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Abstract

The non-relativistic current algebra with conserved current consisting
of p Q&), the particle number densit;“ahdlgﬂzg, the fluxAdensity of particles,
is studied, The Hamiltonian for any time reversal invariant system'of spin-
less particles, interacting yiala two-body interaction pqténtial, is ex-
pressed as a hermitién form in the currents, This leads fo a functional
equation for the generating functional, which is the grouﬁd state expecta-
tion value of exP[ij@ﬁﬁKﬁ)fg§)]' In the N/V limit an expression for the
geﬁerating functional in terms of correlation'functions is given.‘ Represen-
tations of the exponentiated current algebra which are translation invariant,
satisfy the cluster decomposition property and which have different Hamil-

tonians are shown to be unitarily inequivalent,



1. Introduction,

Several physicist’.%'.5 have investigated the possibility of expressing
field theory in terms of local currents instead of the cénonicai fields.
To gain further‘insight into writing field theory in terms of local currents,
we study in this paper the non-relativistic equal-time current algebra con-
sisting of p(g),*the=éarticle number density and J(x), the flux density of
particles, We seek to determine representations of the current algebra suit-
able for describing physical systems associated wifh a épecific Hamiltonian
H. A generating functional is used for this purpose. The representation. in-
corporates certain general physical constraints on the system, such as
current conservation, time reversal invariance and translation invariance,
The dynamics, which is not studied here, would be obtaingd by considering
the time dependent local currents, -p(x,t) = eitﬂp(-g/c.)e-itH and\ﬁﬂ&,t) =

itH -it .
e J(x)e H, in the representation determined by the equal-time current

I Q%
algebra and the Hamiltonian.

In this appfoaqh we start with non-relativistic'quantum mechanics in
second quantized forﬁ. Then p(x) and J(x) can be writtgn in terms of thé
canonical annihiiatibn and creation field operators, and fheir commutation
relations computed. The commutation relations between p(ﬁ) anddigﬁ)'are
taken as‘our starting pointl. We will be egpecially interesﬁed in represent-
ations corresponding to the'N/V limit", since they-describé‘sys;ems with
"an infinite number of degrees of freedom" and have many features similar to
those of quantum field theory. In this éase the quantum mechanics of N

particles in a box of volume V is considered, The limit is taken as N* and

V+* © in such a way that N/V- b, the average density of the system, In sta-



by
tistical mechanics this is known as the thermodynamic limit, It is épplic-A
able to systems with a }arge number of particles when surface effects can
be neglected, In this paper we deal only with the case of iero'tgmperature.

In section 2 thé P, J cu;rent algebra is dgfiﬁed as in reference 1,

For our purposes it is more convenient to deal with the group obtained by .
exponentiating the cptrents. This is reviewed along with its unitary re-
presentations as given by Goldin6. The generating functional L(f), the
ground state expectation value of exp[ijdﬁp(ﬁ)f(x)] , is introduced and its
use in defining a.rep:esentation*is discussed.

In section 3 Qe consider the Hamiltonian for a time revérsal invariant
system of spinless}particles. Dashen and Sharp1 have given a formal express-
“4ion for the Hamiltgnian in terms of currents as the sum of a kinetic energy
. term plus a potentialrenergy term. A rigorous definition for the kinetic
energy term has been given by Goldin and Sharp7 for the Hamiltonian of a
system of free bosons by considering it as a densely defined hermitian form,
We generalize this form to obtain the Hamiltonian for a system of iﬁteracting
particles. The resulting expfession for tﬁe'Hamiltonian combines the kinetic
energy and potentiallenergy into one factored term. Two péints of view may
be taken in this séction:

(1) Given a représeqtation in which a Hamiltonian exists, the Hémiltonian‘
is expressed in terms of P(§> and_a(ﬁ) as a densely defined hermitian

form, or

(11) Given a represéntation, an operator with all the properties of a Hamil-
tonian is defined from a densely defined hermitian form,

The form of the Hamiltonian leads in section 4 to a functional equation
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for the generatingAfunctional. Supplemented by the appropriate boundary
condifions, this equation determines a repreéentation associated with the
Hamiltonian. |

In section 5 the,generating functional for a representation correspond-
ing to a system of N particles is expressed in terms of correlgtion func-

tions, This form 0f the generating functional is extended to the N/V limit

representations. Next, we consider the consequences of tramslation in-

variance and the cluster decomposition property. The results are analogus

to thdse in fieldjtheorysg the ground state is unique and is the only

~momentum eigenfunction. Furthermore, it is shown that representations

corresponding to different Hamiltonians are unitarily inequivalent.,
.Finally, the pérticle nature of the N/V limit representétions is studied.
The representation restricted to a finite volume is found to be the direct
sum of N-particle representations, Thus the N/V limit representation is
"locally Fock".

These resulﬁs:are illustrated by examples in the folloﬁing paper where,
in the N/V limit, the generating functional along with the Hamiltonién and
functional equation are given exactly in the following éasgé: (i) Free Bose
Gas, (ii) Non;intefacting Bosons in an external potential, (iii) Free Fermi
Gas, (iv) Bosons inlone dimension with the two body interacting potential|
U(x) = 2/x2 . |

z. Review of the Non-Relativistic Current Algebra,

This section contains a brief review of the non-relativistic current

algebra and its representations. (For a more extensive review see Refs.

7 and 9.)
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In terms of the canonical field operators ¥ QQ and 'w* (x) which satisfy
either the commutation (-) or anti-commutation (+) relations
. o F % SN '
v, vl = b @, ¢ @l =0 ,
i 4 ‘
v @, ¥ I, = 3y , , (2.1)
the particle density and flux density are given by:.
ot A ,
P@® =¥ ®V®
e Wy wewl
J® =z YOOIV - LY & X _ (2.2)
Henceforth the mass of the particles and -h will be set equal to 1. Dashen '
and Shax:p1 showed that the equal-time commutation relations between p(at")

and “{(y) are given by:

Lp(£)), p(£)] =0

Cp(6) , 7 (g))

i p(é-Xf) : : (2.3')
WME)

for both bosons and fermions. We have used the smeared currents

Lgy) 3tg)] = 13Cen 58, - 51028

p(f) = Jnda_;’p (v)&)f(;i).and J(§2 =Jnd.3§\.,:{.(39 °§4(3.5) , where f(,?ﬁ.) and each

component of ,,§(3f,? belong to.a suitable class of test func:tions; for example,

Schwartz's space o’,. the set of ¢~ functions of fast decrease at infinity.
The commutation relations (2.3) will be taken as the starting for the

work of this paéer. We will also assume current conservafion,

%t pQﬁ\,t) +~2'.‘L(,’,§’t) = 0 , This is expressed in terms of a Hamiltonian

by: [H,p (D)] = -13(¥E) (2.4)
Since the llocallljcurrents correspond to physical observables we require

them to be self-adjoint operators; p(fj = p(f) and J(,%,)T= J(ﬂ%) . However,

they may be unbounded operators., For this reason it is convenient to work

with the unitary operators formed by exponentiating the currentse,



U(f) = eip (£) and ‘ |
v = eltI(@) : (2.5)
‘a% (glcv) =_£o 3%(3{),&%(@ =X, and T'o" stands for composition,

l.e. go © (x) = g(Q(x) ) .

ajo.
rt

Remark: ‘(,2%' (x) i; the flow correspohding‘lm the vector field é(}f)' This
has the following physical interpretation, Imagine a fluid wiph velocity '
fieldx = ,§,<3‘.) . Then s_i %(xr) is the position of a particle which' starts at
point_zv after a ﬁime‘;.

The exponentiated currents form a group with the following multiplica-.

tion law:
UCEU(E) = UCE, + £, )
V(Q) U(E) = U(fow) V(Q) . (2.6)

VeV =V

Throughout thetrest of this paper we will be concerned with rep-
resentations of tﬁe group of exponentiated currents, Coldin6 has analyzed
these representations using the Gel'fand-Vilenkin fofmalism for "nuclear Lie
groups"lo. The results listed below will be used in our étudy.

The Hilbert Space for every continuous representation of U(f) and V(&‘Q

is unitarily equivalent to one with direct sum deconipqsit:ion,

H= je?p(F)ﬁF
Feof

i
where H is a cylindrical measure on &', the continuous dual of &, (i.e. &'

is the set of continuous real linear functionals on #.) For physical
reasons explained'below we will only be concerned with the case when
dim.u;F'= 1. The Hilbert Space is then the space of square integrable

functions on o with respect to the measure M; i.e, ¥ = Leu(n’") .
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U(f) acts as a multiplication operator on elements of X, i.e.
U(E)WKF) = l(F Dy (F) , YW (F)e ¥ : (2.7

*
In order to express the action of V(gg we need the mapping ¢
| e

from ¢ onto ¢ defined by
(J'F,f) = (F,fop) , ¥Fed and £5d
The action of V(Q) is then given by , 4
VAV (F) = Xg(F)\P(o F)L%%,% , VB H (2.8)
where danF)/dp(F) is the Radon-Nikodym derivative of anE) with respect to
W(F) and xJCF), called the multiplier, is a complex valued function of
modulus one, In order for the Radon-Nikodym derivative to ex1st the
‘measure |1 must be quasi-invariant with respect to the sct of flows; i.e.
for any measurable‘sct X&” and any flowlgl,‘pKX) = 0 iff pgng) =

The group law requires the multipliers to satisfy the equation,

X, (F))’(g (& *F) = &91032(17) a.e. ‘ (2.9)

A representat1on of U(f) and V(o) is thus completely determlned by a
measure | and a system of multipliers XQ(F)

The representation corresponding to the Quantum Mechanlcs of N identical

. ~ . 6,11
particles has a measure concentrated on delta functions ; i.e. the
measure is only non-zero on functionals of the form

el J

N
F(X) =jE-16 (x - x:) and dU(F) = do(x;5X5 o« o 5 %) -

By a suitable choice of measure the ground state for a given Hamilton-

ian may be taken as § (F) 1 . (In the N-particle representation the

. i * ’ ’
. measure is given by du(F) av ¥ (§1 . o '~§N) where ¥ (}1 . e °-§N) is the
ground state wave function,)

Remarks: (1) The ground state \$l>, is cyclic with respect to U(f).
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In other words, the set of states of the form
N ‘
z a, U(fl) l(1> is dense in H = L2
representation then implies ¥ is separable,

" (#') . The continuity of the

(2) Dicke and Gold_iﬁil2 have proposed a defiﬂi;ion qf statjﬁtics for rep;
resentations éf the e#ponentiated current algebra based on the mﬁltipligrs.
Théy found that the only 'well behaved" irreducible representations of
U(f) and Vﬁ&? witﬁ dimkiF = 1 are those corresponding to either Bosons or
Fermions.,
€)) aEfF) = 1 always satisfies eq(2.9) . This corresponds to a representa-
tion for Bosonsle. Thus a Boson representation can be completely defined by
giving a measure W and setting Xo(F) =1 . There may-be‘bther systems of
multipliers corresponding to Bo;z;s.
(4) The representations with dimEF>1 have the following physical .
significance: |
(1) 1f U(f) and VQ%P are reducible the representation can correspond to
particles with different mésses or with internal degreés of freedom
(e.g. spin). In tﬁe latter case, additional local currents need to be
added to obtain a complete sét of observables (e.g. spin density). .Spin
" has been treated Briéfly by Grodnik and Sharp13 and Goldin6.
(i1) 1f U(f) and V(&? are "well behaved" and irreducible the representation
corresponds to parastatisticslh. . |
Thus by restricting ourself to the case_dim}iF = 1, we only will be
considering identical spinless particles (either Bosons or'Fermions).
Much informatioﬁ about the representation can be obtained from ﬁhe
ground state expectation value of U(f). This is kno%n as the generating

functional and is denoted by L(f). Thus,
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L(E) = (R0 Q) = faue) ! o (210
The generating fgnct£inal for any representation has the following )
properties: o o
@) L) =L¢-H" : (2.11}

This follows from the relation U(H)' .= U(-5) .

() L) =1 | | L o
Since the ground state is normalized, (Q,Q2) =1 .

i) L(Hs 1 - | (2.13)
This follows froﬁlthe éondition that U(f) be a unitary opérator.

(iv) L(f) is a positive functional. This means

N .

* ' '

- Z < i i . e

j2k=1aj a, L(fk fj) 0, Vaj c, fje,} and finite N @ 143)
3

' This property follows from the requirement that the inmer product on ¥ be

N N

N >
positive: i.’e. (Z ajU(fjm, pH akU(fk)[D 0.

j=1 k=1 _ ]

It can be sho&n that a continuous functional L(f) satisfying the above

. : . ) . 6
four properties determines a measure W for a representation of U(f) .

1f 4 is a quasi-invariant measure and the multipliers are known (e.g. this

is the case for Bosons), a representation of both U(f) and VQ&? is complefely

determined. Othérﬁise, it is necessary to know, L(fa&? = (8, U(f)V(&? CD s
in order to completely determine a representation of the exgonentiated
currents, |

Remark: The e#poﬁentiated algebra and generating functional techniques we
will be using arelSimilar to those introduced by Arakia'in studying the
CCR's. They have been applied to find represéntations of the canonical

commutation relations describing a non-relativistic infinite free bose gas
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by Araki and wOodsls._ A similar approach was used in a study of the CAR's

by Araki and Wyssl6.

A 3. The Hamiltonian expressed in terms of-Currents.

In this section Qe will express the Hamiltonian of a physical system
in terms of the cerrents o] (ﬁ) and £f§)° A formal expression for tﬁe
Hamiltonian abstracted from canonical field theory was given by Dashen and

. i

' Sharpl° In terms of the canonical field operators (satisfying either the
: I

CCR's or CAR's) the Hamiltonian for a system of particles with a two body

interaction potential V(x) is given by: ‘
, S SN , L PN DN 4

=5 dx 9y - g v+ [l adyyuguap g G
- The potential energy term can be written as, |
- P.E. = % [[axdy p (0 [p@) - 8 (o] Ve (3.2)

To obtain the kinetic energy term we introduce the quantity.

5(&) = V p (x) + 2i ( )'g_ In terms of the canonical fields
‘§(§2 =2 \kT(x)V v Q}) o. Then formally the k1net1c energy is given by,

K.E (1/8>Idx K(x) f:

3.3
) (3.3)

Combining eqs. 3 2 and 3. 3 the Hamiltonian is given by,

(1/8)jdx x(x)'r ( 5 XG0 + ”dxdz p(x) [p(y)- B(ﬁ—zq)]v(x-y)
PYX (3.4)

In the N/V 1imit:there are two problems with writing H as the sum of
the total K.,E, plus the total P.E. :
(1) The K.E./particle and the P.E/particle are finite., However, the total
K.E. and the tota1~P.E. are infinite, Therefore, it is unclear just how
each tefm in eq. 3;4 is to be defined.
(ii) From statistical mechanics the ground state energy is proportional to

the number of particles; Ea ¢ N as N becomes large. In the limit, E0=®.



:
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Thus,‘the sum of fﬁe two terms in eq. 3.4 1is also ill Aefined as it stands.

These problems lead us toconsider an alternative expression for the
Hamiltonian. First, it is necessary fo define the quantity "-;%g)" which

: i

appears in the kinetic enérgy term. In the representation corresponding to
a Free Bose Gas, alrigorbus definition has been given by Goldin and Sharp7.
By e*tending their definition we can combine the K.E. and P.E. into one term
and obtain a well défined expression for the H;miltonian as a densely defined
hermitian form.

We denote the Hamiltonain for a Free Bose Gas by

= (1/8)f (")f x). It is defined as follows7:

Ann
Let y = span {w(x)p(x)é @eH and w(x)e ¢~ functions of polynom1a1
growth at infinity]

v 1s a set of vector valued distributions "proportional’” to p(x).
. P!

n 1 1"

1) is defined as a map from v X v #* &' in the following way:
o ’

Let v, .= ;',1(399(.?.9“’1 and v, = wy(0PG) 8, Then
Vi Togg V2 (e Wi GRv (0PGRe).
o APCE) e -
Let B = span {e P " ;¥Ffe’ and Q3= the ground state},

. e i
B 1is a dense linear manifold in ¥. For the Free Bose Gas it can be shown

5\(3()-961/ As a result

(3, By &) =(1/8)[ dg ®G©? |5 K098,)-

p(w? ~va

is a well defined hermitian from for all §, and @29 5.

. . 1 _
Remark: The seemingly natural operation of P(&) on v = wl(ggpgﬁ)Ql,

= w1(§2°1’ is not in fact well defined., - Since, if v can also

L v
PG |
be written as v = w2(§)p(§)§2 it does not necessarily follow that w1§§2§1=
w2 (,)“(") Qz .

By geheralizing the form of Ho we willhshow for an interacting



system that:
¢)) H'is defined as a bilinear forﬁ on the dense domain,"-
B = span {U(E)Q, fc/ and Q— the ground state}, by

<1/8)J"dx K(,) )Moo where. K0 = K@ - AG,0)-

The operator .ﬁ(.’ﬁ’P) will be def:med precisely later.
(2) H is both hérﬁifian and positive.
(3) (§, HD) =0, v@eﬂ'where {i= the ground state.
We start by assuming there is a representatlon of U(f) and V(&?
on a Hilbert Space H along with a Hamiltonian H satisfying the

following,conditiéns:

1) There is a norﬁalized state of lowest energy; thg ground state §l.
We require, HZO.' ihué the zero of energy is choosen such that |
i BEQ=0. C (3.5)
(11) B = span {U(f) Q; feaf}is dense in M and Sc the domain of H.
(111) Current conservation | |
[1,p()] = -1i3(gE) - B N (3.8

(iv) There is an anti-unitary time reversal operator T such that,

Tp(OT T = piD),
TJ(ng)T'l - -3(5)) and (3.7)
TR= §
We will aléo make use of the relation
ePpe® - z L (ad™)B | . (3.8)

where (ad A)B - B.and (ad A)B [A,(adn-lA)B].
Two simple results we will need can eaéily be derived from

eqs. 2.3, 3.6 and 3 8. Thege are,
. (PO 5] = - ie!PD x @)1 - -pig-getP® -9




. 16-

.Iéﬁd | |
| [eip(f),ﬂj = [-J(g{f) + %p(vf D) ) P(E) ' | (3.10)
Our first tbéorem shows time reversgl invariance aﬁd current
conservation éféjsufficient to detérﬁiﬁe-ghe matrix elements of JQ§2 and H
in terms of those for p-

Theorem 1: Suppose there is a representation of U(f) and V(g» satisyfing

conditions i-iv above. Let \f>=eip(f){1. Then,
<f1|J(§2\f2}= é(fllp(g:ggfl +'f2)ﬂf2) o (3.11)
and (fllu|f2>=‘§<flb<gfl.gf2ﬂf2> (3.122

Proof: Using time reversal invariance (eq. 3.7) we have
(£,13 £,) = @igeP ) q, 1P,
= -(q, *PEI e P g)
Substituting in qu. 3.9 twice and also using eq. 2.6 we obtain
(g lag le,0 = -, P L -peegis, + £, 1P D)
Therefore, (£, [3(g) [£,) = 2(g lp(g 9(E, + £,0) |£,)

Next, by applying current conservation and using eqs. 3.5, 3.10 and 3.11

i

we have:
(g, luley) = P q, (1,ePED)0)
- P, Ly - I, 1P a)
= 2 lpcgty * g IEy)
Remarks: (1) A hermitian form on a demse set of states does not necessarily

determine an unbounded operator. If the form determines a hermitian operator
it may have many (or no) self-adjoint extensions depending on the choice of

its domain. Therefore, eqs. 3.1l and 3.12 are not sufficient to determine

J and H as oberatqrs.
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(2) As a result of eq. 3.12

(p(ED 8, B p(£) Q) = 2(Qp(If,; - VE,)Q)

In the N/V limit, for a translational invariant system
‘(fl,p(§)f2)'= ps the average density.
Therefore, (p(f)Q,H p(£,)Q) = #nldx vf - vf,
Now, using the matrix elements of H given by eq. 3.12 an expression
for H will be dérived in terms of p(§? and‘£ﬁ§). For this purpose, we first
determine an operator »ﬁ(zi’ p) having the property that K(é? Q= A(&,p)ﬂ.
Consider a representation with Hilbert Space ¥ = Lﬁ(J') and.grouﬁd state |
{IF) = 1. Let Aég? be the operatér of multiplication by (Kﬁg}(l)(F) defined
by: |
BB E = KA OFEand
Domain A(g) = (s(®)e¥; [ du® | (A(®s) @ | < ) |
Since eip(f) is multiplication by ei(?’f)we have [AQ&), eip(f)] = 0.
Also A(g) eip(f)€2= eip(f)K(égSl. As a result the domain of Aggz
includes the set B and theréfore it is a dense set. By time reversal
{nvariance it follovs that (K(g)Q)(F) = (K(g) Q) (F). Thus A(g) is
hermitian. Moreover AQ&? is self-adjoint. To prove this it is sufficient
‘to show that [Range(a + i)]% = {0}. Let @kF) ¢ [Range(a +3)]%.
Then JSS(F)Q(F)(AQE?i i)¥ (F) = 0, ¥W(F)e¢ Domain Agéz. Pick.QKF) = XE(F) =
the characteristic function for the set C &€ '. Then ’
idu(F)‘ % (F) (R QAE) = i] = 0, ¥C € /' and therefore
3(F) LR FE) £i] =0,
' since [(KQERKD(F) £ i) # O we have 8(F) = 0. Therefore, Agé) is

self-adjoint.
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It will be ueeful to express A(g) as a function éf'p. This is
possible‘since the p's are multiplication operators end Polynomials in p
applied to the greued state ere dense, We proceed as follews:

Let $={fj; j =.1,2; . . .} be a countable dense set of test functions.

(e;g. In Schwartz}s space, finite linear combinations with ratiomal
coefficients of.the:Hermite functions.) "

Let 8' = span {eip(f)fl; feF}. Since 5 is dense in Y, by the coetinuity

of the represenﬁéion it follows that £' is also dense. However, the

states {eip(f)(i;‘fe?} are neither orthogonal nor linearly independent. It
is therefore convenient to orthogonalize them using the Gram-Schmit procedure.
Let \h1‘> = U(E) Q;

n
- (n) -
\hn) —jg a)’ U(fj)Q, such that (hi,hj)— T

b
Clearly, span [hj; j=1,2, . . .} = B'. since this set is dense we can

write
n

K(g)= 21 b (g)[ E a‘“)u<f )1a
=

The desired operator A(g,p) is defined by

S (n)
Ag, p) = T <g){ z aJ“ U(E)]

n=1 =1
Furthermore, K(g){l depends linearly on g.‘ As a result bn(§2 is a linear
distribution; b (g) I dx b (x)g(x) Therefore we can wrlte, A(g,p)—

Jax g (x)A (x, p) where A(x,p) = E b (x){z a™us.)l.
n=1 j=1 ] J

Next, define 3352 = g(g) -_Q(ﬁ,p). By construction we have
K Q=0 and ’ (3.14)

Theorem 2: (1/8)I qi.ﬁk§gf p(i) Ekx) is a well defined hermitian form
— X, . .

with domain 8. Furthermore,



(gll(l/s)jdx Koo' P(m) 1<(x)|<;>2 (8,, H3,y), ¥&,8, ¢ & (3.15)
Proof: Observe that

~ +t 1 ~ i L i ip(f) @y 1 > ip(f) A4
(g, | (1/8) faxk(x) e KR )= 1/8) [axRme P’ Q, 2 K@e PR’ qd

(1/8) Jax(-2195, 6o pw) e PV @, BT')"( 20) 3£, ) pG e P20 Q)

2P0, pge - vs,)e P 0y

-(fllg\f2>-
This can be extended by linearity to the domain 5.

Formal manipulations can easily be performed with this form of H.

- For example, we can.verify current conservation:

[1/8) fax RGO ' p( 5 KG,p(5] = (1/8) LN p( )[E(x), p()]
+ [K(X) ’ p(f)]

= xR " p( 5 PRI ~ZEGpG) ) Ko}

'w bt

= ifax IR Kl = -3
In the last étep we USed‘éﬁisp)T = é&i’P)’ which folléws:froﬁ time
reversal invarianée. |

These manipulations can be cast into a rigorous'form by showing
that (8;,Hp(£)3,)" (p(£)3;, HE,)) = -i(8),0(YDIE,)s Voy, &, € D
follows from eqs. 3.11 and 3.12.

In an altérqative approach, only a representation oflU(f) and V€&2
is assumed. Then the hermitian form in eq. 3.15 is used to define an
operator with allnthe properties of a Hamiltonian, It is necessary to show
the hermitian form is posiéive. This can be done if one assumes
(@,p(f)@)zo, ¥ feo such that f(ﬁ? 2 0 and &6 Domain of p(f). This is
physically necessary since the expectation value of the:density in any

state must be positive. 1In the representation with the Hilbert Space

‘
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- 12 (o
n-Lu(J):

2
(&pH)D) = Jau@® ¢, 0le@® |
Therefore, the measure is concentrated on functionals Feo” such that

(F,£)z 0, ¥£(x)> 0.

‘ Ao~ P 1~ . o .
Theorem 3: (1/8)Jd3c_§('§) P(?ﬁ) Qli('};:_‘) is a positive hermltian form.

n
Proof: Let & = & a . U(£,).6 .
= jop 403

Ao~ 0t 1~ _ ki * .
(8, (1/8) jdx K(x) ) K(p)¢) = % ?k=1 a, aj(fklp(lfk ij)lfj>

n ]
= 3l @,|T aj&fjel(F,fj)\z) -

j=1
The following theorem of FriedriChsl7vtells us the hermitian form

in eq. 3.15 defines a positive self-adjoint operator.

Friedrichs' Theorem: A positive semidefinite hermitian form fﬁl,yz}
defined on a dense linear set R in a Hilbert Space M can be extended by
‘continuity to a ﬁqsitive semidefinite hermitian form on a larger linear
set R'> R which consists of elements yeH such that, for some sequence
;naR, “y - ¢n|| <40 and {;n-¢m, *n-ﬁm}* 0. Furthermore, ;herg exis;s_a
unique positivé.self-adjoint operator A sucﬁ that ﬁ(A)CR' and {?1,¢2} =
’(a;-l, Aty), ¥ipe R' and 7,eH(A). |

"Therefore thé' expression (1/8)‘&3&:12‘(397 ;JIT)S)' g(ﬁ) can be used to
define an operator with all the properties of a ﬁamiltonian. If we had
begun with a Haﬁil;onian, it is not clear whether this would be the same as -
the one constructed from Friedrichs' Theorem due to the technical question
concerniﬁg the domain of H. We will not pursue this matter further here.
Remarks: (1) Eés. 3.11 and 3.12 and the result that eq. 3.12 defines a
positive hermitian form have been obtained independently by Aref'eva18

using different methods.
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(2) Coester and Haag19 have discussed a similar form for the Hamiltonian
in terms of the canonical relativistic scalar fields <p(x) and yr(x)
(3) There is an interesting Similarity between the form of the Hamiltonian

derived above and the Hamiltonian for a particle in a magnetic field.

H

A 1
0= (/8 [ax ko' 500 vlg(:;) ¢« H,=p’/m

H <1/8>jdex<x> AT ) KGO -AGH0 ) e H = 7—(p -2 ?

In our case, for an interaction the free Hamiltonian is modified by

‘§Q§?4 (») - A(x p) while in Q.M. the free Hamiltonian is modified by
- -— E e =
P*p (e/c)A. There is also a difference In Q.M. xfree n -+ x

—l— p-=< A) while in our case p ~Y'J remains true for both the free

e

case and the interaction.

(4) In terms of the canonical fields both the currents (eq. 2.2) and the
Hamiltonian (eq. 3.1) have the same form for both Bosons and Fermions, 'In
terms of the currents (as we will see in the following paper) the free '
Hamiltonian has a different form for Bosons and Fermions. This is not as
surprising as it might appear at first sight, 1In Quantum Mechanics the

free Hamiltonian for Bosons and Fermions is formally the same; H =

n 2
-%:Zi ngf— . However, the domains are different; symmetric functions for
J = .

Bosons and antisymmetric functions for Fermions, As a result the Free
Bose Hamiltonian and the Free Fermi Hamiltonian are different operators
with distinct spectra(13).

(5) Hopefully there will be a systematic method for determining A(x p) for

a given potential. - Eq. 3.4 might be used as a guide towards this end.
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4, functional Differential Equation for L(f). »

Using the results of the previous section we will derive a functional
differential edqation for the generating functional L(f). When supplemented
by the appropriate boundary conditions this equation can be used to &etermine
L(£f) and hence ; fépresenﬁation corresponding to a given‘physical system.
This haé Been doﬁe'in great detail for the Free Bose Ga; ih ref. 20 (see
also Goldin and Shanpzl).

We start with the ground state condition (eq.43.14),’gk§)(l= 0.
Forming the inner product of ‘\I,(’:(;‘cﬂ) Quith e-ip(f) Qwe find 0 = (Q,eip(f)g(g) ).
Using the definition of gk52 and eq. 3.11 we then have

0= (@, Pluoey - 19:00pe 100 - (A,ePDpcup ), @)
Both terms can be evaluated using functional derivativgs of L(f).

Since 1 S%TEY L(f) = ((l,éip(f)pgi?(l), eq. 4.1 can be written

: -1 6 _ 1 8
[*YA- ivzf(?f,)'! i 5f(§‘) L(f) “-ﬁf(?‘f\, i _—6f Y L(f) 4.2)

The solutions of this equation which are physically admissable are
restricted by several conditions. These include the general properties

(eqs. 2.11 - 2.14) of a generating functional, namely:

(1) L(f)

Lk
L(-f)

(2) L(O) =1

3) jlum| =1

(&) L(f) is5 a pogitive functional.
Other conditions may include,

(5) L(f) is an extremal solution in the sense that it canﬂot be written as

a convex linear combination of two other solutions. Thi; has the effect

of requiring the representation of U(f) and V(&» to be irreducible
N

(see ref. 20, Th.,3.4);



In the N/V limit we can also use translational invariance or the

cluster decomposition property. (These will be explained further in the

‘next section )

1 &
® T %) L(f)lf 0= (R,p() &) =

(7)) L(f) = L(f ), where £ ()9 £(x-a)

(8) I:TwL(f +- %3 = L(£) L(h), where h§§§2 = h(&\-'%)

For the Freé Bose Gas eq. 4.2 becomes, (z~- gyf(§))'%— L(f)

éf(wg
In this case it i'slknown20 that conditions (2) - (6) uniquely determine
L(f). It is not known whether these conditions are sufficient in other
cases. Furthermdré, it is not yet known how to determine.theﬁéﬁﬁ,p)
corresponding to aAspecific interaction. However, in the following.papef,

,éﬁ&,p) and L(f) are given explicitly in the N/V limit and eq. 4.2 is

verified for three additional cases:

¢9) Bosbns in an external potential, - 4ﬁ(¥?p) = p(g)v 1n5(§}
(2) Free Fermi Gas in 1 dimension, A(x,p) = 2p(x)f o(y)
3) 2/x2 interaction in 1 dimension, A(x,p) =_4p(x)f dy <p(Y).

X-y
5. L(f) in the N/V Limit.

In this secfion we discuss some general'properfies of the generating
functional L(f) in the N/V limit. First, for an N-particle represenﬁatioﬁ
we find an-expréssion for L(f) in terms ofAcorrelation fuﬁctions. This
form of L(f) is extended to the N/V limit when the correiaﬁion functions
satisfy appropriate bounds. Néxt, we consider the conséquences of trans-
lational invarianée and the cluster degomposition propert;; It is shawn
that different genefating functionals give rise to uﬁitafily inequivalenp
representationslbf‘ka). Finally, the parficle nature of the N/V limit

representation is examined.
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A. Expansion of L(f) in terms of Correlation Functions.

The N-particle representations of the current algebra (eq. 2.3) have
11 , .

been studied by Grodruk and Sharp , and Goldins. We will use the corre-
spondence between these representations and conventional Quantum Mechanlcs
to obtain an expression for L(f) in terms of correlation functions. An
N-_pérticle representation is defined on the Hilbert Space,

2 (RN) .

S ; The totally symmetric functions for Bosoms.

A(RN) ;. The totally anti-symmetric functionms for Fermions.
Acting on‘l’Qcﬂl, Cee Xy © H,

p(gg)‘i(‘;il, x.) = E 6 (x- xk)\P(x . . . V}SN), or

WN -
S ; G
PEWx s « »ox) =T £Gg) Wlx, .. oax)
k=1
and
. 1 N
2@V - - my ar B CRKend 2000 R, YW - - -ty
or, | (5.2) |
1 N
J(.’g)q'(l'cl, . 3LN) =55 z (28()51().V«xk‘*(v‘g)‘(}—sk)»(xl’ . .. xN) :
Y . 0 =1 s Y L7 AV Y v, £%%}

The generating functionals are given by

‘L(f)=(Q,eip(f)Q) = J\d&il' . .J‘d&gﬂ 1f(x1) . . 1f(x )ﬂ ﬂ(x .,‘. '3SN)
' (5.3)

where Q(v)&l. . .3§N) = The ground state wave function, and

/
Q ,eip(f) eiJ(v%) )

L(f,8)

= Jax, ,',jd&;ng"gﬁ. Cox) T @M o600
k=1 X

where j(x, g) [2g(x) V + (V g) (X2]
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Remarks:
(1) One can write,-

iJ(' §)y(x)-« t)[det

o, (X)]2

wheregp is the flow corresponding to the vector field g. The factor
N\ Ve

L2} ‘ . - . : . .
[det Ix ¢h(§)] is the Jacotian of the transformat10n,3£-¢&¥§g,

and is necessary in order for elj(g) to be unitary. (See ref. 6)

(2) ¥ is uhitarily equivalent to Li(zﬂ) where the measure is concentrated

on { Fe'; F E 6(x-xk)} and du(F)= d§i Sl(x . ,ﬁN).
k—
Furthermore, the,ground state is given by { (F) = 1. Boson and Fermion -

' representations are dlstlngu1shed by the multipliers XO(F)
For a representatlon deflned by L(f,g) it is convenlent to think in
terms of the n-point functionms, (Cl,p§§l)...p(§m)g( 1) 'Ugfﬁn)cz"
instead of the measure and multlpllers on ¥ = L (»'). By the Reconstruction
Theorem (see ref.-22) the n-point functions determine a representation of

_ the current algebra. All the n-point functions can be obtained by taking

functional derivatives of L(f,g). Therefore, L(f,g) determines a representation
A o~ o A

of the current algebra.

Remarks: _ .
(1)There is a slight complication in determining the n-point functions from

L(f,g). The p's are obtained directly by taking functional derivatives.

15
i 6f(x,) ° 7 °
Wl '

8

éfg}ém) L(f’&) ‘f__.o = (Qsogﬁl) - .p(ﬁﬁn)c/,)

1
i

Since the J's do not commute

1 5 1 5 _ 1 e |
BT TG @@ g = T D EIGg). - dG @)

e A NPT
where §3= the sum over all permutations of (1,2,...m).

However, by using the commutation relations (2.3), (Sz’iﬂﬁl)"kigﬁﬁ){i)'



-24-

. 1 - 8 1 5 :
can be obtained inductively from i 6g(x1)"' T 5 (=) I‘(O"§.)=‘g=0

plus the n-point functions of lower order (n <m).

(2) The J's (in the n-point functions) can be replaced by 's using the
. Y P

operator AQ& p) defined in section 3.

| I(x;) Q= -%i[A(wl,p) - Ip(x)16

J (x5 )J(x )Cl— -51{[J(x ) (A(x,, )~ Vp(x NI+ (A(x ,p) (x ))J( )}fl
X2 X Xo2p X2 X 2

Using the functional representationu-' Jx) = px). -]5- \ b + F(px)),
va p&h i w ép(‘z‘(\') p 135
1 _ 6
[J(x ) A(xz,o)] o) TG Toplp & Ax,,0

" Thus JQ( )J(x,) §lcan be obtained from a function of p on 1. This procedure
A :/1 T ~“"2 :
can be extended to J(x )...J(x )1 Therefore, a representation of the eurrent
algebra is determlned by A(x p) and L(f), provided the derivatives of Ag, o))
are well behaved. - Goldin6used an expression similar to ._A(?f,’ p) to give
rigorous sufficient conditions for recovering a representation of the current
algebra from that of the exponentiated currents.
The n-point functions of p can be related to the correlation functions,

which are defined as follows (for the N-particle representation):

1 % " - for n=0
= 1 RN .
Rn(esl""’-:zfn) —&) N:/ (N n)"rdv}én+1"'j‘d3(ng Q (§ "'"’éN)’ gzﬂﬂ

Using the symmetry of the wave function and eq. 5.1 we obtain
(§,p(x)80) = Ry (x)) _
a, p<x1>p<x2>m 2<x )+ 06y R G

8(x) %) 3G %30 R ()

Thus (ﬁ,p(;}"l).;.p(kn)ﬂ) is the sum of n terms, each t:erm'being the sum

over permutations of the variables Xys v Xy of the product of m delta
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functions multipliea by Rn-m'
Remark: The abévé expressions are independent of the number of particles:

in the representation. As we will see they are also true in the N/V limit,
1f p(§) can be writtén in te;ms of the canonical field opefators as, p(}? =

T .
¢§§) @(i) (eq. 2.2), the correlatiorn functions are the n-point functions

- . . 1' ' f 1,
for the canonical fields. Rngg ""ﬂ&n) = (0,¢ €§1)~7°V-Qﬁn)wﬁﬁn)"’vﬁﬁl)sz)'

The correlatioﬁ functions have the physical interpretationm,
(1/“5)Rn(§4""’§§’ = (The probability of finding n pafticleé'at
the points‘ﬁl,...,znvrggardlesé of the positions.
of the remaining particles.

~ We can now obtain an expression for L(f) in terms of the correlation

180G

functions. Let F(x) = e 1, and note that

JEGD F(xy) +1,

D ©r Ty + PGy +FG) + 1

. i -
A R R T R CVAC S B DR AR S (5.5)
perm j=1 k=1 k
Substituting eq. 5.5 into eq. 5.3 for L(f) and using the symmetry of the

wave. function Clénd‘appropriate change of variable lables in the integrals,

we obtain '
N ." . 2 . i .
L(£) =nzg (L/nl) fdx ... fdx FGe) oo FGEIR GepaeensXp) (5.6) '
(As a check notice the ieading term, the one without any & functions,

18 18
i BE(x)T T BEGe)

in the n-point function(SZ,p(§1)...p§§n)(1) =

L(f)‘f.—.o is just Rn(‘:)'v.('l’.."‘?‘(ﬂ).)

In order to carry out the N/V limit we introduce the following

notation:

(N)

th . C '
Let Rn' = The n  correlation function for N particles in a box of
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volume V, and

e ™ S,
Let a = 5451...£q§nF(§1)...E(ﬁn)Rn (il""’zn)
The generating funct10na1 for the N-particle representatlon can now be

written as, LN(f) ‘~E (1/n! )a(N)
n=0

If the N/V limit is to exist we might expect R(N)4 Rn‘Vn and
@«
= P
L (f)»'L(f) nfg(l/n )a where a -mdx de F(x "'ngn)Rn(ﬁl"?fn)'
In the next theorem we give sufficient conditions for the N/V limit of L(f)
to exist. These conditions are probably adequate for most physical systems.
(They will be used in the following paper to explicitly calculate L(f) in
the N/V limit for several examples.)

N : .
Theorem 4: 1If R( )(x ..,xn) -+ Rn(il""’ﬁn) and

(N)ls cn n/2 Vn,N for some constant ¢, Then é&f) -+ L(£).

|R
. 23 : . . .

Remark: Girrard ,used an express1on similar to eq. 5.6 in studylng the

thermodynamlcs of a Free Bose Gas in terms of the 1oca1 current algebra.

The proof given: below is essentially the same .as the one he used.

Lemma: The series.S(c) = Z)(l/n!)cnnn/2 converges for all c.
n=0

L . , A th
Proof: We use the ratio test. Let Sn = the ratio of the nt+l term to the

nth term. Then

1/ (@) )) P (na1) @D /2
(L/n)) " nn/2
(n'l)/z/n

"2 (1 + 1/n)

= c(n+l) n/2

= c(nfi n/2

W= V

+ c0e 0

Therefore the series for S converges.
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Proof of Theorem: Since RéN)
n/2

| n
- that |Rnls ¢ n . As a result

* R, and \RéN)l s c" nn/2 it follows

lan‘ S,fdﬁl”"ji§n|F(§l)°"f(§n)Rnl
S(cfdyleif(*p-l\)n 2
Let ¢ = cjdijeif(§)- 1|. The series for L(f) is bounded term by term by the
| series for S(g ). Therefore L(f) converges. Furthermore, the series for

LN(f) and L(f) converge uniformly. We now show L (f) = L(f), First notice

that there exists an n, such that for N > n, lS(c)- E (1/nd) <" nn/2|<e/4.
n—
Furthermore, there exists an NO such that for N > NO’ (l/n!)laéN)-an|<e/2nb
for n < no.
oL Then, for N > n, and Ny we have

lLN(f) -L() |slL(H- T /n! )a(N)l + - T W/aha | + T Q/nl )la(N)

<
n<n0 A n<n0 n no

< elb ‘ + e/ o+ no(a/Zno) =

Since ¢ is arbitrary LN(f) - L(f).

Remark: In order for L(f) to be a generating functional for a representation _

of U(f), it must satisfy eqs. 2.11-2.14, These equations are preserved when
limits are taken. Since the LN(f) satisfy them, it follows that L(f) also
satisfies them. . Therefore, L(f) defines a generating functional.

An alternative expression for L(f) can be obtained in terms of the

. 24 . . .
cluster functions of the correlation functions. These are defined as,
) m

T (XypeeerXx ) = Z'(-)m-n(m-l)l mR Qﬁke G,) where G = a partition of
n vl vent’ G J=l G. B .

(1,2,...,n) into subsets (Gl’G2’°"’Gm)° L(f) can be expressed in terms of
T as follows:
n

UD = exp E;( ) (1/n:)jqfl...jq§ﬁF( CFEIT (e ex ) (5.7

n=

a_|l
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Remark: Tn is the non-relativistic analogue of the truncated n-point

functions25 in relativistic field theory.

B. Translational Invariance and the Cluster Decomposition Property.

Translational invariance and the cluster decomposition property play
an important role in determining representation of the local currents in,
the N/V limit. A representation of-U(f) and V(g? is translational invariant

if there is a set of unitary operators Q(&), continuous in‘ﬁ, such that:

(1) Q(g;)Q(gy) = Qg+ a,) , ' (5.8)
(11) Q(,e.})U(f.)Q(;;iﬁ)'1 = U(f,), where f_(¥) = £(x-2) (5.9)
(i11) Q(,g‘)v(b&o")Q(s)-l = V(.é:)’ where ,‘@:(3&) = olxa) +a (5.10)
(1v) Q@) &= & ) B | © (5.11)

These conditions are equivalent to the. requirement that the
generating functional is translational invariant, i.e.

L(ﬁé,g%) = L(f,&?. (5.12)
Also, the correlation functions are translational invariant, i.e.

Rn(f +‘9’52+ﬁ""%§n+39 = Rn(ﬁl,fz,..ﬁ§n) (5.13)
Furthermore, ngf) =(§1,p(§)$2) = 5; the average density.

The cluster decomposition property is based on the physical idea
that as particles get far apart their interaction becomes negligible. This

condition can be ‘expressed in terms of correlation functions by requiring
Lim {Rn+m(§1..3§ntzl+&§,..;Xm+kg)-Rn§§1..2§n)Rm(X1fi,;.QZm+A§)} = 0

A+ @ (5.14)
Combined with translational invariance we then have

iﬂnw Rn+mg¥l"\§n¥X1+AgJ"RXﬁ+A§) = Rn(ﬁl"'ﬁn)Rm(Xl°'?xm) (5.15)

Using eq. 5.6 this implies

Lin_ L(Ethy,) = LIDL() , where hy, GO = h(xde) | (5.16)



This rela;iop can be used as a boundary condition in.determining
physical solutioms of the functional equation (4.2) for L(f). (See”Appendix 1
for an example.) - . ,
Remark:' The clﬁster decoﬁposition property can also be expressed in terms
of the cluster funqtions of the correlation functions as follows:

Let r(&l,...aﬁn)"=-The radius of the smallest ball containipg
\the pointaﬁl,...%ﬁn. |
Then Tn(fl,...,én) 4 0 as r(ﬁl""’ﬁn) »

Translational invariance and the cluster decomposition property have
important consequences in relativistic quantum field theory. We will
discuss the corresponding(results for the non-relativistic local current

algebra. This discussion is greatly facilitated by the application of some

.8 . .
results of Araki . The next theorem shows that the ground state is unique.

Theorem: Suppose the generating functional L(f) = (Sl,ﬁ(f)(l) defines a
continuous unitary representation of U(f) satisfying the cluster decomposition
property and translﬁtional invariance., Then any state {l'Ainvariant undér
Q(g) up to a fac;or (i.e. Q(a) Q' = w(&‘) §.', where W(@) is a complex number)
is a multiple of §1. . ) :
Proof: (See Araki®, Th. 6.1)

Thus the ground state is the only translational invariant state, The
generators of thg't:anslation operators are the momentum operators; i.e.
Q(&? = exp igpx,‘wﬁgre‘£‘= The total momentum operator.  Suppose the state

'~&f>'i§la£momentum eigenstate, then Q(a)lx? = eiéﬁg E?d By.the above theorem
|g? ié a multiple of 2. Therefore {lis the only momentum eigenstate.

(Furthermore, £ﬂ= 0.)

The above theorem has an additional comnsequence.
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Coroliagz:~ Supposé the generating functional L(f) - (Q,u(H)) determines;

a continuous unitafy-representation of U(f) satisfying the cLuster-decomposmion
property and ﬁranslational invariance. Then the set of operators B =

{U(f), QQ&)} is irréducible. (i.e. Any bounded operator that commutes with
every operator in the set B is a multiple of the identity.)

Proof: (See Arakis, éection 6.)

In bounded reglons the translatlon operators are s1mllar to the

operators V(¢). In fact, if the flow §a(§)ﬁ§ﬁ3? is a valid test function

L

then it follows from the multiplication law (eq. 2.6) that,

VE )v(gb) V(g +b), V(g )U(f)v(g ) -U(f) and V(g )v(co)v(g ) —v(%)

Thus V(g) behaves like a translatlon operator (except for V(§)€l KL).

However, we have been considering only continuous representations. Therefore
it is necessary to impose a topology on the set of flows. Goldin26 has
discussed this poiné. He suggests a topology on a restricted set of flawsée _
for which‘%¥§}*\ﬁ\as \ﬁ\* o, Thus Ea would not be in the set of test functionms.
In order to obtain ﬁhe translation o;;rators from V(E? we are led to consider

a sequence of flowg&gh,converging tovga. The next theorem éives a sufficient

(T

condition for V(So )= Q(a).

Theorem 5: Let Q be a sequence of flows such that foo -+ f ,Vf&J and

v.

(p (pO(p-O([: for all flows o I1f (&, V(\So)ﬂ)" 1, then V@) Q@)

Proof: Since (S'L,V(cpn')n)* 1, it follows V(aon)Q-* G
Let D = span {U(f)V(&»G ESa’and_¢ e fiows}. D is a dense set for any

representation defined from a generating functional L(f,0.

Let j{eD. We will show V(Eh)$4 Q@) ¥ _ .

. 2 ,
gy i-e@¥II* = 1vig) sl 1? + Tle@ilI” - wigyw e@n-@@evig)»
Since V(g) and Q(2) are unitary, ||v(g)sll=|l7ll= |laga ¢l

Since {eD we can wfite Y o= Z b U(f )V(m ). Then,
j=1

m %
(Vig) Q@) ¥ =j§1 b, V(g UEDV () &.Q(@) )



} | . R

: ;1 ,
j):.l b (V(&) Q,V((p ogjoip ) U( fjoipn) Q@\) i)
“since the representations we are cons1der1ng are strongly contmuous,
-1
' V(fn ° ¢y °o@). U: £y 9/@31) Q(a)l: - V(gja) U(f'ji), Q(g)w

and since V(%)Q_—* 1, we have

PR |
(Vggn)'b,an)w) -'JE b’ (R V((p ) U(fja) @V

1
* U T J

= Q@b e@n = I

Therefore Hv(fi’n) ¢-Q(i) 4,-‘ \-o 0. Since D is' dense it follows V((pn) - Q(.am.)

Remark; Theoren 5 has a physical interpretation. Since J(x) is the
(S50
[= <]

momentum density, we expect J‘ J(x)-a = a‘P wherein\= the total momentum
e v T e e . :

1[0 -a8% . 2R | geq)

operator. Thus, e

But eltJ(‘g»-) = V(o) where fg is the flow corresponding to- the vector field g,

v— \M

. d _ _ _ _
i.e. _d_t:.-?t(}vs? “-4%,°,E?t(3§-,) and v(£t=0(39 = X. For g(x) = a, (pt(x) =X + ta

(oY

Thus we expect Q(&? = V(&ﬁ) where 'E&("}‘{*) f‘>£‘+ri. However.,-i J(x) a dx may

not be well defined since it is an integral over all spéce’.' Thus we must

take an approprlate limit to make the integral well defined.

In appendlx 2 1t will be shown for the representatlon of U(f) and V((D)
corresponding to a Free Bose Gas, there is a sequence (-Dﬁ satisfying the |

_conditions .of theorem 5 Therefore the translation operators are in the

closure of the algebra generated by the set {V((o)} ‘Then by the previous

corollary it folqus the set of operators {U(f), V({@\} are irreducible,
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(This result was proved by different means in ref. 20.) It is not yet
known whether this result is true for other representations of physical interest.
Next, we will show that different Hamiltonians give rise to unitarily

inequivalent representations of the local current algebra. In order to do

this we need the following theorem.

Theorem: Suppose the generating functional L(f) = ((l,U(f)Sl).determines a
continuous unitarylrepresentation of U(f) satisfying the-clusterAdecomposition
. property and translational invariance. 1If there is a set of unitary operarors
Q'(a) and a cyclic vector £1' (i.e. Span {u(E)G'; feo!l is dense) satisfying

equations 5.8, 5.9 and 5.11 then there exists a unitary operator S such that;

1

SU(E)S = U(E), SQ(a)S-l = Q;(a_), and s{i= Q'

Proof: (See Arakis,.Th. 6.2)

Corollary 1: Suppose the generating functionals Ll(fj = (Sll,Ul(f)Sll)-and
Lz(f) = (SZZ, U2(f)(12), eaoh satisfying translational invariance, define
two continuous unitary representations of U(f). Furtnermore, suopose Lz(f)

satisfies the cluster decomposition property. Then the representations are

unitarily equivalent ifle(f) = Lz(f).

Proof: Let ﬂl and “2 be the Hilbert Spaces and Cll and !12 the cyclic vectors
for the two representations. Suppose the representations are unitarily

equivalent. Then there exists a unitary operator S1 such that; Sl:H14 Hz and

'1 _ . [ . ] = ’1 . .:
SlUl(f)S1 = Uz(f). Let Slz = Slfll and Q, (a) SlQl(i)Sl . It is easily.
' ’ .
shown that § 2 is cyclic in Hz and egqs. 5.8, 5.9 and 5.1l are satisfied for
1

flz and Q2'(3). By'the above theorem there exists a unitary operator S

2 such

. . i . -1— - = ! = -1 .
that; S, M4 M), S,U,(£)S, "= Uy (f) and 5,&, = C,". Let S.= 5y 'S):
. ' -1

o = =
HI*HZ. Then S“l (ZZ and SUl(f)S Uz(f).
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Therefore Ll(f) (Ql, Ul(f) & 1)1

(sﬂl, sul(f)nl)?_
=«(‘32’ Uz(f)€12)2 = Ly(D)

,ConQersely, if Ll(f) = Lz(f) the repfeséntations are clearly unitarily
equivalent.v |
Remark: The last two theorem§ have used only L(f). They are imporfant
for representations of U(f) and Vgg? in which span {U(£)§ ] is dense.
Furthermore, they'Can be generalized using L(faﬁg for representations in
which span {U(f)V(g?Sl} ié dense.

Now suppose there are two representations of U(f) and V(gp with
Hamiltonians Hl and H, of the form H = (1/8)er>d?(x).f—1l— f{QQ with

2 p(x)
R (o) = = kG - RS ) (x,p) and x( )(x)— K@ - ( )x,p. If the

o SAn VM
representations are unitarily equivalent then by corollary l,Ll(f) = Lz(f).
Thérefore we may: téke }11 = 112. Consider the following identity;

(6, PP p-g.9)-10(7e0)16) = (£,e2PPregyn)
Since K§§)€l= A(l)gg,p)€2= A(Z)(ggp)€2we have,

(&, PO, D '

) (vg“,p).ﬁ= A(z) ('g,o)ﬂ. Since [A&g,p),eip(f)] =0
ip(f)

€08) = (7, D0 08y, for all fe.
Thérefore, A
and span {e §; fe!f} is dense, it follows A(l.) (.gv,p)= A(z) (é,p)
We have proved the'féllowing theorem. |

Theorem 6: Suppose ther are two continuous unitary representations of U(f)

and V(q» (denoted By i = 1,2) with Hamiltonians

= (1/8)J‘d K )T 1 ~(1) (x) where K( )(x) K(x) A( )(x,p)

and satisfying the cluster decomposition property, translationai invariance

and time reversalrinvariance. If A(l)(x,FO # A(z)(x, ) then the
' . W Ay PV WRg
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representations are ﬁﬁitarily inequivalent.

Remarks: (1) Roughly speaking theorem 6 states, differént Hamiltonians

correspond to inquivglent representations. ATwo important questions remain
unanswered at thisltihe; First, given a system of particles (Bosoﬁ or Fefmion)
with an interaction potehtial ~V(39, is &(&, p)uniquely determined? Second,
does a Hamiltonian with a givendigiep) uniquely determine the represeqtatgon?
The second question is equivalent to asking whether the fuﬁétional equation
(4.2) for L(f) has a unique solution. This is known to beAthe case for a,
Free Bose Gas20 Q%ﬁ*ep) = 0) but upiqueness has not been estaﬁlished for

other cases.

(2) Since éﬁi,p)’considered as a function of P may be an ﬁnbounded operator,

its definition is répresentation dependent. For some fepresentations it may

. not even be defined. In some representations two operators;ﬁ(l)(x,po and
4@
A

ﬁizp) may be equal while in others they may be unequal.

(3) Consider the N/V limit of interacting physical systems charécterized by

a coupling constant A and for which the asgumptions in theorem 6 are valid.
If the systems are described by unitarily equivalént repﬁesen;a;ions, then by
theorem 6 and eq..3;12 the Hamiltonians HX are identical as hermitian forms.
Therefore, fhe Hamiltonian operators would be different $e1f-adjoint extensions
of the same hermitian form. Furthermore, the ground states are the same since
there is a unique translational invariant state. On the other hand, if the
systems are deséribed by unitarily inequivalent representations, then solving
the systems by perturbation theory is more difficult since it is no longer
possible_to express the ground states as a convergent series in . This
point will be discuésed in the next paper in cohnection‘with a)specific‘

example.
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C. Restriction of the N/V representation to a Finite Volumn.

We can gain further insight about L(f) in the N/V limit by restricting -

the test functions to have support in a bounded set v.

If supp £ev, then L(E) = T (U/n! )J‘dx ...jdx BICHRRICRLNCIPR D
n=0

j ° .
Since F(wi .o F(x ) = Z)( )n J/(j (n-J) )kniexplf(x ) and R is a symmetrlc
, perm j=0 - = e v

function, we have

L(£) = 20(1/n D fax, .. {dy;sneif(ﬁl)...eifg(n)l’n(v;}\l.,.v}fn) (5.17)

w .
where P (v; P SREES.: ) Z‘(-)J/jzjqﬁn+l"'I45n+jRn+j(§l"'§n+j) (5.18)
. J= 1 2 v X

PnAhas the physical interpretation,
(1/“1)Pn(”i51"\§n) =[The probability for finding n particleé at pointﬁ)
XpseeooXy and the remaining particles outside v.

To prove this we consider N particles in a box of volume V, in this case

() LN , *
(/DR (Vx5 =TTy Jag oo f ax S0 e

v-v v-v
N-n . .
— _L - - J N n) v ' ,* .
" n!(N-n)! j:O ) jL(N-j-n): v\n+1 J‘wnﬂ.g i+l gd&(’Nc G
N H N (' O , M-j-m)t
= —T (-) TN J‘dx . dx 0 R.
n: (N-n). 3=0 jr(N-j-n). v -+l v wnt+j N jm

N-n
= L __)
" n! ; I un+1 J‘wn+_] n+J(w1 wn+J)

j=0 v Y,

As N- « we obtain the expression in eq. 5.18.

Remarks: (1) Formally eq. 5.18 can be inverted. The R's are given in terms

wn

of the P's By the equation: For\ﬁl,...x eV

8

R (xp00-,) J=20(1/3 ) fag - £d““+3 Pres 51+ y) (5.19)

If the sum in eq. 5.19 converges and is consistent (i.e. the same.



-36-

value of Rn is obtained for points 54,...,§n'in overlappiqé volumns), then
the R's can be determined from the local probability distributions. Since
the R's qetermine L(f) this implies L(f) can be determined by its local
behavior. |

(25 If the volumn V‘is not bounded each term in the expansion for Pn

(eq. 5.18) will be infinite.

(3) as ; result of the probability interp;etation for Pn:

(1) P_(v3x;.. %)% O and (ii)nfo(l/n.i')i];dv}sl...J;dicrnl’n(v;ﬁl...&n) =1

Property (ii) also follows from L(0) = 1.

n nn/2

(&) 1f Rnsc ¥n, then the lemma to theorem 4 can be extended to show.

P exists (i.e. the series for P converges). Héwever, this is not sufficient
to imply Pn 2 0.

From eq. 5.17 we see for supp fev, L(f) is the sum of terms which have
the form of N-particle generating functions (eq. 5.3) with ground state .
givén by ST*NEFN(ﬁl;.;ﬁN) = (1/N!)PN(va§1...§N). As a resul; the N/V limiF
representation restricted to finite volumns (this is a ;epresentation of the
subalgebra formed by restricting the test functions) can be represented in
the Hilbert Spacé férmed by the direct sum of N-particle spaces (Fock Space).
However, the ground state for this restriction would not have a defiﬁite
number of particles. Thus, locally the N/V limit can be considered as
"Fock Space'. This is the "particle like'" nature of the N/V limit.

For a Free Bose Gas Pn(puﬁi..,§n) can be calculated exactly. It has

. 7
been shown for this case that

1669y,

L(f) exdaf d§_(e

T (1/n!)fdx, ... fdx F(x) .. F(x P n
n=0 T N ‘
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. ' ‘ =n

Therefore, Rn(%i"'fn) =p . As a result,
o ® J + 3
. = 1 - ] — ntj
P (vixyeeex) = (U0 T () /38 Jdx gy oo S0P
j=0 v 1%

: Q . . . . ’ N o
a/mh) T (33008 = (5 Mnexp(-p W)
3=0

This is a foisapn Distribu;ion-with mean equal to E u; This is to be
exéected since we have taken the limit of a large numbeqAof:nonéinteracting
. particles (N-+ ) with the probability of finding'a given'narticle in a given
unit volumn (prob. =.1/V) approaching zero such that thefproduct (N-prob.
N/V=p) is a constant.
Remark: The Hilbert Space, ¥ = L ('), can be ‘used to represent the N/V
limit. The measures for the N-particle representations and eq. 5.17 suggest
the measure in the N/V limit is concentrated on functionals con51st1ng of a
®
countably infinite number of delta functions; F Zaé(x-x )such that if nF(LO
is the number of delta functions ‘with support in iolumn vy then 11m n (y)/v 5 .
The functionals can be characterized by the sequence of points {§1’§2"'}
which can be interpreted as the positions of the particles. The measure p
can Be considered as a measure on'these sequences. In this context there
are similarities with recent work of Lenard27 in which he discussed the state
in classical statastlcal mechanics in terms of correlatlon functlons. The
present formalism becomes distinctly quantum mechanicaljin nature only when
the J's arelconsidared. , :
Also, representations corresponding to different average densities
Ei and E& will have'measures Hy and-u2 with different sets of méasure zZero
(in »'). As a rgsnlt, representations corresponding to different average

‘densities are unitarily inequivalent. , ‘

- The same methods may be used to obtain expressions for L(f,g) similar
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N " to those for L(f). The results are:
- .
L(£,8) = T (1/n!) [ax, fay, ... Jdx [y 6Gx -yq) «-- 8Gx 2)
L oad n=0 . [>43 y

n -, ..
m [t E G a8 (1) R_(yy- - (5.20)

V (X eeeX )
k=1 vll’wl T 7 T

vhere j(x,8) = #i [2g(0) -3+ (T - 8) @]

In the N-particle rebresentations Rn( ; ) is given by:

Rn(\Zl"'\Xn;f. ...*:Sn) = —-————(N . Idf L J‘d)&NQ (Zl"'zn’ifri-l""qu) i (3(—1"'.}51\:)

In terms of the canonical field operators,

. . - “ 1 Al N ! “

Rngzl"izn’fl"ﬂzn) = (§e,0¢ Ezn)...w QZl)w(ﬁl)f"wlfn) <)

Clearly R (x. ...xn;xl...x ) = R (x <o X ). Also, as é consequence of

2
Schwartz's 1nequa11ty, \R (y e Y Xy .§n)| < Rn€~l -X )R (y1 y )

An alternative expression for L(f,g) can be obtained in terms of the
5/ :

i' cluster functions defined as
. S n
T Oy Yy ooty = g " (- 1).J,.1 5, (565528 Gy)

Wherc G = a partition of (1,2,...n) into subsets (Gl""’Gm)”
L(f,g) can now be- expressed as

L(f,g) = exp Z) Iqilfdy °..J‘dx Idy 5(x ‘Yl) égfn:zn)

-

. : X
BRI RN E NPT AR O R CR I
k=1 .

Finally , if supp feV and supp gecv

L(f,8) = 2 (1/n: )fdx -fd,ﬁnﬁzl"-fdyné(?fl'.}’-l)'"vé(xn'yn)
n=0 " ’ T

m [e1f§§k) lJ(zk’g)] P (v,yl...y 3 X

(5.22)
k= 1 Iy .

wl” '35?'.A
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. . |"
~ where Pn(”le"ﬁGfél° X ) = Z ) /k J9Xire q£n+j
_ k=0 v v
n+J(Z ..y s ceeX ceeX ) ©(5.23)

Zn+1e n+J\~1 vt

Thus the generating funct10na1 for a representation of U(f) and V(u» in
the N/V 11mit restrlcted to a finite volumn is the sum of terms similar to
L(f,g) for an N-particle representation (eq. 5.4). (If»Pn(v;yl...y
WA i gy -

xl.;.x ) =W (y )w (x ..x_) then the restriction is the direct sum of
" v 71° vl
N;particle,representations.)
6. Summary.

We have shown the Hamiltonian, considered as a densely defined

hermitian form, can be written A
N ~ 'r 1 ~ ~ r .
= B[ Ky 55 Ko, where Ko =Lua(o+2130] - AGo0.

The generating functlonal in the N/V limit can be expressed as,

L(f) = 20(1'/n)Fdx1 Jdx FGep) e PG OR_ Geyeeex)

1f(x)

where F(x) = »¢-1 and R = the nth correlation function.

L(f) satisfies the functional differential equatlon,
e 1 6 _ 1

w1
Furthermore, under rhe assumption of translational invarianee and the
cluster decomposition property, inequivalent representations are needed for
different Hamiltonians.

There remains tyo problems in determining representations of physical
interest:
(1) Given a potential V(ﬁ) determine‘ﬁﬁ§,p) and
(2) Given éfﬁ?p) soiye:the functional ‘equation (subject to the appropriate

boundary conditions) for L(£f).



Undoubtably these tasks can be accomplished in general only by using
approximation methods. Once a representation for a given system has been
determined its dynamics can be studied. Extending this approach to study

the thermodynamics of a system is also of interest.
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Appendix 1

In this section we will show how the cluster decomposition property
can be used as a boﬁndary condition for thé functional differential equation
(4.2) to uniquely determine the generating functional for a Free Bose Gas in
the N/V limit, (in ref. 20 other boundary conditions were used for this
_.;zpurpééé;i We wiii assﬁme we already know that the generating functional

for a Free Bose Gas satisfies the equation,-
- igH L B = 0 a.1)

The first method for solving this equation is based on the use of

integrating factors. Eq. A.l can be rewritten as,

-if(x) 1. 8 et |
v {e G i Ie L(f)}= 0 | (A.2)
- e o -
Integrating between point x and @ (I dr +) we obtain
% ,
-if() 1 -8 o if )1 6
[e g b0 e e x TGy L 70 @

Using the cluster decomposition property,

+ s 5 L(f) - (Q,p(X)elfQ Q) » (&,p@) &), eip(f_)m_ as [xp =,

translational invariance, (fl,p(§)$2) = 5'=-the average density,’and the

fact f(§) -+ 0 as \5J'* ®, Eq. A.3 becomes

P - @ L 62@ L(E) = 0 - 8.4)
This can be written as,

1 5 . - if | '

+ wgg Lewld [ @ _1)ax] L(e) } =0 : (A.5)
Therefore, exp[-s I( 1f(v2 -1)dx ]L(f) = constant ’4', , (A.6)

The constant can be determined from the requirement L(0) = 1,

The result is, L(f)v= expls I(elf<§>—1)q§_.. ‘ aA.7)
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An alternative method for solving eq. A.l uses the cluster decomposition
propetty for the correlation functions. We have shown in the N/V limit that

L(f) has the form (eq. 5.6),

L) = B (t/ab) [ag .. fag @ TE nL L@ T R Gox) @l8)
' n=0 , :

Substituting eq. A.8 into eq. A.l we obtain,

o  if(x.) . . L :
e o1 ) if(x,) if(x ) =
E Gy e Jag @R DR g - 0 @09

Since eq. A.9 is true for all f, each term separately must be zero,
JﬁﬁhKﬁl...ﬁn) =0 ¥ | _ | (A.10)

Furthermore, Rn is a symmetric function. Therefore, Rn = const. The

cluster decompositidn property can be used to relate the different constants

as follows:

R G = (RGO R) = B

zi?m Rnﬂf "'ﬁn-l’&n+§~ = Rl(ﬁn) Rn-l(ﬁl"°ﬁh-1)

v~

PR, 16y a0

By induction we have Rn = ?;TE Therefore,

L(E) = T (U/n!) fdx, ... fax (HF @01, M &) yp ™
n=0 : ’

= exp E'Idifeif(ﬁz-l).



Appendix 2

.In ref. 20 it was shown the generating functional for the
rcpresent#tion of U(f) and V(Ql corresponding to the Free Bése Gas is given
bby: | |

L(E,Q = (8, u(E) v &)
3:0(x)

1
iz .
- 12 -1
S

= e;(p 5 J‘d}é (eif(a{'ﬂ)[dét 3

In this section we will show there is a sequence of test fuct:ionsv(pn
such that V(%)-O»Q(g)., the translation operator. First; it is necessary to
s . o » . . 26 '
define which flows are to be used as test tunctionms. Goldin = has suggested

a topology on the flows in analogy to the topology on Schwartz's Space. His

topology is defined by a countable number of metrics,

<p >, ‘ng sup | (1+]x1H" @™ o (“‘)< )|
mi<sn X

Ver
Since we want the test functions to include the identity flbwv(po(gi_) =X
and to have an inversé, we will take the test functions to be the set of
, -1 '
flows \5_2 such thatv‘ <<-:1.D..’-5?o>>n <o and <<1£_ , -S?o>>i:< @ fqr all n.
: -+ ) -
By theorem 5, If.é‘?n(«)i) x + a and (§e, V(ﬂ(&)ﬁ) 1 then

VS:en)"’ Q(a). We will first consider the one dimensional case.
4 . . .

Let

x 2n < x
X + a"zn;x n<x<2n
(Pn(x) = X+ a |x\ <n ..
x+ _Z_n__;!l—_x_ ~2n < x < -n
X x < -2n
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@, would bgla test function except that 'its derivative'i's discontinuous
at 4 points. By :c‘ha'nging @, in a smallAregion about each discontit;uity it
can be made into .a smooth function (and hence a test function) without
changing the subséquent arguments.

Clearly gon(x) 4x+aasn e,

In order to verify (§: ,V(gon)ﬁ) + 1 we must show

Id*{ (——)%—l]-’Oasn-"?.
Let I I L -1] dx
| -]___ 2n *
f (@ --)2 -1l ax+ [ LA+ DT -1]ax
-2n n

a3 , & 1
- For n large (1 % n) 1:t‘§n + 0¢( 2)

n
-n
2n
1 =) L -———+0(——z)] dx+J‘[2 §—+0(T)]dx
-2n

-;ga+n0(%')+%a+n0(—:;z)
n .

0 ( —) + 0 as n e
Therefore V.((pn) - Q(a) by theorem 5.

In 2 dimenions consider a translation in the x direction by a

distance a. Let

¢%(x,y)y =y
@07, = x + 3 () B )
where
n<x<2n
Oén(x) = -n < x<n

-2n < x < -n

2n < |x|




-45-

and .

4/.(n+A)-y n<y<n+A
|-

By (M = o 1 -n<y<n
!
(fiﬁ)f—l -(n +MN)<y<-n

_ Vo n+ A< |yl
A= an arbitrary po

sitive constant

To prove (§, V(%)G) +1, it is necessa'ry to show

o

v a‘: (x,y)
fax [ay ((det —g—x——r ]

- 1) =0.
s
This can be verified by a calculation similar to the 1-dimensional
case. In fact a similar argument works for any number of space dimensions.

Therefore, for the Free Bose Gas rgpr’ese’nta't‘io'nﬂ there is a sequence

of test functions cpn such that Q(?) = lim V((E>n).
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Flgure Captions

Fig, 1. The flow ¢%(x) vs. X, in one dimension,

J
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