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ABSTRACT

The theoretical possibility that in a limited domain in space, the expectation
value < ¢(x) > of a neutral spin O field may be abnormal (that is to say quite different
from its normal vacuum expectation value) is investigated. It is shown that if the q>3-
coupling is sufficiently large, then such a configuration can be metastable, and its
physical size may become substantially greater fhoﬁ the usual microscopic dimension
in particle physics. Furthermore, independent of the strength of the q>3-coupling, if
¢(x) has a sufficiently strong scalar interaction with the nucleon field, the state that
has an abnormal < ¢(x) > inside a very heavy nucl_eUS can become the minimum energy
state, at least within the tree approximation; in such a state, the "effecfi\}e" nucleon
mass inside the nucleus may be much lower than the normal value. Both possibilities

may lead to physical systems that have not yet been observed.
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1. Introduction

In a relativistic field theory, the vacuum state is defined to be the lowest
energy level of the system. In analogy with other quantum mechanical systems, how=-
ever, a relativistic ;ield may possess a degenerate lowest state. Perhaps the best
known and simplest anol;gy is Heisenberg's infinite ferromagnet, in which case the
degeneracy of the ground state is due to rotational invariance. The assumption of a
degeneracy of the vacuum state, connected with a symmetry group of the Lagrangian,
obviously has some far-reaching consequences, the most alluring of which is the possi-

bility to "understand” that puzzling aspect of particle physics: the existence of broken

. symmetries. As is well-known, this has given rise to a host of interesting theoretical

speculations.

Besides spontaneous symmetry breaking], and other well-known consequences
related to it (Goldstone bosons, Higgs phenomenon, etc.) the assumpl"ion of vacuum
degeneracy, or near degeneracy, probably has other striking consequénces, which have
received little attention so far. We describe in the following an investigation of var-
ious questions, which arise naturally out of the virtual existence, within a given dynam-

ical scheme, of states which could play the same role as the observed vacuum state,

"but are nevertheless different from it. We shall see that, depending on the details of

the theory and on the values of certain physical parameters, which are not too well-

known experimentally, there may or may not be consequences that are just as drastic

"as the already known features of this kind of theory.

All the schemes so far considered in the literature have two assumptions in common:
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a) the La:grangian of the system is invariant (or sometimes nearly invariant) under“
a certain group of transformations of the field variables;

b) in the (observed) lowest state of the system, some of the field variables have e?x-
pectation vélues which are not invariant under all transformations of the symmetry gréup.
Because of a) we must envisage the existence of other possible lowest states, or nearly
lowest states, in which the expectation values of some of the fields are different; such
states represent the abnormal vacuum states.

This is, of course, what is referred to in the literature as degeneracy of the
vacuum; at the same time we are often reminded of the essential difference between
this phenomenon, and the common variety of degenerate ground state encountered inh‘

finite systems: in the latter case all the states of a degenerate multiplet have the same

degree of physical reality; the system can easily be induced to make transitions from one
substate to the others. On the other hand, only one vacuum state is realized in our '
world; all the others are unphysical.

On second thoughts, the difference is not as profound as it seems. For the sake
of clarity, and at the cost of repeating familiar things, -let us recall in somewhat |oo;e
terms what is really implied. In a field theory of this type, the system possesses several
"equivalent" configurations of minimum potential energ.y; in the observed lowest stafé

i

the system performs small zero-point oscillations about one of these configurations.
When the system is excited the configuration will deviate more strongly, but in any -
event only locally, from the basic equilibrium configuration. Fundamentally the sta-

bility of the situation is attributed to the infinite nature of the system; owing to this,

the system will never flip over as a whole from the normally observed minimum 3
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configuration, to one of the others, whose existence is required by the symmetry group.
(As an example, the reader may recall what is .USUQ”)' said about the Heisenberg ferro-
magnet, spin waves, etc., and in particular the physical impossibility of rotating all
the spins of an infinite ferromagnet simultaneously. )

Now in certain attempts at a sharp mathematical formulation of this state of
affairs, it has even been asserted (perhaps on quite sound mathematical Agrounds) that
in the limit of an infinite system one can construct a Hilbert space which contains only
one "vacuum state"”, e.g. the observed one, and the excited states built upon it by
local excitations. In this Hilbert space the physical quantities corresponding to local
measurements are represented by well defined operators; some global quantities such as

“the total energy or momentum are also represented, we hope, but the global generators
of the group are not.

It may seem, at first sight, that in this way one has neatly thrown the abnormal
degenerate vacuum states out of the window, but physically it does not make so much
difference, since in a certain sense they can reappear in the form of local excitations,
In ferromagnetism the phenomenon is well-known under the name of domains of magnet-
ization. More generally 'we argue as follows: suppose the configuration of the system

. flips over from the ordinary one to an abnomal equilibrium configurcfion,. but only in

a finite though large domaiﬁ. As a volume effect, this will cost nothing; the difference
_in energy will be a relatively unimportant surface effect; in the case of a ferromagnet,

. for example, a very weak external field applied to'a sufficiently large volume can easily
cause the transition. Physical common sense suggests that any system with analogous fea-

. tures in the structure of the Lagrangian can exhibit similar phenomena under suitable
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circumstances. The absolute stability of the asymmetric vacuum state is therefore a-
relative thing.

. \
In this paper we intend to investigate the general question of vacuum stability,
and in particular to inquire whether it is experimentally possible in a limited domain :
in space to "excite" (flip) the ordinary vacuum to an abnormal one. As we shall see,

our discussion can be readily extended to include also theories that have no vacuum

degenerac:)), but only other local minima in the field energy. For definiteness, we shall

7
first consider the simple theory of a renormalizable spin 0 Hemitian field ¢ . The

d 2 !

£ = -%(a—x?-> - U(¢) + counter terms ‘ (1.1)

. M / :

where ‘ ;
2 ’ I-.| 3 ’ ] -] 4 3

U@) .= 2a¢” + (31) be + (41) co , (1.2)

|
¢ denotes the renormalized field operator, and a, b, c are the appropriately defined
renormalized constants. As usual, the counter-terms are for renormalization purposes;
their precise definitions are given later in Section 3 and in Appendix A. In U(¢), the

1

constant ¢ is assumed to be >0 so that the energy spectrum has a lower bound. Through

N N :‘v
the transformation ¢(x) = ¢(x) + constant, one may always assume for the vacuum state

< vac | &(x) | vac > - o . (1.3)

Thus, U(¢) does not contain a linear term in ¢ . [Nofe that in order to maintainé;
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(1.3) there is a linear term in the counter tén;ns. :l Furthemmore, since the vacuum
state is assumed to be the lowest energy state, the constant a is also >0 . For
converﬁence, by using the transformation ¢(x) ~ - ¢(x) , we may also choose the
constant b tobe 20 . Asa result, but without any loss of generality, the three
constants a, b and c are all assumed to be positive.
To study the question whether there are other abnormal vacuum states,

‘i.e., either degenerate or "excited " vacuum-like states, we find it convenient to f
first quantize the system in a box of a finite volume Q with the periodic boundary

condition, and then let Q- c in the end. A useful concept is to define an energy

density function £ (¢) :

£(3) = Lm O [ minimum < | H | > ] (1.4)
Q- ®

where H is the total Hamiltonian and the minimum is taken among all states | > under

the constraint

Gl <o) > = ¢ . (1.5)

The value ¢ = 0 is, by definition, the minimum of £ (5) . Furthermore, it is con- .

venient to adjust the constant part of the counter terms in (1. 1) such that at the minimum

$=0, | - S
() = 0 . - | (1.6)

The problem whether there are other, either degenerate or "excited ", vacuum-like |




states then reduces simply to the investigation of the function £(¢) for ¢ #0,
which turns out to have some rather interesting properties.

As will be shown in the next section, the dependence of & (%) on ¢ bearsa’

certain resemblance to the dependence of fhé Helmholfz free energy on the specific
;/olume in thermodynamics. Just as in thermodynamics, when there is a phase tran=
;ifion, the Helmholtz free energy exhibits a straight-line dependence on the specific
volume, its slope being the negative of the pressure; here, depending on the values

of the renormalized constants a, b and ¢, the function £ (¢) may also confoi;m
‘.dsfraight section, say between ®, £5s <|>‘3 .. The existence of such a straight section
appears to be a general feature of the theory, provided that rhé q>3-coup|ing constant

b is sufficiently large. It exists even in the approximation of neglecting all loop dia-:
grams; in such an approximation, one has £(9) = U(¢) Mthe straight secfion,
;where U is given by (1.2). [Nofe that U(¢) does hot contain any straight secti'on.]
:Along. the sfr(;.i'ghf section ¢a< ¢ < <|>‘3 , the system actually comprises two phases, m
analogy to the phase transition phenomenon in thermodynamics. Outside the straight
isecti'on, 9 < ¢, or ¢ > ¢B , the system exists only in a single phase. The "true"
vacuum sfqte ¢ = 0 is included in the region ¢ > ¢B , as illustrated in Figure 1.

The inclusion of léop dit;grams doés not alter the g'enerali character of the energy
density curve £(¢). The explicit contributions of all one=loop and two~loop dia’gram;
and some of the general properties of other multi-loop diagrams are given in Section 3.
From these r;esuléfs, one eipecfs that the function £ (9) defined i:n either one of the
two single-phase regions, say ¢ < ¢, can be analytically continued beyond the point

¢ = ¢, to the region ¢ > ¢, i its analytic continuation, called Ca(qT) , is, of course,

> sww. =




different from £(¢) in the two-phase region. [This phenomenon is again in close
analogy to the familiar gas-liquid transition in statistical mechanics; the analytic con-
tinuation of the gas (or ?liquid) phase is the super-cooled gas (or super-heated liquid)
region, nc;f the two-phase region3. ] Similarly, one may analytic?:lly continue the
function €(¢), defined in the other single=phase region ¢ > q;B , to the region q?éq;ﬁ
and. call its analytic continuation £B($) . In generai, one expects the function Ca($)

to have a minimum at

vex

7= 0 - . (1.7)

"vex" denotes the vacuum excitation state.

~ where the subscript
In the case of the degenerate vacuum, both the true vacuum state ¢ = 0 and

the vacuum excitation state ¢ = ¢, OPPECraS the endpoints of the straight section

$3<e ;i
0 S0 egiie,

Pa T Puex ! ¢B = 0
and because of (1.6)
E(o,) = £leg) = 0 . | (1.8)

- From (1.2), one sees that if all loop diagrams are neglected, then the degeneracy

occurs at

(1.9)
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As we shall discuss in Section 3, there is a simple and convenient way to define the
renomalization constants, so that (1.9) is the exact condition for degeneracy when all

the loop diagrams are also included. Consequently, in order that the absolute minimum

energy level isat ¢ = 0, we must have s .

[\

3ac b ‘ A (]-]05
A4

otherwise, the role of the states $=0 and § = ®ex will be interchanged.

In Section 4, we study the question of the lifetime of the system in the excited

state ¢ = oy * We shall show that in the non-degenerate case (3ac > b2 ). as the

volume Q- o, the lifetime becomes zero. On the other hand, there may exist meta~

stable states which satisfy approximately

<|9>(X)l> = ¢ | ' (1.11)

vex
!

. . 3 . - - .
in a finite volume L~ , where L is >>m ! and m l‘ denotes the relevant micro-

1
scopic length in the problem; m can be either ~O(b), or O(a®). Outside the

. 2 -]
volume, except over a surface region of a volume ~O(L"m '), one has

< | ¢(x) | >=0. The excitation energy of such a state in its rest frame is given by

M= LPg (o) +O(L2 M) | (1.12)

vex ' a vex

where O( L2 m3) denotes the surface energy and ﬁa(&i) is the aforementioned analytic

continuation of E(¢). The lifetime 7 of such a state is given by



T2 L, (1. 13)

provided In.(Lm) is not too large, though (Lm) must be > 1. Only in the special

case of a vacuum degeneracy; i.e., ﬁa(q)vex) = 0, can the size L be arbitrarily
large; its rest mass is determined completely by the surface energy. In general, the
ratio of the width to the rest mass of such vacuum excitations in either the degenerate

-

or the non-degenerate case is exceedingly small, given by

(M g [L4 R +0(L3'm‘3),]'] « 1 . (1. 14)

vex

In Section 5, we discuss the classical solutions corresponding to the vacuum
éxcitafions. The most interesting aspect of these solutions occurs when there is an
extended external source. For definiteness, we may treat approximately the effect
of a heavy nu§|eus as that of aﬁ "external gc;urce", assuming that there is a strong -
interaction g lPT Y ¢¢ between the scalar field ¢ and the nucleon fi,elld ¥. As
,we shall Qee, within the tree approximation, if the ;urface energy can be'neglected,
then when g is sufficiently strong, or when the nuclear density is sufficiently high,
the lowest energy state becomes one in which the expectation value < ¢(x) > inside
the nucleus can be quite different from its normal vacuum expectation value (which
is zero, by our convention). Furthermore, inside the nucleus the "effective" mass of

the nucleon becomes my t9<e>, which can also be quite different from its normal

value m_, .
N
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A concrete example of such a strong interaction is given by the well-known
o-model. This is examined in Section 6. It appears that, within the tree approxi-
“mation, if the mass of the ¢ -particle is S a few GeV , there may well exist a new

family of metastable, or even stable, super-heavy nuclei.
By taking the zero pion mass limit, our discussion of the o-model can be
readily extended to theories with Goldstone bosons; with some further minor modifi-

cations, it can also be applied to fields with Higgs mechanisms.
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2. Energy Density Function

To evaluate the energy density function & (¢), defined by (1.4), we apply
the standard Lagrangian multiplier method to take into account the constraint (1. 5).

Let H, be a new Hamiltonian, defined by

J

where J is the Lagrangian multiplier, and H is the original Hamiltonian, which

accérding to (1.1) is given by
' 1l L L 2 3
H =S [2 T +2(V¢) + U(¢) + counter tenns] dr (2.2)

and TT is the conjuéate momentum of ¢ . Let the lowest eigenvalue of ‘HJ be Q)\J;

i.e.,

(2.3)

By using (2. 1), (1.4) and (1.5), we find the energy density function £ (¢) to be

given by the Legendre transformation

i
|
Hy = H o+ 1S o) &S @.1)

E(F) = A, - J§ | (2.4)
';_w"ier_e‘ | )
; ax, ‘

? = —— (2.5)
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2.6)
To calculate )\J, let us decompose - ’
Hy = Hy + H, : (2.7)
where 2 2 24 3
Hy = 2/ [T+ (ve)" +dap"] dr (2.8)

and .rega;d ‘H] as a perturbation. The power series expansion of )xJ in terms of the
constants J, b and c can be readily derived. Following the treatment given by *

S. Coleman and E. Weinberg4 (which is also formally analogous to some of the analysis
- developed in statistical mechanics and many-body problemss), we may regroup the per-
turbation series expansion of >‘J into sums of tree diagrams, one-loop diagrams, two-
loop diagrams, etc. The systematics of these loop diagrams will be given in the next

section. .Here, we only discuss the tree approximation. It is not difficult to see - that

in the tree approximation )xJ is given by the absolute minimum of \
=- : 2 ' ol 3 ™ 4
Ujo) = Jo+ U@ = Jo+rao’+ (31) be° + (42) "o’ , (2.9)

and ¢ =¢ is the minimum point. [For completeness, a proof is given in Appendixw-

A. ] At J=0, onehas U = U. Since we are interested in the case where the

J

function U(¢) in the original Lagrangian (1. 1) has more than one local minimum, the

<|>3-coupling constant b cannot be too small:

{

b2 s 8 . ' @. 1}0)
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3

On the other hand, because of our convention that the absolute minimum of U(¢)

should be at ¢ = 0, we have
b? < 3ac . | 2.11)

[The apparent narrow region defined by these two inequalities may be deceptive.
Actually, only (2.10) is the relevant one. If b2 is > 3ac, then the absolute mini- |
mum of U isnotat ¢ = 0. By using the transformation ¢ — ¢ + constant, this abso-
lute minimum can be shifted back to ¢ = 0. Under such a transformation, only the

. - . . 2
coupling constant c¢ is invariant; the new constants a and b now satisfy b™ < 3ac :]

Next, we consider the equation oY =0; i.e., on account of (2.9),
J = -g.% = -a¢ - 1b¢? - (3) T eod (2.12)
which at J =0 has three roots:
¢ = O and ¢ = q’:t = 73'5 [-bi(bz- gac)%j] . (2.13)

Among these, ¢ = 0 is the absolute minimum of U(¢), ¢ = ¢, isa local maximum
and ¢ =¢_ is the other local minimum. As J increases, these two minima will move,
‘and the.corresponding values of U(¢) will also change. There is a critical value JJC
jot which these two minima become degenerate. As illustrated in Figure 1, we may ae-
“termine graphically the value J= Jc by usiﬁg Maxwell's rule of equal area. fhe abso-

‘ lute minimum ¢ =¢ makes a sudden jump from ¢ = ¢B at J=J _ to $=¢a at J=1J 4+ .
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By using (2.4) we find in the tree approximation '

£(e) = U(9)

i , ¥

P2

in the region

’

s (2.14)

g
74N
©

<|>[3 and
But in q;aé $ S q;B » £(¢) is a linear function of ¢, which is simply the common ;
tangent line of U(¢) at ¢ = ?, and q:B . |
Such behavior is analogous to the problem of phase transition in statistical

mechanics. In the statistical analog, the rolesof J, ¢, €(%) and X, are replaced

J
by those of pressure, specific volume, Helmholtz free energy density and Gibbs free

energy density, respectively. The straight section ¢, < %< q,B denotes the two~phase

region. As already noted in the introduction, the funcﬁon £(¢) in either one of the

single-phase regions, ¢ > q_rB or ¢< ¢, + can be analytically continued into the two-

phase region. In the tree approximation, these two analytic continuations are identical
and both lead to U(¢). This is again analogc\)us to the Van der Waals approximation.
used in statistical mechanics. Inl statistical mechanics, the onolytic. continuations of |
the thermodynamical functions of the liquid and the gas phases are respectively those ‘of
the super-heated liquid and the super-cooled gas, which should be different functions,
but they reduce to the same expression in the Van der Waals approximation. |
In fhe“' present problem, except for the degenerate vacuum case, the energy
densify function &£(¢) has only one minimum at ¢ = 0, and that is the true vacuum

state. On the other hand, if the q>3-coup|ing constant ‘b is nof too small, the
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analytic continuation of € (@) is expected to have another minimum at ¢ = vex
which denotes the vacuum excitation. In the above, this property has been established

in the tree approximation; as we shall see in the next section, if the coupling ¢ is not

too large, this property remains correct at least to every order in the loop expansion.
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3. Lloop Diagrams

The reduction of the perturbation series expansion of €(¢) into a sum of
tree diagrams, one-loop diagrams, etc. has been given in Ref. 4. In this section,

N -

we shall fir.'sfvb'rieﬁy review. the procedure, and then discuss some new properties.

3

3.-. 1 Prototype Diagrams

By using the free field Ht%miltoniém H0 , defined by (2.8), as the unperturbed
Hamiltonian, one can readily expand the energy density function &(¢) as a power
series in bl, c and §. As will be shown in Appendix A, we may separate £ (¢)

irﬁo a sum of tree diagrams and loop diagrams:
€@ = [E® ] * ZE®] 00 @.1)

where [&(6)] 2-loop represents the summation over all one-particle irreducible scat-
tering diagrams that have 2 loops and in which every external line carries a zero 4~
momentum and contributes a factor ¢ to the Feynman integral. For the tree diagrams

(away - from the two-phase region), one has
ry ) = o 3.2) .
[e@], = u@) @.2)

where U is given by (1.2), provided that the renommalized constants a, b dnd ¢
in U(¢) are related to the appropriate scattering amplitudes at zero momentum.

[,See Section 3.2 and Apbendix A for further discussions of renormalization. ]
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For & #0, it is useful to introduce D(k), defined to be the propagator of
the spin O particle moving in a given constant external field ¢exf whose value happens
to be given by Pout = ¢ . Thus, D(k) is identical to the propagator of a free par-

ticle, but with its (mc:ss)2 given by (82U/3$2); i.e.,

D(k) = -i[KP+a(1+a)]" (3.3)

where

A = ¢o(b+icep)/a . (3.4)

Let us first consider the sum of all one~loop diagrams, and differentiate [& (¢) ]one-loop

with respect o a, but keeping b, ¢ and ¢ fixed. We obtain
3 - -4 4 ) \
o [g(q))]one—lo'op J @2n) dk [D(k) + subtraction ferm] @3.5)

which can be readily established by first expanding,bofh sides as a power series of ¢,
then noting that graphically the differentiation %- on the one-loop diagram is just
like cutting open one of its internal lines; this turns each loop diagram into a propagator
diagram, Thus, diagram by diagram, both sides of (3.5) are equal. The subtraction
term in (3 5) is needed to eliminate divergences. [The details of the subtraction term
;will be given below in Section 3.2.] From Eq. (3.5), it follows thaf4'5

i

[ﬁ (a)jone—loop =iJS (2“)-4 d4k (In [i D(k):] + subtraction rerm) ' (3?.6)

2 2

Throughout the paper, k“ =k* - k(2) and d4'|< is real.,
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J
i It is sfraightfo‘rward to express the higher order loop diagrams in terms of D (k) ,
In this way all external lines attached to a three-point vertex and all pairs of external
l}ines attached to a four-point vertex are implicitly accounted for. We need only con-

.

s?der those £-loop diagrams, called prototype d‘idgramsf"‘ 7, in which all external

Ifnes, if they exist, must be attached separately to different four-point vertices; i.e.,
every three-peinf vertex b<p3 connects only internal lines and every four-point verte*
c;q>4 connects at most one externahl line to the diagrdm. For any given 2> 1, fherei
djre only a finite number of such emfofype diagrams. We shall evaluate these pro,fo.tyée
diagrams according to the standard Feynman rule, except that each internal line gives a
fecfor D(k), not =i (kz-i-a)-] , to the Feynman integral. Otherwise, all the remain-
ing factors in :the Feynman integral are as usual; i.e., we assign factors b, ¢ and 5
respecﬁvely for a three-point vertex, a four-point veffeg and an external line. Ex-
cept for the subtraction terms that are needed for renormalizaﬁen purposes (and whic‘»hf\
v«;ill be diseussed below in Section 3.2), the function [C (¢) ] 2-loop for 2 >1 is
sumply given by the sum over the finite set of all dlfferenf prototype %-loop dlcngrams‘\
As an example, for £ = 2, there are only four different prototype diagrams; fhese'aee
gifven by diag;ams (i) = (iv) in Figure 2. [Because of renormalization, one must com-
bsjne these four diagrams together with diagrams (i)', (iii)' and (iv)' in Figure 2. The
e;xplicif value of these two~loop c_iiagroms is given in Section 3. 3, ]

;

3,7 2 Renormalization

t In 3.6), the integral [ d k In (iD) is quartically divergent, therefore three

subfrachons are needed to eliminate the infinities. The corresponding subtraction ferm :
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should be at least a quadratic function in ¢ . However, it is entirely a matter of choice

whether or not one should also subtract the finite '63 and 64 terms from the integral.

similar ambiguities also exist for higher order loop diagrams. This problem is closely
tied to the original freedom in defining the renormalized constants a, b and c. Any
finite loop-diagram contribution to.the $3 and $4 terms can either be included in
the renomalized constants [i.e., alréady included in the b$3 and cc_p'4 terms in the
original U(¢) function given by (1. 2)_-_], or otherwise. If they are included, then a
corresponding subtraction is nécessory in the relevant loop calculation to aveid double
counting, but otherwise not. As it turns out, there is a particularly convenient way to
decide on which choice to make.

Let us first consider the special case of degenerate vacuurﬁ. If 3ac= 52 , the
function U(¢) in the original Lagrangian (1. 1) is symmetric with respect to the trans-

formation

¢+b

C

b A
- - (¢ + E) . - @.7)

It is clearly desirable that the symmetry should also be maintained by the counter terms;
in that case the ehfire Lagrangian (1.1) is invariant under the same transformation, and
consequently the vacuum degeneracy becomes an exact property. It is quite simple to
show that the dependence of r_ £ ($)]2-loop on ¢, except méybe for the subtraction
f'erms,A is completely through the variable A, given by (3.4). Since A is invariant
‘uinder the transformation (¢ + -l:-) - (% + g ), the same symmetry holds for § (5)
if all these subtraction terms in the loop-diagram calculations are also functions of ’A .

‘Because A is a quadratic function of ¢ and because these subtraction terms should be

‘at most quartic functions of ¢, we require them to be qﬁadrafic functions of A.
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g .

"Thus, in a power series expansion in A

)

R

; [ &¢ af + Ay L. (3.8)

\llvhere a, B, vy, - - areconstants. Asa result, if 3ac = b2 , the entire Lagran-

giqn is symmetric under (3.7), and fhat implies a degenerate vacuum. In the following,
the requirement (3.8) will be iﬁposed also for the general case; even when there is

no degene;'acy. :

With this requirement, and the convention that § = 0 denotes the true vacuum,

we derive the inequality
2 < -
b® & 3ac , G.9)

which is the same as (2. 11), but is now valid with the inclusion of all loop-diagram

corrections, not just in the tree approximation.

3.3 Loop Expansion

! In order to understand the nature of the loop expansion, we establish first the

3

following theorem:

Theorem 1. Atany 221, [5 (5)]2-|00p can be written in terms of £ dimen-
b :

s.l‘onless fun:cflons FQ, 1 F2,2 P, F!l, ) which depend only on A

m=]

0
[6(V$)J2-loop = 02 3 M-l [c-](b2+ 2ac A)_._|9‘-m FQ,m(A) | (3.10)

where A is given by (3.4).
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Proof. Let us consider an 2~loop prototype diagram with N three-point vertices,

M four-point vertices, E external lines and I internal lines. From the explicit Feyn-

man rules given above, it follows that the corresponding Feynman integral for &€ (9) is

of the form

bN M5B f(a,n) . 3.11)

Since the total number of loops is givenby 2=1-N-M+1 and since (21+E) is

+

equal to (3N +4M) , we have

2 = IN+M-=-1E+1 . 3.12)

The a-dependence in (3.11) can be easily obtained from a simple dimensional
' 1
2

analysis. Because A and c are both dimensionless, but a, bz, $2 and [f; (<|->')]

are of the same dimension (mass )2 , we obtain
fla,A) = o2 ZMNTE £y, 3.13)

where F is dimensionless. For the special case of E =0 [i. e., those prototype
diagrams with no external line: 3] , by using (3.11)=(3. 13), we find that the Feyn-

man integral of such a diagram is of the form

M L-M-1

02 c (bz/o)

F(A) . (3. 14)

Now, from the definition of prototype diagrams we see that any E # 0 profc;fype
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diagram can be transformed into an E = 0 prototype diagram by simply replacing all
four-point vertices that are attached to external lines by three~point vertices, but
l;<eeping all internal lines and other vertices unchanged. Formally, we may represent

such a replacement by

’

(3. 15)

]
h

where 0 denotes the appropriate internal line and ¢ the external line. Thus, the
sum over all different prototype diagrams that can be transformed into the same E = 0

prototype diagram through (3. 15) is equal to the Feyniman integral of the E =0 diagram,

provided we change b - (b + c§); therefore, (3.14) becomes
: .

2-M=

02 cM I:cl-'](b2 + 2ac A)] ] F(A)

Since M can vary from 0 to £ - 1, Theorem 1 is proved.

Remarks. According to (3.9), b2 is £ 3ac; we may regard the loop expansion as
a power series expansion in ¢, but treating A and (bz/ac) [and therefore also

(b%/a) and (c32/a)] as £ 0Q).

Theorem 2.

2

[£®) Jane-toos ='3—:7 [$(1+ 2% In(1+4)- '-A,z -34%] @9
. 2n .
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5 .
- _ 2dc 2
[§(¢)]fwo-|oop = W [(1 + A) ln(] +A)- AA:] |

+ 2a (b2 +2acA)
@2n2)°

{% (1+4) [In(l+A)]2-2(1 +A)In(1+A)+ 2A+%A2} .

3.17)

Proof. The evaluation of [§($)] follows readily from (3.6) and (3.8);

one-loop

the result is (3. 16). [lf b= 0, that is in the pure <p4 theory, the above expression

for [£(9)]

two-loop prototype diagrams are listed in Figure 2. These diagrams can be calculated

one-loop reduce's th the form derived by Coleman and Weinberg4. ] The
according to the general rules giQen in the previous sections. The calculation is some -
what involved because of renormalization. The defail;s are given in Appendix B, a;d
the result is (3. 17).

The evaluation of higher order loop diagrams is corﬁplicated partly because of
the large number of diagrams and partly because of the renormalization procedures re-
quired to eliminate infinities, For s'im‘plicify, we shall consider the special case ¢ =0.
In such a case, there are only the bq>3 “vertices, and the theory is su.lJper-renormalizabIe.
The Feynman integrals of the majority of the £-loop diagrams are convergent. In the
following theorem, we shall restrict our discussion to these convergent diagrams, or
"primitively divergent" diagrams as in the case of £ =3 . [ A "primitively divergent"
diagram, as defined by Dyson8,. is one whose Feynman integral, though divergent, Le-

comes convergent when any one of its internal monmienta is held fixed; here, the only

example isin £=3. ]
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Theorem 3 (proved in Appendix C). If ¢ =0 and if we include only convergent, or
: prummvely divergent", duagrams, then ;

H

f
-

[E® D ihroectoop = (Constant) b [In(1+4) - & + 3 a2] @.18)

ahd for £ >3

, 2-1 ;
(6@ g _to0p = (constant) a” (b7/a) - ,

[0+aP i+ a-3)a-3(2-3) (1-2)a%] ",
(3. 19)

Remarks.  From Theorem 2 and Theorem 3, it follows that every term in the loop expan=-

sion is singularat A=-1; i.e.,

N [-bz (b2 - ,2ac)%] . (3. 20)

©|

which are the points of inflexion A and B of the .funcfion U(¢), as illustrated in
Figure 1. This implies that the energy density function £(9) can‘be analytically
continued from either one of the two single-phase regions, $< ¢, or ¢ > q>B to the -
two-phase region. Let ﬁa(q:) denote the analytic continuation from < ¢, 1 and
€B($) that from ¢ ><p[3 . If the loop expansion is used, then 56(5) has a singu~

ldl"ify at A, and CB(qT) a singularity at B, [At A '='-] , the propagator D (k) :

is that of a zero-mass particle. Thus, physically, it seems reasonable that there should
be such singularities for these analytic continuations, independent of the loop expansion. ]

The true vacuum is at ¢ = 0, and therefore it lles in the single phase region q> > ¢B

'
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} N
The vacuum excitation ¢ = ®ex denotes the minimum of the analytic continuation
§G($) . From Figure 1, one sees fhat the point ¢ = ®ex lies.in between ¢ = ?,
and the ¢ corresponding to A .

In Figure 3, we plot fhevmodification of the J vs. ¢ curve due to the one-
loop diagrdm for the special case b2 =3ac. B‘ecau;e of the symmetry under the trans-

formation (3.7), the two-phase region, with the inclusion of the loop-diagram correction,

remains given by

J =0 and

A
g
N
o

2b
-2 @3.21)

It is convenient to introduce the dimensionless variables X, V and j, defined by

- _ b - ab
$ = z(x']) ’ £ = —;2- \
(3.22)
- ab
J = .C.’_J ’

and therefore j = - g_\/_ From (3.2) and (3. 16), we have (for the speci'ai case
. X .
b? = 3ac)
ER LRSS | @3.23)
tree B .
| and
| 2 A 2
one-loop = Y Fa+a)"m(1+2)-5 - 24 ] 6.2
where

A = 3084-1) @)



y = 10 .
‘ (3.27)
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4, - Stability

In this section we discuss the stability problem if the system is not in the true
vacuum state § = 0, but in the vacuum e*cifaﬁon state ¢ = Oyex ¢ As remarked
before, only in the case of a degenerate vacuum do both $=0 and ¢ = P ex lie on
the energy density curve £(¢) . In the non-degenerate case, while the true vacuum
state ¢ = 0 is on the energy density curve 6(6) , the vacuum excitation state

o= P ox lies on the analytical continuation of £(¢), denoted by ﬁa(c-ﬁ) , as illus-

trated in Figure 1.

2
4.1 Non-degenerate Case (b~ < 3ac)
We assume that at time t = 0, the system is in the vacuum excitation state

l > which satisfies

<o) | > = o @.)

vex

at every point x in the volume Q. For convenience, let us take. Q to be a cube,

which will be divided into N smaller cubes, each of a linear size L, and all adjacent

cubes are separated by a distance & . Hence,

QO = N(L +8) “.2)

‘where & is of the order of the microscopic length of the problem, but L is much larger

and may even be of a macroscopic dimension; e.g.,

1

§ ~ O(a?) , oo O™




and © A ‘
L >» & . ‘ - (4.3)

\
}

Let p(t) be the probability that at a later time t the system is either in a state in

which
8
i 0] | in one of the cubes L3
| , s : 2
~ < | $(x) l > = ~arbitrary ~ in the surface region ~ O (L")
N . - ! ; .
ex outside .

4.4)
or in states that differ from (4.4) by some additional high energy quantum excitations’
inside the cube L3 that has been singled out. In the non-degenerate vacuum case,
one has aq(q)vex) > &€ (0) where &c .denotes the analytical cohfinuafiovn of & .

. : 3
These states can have the same energy as the initial state, provided

3 - 3. —_— A
L &u(q’vex) = L™ £(0) + excitation energy . (4.5)

X
Since L is >> O(a °) or O (b-'l ), there is a large number of such states that
satisfy (4.5); their entropy is proportional to L3 . Thus, by using the standard calcu=

lation of transition rates, one finds
p(t) = 1= exp (-)\L t) | ’ (4.6)_\‘

\:/here )\L;{é 0_' and, at fixed L and 8 the probability p (t) is independent of N .

v '
3
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As shown in Appendix D, a lower bound in )‘L can be easily estimated; ‘we find for L

sufficiently large

nA > (- 1%) | 4.7)

where k is positive definite, and depends only on the renormalized constants a, b
and c.

Since the N cubes are arranged to be physically separated from each other,
they can be regarded as independent systems. For an initial state >(4. 1), the probability

that at a later time t the system remains in the same state is

[]-p(f)]N =‘ exp (-N)fo) 4.8)

which, at a fixed L, approaches zero as N ( and therefore Q) becomes @ . Thus,

if the vacuum excitation state extends over an infinite volume, its lifetime is zero.

However, the lifetime of a vacuum excitation in a limited volume v is quite
.a different matter.  Let us consider a finite volume .v "and a surface region s that sur-
rounds v . The domain v +s is, of course, inside the bigger volume Q of the entire
quantum system; for simplicity, one may assume Q to be infinite. Let the vacuum ex-

‘citation be described by the state | vex > which satisfies

¢ in v v
< vex | o(x) I vex > = -0 outside v +s 4.9)

arbitrary, though smooth, inside s .



30.

Furthermore, we assume that in its rest system (i.e., ;] vex > is of zero 3-momentum)
' )

1 . . . . . ™ . . 3y . . .

the shape of v is one in which the linear dimension is ~ O (v>) in all directions.

Thus, because of (1.6), the rest mass of l vex > is

M, = Ve (¢

* vex o vex) + surface energy . 4.10)

Such a state can decay through meson emissioﬁs.ﬂ There are two dominant modes
_ of decay: one is via the surface contraction, and the other is via the decay law (4.8),
provided that v. is sufficiently large. The latter resembles a "boiling" mechanism; we
may first imagine that v is divided into n smaller volumes, v=n(L+ & )3 , and theh
each smaller volume 'L3 “decays exponentially as exp (- >\_Lf) . Let T, and T be,:

respectively, the time scales for surface contraction and for boiling. It is clear that

W=

. : -1 o
T o~ v and T, ™ (n)\L). . “4.11)
For v small, the decay time is determined by T and for v -sbfficiently large by T -
;fo have a rough idea of the critical volume size when T, ~ T, We may use the lower
bound (4.7) as an estimate of )\L . As shown in Appendix D, this lower bound is de-

‘rived by using the W. K. B. approximation; we may write

1
; -in(\8) = P ~ 28 S [U(e) - Ule, )] de (412

vex

[
}

in which & is, as before, ~ -Ol(a-f) or O(’b-]), U(¢) is given by (1.2) and
the integ_ra! extends from Pex 0 % where U(q>o) = U(q>vex) . Because L is =

"4~
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>> 6, we expect P to be quite large, and therefore at T Te the critical volume
Ve should also be rather large. For example, if we arbitrarily assume L~ 105,
-13 2 . 3 TP
§~ 10 “cm and P~ 107, then v is ~ (mm.)” ; the corresponding lifetime of
— . -12 . .
the vacuum excitation state | vex> is ~3 X 10 ] sec. Since the theory is Lorentz-
invariant, such a state can acquire a nonzero momentum; of course, its shape would then

undergo a Lorentz contraction, and its lifetime a time dilatation.

4.2 Degenerate Vacuum (b2 = 3ac)

In this case, the system is invariant under the transformation

P2~ -G 2) . 4.13)

c
The states $ =0 and ¢ = - (2b/c) are therefore completely symmetrical with respect
to each other, We observe that any classical path in the functional space ¢(x) that .
connects these two states must pass through a potential barrier whose height is at least
proportional to- Q%, where Q is the volume of the enfi.re system. The transition matrix
element between these two states becomes zero as Q approaches @ . Consequently,

in an infinite volume, the states $ =0 and § = = (2b/c) are degenerate, and are

both stable.

| Next, we examine the lifetime of a vacuum ex;:iquion that extends over onl?'
a iimited volume v (but Q isstill o). Let | vex > be such a vacuum excitation
state defined by 4.9), where Pex = = (2b/c). In this case, fﬁe rest mass consists
of only the surface energy, ‘and the lifetime is determined completely by surface con~-

traction. It is not possible to have "boiling" inside v, because of energy conservation.
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Near the surface, "boiling" is possible, but then fhe(e is no clear distinction between
that and surface copfracﬁon.

In both the degenerate and the non-degenerate cases, we see that the vacuum
excitation can, in principle, extend over a domain of macroscopic sizes. In the degener-

ate case, there is no limit to its size; the larger its dimension is, the bigger its mass, but

the smaller its width, and therefore the sharper is the definition of the state. In the non-
degenerate case, the same holds only if the "boiling" mechanism can be neglected, and

that gives an upper limit to its size.
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" 5. Classical Solution

Some knowledge of the actual shape of the vacuum excitation state in space
may be obtained by studying its classical solution; this is especially useful if‘its size
may extend over a macroscbpic region. For simplicity, we concentrate mainly on the
degenerate case (b2 = 3ac) in this section. With slight modifications, the method

used below can be readily applied to the non-degenerate case (b2 # 3ac) as well.

5.1 One Spatial Dimension

It is convenient to introduce the dimensionless variables:

(5.1)
and ¢ = l—:-()(,-'1)

The wave equation for the degenerate case b2 = 3ac in a one-dimensional space

becomes

1 SEX L TX v axo-X¥) =0 (5.2)

We first examine the time-independent solution. From (5.2), it follows that if

aX
oT

= 0 then

L (5.3)




i

where

! , [ dX 2 1, x22 ‘ “
: = D | —— - e - " .4
- < '<d§> .8(] ) 6.4)

Thus, if we regard ¢ as a fictitious "time", the problem: becomes: identical to one in
\ . . . . § e . . . o . - ¢ It
elementary méchanics, in which there is a point particle:at X moving in a potential

]

; ' |
Wos -2 (1) (5.5)
and K is the tofal energy of the particle. The explicit solution: X = X (£) can then
be' readily obtdined.
! To illustrate the different types of solutions in this problem, we may consider,

for example, the special case K= 0. The solufions are

X = %1 ‘ (5.6)

d‘nd

X = % tanh }(£=£) ~ 5.7)
where £ is a constant. In terms of the mechanical analog, (5.6) is the solution that
the particle is af one of the two peaks 6f W, and (5.7) is the solution such that the par-
ticle goes from one peak to the other. I the field theory problem, the two solutions in
(5.6) represent simply the two aegene'rafe vacuum states ¢ =0 and ¢ =-(2b/c).
T‘he solution in (5.7) gives the defd';i[s of the transition from ¢ =0 at, say, x =+ °

fo § = -(2b/c) at x==00.
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Through a Lorentz transformation, the solution (5.7) can be easily transformed

to one in which the transition region moves with a velocity u. The explicit form is

>
i

+ tanh © (5.8)

where

N~

©
]

3 (1 -u2) ‘ [ £ - ur+ consfonf]. .
5.2 Three-Dimensional Case

For simplicity, we consider only the spherically symmetrical solution. Again, we

introduce the dimensionless variables

and

e = 2(x-1) . | (5.9)

~ For the degenerate case (b2 = 3ac), the wave equation becomes

2 1
.o + _a_(pzé_x_ +ix(1-%%) = 0 .  (5.10)
ar pr dp dp

For the time=-independent solution 9X - 0 , one has now, instead of (5.3),

oT
2 | :
dK - .2 (_d_x_) (5..11)
dp p \dp '
. where, as before, . ‘,
2 :
= L) - 2 -
K 2(dp) (1 ey . 6. 12
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Again, we may consider the mechanical analog by regarding p as the "time"

F . |
and X as'the "position" of a particle. The "potential™ W is again given by (5.5).

But now because

Ky

dK
. dp

A
o

' (5.13)

the particle is in a dissipative system, with a "tfme"-dependenf frictional force. The

[3
y

motion of the particle can be discussed in the standard ‘v'vay9 by plotting the K = constant
Y ' ‘ ,
contours in the phase space (with X and _::_X_ as the coordinates). Since a regular
solution at p =0 implies that X (0) is finite and (%Z(-) is zero, at p=0,
‘. p _0

p :

the trajectory must begin at a point on the real axis (i.e., dX _ 0) in the phase
Y ery P

s:pace. As p increases, because of (5. 13), the value of K along the trajectory must
keep on decreasing. From Figure 4, one sees that the K =0 contour divides the entire
f;hase space intvone closed region R and four open regions. Thus, depending on the
.ienitﬂiul valve X (0), there are fhree.fy;p:es of solutions: (i) Stationary solution. If |

X(0)=1 or =1, then at all ng
X(p) = 1, _or =1, (5. 14)

,(jii)Runawa-y solution. For X(0) >1, or < -1, the frojecfory in the phase space\
moves fowc;rd points at infinity as p increases. (iii)Spiral solution. If -1< x(0)< 1,
;he trajectory lies within the closed region R bounded by the K =0 contour. Inside

(R. , the minimum K is at the origin. As illustrated by the dashed curve in Figure 4, a
typical frajecfory would-begin at a point on the real axis at p =0, then spiral in, and .

i
$
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evénfqally approach the originas p—~ @ .
Returning to the field-fheory problem, one sees fhat‘ the two stable solutions
given by (5. 14) correspond to the two degenerate vacuum states ¢ = 0 and ¢ ==-(2b/c).
Both the runaway solution and the spiral solution have a field-energy content
J d3r [% (Vq:)2 + U(<p):] that is' infinite. Thus, they are unphysical. This situation
is quite different from the one~dimensional case; as shown in the previous section, there
is a time~independent solution (5.7) in which X is not a constant, and the solution has
a finite field-energy. In three d#mensions, a similar transition from X = -1 at, say,
p <R to X=+1 at p>>R givesrise to a surface energy Which can always be re~-
duced by decreasing R . Thus, such a solution cannot be stable (i.e., time-independent)

4

as in the one-dimensional case.

- 5,3 Constant Exfe_mal Source

It is therefore of interest to examine the three-dimensional time~independent
classical solutions whichA may exist fn the presence of an external source J(x) . For
example, we may assume that the spin 0 field ¢(x) is of parity + 1, and interacts
with a spin 2 nucleon field ¥ through a scalar coupling -g lIJT Yy $¢ . The Lagrangian

density is given by

2. .
_ _1({3¢% _— 9
o -2<a—x_ SUCERUAGE LWL
M B
-9 ‘I’TY4'4’¢ + counter terms - (5.15)

"where U(¢) is given by (1.2), U is the physical mass of the nucleon, . Q’T is the
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i
.
{

Hermitian conjugate of ¥ and g the renormalized coupling constant. The wave equa-

. .

tion is now of the form
‘ : 1

H

2

¢ du
.__2_ - — - J = ) 0 (5' ]:6.)
‘ax'_1 d¢

where (neglecting the counter term)
_ T
J = g¥ Y P
In this section, we shall assume that in regions occupied by nuclear matter,

the source J is a constant. Physically, we may assume either g weak or My large,

so that

2 2 :
mg > (ge, ) . | , (6.17)

[The case’ mil S (g ?ex )2 willl be considered in the next section.__] Thus, when ¢

"chcnges from 0 to O ), the coupling term g¢ ‘PT v, ¥ remains much smaller than
¢vex o 4

the nucleon-mass term my of 74 ¥. The perturbation on ¥ due to the variation of ¢

may therefore be neglected. So far as the classical solution is concerned, we mqy then

regard J(x) as a given function. For definiteness, we consider J(x) to resemble the

nucleon distribution in, say, a spherical heavy nucleus; it will be assumed to be time-
T

independent and of the form

0 W p < R :

Jo) = .

f : (E.l?.)j . if p >R '
[}
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By using the dimensionless variables introduced in (5.9), we find that for the
degenerate vacuum case (b2=A3 ac), the time-independent spherically symmetric

equation is, as before,

_‘2 d (,;2 i&) +ix(1=-X%) = 0 (5. 18)
p- " dp dp

in the outside region p > R;itis

d .
_‘2 4 <p2 l) FIx(1=-%) = (5.19)
p- dp dp

in the inside region p < R. At p= R, the outside and inside solutions are joined
together so that X and %% are both continuous. The solution is then determined by
requiring X I'o‘be regular at the origin and at infinity.

The solutions that we are interested in are those for R large and in which X
is nearly a constant either inside p = R, or outside; only near the boundary p = R *
does X have any siéniffcanf variation. In order to have the "true" vacuum ¢ = 0

at infinity, we require that in the outside region X—= 1, as p— o ; the next term

in the asymptotic expansion of X is then exhibited in:
X = 1= Ap Vexp (~p) (5.20)
where A\ is a constant. In the inside region, we requireas p =0,

X - X0 + ¢ p-] sinh (kp) ‘ A (5.21)
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where € << 1, XO satisfies
) j
XO“ - XO ) = 2] - (5-2_2)
and .
Eo= @ . (5.23)

It can be recjdily verified that in the outside region, the asymptotic solution (5.20) 3
satisfies f.he differential equafion‘ (5. 18) to first order in (X =.1); similarly, in the
inside region, the corresponding limiting solution (5.21) satisfies (5. 19) to first order .
in (X- xo) . The exaqf defermination‘ of these parumefers A and € in terms of _|
and R is rather involved, but some of the general characteristics can be derived
without detailed calculations.

2 1 . -
For j < 57 7 Eq. (5.22) has three real roots XO— Xu , )([3 and XY ’

given by -

’ (5.24)
5 . 4m A .
cos (5 + _) and cos & = -3/3j .

We choose w2 §2 0, and therefore xa < XY < XB . By following the same
argument given in the previous section, one can show that for j< 0 there is no solution

which satisfies the desired boundary conditions (5.20) and (5.211). At j=0, the three

roots are .Xfa ==1, Xﬁ =+1 and XY =0, but there is.only one solution that
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satisfies the boundary conditions (5.20) and (5.21): X(p)=1 atall p.

:Af a fixed R, as j increases gradually from zero, the ingide solution assumes
(ex;:epl' near the surface p = R) the form (5.21) with X'd = )((3 . Because of the con-
tinuity condition at p = R, the value of ¢ is ~ O(e-KR) . For R >> 1, which is
the case of physical interest for fhg classical solution, e is exceedingly small. Thus,
X< XB< 1 near the origin. At larger p, the inside solution increa;esl very slowly.

. It makes a rapid rise only when near the surface p= R. At the surface, it connects
with the outside solution, and th'en opproﬁches 1 asymptotically as p ~ @ . Accord-

ing to (5.22), as j increases beyond j = L , the root X = Xg ceases to exist,

3V/3 B

and therefore the solution disappears. ‘Physically, this means that inside p< R, as j-
increases adiabatically from zero, the state shifts from ¢(x) - 0 to ¢(x)< 0, until j
reaches the value at point B in Figure 3. Beyond that, ¢(x) has to make a jump.to a
completely different solution which represents the vacuum excitation state.

To obtain this other solution, let us first consider the case R >> 1 and j<<1.
‘We assume that the solution is approxfmafely given b;l (5.21) in the region p< (R-d)
where X = Xy .1 and d~ O(1). Inthe reg‘ion p > (R+d), we assume that
- the solution is approximately given by (5.20). In the transition region |
(R-d)< p< (R+d), we may neglect both R-] and j as a zeroth appfoximaﬁon;

thus, according to (5.7), we have

X = mnh%(p--.po) | © (5.25)

3 where Po lies within the transition region. From the continuity condition, it follows -
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that e ~ O(e'-R) , and therefore X =1 in the region p< (R-d). Similarly,

we find X = +1 in the region p > R+d. By multiplying (5.18) and (5. 19) by g%
and then integrating over all space, we find
1 (dx
i8X = 2fp (__ dp (5. 26)
where ' |
§X = X(R) - X(0) . | (5.27)

4

In terms of the mechanical analog discussed in the previous section, (5.26) implies

_simply that the energy dissipated by the "frictional force" equals the work done by the

"external force” j. To evaluate approximately the "energy dissipation", we need
only to consider the transition region. By using (5.25), we find the right=hand side

of (5.26) to be approximately given by 4 Since for j<<'1, 8X is <2, we

3R
derive the approximate condition
5 :
D : o : 5.28
] 3R . (5.28)

in order to have the vacuum excitation solution inside p=R.

Next, we examine its field-energy content

4n [ Hpldp

where H is

'\2 . 2 ‘jx for p<R
Ho= 3(9X) + sa-9%) +
dp
' o for p >R
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By using the above solution which is valid for R >> 1 and j<< 1, we find that to
first order in j the integral of the Hamiltonian density H in the inside reQion,

p< R-d, is given by

. Re=d

. 2 - ~ ' 3-
ém) S jxplde = -4 R
0 3

The energy content in the transition region is approximately given by

‘R+d i (2 ,, 2 .
w® L |y 9_’1) + 3 (1-%) Jdp z Br g2
R-d dp 3

To the same order, we may neglect the energy content in the outside region p > (R+4d).

The total field energy content is therefore

is"_'kz(z- Rj) . (5.29)

This is to be compared with the approximate energy content

‘L; RS | . (5.30)

of the other solution (X = X, ~ 1 inside p< R). Thus, for R >> 1, by comparing

B

(5.29) with (5.30), we find that the vacuum excitation solution has a lower energy if
1 )

j>§-.
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[ iy
To summarize: For R >>1, as j gradually increases from O, the solution

L]
v

changes continuously from X = 1 everywhere to one in which X = XB <1 'in the
inside region p<< R, but X remains =+ 1 in the outside region p>>R. As j

P 2 ’
bfcomes larger than IR ¢ there appears another solution, called the vacuum exci-
tation solution, in which X & Xa< -1 for p<< R, though X isstill = +1 for

: ' . 1 : I .
p>>R. If j becomes > & then the vacuum excitation solution has a lower energy.
When j exceeds -—]—— , the vacuum excitation becomes the only form of time-

3V/3
independent solution.

1
<

5.4 External Source (Free Nucleon Gas)
We now turn to the case in which the coupling constant g in (5. 15) is assumed
tfo be sufficiently strong, so that (5.17) may not hold. We recall that in the "true"

vacuum, because of our convention (1.3), ¢ = 0 ; by definition, the nucleon mass

is my, - However, in states with ¢ # 0, the nucleon mass is my t g¢ . In discussing

the classical equation, if the solution ¢(x) is slowly varying, we may expect ¢(x) to
replace locally the role of $ in the quantum mechanical treatment. Thus, the "effec-
tive" mass of the nucleon becomes LT wAhich in the present case may be quite

different from m For definiteness, let us again consider the example of a heavy

N

nucleus. Inside the nucleus, we have

<¥ > = n . | (5.31)

>

where n is the nucleon density, and < > denotes the expectation value. However,
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as we shall see, when g is strong (or relatively speaking, m, ot too large), unlike
(5. 17),‘ < yf Y4 ¢ > # constant and must depend on ¢ .

To discuss the classical solution of the spin O field, we shall assume the nucleons
to be opproximafelly described by a degenerate Fermi distribution, characterized by a
maximum Fermi momentum kF . Ip the simple example of an equal number of protons

and neutrons, kF is given by

ko= (3r°n/2)" . | (5.32)

Since the classical solution ¢(x) is expected to be slowly varying inside the nucleus,
one may treat m + g <|>(x) as the "effective" mass of the nucleon at x ; the density

of the kinetic energy of nucleons is therefore given by

. k 1
U, = 2 rFi2ulem® e
2 .

1
2. .,27°
-1 3 ket (kg +M7)
2 2,222, 5,42, 1,4 F F ‘
(27) {kF(kF+M)(kF+§M)—2M In —
(5.33)
2 2 . . .
where M~ = (mN +g¢)” . The nuclear density- n is determined both by the usual
short-range nuclear forces (generated through the exchange of high frequency virtual
mesons) and by the long-range "classical " potential ¢(x) ( which, in the time-inde-
'pendenf solution, is of zero-frequency). In the following, we shall consider two
!

models: (i) the free gas model, to be discussed in this section, and (ii) the incom-'

1

,pressible fluid model, which will be discussed in the next section. The actual physical

5
A
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situation should lie somewhere in between these two extreme possibilities.

Free Nucleon Gas Model - :
. |

In this model, we neglect all short-range nuclear forces, as well as the electro-

magnetic interaction between nucleons. The nucleons are treated as a free degenerate

Fermi gas moving in a classical field ¢(x) . To derive the time-independent field equa-

4

tion, we consider the minimum of the field energy E, defined by

v
.

E '—:- S [%(ch)z + U<P + UN:[ d3r- . (5-3-4)/

H

but subject to the constraint that the total number of nucleons N is a constant, where
3 ;
for a system of equal number of neutrons and protons,

4

2 3 3

UN is given by (5.33) and Uq) is given by (1.2); i.e., .

U, = Bag® + (@07 be’ + (41)7"eo? L (5.36)

By setting, at constant ‘k_, the variational derivative of E with respect to ¢ equal

F'.

to zero, we derive

2 d ) A - :
- + — U + (— U = 0 . 5.37,
ver g b (aq: N)kp | 30
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Next, let us consider the variation of E with respect to kF , at constant ¢ and
under the constraint (5.35). By using the standard Lagrangian multiplier méfhod, we

find that in order to have E -minimum,
2.2 2%
ke [(kF + M%) = constant’] = 0 '~ (5.38)

where the constant is the Lagrangian multiplier. Thus, at any point in space, either

there is no nuclear matter, hence k_= 0, or since M = m t9¢, kF is related

F
to ¢ by

k? + _(mN + gc|>)2 = u2 mil = constant (5.39)
which implies that the top energy pf the degenerate Fermi sea is a constant. Together,
(5.37) and (5. 38) determine the classical time-independent equation for ¢ .

The most remarkable consequence of the above field equation is the possibility
that it may have solutions in which the N’ nucleons can be bound together in a region
of finite and non-zero volume, even though the nu;:leons are treated as free gas parti=-
cles without any ;horf range forces. Furthermore, these solutions exhibit typical “satu-
ration" properties; i.e., for N sufficiently large, the volume is proportional to N
and the binding energy pe.r nucleon is independent of N . In such solutions, the clas-
* sical field ¢ —~0 at infinity, so-fhat, in accordance with our convention (1.3), we"
have the usual vacuum at infinity. However, fhe‘cgnsfant w in (5.39) is chosen to be
<1, so that there can be a finite volume in space in which g¢ is negativeé and

< = mN(l -w). The nuclear matter will be confined in this volume, whose boundary
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is defined by

: 9ok = -m(1-0) < O . (5.40)

As we shall see, if g is sufficiently large, one has

M)
o -

M™N t9¢ (5-4!)

inside the bound volume, except-in a.small region near the boundary; therefore, because

of (5.39), inside the volume

(5.42)

i.e., the nuclear density n = 2(31r2) (W mN)3 is also nearly a constant inside. Fur-

thermore, ‘because of (5.41), the "effective" mass of the nucleon is =0 . Thus, the

field energy E for such a bound solution is given by ¢

2

| (me )4 .
E = + U (-m_/g){ . Q. + surface energy
o -7¢" N N

where QN denotes the volume of the bound solution and U¢(-mN/g) is. the value
| : ‘

— . -3 , L.
of U(p at ¢ = mN/g . Because of (5.35), kF is oc QN . Therefore, if one

neglects the surface energy, the minimum of E occurs at (9 E/aQN) =0; i.e.,

(0 mN)4 - Uy(-my/a) - (5.43).
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By using (5.35), one finds
2 -1 3 2
N = 2(3n7) (am )" Qg+ O(Q,il)

The minimum energy E of the bound solution is given by

Wi—

NE = +O(NTY) . (5.44)

wmy
This is to be compared with the lowest energy N uN of the unbound solution [in
which ¢ =0 and kF = 0 everywhere, but one retains (5.35) by having the particles

at 'infinify]. Now since, according to-(5.36), Ué‘> =0 at ¢ =0, the bound solution

has a lower energy than the unbound solution, provided g is sufficiently large so that 10
2 4
61" U, (-m/9) < my b (5.45)

and therefore w < 1; in addition, N must be sufficiently large so that the surface
energy can be neglected.’ Thg binding energy per nucleon is (1-w) my
We emphasize that, unlike the other topiqs discussed in this paper, the existence
‘of this rather unusual type of h.equ "nucleus" is independent of the existence of another
local minimum in Uq> (besides ¢ = 0); it may occur even if the <p3-coup|ing b= O .
To illustrate more explicitly the details of such bound solutions, let us consider

i

the degenerate vacuum case b2 = 3ac. Inaddition, for simplicity we shall also assume

m., = gb/c ' | (5.46)

N




50, ' o

“so that both U " and UN are symmetric under the transformation (3. 7).
¢ + Pé‘ - - (¢ +?%) . By using the dimensionless variables introduced in (5.9), one "

1
i . -2

r = a‘p and X = "I+(gq>/mN) . (5.47)
3

Let p= R be the boundary of a spherically synimetric solution, representing a heavy ’

nucleus. ‘Because of (5.37)-(5.39), the correspondirig time-independent equation is !

given by
| | .
—]2— s (pz ?- -+ %X(T—Xz) =0 for p>R (5.48)
pdp : pS ' : |
‘ = jy for p<R (5.49)
where ‘ .
} | 2. 2% P
g = 284 @2-8) 6 - 5% | "’*‘“}’(»‘ ) ] , (5.50)
- B = 3gt/(alc) g | (5.51)
and s :
i 2 ] :
(ke/m) = (wz-xz), . ‘ (5.52)

The boundary p = R is determined by
: X(R) = w
X

As p- o, the asymptotic behavior of X is given by (5.20),

X = 1= 2p" exp(-p) | 653
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where M\ isa constant. As p- 0, we have

X — € p-] sinh kp : (5.54)

where

Z o= 2B =% (5.55)

which is assumed to be >0 . Both X and (-:—X-> are continvous at p= R. There-
p

fore, the constant € is O e-KR) ; consequently, except when near the boundary,
inside the nucleus X is ~ O (e-KR) = 0, provided that R is large.

Let Xouf and Xin be, respectively, the solutions of (5.48) and (5.49) that

satisfy the conditions (5.53) and (554) To study how these two solutions
28 (22 )= o’
ap ap. 5_‘)2

Thus, when R is sufficiently large, (5.48) implies that at p =R the outside

can be connected at p = R, we note thatat p>> 1,

solution X satisfies
- out

d xouf

dp

-y a-x2), (5. 5)

out

which can be easily derived by following the same steps leading to (5.4). Similarly,

from (5.49) one concludes that in the transition region near the boundary,

R 2 p 2 (R-d) > 1, (5.57)

the inside solution X = Xin satisfies



; 2 a2 A
' %(Q_X_ -5(1- Xz) - J j\,dX = constant (5.58)
dp _ N

Nl

. 1 2 .2
2 -
S iy 94X -%5- 0 (5% « 202)(w2- %) - 3xtin wXle - X

. 1
X ]
i - v

- (5; 59)

' The width d 'of:' the transition regién (5.57) is ~ O (1).; it is chosen such that at

‘ dX;n
p=R-d, X, and
?' n dp

(5.59) is zero; we obtain for R sufficiently large, at p = R

are 0. Since at p=R, X =0, therefore

N—

dX.
- 7in

- 1 Q. 2 )"
2 = [-]—2- (8B +,3) xin 2] xin . (5. 60)

The intersection of (5.56) and (5.60) determines X and :_X_ at p=R. We find
5 | dp

. i /3 3 | | *

provided that R is sufficiently large. This result, of course, agrees with (5.43). If

we neglect the surface energy, then the binding energy per nucleon is
'mN(l,-.m)' . ~ (5.62)

As we shall see in Section 6, in the o-model the constant B is given by

2 m 2 : :
p=2 N [See Eq. (6.13). ] This leads to a value B = 10 if
P = —2—“7 | \ mo . ) -q. (0. 19). 1 v

;(4:1")—] 92 ¥ 15.7 and m = my, - The corresponding value of w is = 0.44 .,
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In Figuré 5, the two solid curves, labeled "outside (R= )" and "inside (R= )"
refer respectively to (5.56) and (5.60) with B = 10 . These are to be corﬁpared with

the dashed curves for R = 10, determined by the numerical solutionsof (5.48) and (5.49).
As a further illustration, the numerical solution of X(p) is plotted in Figure 6 for

R=20 and B = 10; the correspopding valve of N is & 210 and that of w is

& 0.46 , which is to be compared with the asymptotic value w = 0.44 if R is @ .

5.5 External Source (Incompréssible Nucleon Fluid)

In this model, we assume the short-range .nuclear force to be so strong that the
nuclear density n is a constant. The nuclear matter resembles an incompressible fluid.
Thus,. if we retain the approximation that the nucleon density is still related to the
Fermi mor;nenfum kF by (5.32) and that the kinetic .energy of the nucleons remains
given by (5.33), then the time-independent equation for ¢ is

- d

2 « -
-V + — U =0 5.63

outside the nucleus, and

2 d 3
-V + —_ + —_— U = 0 5.64
YT e e N)kF -4

inside the nucleus, which is the same as (5.37), except that instead of (5.38) we have

now

kF = constant . . ' (5.65)
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To illustrate the main feature of the model, let us consider again the degenerate
vacuum case .b2 = 3ac, and let us assume that (5.46) holds. For the spherically sym-
metric case, in terms of the dimensionless variables' p and X, introduced in (5.47),

Egs. (5.63).and (5.64) become

52 (p‘z XY +ix(-¥%) = 0 for p > R 5(5.66)
oo dp N\ dp/
d . ’ '
where
12 '
2 232 .2 4 ot (P+X2) :
A VN(X); = Bla(a"+X") (a +3X7) - :][_X In [ , A‘X J ' (568)
p = R is the radius of the nucleus and a, B are both constants, given by
' < 4,2 '~
a = ’kF/mN and B = 3g /(2n°¢c) . (5.6?)
The field eneréy of the system is given.by
E = Eout'+ Ein N (57?)
where apart from a common multiplicative factor
© 2' .
= e [3(T) 0 ] L e
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R : 2 :
2 [, (dx
and
1 2.2 » |
V(X) = '§'(‘] -X7) ,+-VN(X) - VN“) (5.73)

in which the constant term = VN(]) is arbitrarily added, such that for the true vacuum
$=0, X=1, one has V(1) =0. Different from the previous free gas model,
the nuclear radius R is pre-determined by the given constant n and the given number

of nucleons. By varying Eou and Ein independently, we derive the field equations

t
(5.66) and (5.67).

Outside the nucleus, the solution has the same form as that in the previous
section; e.g., the asymptotic solution remains given by (5.53) as p—~ @ . However,
as will be analysed, the solution X inside the nucleus changes its character depending
on the physical parameters. In the weak coupling limit, as expected, the equation be-
comes identical fo that in the constant current model, discussed in Section 3.3. Similar
behavior also occurs in the low nucleon density limit, even though the coupling constant
g may be strong. But when the nucleon density is sufficiently high and g strong, the
solution resembles that in the free éos model.

We first observe that as g— 0, the minimumof V isat X=+1+ O(g);

therefore, to zeroth order-in- g, the current

i = —N <2 0(02+])%-|n [a+(a2+1)7]} (5.74)

~isa constant inside the nucleus. Equation (5.67) reduces to the previous Eq. (5. 19).
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Next, we consider the case where -g is strong, but the nucleon density n— 0, and.

ey

dv 2 -
theref: Iso -0. At X=0 has — =0 and =2 - % ; consequent|
erefore a also 0. one has = an 5(-2- Ba” -1 ; consequently

as @ = 0, the point X =0 is a local maximum of V. The minimumof V remains
at X =+ 1; the solution then retains the character of the constant current model.

However, when a increases to

2 Ba’z >

Nl
~

the ,poinf X =0 becomes a local minimum of V. When the nucleon density becomies
sufficiently high, X = 0 becomes the absolute minimpm of V. Thus, it resembleAs the
free gas model when g is strong and nuclear densify‘is>sufficienf|y .high. [This is in
.contrast tb the situation in the constant current model, fn which X = 0 is always the
local maximum of the field-energy. :] ‘The corresﬁonding solution inside the nucleus can
o ;

be readily obtained by using (5.67).

As .p— 0, the solution satisfies

X = € p-] sinh (kp) ' ' (5.75)

where

A
]
nN
>
Q
1
N}

(5.76)

Because X is continuous at p = R, and because outside the nucleus, according to

(5.53), X is €1, one finds that € is ~ O(-'é-KR?) . Thus, if R is sufficiently

-large, ‘for.the most part ‘inside the nucleus, the value:of X is near zero. As p

"approach‘e's‘ R, X begins to increase. If one-neglects O ( R-]) , ‘then onehas for

1
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p near R but inside the nucleus,
2
(gl;- S V(X) ¥ -V (0) (5.77)

for p near R and outside the nucleus, one has
2 ’ :
dX ~ '
%(““ -3a-xf T o0 . . | (5.78)
de . o

Consequently, at p =R, X satisfies

vx) ¥ pat L | (5.7%)

In order for X = 0 to be the absolute minimum of V , we must have

V(0) < V(1) ;ie.,
V() _Bal > b . - | " (5.80)

If B is >> 1, this inequality can be satisfied for a relatively small a, and there-
.3

fore also a relatively low nuclear density. Since for a small, VN( 1)z % Ba ,

(5.80) can be satisfied if a is above a critical value a,

N | |
a, % <?2—B'> , | 68

provided that B is sufficiently large; the corresponding critical density is oc ‘cf oc B-] .

The above discussions, after some minor changes, can be extended to cases

where b2;é 3ac and mN;ég b/c .
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6. "0 - Model

It is ﬁof our purpose here to start a complete re-investigation of the o-model N
of strong. interactions; such a project clearly Iieg outside the scope of the present paper.
However,. as we shall see, there are some rather new and interesting-properties in the
o-model when a sizable chunk of nuclear matter is present; these prop’erﬁeé are c'losely
related to those discussed above. In this section;. we shall give only a brief survey of
these new features. Our disc’ussiqn will be restricted to the tree approximation.

~ The o-model consists of a spin3 nucleon field: ¥, a spin .0 (even parity) field
o and the usual pseudoscalar pion field 7. The Lagrangian density is'given, apart |

from the counter terms for renormalization, by

a . .= - .
£ = - "’TY4 "y -an v - g"‘I,TY4 [o+im. 7 75] ¥

S @]

where

U, = AN [P - (] - e ©2)

.: i A A3 L] - l
For convenience, we assume the parameters C“., p- and: A to be all positive. The:

minimum of the c. number function U-a occurs at ¢ = % and w= 0, where % is

> (p/N)- and satisfies
C = o5(N oy - 2‘) (6'3':5
(AR R
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In the tree approximation, the renormalized constants A, u, g and C“ are related

to the physical masses LN and m_ of the particles by

my 99 C“ =m_ 9 ,
m? = Mol -l ©.4)
and mf = 3>\2 cg'- p2
The vacuum state satisfies
<vac | o(x) | vac> = % 6.5)

and < vac ] ;(x) | vac>=0. Inthe o-model, the constant g is given by the well-
known m-nucleon coupling, (41r)-] 92 = 15.7 . The only unknown parameter is m_ .
However from the absence of any 0+ resonance that has been positively identified
experimentally, we may conclude rincA is > m_, and may perhaps be 2. @) (mN) .
We'note that if =0 , then Uc reduces to the form (1.2) with ¢ < (0 - oo) .
Owing to the smallness of m_, and therefore also of C1r , the function Uo has a local
‘maximum at o near zero and a local minimum, besides ¢ = o 1 at ¢ near - 9 -
However, when T is now allowgd to vory; this local minimum at ¢ near - % turns
into a saddle point; it is connected to the absolute minimum point o - % by a smooth .

path, 02 + ;2 =4 ag , without passing through any potential barrier. Thus, in the ab-

sence of nuclear matter, the o-model is quite different from the system discussed in the

previous sections. On the other hand, when there is nuclear matter present in a certain
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region, then fora sufficiently large nuclear density and the region not too small, the

o-model exhibits almost exactly the same property as-that discussed in the previous .
sections. ‘

It is convenient to introduce, similar to (5.9), the dimensionless variables:

p = V2 ur  ond X = Ao/p | 6.6)

X 1
[i.e., on dccount of (6.4), p= (mz - 3m: )2 r and X= (g a/mN)(mf - m: )2 ”

=t

. (mf - 3m12r ) ] . For simplicity, let us consider a:spherical nucleus of radius p= R.
Furthermore, just as in Sections 5.4 and 5.5, we assume for the nucleons a degenerate
' i

Fermi distribution with a maximum Fermi momentum kF, given by (5.32). By following

exactly the same discussion given in the previous two sections, we find that outside the

nucleus the classical time~independent spherically symmetric equation for o (with

};=0) is
1 d 2 dx\. d _ :
FCH-Fw e e
where
' 2
V) = b(1-%) - ax 6.8)

and where because of (6.4),' n -is given by

1 3

2, 2 22,2 272 | ' ‘
mo(m -m) (m -3m) << 1. é.9)

n

Inside the nucleus, the corresponding equation is
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1 2 dX .
—7 -a—‘-)- ) (X) = JN(X) . (6. 10)

The function jN(X) depends on the nuclear model. Under the assumption of the "free

gas model", we have jN=(jN) where, just as in (5. 50),
gas

2

2 24
() 2BX{ Xz)w-%lehi:w+(w-x2) :l "
gas. . X
X(R) = w : | 6. 12)
and, becc;use of (6.4),
| 2 m2
A N :
B = o 6.13)
27 (mf - :)

On the other hand, if we assume the "incompressible fluid model" then j = (i\,),, .
. N “N7fluid

where, just as in (5.67) and (5.68),

UNfroid X

1 2 |
- 1 2 2
= 2Bx{a(c2+x2) ~ 3% In {“(“,”2) J ,

6. 14? .

6. 11) ‘
in which w is a constant, related to the value of X at p= R by
in which B is given by (6.13) and a is a constant related to the Fermi momentum kF

3 .
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a = I<"_./mN .. (6. 15)
In the limit m_~ 0, n—0 and the above equation (6. 10) reduces identically

| to either (5.49) or (5.67).

; In the- 0-model, (41r)-] 92' = 15.7 and f_h'eref&e (after neglecting m:)

BT Wmy/m ) | ©.16)

N
In the free nucleon gas model, by using (5.61) we find

€
n

.44(m0/m,\,)]/2 L (6.17)

If we neglect the surface energy, then according to (5.62) fhé- binding energy per

_nLcleon- is (1-w) my - Thus, in this m,o‘de!, if ma‘ isll~e'ss than ~ 5 m there would
bé o new type of stable heavy nucleus, provided that the nucleon number is sufficiently '
large. | | :

. If we assume the incompressible fluid model, then the field energy is given by

(5. 70).-(5. 72), except that V(X) is now

3 V(X)‘ = AVO(X-) + VN-(X) - VN(I‘)" o (6.18)

where Vo is given by (6.8), but VN remains given by (5.68). The above expr’éssion '
réduces to (5.73) in the limit m = 0 ‘. ‘As noted in Section 5.5, when the nucleon den-

si;.y is sufficiently high, the minimum energy state of a very heavy nucleus flips from the
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"normal” solution (in which X is near 1 and the nucleon mass & mN) to an "abnormal"
one, in which both X and the "effective" nucleon mass are near 0 . In order fo produce

the flip to the "abnormal" solution, (5.80) must be satisfied. By using (5.81) and

(6. 16), one finds that the critical density is approximately determined by

2 ’ |
k. : m \3
= F a o
GC (Fn_> = 0. 2]<-m—-—> . (6. ]9)
N/c N

If mag LN then the critical density is about the usual nuclear density

-1
ny = [‘.‘3‘1 (1.3 x 1077 cm.)3] . (6.20)

If mo# m, ., then the critical density n_- varies approximately as

2
. ma ' -
nc ~ no(-a—hl> P | (6.2])

provided that m_ is not too large.

In Figure 7, the function V (X) is plotted for m_=my and the usual nuclear

" density n=ng, with mﬂ;é 0. From the plot, one sees more explicitly that under

these conditions, if the nucleus is sufficiently heavy (so that surface energy can be
neglected) then, as expected, fHe n"gbnormal " solution has an energy comparable to
that qf the "normal" solution. If m_ is > my,, one may produce the "abnormal®
nuclear state by incrgasing the nuclear density through, say, high energy collisions

between very heavy nuclei. From Figure 7, one observes that there is practically no
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potential barrier between the "nomal” and the "abnormal” configurations, once the
critical density is reached; the corresponding productiori‘probability should, therefore,

be relatively hlg;h
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7. Remarks

In this paper we have investigated, among other things, the possibility that

over a limited region in space the expectation value < ¢ > of a spin 0 even parity

field ¢(x) may be different from its "normal" vacuum expectation value (which can
be chosen, by convehtion, to be zero). This investigation leads us to a study of
several different physical problems, each confcfning some rather interesting properties.
However, not all of them have been fully examined in this paper.

If the spin O field has a strong interaction with some matter field, say the nu-
cleon field with a large coupling g, then whenever there is a sizable bulk of nuclear
matter present, there is a tendency to have < ¢(x) > (mN/g) in the region oc-
cupied by nuclear méH‘er. This would reduce the "effective" nucleon massto = 0,
and thereby lower the-kinetic energy of the nucleons. Within a certain range of the
relevant physical parameters, this unusual solution may even become the lowest energy
state. Thus, if such a strongly infe_racfiﬁg scalar field does exist, there would be the
possibility of a large class of "stable" or "metastable” superheavy nuclei, hitherto
undiscovered.

As a mathematical model, such a po;sibil'ify suggests also a possible extension
" to the boundstate description of a single nucleon, by replacing the role of nucleus by

"quark-antiquark" ’

nucleon, and of nucleons by a mixture of "quarks" plus a suitable
continuum. Since the "effective" quark mass might be near zero inside the boundstate

(rhough heavy outside), one could hope to resolve some of the present theoretical

difficulties in such a description.
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If thﬂe»‘spin'O field has a large q>3-coup|ing constant b, then the function
U(¢), defined by (1.2), can have another local minimum at ¢ = Pyex 0. In this

case, - even without the presence of nuclear matter, there could be the possibility of

R

a pure vacuum excitation state, in which the expectation value < ¢(x) > is ex
over an extended region in space. This leads naturally. to the physical picture that
the so-called "vacuum" actually more resembles a “medium" whose properties.can be

changed. If-this is true, which of course we do not know at present, it-must ultimately

lead to rather striking physical. consequences.

We wish to thank N. H. Christ, A. H. Mueller, L. M. Lederman and

M. A. Ruderman fér discussions,
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Appendix A

In this appendix we give the details of the graphical representation of the
energy density function £(¢), which is defined by (2.4). It is convenient to intro-

duce the unrenormalized field operator % °
3 :
q’o = 2" ¢ (A. 1)

where ¢ is the renomalized field operator, as before. The Lagrangian density (1.1)

may be written as

2

a-¢0
‘S:‘:,-%'axp -¢05J-%q>02(a+80)

S@) Tedb+ sb) - () gg(ewbe) (A2)

’ 1
where 8J, 8a, &b and 8c are counter tems; together with (Z°? - 1), these terms
are needed fo cancel the infinities.

The counter term &) is determined by requiring
< vac Iq;o(x) |vac> = 0 . (A.3)

" The precise definitions of &a, 8b and &c will be given below E.q'f_fer Eq. (A.23) ],
From (2. 1) and (2. 2), the Hamiltonian HJ may be written as the sum of a

+ zeroth order term HO and a perturbation term H] :

H = H, +H, , C(A4)
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L2 2 24 3 |
Hy =%f[Tro+(V¢o) +a0q>0:| dr : (A.5)

xI
1

L= S L e+ @ byel @) e g ], (A)

where TT. is the conjugate momentum of % ,

0

a@Q = at 6a ,’ b, = b+8b ,

co = c+ 6c , (A'7_)

and the constant J0 is related to J, introduced in (2. 1), by

|
N

(A.8)

Since the counter term 8J is determined by (A.3) in which | vac > is defined to be

the ~|owesf-energy eigenstate of HJ with JO = 0, there should be a non-zero expec-

tatiori'value of ¢(x) in the lowest-energy eigenstate . | > of HJ

when JO;éO_.:

‘We define

§ = T S< ot > & (A9

Both ¢. and the corresponding lowest eigenvalue A of Q-]H may be
% J J Y

evoluated;by regarding H0 as the unperturbed Hamiltonian and H]

The perturbéfion series of A J

external line. We may write

A= )+ (A + (A) oo (A0)

) ;
tree J one~loop 3’ two-=loop

" as the perturbation.

is the sum of all connected Feynman graphs that have no
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in which (A ) denotes the partial summation of all such diagramﬁ that are trees and
. free ‘
()\J) | denotes the partial summation of all such diagrams that have £ loops.
2~loop

From (A.6), (A.9) and (2 3), one sees fhar keeping a bo and N fixed

a_>\J . »
t—— = °, . . . ’ A.]]
5 " % - - (A

We recall that according to (2.4) |

Thus, keeping a5, bo and 0 fixed, we have -

2= - - (A. 13)
0 q>o 1
( )
(3 ﬁ/acpo)(a )\/aJ )y = =1 . (A 1)
‘Tree Diagrams
In Figure»8 we IiSf fhe sum (>\J )t of all the tree diagrams. In fhése dia-
ree .

grams, there is no external Ime ~ Every infemol line carries a zero 4=momentum, so it .
gives to fhe Feynman amplitude a factor -i (k + ao) "with k=0 . Every one-
point vertex gives a factor -i J0 , every fhree-pomf vertex a factor =i b and every

four-point vertex a factor =i cg * From Figure 8, it follows fhai‘ keeping oo ’ bo

1
H
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and c, fixed, (A.11) holds within the tree approximation; i.e., (3\,/8J.). =9, .
0 J 0'tree 'O

Fhrfhermore,- in the same tree approximation, the full propagator'of ¢y ot the zero

4~momentum is simply i (82)\, /8J2) . Thus, one derives
. J‘ 0 tree

2 2 _ 2 - 1 =21
(@ >\J/aJ0 )free— - (k™ + ap * bo q>o+2co¢o)k=o . -(A.15)

Because of (A. 14), this leads to

2 ,.=2 - _2
0°6/3%9y) = ao+boqso+%co¢o . (A. 16)

tree

Again from Figure 8, one sees that as JO -0, (M) -0 and (3A /aJo) - 0.
1 - tree J tree

Therefore, as ¢, — 0., one must have (£). -~ 0 and (3£/3¢,) —0.
- q>O free 0 free )

Consequently,

[EG] = 3oydf + @ byae+ 40 g% . A

tree

- General Expression

To find the general expression of § ($0) , let us consider the scattering of n
zero-momentum mesons whose interaction is given by the Lagrangian density (A. 2),

and n may vary from 2 to- . We define [S ($0)]| to be the sum of all such
: — . . oop .
one-particle irreducible scattering diagrams that are not trees; in these diagrams, each

external line carries a zero 4~momentum and gives a factor $0 to the Feynman integral. -

The corresponding factors for the internal line, the three-point vertex and the four-point

o -

vertex are, respectively, - i(k2 + ao) , - ibo and - i‘co . [Nofe that there is
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no one-point vertex in these scattering graphs. ] We shall now establish
) = ) + [ iS(o . A. 18
£(3,) ,[£<430>1free [i ‘f"o)]uoop (A. 18)

To prove this, we consider the sum (A. 10) and note that, similarly to (A. 15)

2,
O,

i = & (k) (A.19)
aJO2 [ ] ]k=0

where br](k) is the full propagator of the meson field % ina fh'eory in which the

Hamiltonian is given by (A.4). We may write

[ BJ‘('()]-] = 12+ ap + i (k) . (A20)

where I(k) is, by definition, the sum of all proper self-energy diagrams. Let us

separate in X(k) the J

0

o-dependenf part I J(k) from the J.-independent part Zo(k) :

Ik) = fok) + I,K) A

“where as JO -0, ZJ(k) - 0 and therefore I(k) — Zo(k) . According to (A.6), the.

dependence on J0 is completely due to the one=point vertex. Thus, every diagram in
|
I (k) is one-particle reducible. Il e., it is possible to separate every diagram in  °
ZJ(k) into two disconnected parts by cutting an internal line open; one of these two

disconnected parts contains the external momentum kp , and the other does not. By -

repeating this cutting procedure and keeping only the part that contains kP , each of
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these diagrams can be reduced to a one-particle irreducible diagram in which there
is no Jo-verfex, but besides the two external lines that carry kp , we have also other
zero-momentum external lines (as fhe remainder of the cu‘ffing). If we assign to each
of‘\l;hese addii}it.)ndl zero=momentum exfe;rnal lines a factor. $O to the Feynman ampli-
fudé, we find ZJ(k) , introduced in (A.21), is egual to ‘the SUm4mafion over the set of
all such different one~particle irreducible (proper self-en‘e'i;gy) diagrams. In this set,
for“ k #0 every diagram has at least one-zero-momentum external line. Among these
diaérams, there are only two diaérams wi.fhouf any loop; these are simply =i bo 60
antf -i% o $02" . The rest all have some loops.

~ Next, we note fhot for k#0 the Jo-independent part Zo(k) , defined in
(A..20), consists of all one-particle irréducible proper self-energy diagrams that do

not: have any zero-momentum external line. Together, (k) = Zo(k) + ZJ(k) is then

the sum of all one-particle irreducible proper self-energy diagrams which may or may

" not- have.additional zero-momentum external lines. It is now straightforward to show |

tha‘t [S(:‘so)]loop , defined above, is related to I(k) at'k=0 by

2 _—
i = re =2 . 3 rieE oy ‘
.IZ(O) - bo"’o"'%coq)o +‘a"$—2' ['S(¢O)]|oop . . (A.22)
0 ‘

By using (A. 14) and the boundary condition that at $6 =0, both £ and (3f7/3%F,)

vanish, We.establish (A. 18).

Equations (A. 17) and (A. 18) still differ from (3. 1) and (3. 2) by being expressed A
" in Aigerms of a9 s bo ' S and $0 rather than the corresponding renormalized quantities.

We note that whatever may be the precise definitions of these renormalized quantities, .
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1
formally the counter terms 8a, 8b, 8¢ and (Z% - 1) can always be expressed

as sums over the appropriate set of diagrams in which only the renormalized quantities
a,'b, c and ¢ appear. Every one of these diagrams must have loops. By redefining

"loop" to include also these loops in the counter term, we derive (3. 1) and (3.2).

Renormalized Constants

To define the wave function renormalization constant Z , we may follow the

standard procedure: Set J0 = 0. The full propagator of the % field becomes then

Bok) = - i[K+ ay+ 10)]"" (A.23)

wheré Zo(k) is defined in (A.21). Let k2 = -m: be the zero of [30('0]-] . We

2

require as K2 -m
- Lo=1,2 2 |
[ 0) ] P iz tme) (A.24)

Thus, Z is defined, and m(p is the physical mass of the meson. The renormalized

constant a is defined by

R s K- 0 . ' (A.25)

Byk) -

Consequently,

a = [ay +15,0] z . (A28)

From (A. 18), (A.22) and the fact that (k) —~ Zo(k) as ¢~ 0, we obtain in the same B



limit ¢ = 0,

£(F) -~ 1ad’+ 0@ . a2

p

. . |
[s3)] = Y (7's 3" - (A.28)

loop ~ f
in.which n denotes the number of external mesons in the scattering amplitude. From

(A.21), (A.22) and (A.26), it follows that
a = [ao+ isz‘] z . ‘ | o (A.29)

Since 52 Qonfains a quadratically divergent Feynman integral, two counter terms 8a
and (Z=1) are needed to render (A.29) finite. The renormalized coupling constants

b and c are related to the scattering amplitudes 53 and 54- by

2

" b + finite tem = [bo + is3] y4 (A. 30)

A N
and

.c + finite term

(e + 5,12 . (A.31)

Since SsA and - Z both contain only logarithmically divergent integrals, one counter '
term 8b is sufficient to render (A.30) finite; similarly, one counter term Sc _is suf-

ficient to render (A.31) finite. The precise values of the finite terms in (A.30) and

(A.31) are determined by imposing (3.8), as discussed in-Section 3. 2.

We may expand the scattering amplitude [S(q_io)jl as a power series in ‘$0 :
. 00 .
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If one wishes, one may alter the above definition of Z by an arbitrary finite

2
multiplicative factor, say Z = £ Z, provided that a—~ta, b= ¢°b, c— Czc

.
% ; of course, the residue of the renormalized propagator at K2 + m: =0

~1

and ¢~ ¢

now becomes not 1 but ¢
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Appendix B

According to the rules for the prototype diagram, given in Section 3.1, the
Féeynmcm' amplitude for diagram (i) in Figure 2 is given by
f

M = y-ic) 1> (6.1)

where the factor § denotes the inverse of the symmetry number, and

T
! I = ;-Iz S ) d k - constant - constant - A (B.2)

in-which the two constants are determined by' requiring' I tobe O (A2) as A—~0.

The integral (B.2) can be reddily evaluated. We find -
. 2,71 | i
I = (167°) a[(1+4)In(1+4) - A] . (8.3)

According ‘f_.o (A. 18), in order to obtain ;(&?) , we should multiply the scattering
amplitude (B..1) by i; this gives the first term on the righthand side of (3. 17).

" The evaluation of the profotypevdiagram (ii) inFigure 2 is compleicategl,»'éince
it can be made finite only dffer we incllud.e also fhe diagram (ii)'. According to the
rules given.in Section 3.1, we find |

-2 &k o' '
5 / T2 . 4 , . f
(3%)(2m) [kK"+a(1+4)] [ +a(1+4)] [(k+q) +a(1+4)] :

.

G =

P + subtraction , (B.4) -
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§a &
i)' = -:—-%- S ) + subtraction” , (B.5)
(2n) k™ +a(1+A4)
and, to the lowest order,
2 4 .
. =ib d
Sa = —. S g (8.6)
207 (q2+a)

where, according to (3.8), the subtraction terms must be quadratic functions of A .
Since both integrals in (B.4) and (B.5) are not primitively diveigent, even with the
subtraction terms included, (ii) and (ii)' are still Iogarifhmi;:ally divergent. It is con-
veni{enf to introduce another diagram, diagram (v) in Figure 2, in which the dashed

. -] ’ -
line denotes the propagator - iv(k2+ a) . [The solid line remains - i (k2+ a+ad) ]. ]

_ - ib? e d*q
(k“+a) (q“+a) [(k+q) +a(1+4)]

202n)°

“+ subtraction . ' : (8.7)

‘Again, the subtraction term is assumed to be a quadratic function in A. We shall

- calculate first (i)' + (v) and (ii) = (v) separately, and then sum these two terms to-

gether, By using the standard parametric representation of the Feynman integral, one

can show that

2 3 3
iab
Gy ) = =2 S T dx, 8(F x. = 1) F(x, A)
2062 1 3 1] 2

o y=2 =2 =24 .
X [(x]x2+ x2x3+ X, x3) = Xg (x]+x3) _] (B.8)



where xj 2 0 and the function F is

Fi) = (1+y)In(1+y)-y = 5% . (.9)

3. 3

. S dej 8(§Xj- 'I)(x] x2-lj_ix2v>_<3+‘x‘]x3‘)
X o [Ra) - 2 F (x8)] . ‘ (8.10)
NRAS =0 iz :
Both exp'r.'éfs'si‘iéhé —qr‘e now finite. It is straightforward to verify that
e N iob2 '
(i) + (i) = —— [Fa) - G(a)] - (B.11)
| T 2(1612)

where
G(A) = $(1+4) tln(l +A)]2- (1+A4) In‘(l +A)+ A
| (8. 12)
By using Theoremm 1, one sees that diagrams (iii) + (iii)' and (iv) + (iv)' are
reldfed to (ii)'+‘ (ii)' m c.:i-s;imple 'w.'df. Their: éﬁfire sum is g%veﬁ by (B. 1 1), pro'vic\ié'd
| oné 'subsfil'ufe§ b2 by b2+ 2acA, but keeping a and A fixed. Equation (3.17)

is then established, and this completes the proof of Theorem 2,
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Appendix C

To establish Theorem 3 .(sfai'ed in Section 3.3), we shall consider first the case
2>3 and ¢=0. One can readi'l);verify thcllf in this case, there is no primitively
divergent prototype diagram; consequently, we need only consider the convergent ones. '
A typical example is given by diagram (i) in Figure 9. Let I and V be, respectively,

the number of internal lines and vertices in the diagram. We have
21 = 3V, g = 1-V+1,

and therefore

Vo= 2(2-1) . | S (R )]

Since each vertex carries a factor b, the corresponding Feynman amplifﬁde is propor=
tional to bY . The dimension of the energy density function is (mass )4 . Thus, from
a simple dimensional consideration and b} using (C. 1), one sees fhaf the amplitude

should be proportional to 02 (bz/a )2-] . Now, according to the rules for the proto~

type diagram given in Section 3.1, the parameter a appears only in the product

‘ a(l+ A); this implies that the amplitude is proportional to

21 2-3
(b2 /a)  (1+A) : | (C.2)

Since the diagram is a convergent one,. one finds the proportionality constant to be

finite and independent of A . Equation (3. 19) now follows because of (3.8).
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Next, we consider the case £ = 3 and ¢ = 0. In this case, there is only
one primitively divergent prototype diagram, given by (ii).in Figure 9. By writing
down explicitly the corresponding Feynman amplitude, one can readily derive (3. 18).

Theorem 3 is then proven.
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Appendix D

In this appendix, we give an estimate of a |ovyer bound for the decay rate )\L '
defined in (4.6). Let us expdand the field operator ¢ (T, t) in terms of the Fourier

. 3
series in the volume L :-

¢(T, ) = % + S qkei.k.r

P (D.1)
kA0

The Lagrangian for the system inside L3 is

< 2
dq
rede = 13 [(%) - u(qo):‘ e (D.2)

where U isgivenby (1.2), and - - - is qk-dependenf (T:;é 0) . The conjugate

momentum of % is
d . .
3 (%
pO = L (W | . (D.3)
Therefore, the Hamiltonian is

32,3 R |
H=3[1"py+L U(gp)) + -+ - (D.4)

According to (4. 1), at time t=0 the system isat qy =9 which is only a
local minimum of U (qo) . There is a potential barrier that separates this local mini-
mum from the absolute minimum of U(qo) , which is at 9 = 0. To estimate the

barrier-penetration probability, we shall use the W. K. B. method for the % degree
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of freedom, but suppress all other k # 0 degrees of freedom (i.e., set q = 0 for

k ;é 0). The re$u|f is
N~ wexp [-2L S [U(gg) - Ulei, )T dqd,] (D.5).

where

0l = a + bq> + % c¢2 . (D.6)
In‘:(D‘.5-), the integration is from qb = ‘Pvex'vfé qc; where® U(q(')_)'=' U(cp o) and
<p < q(') 0 . Such an estimation of )\L is obviously-‘an underestimation, since
by using the other’ k ;é O degrees of freedom, one ‘can eosnly show that there are-other

paths leading from the local minimum’ %G =-4'q>'\'/ex to reg‘iB"r’is'-néaf- the absolute minimum

<:IO= 0, but pdééiﬁgfhfdugh a much léwer, potential bbi’riél'j‘;}.-
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Figufe Captions

Examples of‘grap;hs of £(¢) and J(q—?) ==(d€/d¢) in the tree
approximation. The two-phase region is between the points a and
Bi ¢, and q;B are their abscissae. In the top graph, outside the
interval ¢ _ £p¢ <|>B , £(3)= U(9); inside the interval, the
solid line r'efer; to E , and the daghéd curve to U. In the
bottom graph, the two areas Ca A and C B B (between the

dashed curve and the solid line) are equal.

Dicgrcﬁns (i)=(iv) are‘examples of{fwo-lbop prototype diagrams. |
Each solid internal line carries a propégator factor D, given by
(3.35. Diagrams (ii)'—(iv)' are related to (ii)—(iv) through

renormalization. In diagram (v), the aosHed line carries a factor

- (k2 + a)-] ; hence (v) is not a prototype diagram.

J in unit S‘-?-' vs. ¢ in unit % for the special case b2 = 3ac and

(321r‘2) c= ]0-] . The solid curve denotes the tree approximation,

and the dashed curve includes the one-loop approximation.

Phase-space diagram for the mechanical analogy discussed in Section. -

5.2. Inside the region R , the minimal K is -g- at the origin.

The dashed curve illustrates a spiral solution.
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Figure 6.

Figure 7.

Figure 8.

Figure 9.
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dX

"X vs. — at p= R. The "outside" curves refer to solutions of (5.48);

dp

integrating from p = to R. The "inside" curves refer to solutions

of (5.49), integrating from p=0 to R, with B=10.

Numerical solution of X (p) in the free nucleon gas model. The
total number of nucleons is = 210 and the top Fermi energy is

o my = 0.46 my - The nuclear radius is R = 20, ‘and the nucleon

. 3
density n is zero outside the nucleus, but oc (u2- x2) inside.

3

V(X) in the o-model for a nucleon density n = [4“(].3 X ]0-]3cm)3}-]

‘and for n=0. See Eq. (6. 18) for the definition of V (X).

Tree diagrams for A~ and its derivatives. All lines carry zero

J
4-momentum. For the Feynman amplitude, there is a factor - (i/ao)
to each line, -i JO' to.each one-point vertex, - ibo to each three-

point vertex and =i o to each four-point vertex. Each open circle

denotes a differentiation with respect to (=i J'0) .

Examples of prototype diagrams in a q>3-th‘eory. Diagram. (i) is con=

vergent, and diagram (ii) is primitively divergent.
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