the Hamiltonian as a densely defined
-.

hermitian form.

We denote the Hamiltonain for a Free Bose Gas by

7HO =  (1/8) j' df-(5>t  -1- K(x)• It is defined as follows :
P (5)   4.4  -

CO

Let V = span {w(21)p(29#;0.01 and w(29£ C functions of polynomial

growth at infinity]

V is  a  set  of vector valued distributions  "proportional"  to P(20.
" -1      "   is   defined   as   a  map   from   v  X v#  4'    in   the   following  way:

P (8)

Let  vl  = wl t)PCO)*l  and  v2  -  w2(9P(2902.    Then
1

(Vl,  0(x) v2) -(01' wl(3*)w2(.:.)P(3902)•. r.-,

Let 8 - spari {eip(f)0;Vf 4 and 0= the ground state} ,
3 is a dense linear manifold in M. For the Free Bose Gas it can be shown

K(x)BCV. As a result
441 N.<..

(Al' HO 02) =(1/8)  dx  (19* 1'  p  Q 5(25) 02)

is a well defined hermitian from for all 01 and 02 e it
1Remark: The seemingly natural operation  of    (29  on  v = wl (A)p )01,

1

3 )   v    =  wl (201,   is  not   in  fact
well defined. Since, if.v can also

be written  as  v  = w2(x)0(2) 02  it  does not necessarily follow  that  w. (x) 01=1M 1. 1.1

w2 (e 02'

By generalizing the form of H  we will show for an interacting
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system that:
.

(1)  H is defined as a bilinear form on the dense domain,

8 = span  {U(f) 61; fo,# and  0= the ground state},  by
t l-

H  -    (1/8) j'dx .li(19      1i 03(K)    where:K(19    =  .11(39    -   A(.:,p).

The operator A(x,p) will be defined precisely later.
#- I.

(2) H is both hermitian and positive.

(3)  (0,  HO) = 0, v*69 where  (1= the ground state.

We start by assuming there is a representation of U(f) and V( 0

on a Hilbert Space W along with a Hamiltonian H satisfying the

following conditions:

(i)     There  is a normalized state of lowest energy; the ground state  0.

We require, H20.  Thu6 the zero of energy is choosen such that

H Q=O, (3.5)

(ii)    JI =  span  {U(f) n.; fE/}is dense  in  N and  Ac the domain  of H.

(iii) Current conservation

[H, p(f)] = -iJ(5)                                   (3..6)
(iv)  There is an anti-unitary time reversal operator T such that,

Tp(f)T-1 = P(f),

-1
TJ(g)T = -J(g) q nd                                                                                       (3.7)

Y  * )

Tn= 0 .

We will also make use of the relation
00

eABe-A  =  E      -4-   (adnA) B (3.8)n=o  n.

where (ad A)B = B and (adnA)B = [A, (adn-lA)8].

Two simple results we will need can easily be derived from

eqs. 2.3, 3.6 and 3.8.  These are,

Ieip(f),J(g)] = -* i[eip(f),K(g)] = -p(g.Vf)eip(f) (3.9)
..- .4 ,/. *./
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and

 eip(f),H] = [-J(Ff) + *p(Vf· Ff) ] eip(f)
& .' (3.10)

Our first theorem shows time reversal invariance and current
.-

conservation are sufficient to determine ·the matrix elements  of J(g)  and H
...A

in terms of those for p.

Theorem 1: Suppose there is a representation of U(f) and V(e) satisyfing
'...

conditions i-iv above. Let If>=eip(f) 0.    Then,

<fl'J(&) If2>=  8<f.  p(g.V(f.   +  f.))  f2> (3.11)
1   41 -4 1    Z

and   <fl |H I f2> = *< f -10(sf.. 521 £2> (3.12)

Proof: Using time reversal invariance  (eq.  3.7)  we  have

<fl|J( )   f2    =   (TJ (f)eip(f2)    0,   Teip(fl)0)
4

= -(Cl, eip(f2) J(g)e-ip(fl)0)
....

Substituting in eq. 3.9 twice and also using eq. 2.6 we obtain

<fl'J(.ge'f2> = -(42, eip(fl)[J(3)-P(,2.1(fl + f2))]eip(f2)61)
Therefore, (fl'Jt)'f2> = i<fl|P( 'y.(fl + f2))'f2>

Next, by applying current conservation and using eqs. 3.5, 3.10 and 3.11

we have:
.-

<fl H f2) = (eip(fl)0, [H, eip(f2)]0 )
= (eip(fl)61 , [J(.%£2) -  )(52.Zf2)]eip(f2)0.)

= *<fllp(Zfl' Zf2)'f2>

Remarks: (1) A hermitian form on a dense set of states does not necessarily

determine an unbounded operator. If the form determines a hermitian operator

it may have many (or no) self-adjoint extensions depending on the choice of

its domain.  Therefore, eqs. 3.11 and 3.12 are not sufficient to determine

J and H as operators.
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(2) As a result of eq. 3.12

(0(fl)0, H,p(f2)61) = *(EJP(Ifl' 52) 61)

In the N/V limit, for a translational invariant system

(0, p(29 Q) = p, the average density.

Therefore,   (p(fl) n) H  p(f2) Q)  =  *Ffdx  Vf  · Vf-."- 1*2

'       Now, using the matrix elements of H given by eq. 3.12 an expression

for H will be derived in terms  of p(A)  and 1(, ).   For .this purpose, we first

determine an operator A  ,p) having the property that K( 0= A(£,p) 0.BA

2
Consider a representation with Hilbert Space * =L (4' ) and ground state

11

fIF) = 1.  Let A(g) be the operator of multiplication by (K(g)r)(F) defined„.1 ...1

by:

(A(g)*)(F) =  (K( )0)(F)*(F)and
W

Domain A(g) = {*(F)€11;   du (F)    (A(g)#) (F)12< a'}
..'.

ip(f) i (F, f)Since e is multiplication by e we have [A(g), eip(f)] = 0.
..".

Also A(g)  eip(f) Q= eip(f)K(g) Q.   As a result the domain of A(g)
.... ™                                                        "W

includes the set 19 and therefore it is a dense set.  By time reversal

invariance it follows  that  (K ) 0)(F)  =  (K(g) n)(F).   Thus A(g)  is.... /-9

hermitian. Moreover A(g) is self-adjoint. To prove this it is sufficient
.*#f

to show that [Range(A f i)]1 = {0 . Let 4(F) g [Range (A & i)]1.

Then    1(F)*(F)(A(g)& i)* (F)  =  0,  V.*F) 8 Domain A(g).    Pick  *F)  =  XC(F)  =
&../ 11

the characteristic function  for  the  set  C C/.    Then

. dg(F) 0 (F) [(K(g)0)(F) & i] = 0, VC C 2/ and therefore
..1

0(F) [(K(g) C)(F) di i] = 0,

Since [(K(g) 0)(F) f i] 0 0 we have 8 (F) = 0. Therefore, A(g)  is
#* ..

self-adjoint.
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It will be useful to express ACS) as a function 6f p.  This is
.

possible since  the  p' s are multiplication operators and polynomials  in  p

applied to the ground state are dense.  We proceed as follows:

Let 9={f ; j = 1,2, . . .3 be
a countable dense set of test functions.

(e.g. In Schwartz's space, finite linear combinations with rational

coefficients of the Hermite functions.)·

Let JI' = span {eip(f) 0; feS}. Since b is dense in 11,.by the continuity

of the representaion it follows that b' is also dense.  However, the

r ip(f)
states le (1;   f<9} are neither orthogonal nor linearly independent.     It

is therefore convenient to orthogonalize them using the Gram-Schmit procedure.

Let  hl> = U(fl) 92;n
 h   =jR a n U(f ) 92, such that (h.,h,) = 61  J    i, j

Clearly, span [h ;j= 1,2, . . . ] = 19'.  Since this set is dense we can
j

write
co                           n

(n)K(571= E bn(i?{ E al. U(fj)}91
n=1 j=1

The desired operator A(g,p) is defined by
-1 n

A(g, p) =   bn { E aj n U(fj)}
W'

n=1 j=1

Furthermore,  K(g) 0 depends linearly on g.   As a result bn(,1)  is a linear
-

distribution; b (g) = r dx b (x)·g(x) . Therefore we can write, A(g,p)=n w. 3      47 '111  7/  /4 /" 4co                       n

j.di 5.(x)1<6, p) where  (a, p)   =  E   ,tr,(A){E      ar U(f )}.
n=1 j=1

N

Next, define K(x) = K(x) - A(x,p). By construction we have
W«  M              ...      0               ......

K(3) 9 2=  0  and                                                                                                            (3.14)

Ieip(f),  2(x)-]  =  [eip(f), K(x) xleio(f)] = -2iyf (19 p(.44.., 4*   ·BT.

Theorem 2:  (1/8)]' dx K'(x)t
1

K(x) is a well defined hermitian form
-

#    .4     p(A)         -
with domain 3.  Furthermore,
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.-

-t l
<01|(1/8) fdx K(x)  -7.-r K(x-)  02  - (01' H.02)' VAl'02 = 8   (3.15): 6", ... -

PCA)  .

Proof: Observe that

<f.11(1/8) fdji(x-)    3(ij   .li(.x.,)1 f2 =  (1/8) j'dx<K(:Qeip(fl) 61,  ·  iT Z(x·)eip(f2) 0.>
1      -

=   (1/8) Fdx<-2ivfl (x) p(x) eip(fl) 41    --1     (-2i).52(20 p(4) eip(f2) n >V -1/   '.0 -// .' Pt,9
= 6(eip(fl)0, P('Ifl.,Zf2)eip(f2) 91)

= <f1 H f2>

This can be extended by linearity to the domain 1.

Formal manipulations can easily be performed with this form of H.

For example, we can verify current conservation:

t 1 1

[(1/8).fdx.8.(29    = K(x),p(f)] = (1/8)j'dv-fi(30 .1 . i  CK.(30,  p(f)]
/7.

t

+  [E(19   ,   P(f)]  -t f(19}
=    dx{R:(x) t--:-  p(x) Ff (x)  - Ff (x) O(x)  --1     K(x) 3

- PCX} ...   ..... * -:   7," 1 ,"  p( 9 v.. -

"  t 'v
- ifd  5 (5)[5(x)   -519 1 = -iJ (5)

In  the  last  step we used A(x,p).1. = 4 ( s, P), which follows  from  time4.. 4

reversal invariance.

These manipulations can be cast into a rigorous form by showing

.·             that (01'Hp(f)*2)-(P(f)*1, H02) = -i(01'J(Zf)*2)' VAl' *2 6 3
follows from eqs. 3.11 and 3.12.

In an alternative approach, only a representation of U(f) and V( ?
is assumed.  Then the hermitian form in eq. 3.15 is used to define an

operator with all the properties of a Hamiltonian. It is necessary to shcw

the hermitian form is positive.  This can be done if one assumes

(0,p(f)0)20, V f€J such that f(,Q 2 0 and 09 Domain of p(f).  This is

physically necessary since the expectation value of the density in any

state must be positive.  In the representation with the Hilbert Space
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14=  L    (4'),
2

81

(*,p(f)#)  =   dli (F)   (F,f) 0(F)12

Therefore, the measure is concentrated on functionals Fe/' such that

(F,f)2 0, ¥f(392 0.
Theorem 3:

(1/8),|'dii,5(3).1. BliI 5(,3)  is
a positive hermitian form.

n
Proof:  Let * =E a.U(f.).0J J

j=1
n+ 1 +9

<0,(1/8)  dx 2(x) ' -*-r K(x)*> = 6 E ak  aj<fk f(Vf ·Vf )|f >
I .... .. ...

PCl)       -
- - k  + j

j,k=1

=  *rd#(F)   (F,IE     ajzfjei(F,fj)  2)  2  0
j=1

17
The following theorem of Friedrichs tells us the hermitian form

in eq. 3.15 defines a positive self-adjoint operator.

Friedrichs' Theorem: A positive semidefinite hermitian form {0  '·-}11"2

defined on a dense linear set R in a Hilbert Space W can be extended by

continuity to a positive semidefinite hermitian form on a larger linear

set R'> R which consists of elements 9€* such that, for some sequence

9   €R,   11.   -   l.n  |   4  and   {un-tm'   '.    -'4  3-0
0* Furthermore, there exists  a

n n m

unique positive self-adjoint operator A  such  that  8(A)CR'  and  { 41,9.2   =

(41, A72), ¥El€ R' and .2269(A).
t l -Therefore the expression (1/8)  di(x)  - K(x) can be used to

J   .* •-,  I - P(35)        ./

define an operator with all the properties of a Hamiltonian.  If we had

begun with a Hamiltonian, it is not clear whether this would be the same as

the one constructed from Friedrichs' Theorem due to the technical question

concerning the domain of H.  We will not pursue this matter further here.

Remarks: (1) Eqs. 3.11 and 3.12 and the result that eq. 3.12 defines a

18
positive hermitian form have been obtained independently by Aref'eva

using different methods.
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19(2) Coester and Haag have discussed a similar form for the Hamiltonianin terms of the canonical relativistic scalar fields  9(x)  and 1(( ?.I.
(3) There is an interesting similarity between the form of the Hamiltonian
derived above and the Hamiltonian for a particle in a magnetic field.

t     1HO  =   (1/8)  d  R(x.)       p<x)    K(3)   *--4   Itc=  p2/2m.¥'

H    =   (1/8) j'd SLK.(3.) -4(5, P)].1.-P x) ' [5(3)-:A.(x,p)] *-AH  =  6-(p   -  , A)2
In our case, for an interaction the free Hamiltonian is modified by

 (L.* K (30   - .A Qi, p) while   in  Q.M.   the free Hamiltonian is modified  by
p-D p- (e/c)A. There is also a difference..In Q.M  A     =2 -D A=free   m-1       (p   -   f  A)    while   in   our    case      =   -9*J   remains    true    for   both   the   free

m                                                                                                                                                 ......

case and the interaction.

(4) In terms of the canonical fields both the currents (eq. 2.2) and the
Hamiltonian (eq. 3.1) have the same form for both Bosons and Fermions.  Interms of the currents (as we will see in the following paper) the free '
Hamiltonian has a different form for Bosons and Fermions. This is not as
surprising as it might appear at first sight. In Quantum Mechanics thefree Hamiltonian for Bosons and Fermions is formally the same; H =

-ti 42  ·  However,
the domains are different; symmetric functions for

Bosons and antisymmetric functions for Fermions.  As a result the Free
Bose Hamiltonian and the Free Fermi Hamiltonian are different operators

(13)with distinct spectra

(5) Hopefully there will  be a systematic method for determining A(x, p)  for47 ea given potential.  Eq. 3.4 might be used as a guide towards this end.

- ..Illi---Il--I--I--1--.Ill--I-----I---                        -                                                -
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4. Functional Differential Equation for L(f).

Using the results of the previous section we will derive a functional

differential equation for the generating functional L(f).  When supplemented

by the appropriate boundary conditions this equation can be used to determine

L(f) and hence a representation corresponding to a given physical system.

This has been done in great detail for the Free Bose Gas in ref. 20 (see

21
also Goldin and Sharp  ).

-

We start with the ground state condition (eq. .3.14), 5(20 41= 0.

Forming the inner product  of 2(x) Awith e &C·we  find  0 = (n,e ip(f)i(20 0) ·-ip(f)  -
..M  ...

Using the definition of 2(x) and eq. 3.11 we then have
» ...I

ip(f)O = (n,eip(f)[90(x) - iff(x)p(x)]0) - (61,e A (2, p) 0) ,    (4.1)./ '.- . -rr '94 '."

Both terms can be evaluated using functional derivatives of L(f).

1     6                ip(f) .Since -i         6 f (x) L (f)   =    (Q, e p(x) C),  eq.  4.1 can be written
»

Ly.  -    '33 (3.)  3        1                6  ,     L (f )    =.A(ls,    -1--         -Et-)    L C f ) (4.2)
...4

The solutions of this equation which are physically admissable are

restricted by several conditions.  These include the general properties

(eqs. 2.11 - 2.14) of a generating functional, namely:
*

(1) L(f) = L(-f)

(2) L(0) = 1

(3)  |L(f) 51

(4) L(f) is a positive functional.

Other conditions may include,

(5) L(f) is an extremal solution in the sense that it cannot be written as

a convex linear combination of two other solutions. This has the effect

of requiring the representation of U(f) and V( ) to be irreducible

(see ref. 20, Th. 3.4),
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..

In the N/V limit we can also use translational invariance or the

cluster decomposition property. (These will be explained further in the

next section.)

(6) --1-   5 (x) L(f) |.f=O =  C  'P(39 6.6)  =.3

(7) L(f) = L(f , where fa (e = f (r.a)                                :1.

(8)  lim L(f + ha)  =  L(f)  L(h),  where ha(x-)  = h(li - 'e
a Doo

For the Free Bose Gas eq. 4.2 becomes, (9 - ivf (x) ) :-   6   L (f) = 0.4.. "..1 «. 1 Of QQ
20

In this case it is known that conditions (2) - (6) uniquely determine

L(f). It is not known whether these conditions are sufficient in other

cases. Furthermore, it is not yet known how to determine the A(x, p)
.....  '...

corresponding to a specific interaction.  However, in the following paper,

A(x,p) and L(f) are given explicitly in the N/V limit and eq. 4.2 is
...."   V.

verified for three additional cases:

(1) Bosons in an external potential, -     3(s, p)   =   0(30 3, 1npQQ

(2) Free Fermi Gas in 1 dimension, A(x, p)
=

2p(x) . '  i     p Cy)
2

(3) 2/x  interaction in 1 dimension, A(x, p)  = 4p(x)f  .dy   P(y).

X-y

5. L(f) in the N/V Limit.

In this section we discuss some general properties of the generating

functional L(f) in the N/V limit.  First, for an N-particle representation

we find an expression for L(f) in terms of correlation functions.  This

form of L(f) is extended to the N/V limit when the correlation functions

satisfy appropriate bounds. Next, we consider the consequences of trans-

lational invariance and the cluster decomposition property. It is shown

that different generating functionals give rise to unitarily inequivalent

representations of U(f).  Finally, the particle nature of the N/V limit

representation is examined.
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A. Expansion of L(f) in terms of Correlation Functions.

The N-particle representations of the current algebra (eq. 2.3) have

11            6
been studied by Grodnik and Sharp  , and Goldin .  We will use the corre-

spondence between these representations and conventional Quantum Mechanics

to obtain an expression for L(f) in terms of correlation functions.  An

N-particle representation is defined on.the Hilbert Space,

2    N
IL  (R)t s ; The totally symmetric functions for Bosons.

)1=1

6.2A (RN)   ; The totally anti-symmetric functions for Fermions.

Acting    on# l '      "      '   4)      €    ]i,
N

P(x) *3.1 '   · ·   .,tsN)  =E    6 (lt,xk) * (.x-1 '   '   ' '  333)'   or
k=1

(5.1)N

P(f)*x.1, . ..3.N) = E  f (:4)  b (xi, ' ' 'XN 
k=1

and

.d(x) *3il' ' ' '·5N) = T    E (-,I 6(3-151,)+26(x-Jck).7,-1,)4(1.1, ' . '3N)k=1

or, (5.2)

J(i)*.51'  ' '  'ON) = 3.i-  E (24.j'Sk)'.7. +(2!9 9ik)*(ls·1,  ' ' ' &N)
k=1 -k

The generating functionals are given by

L(f)=(O,e (2)   = fdx j.d33Neif (11). . .eif CON)0*41(x . . .33N)ip(f)
J  *.,1 0  '

.

34'

(5.3)

where 0 (x....x-) = The ground state wave functionl  Qnd*1 -N

L(f,g) = (O,eip(f)ei.J( )62)
/.

N

=   .1.dsl.    .    ..1,(13n (1*<xl.    ·    .xN)   TI-   eif (ak)eij Qik'.3,) C:  (35·1..  ,19(5.4)
k=1

whare  j(*,g)  = -1- [2g(x) • 9   +  (V·g) (x) ]
,·  YA              2 i            0,.4·,    ·.  , 't„ &4 *1
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Remarks:

(1) One can write,
1

ei jixhe,1,09.=i,SS<x)[det ·B    Wn(1912                                

where s is the flow corresponding to the vector field g.  The factorWn            . '

[det -L  en(x) ]  is the Jacobian  of the transformation,  x  -+ W(x),8 x V.. .Wi    .1»1 ""
m

iJ(g)and is necessary in order for e  ·.·  to be unitary. (See ref. 6)

2
(2) M is unitarily equivalent to L (4,) where the measure is concentrated

N                                           K

on { Fe,"; F=E 6(x-x. )} and   dp (F)=   d O   6 1  (251 '     '     '·ON  '
:- 4, K

k-1

Furthermore, the ground state is given by  0 (F)  = 1. Boson and Fermion

representations are distinguished by the
multipliers  X (F).

47

For a representation defined by L(f,g) it is convenient to think in
'....A

terms of the n-point functions, (61,pocl) ...P(x )J(x  )...J(xn)0),-,·.·m ,•.1 f,·.nrhl ..2.. 'f.

2
-         instead of the measure and multipliers on * =L (4').  By the Reconstruction

11

Theorem (see ref. 22) the n-point functions determine a representation of

the current algebra.  All the n-point functions can be obtained by taking

functional derivatives of L(f,g).  Therefore, L(f,g) determines a representation
4A'. .-'

of the current algebra.

Remarks:

(1)There is a slight complication in determining the n-point functions from

L(f,g).  The p's are obtained directly by taking functional derivatives.

1 6 1     6-             L(f, ) | f.=O -  (Il,p<?S· .)  '  '  'P n)  )
i   Of (a )    "'i         Of (w)

Since the J's do not commute

        6g x.)0     0     0          6g x   )L(0,,13)   g=0   =      m               (r, '.,2 (A·1)0     0     '.ilifirm)  (1)
'N *1 ,.., A,m ..   4 4/ ;A

where   = the sum over
all permutations of (1,2,...m).

However, by using the commutation relations (2.3), (il ,£(31) 0 -1(An) n )

L.
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1 6 1     6
can be obtained inductively from -r  -52(x,)". T  Og(x ) LCO,,§)'g=o

.... <'.1 + Mm A../..

plus the n-point functions of lower order (n < m).

(2) The J's (in the n-point functions) can be replaced by p's using the

operator  A (x,p)   defined in section  3.
1

& 9

J (31) 0 -  -9%i[Ai:1' P)  -  lp(2'1,1 r

1(14,1(32) r, =  -li[[1( 1) ' (&(32'P,-1PLF)1  +  (b.( 2' P, -SP(AS2)22(34,} 0
11             1     6

Using the functional representation       4J(x    = pgs)
i  v- 6PQI)
-Il--V- +  F (p(,4)),

16
(i.(362)'  • .(&2' P)1   =   P 51)      i     1         6p(21)  'A 2' P)

Thus - (3,1)4(x2) 0 can be obtained from a function of p on 0.  This procedure

can be extended  to  J(x.)...J(xn) 0 Therefore, a representation  of the current
v/1    '...1

algebra is determined by 3 (x, p)   and  L (f), provided the derivatives  of   , p)
6

are well behaved. Goldin used an expression similar  to A(x, 0)  to  give
.....

rigorous sufficient conditions for recovering a representation of the current

algebra from that of the exponentiated currents.

The n-point functions of p can be related to the correlation functions,

which are defined as follows (for the N-particle representation):
for n=0*

R (x ,...,x ) =   N:/(N-n): d#n+1... djNQ Q (xl'.. 'jiN)'     0<nKN
n   '- 1                        ..n                  

N<h

Using the symmetry of the wave function and eq. 5.1 we obtain

(O,P(11)n) = Rl(jl)

(Cl,P<:.1.)PCA2) 0) = R2( 1'5) + 6(31-32)Rl (#1)

(9'P(,11.)P 32),0(35)92)  =  R)(61'X2'#3)  + E   6(fl-#.2)R2 (32'b)  +
perm

6(xlx2) 6(Xl-&3)Rl (51)

Thus (Sl,P(J )...P(jn)61) is the sum of n terms, each term being the suin

over permutations  of the variables a,  · · · ,  x   of the product  of m delta
V.41
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functions multiplied by Rn-m*

Remark:  The above expressions are independent of the number of particles

in the representation.  As we will see they are also true in the N/V limit.

If p(x) can be written in terms of the canonical field operators as, p(x) =
.'1,"

t
*QS)    9 (is)    (eq.   2.2), the correlation functions   are the n-point funct ions

for the canonical fields.      R   (x.,...,3 t)   -    (9 2 ' 4 t(x,)....*.t(x   )1 1(x   ) . . . 9.(xl) C) .n ·.4 .141 7,n Bn

The correlation functions have the physical interpretation,

(1/n')Rn( 1'...'x ) =  The probability of finding n particles at
Mn

'  the points 31,...,-xn regardless  of the positions .

Lof the remaining particles.

... We can now obtain an expression for L(f) in terms of the correlation

if(x)
i functions.  Let F(x) = e     -1, and note that

eif(Jl) = Fc . 1+ '1
ial, '.. ,

eif (51) eif (3.2) = F (31)F (x.2) + F (51) + F (E2)  + 1,
j

if(x )    if(x )
e   .1 ...e "n = E 73 (1/(j: (n-j):))  Tr

F(Tgrk)
(5.5)

perm j=1 k=1

Substituting eq. 5.5 into eq. 5.3 for L(f) and using the symmetry of the

wave. function  Q and appropriate change of variable lables  in the integrals,

we obtain

L(f) = E (1/n:) dol.... dxnf(xl) "F(On)Rn(31'""On) (5.6) ;

n=0

(As a check notice the leading term, the one without any 6 functions,

in the n-point function(S'l,p(xl)...P(x.n)(1) = --i   6  (x.)"'  --i  -E <xn)
4·1 ./

L(f)| is just
Rn(xl' ..., X ).)

f=0 '  ·Il

In order to carry out the N/V limit we introduce the following

notation:

(N)        th
Let Rn  = The n   correlation function for N particles in a box of

'.    »4...
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volume V, and

(N) r (N)
Let   an        =   J d x   . . .  Fdx  F (x. ) . . .F(x   )R         (x.,...,x   )-1 w ·., n 01 en n fit r.·nV V

The generating functional for the N-particle representation can now be
CD

.  (N)
written as, L (f) = E (1/n:)an  .

n=0

If the N/V limit is to exist we might expect Rn  -* R  Vn and
(N)

n
CO CO

LN(f)-*L(f)  =  E (1/n:)an where an = 51&·i···jd-xnf(391)...F n)Rn(liloo'.Fri) '
n=0 - 00 -m

In the next theorem we give sufficient conditions for the N/V limit of L(f)

to exist.  These conditions are probably adequate for most physical systems.

(They will be used in the following paper to explicitly calculate L(f) in

-          the N/V limit for severai examples.)

(N)

Theorem  4:      If  Rn     (x.l ' . . . '3in)'  0  Rn (xl ' '   ' 'xii)   and
i (N) i n n/2
iRn  ls c

n ¥n,N for some constant c,  Then L(f)  -D L(f).N
23

Remark:  Girrard   used an expression similar to eq. 5.6 in studying the

thermodynamics of a Free Bose Gas in terms of the local current algebra.

The proof given below is essentially the same as the one he used.
SO

n/2Lemma:  The series S(c) = E (1/n:)cnn converges for all c.
n=0

thProof: We use the ratio test. Let S = the ratio of the n+1 term to then
th

n term. Then

n+1 (n+1)/2(1/(n+1):)   c         (n+1)S  =
n                  n  n/2

(1/n:) c  n

=  c(n+1)       /n
(n-1)/2  n/2

l

n/2
=  c(nfi)-2 (1 + 1/n)

1

0   c  O  e 2  =  0

Therefore the series for S converges.
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(N) 1 (N) 1 n  n/2proof of Theorem: Since Rn   4 Rn and IRn  1 5 c n it follows

i n  n/2
that IRnIE c  n   .  As a result

 an'   5  .1.'i31.' ' .|' n I F (lsl) ... F(xn) Rn|

6(c,f*leif(x>-11)n nn/2

Let T = c dxleif(30- 1|. The series for L(f) is bounded term by term by the

series for S(c ).  Therefore L(f) converges.  Furthermore, the series for

LN(f) and L(f) converge uniformly.  We now show LN(f) 4 L(f). First notice

n  n/2ithat there
exists an n  such that for N > n ,  |S(c)- E (1/n:) 8  n    1<e/4.n=

Furthermore, there exists an N  such that for N > NO,  (1/n:)|an  -an|<£/2nO
(N)

for n E n.
0

-

Then, for N > n  and N , we have

 IM(f)-L(f)|5|LN(f)- E  (1/n:)aiN) 1 + |L(f)- E (1/n:)an| + E  (1/n:)  a N)-an|n<n n<n n<n
-                                                                                                    0                                                                        0                                            0

5    6/4                 + 6/4 + n (€/2no) = €

Since  e is arbitrary L (f)  4 L(f).
Remark:  In order for L(f) to be a generating functional for a representation

of U(f), it must satisfy eqs. 2.11-2.14.  These equations are preserved when

limits are taken.  Since the LN(f) satisfy them, it follows that L(f) also

satisfies them.  Therefore, L(f) defines a generating functional.

An alternative €xpression for L(f) can be obtained in terms of the
24

cluster functions of the correlation functions.  These are defined as,
m

Tn(31, ···,x ) =E (-)In-n(m-1): TT RG. (35ce Gj) where G=a partition of    '4.n
G 1-1  1

(1,2,...,n) into subsets (Gl,G2',..'Gm).  L(f) can be expressed in terms of

T  as follows:n
00

n 1
I.(0   =   exp  E  (-)   -    (1/n:) d/l.... d/nF (21)....F 11)Tn  11*     .xn) (5.7)

n=1
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Remark:  T  is the non-relativistic analogue of the truncated n-point
n
25

functions in relativistic field theory.

B. Translational Invariance and the Cluster Decomposition Property.

Translational invariance and the cluster decomposition property play

an important role in determining representation of the local currents inl

the N/V limit. A representation of-U(f) and V(* is translational invariant

if  there   is  a  set of unitary operators  Q (a), continuous   in  ,   such   that:

(i)          Q(gl)Q (3.2)    =   Q(21+ 20) (5.8)

(ii)  Q(a)U(f)Q(&.)-1 = U(fa)' where f (1) = f(A-j) (5.9)

(iii) Q(,1)V(91)Q(%)-1 = V(91), where A(:) = 2(5-2) + a- (5.10)
.- ...'

(iv)   Q(a) 0= D (5.11)
...

-                These conditions are equivalent to the requirement that the

generating functional is translational invariant, i.e.

L(fa'pa)  = L(f,(0. (5.12)
* .- ,

Also, the correlation functions are translational invariant, i.e.

Rn(.xl   -'- ja 'x2-+1'  '  '     '·.>ft -'31)     =    Rn(3'  'x„ ··.1 n) (5.13)

Furthermore,   Rl (29   =(C,p(ls) 0)   =  p, the average density.

The cluster decomposition property is based on the physical idea  '

that as particles get far apart their interaction becomes negligible.  This

condition can be expressed in terms of correlation functions by requiring

Lim   {Rn+n,(510  0  0,Mqv.1+Xa-' , '  :. m+Xa)-Rn(·151'  '  0•Al) Rm(: 143, ..:7,m+Aa)}    =   0
A-, a (5.14)

Combined with translational invariance we then have

Lim     Rn+m (*l · · ·,lin  ·,Kl.  34 "I m Xa)   =   Rn (:1 " 'On) Rm ( 1 ":Ym) (5.15)
X-, co

Using eq. 5.6 this implies

Lim L(f+hxa) = L(f)L(h) , where h  (x) = h Qi-Xe) (5.16)
X-* m A  *=
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This relation can be used as a boundary condition in determining

physical solutiors of the functional equation  (4.2)  for L(f). (See Appendix 1

for an example.)

Remark:  The cluster decomposition property can also be expressed in terms

of the cluster functions of the correlation functions as follows:

Let   r (2. fort) =11 :he radius of the smallest ball containing 1'000

<the    point:Jil '     "  '. n '

Then Tn(:1,.. con) 4 0 as r<fl' "'On) 4 m

Translational invariance and the cluster decomposition property have

important consequences in relativistic quantum field theory.  We will

discuss the corresponding ,results for the non-relativistic local current

algebra.  This discussion is greatly facilitated by the application of some

8
results of Araki .  The next theorem shows that the ground state is unique.

- Theorem: Suppose the generating functional  L(f)  =  (42,U(f) 0) defines  a

continuous unitary representation of U(f) satisfying the cluster decomposition

property and translational invariance.   Then any state  &2 ' invariant undJr

Q(  up to a factor (i.e. Q(2)0.' = W Q)61 ,, where W e) is a complex number)

is  a multiple  of  61.
8

Proof: (See Araki , Th. 6.1)

Thus the ground state is the only translational invariant state.  The

generators of the translation operators are the momentum operators; i.e.

Q ( ) = exp ig'Jf'. where 11 = The total momentum operator. Suppose the state

ia·niIp> is a momentum eigenstate, then Q(  |,e = e * Alt>· By.the above theorem
'.

Ip> is a multiple of 61. Therefore glis the only momentum eigenstate.
./

(Furthermore, 110=  0.)

The above theorem has an additional consequence.
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Corollary: Suppose the generating functional L(f)  =  (91,U(f) 62) determines

a continuous unitary representation of U(f) satisfying the cluster decompostion

property and translational invariance.  Then the set of operators B =

{U(f), Q(a)} is irreducible.  (i.e. Any bounded operator that commutes with

every operator in the set B is a multiple of the identity.)

8
Proof: (See Araki , section 6.)

-.......  -

In bounded regions the translation operators are similar to the

operators V(%).  In fact, if the flow g (x)=xta, is a valid test function'-. -•. a    ...·      7.  *'.'
./

then it follows from the multiplication law (eq. 2.6) that,

-1                        -1
V( a)V(i:o.)=Vt"yb),  V5.4-)U(f)V(Sa-)   =U(fa)  and V(ia)V(52)V(<4)   =V(Se,) .

./.

Thus V(  behaves  like a translation operator (except  for V( ) 61=  61).
However, we have been considering only continuous representations.  Therefore

26
it is necessary to impose a topology on the set of flows. Goldin has

discussed this point.  He suggests a topology on a restricted set of flows 9
VL•..

for which 9(x) 4 x as  x -* co.  Thus & would not be in the set of test functions.'..... » ...a
..-

In order to obtain the translation operators from V(9) we are led to consider
94.

a sequence of flows e .converging to g .  The next theorem gives a sufficientt.,>n v..a
...

Condition for v (gn) 4 Q (a).

Theorem 5:   Let  (p  be a sequence of flows such that fo,en-* fa' V f €/ and
-I

4, 10404 +M  for all flows 0.  If  (Cl, V (38 ) Cl) 4 1,  then V (69n)  -* Q (8.).- n       ....    - n    V-a
I.

Proof: Since (rL,v (en) 0 )-0 1, it follows V(e ) Q 4 (1
.. *n

Let D = span {U(f)V(52)61 ;fW and ip € flows}.  D is a dense set for any
:'.

representation defined  from a generating functional
L(f, ).

Let  *ED.   We will  show V(e ) *-* Q(£) $·-'

Ilv(sn).4.Q(f)4112 = Ilv(:81).,112 + 11Qce) 7112 - (v(,s')*, 4(e) $)-(Q(a), ,v(En),t)
Since V((p)  and Q(a)  are.'unitary,  1 V(Fn) 0||".||911=  I'Q(i) 911*r. "& m

Since  9€D we can write  11 -El.bjU(fj)V(Sj) 9 .   Then,

(v(51)4'Q<:,)4) =j  bj„(v(,Sl)u(fj)V(,fj)I, 'Q(a).4.)

*
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-1

= jA bj*  (V(.6) ro,VCS,102joS)-lu(
f jogn)       Q (2)19)

Since the representations we are considering are strongly continuous,

-1             -1         fj °Sn)-1 Q(a)4 -D V((P  )-1.U(f.ja)-1 Q(1)11v (3     0  35  0  21)       uc '..ji         I.
i and  since  V((0 ) C 1  0,  we  haveAl

(V(927'Q(g)11,)  4 E  b;(o,V(cp. )-1.U(f.  )-1Q(&)11)
j=1 *.-:la                        J i

n

= E b (.U(f. )V(40. )Cl, Q(32$)
j =1                                             Ja                 -la

2

=     (Q e 4,  Qe) $)  =   11 4 11

Therefore Ilv(,n) 0-Q go *ll" 0. Since D is dense it follows V(en) -0 Q (a)I. .4

- Remark: Theorem 5 has a physical interpretation. Since J (x) is theq:   '4
CO

momentum density, we expect  ]' J(x)-a = a·P where \1= the total momentum
* .-  ....,   H.. ......

00

it5(x)·a8x ita·P
operator.   Thus,  e   3-: », 4-- , -= =  e    v... =

Q  ( ts)  .

itJ(g)But  e     v   = V((Ot) where c   is  the. flow corresponding to the vector field g;
4                                                                                                                                                                                                              -,

i.e.   - E (pt ( )    =  i  °  i.t (*)    and  'St=o (is)    =   2       For 1(9    =   a,   Et ('5')    =   6 +   tl.
CO

Thus we expect Q(a) = V(g ) where 5 (x) =xta. However, f J(x)·a dxmay
/.1 .2 .- il

... '4 .1* d '6". n,; »     144- 00

not be well defined since it is an integral over all space.  Thus we must

take an appropriate limit to make the integral well defined.

In appendix 2 it will be shown for the representation of U(f) and V(e)
*.

corresponding to a Free Bose Gas, there is a sequence C satisfying the.+n

conditions of theorem 5. Therefore the translation operators are in the

closure  of the algebra generated  by  the  set  {V(e) } .     Then  by the previous

corollary it follows the set of operators {U(f), V( j are irreducible.



-32-

(This result was proved by different means in ref. 20.)  It is not yel

known whether this result is true for other representations of physical interest.

Next, we will show that different Hamiltonians give rise to unitarily

inequivalent representations of the local current algebra. In order to do

this we need the following theorem.

Theorem: Suppose the generating functional L(f) = (91,U(f) 61) determines a

continuous unitary representation of U(f) satisfying the cluster decomposition

property and translational invariance. If there is a set of unitary operators

Q'( ) and a cyclic vector Q' (i.e. Span {U(f) C'; fe,4 is dense) satisfying

equations 5.8, 5.9 and 5.11 then there exists  a unitary operator S such that;

SU(f)S-1 = U(f), SQ (3) s-1 = Q' (8.), and S r.= Cl '.
8

Proof: (See Araki , Th. 6.2)

Corollary 1: Suppose the generating functionals Ll(f) = (611'Ul(f) Cl) and
L2(f) =  (922'  U2(f)/12)' each satisfying translational invariance, define

two continuous unitary representations  of U(f). Furthermore, suppose L2(f)

satisfies the cluster decomposition property.  Then the representations are

unitarily equivalent iff L1(f) = L2(f)

Proof:    Let  El  and  M2  be the Hilbert Spaces  and  Q 1  and  912 the cyclic vectors

for the two representations. Suppose the representations are unitarily

equivalent.  Then there exists a unitary operator Sl such that; Sl:W14 32 and

-1                                                -1
Slul (f) Sl      =  U2(f).     Let   4 2  =  Sl C l  and  Q; (2)  =  Sl.Qi (1) Sl     .     It  is  easily

shown that C 2 is cyclic in *2 and eqs. 5.8, 5.9 and 5.11 are satis fied for

C 2  and Q2' (a)·   By the above theorem there exists a unitary operator S2  such
-1                                   -1

that; S2:V24 )12' S2U2(f)S2. = U2(f) and S2612 = r. 2'•  Let S.= S2  Sl:

-    .   Ml-'W2  Then SQ,l = 012 and SUl(f)S 1= U2(f).
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Therefore Ll (f) = (Ol, Ul (f) El 1) 1

= (Sal' Sul(f) 611)2

=  (Q2,  U2(f) 912)2 = L2(f)

Conversely,   if  Ll ( f)   =  L2 ( f) the representations are clearly unitarily

equivalent.

Remark:  The last two theorems have used only L(f).  They are important

for representations of U(f) and V(e) in which span {U(f)C } is dense.2.6

Furthermore, they can be generalized using L(f,-00 for representations in

which span {U(f)V(g) C] is dense.

Now suppose there are two representations of U(f) and V(€) with

Hamiltonians Hl and .H2 of the form H = (1/8)JZdx (ls) t i; 3. f (3-) with
-(1)             (1)         -(2)   _ --      (2)S        (,9   =  5 (*)    -   4,        (,x, p)   and          (29 - &(9    -  3.        (1, P) ·       If   the

representations are unitarily equivalent  then by corollary  1, Ll (f)  =  L2 ( f).

Therefore we may take Wl = M2.  Consider the following identity;

( C., eip(f)[p(-,7. g) -i 9(yf· g) ]S l)   =   (6;,eip(f)K(g) C )
- (1) , - _   (2)

Since  K (3) it = A (g,p) di - A      (g,p) 6-2 we have,
V " ...

.r ip(f)A(1) ip(f) (2)
C 6.'  , e (g, 0) 0 ) = (Sl, e A     9''p) 61),  for all  fe/.\.

 '           Therefore, A   ( ,p) 61= A   (g, 0)0. Since [AC ,O),eip(f)] = 0(1)            (2)

(1)         (2)and span {eip(f) C ; fgj} is dense, it follows A   (g, p)= A    ,p).
We have proved the following theorem.

Theorem 6:  Suppose ther are two continuous unitary representations of U(f)

and V ((0) (denoted by i = 1,2) with Hamiltonians
I.

7   -(i) f 1 7(i) -(i'           (i)Hi  =   (1/8)jdx  K'  '(x)       -  A (x) where  K    '(x)=K(x)-A       ( , p)..... - 44- p(9 & ... .- &...... -:.- ·*4·,

and satisfying the cluster decomposition property, translational invariance

(1)           (2)and time reversal invariance.   If A    (A,p) 0 3    ( ,p)  then the
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representations are unitarily inequivalent.

Remarks: (1) Roughly speaking theorem 6 states, different Hamiltonians   :

correspond to inequivalent representations.  Two important questions remain

unanswered at this time. First, given a system of particles (Boson or Fermion)

; with an interaction potential  VQ ),  is A , p)uniquely determined? Second,

does a Hamiltonian  with a given  A , p) uniquely determine the representation?

The second question is equivalent to asking whether the functional equation

(4.2) for L(f) has a unique solution.  This is known to be the case for a,
20

Free Bose Gas   *Qt, P) = 0)
but uniqueness has not been established for

other cases.

(2)   Since   (x , p) considered  as a function  of  p,  may  be an unbounded operator,

its definition is representation dependent.  For some representations it may

(1)not  even be defined.   In some representations two operators      ( .'P)  and
A (2  (x, p) may be equal while in others they may be unequal.

......

(3) Consider the N/V limit of interacting physical systems characterized by

a coupling constant X and for which the assumptions in theorem 6 are valid.

If the systems are described by unitarily equivalent representations, then by

theorem 6 and eq. 3.12 the Hamiltonians HX are identical as hermitian forms.

Therefore, the Hamiltonian operators would be different self-adjoint extensions

of the same hermitian form. Furthermore, the ground states are the same since

there is a unique translational invariant state.  On the other hand, if the

systems are described by unitarily inequivalent representations, then solving

the systems by perturbation theory is more difficult since it is no longer

possible to express the ground states as a convergent series in X.  This

point will be discussed in the next paper in connection with a specific

example.
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C. Restriction of the N/V representation to a Finite Volumn.

We can gain further insight about L(f) in the N/V limit by restricting

the test functions to have support in a bounded set v.
m                                              i

If  supp  fcv,  then L(f)  =  E (1/n:)j'dxl.... dxnf(251)...F(Al)Rn(51     )
n=0      v      V

n

Since F(351)... F (A·1) = E E  (-)n-j/(j:(n-j):)   Tr expif (33*k)   and  Rn  is a symmetric
perm j=0 k=1

function, we have
CO

L(f) = E (1/n:)j'dxl....1 d33nelf(381)...eif  Il)pn(v;..lil... 11) (5.17)

n=0      V      V
CO

where pn(vi' l...Al) =j .0(-)j/j:J d, d o3n+1    v wn+j n+j =.1    v.,n+j
...Fdx R (x ...x   )     (5.18)  :

P  has the physical interpretation,
n.

(1/n:)pn(v;351' ' ./.n)
= The

probability for finding n particles at points' 

 31'... 'At and the remaining particles outside  v.  

To prove this we consider N particles in a box of volume V, in this case

*

(1/n:)1'liN) (v;31...3:,) = n:1 Ii-n): f d5,1+1' ' 0·   d SNC;  0 (21' ' '.1SN)
V-V V-V

N:     E (-)J
(N-n)'  dx   .fax

N-n    .           
 dx .  Fdx   C   0.

n: (N-n)'
j=0

j I (N- j-n) :  1, ve,n+l" '1, An-+-J '  *n+jtl " -* wN

N.     E (-)3
(N-n)'             rdx     (N-j-n)' R

N-n
Fdx

n: (N-n)'
j=0

j'(N-j-n): 1, *n+l"'t, mn-1-j N: j+n

N-n Ij

Ii        E            .1LL.     rdx           ...   dx        .R        .  ( 1 ... Al+j )
j=o           j '         V  -n+1          1,  *n+J    nt]

As N4 00 we obtain the expression in eq. 5.18.

Remarks:  (1) Formally eq. 5.18 can be inverted.  The R's are given in terms

of the P's by the equation:  For x.,...x eV»·,1 m·n
CO

R (x ,. x) = E (1/j:) Fdx  ...rdx  .P  .(v; x....x .) (5.19)

n    .4            'in                j=o
J wn+1 3 ..n+J n+J  '-1  -n+J
V        V

-
If the sum in eq. 5.19 converges and is consistent (i.e. the same
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-

value  of R 
is obtained for points Si,...,5{1 in overlapping volumns),  then

the R's can be determined from the local probability distributions.  Since

the R' s determine L(f) this implies L(f)  can be determined by its local

behavior.

(2) If the volumn v is not bounded each term in the expansion for Pn

(eq. 5.18) will be infinite.

(3) As a result of the probability interpretation for P :n
(CD

(i) P (Vix....361)2 0 and (ii) E (1/n.:) Fdx  .. 3311 n(Vix....x ) =1n -1 d  ..6-1'
-

-4        -n
n=0      V

Property (ii) also follows from L(0) = 1.

n  n/2
(4) If Rns:c  n   Vn, then the lemma to theorem 4 can be extended to show

-         P  exists (i.e. the series for Pn converges).  However, this is not sufficient

to imply Pn 2 0.

From eq. 5.17 we see for supp f cv, L(f) is the sum of terms which have

the form of N-particle generating functions (eq. 5.3) with ground state

*
given by C NC. N(11...341) = (1/N:)PN(vio.1...1%1). As a result the N/V limit

representation restricted to finite volumns (this is a representation of the

subalgebra formed by restricting the test functions) can be represented in

the Hilbert Space formed by the direct sum of N-particle spaces (Fock Space).

However, the ground state for this restriction would not have a definite

number of particles.  Thus, locally the N/V limit can be considered as

"Fock Space".  This is the "particle like" nature of the N/V limit.

For a Free Bose Gas Pn(V;51' ..x_)  can be calculated exactly.    It has
-. Il

7
been shown for this case that

L(f) = expoj· d)2 (eif(*)-1)
CO

=  I  (1/n:). d:l····fd, nFOil)...F(Al)3 n
n=0
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-n
-        Therefore, R (x....x ) =0  .  As a result,n ,-1   v-n

Pn(v;211···25.n) = (1/n:) -E (-) /j:.  liin+1...' (133n-1-jF n+j
j =0                         1/                        1/

eD

,    i- It+j   _     -n      ,                -
= (1/n:) E (-)1/j.VP -   (p    /n.) exp (-p  V)

j=0

This is a Poisson Distribution·with mean equal to P V.  This is to be

expected since we have taken the limit of a large number of non-interacting

particles (Ne  ) with the probability of finding a given particle in a given

unit volumn (prob. = 1/V) approaching zero such that the product (N·prob. =

N/V = 0) is a constant.

Remark: The Hilbert Space, 4 = L2 (1'), can be used to represent the N/V

limit.  The measures for the N-particle representations and eq. 5.17 suggest

the measure in the N/V limit is concentrated on functionals consisting of a
00

countably infinite number of delta functions; F=Z 6(1-33)such that if n (v)
j=1

is the number of delta functions with support in volumn v then lim n„(v)/V =p.
v.* w   r

The functionals can be characterized by the sequence of points [3.1 '?£2"'3

which can be interpreted as the positions of the particles. The measure g

can be considered as a measure on these sequences. In this context there

27
are similarities with recent work of Lenard in which he discussed the state

in classical statisti'cal mechanics in terms of correlation functions.  The

'             present formalism becomes distinctly quantum mechanical in nature only when

the J's are considered.

Also, representations corresponding to different average densities

pl and pl will have measures Ill and ·*2 with different sets of measure zero

(in J').    As a result, representations corresponding to different average

densities are unitarily inequivalent.

The same methods may be used to obtain expressions for L(f,g) similar
-
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-        to those for L(f).  The results are:

e

L(f,·5) = E (1/n:) d ],.1.dz:i ···.tdAl•1 d/no(lil-zi) ··· 6(lin-Zn)n=0
n
TT [eifek) eij (35k'.52 -1] Rn( 1.. 1n;21...xl) (5.20)

k=1

where  j (31,5)  =  gri  [2&-(20 ·2+  (1 ·   g) (x) ]B.

In the N-particle representations Rn(  i  ) is given by:

Rn 1']·...2'n;251''  tx.n)    =        (N-n):         d/11+1...•  d.13N Q*    (Zl'.'-yn'xrl+l'...2 N)  ri    .1....3.N)

In terms Of the canonical field operators,

Rn(Il...•Zn;51 ' ' 14)   =   (r: ' * . t Kn) . . .t '1(.a) *(51)··· *I#xa) 6 1)

Clearly Rn(5.l'  xn;*x.l* '25n) = R- (x,...x_).  Also, as a consequence of
n , -1  *-,It

Schwartz' s inequality,      Rn (Z.1...Inix..1       ::n)  12    f  Rn(,11' '  '3in) Rn(fl'  '  '. n)

An alternative expression for L(f,g) can be obtained in terms of the
.-

cluster functions defined as
m

T (y....y ;x....x ) =E (-)m-n(m-1): ir RG (yk€Gj;x, e G.)n  +1       .,n  *·1        ,1 n                                                                                         #4 J
G         j-1  3 +

Where G=a partition of (1,2,...n) into subsets (Gl'...'Gm).

L(f,g) can now be expressed as
W.< -     n-1

(-)L(f,g) = exp E --n-I  j.da.j'da.... dtn  djn6(31-11)"·6(/n-,In)
B-- n=1

    (eif(?Ek)eij  k'£)  -  1] Tn( ]...  .ni:1...xn)       (5.21)
k=1

Finally ,
if supp fcV and supp giv

4
00

L(f,5)  =  E (1/n:)j'd.11,....fditn J;121···,1 d n6(isl-7.1)"'6(.:n-Z-)
n=0 V             1/

H Ieif k) eij <Ek'S ] pn(viy....y ;x ...x ) (5.22)
At, 1      *.Il *1 B·n

k=1
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   k .n
where Pn(Viy ...y ix....x ) =E (-) /k:·dx   ... dxiwl           *.n   ;    i v.n . *11+1k=0                  v                   v 4-n+j

Rn+j C.Il ' ' '·In'.On+1 ' ' 1n+ j i.xl' ' ion+ j )
·

(5.23)

Thus the generating functional for a representation of U(f) and V(e) in

, the N/V limit restricted to a finite volumn is the  sum of terms similar to

L(f, g) for an N-particle representation (eq. 5.4). (If P (Viy....y ;
n             *. 1              ·,·.n

x....x ) =W (y....y )W (x ...x ) then the restriction is the direct sum of
4' 1 :-.41 n .1.1 4, n       n ,..1 v..n

N-particle representations.)

6. Summary.

We have shown the Hamiltonian, considered as a densely defined

hermitian form, can be written

-tl
H =  (1/8)j'dx K(x)     - K(x), where R(x) =[yo(x)+2iJ(3)] - A(x,p).'11=- ... .....

PQi) .... ,- . ....... .h ..../ -,  ....

The generating functional in the N/V limit can be expressed as,
00

L(f) = E (1/n:)fdx.l··.1 4xnF<51)  'F'(:n)RI'l(?fl"'Or·1 n=0

if(x)                   th
where F(x) = e   ·-·, -1 and R  = the n correlation function.

L(f) satisfies the functional differential equation,

1        6                          1      6
(V-ivf(x)) -. L(f) = A(x, -:--) L(f).·M. ,... r 1 af(x) w *. 1   Of

Furthermore, under the assumption of translational invariance and the

cluster decomposition property, inequivalent representations are needed for

different Hamiltonians.

There remains two problems in determining representations of physical

interest:

(1)   Given a potential V(a) determine   x, p)   and

(2) Given A(Dp) solve the functional equation (subject to the appropriate

boundary conditions) for L(f).
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Undoubtably these tasks can be accomplished in general only by using

approximation methods.  Once a representation for a given system has been

determined its dynamics can be studied.  Extending this approach to study

the thermodynamics of a system is also of interest.
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Appendix 1
r.

In this section we will show how the cluster decomposition property

can be used as a boundary condition for the functional differential equation

(4.2) to uniquely determine the generating functional for a Free Bose Gas in

the N/V limit. (In ref. 20 other boundary conditions were used for this

purpose.).  We will assume we already know that the generating functional

for a Free Bose Gas satisfies the equation,

(I. - i,If) 1 L(f) =0· (A.1)
6

i         Of ( )

The first method for solving this equation is based on the use of

integrating factors.  Eq. A.1 can be rewritten as,

V {e- i f Qp --1    6 L(f)}= 0 (A.2)
J.

i          Of (x)....

00

Integrating between point x  and m  (j' dr •)we obtain
-f-

X
'--

[e-ife  ...1   Of(x) L(f)]Ix=m -e-ife 1-   65(x) L(f) = 0  (A.3)
V- .&. V,

Using the cluster decomposition property,

16 L(f) = (O,p(x)eif<39(1) 4 (CZ,pQQ E-o)(0, eip(f) (1) as 1251* m,
i       6f (x)

'-I

translational invariance, (C, p(290) =p=. the average density, and the

fact f(20 -* 0 as 151.4 -, Eq. A.3 becomes

p L(f) - e L(f) = 0 (A.4)-if (3)         1               6
i        6 f  )

This can be written as,

:-'   .f 3O f exp[-P .1.(eifc'i)-1)dis] L(f) } =0 (A.5)
10

Therefore, exp[-p  (eif( -1)d L(f) = constant (A. 6)

The constant can be determined from the requirement L(0) = 1.

- 0 if(x)The result is, L(f) = exp o j (e   3- -1)d25- • (A.7)

.

[
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An alternative method for solving eq. A. 1 uses the cluster decomposition

property for the correlation functions. We have shown in the N/V limit that

L(f) has the form (eq. 5.6),

Co

: if(x ) if(x )L(f) = E (1/n:) dx.·...rdx (e   4.1  -1)...(e  bn  -1)R (x ...x )  (A.8)-1   U -n n *l  Ann=0

Substituting eq. A.8 into eq. A.1 we obtain,

(n- 1) :              J *Z ..1         VIL
E.  eif (X.l)  Fdx-...j'd (eif (xu)-1)...(eif( n)-1)7. Rn(x....' z ) = 0 (A.9)
n=0

Since eq. A.9 is true for all f, each term separately must be zero,

,31Rn (51...Al)   -  0 Vn (A. 10)

Furthermore, Rn is a symmetric function.  Therefore, Rn = const.  The

-        cluster decomposition property can be used to relate the different constants

as follows:

Rl (29   =  (C , p(20 6.1 )   =   P

Limao Rn (31..''Sn - 1,-xn+10 - Rl (lin) Rn. 1 (31 ' 0 ',1*,- 1)a-0
-

=  P R       (x   . . .x       )n-1   4        v.n-1

By induction we have R  = p n.   Therefore,

00

L(f) = E (1/n:)j'dxl··· d (e  -1 -1)...(e  ,•,1 -1)pif(x ) i f(x  )        - n

n=0

= exp p rdx(eif(Q-1).
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Appendix 2

In ref. 20 it was shown the generating functional for the

representation of U(f) and V(o) corresponding to the Free Bose Gas is given.-.

by:

L(f,  = (0, U(f) Vel 4)
8,0(X) i= exp p Fdx (eif(29[det   ' ' r]2 -1)

U .p. ax
S

In this section we will show there is a sequence of test fuctions q
9-n

such that  V(Sn)-* Q(a), the translation operator. First,  it is necessary  to

26
define which flows are to be used as test tunctions. Goldin has suggested

a topology on the flows in analogy to the topology on Schwartz's Space.  His

topology is defined by a countable number of metrics,

<<0 4>>   = max Sup  I (1+15. 2)ne.'m) (10-  .*(m) (&)) 1
.._ n  Os|m| wn    x ,B-

V-

Since we want the test functions to include the identity flow So (20 = a
and to have an inverse, we will take the test functions to be the set of

flows (0 such that <<y, )„  <a, and <<(01, 9 >3.< m for all n.
Ul<

By theorem 5, If co (x)-*x+ a and (84, V( )0) 4 1 then41.n 1., '.,6- ,#.

V(e)-*Q(a).  We will first consider the one dimensional case.
-*51 /.4

Let

x                             2h < x
2n-x

xta- n<x<2 nn

 A·t (X)
= x+a 1*1<n

2n + X -2n <x< -nx+a. n

x                            x < -2n

f  P , 9.  /, i
1

L
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W  would be a test function except that its derivative is discontinuous

at  4  points. By changing  9   in a small region about each discontinuity  it

can be made into a smooth function (and hence a test function) without

changing the subsequent arguments.

Clearly  Il(x) 4 x + a as n 4 -.
In order to verify (61,V(gn)C) 1 1 we must show
00 de  i

5    dx     [  (-L) 2    -1 1     4   0    a s    n     +   CO.dx-m

00 dg

Let In =-  ((dx )* -1] dx
-n          1          2n

=  f  [ (1   -   a-  ) F  -11   dx  +     [ (1  +    -a) i  -l]dx
n

-2n

-                 For  n  large   (1  f   -a--) 2  =    1  * * -a-   +  0 (--lp
n

-n                        2n

In  =  f    [  -* + to (-5  ) ]  dx +  f  [*   f- +  O(  ;3-)]dx-            -2n                          n

l

=   - a   +   n   0 (   21       )    +   *a   +   n   0(   - 7)n

= 0 (  1) 0 0  as n 4 CO

Therefore V(9 ) 0 Q(a) by theorem 5.

In 2 dimenions consider a translation in the x direction by a

distance a. Let

gn(x'y,y = y

in(x,y)x =x +a an(x) Bn(y)

where
2n - X n<x<2 nn

an (x) =           1                 -n<x<n

2n + x -2n <x< -nn

0                2n < Ix 
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and

r    (n +8)-y n<y<nt &1«Bn( )-1     1          -n<y<n

i.         (n   +4 +   y - (n  +  A) <  y<-n

0                               n  + A  <  I y l
A =  an arbitrary positive constant

To prove (61, v(e )61) 4 1, it is necessary to show
*Il

34n(x,y,r  -1
Px fdy([det 12 - 1)  40.BX

S

This can be verified by a calculation similar to the 1-dimensional

case.  In fact a similar argument works for any number of space dimensions.

Therefore, for the Free Bose Gas representation there is a sequence

of test functions  cpn such that  (* )  =  lim V(S ).

.
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Figure Captions

Fig. 1.  The flow 0 (x) vs. x; in one dimension.
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