
VACUUM 

cofl. 2211 - 2~ 

STABILITY AND VACUUM EXCITATION 

IN A SPIN 0 FIELD THEORY 

T. D. Lee and .G. C. Wick 

Columbia University 
New York, N. Y. 10027 

r------ N 0 TIC E ------­
This report was prepared 
sponsored by the United as an account of work 
the United States nor the USt~tte~ ~overnment, Neither 
Commission nor any of th"•. e tates Atomic Energy 
their contra~tors, subcontra~t~r:m~~o~~e~, nor any of 
makes any warranty express or i~ . err employees, 
legal liability or res'ponsibTt f ph~d. or assumes any 
pleteness or usefulness of~~ Y .~r the ~ccuracy, com­
product or process disclosed Y I formatton, apparatus, 
would ~at infringe privately a'w~re~e~;~~~~ts that its use 

This research was supported in part by the U. S. Atomic Energy Commission. 

MASlBf 

~~~~~~~~~~~~~~~~~~~~~~~~D-1-ST_R_IB_U_T_IO-N~O-f_T_H~~DOCUME~T ~ UNU~ 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



; 

ABSTRACT 

The theoretical possibility that in a limited domain in space, the expectation 

value < q>(x) > of a neutral spin 0 field may be abnormal (that is to say quite different 

from its normal vacuum expectation value) is investigated. It is shown that if the q,3-

coup I ing is sufficiently large, then such a configuration can be metastable, and its 

physical size may become substantially greater than the usual microscopic dimension 

in particle physics. Furthermore, independent of the strength of the q,3 
-coupling, if 

q>(x) has a sufficiently strong scalar interaction with the nucleon field, the state that 

has an abnormal < q>(x) > inside a very heavy nucleus can become the minimum energy 

state, at least within the tree approximation; in such a state, the "effective" nucleon 

mass inside the nucleus may be much lower than the normal value. Both possibilities 

may lead to physical systems that have not yet been observed. 
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1. Introduction 

In a relativistic field theory, the vacuum state is defined to be the lowest 

energy level of the system. In analogy with other quantum mechanical systems, how­

ever, a relativistic field may possess a degenerate lowest state. Perhaps the best 

known and simplest analogy is Heisenberg's infinite ferromagnet, in which case the 

degeneracy of the ground state is due to rotational invariance. The assumption of a 

degeneracy of the vacuum state, connected with a symmetry group of the Lagrangian, 

obviously has some far-reaching consequences, the most alluring of which is the possi­

bility to 11 understand 11 that puzzling aspect of particle physics: the existence of broken 

symmetries. As is well-known, this has given rise to a host of interesting theoretical 

speculations. 

Besides spontaneous symmetry breaking 1, and other we 11-known consequences 2 

related to it (Goldstone bosons, Higgs phenomenon, etc.) the assumption of vacuum 

degeneracy, or near degeneracy, probably has other striking consequences, which have 

received little attention so far. We describe in the following an investigation of var­

ious questions, which arise naturally out of the virtual existence, within a given dynam­

ical scheme, of states which could play the same role as the observed vacuum state, 

but are nevertheless different from it. We shall see that, depending on the details of 

the theory and on the values of certain physical parameters, which are not too well­

known experimentally, there may or may not be consequences that are just as drastic 

·as the already known features of this kind of theory. 

All the schemes so far considered in the literature have two assumptions in common: 
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a) the Lagrangian of the system is invariant (orsometimes nearly invariant) under 

a certain group of transfonnatioris of the field ~ariables; 

b) in the (observed) lowest state of the system, some of the field variables have e~-

pectation values which are not invariant under all transfonnations of the symmetry group. 
. -

Because of a) we must envisage the existence of other possible lowest states, or nearly 

lowest states, in which the expectation values of some of the fields are· different; such 

states represent the abnonna I vacuum states. 

This is, of course, what is referred to in the I iterature as degeneracy of the 

vacuum; at the same time we are often reminded of the essential difference between 

this phenomenon, and the common variety of degenerate ground state encountered in· 

~-systems: in the latter case all the states of a degenerate multiplet have the same 

degree of physical reality; the system can easily be induced to make transitions from one 

substate to the others. On the other hand, only one vacuum state is realized in our 

world; all the others are unphysical. 

On second thoughts, the difference is not as profound as it seems. For the sake 

of clarity, arid at the cost of repeating familiar things, let us recall in somewhat loose 

tenns what is, really implied. In a field theory of this type, the system possesses several 

"equivalent": configurations of minimum potential energy; in the observed lowest state 

the system perfonns small zero-point oscillations about one of these configurations • 
. , 

When the system is excited the configuration will deviate more strongly, but in any 

' 
event only locally, from the basic equilibrium configuration. Fundamentally the sta-

bility of the situation is attributed to the infinite nature of the system; owing to this, 

the system will never flip over as a whole from the nonnally observed minimum ·' 

·l 

.t 
-----

.. 
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configuration, to one of the others, whose existence is required by the symmetry group. 

(Ac; an example, the reader may recall what is usually said about the Heisenberg ferro­

magnet, spin waves, etc., and in particular the physical impossibility of rotating all 

the spins of an infinite ferromagnet simultaneously.) 

Now in certain attempts at a sharp mathematical formulation of this state of 

affairs, it has even been asserted (perhaps on quite sound mathematical grounds) that 

in the I imit of an infinite system one can construct a Hilbert space which contains only 

one 11vacuum state 11
, e.g. the observed one, and the excited states built upon it by 

local excitations. In this Hilbert space the physical quantities corresponding to local 

measurements are represented by well defined operators; some global quantities such as 

·the total energy or momentum are also represented, we hope, but the global generators 

of the group are not. 

It may seem, at first sight, that in this way one has neatly thrown the abnormal 

degenerate vacuum states out of the window, but physically it does not make so much 

difference, since in a certain sense they can reappear in the form of local excitations. 

In ferromagnetism the phenomenon is well-known under the name of domains of magnet­

ization. More generally we argue as follows: suppose the configuration of the system 

flips over from the ordinary one to an abnormal equHibrium configuration, but only in 

a finite though large domain. Ac; a volume effect, this will cost nothing; the difference 

. in energy will be a relatively unimportant surface effect; in the case of a ferromagnet, 

, for example, a very wea~ external field applied to a sufficiently large volume can easily 

cause the transition. Physical common sense suggests that any system with analogous fea­

tures in the structure of the Lagrangian can exhibit similar phenomena under suitable 
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circumstanc~~· T,he absolute stability of the asymmetric vacuum state is therefore a 

relative thing. 

. I 
In this paper we intend to investigate the general question of vacuum stability, 

' ' \ 

and in parti~ular to inquire whether it is experimentally possible in a limited domain;. 

in space to 11excite 11 (flip) the ordinary vacuum to an abnormal one. ~we shall see, 

. 1 
our discussion can be readily extended to include also theories that have~ vacuum ; 

degeneracy, but only other local minima in the field energy. For definiteness, we shall 

first consider the simple theory of a renormalizable spin 0 Hermitian field <f>. The 

Lagrangian density is '• 

J: = - ! ~:tj -U (t) + counter terms 
l 

(1. 1) 

where 

I (1. 2) 
I 

<I> denotes the renormalized field operator, and a, b, c are the appropriately defined 

., 
ren~rmalized constants. ~usual, the counter-terms are for renormalization purposes; 

their precise definitio.ns are given later in Section 3 and in Appendix A. In U ( <f>) , the 

constant c is assumed to be > 0 so that the energy spectrum has a lower bound. Through 

n· 
the transformation cf>(x)- cf>(x) + constant, one may always assume for the vacuum stc;tte 

< vac I cf>(x) I vac > = 0 (1. 3) 

Thus, U ( <f>) does not contain a linear term in <f> • [Note that in order to maintain1, 
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( 1. 3) there is a I i near term in the counter te~s. J Furthermore, si nee the vacuum 

state is assumed to be the lowest energy state, the constant a is also > 0 • For 

convenience, by using the transformation q>(x)- - q>(x), we may also choose the 

constant b to be ~ 0 • As a result, but ~ithout any loss of generality, the three 

constants a , b and c are all assumed to be positive. 

To study the question whether there are other abnormal vacuum states, 

i.e., either degenerate or "excited" vacuum-like states, we find it convenient to 

first quantize the system in a box of a finite volume n with the periodic boundary 

condition, and then let Q - oo in the end. A useful concept _is to define an energy 

density function ~ ((j)) : 

Lim n-1 
[minimum < I H I> J (1.4) 

where H is the total Hamiltonian and the minimum is taken among all states I> under 

the constraint 

-1 I I 3 n f < q>(x) > . d r = (1. 5) 

The value ~ = 0 is, by definition, the minimum of ~ ( <1>) • Furthermore, it is con-

venient to adjust the constant part of the counter terms in (1. 1) such that at the ~inimum 

q; = 0 1 

~ (0) - 0 (1.6) 
... 1 

The problem whether there are other, either degenerate .or "excited", vacuum-like 

"•, 



6. 

states then reduces simply to the investigation of the function ~(qi') for ql /: 0; 

which turns out to have some rather interesting properties. 

k will be shown in the next section, the dependence of ~ (qi') on ql bears a' 

certain resemblance to the dependence of the Helmholtz free energy on the specific 

volume in thermodynamics. Just as in thermodynamics, when there is a_ phase tran ... 

sition, the Helmholtz free energy exhibits a straight-line dependence on the specific 

volume, its slope being the negative of the pressure; here, depending on the values 

Of the ren0rmalized COnStantS a I b and C I the function ~ (qi') may alSO COntain 

a straight section, say between q> a~ ~ ~ q> ~ • The existence of such a straight section 

appears to be a general feature of the theory, provided that the q,3 
-coupling constant 

b is sufficiently large. It exists even in the approximation of neglecting all loop dia-. . 
grams; in such an approximation, one has ~ (qi') = U (qi') outside the straight section, 

where U is given by (1. 2). [Note that U (qi') does not contain any straight section. J 
:Along. the strci.ight section q> a< i < q> ~ , the system actually comprises two phases, in, 

analogy to the phase transition phenomenon in thermodynamics. Outside the straight 

section, .<i> < 4> 
0 

or ~ > q> ~ , the system exists only in a single phase. The "true" 

_vacuum state (j) = 0 is included in the region i' > q>~, as illustrated inFigure 1. 

The inclusion of loop diagrams does riot alter the general character of the energy 

density curve ~ ((j)) • The explicit contributions of all one-loop and two-loop diagrams 

and some of the general properties of other multi-loop diagrams are given in Section 3. 

From these resuJ!ts, one expects that the function ~ (jp) defined· in either one of the 

. ~o single-phase regions, say (j) < q> a, can be analytically continued beyond the point 

~ = <J>
0 

to the r~gion ~><I> a; its analytic continuation, called f;a(~), is, of course, 

.. 
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different from f.(~ in the two-phase region. [This phenomenon is again in close 

analogy to the familiar gas-liquid transition in statistical mechanics; the analytic con-

tinuation of the gas (or liquid} phase is the super-cooled gas (or super-heated I iquid} 
l 

region, not _the two-phase region 
3

• J Similarly, one may analytically continue the 

function f: (Cj)'), defined in the other single-phase region Cj)) 4>~ , to the region ~ ~ 4> ~ 

and call its analytic continuation ~~(Cj)). In general, one expects the function (;0 (~) 

to have a minimum at 

(1. 7) 

where the subscript 11vex 11 denotes the vacuum excitation state. 

In the case of the degenerate vacuum, both the true vacuum state Cj) = 0 and 

the vacuum excitation state 4> = 4>vex appear as the endpoints of the straight section 

"'-{-4>~4> .·.·e 
T - - A' • ., 

a . "" 

I 0 

and because of (1.6} 

= 0 (1.8) 

· From (1. 2), one sees that if all loop diagrams are neglected, then the degeneracy 

occurs at 

(1. 9) 

·' 
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A$ we shall discuss in Section 3, there is a simple and convenient way. to define the ! 

renonnal i~atic;>n constants, so that (1. 9) is the ~ condition for degeneracy when aiJ 

the loop diagrams are also included. Consequently, in. order that the absolute mi.nimum 

energy lever fs at ~ = 0 I We mUSt have 

( 1. 10) 

otherwise, the role of the states ~ = 0 and ~ = q> will be interchanged. 
vex 

In Section 4, we study the que~tion of the lifetime of the system in the excited 

state ~ = q> · • We shall show that in the non-degenerate case (3 a c > b2 ). 
1 

as the vex _ 
' 

volume Q- oo 1 t:he lifetime becomes zero. On the other hand, there may exist meta-. 

stable st~tes which satisfy approximately 

< 1 q>(x) 1 > = q> vex (1. 11) 

in a finite volume L 
3 

where I L is >> m -
1 

and m -1 denotes the relevant micro-

l 
scopic le~gth in the problem; m can be either ""'0 (b), or 0 (a 2 

) • Outside the 

2 -1 
volume, except over a surface region of a volume - 0 ( L m ) , one has 

< 1 q>(x) 1 > = 0 • The excitation energy of svch a state in its rf!st frame is given by 

M = vex 
3 2 3 

L ~. ( q> ) + 0( L rn ) · a vex · · (1. 12) 

2 3 
where 0( L m ) denotes the surf(]ce en~rgy and ~a(~) is the afpremention~d analytic 

continuation of ~ (~) • The lifetimf! T of ~uch a state is given by 
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L I 
(1. 13) 

provided In"( L m) is not too large, though ( Lm) must be >> 1 • Only in the special 

case of a vacuum degeneracy; i.e., ~ ( q> ) = 0 , can the size L be arbitrarily 
a vex . . 

large; its rest mass is determined completely by the surface energy. In general, the 

ratio of the width to the rest mass of such vacuum excitati'o'ns in either the degenerate 

or the non-degenerate case is exceedingly small, given ~y 

-1 < 
(T Mvex) ,_ 

(1. 14) 

In Section 5, we discuss the classical solutions corresponding to the vacuum 

excitations. The most interesting aspect of these solutions occurs when there is an 

extended external source. For definiteness, we may treat approximately the effect 

of a heavy nucleus as that of an 11external source 11
, assuming that there is a strong· 

interaction gti't ~ ~ q, between the scalar field q, and the nucleon Held ljJ • As 

we shall see, within the tree approximation, if the surface energy can be neglected, 

then when g is sufficiently strong, or when the nuclear density is sufficiently high, 

the lowest energy state becomes one in which the expectation value < q,(x) > inside 

the nucleus can be quite different from its normal vacuum expectation value (which 

is zero, by our convention). Furthermore, inside .the nucleus the 11effective
11 

mass of 

the nucleon becomes mN + g< q, >, which can also be quite different from its normal 

value mN. 
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A concrete example of such a strong interaction is given by the well-known 

a-model. This is examined in Section 6. It appears that, with.in the tree approxi-

. mation, if the mass of the a -particle is ·~ a few GeV, there may well e~i~t a new 

family of metastable, or even stable, super-heavy nuclei. 

By taking the zero pion mass limit, our discussion of the a-model can be 

readily extended to theories with Goldstone bosons; with some further minor modifi­

cations, it can also be applied to fields with Higgs mechanisms. 

/ r J 
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2. Energy Density Function 

To evaluate the energy density function & {~), defined by {1.4), we apply 

the standard Lagrangian multiplier method to take into account the constraint {1. 5). 

Let H J be a new Hamiltonian, defined by 

{2. 1) 

where J is the Lagrangian multiplier, and H is the original Hamiltonian, which 

according to {1. 1) is given by 

H = f [~ TT
2 + ~ {Vq,)

2 
+ U{q>) + counter terms J ir {2. 2) 

and TT is the conjugate momentum of q, • Let the lowest eigenvalue of· H J be Q AJ; 

i.e., 

= {2. 3) 

By using {2. 1), {1.4) and {1.5), we find the energy density function ~{~) to be 

given by the Legendre transformation 

~ {~) = A - J~ J 
{2.4) 

., .w'-iere 

<P = {2. 5) 
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and 

J = - (2. 6) 

To calculate XJ, let us decompose· 

H J = H0 + H1 (2. 7) 

where 
1 f [ 2 2 1 2] 3 Ho = 2 IT + . ( '\1 <I> ) + 2 a <I> d r I (2. 8;) 

and regard H 1 as a perturbation. The power series expansion of XJ in terms of the 

constants J, b and c can be readily derived.. Following the treatment given by'. 

S. Coleman and E. Weinberg 
4 

(which is also formally ~nalogous to some of the analysis 

developed i~ statistical mechanics and many-body problems5), we may regroup the per-

turbation series expansion of XJ into sums of tree diagrams, one-loop diagrams, two-

loop diagrams, etc. The systematics of these loop diagrams will be given in the next 

section •. Here, we only discuss the tree approximation. It is not difficult to se.e6 -that 

in the tree approximation X J is given by the absolute minimum of 

and q> = q> is the minimum point. [For completeness, a proof is given in Appendix: 

A. J At J = 0, one has U J = U • Since we are interested in the case where the 

function U ( q>) in the original Lagrangian (1. 1) has more than one local minimum, the 

q>3 
-coupling constant b cannot be too small: 

8 ! ac (2. 10) 
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On the other hand, because of our convention that the absolute minimum of U ( cJ>) 

should be at cJ> = 0, we have 

(2. 11) 

[The apparent narrow region defined by these two inequalities may be deceptive. 

Actually, only (2. 10) is the relevant one. If b
2 

is > 3ac, then the absolute mini-

mum of U is not at Cf> = 0 . By using the transformation cJ>- cJ> + constant, this abso-

lute minimum can be shifted back to cJ> = 0 . Under such a transformation, only the 

coupling constant c is invariant; the new constants a and b now satisfy b
2 < 3 a c • J 

a uJ . 
Next, we consider the equation - = 0; 1. e., on account of (2. 9), 

acJ> 

J = 

which at J = 0 has three roots: 

cJ> = 0 and 
3 
2c 

(2. 12) 

[ 
2 8 

1 J -b±(b- 3 acf .(2.13) 

Among these, cJ> = 0 is the absolute minimum of U ( cJ>) , cJ> = cJ> + is a local maximum 

and· cJ> = cJ> _ is the other local minimum. ~ J increases, these two minima will mqve, 

and the corresponding values of U{cJ>) will also change. There is a critical value J 
: 0 c 

at which these two minima become degenerate. As illustrated in Figure 1, we may de-

termine graphically the value J = J by using Maxwell's rule of equal area. The ~bso­
c 

lute minimum cJ> =~makes a sudden jump from ~= Cf>r.t at J = J _to ~=Cf> at J.= Jc+ • 
~ 0 c a 
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B.y using (2.4) we find in the tree approximation 

'(q>") = u (q>") 

in the region 
' : 

q> ~ 
q>~ and q> ~ 

<~>a 

~. 

lj 

I'• 
I 

. I 
I 

(2. 14') 

.. 
~ut in q> ~ q> ~ q> , '(q>") is a linear function of q>, which is simply the common:. . a ~ -

tangent I ine of U (q>") at q> = q> a and <1> ~ • 

Such behavior is analogous to the problem of phase transition in statistical 

fTiechanics. In the statistical analog, the roles of J, q>, . ~ (ij)) and AJ are replaced 

by those of pressure, specific volume, Helmholtz free energy density and Gibbs free 
I 

energy density, respectively. The straight section q>. ~ ij) ~ q, denotes the two-phase , . a ~ 

region. As already noted in the introduction, the function /:(ij)) in either one of the 

si.ngJe-phase regions, ij) > ct>··~ or ij) < q>
0 

, can be analytically continued into the t~o-

. ~ phase region. In· the tree approximation, these two analytic continuations are identical· 

and both lead to U ((f) • This is again analogous to the Van der Waals approximation. 

'· 
used in statistical mechanics. In statistical mechanics, the analytic continuations of'. 

the thermodynamical functions of the liquid and the gas phases are respectively those'of 

the super-heated liquid and the super-cooled gas, which should be different functions~ 

but they reduce to the same expression in the Van der Waals approximation. 

In the present problem, except for the degenerate vacuum case, the energy' " 

density function '(ij)) has only one minimum at q> = 0, and that is the true vacuum 

state. On the. other hand, if the q,3-coupling constant ·b is not too small, the 

f .. 



15. 

analytic continuation of ~ (i') is expected to have another minimum at i' = q> 
vex 

which denotes the vacuum excitation. II"! the above, this property has been established 

in the tree approximation; as we shall see in the next section, if the coupling c is not 

too large, this property remains correct at least to every order in the loop expansion. 
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3. Loop Diagrams 

The r'eduction of the perturbation series expansion of t(~) ·into a sum of 

tree d.iagrams, one-loop diagrams, etc. has been given in Ref. 4. In this section, 
. . '.-

,: • f'" . ,i.A 

we shall first briefly review the procedure, and then discuss some new properties. 

3 • 1 Prototype DiagTams 

By using the free field Hamiltonian H
0

, defined by (2.8), as the unperturbed 

Hamiltonian, one can readily expand the energy density function ~ (~) as a power 

series in b , c and (i • As will be shown in Appendix A, w~ may separate ~ ((i) 

into a sum of tree diagrams and loop diagrams: 

(3. 1) 

where [~(~) J .fl.-loop represents the summation over all one-particle irreducible scat­

tering diagrams that have .fl. loops and in which every e~ternal line carries a zero 4-

niomentum 9nd contributes a factor ~ to the Feynman integral. For the tree diagrams 

(away from the two-phase region), one has 

(3. 2) . 

where U is given by (1. 2), provided that the renormali~ed constants a, b and c I 

in U (~) are related to the appropriate scattering_amplitudes at zero momentum. 
r: 

[See Section .3. 2 and Appendix A for further discussions of renortnalization. ] 
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For Q. ~ 0, it is useful to introduce D (k), defined to be the propagator of 

the spin 0 particle moving in a given constant external field <1> t. whose value happens ex 

to be given by <1> t = (j). Thus, D (k) is identical to the propagator of a free par­ex 

ticle, but with its (mass)
2 

given by (a2u;aq; 2
); i.e., 

(3. 3) 

where 

(3.4) 

Let us first consider the sum of all one-loop d. iagrams, and differentiate [c (:t:') J 
"'"' T one-loop 

with respect to a, but keeping b, c and (j) fixed. We obtain 

a [&((j))] c: J (21r)-4 cf.k [D(k) +subtraction term] (3.5) a a \<> one-loop 

which can be readily established by first expanding both sides as a power series of (j), 

then noting that graphically the differentiation ~ on the one-loop diagram is just a a 

I ik~ cutting open one of its internal I ines; this turns each loop diagram into a propagator 

diagram. Thus, diagram by diagram, both sides of (3. 5) are equal. The subtraction 

term in (3. 5) is needed to eliminate divergences. [The detai Is of the subtraction term 

will be given below in Section 3. 2. J From Eq. (3. 5), it follows thaf' 
5 

[ &(-)] J (21T)-4 cf.k (1n [i D(k)] +subtraction term). ,.. <I> one-loop = 

Throughout the paper, k
2 = "k2 - k2 and cf.k is real. 0 

(3. 6) 
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j 

i It is straightforward to express the higher order loop diagrams in terms of D {k) • 

In this way all external I ines attached to a three-point vertex and all pairs of external 
~~ • 

I 

ljnes attached to a four-point vertex are implicitly accounted for. We need only con~ 

s1der those Q-loop diagrams, called prototype diagrams
4

1: 
7
, in which all external ; 

f 

l~lnes, if they exist, must be attached separately to different four-point vertices; i.e.; 

every three-point vertex bq, 3 connects only internal lines and every four-point vertex ' ' 

~q, 4 
connects at most one external I ine to the diagr~m. For any given Q > 1 , there 

ci
1

re only a finite number of such prototype diagrams. We shall evaluate these pro.to.type .. ,, 

d.iagrams according to the standard Feynman· rule, except that each internal I ine give~ a 

f~ctor D {k), not - i {k
2 

+a )-
1 

, to the Feynman integral. Otherwise, all the remqin.,. 1 I 

ing factors in the Feynman integral are as usual; i.e., we assign factors b 1 c and ~ 

respectively for a three-point vertex, a four-point vertex and an external line. Ex-

cept for th~ subtraction terms that are needed for renormal ization purposes {and wh i~h 
. 

~ill be dis~us~ed below in Section 3. 2), the function [ ~ {~) J Q-loop for Q > 1 is_ 

simply given by the sum over the finite set of all different prototype Q-loop diagrqms. 

As an example, for Q = 2 1 there are only four different prototype diagrams; these ore 

g'iven by diag~ams {i) - {iv) in Figure 2. [Because of renormal ization1 one must corn-

b!ne these four diagrams together with diagrams {ii)' 1 {iii)' and {iv)' in Figure 2. The 

e~plicit value. of these two-loop ~iagrams is given in Seetion 3.3. J 

I 

3. 2 Renormalization 

In {3.6)1 the integral f d
4

k In {i D) is quartically divergent, therefore thre'e 
. 

subtractions are needed to eliminate the infinities. The corresponding subtraction term · 

,, 
ll 
; 
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should be at least a quadratic function in qi. However, it is entirely a matter of choice 

whether or not one should also subtract the finite q;3 
and q;4 

terms from the integral. 

Similar ambiguities also exist for higher order loop diagrams. This problem is closely 

tied to the original freedom in defining the renormalized constants a, b and c • Any 

finite ioop-diagram contribution to. the q;3 and q;
4 

terms can either be included in 

the renormalized constants [i.e., already included in the bq;
3 

and cq;
4 

terms in the 

original U (q;) function given by (1. 2) ], or otherwise. If they are included, then a 

corresponding subtraction is necessary in the relevant loop calculation to avoid double 

counting, but otherwise not. As it turns out, there is a particularly convenient way to 

decide on which choice to make. 

Let us ffrst consider the special case of degenerate vacuum. 
'2 

If 3 a c = b , the 

function U ( q>) in the original Lagrangian (1. 1) is symmetric with respect to the trans-

formation 

b 
q> + 

c 
(3. 7) 

It is clearly desirable that the symmetry should also be maintained by t_he counter terms; 

in that case the entire Lagrangian (1.1) is invariant under the same transformation, and 

consequently the vacuum degeneracy becomes an exact property. It is quite simple to 

show that the dependence of [ ~ (q;) J.ll.-loop on q;, except maybe for the subtraction 

t.erms, is completely through the variable ll , given by (3.4 ). Since ll is invcirian;t 
' 

li~:ler the transformatiOn ( q; + ~ ) - - ( q; + ~ ) I the Same symmetry holds for ~ cq;') 
c c 

if all these subtraction terms in the loop-diagram calculations are also functions of ll . 
. ,• 

·Because ll is a quadratic function of q; and because these subtraction terms should be 

·at most quartic functions of q>, we require them to be quadratic functions of ll . 

' > 
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'· • 
'Thus, in a power series expansion in A 

[ ~ (qi") JR.-Ioop 
3 4 4 

=ali +f3A +yA +··· (3. 8) 

where a , 13 , y , • • • are constants. ~ a result, if 3 a c = b
2 

, the entire Lagran-.•, 
( 

gian is symmetric under (3. 7), and that implies a degenerate vacuum. In the followiQg, 

the requirement (3. 8) will be imposed also for the general case, even when there is 

~tao degeneracy. . 
' 

With this requirement, and the convention that q> = 0 denotes the true vacuum, 

we derive the inequality 

(3. 9) 

which is the same as (2. 11), but is now valid with the inclusion of all loop-diagram 

corrections, not just in the tree approximation. 

3. 3 Loop Expansion 

In order to understand the nature of the loop expansion, we establish first the 

following theorem: . 
Theorem 1. At any R. ~ 1 1 [ e (Cj)') J R.-loop can be written in terms of R. dimen-
r 

sionless functions FR., 1 , FR., 2 , • • • , FR., R. which depend only on A : 

2 t. m-1 [ -1 2 JR.-m [~(Cj))]R.-Ioop = a m=1 c a (o + 2ac A) FR.,m(A) (3. 10) 

where A is given by (3.4). 
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Proof. Let us consider an £-loop prototype diagram with N three-point vertices, 

M four-point vertices, E external lines and I internal lines. From the explicit Feyn-

man rules given above, it follows that the corresponding Feynman integral for ~ (~) is 

of the form 

N M-E · 
b c q> f(a,A) (3. 11) 

Since the total number of loops is given by R. = I - N - M + 1 and since (2 I + E) is 

equal to (3N + 4M) , we have 

(3. 12) 

The a-dependence in (3. 11) can be easily obtained from a simple dimensional 

analysis. Because A and c are both dimensionless, but a , b
2 

, ~2 and 

are of the same dimension (mass)
2

, we obtain 

f (a, A) = a2 .:.~ (N +E) F (A) (3. 13) 

where F is dimensionless. For the special case of E = 0 [i.e., those prototype 

diagrams with no external I ine· ~ J , by using (3. 11)-(3. 13), we find that the Feyn-

man integral of such a diagram is of the form 

(3. J4) 

Now, from the definition of prototype diagrams we see that any E F 0 prototype 
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aiagram can be transformed into an E = 0 prototype diagram by simply replacing all 

four-point vertices that are attached to external. lines by three-point vertices, but 
' 

~eeping all internal lines and other vertices unchanged. Formally, we may represent 
I 

such a replacement by 

- 3 
C<!><l>· m 

b 3 
- <!>in (3. 15) 

where <I>· denotes the appropriate internal I ine and <I> the external I ine. Thus, the 
m 

~urn over all different prototype diagrams that can be transformed into the same E ± 0 

prototype diagram through (3. 15) is equal to. the feynman integral of the E = 0 diagram, 

provided we change b ....;. (b + c~); therefore, (3. 14) becomes 
r 

Since M can vary from 0 to R. - 1 , Theorem 1 is proved. 

Remarks. According to (3. 9), b
2 

is ~ 3 a c ; we may regard the loop expansion as 

. 2 
a power series expansion in c, but treating A and (b /ac) [and therefore ·also 

2 . 
( b (j)/ a ) and ( c q> /a ) ] as ,S b ( l) . 

theorem 2. 

and 
t 

[~(~)]one-loop = 
2 

a 
(3. 16) 
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[ f;(~) ]two-loop [(l+A) ln(1+A)-Ll]
2 

2 
+ 2a(b +~acA){~ (1 +A) (1n(1 +A)] 2 - 2(1 +A) ln(1 +A)+ 2A+~A2 }. 

(321T2) . 

(3.1 7) 

Proof. The evaluation of [~(<j;') J I follows reac,Hiy from (3.6) and (3.8); 
one- oop 

the result is (3. 16). [If b = 0 , that is in the pure ~ 4 
theory, the above expression 

for [~(~) J I reduc~s to the form derived by Coleman and Weinberg 
4

• J The 
one- oop . 

two-loop prototype diagrams are I isted in Figure 2. These diagrams can be calculated 

ac~ording to the general rules given in the previous sections. The calculation is so~ ... -

what involved because of renormalization. The details are given in Appendix B, and 

the result is (3. 17). 

The evaluation of higher order loop diagrams is complicated partly because of 

the large number of diagrams and partly because of the renormalization procedures re-

quired to eliminate infinities. For sim.plicity, we shall consider the special case c = 0 • 

In such a case, there are only the b~3 . vertices, and the theory is super-renormalizable. 

The Feynman integrals of the majority of the Jl.-loop diagrams are convergent. In the 

following theorem, we shall restrict our discussion to these convergent diagrams, or 

11 primitively divergent 11 diagrams as in the case of Jl. = 3 • [A 11 primitively divergent .. 
I 

diagram, as defined by Dyson8, is one whose Feynman integral, though divergent, be-

comes convergent when any one of its internal momenta is held fixed; here, the only 

example is in Jl. = 3 • J 
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Theorem 3 (proved in Appendix C). If c = 0 and if we include only convergent, or 

·"primitively divergent", diagrams, then 

[ ~(qi') J three-loop = (constant) b 
4 

[In ( 1 + .1) - .1 + ! .12 J (3. 18) 

2 2 .ll.-1 
= (constant) a (b /a) · 

(3. 19) 

Remarks. From Theorem 2 and Theorem 3, it follows that every term in the loop expan-

sion is singular at .1 = -1 ; i.e., 

-1 [ 2 !] q> = c -b±(b -2ac) , (3. 20) 

which are the points of inflexion A and B of the function u (qi') I as illustrated "in 

Figure 1. This implies that the energy density function ~ (q}) can be analytically 

continued from either one of the two single-phase regions, q; < q> or ~> q>A, to the 
. a ~ 

two-phase region. Let ~ {qi') denote the analytic continuation from q; < q> , and · a a 

~~(qi') that from q> > q>~. If the loop expansion is used, then ~a(~) has a singu­

la~ity at A, and ~~ (~) a singularity at B • [At .1 = - 1 , the propagator D (k) 

is 'that of a zero-mass particle. Thus, physically, it seems reasonable that there should 
' 
I 

be such singularities for these analytic continuations, independent of the loop expansion. J 
The true vacuum is at ~ = 0, and therefore it lies in the single phase region ~ > q> ~ ~ 
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The vacuum excitation cjl = cjlvex de.notes the mi11imum of the analytic continuation 

~a(~). From Figure 1, one sees that the point ~= cjl lies.in·between cjl = <ll 
vex a 

and the ~ corresponding to A • 

In Figure 3, we plot the modification of the J vs. ~ curve due to the one­

loop diagram for the special case b
2 

= 3 a c ·• Because of the symmetry under the trans-

formation (3. 7), the two-phase region, with the inclusion of the loop-diagram correction, 

remains given by 

J = 0 and - 2b ~ <ll ~ 0 . 
c 

(3. 21) 

It .is convenient to introduce the dimensionless variables X, V and j , defined by 

<ll - ~ (X - 1 } 
c I 

(3. 22) 

J -
ab 

j 
c ' 

and therefore j =- a V • From (3. 2) and (3. 16), we have (for the special case · ax 
2 

b = 3ac} 

(3. 23) 

and 

. V = ~ y [! ( 1 + A )
2 

In ( 1 + A) - A
2 

- ~ .t.2 J 
one-loop· 

(3. 24) 

where 

(3. 25} 



and 

' I 
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c 

32·l 

In Figure 3, for definiteness we assume arbitrarily 

y = 

(3. 26) 

(3. 27) 



27. 

4. ·Stability 

In this section we discuss the stability problem if the system is not in the true 

vacuum state ;t;' = 0 I but in the vacuum excitation state "' - "' As remarked T T- Tvex. 

before, only in the case of a degenerate vacuum do both (ji = 0 and (ji = tp lie on 
vex 

the energy density curve ~ {(ji) .· In the non-degenerate case, while the true vacuum 

state (ji = 0 is on the energy density curve i{(ji) , the vacuum excitation state 

q)= tpvex liesontheanalytical continuationof S:{(ji), denoted by ~0 {(ji), as illus­

trated in Figure 1. 

4. 1 
2 

Non-degenerate Case { b < 3 a c ) 

We assume that at time t = 0 , the system is in the vacuum excitation state 

I > which satisfies 

< I tp{x) I > = tf>vex {4. 1) 

at every point x in the volume Q. For convenience, let us take Q to be a cube, 

which will be divided into N smaller cubes, each of a linear size L, and all adjacent 

cubes are separated by a distance S . Hence, 

Q = N { L + S )
3 

{4. 2) 

~ w~ere S is of the order of the microscopic length of the problem, but L is much larger 

and may even be of a macroscopic dimension; e. g., 

l 
, S ""' 0 {a -2 ) , or 
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and 
L >> 6 (4. 3) 

Let p( t) be the probability that at a later time t the system is either in a state in 

which 

'· 

0 in one of the cubes L 3 

< I q>(x) I. > :;: arbitrary. in the surface region - 0 ( L 
2 

6) 
I 
I . 

outside. 

(4. 4) 

br in states .that differ. from (4. 4) by some additional high energy quantum excitations·' 

inside the cube L 
3 

that has been singled out. In the non-degenerate vacuum case, 

one has ~ («!> . ) > ~ (0) where ~ denotes the analytical continuation of ~ • a vex a . . , 
·I 

These states can have the same energy as the initial state, provided 

t3 " (th ) = t3 
·&(0) + excitation ene11gy • ~a Tvex ,., (4. 5) 

Since L is >> 0 (a-~ ) or 0 (b - 1) , there is a large number of such states that 

3 
satisfy (4. 5); their entrc;>py is proportional to L · • Thus, by using the standard calcu-

lation of transition rates, one finds 

p ( t) = 1 - exp (- AL t) (4.6) 

where ALI ~, and, at fixed L and 6 the probabi I ity p ( t) is independent of N • 
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As shown in Appendix D, a lower bound in AL can be easily estimated; we find for L 

sufficiently large 

. 3 
(- K L ) (4. 7) 

where K is positive definite, and depends only on the renormalized constants a, b 

and c. 

Since the N cubes are arranged to be physically separated from each other, 

they can be regarded as independent systems •. For an initial stcte (4. 1), the probability 

that at a later time t the system remains in the same state is 

[ 1 - p ( t ) J N = exp (- N AL t ) (4.8) 

which, at a fixed L, approaches zero as N (and therefore Q) becomes m • Thus, 

if the vacuum excitation state extends over an infinite volume, its lifetime is zero. 

However, the lifetime of a vacuum excitation in a limited volume v is quite 

a different matter. · Let us consider a finite volume v ·and a surface region s that sur-

rounds v • The domain v + s is, of course, inside the bigger volume Q of the entire 

quantum system; for simplicity, one may assume Q to be infinite. Let the vacuum ex-

citation be described by the state I vex >. which satisfies 

<~>vex in v 

< vex I <f>(x) I vex > = 0 outside v + s 

arbitrary, though smooth, inside s • 
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·i=urthermore, we assume that .in its rest system· (i.e., J vex > is of zero ·3-momentum) 
1 

~he shape of v is one in which the linear dimension ·is - 0 (v 3 ) in all directions. 
i 

Thus, because of (1.6 ), the rest mass of I vex> i_s 

Mvex = v ~ 
0 

( cp vex ) + surface energy • (4. 10) 

'5uch a state can decay -through meson emissions. There are two dominant modes 

Of decay: one is via the surface contraction, and the ·other is v'ia .the decay law (4. 8), 

provided that v is sufficiently large. The latter .resembles a nboiling·n mechanism; we 

may first imag.ine that v is divided ·into n smaller volumes, v = n ( l + .s )3 , and then 

. . 3 
each smaller volume t ·decays exponentially as exp (-- XL t) • let T c and 'Tb be, 

respectivel_y, .the time scales for .surface contraction and for :boiling. It is clear that 

~ 
T - V c 

and (4. ·n) 

For v smal'l, the decay tjme is determined by T_c , and ·for v sufficiently large by Tb • 

To have a rough idea o(the critical volume size when T - Tb, we may use the lower 
I C · · 

bound (4. 7) as an estimate of Al • As shown in Appendix D, this lower bound is de­

. rived .by using the W. K. B. approximation; we may write 

J_ 

u ( cp ) J 2 
dcp vex 

(4. 12) 

in which S 
l 1 

is, asbefore, - 0-(a-
2

) or O(b- ), U(cp) is_givenby(1.2)an~ 

the integ_ral extends from cp to ~O where U ( ~O) = U ( cp ) • Because t is 
vex vex 

J_ 
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>> S , we expect P to be quite large, and therefore at Tb - T the critical volume . c 

v should also be rather large. For example, if we arbitrarily assume L - 10:6, 
c 

-13 2 3 
S - 10 em and P - 10 , then v is ,.,. ( mm.) ; the corresponding lifetime of 

c 

the vacuum excitation state ] vex> is - 3 X 10-
12 

sec. Since the theory is Lorentz-

invariant, such a state can acquire a nonzero momentum; of course, its shape would then 

undergo a Lorentz contraction, and its lifetime a time dilatation. 

4.2 2 
Degenerate Vacuum (b = 3 a c) 

In this case, the system is invariant under the transformation 

b 
<I> + c - - (~ + ~) 

c 
(4. 13) 

The states ~ = 0 and ~ = - (2b/c) are therefore completely symmetrical with respect 

to each other. We observe that any classical path in the functional space q>(x) that . 

connects these two states must pass through a potential barrier whose height is at least 

proportional to Q ~, where Q is the volume of the enti~e system. The transition matrii 

element between these two states becomes zero as Q approaches <X> • Consequently, 

in an infinite volume, the states ~= 0 and ~=- (2b/c) are degenerate, and are 

both stable. 

Next, we examine the lifetime of a vacuum excitation that extends over only 
. . 

a i imited volume v (but Q is still <X>). Let I vex> be such a vacuum excitation 

state defined by (4. 9), where <1> = - (2b/ c). In this case, the rest mass consists 
vex . 

of only the surface energy, and the lifetime is determined completely by surface co~-

traction. It is not possible to have 11boiling 11 inside v, because of energy conservation. 
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Near the surface, "boiling" is possible, b.ut then there is no clear .distincti.on between 

that and surface contraction. 

In both the degenerQte and the non-degenerate cases, we see that the vacuum · 

excitation ca·n, in principle, extend over a domain of macroscopic sizes. In the degener­

ate case~ there is no limit to its size; the larger its dimension is, the bigger its mass, but 

the smaller its width, and therefore the sharper is the definition of the state. In the non­

degenerate case, the same holds only if the "boiling" mechanism can be neglected, and 

that g.ives an upper limit to its size. 
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· 5. Classical Solution 

Some knowledge of the actual shape of the vacuum excitation state in space 

may be obtained by studying its classical solution; this is especially useful if its size 

may extend over a macroscopic region. For simplicity, we concentrate mainly on the 

degenerate case (b2 = 3 a c) in this section. With slight modifications, the method 

used below can be readily applied to the non-degenerate case (b
2 I 3 a c) as well. 

5. 1 One Spatial Dimension 

It is convenient to introduce the dimensionless variables: 

l 
·-2 

x = a ~ I 

l 
-2 

t = a T 

(5. 1) 

and <1> = ~ (X - 1 ) 

2 
The wave equation for. the degenerate case b = 3 a c in a one-dimensional space 

becomes 

We first examine the time-independent solution. From (5.2), .it follows that if 

a X = 0 then 
QT 

dK 
d~ 

= 0 

(5.2) 

(5. 3) 
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where 

(5.4) 

Thus, if we regard ~ as a fictitious 11 tifne 11
, the· problem: becomes~ identical to one in 

i 
elementary rriechani'cs, in which there is a point partich!:,at X m·oving in a potential' 

. 1 . 2 2 w = --(l-x-) 
8· 

(5.5) 

and· K is the total energy of the particle. The expl idt solution: X = X ( ~ ): can then 

~e readily obtai ned. 

To ill-ustrate the different types of solutions in this. problem, we may consi'der, 

for example, the spedal case K = Ci • The solutions are1 

X = ± (5.6) 

and 

X = ± h r ( . ·. t<::in · 'i , ~ ... ~oJ (5. 7) 

where ~O is a constant. In tenils of the· mechanical· analog, (5.6} is the solution that 

fhe particle is at one of the two peaks of W, and (5. 7) i's fhe solution suc:h that t~e par-

~icle g'oes from one peak to the other.; Iii the field theory problem1 the two so·lutions in 

(5.6) repre~ent simply the two degenerate vacuum states ~ = 0 and ~ =- (2b/c) • 

~he soiution in (5. 7) gives the details of the transition from ~ = 0 at, say, x =+co 

tb ~ = - (2b/ c) at x =-co • 
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Through a Lorentz transformation~ the solution (5. 7) can be easily transformed 

to one in which the transition region moves with a velocity u. The explicit form is 

X = ± tanh Q (5. 8) 

where l 2 -2 
- UT + constant J .. Q = ~(1-u) [~ 

5. 2 Three- Dimensional Case 

For simplicity, we consider only the spherically symmetrical solution. Again, we 

introduce the dimensionless variables 

l l 
-2 

r = a p 
-2 

t = a T I 

and 
b 

·<J> = - (X- 1) 
c 

For the degenerate case (b
2 = 3 a c), the wave equation becomes· 

ax · 
For the time-independent solution - = 0 , one has now, instead of (5.3), aT 

dK 

dp 

: where, as before, 

= 

1 2 2 
-(1-x-) 
8 

(5. 9) 

(5. 10) 

(5. 12) 
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Again, we may consider the mechanical analog ~by regarding p as the "time" 

r 
and X .as the ''position" of a particle. The "potential" W is .again given by (5. 5). · 

But now because 

'dK 

.dp 
< = 0 I (5. 13) 

t,he particle is in a dissipative system, with a "time"-dependent frictional force. The 
I 

~otion of the particle can be discussed in the standard way 
9 

by plotting the K = constant 
I 

contours in the phase space (with X and dX as the coordinates). Since a regular. 
dp . 

solut.ion at p = 0 implies that X (0) is finite and cdx) is zero, at 'P = 0 I . 

I dp p=O 

the trajectory must begin at a point on the real axis (i.e., ~~ = 0) in the phase 
. 
space. As p increases, because of (5. 13), the value of K along the trajectory must 

keep on decreasing. From Figure 4, one sees that the K = 0 contour divides the entire 

phase space into one closed region R and four open regions. Thus, depending on the 
I 

.initial value X (0) , there are three types of solutions: (i) Stationary solution. If 

X(O) = 1 or ·-.1 _, then at all p ~ 0 

X(p) 1 I or - 1 • (5. 14) 

{ii)Runaway solution. For X(O) > 1, or < -1·, the trajectory in the ph~se space 

moves toward points at infinity as p increases. (iii) Spiral solution. If - 1 < X {0) < 1 , 
( 

the trajectory lies within the closed region (R.. bounded by the K = 0 contour. Inside 

·~ ·' the minimum K is at the origin. As illustrated by the dashed curve in Figure 4, a 

typical trajectory would begin at a point on the real axis at p = 0, then spiral in, and 

- _j. __ 
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eventually approach the origin as p- (X) • 

Returning to the field-theory problem, one sees that the two stable solutions 

given by (5. 14) correspond to the two degenerate vacuum states 4) = 0 and 4) =- (2b/c) • 

Both the runaway solution and the spiral solution have a field-energy content 

f i r [~ ( V' q>? + U ( q>) J that is infinite. Thus, they are unphysical. This situation 

is quite different from the ·one-dimensional case; as shown in the previous section, there 

is a time-independent solution (5. 7) in which X is not a constant, and the solution has 

a finite field-energy. In three dimensions, a similar transition from X ~ - 1 at, say, 

p << R to X=+ 1 at p >> R gives rise to a surface energy which can always be re-

duced by decreasing R • Thus, such a solution cannot be stable (i.e., time-independent) 

as in the one-dimensional case. 

5. 3 Constant External Source 

It is therefore of interest to examine the three-dimensional time-independent 

classical solutions which may exist in the presence of an .external source J(x) • For 

example, we may assume that the spin 0 field q>(x) is of parity + 1 , and interacts 

with a spin~ nucleon field I!J through a scalar coupling -g I!Jt y4 '1'<1>. The Lagrangian 

density is given by 

£, = -~(aaxt )2 - U(q>) - I!Jt r4 (rfl ~+ mN) I!J ax 
}J fJ 

- g "'t y4 "'<I> + counter terms (5. 15) 

'where U(q>) is given by (1. 2), mN is the physical mass of the nucleon,.· I!Jt is th~ 
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~Hermitian conjugate of tJI and g the renormalized coupling constant~ The wave equa-
I 

'tion is now of the fom1 
' 

_ dU_ J = O 

dq> 

where (neglecting the counter term) 

(5. 1.~) 

In this section, we shall assume that in regions occupied by nuclear matter, ' 

the source J is a constant. Physically, we may assume either g weak or mN large, 

so that 

>> (5. 17) 

[ 2 2 J The case mN ·~ (g <~>vex) wHI be considered in the next section.. Thus, when <I> 

·changesfrom 0 to O(q> ), thecouplingterm gq>tJity
4 

tJI remainsmuchsmallerthan vex . . 

the nucleon-mass term mN .,t y4 'iJ. The perturbation on 'iJ due to the variation of '<!> 

may therefore be neglected. So far as the classical solution is concerned, we may th~n 

regard J (~) as a given function. For definiteness, we consider J (x) to resemble th.e 

nucleon distribution in, say, a spherical heavy nucleus; it wi II be assumed to be time-

independent and of the form 

{ 0 if p < R 
,, 

J(x) = 
( ab) j if p > R· 

c 

,'i' 

where p is defined by (5. 9), R and J are both dimensionless constants. 
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By using the dimensionless variables introduced in (5. 9), we find thdt For the 

degenerate vacuum case (b
2 

== 3 a c), the ti'me-independent spherically symmetric 

equation is, as before, 

1 d 

;1· dp 

in the outside region p > R ; it is 

(5. 18} 

(5. 19) 

in the inside region p < R • At p = R, the outside and inside solutions are joined 

together so that X and dX are both continuous. The solution is then determined by 
dp 

requiring X to be regular at the origin and at infinity. 

The solutions that we are interested in are those for R large and in which X 

is nearly a constant either inside p =. R 1 or outside; onl·y near the boundary p ;' R 

does X have any significant variation. In order to have the "true" vacuum q> = 0 

at infinity, we require that in the outside region X ... 1 , as p ... co ; the next term 

in the asymptotic expansion of X is then exhibited in: 

X ... -1 
1 - A p exp (- p ) (5.20) 

where A is a constant. In the inside region, we require as p ... 0, 

X ... -1 Xa + E p Sinh ( K p ) (5. 21) 
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where e << 1 , x
0 

satisfies 

} 

(5. 22) 

and . 
K
2 

= ! (3 xg - 1) (5.23) 
g 

It can be readily verified that in the outside region, the asymptotic_ solution (5.20) I 

satisfies the differential equation (5. 18) to first order in (X- 1); similarly, in the 

inside region, the corresponding limiting solution (5. 21) satisfies (5. 19) to first ord~r, 

in (X - "o) . The exact determination of these parameters A and E in terms c;>f j 

and R is rather involved, but some of the general characteristics can be derived 

without detailed calculations. 

2. 1 
For j < 

27 
, Eq. (5. 22) has three real roots x0 = X a , X~ and Xy , 

:• 
given by 

2 (s 2 ) 2 cos(~) X = - cos 3 + -; X~ = -I a VJ v'3 
(5. ;24) 

X 2 cos(~ + 4;) and cos 6 - 3J3' j = - = y J3 

We choose n ~ 6 ~ 0 , and therefore X ~ X ~ X A • By follc:>wing the same 
a Y. •~-" 

argument given in the previous section, one can show -that for j ·< 0 there is ,np sc;>l~tion 

which satisfies the desired boundary conditions (5. 20) and (5. 2'1). . At j = 0 , the th:r:ee 

. . 
roots are X = - 1 , X A = + 1 and X = 0 , but th~.re is only one solution that 

.a 1-' y 
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satisfies the boundary conditions (5.20) and (5.21): X(p) = 1 at all p • 

. At a fixed R, as j increases gradually from zero, the inside solution assumes 

(except near the surface p = R) the form (5. 21) with x
0 

= X~ • Because of the con­

tinuity condition at p = R, the value of E . is - 0 ( e -KR) • For R >> 1 , which is 

the case of physical interest for the classical solution, E is exceedingly small. Thus, 

X ~X~< 1 near the origin. At larger p, the inside solution increases very slowly. 

It makes a rapid rise only when near the surface p = R • At the surface, it connects 

with the outside solution, and then approaches 1 asymptotically as p -+ oo • Accord-

1 
ing to (5. 22), as j !ncreases beyond j = , the root x0 = XA ceases to exist, 

3vJ t-' 

cind therefore the solution disappears. Physically, this means that inside p < R, as j · 

increases adiabatically from zero, the state shifts from q>(x) = 0 to q>(x) < 0 , until j 

reaches the value at point B in Figure 3. Beyond that, q>{x) has to make a jump. to a 

completely different solution which represents the vacuum excitation state. 

To obtain this other solution, let us first consider the case R >> 1 and j << 1 • 

We assume that the solution is approximately given by (5.21) in the region p < (R-d) 

where X-. = X ~- 1 and d - 0 (l) • In the region p > ( R +d), we assume that 
-~ a . 

the solution is approximately given by (5. 20). In the transition region 

(R-d) < p < (R+d), we may neglect both R- 1 
and j as a zeroth approximation; 

thus, according to (5. 7), we have 

(5. 25) 

. where Po lies within the transition region. From the continuity condition, it follow~ 
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, -R h ..... h that e - 0 (e' ) , and t erefore X=- 1 in t e regig"' p < (R-d). Similarly, 

dX 
yte find X ~ + 1 in the region p > R + d • By multiplying (5. 18) and (5. 19) by d p : 

and then integrating over all space, we find 

. . 2 

jSX - 2 J p-l (~~) dp (5. 26) 

where 

5 X =· X ( R) - X (Q) (5. 2{) 

In terms of the mechanical analog discussed in the previous section, (5. 26) implies 

. simply that the energy dissipat.ed by the 11frictional force 11 equals the work done ~y the 

11external force 11 j . To evaluate approximately the 11energy dissipation 11~; w~ need 

only to consider the transition region. By using (5. 25), we find the right-hand side 

pf (5. 26) to be approximately given by 3~ • Since for- j << 1 , 5X is < 2, we 

derive the approximate condition 

j > 2 
3R 

in order to have the vacuum excitation solution inside p = R • 

Next, we examine its field-energy content 

where H is 

2 
41T f H p dp 

1 (d x)2 
1 2 2 { j x H = , dp + •(1-X) + O 

(5.~8) 

for p < R 

for p > R 
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By using the above solution which is valid for R >> 1 and j << 1 , we find that to 

first order in j the integral of the Hamiltonian density H in the inside region, 

p < R-d, is given by 

R-d 
(4n) f j X p

2
dp ~ 

0 

The energy content in the transition region is approximately given by 

2 . R+d [ ccix )2 
·. 2 2 J ,_ 

4n R f ! - + ~ ( 1 - X ) d p 
R-d dp 

8n 2 
-R 
3 

To the same order, we may neg I ect the energy content in the outside reg ion p > ( R + d ) • 

The total field energy content is therefore 

This is to be compared with the approximate energy content 

4n R3 . 
- J 3 

(5. 29) 

(5. 30) 

of the other solution (X ~ X~- 1 inside p < R) • Thus, for R >> 1 , by compari~g 

(5. 29) with (5. 30), we find that the vacuum excitation solution has a lower energy if 

• 1 
J > R . 
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To summarize: For R >> 1 , as j gradually i~creases from 0, the solution 

changes continuously from X= 1 everywhere to one in which X~ X ~ 1 in the 
: . . J3 

inside region p << R, but X remains ~ + 1 in the outside region p >> R • As j 

: 2 
becomes larger than !R' , there appears another solution, called the vacuum exci­

t 

tcltion solution, in which X ~ X < -1 for p << R, though X is still ~ + 1 for 
a 

p >> R • If j · becomes > ..!. , then the vacuum excitation solution has a lower energY.. 
R ' 

1 When j exceeds 
I 3v'3 

independent solution. 

, the vacuum excitation becomes the only form of time-

5.:4 External Source (Free Nucleon Gas) 

We now turn to the case in which the coup I ing constant g in (5. 15) is assumed 

fo be sufficiently strong, so that (5. 17) may not hold. We recall that in the 11 true 11 

vacuum, because of our convention (1. 3), ~ = 0; by definition, the nucleon mass 

is mN • However, in states with ~I 0 , the nucleon mass is mN' + g q> • · In discussing 

tre classical equation, if the solution q>(x) is slowly varying, we may expect q>(x) to 

replace locally the role of (j) in the quantum mechanical treatment. Thus, the 11effec-

tive 11 mass of the nucleon becomes mN + g q>, which in the present case may be quite 

different from mN • For definiteness, let us again consider the example of a heavy 

nucleus. Inside the nucleus, we have 

< ljlt ljJ > = n (5. 31) 

where n is the nucleon density, and < > denotes the e_xpectation value. However, 
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as we shall see, when g is strong (or relatively speaking, mN not too large), unlike 

(5. 17), < tilt y
4 

til > I constant and must depend on q> • 

To discuss the classical solution of the spin 0 field, we shall assume the nucleons 

to be approximately described by a degenerate Fermi distribution, characterized by a 

maximum Fermi momentum kF • In the simple example of an equal number of p~otons 

and neutrons, kF is given by 

1 2 . 3 
kF = (31T n/2) {5. 32) 

Since the classical solution q>(x) is expected to be slowly varying inside the nucleus1 

one may treat mN + g q>{x) as the "effective" mass of the nucleon at x; the density 

of the kinetic energy of nucleons is therefore given by 

= 
l 

2 2 2 } kF+(k~+M) .. 

(5. 33) 

where M
2 = ( mN + g q> )

2 
• The nuclear density n is determined both by the usual 

short-range nuclear forces (generated through the exchange of high frequency virtual 

mesons) and by the long-range "~lassical" potential q>{x) (which, in the time-inde:.. 

pendent solution, is of zero-frequency). In the following, we shall consider two 
I 

models: (i) the free gas model, to be discussed in this section, and (ii) the incom-1 

, pressible fluid model, which wi II be discussed in the next section. The actual physi~al 
l 
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situation should I ie somewhere in between these two extreme possibi I ities. 
e' 

F.ree Nucleon Gas Model 

In this model, we neglect all short-range nuclear forces, as well as the electro-

magnetic interaction between nucleons. The nucleons are treated as a free degenerate 

Fermi gas moying in a classical field <j>(x) • To .derive the time-independent field eq~a-

tion, we consider the minimum of the field energy E, defined by 

E - (5. 34) 

but subject to the constraint that the total number of nucleons N is a constant, wher~ 
j 

for a system of equa I number of neutrons and protons, 

.N = I (5. 35) 

UN isgivenby(5.33)and U<l> isgivenby(l.2); i.e.,. 

(5. 3~) 
1: 

By setting, at constant kF , . the variational derivative of E with respect to <1> equal 

to zero, we derive 

(5. 37,) 

··' 

·. 

. ' 
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Next, let us consider the variation of E with respect to kF , at constant <t> and 

under the constraint (5. 35). By using the standard Lagrangian multiplier method, we 

find that in order to have E -minimum, 

1 

k; [ (k; + M2 
)
2 

- constant J = 0 (5. 38) 

where the constant is the Lagrangian multiplier. Thus, at any point in space, either 

there is no nuclear matter, hence kF = 0 , or since M = mN + g <t>, kF is related 

to q> by 

constant (5. 39) 

which implies that the top energy of the degenerate Fermi sea is a constant. Together, 

(5.37) and (5.38) determine the classical time-independent equation for q>. 

The most remarkable consequence of the above field equation is the possibility 

that it may have solutions in which the N nucleons can be bound together in a region 

of finite and non-zero volume, even though the nucleons are treated as free gas parti-

des without any short range forces. Furthermore, these solutions exhibit typical 11Satu-

ration 11 properties; i.e., for N sufficiently large, the volume is proportional to N 

and the binding energy per nucleon is independent of N • In such solutions, the clas-

sica I field q>-+ 0 at infinity, so that, in accordance with our convention (1. 3), we· 

have the usual vacuum at infinity. However, the constant w in (5.39) is chosen to be 

< 1 , so that there can be a finite volume in space in which g q> is negative and 

< - mN( 1 - w). The nuclear, matter will be confined in this volume, whose boundary 



48. 

i's defined by 

g q>(x) = - mN( 1 - w) < 0 • (5.40) 

A$ we shall see, if g is sufficiently large, one has 

(5.4 1) 
~ 

insi.de the bound volume, except in a small region near the boundary; therefore, because 

of (5. 39), inside the volume 

(5.42) 

~·e.' 
. . 2 -1 3 

t_he nuclear density n ~ 2(3n } (w mN) is also nearly a constanf inside. For-

thermore, ·because of (504 1 ), the 11effective 11 mass of the nucleon is ~ 0 • Thus, the 

field ener~y E for such a bound solution· is given by 

E = • QN + surface energy 

where QN deno.tes the volume of the bound solution and U<l>(- mN/g) is the value' 
I . 

of U<l> at <1> ·= ·- mN/g • Because of (5. 35), kF is ex: n;.} . Therefore, if one 

neglects the surface energy, the minimum of E occurs at (a E/oQN) = 0; i.e., 

(5.43). 
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By using (5. 35), one finds 

2 -1 3 2 

N = 2 (31T ) {w mN) QN + 0 (Q~) 

The minimum energy E of the bound solution is given by 

. N- 1 E = (5.44) 

This is to be compared with the lowest energy N mN of the unbound solution [in 

which <1> = 0 and kF = 0 everywhere, but one retains (5. 35) by having the particles 

at infinity]. Now since, according to (5.36), U = 0 at <1> = 0, the bound solution 
. <I> . 

has a lower energy than the unbound solution, provided g is sufficiently large so that 
10 

' 
(5.45) 

and therefore w < 1 ; in addition, N · must be sufficiently large so that the surface . 

energy can be neglected.· The binding energy per nucleon is ( 1-w) mN • 

We emphasize that; unlike the other topics discussed in this paper, the existence 

of this rather unusua I type of heavy 11 nuc I eus 11 is independent of the existence of another 

local minimum in U (besides <1> = 0 ); it may occur even if the q,
3 

-coupling b = 0. 
<I> 

To illustrate more explicitly the details of such bound solutions, let us consider 

2 ,tht:o degenerate vacuum case b = 3 a c • In addition, for simplicity we shall also assume 

mN = g b/c {5.46) 
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·so that both U <I> and UN are syrrimetri:c under the ti'dr:lsformation (3. 7): 
,. 
I 

b . :b 
<1> + ~ ..... - ( <1> + .... ) • By using the dimensionless variables introduced in (5. 9), one c c 

has 
i 

1 
-2 

.r = a p and (5.47) 

J 

:Let p = R be the boundary of a spherically symmetric :sblution, repre·senting a heavy. 

nucleus. Because of (5. 37)-(5. 39), the. corresponding time-independent equation is 'i 

given by 

1 d e dX)+!X(i",t) 0 for p>R 2 = 
p dp . dp . 

= jN for p< R 

where 

[ 

2 2 ~ 
! 1- In . w + <: -_x-) 

and 

The boundary P·. = R is determined by 

X(R) = w 

~ p ..... oo , the asymptotic behavior of X is given by (5. 20), 

X ..... r ... X p- l exp ( ... p ) 

) 

(5.48) 

(5.49) 

(5. 50) 

(5. 51) 

(5. 52~ 

•' 

. _j 
(5. 53) 

. ). 

) 
' 
'• 
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where A is a constant. ~ p - 0 , we have 

X _. -1 
~ p sinh Kp (5. 54) 

where 

. (5. 55) 

which is assumed to be > 0 • Both X and ( ~~) are continuous at p = R. There­

-KR 
fore, the constant e is 0 ( e · ) ; consequently, except when near the boundary, 

inside the nucleus X 1s """ 0 ( e -KR) ~ 0 , provided that R is large. 

Let X and X. be, respectively, the solutions of (5.48) and (5.49) that 
out m 

satisfy the conditions (5. 53) and (5. 54). To st.udy how these two so I uti ons 
. 2 

b h -2 a r. 2 a ) ,.... a x 
can e connected at p = R I we note t at at p >> 1 ' p a p ~ a p. X = a l 
Thus, when R is sufficiently large, (5.48) implies that at p = R the outside 

solution X t satisfies 
ou 

d X t ou 

dp 

2 = ! (1- X t) I ou 
(5. 56) 

which can be easily derived by following the same steps leading to (5.4). Similarly, 

. from (5.49) one concludes that in the tr~nsition region near the boundary, 

R ~ p ~ (R- d) >> 1 

the inside solution X = X. satisfies 
In 

I 
(5. 57) 
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: ~21 ·cdd xp)2 2 ·2 - i ( 1- x-) - f jN dX·.= constant (5. 58) 

wher:e 

1 2. 2 2 2 2 4 

[ 

l 

= . 6 ~- . w .( 5 X - 2w ) ·{!o) - X ) - 3 X In 
2 2 ~] w + (w X- X ) · 

'(5. 59) 

'The width d -of the transition region (5. 57) is ."' 0 (:l).; .it is chosen such that at 

p_= R-d, .X. 
rn 

) 

and 
dXin 

dp 
are ~ .o . ;Since at .P = R, ·x. = w, therefore . m 

(5. 59) is zero; we obtain for R sufficientl:y large, at p = R 

dX. 
tn 

dp 
= [

1 2 
- (8 ·~ + 3) X. -
12 • m 

'] ~ ~- X. 
tn 

(5. 60) 

The intersecti9n of (5.56) and (5.60) determines X and dX at p = R. We find 
dp 

·. ( \* 
X ( R) = 1.) = S~@) I (5. 61) 

:Provided that R is sufficiently large. This result, of :course, -agrees with (5.43). If 

we neglect th~ surface energy, then the binding energy ;per nucleon is 

(5. 62) 

As ¥'/e shall se.e in Section 6, in the CT-model the constant ~ is given by 

' ·2 (m )2 
· 

~ ? ~ . m~ • [see Eq~ (6. 13). J This leads to a value ~ ~ 10 if 
21T . 0' 

(4t )- 1 2 "' · . 7 ~ h d I f "' 0 44 ._. 1T g = 15. and in rnN • T · ·e correspon i119 va ue o w is = . . 
0' 
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In Figure 5, the two solid curves, labeled 11outside (R = oo) 11 and 11 inside (R = oo) 
11 

refer respectively to (5. 56) and (5. 60) with ~ = 10 • These are to be compared with 

the dashed curves for R = 10., determined by the numerical solutionsof (5.48) and (5.49). 

As a further illustration, the numerical solution of X ( p) is plotted in Figure 6 for 

R = 20 and ~ = 10; the corresponding value of N is ~ 210 and that of w is 

~ 0.46, which is to be compared with the asymptotic value w ~ 0.44 if R is oo • 

5. 5 External Source (Incompressible Nucleon Fluid) 

In this model, we assume the short-range nuclear force to be so strong that the 

nuclear density n is a constant. The nuclear matter resembles an incompressible fluid. 

Thus, if we retain the approximation that the nucleon density is still related to the 

Fermi momentum kF by (5. 32) and that the kinetic energy of the nucleons remains 

given by (5. 33)1 then the time-independent equation for ct> is 

V2"' + d u = 0 
T d ct> ct> 

(5. 63) 

outside the nucleus, and 

·- V2ct> + ~ u + (-a- uN)k = o 
d ct> ct> a ct> F 

(5. 64) 

inside the nucleus, which is the same as (5. 37), except that instead of (5. 38) we have 

now 

kF = constant (5. 65) 
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To i.llustrate the main feature of the model, let us consider again the degenerate 

. 2 
va.cvum c~se .b = 3 a c, and let us assume that (5 .• 46) holds. For the· spherically syQl-

'· 
m~Jrk cqse, in terms of the dimensionless variables· p and X; introduced in. (5.47), 

Eqs. (5. 63) .. and ,(5. 64) become 

for p > R ?(5. 66) 

= cl 
dX V N for p < R (5. 67-) 

where 

{ 
2 2!. 2 2 4 

VN(X) = ~ a(a +X) (a +!X)":" aX Jn 
' 
'(5.#l) 

p = R is the radius of the nucleus and a, ~ are bot;h constants, given by 

and· 

The field energy of the system is given:by 

E = E + E out in 

where apa.rt· from a common multiplicative factor 

I 

(5. 69) 
1' 

" 

(~. 70) 
,l 

(5~ 7l) 

·, 



55. 

I 
(5. 72) 

and 

{5. 73) 

in which the constant tenn - V N(1) is arbitrarily added, such that for the true vacuum 

cp = 0, X= 1 , one has V(1) = 0 • Different from the previous free gas model, 

the nuclear radius R is pre-detennined by the given constant n and the given number 

of nucleons. By varying E and E. independently, we derive the field equations 
out m 

{5. 66) and {5. 67). 

Outside the nucleus, the solution has the same fonn as that in the previous 

section; e. g., the asymptotic solution remains given by (5. 53) as p .... co • However, 

as will be analysed, the solution X inside the nucleus changes its character depending 

on the physical parameters. In the weak coup! ing I imit, as expected, the equation be-

comes identical to that in the ·constant current model, discussed in Section 3.3. Similar 

behavior also occurs in the low nucleon density limit, even though the coupling constant 

g may be strong. But when the nucleon density is sufficiently high and g strong, the 

solution resembles that in the free gas model. 

We first observe that as g-+ 0 I the minimum of v is at X= ± 1 + 0 (g) ; 

therefore, to zeroth order in g , the current 

j -
dV N 

dX 

f. 2 1 2 l} = 2~la{a +1)
2 

-In [a+ {a+ 1)
2 J {5._74) 

is a constant inside the nucleus. Equation {5.67) reduces to the previous Eq. {5. 19). 
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Next, we consider the case where . g is strong, but the nucleon density n ... 0 I and', 

dV . d2V 2 · 
therefore a also ... 0 • At X= 0 , one has - = 0 and __,.. = 2 ~a - ~ ; consequently 

dX dXL 

as ,.a ... 0 , the point X = 0 is a local !'Tiaximum of V • The minimum of V remain~ 

at X~± 1 ; the solution then retains .the character of the constant current model. 

However, when a increases to 

2 
2 ~a > ~ I 

the .point X= 0 becomes a local minimum of V • When the n.l!deon density beco~·es 

sufficient-ly high, X= 0 becomes the absolute minimum of V • Thus, it resembles the 

free gas model when .g is strong and nuclear density is·sufficiently high. [This is iri 

.contrast tb the si-tuation in the constant current model, in which X= 0 is always the 

local maximum of the field-energy. J ·The correspondir,~g solution inside the nu.cleus can 

be readily obtained by using (5.67). 

/l$ · p ... 0 , the solution sati·s'f.ies 

X ... ep- 1 sinh(Kp) (5. 75) 

.where 
2 2 

K = ·2 ~a - ~ .(5.76) 

Becau·se X is continuous at p = R, and because outside the nucleus, according to 

·cs. 53), X iis ·~ 1 , one finds that ·E is - 0 (e-KR) • Thus, if R is sufficiently •c 

=large, ·.for.the mqst part ·inside the :n.ucleus, -the .value·,of X is near zero. k p ··· 

·approaches"" ;R, X begins .to ·increase. If one ·neg'IE;~cts 0 ( R- 1) , ·then one ·has .:for ' 
"i 
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p near R but inside the nucleus, 

1. (dX)2 
2 d p 

V (X) ~ - V (.0) (5. 77) 

for p near R and outside the nucleus, one has 

k ( 1 - x)2 
- ·o (5. 78) 

Consequently, at p = R, X satisfies 

(5. 7ct) 

In order for X :g 0 to be the absolu~e minimum of V, we must have 

V (0) < V (l) ; i.e., 

( ) 
4 . 1 

VN 1 -~a > s: (5. 80) 

If ~ is >> 1 , this inequality can be satisfied for a relatively small a, and there­

fore also a relatively low nuclear density. Sin~e for a small, V N( 1) ~ ; ~ a3 
, 

(5.80) can be satisfied if a is above a critical value 

a 
c -- I 

a ' c 

(5. 81) 

provided that ~ is sufficiently large; the corresponding critical density is ex: a; ex: ~- 1 • 
The above discussions, after some minor changes, can be extended to cases 

2 
where b f3ac and mNfg b/c. 
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6. (] - Model 

It is not our purpose here to start a complete re-investigation of the (J-model 11 

of st.rong interactions; such a project cle!arly I ies outside the scope of the present paper. 

However,. as we shall see, there are s6me rather' new and interesHng·properties in the 

(]-model when a sizable chunk of nuclear matter is pre·sent; these properties are closely 

related to those discussed above. In this section,. we shall give only a brief survey of 

these new features. Our disc·ussion wil I' be· restricted to the tree approximation. 

The (]-model consists of a spin~ nucleon field: tjl, a spin 0 (even parity) field 

(] and the usual pseudoscalar pion field -;. The Lagrangian densit.y is given, apart 1 

from the counter terms for renormal ization, by 

£, t a 
tjl -

q;t [cf+ i-;.-; r
5

] tjl = - tjl Y. y - g· y4 4 jJ ax 
jJ 

[ 2 - 2 J -~ (;:) + {;~nJ - u I (6. 1) 
(]· 

jJ jJ 

where 

! X2 [ ((]2+ ;2) ~ 2 -2 u = ( 1..1/X)] - c (] (6. 2.) 
(] n 

For convenience, we assume the parameters Cn·' 1..1 an& X to be all positive. Tile 

-minJmum of the c. number function U·(J occurs at' (] = (]6 and n· = 0, where (]O is 

>- (j..t/X)· and; satisfies 

c = 
n 

(6.3) 
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In the tree approximation, the renormalized constants A I 1-' I g and c are related 
1T 

to the physical masses mN , m and m of the particles by 
C1 1T 

c 2 
mN = g aO = m (]0 I 

1T 1T 
I / 

2 2 2 2 
m = X a0 - 1.1 

1T 
(6.4) 

and 
2 3X2 2 2 

m = ao - tJ a 

The vacuum state satisfies 

< vac I a(x) I vac > = a0 
(6. 5) 

and < vac 1-;(x) I vac > = 0 • In the a-model, _the constant g is given by the well­

known 'IT-nucleon coupling, (41Tf 1
g

2 ~ 15.7. The only unknown parameter is m • a 

However from the absence of any 0 + resonance that has been positively identified 

. 12 
experimentally, we may conclude m . is >> m , and may perhaps be - 0 (mN) • 

a 1T . 

.... 
We note that if 1T = 0 I then u a reduces to the form (1. 2) with . <I> ex: ( C1 - ao) • 

Owing to the smallness of m , and therefore also of C , the function U has a local 
. 1T 1T C1 

maximum at a near zerO and 0 local minimum, besideS C1 = ao 1 at a near - ao o 

However, when -; is now allowed to vary, this local minimum at a near - a
0 

turns 

into a saddle point; it is connected to the absolute minimum point a = a
0 

by a smooth 

path, a
2 + -;2 ~ a~ , without passing through any potential ba~rier. Thus, in the ab­

sence of nuclear matter, the a-model is quite different from the. system discussed in the 

previous sections. On the other hand, when there is nuclear matter present in .a certain . 
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region, then for'a sufficiently large nuclear density and the region not too small, the' 

a-m·odel exhibits almost exactly the same property as that discussed in the previous 

sections. 

It is convenient to introduce, similar to (5. 9),. the dimensionless variables: 

p -. ,j2 f.H and X - Xa/fJ (6.6) 

1 1 

[ 
2 2 2 ,/, 2 2 2 j 

i.e., on account of (6.4), p·= (m -3m ) r and X= (ga1 mN)(ma- m ) •, 
1 a 1T 1T 

· (m;- 3m; )-
2 J. For simplicity, let us consider a: spherical nucleus of radius p =: R. 

Furthermore, just as in Sections 5.4 and 5. 5, we assume for the nucleons a degenerate 
J 

FeiTT!i distribution with ci maximum Femii momentum kF' given by (5.32). By following 

exactly the same discussion given in the pre~ious two sections,. we find that outside the 
r 

nucleus the classical time-independent spherically symmetric equation for a (with 

-ir- = 0 ) is 

(6. 7) 

where 
1 2 2 

V(X) = s(l-x-)- TJX 
a (6.8) 

and where because of (6. 4 ), T7 is given by 

1 ~ 
2 2 2 2 2 ·2 7"2 = m ( m - m ) ( m · - 3m ) << 1 

1T a 1T a 1T 
(6. 9) 

inside the nucleus, the corresponding equation is 

.: 
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1 ~ ( p2 dX).:. ~ V (X} = 7 dp dp dX C1 

(6. 10) 

The function j N (X) depends on the nuclear model. Under the assumption of the 
11 

free 

gas model", we have jN = (jN} where, just as in (5. 50}, 
gas 

[

. 1.. [ 2 2~ 2
} 

(jN} = 2~X (c}- -2) 2
.1.)- ~x!lri (j+. ((jx -x-) J ·, 

gas. 

(6. 11) 

in which (j is a constant, related to the value of X at p = R by 

X (R} = w (6. 12) 

and, because of (6. 4 ), 

(6. 13) ~ = 2 2 2 
21T ( m - m ) 

(1 .'IT 

On the other hand, if we assume the "incompressible fluid model ... then J. = (J. ) 
N · N fluid 

where, just as in (5. 67) and (5. 68), 

oN>fluid~ 2~x[a<a2+1>! -!1Jn [a+(a:+1>!r}, 

(6. 14) 

in which ~ is given by (6. 13) and a is a constant related to the Fermi momentum kF 
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In·the limit ·m1T- 0, 11-0 and the above equation (6~ 10) reduces identically 

t~ either (5.49) or (5. 67). 

(6. 15) 

-1 2 2 In the- a-model, (41T) g ;;;;- 15.7 and therefote (after neglecting m. ) 
1T 

.. 

. i 
In the free nucleon gas model, by using (5. 61) we find 

-t.) = 

(6. 16) 

(6. 17) 

If we neglect the surface energy, then ac·cording to (5. 62) the binding energy per 

nLcleon is ( 1 -w) mN • Thus, in this model, if rna is h:;ss than - 5 mN there would 

b~ d new ·type of stable heavy nucleus, Ffrovided that the nucleon number is sufficiently' 

Iorge. 

If we assume the incompressible fluid model, then the field energy is given b.y 

(5. 70)-(5. 72), except that V(X) is now 

. (6. 18) 

wpere Va is given by (6.8), bot VN remains given by '(5.68). T~e above expression 

reduces to (5. 73) in the limit m = 0. ·As noted in Sectien 5.5, when the nucleon ·den-1T 

sif.y 'is sufficiently high, the minimum energy state of a very heavy nucleus flip's from fhe· 
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11 normal 11 solution (in which X is near 1 and the nucleon mass e- mN) to an .. abnormal .. 

one, in which both X and the 11effective 11 nucleon mass are near 0 . In order to produce 

the flip to the 11abnormal 11 solution, (5. 80) must be satisfied. By using (5. 81) and 

(6. 16), one finds that the critical density is approximately determined by 

If m a,.... mN, then the critical density is about the usual nuclear density 

no = 

If m a'~ mN , then the critical density n c varies. approximately as 

provided that m is not too large. 
0' 

' . 

(6. 19) 

(6. 20) 

(6. 21) 

In Figure 7, the function V (X) is plotted for m a= mN and the usual nuclear 

·.density n = n
0

, with m1T'I 0. From the plot, one sees more explicitly that under 

these conditions, if the nucleus is sufficiently heavy (so that surface energy can be 

neglected) then, as expected, the 11abnormal 11 solution has an energy comparable to 

that of the 11normal 11 solution. If ma is > mN, one may produce the 
11

abnormal
11 

nuclear state by increasing the nuclear density through, say, high energy collisions 

between very heavy nuclei. From Figure 7, one observes that there is practically no 



64. 

pote.ntial barrier ·be~een the 11 nomial 11 and the 11abnormal 11 conf!gurations, once the 

critical density is reached; 'the corresponding productiori'probability should, therefore, 

r 

be relatively high. 

/ 
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7. · Remarks 

In this paper we have investigated, among other things, the possibility that 

over a I imited region in spac·e the exp~ctation value < cp > of a spin 0 even parity 

field cp(x) may be different from its 11 normal 11 vacuum expectation value (which can 

be chosen, by convention, to be zero). This investigation leads us to a study of 

several different physical problems, each containing some rather interesting properties. 

However, not all of them have been fully examined in this paper. 

If the spin 0 field has a strong interaction with some matter field, say the nu­

cleon field with a large coupling g , then whenever there is a sizable bulk of nuclear 

matter present, there is a tendency to have < cp(x) > ~- (mN/g) in the region oc­

cupied by ni,Jclear matter. This would reduce the 11 effeetive 11 nucleon mass to ~ 0, 

and thereby lower the·kinetic energy of the nucleons. Within a certain range of the 

relevant physical parameters, this unusual solution may even become the lowest energy 

state. Thus, if such a strongly interacting scalar field does exist, there would be the 

possibility of a large class of 11stable 11 or 11metastable 11 superheavy nuclei, hitherto 

undiscovered. 

~a mathematical model, such a possibility suggests also a possible extension 

to the boundstat& descripHon of a single nucleon, by replacing the role of nucleus by 

nucleon, and of nucleons by a mixture of 11quarks 11 plus a suitable 
11
quark-antiquark

11 

continuum. Since the 11effective 11 quark mass might be near zero inside the boundstate 

(rnough heavy outside), one could hope to resolve some of the present theoretical 

difficulties in such a description. 
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If the _spin 0 field has a large '
3 

-coup I ing constant b , then the function 

;U (') , defin~d by Jl. 2), can have another lo!=al minimum at ' ='vex -J. 0 • In this 

'case;'· even ·without_the presence of nuclear matter, there could be the possibility of 

a pure vacuum excitation state, in which the expectation- value < '(x) > is ~ ' 
_ vex 

over an extended region in space. This leads naturally. to the physical picture that 

the·so-called "v9cuum" actually more resembles· a 11med-ium" whose properties,can ~e 

changed. If-this is true, which -of course we d~ not know at present, it-must ultimately 

lead to rathe·r striking physical. consequences. 

We wiSh to thank N. H. Christ, A. H. Mueller, L. M. Lederman and 

M. A. Ruderman for discussions. 
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Appendix A 

In this appendix we give the details of the graphical representat.ion of the 

energy density function ~((j)), which is defined by (2.4). It is convenient to intro-

duce the unrenormalized field operator <l>o : 

1 

<l>o = z2 <I> 
(A. 1) 

where <1> is the renormalized field operator, as before. The Lagrangian density (1. 1) 

may be written as 

£,= (
a<l>0 )

2 

1 -- l 2 ~2 a XI-' - <l>o 6J - 2 <l>o (a + Sa) 

-1 3 -1 4 
- (3~) <l>o (b + Sb) - (4~) <l>o (c + Sc} (A. 2) 

l 

where SJ , Sa , Sb and Sc are counter terms; together with ( Z 
2 

- 1 ) , these terms 

are needed to cancel the infinities. 

The counter term SJ is determined by requiring 

< vac I <l>o(x} I vac > = 0 (A.3) 

· The precise definitions of Sa, Sb and Sc will be given below [after ·Eq. (A. 23) J 
From (2. 1) and (2. 2), the Hamiltonian H J may be written as the sum of a 

, zeroth order term H
0 

and a perturbation term H 1 

H J = H0 + H1 , (A.4) 
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. 2 2 2 3 
H0 = ! f [ TT O + ( V <l>o ) + a0 <l>o J d r I (A. 5) 

= f [ (3')-1 b 3 1 -1 4 J 3 . H 1 . ( Jo + 6 J ) <l>o + • 0 <l>o + ( 4.) co <l>o d r I (A.6) 

where rr
0 

is the ·conjugate momentum of <l>o 1 

ao = a+ Sa I. b
0 

- b +Sb I. 

c
0 

= c + Sc 1 (A. 7) 
• I~ 

and the constant J
0 

is related to J 1 introduced in (2. 1)1 by 

(A.8) 

Since the counter term SJ is determined by (A.3) in which I va.c.> is defined. to be 

. . 
the ·lowest-energy eigenstate of H J wi<th· J

0 
= 0 1 there should be a non-zero expec-

tation value of cj>(x) in the lowest.:.energy eigenstate . I > . of H J when J
0 

F 0 • , 

We define 

-1 I I 3 <l>o = Q f < <I> 0 (x) > . d r • (A. 9) 

- . -1 
Both <l>o and the corresponding lowest eigenvalue A J of Q H J may be 

eva I uated 'by regarding H
0 

as the unperturbed Hamil toni an and H 
1
. as the perturbafion. 

The perturb<;~tion series of A J is the sum of aU connected Feynman graphs that have no 

external line. We may write 

·, 
' 

AJ = ( AJ ) + ( AJ ) + ( AJ ) + • • • . {A •. 10:) . 
tree one-loop two-loop 



69~ 

in which (AJ) denotes the partial summation of all ~~ch diagrams that are trees and 
tree . · 

(A ) denotes the partial summation of all such diagrams that have Q. loops. 
J 9.-loop 

From (A.6), (A.9) and (2.3), one sees that keeping ao I bo and co fixed 

(A. 11) 
•. 

We recall that according to (2.4) 

(A. 12) 

Thus~ keeping ao I bo and co fixed, we have . 

(A. 13) 

·and 

(A. 14) 

Tree Diagrams 

In Figure·8, we list the sum (AJ) of all the tree diagrams. In these dia-
. . ~e . . 

grams, there is no external line. Every internal line carries a zero 4-momentum, so it. 
. . . 2 -1 . 

g•ves to the Feynman amplitude a factor - i (k + a0 ) with k = 0 • Every one-

point vertex gives a factor . - i J
0 

, every three-point vertex a factor - i b0 and every 

four-point vertex a factor - i. co • From Figure 8, it follows that, keeping ao I bo 

.: :..~ 
. ·~~. 
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and co fixed, (A. 11) holds with in the tree approximation; i 0 e., (a AJ I a Jo) . =· ii>'o 0 

tree 
Furthermore,· in the same tree approximation, the full propagator of <l>o at the zero 

4'-momentum is simply i (a
2
A.Jia Jg) • Thus, one derives 

tr~e 

2 2 2 2 -1 
(a '\ laJ ) (k b - 1 

- ) 1\J 0 tree = - + ao + 0 <l>o + 2 co <l>o k =0 (A. 15) 

Because of (A. 14 ), this leads to 

(a 2~la;;2) b -: 1 -2 
JO) TO = ao + 0 <~>o + 2 Co <l>o 

tree 
(A. 16) 

Again from Figure 8, one sees that as J
0 

.... 0, (A.J) - 0 and (aA.J I aJ
0

) - 0. 
: . . tree tree 

Therefore, as ip0 - 0, one must have (~) - 0 and (ap 1a~0 ) - 0 • 
tree hee 

Consequently, 
I 

1 - 2 1 - 1 . -3 1 - 1 - 4 ( 7) 
= 2 a0 <l>o + (3.) b0 <l>o + (4.) c0 <l>o • A. 1 . 

. Generai Expression 

To find the general expression of '(q>
0

) , let us consider the scattering of n 

ze~o-momentum mesons whose interaction is given by the Lagrangian density (A. 2), 

and n may vary from 2 to c:D • We define [ S (jp
0

) J . to be the sum of all such 
· · . loop . . 

one-particle irreducible scattering diagrams that are~ trees; in these diagrams, each 

external line carries a zero 4-momentum and gives a factor q;
0 

to the Feynman integral.· 

The corresponding factors for the internal I ine, the three-po·int vertex and the four-point 

ve~e~ are, respectively, - i (k
2 + a

0
) -

1 
, - i b

0 
and - i c

0 
• [Note that there is· .. 
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no one-point vertex in these scattering graphs. J We shall now establish 

(A. 18) 

To prove this, we consider the sum (A. 10) and note that, similarly to (A. 15) 

= [ Bj(k) J 
k=O 

(A. 19) 

where .8j(k) is the full propagator of the meson field <l>o in a theory in which the 

Hamiltonian is given by (A.4). We may write 

(A. 20) 

where r(k) is, by definition, the sum of all proper self.:.energy diagrams. Let us 

separate in r(k) the Jo-dependent part r J(k) from the Jo-iridependent part !:a(k) : 

(A. 21) 

. where as Jo - 0 I: r J (k) - 0 and therefore r (k) - ro (k) • According to (A. 6 ), the. 

dependence on J
0 

is completely due to the one-point vertex. Thus, every diagram in 

r 1(k) is one-particle reducible. I. e., it is possible to separate every diagram in 

l J(k) into two disconnected parts by cutting an internal line open; one of these two . 

disconnected parts contains the external momentum k , and the other does not. By 
. 1-' 

repeating this cutting procedure and keeping only the part that contains k , each of 
1-' 
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these diagrams can be reduced to a one-particle irreducible diagram in which there J 

is flO J
0

-vertex, but besides the two external I ines that c~rry k , we have also other 
. 1-1 

zero-momentum external lines (as the remainder of the cutting). If we assign to each 

ofthese additi~nal zero-momentum external lines a factor- ~O to the Feynman ampli­

tude, w~ find r J(k) , · introduced in (A. 21), is equal to the summation over the set of 

all.such different one-particle irreducible (proper self-energy) diagrams. In this set, 

for k ~ 0 every diagram has at least one zero-momentum external line. Among these 

diagrams, there are only two diagrams without any loop; these are simply - i b
0 
~~ 

and - i~ c
0 
~02:. The rest all have some loops. 

Next, we note that for k /: 0 the· Jo-independent part ro(k) I defined in 

(A •. 20), consists of all one-particle irreducible proper self-energy diagrams that do 

noh have any zero-momentum external line. Together, r(k) = r
0

(k) + rJ(k) is then 

the sum of all one-particle irreducible proper self-energy diagrams which may or may 

not· have.additiqnal zero-momentum external· lines. It is now straightforward to show · 

that [s(~0 )] I defined abovel iS relti'ted tO r(k) .at·'k =0 by 
loop· 

. i r(O) (A. 22) 

By using :(A. 14) and the boundary condition that at ~O = 0 , ·. both ~- and (ap/a~C).> 

vanish. We. establish (A. 18). 

Equations (A. 17) and (A. 18) still differ from (3. 1) and (3. 2) by being expressed 

i 
in -terms of a

0
, b

0 
, c

0 
and ~O rather than the corresponding renormalized quantities. 

We note that w~atever may be the precise definitions of these renormalized quantities, . 
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J. 
formallythecounterterms oa, ob, oc and {Z 2 -1) canalwaysbeexpressed 

as sums over the appropriate set of diagrams in which only the renormalized quantities 

a,· b, c and ~ appear. Every one of these diagrams must have loops. By redefining 

11
1oop

11 
to include also these loops in the counter term, we derive (3. 1) and (3. 2). 

Renormalized Constants 

To define the wave function renormalization constant Z, we may follow the 

standard procedure: Set J0 = 0 • The full propagator of the <l>o field becomes then 

(A. 23) 

where r0(k) is defined in (A. 21). let k
2 

= -m: be the zero of [ .6Q(k) J- 1 • We 

2 2 require as k -+ - m 
<I> 

(A. 24) 

Thus, Z is defined; and m is the physical mass ofthe meson. The renormalized 
<I> 

constant a· is defined by 

-iZ - a 
as (A.25) 

Consequently, 

(A. 26) 

From (A. 18), (A. 22) and the fact that r(k)- ro(k) as ~- 0 I we obtain in the sa~e 



74. 

limit ' .... 0, 

(A.27) 

We may expand the scattering amplitude [ 5(~0) J 
1 

as a power series in ~O : 
oop 

[s<~o> ]I oop 
= 

Q) 

' , -1 - n '-- (n.) . sn 'o 
n=2 

(A.18) 

in,which n denotes the number of external mesons in the scattering amp I itude. Fr.om 

{~.21), {A.22) and (A.26), it follows that 

(A. 29) 

Since s
2 

contains a quadratically divergent Feynman integral, two c.ounter tenns Sa 

and ( Z - 1 ) are needed to render (A. 29)Jinite. The rEmonnal ized .coupling constants 
. . 

b and c are related to the scattering amplitudes s
3 

and s
4

. by 

b + finite tenn = [bo + i 53 J z~ (A •. 30) 

and ; \.. 

.. c + finite tenn = [co + i 54 J z2 
·(A.31) 

' 
Since s

3 
and' Z both contain only logarithmicaHy divergent integrals, one counter 

tenn Sb is sufficient to render (A. 30) finite; similarly, one counter tenn Sc . is suf-

fitient to render (A.31) finite. The precise values of the finite tenns in (A.30) and 

(A. 31) are detennined by imposing (3. 8), as discussed in·Section 3~.2. 

I 

I 
I 

i 
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If one wishes, one may alter ·the above definition of Z by an ·arbitrary finite 

.3 
multiplicative factor, say Z ..... ~ Z, provided that a ..... ~ a, b-+ ~ 2 b, 

l 
and (j) ..... ~-2 (j); of course, the residue of the rEmormalized propagator at 

-1 . 
now becomes not 1 but ~ • 
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Appendix B 

According to the rules for the prototype diagram, given in Section 3. 1
1 

the 

I . . . 

~eynman amplitudefor diagram (i) in Figure 2 is given by 

(i) = ~ ( - i c ) I 2 . (B.l) 

where the factor ~ denotes the inverse of the symmetry number, and 

- constant - constant • fl. (B. 2) 

ih which the two constants are determined by requiring 2 
to be 0 ( fl. ) as fl. - 0 • 

The integral (B. 2) can be readily eva I uated. We find 

(B. 3) -

According .to (A. 18)1 in order to obtain F ((j)) I we should multiply the scattering 

amplitude (B., 1) by i ; this gives the first term on the righthand side of (3. 17). 

· The evaluation of the prototype diagram (ii) in.·Figure 2 is compl~icated··sin~e 

i,t can be made finite.only after we incl_ude also the diagram (ii)'. According to 'the 

rules given. in Section 3~ 1, we find 

. (ii) -

+ subtraction 1 (B.4) 
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(i i)' -Sa J d
4

k 
+ subtraction (B. 5) = 

. (2n)
4 

k
2

+a(1+A) 
I 

and, to the lowest order, 

.b2 4 
Sa 

-I 
J d q 

(B.6) = 
2(2n)

4 (q2+a)2. 

where, according to (3. 8), the subtraction terms must be quadratic functions of A • 

Since both integrals in (B.4) and (B.5) are not primitively divergent, even with the 

subtraction terms included, (ii) and (ii)' are still logarithmically divergent. It is con-

venient to introduce another diagram, diagram (v) in Figure 2, in which the dashed 

I ine denotes the propagator - I(k
2 

+a )-
1
• [The solid I ine remains - i (k

2 
+a +a A r 1• J 

(v) = 
.. b2 
-I 

2(2n)
8 2 2 2 . 

(k +a) ( q. +a) [(k + q) +a ( 1 + A) J J 

· + subtraction • (B. 7) 

Again, the subtraction term is assumed to be a quadratic function in A • We shall 

calculate first (ii)' + (v) and (ti) - (v) separately, and then sum these two terms to-

gether. By using the standard parametric representation of the Feynman integral, one 

can show that 

.. (ii)' + (v) = 
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where x. f: 0 and the function F is 
J 

F(y) = ·.(1 +y) In (1 +y)- y -· ~ y
2 

• 

• ·,1-:, 

:' .. \.~ . 
s i rrii ~-~~f~;·. ::Y?:~: ;fii\d 

: ,.· 

~ ; . 
' . 

'. ~ ... :' ; . . . 
··.·· . ' 

Both expfe~~·io.ns ~re now fin.ite. 

(i i) + (li)' = 

where 

.. 
. ·3 

L 
j=1 

F(x.A)] 
J 

It is straightforward to verify· that 

0 b2 •a 
[F(A) - G (A) J 

(B.9) 

(B. 10) 

(B. 11) 

G(A) = ~(1+A)(In(1+A)] 2 -(1+A)In(1+A)+A. 

(B. 12) 

By using Theorem 1, one sees that diagrams (iii)+ (iii)' and (iv) + (iv)' are 

related to (ii) + (ii)' in a'· simple way. Their· entire sum is given by (B. 11), provided 

one substitutes b
2 

by b
2 

+ 2acA, but keeping a and A fixed. Equation (3. 17) 

is then established, and this completes the proof of Theorem 2. 

-l 
I 
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Appendix c 

To establish Theorem 3 (stated in Section 3. 3)1 we shall consider first the case 

Jl. > 3 and c = 0 • One can· readily verify that in this case, there is no primitively 

divergent prototype diagram; consequently, we need only consider the convergent ones. 

A typical example is given by diagram (i) in Figure 9. Let I and V be, respectively, 

the number of internal lines and vertices in the diagram. We have 

2 I = 3V , Jl. = I-V+1 , 

and therefore 

v = 2(11.-1) (C. 1) 

Since each vertex carries a factor b, the corresponding Feynman amplitude is propor­

tional to b V • The dimension of the energy density function is (mass )
4 

• Thus, from 

a simple dimensional consideration and by using (C. 1), one sees that the amplitude 

• 2 2 Jl.-1 should be proportional to a (b /a) . Now, according to the rules for the proto-

type diagram given in Section 3. 1, the parameter a appears only in the product 

. a ( 1 + L\); this implies that the amplitude is proportional to 

2 2 Jl.!'"1 Jl.-3 
a (b/a) (1+L\) (C.2) 

Since the diagram is a convergent one, one finds the proportionality constant to be 

finite and independent of L\ • Equation (3. 19) now follows because of (3. 8). 



ao: 

Next, we. consider the case Q. = 3 and c = 0 • lri this case, there is only 

one primitively: d~verg~nt prototype diagram, given by (ii) .in Figure 9. By writing 

down-explicitly the corresponding Feynman amplitude, one can- readily derive (3. 18). 

Tlie6rem 3 is t~en' proven. 

I' 

I 
'' 
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Appendix D 

In this appendix, we give an estimate of a lower bound for the decay rate ~\, 

defined in (4.6). Let us expand the fie.ld operator <I> (7, t) in terms of the Fourier 

series in the volume L
3 

: · 

-<j>(r, t) 
(D. 1) 

The Lagrangian for the system inside L 
3 

is 

2 3 3 [(dq0) ] fJ:dr = ~L dt - U(q0 ) + · · · (D 2) 

where U is given by (1. 2), and • • • is qk -de~endent (k I 0) • The conjugate 

momentum of q0 is 

Po = 
(D. 3) 

Therefore,· the Hamiltonian is 

(D.4) 

According to (4. 1), at time t = 0 the system is at q0 = <~>vex which is only a 

local minimum of U ( q
0

) • There is a potential barrier that separates this local mini­

mum from the absolute minimum of U(q
0
), which is at ~ = 0. To estimate the 

barrier-penetration probability, we shall use theW. K. B. method for the q0 degree 

j 
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of freedom, but suppress a. II other k I- 0 ·degrees of freedom (..e., set qk = 0 for 

k I 0) • The restiit~ is 

(0.5). 

where 

= a + b .t. + 1 · c rl-2 
'~'vex· 2 '~'vex (0.6) 

In. (D. 5 ), the inte-~ration is from q
0
· ·= <!> • to a~: where;~ U ( q

0
• ) · =· l) ( <!> ) and 

vex. 'U · · vex 

<1>~-~x < q0 ~ 0 · • Such cin estimation of .. XL is obviously-'an· underestimation, since 

by. usi~g the ofh~f k Jf 0 degrees of.·freedorri, one. ·ctm- eas·ily show th'at there are··other 

paths ieading frC>~ th~ iocal mi~imu·m· q
0
-. .,;:q,· . to reg·iC>ns··near-the;absolute minimum 

vex . 

~~ = 0 I but p~ssihg through a much 16wer. pcltEmtial ba·rri~fr.~ 
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A~· F. d • By following the·argument given in Section.3, one can show that 

A~ should be given by the appropriate sum of all nucleon. loop diagrams. If 

we include only the one-nucleon-loop approximation, then A~ is equal to 

the above expression d , but only after a subtraction of a fourth•order.poly-

nomial in :,:q> ; its .explicit expression, after.summingtover both· proton and. 

neutron,· is 

2 ~1 4 
At mN + gq> = 0 ~ A~ = ( 161T } · mN . : In a complete treatment, ·one should,. 

of·cour-se,. include ·Af, ·in· uq>.(-mN/g) , .. togeth~r .. with o.ther corrections due 

_ to. highe~ o'rder .fermion as well cis· all· Boson· loops., .. [Note that· 

61r
2 A~ ·= i m~ < ·m~ ·.' therefore·!,the inequal ity.:;(5.45) is .not violated. J In 

this section, our discussion is, however;. restricted·,to: the semi-classical equation, 

without, taking. into account any loop .correction. 

11. J • .Schwinger, Ann. Phys. ~·. 407 (1957}; 

J. c.· Polkinghorne, Nuovo Cimento 8, · 179;·. 78.1 (.1958). 

M.'GelJ.;.Mann and M. ·Levy,. Nuo.vo·Cimento 16; .. 53. (1960). 

For further·r.eferences,, see .those given in· B.· .. W. Le.ep Chiral Dyna111ics (Gordon 

and Bre·achl' .1972). 

12 •.. For the present experimental status;· e. g., see the rey.;iew article by·Protopopesen. 

et al. in the·-Proceedings,of the Phi'ladelphia Confer.en.ce on Experimental· Meson .. 

Spectroscopy-1972,· ed. A.· .H.· Rosenfeld and -K •. W'"'' Lai· (.American Insti.t.ute of. . 

Physics).· 
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Figure 2. 

Figure 3. 
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Figure Captions 

Examples of graphs of f; (i) and J (i) =- ( d f;/ dqi) in the tree 

approximation. The two-phase region is between the points a and 

~; C!>a and C!>~ are their absci.ssae.· In the top graph, outside the 

interval C!> a ~ qi ~ C!> ~ , p (i) ·:= U (i) ; inside the interval, the 

solid line refers to ~ , and the dashed curve to U. In the 

bottom graph, the two areas C a A and C ~ B (between the 

dashed curve and the solid I ine) are equal. 

' ' 

Diagrams (i)-(iv) are examples of two-l;,op prototype diagrams. 

Each solid internal line carries a propagator factor D, given by 

(3. 3). Diagrams (ii)'_-(iv)' are related to (ii)-(iv) through 

renormal ization. In diagram (v), the dashed I ine carries a factor 

' . (k2 )- 1 h ' ( ) . d" - 1 + a ; ence v IS not a prototype 1agram. 

J · · ab - b h I b2 3 d m umt - vs. C!> in unit for t e specia case = a c an 
c c 

( 321T
2

)-
1 

c = 10-1 • The solid curve denotes the tree approximation, 

and the dashed curve includes the one-loop approximation. 

Phase-space diagram for the mechanical analogy discussed in Section, · 

5. 2. Inside the region R , the minimal K is - ~ at the orig.in. 

The dashed curve illustrates a spiral solution. 

. ) 
. · .. · 
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Figure 5. 
' 

Figure 6. 

Figu.re 7 • . 

Figure 8. 

. ' 
Figure 9. 
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dX 
X vs. dp at p = R. The 11outside 11 curves refer to solutions of (5.48); 

integrating from p = c:o to R • The 11 inside 11 curves refer to solutions 

of (5.49), integrating from p = 0 to R, with ~ = 10 • 

Numerical solution of X (p) in the free ·nucleon gas model. The 

total number of nucleons is ~.210 and fhe top Fermi energy is 

i.l mN ~ 0.46 mN • The nuclear radius is R = 20, and the nucleon 
3 

density n is zero outside the nucleus, but ex: (c}- x2 ) 
2 

inside. 

V (X) in the a-model for a nucleon density n = [ 4
3
n (1. 3 X 10- 13 cm)3 ]-1 

and for n = 0 • See Eq •. (6. 18) for the definition of V (X) • 

Tr.ee diagrams for XJ and its derivatives. All I ines carry zero 

4-momentum. For the Feynman amplitude, there is a factor - ( i/ a
0 

) 

to each line, - i J
0 

to ea.ch one-point v.ertex, - i b
0 

to each three­

point vertex and .:. i c0 to each four-point v.ertex. Each open circle 

denotes a differentiation with respect to (- i J
0

) • 

~xamples of prototype diagrams in a <1> 
3 

-theory. Diagram. (i) is con-

vergent, and diagram (ii), is primitively d'ivergent. 
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