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High Energy (cl,p) Reactions 

Louis Maurice S l a t e r  . - 
Department of Cheinistry and Radiation ~ a b 0 r a t o . q  . 

Universi ty of Cal i fornia ,  Berkeley, Ca l i fo rn ia  
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Exci ta t ion functions f o r  t he  (d ,p )  react ion on u~~~ arid Th , 

and f o r  the  (d,n)  reaction^ on ~h~~~ have been run i n  t h e  energy , .  ' 

range of . the deuterons of the  .Berkeley 69-inch cyclotron.  Excita-  

t i o n  functions f o r  t he  idJp)  react ion on u 238, Thi32 ) pt198, pdllo, 

~ r ~ ~ ~ '  a n d ~ n ~ ~  have  a i s o  been run i n  t he  energy range of t he  ' 

deuterons .of ' the Berkeley 184-inch cyclotron.  The experimentally 

observed high-energy (d,p) exc i ta t ion  functions a l l .  exMbi t  remark- 

ably  s imi la r  absolute cross-section values. 

Recelit experimental and t heo re t i c a l  'work on t o t a l  nuclear cross  

-sections f o r  neutron capture together  with t h e  success of t he  s h e l l  . . . ...,. 

model of nuclear s t ruc ture  suggest: t h a t  a nucleon enter ing the  :: ... ..- ._-  

nucleus from the  outside,  t o  some extent  w i l l  move h ike ' an  indepen- 

d&t p a r t i c l e  i n  a po t en t i a l  trough and i n t e r ac t  r e l a t i v e l y  weakly 

with the  o ther  nucleons. 

Calculations were made t o  determine ava i lab le  vacancies f o r  

neutron capture t o  bound l e v e l s  corresponding to, those of a "pa r t i c l e ' .  

i n  a box," A spher ical  po t en t i a l  wel l  was assumed f o r  t he  nucleus 

with dimensions corresponding.to those calcula ted f o r  t he  various 

nucle i  studied.  The number of ava i lab le  neutron vacancies was shown 

t o  be s imi la r  f o r  a l l  of the  nucle i  studied, '  thus lending' support t o  

the  proposed model. 

.Addit ional  support f o r  t h e  model was furnished by t he  experi-  

mentally observed grea te r  cross-section values f o r  t he  formation of 

pdl1lg than f o i  t h e  formation of higher Spin valued Pd lllm i n  ' the 
110 - ( d , ~ )  react ion on Pd . . It was shown t h a t  previous work on t h e  high 

energy ~ i ~ ~ ~ ( d , p ) ~ i ' ~ ~  (R&) , exc i t a t i on  funct ion was not a variance 

with t he  proposed model; i n  f a c t ,  lower cross-section values f o r  t he  

formation of RaE: than f o r  . the  isotopes studied here were t o  be expected. 



High Energy . . (-dip.) Reactions 

Louis. Maurice S l a t e r .  
Department 'of dhemi stry. and ' Radiation Laboratory 

University of Cal i fornia ,  Berkeley, Ca l i fo rn ia  

A .  INTRODUCTION 

TKe Oppenheimey-Phillips o r  "str ipping" reaction1 has been known 

f o r  some time. Included i n  t h i s  general'ty-pe of r e a c t i o n a r e  t he  

(d,p) ,and (&,n) react ions .  Related t o  these  a r e  t h e  inverse o r  

I "pick-up" reac t ions  such a s  (.p;d) and. (n,d) . Experimentally t he  (d,p) 

react ion has 'been .stu&ie.d more than t h e  (d,n-) react ion.  Spectra and 

angular d i s t r i bu t i on  of protons r e su l t i ng  from the  (d,p) react ion have 

been s tudied experimentally. D i f f e r en t i a l  c r a s s  sect ion a s  a funct ion 
4 

of .- angle has. been t . reated t heo re t i c a l l y '  f o r  t h e .  "str ipping" and 

"pick--up" processes by var ious  investiga-tars .. . However, t o t a l  . o r  
. . . . 

i n t e g r a t w  -cross sect ions-  f b r  the  (.d ,P) react ion and espec ia l ly  f b r  

t h e  (d-,n) react ion have been ra ther  neglected experimentally and 

t h e o r e t i c a l l y  by inves t iga tors .  

Where t o t a l  c ross  sec t ion  values f o r  t h e  I1~ , r i pp ing"  react ion 

have beerr studted experimentally, the. energy : of. t h e  &eateron-s.-as-ed, 
. . 

usual ly  var ied .from zero t o .  not  more than 20 .Mev. , The only. 
. . . . . ' .  . . . 

. . . . 

exc-ept im t o  t h i s  is ' .  t h e  ~ i ~ ~ ~ ( d , ~ ) ~ i ~ ~ ~  e x c i t a t i o n  function as s tu -  
. . 

a i ed  by Si-Chang ~ u n ~ . '  He employed deuterons r a n g f n g i n e g e r g y  from 
&I 

40 t o  190 Mev i n  an extension of t h e  ~ i ~ ~ ~ ( d , ~ ) ~ i ~ ~ ~  exc i ta t ion  - 
' 3  function as s tudied by Kelly and ~ e g r 3  f o r  deuterons of energy'20 Mev - 

and Power. However, i n  a c t u a l i t y  t he  t o t a l  (djp) exc i ta t ion  function 
. . 

.was ,not mea;surre& foY :only. RaE was -ob's'erved. Be-cause of it.' s grea t  
! .  . 

. . i . . 
. .  . . half  - l i f e ,  t h e  o ther  isomer of ~i~~~ w a s  not observed. 



7r3 Becaxse-.of .the-. .mi'l&tri-Ti-y :of .t him, .f ~ 2 - 1 ~ - .  of .- uranium and thorium, 

232 Th - ( d ; p ) ~ h ' ~ ~  wererun-  f m . d e i t e r o n s  of energyup t o  20 M w  by bom- 

b-arctm&s. on theBerke-ley 60-inch.cyc.ltTtrp. Because.the yie-ld of 
i . . 

- ~h~~~ was~determined~ f rom 'the a c t i v i t y  of its daughter t h e  sum 

o f  the  ~ h ~ ~ ' ( d , p ) T h ~ ~ ~ ,  and ~ h ~ ~ ~ ( d , n ) ~ a p ~  exc i ta t ion  functions- was 

; 
a lso .  eas i ly -  obtained- .by. not..sc-avenging-'f o"r i n i t i a l l y -  f urmed..-prota-ctin- 

ium. The ~ h ~ ~ ~ ( d , n ) ~ h ~ ~ ~  exci ta t ion function was obtained by- difference.  

The U238(d,p)U239 and ~ h ~ ~ ~ ( & , ~ ) ~ h ~ ~ ~  excf ta t ion functions were 

extended by deuteron runs"made on uranium-and thorium.usfng the 

deuterons. o f .  the  Berkeley 18-4-.inch cyclotron which -have a .  maximum 

' . .. . . . . . energy of 195. Mev. Comparison of the resul t ing (d,p) excitation.  
.. 

J 

functions with t h a t  on 8i209 showed t h a t  t h e  l a t t e r  wa-s considerably 

lower i n  magnitude and f e l l  off much more.sharply with increasing 

d-euteron energy. It was suspected t h a t  perhaps the  reason f o r  t h i s  

. . . . 
discrepa& w s  re la ted  t o  the  f a c t  t h a t  ~i~~~ was one neutron and 

one. proton. bqmnd majm c l m d  sfrells. 

a s .  weZl a s  obtaining. a-.-genera3 expxpTanation. of - . t o t a l  "stripping'.' 
. . 

' reactton - cross'. -se.cttor%laes, it was d x 3 t l e d  - t o  study. addittwnal 

high-energy (d;p) reactioks . Study 'of ".high-energy f&,p):::rexxctions i s  

- . . gene ra l ly  ea s i e r  than study: of the  'iiorresgondtng low-ene.rgy..reactions 

because. of.-the - a i f f i c u l t y  i n  obtainingpure x n i f  orm f of "l of -. about. . 
. . 

, . .  . ., . , . .  .. . .  , 
. . . .  . .. I ' m i l  i n  thic,kness'-'mc.es.sary..for low-energy..deuteron reactions,; F o i l s  

'much greater  :'than 1 m i l  ' i n  thickness-. cause too' l a r g e - a  degradation of 

deuteron energy i n  the  region of 20 Mev o r  l e s s .  Also, the  "stripping" 
, . 



.',.,.. 
.. , 

reaction e i c l t a t ion  Tunctions i n  the high-knergy region are  .quite 

smooth compared t o  the region near the peak. This r e su l t s  i n  the 

need f o r  fewer experimental points . to  f i x  the excitation function 

i n  the high-energy deuteron region. 

The choice of t a r g e t  materials f d r  study of high-energy (d,p) 

reactions by chemical separation i s  ra ther  severely limited. . F i r s t  
: .I 

t he  t a rge t  material  must,be ~ ~ a h l a g l e  i n  the form i f  a metall ic f o i l  

of f a i r l y  high melting point .and very high purity.  It i s  very d f F f f -  

c u l t  b prepare powder t a rge t s  of suf f ic ien t  durabi l i ty ,  thinness, 

and uniformity f o r  use in  these experiments, The isotope resul t ing 

from. the '  ( d , ~ )  reac'tion mu'st have a reasonably long half -1if e t o  enable 
\ 
I. chemic'al separation from containinating a c t i v i t i e s , :  It i s ' t o  be noted ' 

. . 

t h a t  where high-energy deuterons. a r e  employed the (djp) reactidn can 

only be studied on the heav2est isotope of a par t icu lar  element if: . . . 

there  a re  two or  more isotopes i n  the ta rge t  material.  he highter . . 

crossasection valued (d,dxn) reactions on the heaviest isotope would 

r e su l t  .in the same, products a s  (d,p) reactions .on l igh te r  isotopes. \ .  . . 
I .. 

Theref ore a l l  (d,p).: reactions reported below have been. corrected 

f o r  isotopic abundhce as given i n  the  Table of ~ s o t o ~ e s . ~  The 
. . . . 

smaller the abundance of the  heaviest isotope of-.an element, the  

harder it i s  t o  experimentally observe the  (d,p) reaction. unless 

the isotope resul t ing from the (d,p) reaction bas a radioactive . 

daughter of reasonable half -1if e ,. i t s  half -1if e should be unique 

among the  half - l ives  of .  a c t i v i t i e s  produced by (d, dxn) reactions 

on the various :isotopes i n  the ta rge t  element. (d,p) cross section 

values a re  quihe small f o r  high-energy deuterons, and a c t i v i t i e s  with 

compacable.'half-life make very d i f f i c u l t  or impossible the detection 
. .  . 

. . . .  . . .  
of .the p,roduct a c t i v i t y  of the (d,p) reaction. 

- .  



Because '&'-,the above considerations,  successful  study of high energy 
. . 

. .. 

(d ,p) 'reactions .iwe.r2.::lf~hited; t&::.$he' following . cases : 
. . 

u238(d,p,u239 

~ h ~ ~ ~ ( d , ~ ) ~ h ~ ~ ~  

Ptlg9, 

l l l g  l i l m  
\ 

pdl10 (d ,p) pd ,P+, 

96 Z r  (d,p)zrg7 

, 0 ~ 5 ( d , p ) r n 5 ~  . 

The only case studied near a closed s h e l l  i s  t h a t  of 

pdl10 ( d , p ) + Pd l l l m  . The 65~d111 i s  one neutron pas t  the  closed 

sub-shell  of 64 neutrons. However, i n  t h e  model described i n  the  

discussion,  ef fects  caused by closed s h e l l s  would be taken i n t o  

account by t he  accompanying changes i n  such general  parameters a s  t he  ' 

: nuclear radius and binding energy. 

B . EXPERIMENTAL PROCEDURES 

1. Target preparation.--Uranium d i s c s  of 1 m i l  and 0.5 m i l  th ick-  

ness and-:thorium d i s c s  of 1 . m i l  . thickness were c u t .  from sheet  uranium 

and thorium with a 1 inch diameter s t e e i  d i e .  These were checked f o r  

uniformity - of thickness.  with a micrometer and disc's varying .more than 

+- 5 percent t n  thi-ckne.s.s .were re;jected. Those' remaining were accurate ly  

weighed andi.:'.sta-cks .of .thebe f o 5 l s  served as t a r g e t s  f o r  t h e  deuterons 

of t he  Berkeley 60-inch cyclotron.  The f o i l s  were mounted,at the  end 

of a Faraday cup with a 3//4 inch opening. They were secured- by a cap . . 

with a 314 inch opening. I n  t h i s  arrangement and with the  cyclotron 



port: used- the maximum energy of the 1/8 inch collimated beam of dtSuterons 

striking--the-f irst" t a rge t  was 20.2 + 0.2 Mev. In  . the case of uranium the 

number o f ' f o i l s  t ha t  could be worked up simultaneously was l imited t o  s ix  

because of the 23.54 minute half - l i f e  of u ~ ~ ~ .  ' ~ h e r e f o i e  , 5 m i l  d iscs  of ' 

uranium were placed i n  f ront  of the ta rge t  f o i l s  t o  degrade the  deuteron 

energy i n  studying various regions of the excitation function. 
I 

Target E- f o r '  tho deuteron0 of the Berkeley 184 -inch syn~ku.ocYclul;.run 

were .usually made from 1 inch discs  of 5-10 m i l  thickness. These were 

a l so  checked f o r  uniformity of thickness and accura.t,ely weighed. Two . 
. . 

aluminum f o i l s ,  1 inch i n  diameter, of .0 -5-1 m i l  thickness, accurately 

weighed, were glued a t  opposite edges t o  the t a rge t  discs ,  one on each 

s ide .  The resul t ing f o i l  stack was cut ' in  two ." one t o  one and one -half 

m i l  th ick aluminum guard f o i l s  were inserted between the ta rge t  f o i l  and . . . ... - . '  
' .  , 

the  two aluminum.monitors. The whole assembly'was covered with an0the.r 

.guard f o i l  of .aluminum. A standard "clothes-pin" type t a rge t  holder was 

used f o r  mounting. ' . . 

The manganese.meta1 used was too b r i t t l e  t o  cut in to  discs  with a 

d ie .  It had been produced by electrodeposition and one side was very 

smooth while the o ther .  was quite granular. ' Rectangular piece s were 

formed by scoring .the smooth surface with a diamond stylus  and breaking. 

Pieces were chosen with small and uniform granulations on the rough 

surface. Only one aluminum monitor f o i l  was..used because o f : the  

roughness of one surface. Guard f o i l s  were used between .the monitor 

. .and the ta rge t  a s  well a s  around the whole assembly. Because of the 

b r i t t l eness  of ' the manganese, enhanced by a small amount of hydrogen 

impurity, the t a r g e t  could not be cut a f t e r  bombardment.. Hence, since 

the  'whole of the manganese ta rge t  was destined . t o  be worked up, only 



an exten-sTon.....af.. the- outer  aluminum cguaxdl f o i l  w a s  secured- by t he  jaws 

of the;  ."cTath-es=pin" type . - t a rge t  holder. ,,Thi.s was t o  ensure t h a t  a l l  . . . : 
of t he  deuterons.'stflki.ng t he  manganese were of the  same energy; t h a t  

. . 

is,. t he  jaws. of .the t a r g e t  holder would not .cause any degradation of , . 
. . 

t he  energy of t he  deuterons s t r i k i n g  the  t a r g e t .  

2 .  Bombardm.ent.proeedure:s.--For deuteron bombardments using t he  . - 
60-inch cyclotron.  the...-use of .an aluminum monitor w a s  impractical .  The 

~ l ~ ? ( d - , ~ z ~ - ) ~ a ~ ~  excitati-on function r i s e s  much too  rapidly  i n  t h e  

v i c i n i t y  of .20 'Mev.; . The. deukri3.n. "be-am was:.:!monitored by recording 

current  i n t eg ra to r s . '  A. "beam p ro f i l e "  w a s  a l so . t aken  by means of a  

"Speedomax" recording .devi-ce. Both of these instruments were ca l ib ra ted  

before and s o m e t i k s . a f t e r  runs by means of an accurate ly  known f a l s e  

beam. The e f f e c t  of secondary e lect rons  from the  t a r g e t  w a s  negl i -  

g ible  because o f . t h e  f r ing ing  of ' t he  magnetic f i e l d  at.-the pos i t ion  

of t he  F a r a b y .  .cup. .*&Liminary .runs were always made with a s t r i p  

o f .  ce l lu lose  tape replacing the... t a r g e t .  These were done t o  ensure t h a t  

t h e  deuteron .beam would s t r i k e  t he  t a r g e t  and nbti;%he l i p  of t h e ' .  

Faraday. cup a s  well  as t o  a sce r t a in  whether t he  deuteron beam was of 

s u f f i c i e n t l y  gre& in t ens i t y .  

Bombardments var ied from 5-20 minutes, depending upon beam in t ens i t y .  

The t o t a l  number of deuterons del ivered was obtained from the  current  

i n t eg ra to r s .  ThisMwaa'- c-hecked by ' in tegrat ion under the  current  

p r o f i l e  wtth a planix&t&r. Correction f o r  va r i a t i on  of t h e  beam 

i n t e n s i t y  during t h e  bombardment w a s  made by dividing t he  current  

p r o f i l e  $'fit0 one minute i n t e rva l s  and in tegra t ing  each of these  with 



a plariihe-tjer. ' The t o t a l  currene deTivered i n  each. i n t e r v a l  w a s  'expo- 

n e n t i a l l y  reduced, using- t h e  appropriate half  L l i f  e , t o .  t he  time of t he  

end of the.  .bombardment. . The sum of' . the ' r esu l t ing  "decayed" ' t o t a l  

c . u r e n t  s .  represented.. the" e f f ec t i ve .  total :  current  i f  delivered ' in -  

stantaneously a t  t h e  t9me of. the. end of , the  .bombardment. 

The rate, 'of-.deuteron. energy'.degradtition with thickness of thorium 

o r  uranium t a r g e t  a s  a funct ion of deuteron ene,rgy.is given i n  

Figure 1. I am thankful  t o  W .  W .  Crane f o r  t h i s  graph. , The r a t e  of 

deuteron :energy. degradation . i s  almost exact ly  t h e  same ' fo r  thorium 

and uranium. Figure 2 showsthe energy of t he  deuterons, a s  a 

funct ion of t a r g e t  thickness,  a s  they a r e  degraded from t h e i r  i n i t i a l  

energy of 20.2 Mev. 

The energy of t he  deuterons s t r j k ing  t he  t a r g e t  i n  184-inch 

cyclotron runs i s  a funct ion of t he  radius of the  t a r g e t  i n  t he  tank.  

Below 50 Mev, energy de f in i t i on  of the  deuteron beam i s  qui te  poor. 

For t h i s  reason runs were made with deuterons of 50-190 Mev energy, 

usual ly  a t  i n t e rva l s  of 50 Mev. The degradation of deuteron energy 

caused by t a r g e t  thickness was qui te  small. 

The t o t a l  number of. deuterons s t r i k ing  the  t a r g e t  i n  the  184-inch 

cyclotron r u n s  was ascer ta ined from the  ~a~~ a c t i v i t y  produced i n  t he  

aluminum DidnitOrs and- the-known c r o s s  sect ions  f o r  the  ~ l ' ~ ( d , ~ ) ~ a  24 

exc i t a t i on  funktion, a s  shown i n  ~ i ~ u r e '  3, courtesy of E .  B. King . '  

and t he  Cali'fornia Re'searc-h and Development Corporation. The e f f e c t  of 

va r i a t i on  of .beam' intensity-with time was avoided by bombarding f o r  

periods shor t  compared. to t h e  h a l f - l i f e  of ' the  desi red product isotope . 

a s  wel l  a s  by tuning up t h e  'cyclotron 'before t he '  target. was bombarded. 
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Fig. 2-Energy of deuterons of 20.2 Mev initial energy 
as a function of thorium target thicknees. 



~ i g .  3 --AI~'(~, tup)~aU excitation function. 



The beam of 'deuterons- i s  ctepressed from the  middle of the  tank f o r  

,ener.@es-%elow. the- maximum t o  about 100 Mev; below t h i s  it again r i s e s  

somewhat. Because of t h i s ,  f o r  maximum production of a c t i v i t y ,  t he  

t a r g e t  should be placed below the  center  of the  t a r g e t  holder f o r  
. . 

energies  other  than t h e  195 Mev maximum. 

3. Targeb. handling- p rnced~~reo  . --In t h e  60-inch cyclotron runs, . 

the..whole d i s c s  of.uranium and: thorium were dissolved and. worked up. 

However.; with t he  exception of manganese, s t r i p s  of t a r g e t  a.few . .. . . .. 
. .  . . . 

millimeters.,ai-&e.- w e r e  cut  ofif a f t e r  bombardment by deuteron6 of thk 

184-ili.c.h cyclotron.  The guard fo i l s  and monitors were removed and 

' 

t h e  t a r g e t .  s t r i p s  weighed, dlssolved,  and worked up. Narrow s t r i p s  

were c u t .  off because .most' of t h e  t a rge t  a c t i v i t y  i s  produced near t hc  

edge 'and because it w a s  des i rab le  t o  have t he  a rea  of the 'monitors 

counted a s  small a s  t h a t  of t he  f i n a i  sample a c t i v i t y  counted. 

4.  Counting prdcedures. - - A l l  Geiger a c t i v i t y  was counted on the  

bottom d she l f  two- using chlor ine-argon-f i l led  Amperex tubes with a 

Z 
window -thkckness: of 3.5 milligrams of m i c a / c ~  ., .The total air-wi ndnw 

2 th ickness  was 5.8 mg/cm . Alpha a c t i v i t y  w ~ s  counted on an argon 

~l l led 'win '8owless  proportional  counter. With t h e  exception of thorium 

bombardments, a l l  Geiger a c t i v i t y  was counted using t he  same Geiger- 

~ G e l l e r  tube and s c a l e r .  Weightless samples of protactinium mounted 

on platinum were counted on. shelf  two with a counte r . ca l ib ra ted  t o  

wi thin  10 percent f o r  t h e  be ta  p a r t i c l e s  of . . This was done by 

the  Ca l i fo rn ia  Research and Development Corporation by counting the  L... 



alpha a c t i v i t y  of t he  daughter u~~~ of a la rge  sample of The 
. 

absolute geometry and.counting eff ic iency of t h i s , c o h t e r  on shelf  

two were a l s o  obtained by means of a 4 ~ t  geomet'ry counter .  The absolute 

geometry and counting eff ic iency on shelf  two o f - t h e  counter used f o r  

, . t h e  other be ta  a c t i v i t i e s .  encountered were obtained by comparison 

with t h e  standardized counter. For a l l  runs, except those  on platinum 

and palladium, where aluminum monitors were used it w a s  assumed t h a t  

t h e  same geometry and'counting e f f ic iency  applied both t o  t he  sample 

a c t i v i t y  A d  t o  t h e  Na24 a c t i v i t y  o f  t he  aluminum monitors. I n  t h e  

cases of platinum and palladium, where t h e  f i n a l  samples consisted of 

e lect rodeposi ts  of gold and s i l v e r ,  respect ively ,  a correct ion of 

4 percent was used because.-of t he  314 inch diameter of t h e  samples. 

Other s$mples were usual ly  mounted on platinum "hats" with t h e  sample' 

covering one square centimeter. This i s  about the  same a r ea  a s  

covered by t he  aluminum monitors; t he  monitors being mounted on sa tura-  

t e d  aluminum backscat t e r i ng  backing. 

Air-window correct ions  f o r  each be ta  a c t i v i t y  encountered (includ- 

ing more thari one i n  a 'sample) were made a s  follows: 

correct ion = l / t ransmission = 2 5 8 w ' /cm2/Tlli 3 
. . 

2 where T i s  t he  half- thickness i n  rng aluminum/cm f o r ,  t h e   articular 
112 

24 
be ta  a c t i v i t y .  For t h e  ,1.390 Mev be t a  p a r t i c l e  of Na ., t h i s  correct ion 

mounts  t o  5.15 percent.  

Backscattering correct ions  a r e  those of 8.' P . Bur t t  . The 

24 
sa turated aluminum backscattering f a c t o r  f o r  be t a  p a r t i c l e s  o f  Na i s  

1.276. The. sa turated platinum backscattering f a c t o r  f o r  be t a  p a r t i c l e s  

of app&6ximately 0.6 Mev maximum energy o r  g rea te r  i s  1.78. 



Sel fsca t te r ing  corrections f o r  sample thickness- were o b t a i n ~ d  from 
. . . . . . _  .:. . 

6 '  data '  gathered.. by W .  E.. Nervik .and P. C . Stevenson a s  shown i n  Figures .4 
. . . . 

and 5 .  .Whenever 'p rac t ica l ,  sample thicknesses were made such t h a t  the 
. #  8 .  . .  - 

se l f sca t te r ing .  corrections were found i n  the  f l a t  section of the  curves. 
. . 

An attempt was a l so  made t o  f l a t t e n  arid smooth out any unevenness i n  
.. . . . . . . 

, ' .  . . .  

t he  samples. Samples were &wed;-'* t o  the platinum "hat.stl  w i t h  a b o ~ ~ t  
. . . , . . 

Z drops ot' zapon solut ion d i lu ted  approximately 4 t o  1. The m a s s  of 

the- -za-pon.was negl igible  i n  considering se l f sca t te r ing  correctfons. 

Self.scatter%ng cor rec t ions  f o r  monitor thickness are  given by Figure. 6, 

courtesy of E .  B. King .and the  Cal i fornia  Research and Development 

Corporation. 

A l l  correction f ac to r s ,  as  well  a s  necessary supplementary in- 

formatTon such a s  . . sample thicknesses,' .not given"above a re  t o  be found 
. . . . .  

i n  sect ion D, RESULTS. This i s  done t o  enable re-evaluation of the 

experimental data i n  the  l i t fh t  of more accurate information, such a s  

on se l f  sca t te r ing ,  as it becomes known. 

1. ~ ~ ~ ~ ( d , p ) ~ ~ ~ ~ .  -  he uranium t a r g e t  was dissolved i n  a small 

amount of concentrated HNO About 20 m l  of-  a solution 10 M i n  NH NO 
.3 - 4 3 

solid.NH NO Approximately 30 ml of dfethyl  e ther  was added-and the 
4 3' 

mixture was shaken i n  a 100 ml Kjeldahl f l a s k .  After separation of 
. . 

the  phases the  f l a s k  was immersed i n  .a  dry ice-acetone mixture u n t i l  
. . .  . . . . . . 

t he  aqueous-phase was frozen. The e ther  phase was then washe$-dth 
% .  

. . . . 
, .. 

o. HNb;'l' 
t h ree  successive 10 m l  portions of the  10 M NH NO 

. . .  . - - .  4 3' . .  
;$ solu$ion. 

. ,. . ' j . ,  i.7 , : i ,  . ,.( ' . ' . . I  

!! I : . /  



Fig. 4 -The correction factor, FSQA, ae' a function , 

of thlclmeee of NaCl samples .for convenient beta 
energies. 



. ,Fig. 5 --The correction factor,* FSSA, .as a fimction 
of thickness of Pb(N03)* samples for convenient beta 
energies. . . 
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Fig. 6 -The effect of aluminum monitor thickness on the counting rate 
for the beta particles of ~a~~ on shelf two with saturated aluminum back- 
ing using an Amperex tube. 



- 
Uranium was backextracted from t h e . e t h e r  by shaking with 15 m l  of ' 

0.1 M HNO which was subsequently frozen 'and- t he  e ther  discarded. - 3 

Uranium hydroxide w a s  p rec ip i ta ted  with concentrated NH40H and cen t r i -  

fuged. The aqueous f r a c t i o n  was discarded and t he  uranium hydroxide 

was dissolved with concentrated HC1. The uranium was f u r t h e r  pur i f ied 

by column techniques. Concentrated NX Ofl was added t o  t h e  resu l t ing  
. . . . 4 

so lu t ion  and. t h e  p rec ip i ta ted ,  uranium hydroxide was centrifuged and 

then washed with Gater and recent rif uged . The p rec ip i t a t e  of .uranium 

hydroxide was made i n t o  a th ick  s l u r ry  and pa r t  of it was t rans fe r red  

t o  a pre-weighed platinum "hat" with a t r ans f e r  p ipet .  The s lurry  

was d r i ed  with t h e  . a id  of a heat lamp and then t he  platinum "hat" was 

s t rongly but ca re fu l ly  ign i ted  i n  t he  f lame,of a Meeker burner t o  

t ransf o m  t h e  uranium hydroxide t o  U 0 and d r i v e  off any NH4C1. 
3 8 

After  cooling t h e  platinum "hat" was weighed t o  determine t h e  yie ld  

: of uranium. 
8 

i 
2. ~h~~~ ( d , p ) ~ h ~ ~ ~  and ThZ3'(d ,n)paZ3' --The thorium t a rge t  was 

dissolved i n  a small amount of concentrated H C 1  t o  which had'been added 1 

, . 

a couple of drops of l / 5  M About 2 0 m l  of concentrated 
. . ,.. 

. . .  ... . 
. . .::,<+"..;;:; c- 

232 . 
.,. :...:.. ,. ,,_ .. . . . I.. .. . . .  . .. 

,_ . .  . . 
H C 1  wa's added. 1f only t h e  Th , ( C L , ~ ) T ~ ~ ~ '  c r a s s  sect ion was t o  be 

, ', . . . . . -  . . .  ...,_ >., . 
. . 

dete'rmined, i n i t i a l l y  formed protactinium was removed by column 

techniques. t r a c e r  was then added to. t he  thorium solution.  The 
.- 

paZ3' t r a c e r  had been f r e sh ly  extracted t o  ensure against  co l l o ida l  

protactinium. Three standard a l iquo ts  were taken and mounted on 

platinum p la tes .  I f  t h e  combined y i e ld  of t h e  ThZ3' ( d , p ) ~ h ~ ~ ~ '  and 

~ h ~ ~ ~ ( d , n ) ~ a ~ ~ ~  react ions  w a s  desired,  trace* was added t o  t he  
LL ' \ 



thorimti solut ion and protactinium was not removed by column techniques.. 

I n  both cases,  a f t e r  decay of t he  remaining ~ h ~ ~ ~ ,  the  thorium sblut ion 

was made 8 M . in  H C 1  and ektracted with 'two half  -volumes. of d i - i~dp ropy l -  - 
ketone (DIPK) by .shaking. i n  a separatory funnel f o r  a couple of 

minutes, The combined DIPK f r ac t i ons  were washed with two half-volumes 

of 8 ' . ~  HC1.  Protactinium was extracted from the  DIPK with two ha l f -  - 
volumes of 0.1 .M :IBlpKi. . The combined 0 .1  M HNO f r ac t i ons  were made 

s - 
I . , .  3 ..' - 3 

8 .M - i n  HC1. and extracted four  times with quarter-volumes of .0.4 M . - 

thenoyltr if luoroacetone ('ITA) i n  benzene. The combined benzene f r ac t i ons  

were reduced i n  vol~ume with the  a i d  .of a heat  lamp u n t i l  e s sen t i a l l y  

only TTA was l e f t :  A platinum p l a t e  was formed i n  t h e  shape of an 

inverted'cone and placed ins ide  the  c o i l  of. a 300 watt induction heater .  

The TTA w a s  heated u n t i l  l iquef ied  and then t rans fe r red  drop by drop t o  

t h e . c e n t e r  of t h e  heated platinum p l a t e  with a t r ans f e r  p ipe t .  After  

every few drops . the  temperature of the  platinum p l a t e  was ca re fu l ly  
- 

increased ' u n t i l  a l l  of ' the TTA had evaporated. After  the  last of t he  

'ITA had been evaporated the  platinum p l a t e  was f l a t t e n e d  i n t o  'a d i sc  

again while s t i l l  hot and then ign i ted  i n  the  flame o f .  a Meeker burner. 

The y ie ld  of protactinium was determined by counting the  alpha p a r t i c l e s  
- 

of i n  t he  weightless sample and comparingthe a c t i v i t y  of the  

I 
sample with the  alpha a c t i v i t y  of %he th ree  standard .plate's. - I 

3. ~ ~ ~ ~ ( d , p ) P t ~ ~ ~ .  --The platinum t a rge t  s t r i p  was cu t  i n t o  about 

a dozen small pieces.  These were added t o  a No. 1 porcelain crucible  
M 

. , 

approximately one-third f i l l e d  with molten zinc and heated by a Meeker 

burner. The .mixture was s t i r r e d  f o r  a few minutes, with a g l a s s  rod 
. . 

t o  dissolve  t he  platinum. The molten zinc was poured i n t o  a 600 m l  



beaker containing .about . 1 / 2 .  inch of .water. .Af.ter cooling. somewhat:,,-L3he r 
I .  

crucible with the  remaining zinc stuck t o  it was added. and. concent-rated . 

H C l  . was .added cautiously u n t i l  hydrogen -was no longer evol~ed..  A f ine ly  

divided black a l loy  of zinc and platinum resulted, from which' it -was 

easy t o  decant the supernatant l iqu id .  The precipi ta te  was washe& 

with d i s t i l l ed .wa te r  and again decanted. The al loy was.qui.ckly .. 

dissulved with a small amount of a.ql~a regi.a.. ' The - solution wac madc. 

8 'M - i n .  H C 1  and gold ca r r i e r  added. - The solution was extracted"three. . . 

. . 
.. .times :with equal volumes ,of e thyl  acetate t o  :.mmove. a1.X ca r r i e r  and 

.. i n i t j a l l y  formed gold :' Twenty milligrams of c a r r i e r .  gold was added ' ' ' 

a t  once t o  prevent lo s s  of radioacti-re gold by exchange of gold ions 

f o r  sodium ions on the surface of the glass.  A l l  the  remaining Pt 199 

was allowed t o  decay and the gold was extracted wjth ethyl  acetate 

u n t i l  no fur ther  gold passed in to  the solvent a s  shown by i t s  color. 

The ethyl  acetate f rac t ion  was washed once..wtth a half-volume of 

'8. M - HC1 and was t h e n  poured .onto about 20 m l . .  of. '2 M HNO i n  a beaker 
,, . . . . - 3 

and ~ 4 s '  heated u n t i l  a l l  the ethyl  acetate had evaporated. The 

r e s ' d t i n g  solution was made basic with ammonium hydroxide, heated, and 

a few m l  of a concentrated solution of ascorbic' ak.id.was..added. Th& 

r e s d t i n g  gold precipi ta te  w a s  digested f o r  a .  short while. i n  a water- - : 

bath and ccrl t~ifuged.  The precip-itate was. washed with d i s t i l l e d  water - .  

and again centrifuged. The gold was dissolved i n  a small amount of 

aqua regia  and mide 8 M i r i  HC1.  The extraction and  precipi ta t ion '  - 
. , 

cycle described above was  repeated. The ' f i n a l  gold prec ip i ta te  was 
. -. , . . 

dissolved i n t h e  smhlds t  possible amount 6f aqua regia. .  About 10 ml 
.. . , 

of a solution containing 2 . 5  g KCN p e r  100 .& d i s t i l l e d  water was added. . 
. . .. . ,  .. . . . . - ?  

. . .  .. .. 
. . '  



The gold was deposited e l ec t ro ly t i ca l ly  on a pre-weighed one-inch 
,- 

d$ameter platinum pla te  cathode; Only an area 314-inch i n  &fameter 

was exposed t o  the p la t ing  solution.  .The platinum pla te  was 'secured 

a t  the  bottom of a small polystyrene tube immersed i n  water kept a t  

0 a temperature of 55 C . A rotatirig aiocle, made out o f  a 118 inch 

diameter 10 percent iridium-platinum rod-, was. employed. The p la t ing  

solution was electrolyzed u n t i l  .colorless .using a current density of 

2 
0.024 amp/in . The resu l t ing  gold-plated- platinum disc  was washed 

, f i r s t  with d i s t i l l e d  water, then e thy l  alcohol, and f i n a l l y  d ie thy l  

e ther  .and then dr ied i n  an oven a t  110' G f o r  10 minutes. The y i e ld  

of gold was determined by weighing. 

~ d ~ ~ ~ ( d , ~ ) ~ d ~ ~ ~  + pdl'lg. --The palladium t a r g e t  s t r i p  was 

dissolved i n  a few m l  of aqua regta  and the solution was d i lu ted  t o  

30'ml i n  a 40 ' m l  centrifuge cone. I n  the  first se r i e s  of runs on the -  

~ e r k e l e ~  184-inch cyclotron the  solut ion was allowed t o  stand u n t i l  . 

a l l  Pd ''Ig had (decayed t o  Aglll. Twenty milligrams of s i l v e r  c a r r i e r  

was then added t o  scavenge f o r  a l l  s i l v e r  present.  The resu l t ing  

AgC'l p rec ip i ta te  was centrifuged an& d3scarded a f t e r  being'washed and -t: 

the  wash l i qu id  added t o  the  palladium solution.  The scavenge was ' 

- 
-, 

repeated with 20 mg more of s i l v e r .  Twenty milligrams 'of s i l v e r  

c a r r i e r  was added a t  once and the palladium solution was allowed t o  

stand u n t i l  a l l  Pd . . ''Im had decayid t o  Aglll. It was important t o  add 

the  c a r r i e r  immediately a f t e r  scavengtng because s i l v e r  ions l i k e  
- .  

those of gold, but t o  a much greater  extent,  exchange with the sodium 

ions, on the surface of the g lass  container. I n  the  second sertes of 



2-3 .. 
runs two s i lve r  scavenges were mkde as'soon as  possible and then s i lve r  

c a r r i e r  was added. The pallaclium solution was allowed to'.stand u n t i l  

.essent ial ly  a l l  of ,the Pd lllg had decayed. Tile solution was then 

centrifuged, the' AgC1 precipi ta te  washed and retained. The wash . . - 

l i qu id  was added t o  the palladium' solution and s i lver ,  carr ier .was . . 

added and the solution allowed t o  stand u n t i l  a l l  the  Pd lllm had . 

decayed. In bu,th'cases 'Lhe flnei AgC1 preclpl'txte was centrifuged, 

washed, and retained.. 

The A & 1  was dissolved with a few ml of concentrated NH OH and 4 

the solution di luted t o  20 ml. Twenty m i l l i g r a m s  of F~(+I I I )  ca r r i e r  

was a,dded and the resul t ing f e r r i c  hydroxfde or  hydrated i ron oxide 

was centrifuged and discarded. 

Hydrogen sulf ide was bubbled i n  and t'le resul t ing Ag2S cent r i -  

fuged and washed. A few ml of concentrated HN3, was added and the 
J 

mixture was heated t o  destroy'the Ag,S. The resu l t ing  solution was 
L 

di lu ted  t o  20 m l  i n  a 40 ml centrifuge cone and 20 mg of F~(+III)  

c a r r i e r  added. The ferr5c hydroxide precipi ta te  was centrifuged and 

discarded. A couple of ml of concentrated'EC1 was added and tKe 

resu l t ing  A g C l  was centrifuged and washed. T'ne AgC1. was dissolved 

i n  a few m l  of concentrated NH OH and di luted -to 20 ml. The solution 4 
was heated and a few ml of a concentrated solution of ascorbic acid 

was added. The resul t ing s i lve r  precipi ta te  w a s  digested f o r  a short 

while i n  a d t e r  bath, centrifuged,' and washed. Th.e metall ic Silver 

was dissolved with a small amount of concentrated HNO and the  solu- 
3 

t i o n  di luted t o  20.ml. Twenty milligrams of F~(+II I )  ca r r i e r  was 

added and the solution made basic with concentrated %OH. The 



-- 
r e su l t i ng  f e r r i c  hydroxide was centrifuged and d2scarded. .Hydrogen 

su l f ide  w a s  again bubbled i n  and t he  above procedure was repeated t o  

the  point  of d issolving t he  metal l ic  s i l v e r  i n  a small amount of 

concentrated HNO and d i l u t i ng  t o  20 ml with d i s t i l l e d  water. S i l ve r  3 - 
chloride w a s  p rec ip i ta ted  with a couple of ml of concentrated HC1.  

The p r ec ip i t a t e  w a s  centrifuged and washed. The A g C l  was dissolved 

i n  8 m l  of a solut ion containing 45 g KCN and 90 g K CO per  l i t e r .  
2 3 I 

The s i l v e r  w a s  electrodeposited on a -platinum p l a t e  using. t he  same 

arrangement a s  was used f o r  gold. deposition described above except 

t h a t  the  anode w a s  not ro ta ted  and t he  p l a t i ng  was.done at room 

temperature. Also, t he  t o t a l  current  s t rength  used w a s  0.01 amp, and 

. the  duration of the  p l a t i ng  process was somewhat over one hour. The 

resu l t ing  s i l v e r  deposit  w a s  washed with d i s t i l l e d  wate r j  e t hy l  
. .. 

alcohol,  and d i e thy l  e ther .  d he p la te '  was d r ied  f o r  10 minutes a t  . 

110' C a n d  weighed t o  determine the  y i e ld  of. s i l v e r .  

5 .  Zr96(d,p)Zr97. --The zirconium t a r g e t  s t r i p  was dissolved i n  

10 m l  concentrated H C l  t o  which had been added several  drops of 

.concentrated HF. The solut ion was ch i l l ed  ili  an i ce  bath  and 

saturated with HC1  gas.  Two milliliters of d i s t i l l e d . w a t e r  was 

added and t h e  r e su l t i ng  solut ion was sa tu ra ted  with oxalic acid .  

The solut ion was scavenged f o r  i n i t i a l l y  formed niobium by s t i r r i n g  

. with 15 m l  DIPK i n  a 40 m l  centr i fuge cone f o r  a couple of minutes. 

The resu l t ing  .mixture was centrifuged and. t h e  DIPK phase removed 

with a t r ans f e r  p ipe t  and discarded. It was necessary t o  scavenge 

for 'n iobium as. many a s  t en  o r  twelve times i n  t h i s  manner. .However, 



no zirconium was lo6 t rby  t h i s  method. Ten'mili5grams of 'iiiobium' , 

c a r r i e r  was added. ' It was i n  the  form of Nb205 dissolved. i n  ' 3  M! NaOH. - 
The solution was allowed t o  stand f o r  about. 3 hours and then f t w a s '  

again saturated with H C 1  gas in  an i ce  bath. Two m i l l i l i t e r s  of 

water' f o r  every 10 ' m l  of solution. w a s  added. and the solution was 

~ a t u r a t c d  with oxalic acid.  Niobiuu was ex'l;rac,Led once with a  

double volume of DIFK. The DIPK .phase was washed' 3 times with 5 ml 

of a  solution saturated with oxalic acid and of t h e  s r m  H C 1  

concentration a s  the zirconium solution. Niobium was backextracted . . 

from the DIPK with two 10 m l  portions of 6 ' M  BC1. These were - 
. . combined f n a  ' 100 m l  K jeldahl f  iask and 2 drops .of phenolpthalein 

indicator added. The f l a sk  .was ch i l led  i n  a  dry ice -acetone .mixture 
. .. 

and conceqtr&ted NH OX added. very caut iously and slowly- url.l;il the 4 
phenolpthalein endpoint was reached. The solution was kept ' chi l led  

t o  prevent the resul t ing hydrated niobium oxide. precipi ta te  from 

going in to  the col loidal  s t a t e .  The precipi ta te  was centrifuged 

and washed. ,About 7 m l  of .concentrated HNO was added arid the. . . . 
3 

. . 
' . mixture heated. The .mixture was di luted t o  20 id. with d i s t i l l e d .  . 

water and. centrifuged. Twenty m i l l i l i t e r s  of water .:was.: added t o '  

the  precipi ta te .  Two drops of phenolpthalein indicator was added 
. . 

, . . . 
and the solution was brought t o  the phenolp-thsle.in endpoint wfth ' 

. . 
. . 

conce rrtrated NH40H. The precipi ta te  was centrl.f uged and washed 
- 

f i r s t  with 40 m l  absolute ethyl  alcohol and then with 40 m l  d iethyl  

. . .- . ether.. The precipi ta te  was l e f t  i n  the centrifuge cone and dried i n  ' . . . . . . 

a water bath, ,It was then t ransferred .to a Vycor c ruc ib le  and 

heated strongly i n  the flame of a  Meeker burneF f o r  10 minutes. , ' 
. . . . . . . . . .  . . . 
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26 
It was necessary t o  heat  the  p r ec ip i t a t e  a t  such a temperature t h a t  

. . .  . . . . 
. . 

it assumed a yellow color .  The result i .ng Nb 0 was cooled and care- 
. . 2 5 

f u l l y  .powdered with a g lass  rod. The Nb 0 powder was poured i n t o  a 
2 5 

pre-weighed platinum "hat." The powder was evenly d i s t r i bu t ed  

an&:'.the platinum "hat " kas-:;heated strongly i n  the  flame of a Meeker 

burne.r f o r  a .  shor t  while. After  cooling, t he  platinum "hat" was 

weighed t o  determine the  y i e ld  of niobium. 
I , 

6. Mn55 (d,p)Mn56. --The manganese t a r g e t  was dissolved i n  

several  'ml of 6 '  M HNO Twenty milligrams of i ron ,  f i v e  mill igrams, - 3' 
of scandium; and t e n  milligrams each of calcium, t i tanium, 

vanadium, and chromium c a r r i e r s  were added. The solut ion was 

d i l u t ed  t o  20 m l  with d i s t i l l e d  water and made basic with concen- 

trakkdd NH OH. ' The r e su l t i ng  .p rec ip i ta te  was centrifuged and d i s -  4 

carded. ' The solut ion was then made 10 M - i n  HNO and heated t o  ' the  
3 

bo i l i ng  point .  Suf f ic ien t  so l i d  KBrO was added slowly and caut iously  
3 

t o  p r ec ip i t a t e  a l l  t h e  manganese as The p rec ip i t a t e  was 

digested f o r  a shor t  while, centrifuged,  and washed. The MnOZ 

prec ip i t a t e  was dissolved with a small amount o f '  concentrated H C 1  

and d i l h t ed  t o  &pproximately 30 m l .  The solut ion was made 

strongly m o n i a c a l  and jus t  su f f i c i en t  ( N H , + ) ~ s ~ o ~  was added t o  

p r ec ip i t a t e  , a l l  t h e  manganese a s  Mn02. The solut ion was boi led 

i n  a hot water bath  t o  cause p rec ip i ta t ion  of MnOZ and t o  dest roy 

any excess persu l fa te .  The p r e t i p i t a t e  was centrifuged and washed 

several  times with bo i l ing  water. The MnO p rec ip i t a t e  was 2 
. . .  

dissolved with a couple of m l  ot' concentrated HNO and a Sew drops 
. ., .. 

2 .  

of  30 percent H202 and heated t o  destroy excess H202. Again t h e  
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same c a r r i e r s  were added a s  above, t h e  solut ion . d i l u t ed  t o  20 m l  
. . 

and made basic with NH40H. The r e su l t i ng  p r ec ip i t a t e  was centrifuged. '  

and discarded. The solut ion was made 10 M - i n  HNO and heated t o  the  
3  

bo i l i ng  point .  The cycle of two prec ip i ta t ions  of Mn02 with KBrO 
,3 . 

and ( N A ~ ) ~ s ~ o ~  was repeated twice more except t h a t  before t he  l a s t  

complete cycle only 20 mg of i ron c a r r i e r  was added. After  t h e  

MnO p r e c i p i t a t e  from t h e . f i n a 1  persu l fa te  p r ec ip i t a t i on  was d i s -  2  

solved,' 20 mg of i r on  c a r r i e r  was added, t he  solut ion was d i l u t ed  .Lo 

20 m l  and made bas ic  with NH40H. The r e su l t i ng  p r e c i p i t a t e  w,as 

centr i fuged and discarded and t h e  solut ion w a s  made10 M i n  HNO The - 3 ' 

so iu t ion  was heated t o  t h e  boi l ing '  point ,  and MnOa was prec ip i ta ted  

with KBrO a s  above. The p r ec ip i t a t e  was centrifuged and washed 
3  

very wel l .  A s l u r ry  .was made of Ltle prec ip i t a t e  and p a r t  of it was 

placed i n  'a pre-weighed platinum "hat If with the  a i d  of a  t r a n s f e r  

p ipe t .  The p r e c i p i t a t e  was cautiously p a r t i a l l y  dr ied w i t h  a. heat .  

lamp. Too greatheatwoulddecomposetheMnO Because o f t h e  
2" 

voluminous nature of t he  p r ec ip i t a t e  and consequent shrinkage upon 

drying, addi t ions  of t h e  s l u r ry  were made t o  t h e  platinum " h a t e t t  

When enough sample had been accumulated, .Lhe drying of t he  sample 

0 was accomplished i n  an oven a t  110 C .  Af te r  cooling, t he  platinum 

"hat" ' w a s  weighed t o  ascer ta in  t he  y i e ld  of manganese. 

D. RESULTS 
. . 

. 1. ~ ~ ~ ~ ( d , p ) U ~ ~ ~ ~ - - T h e  23.54 minute half  -1if e  a c t i v i t y  of 

u~~~ was counted d i r ec t l y .  This was resolved from a r e l a t i v e l y  

small t a i l  composed of a c t i v i t i e s  of considerabl-y I.onger half  -1if e  . . - 
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. c 2 g  

Fi.ve..separate runs were k d e  on t h e  Berkeley 60-.inch cyc lo t ron . .  
- .,. 

giving ,a t o t a l  .of '25 .samples represent2ng ;cross sect ions  a t  .energies 

from 5 -98 t o  19.. 82 Mev. .Ei.ght bombarc3ment.s we,re ..made .on the  

Berkeley 184-inch cyclotron rahging i n  energy from 50 t o  174 Mev. 

An aluminum wrapped piece of uranium was placed behind t h e  

copper l i p s  of a "clothes-pin" type t a r g e t  holder  (0..25-0.40 inch 

i n  thickness) about 7 mm away from the  leading edge of an uranium 

t a r g e t .  The assembly was bombarded with f u l l  energy deuterons. 

The u~~~ a c t i v i t y  induced i n  t he  shielded piece of uranium indicated 

t h a t  t he  contr ibut ion of. t he  neutron background i n  t he  tank i n  

forming u~~~ by t he  (n,y) react ion amounted t o  a t  most probably a 

few percent of t he  t o t a l  observed $39 cross  sect ions .  The e f f e c t  

of t he  (n,y) react ion on c ross  sect ions  f o r  formation of t h e  

o ther  nuclides studied w a s  considered t o  be about t h e  same o r  

smalle r . 
I n  60-inch bombardments on uranium and thorium, -the a c t i v i t y  

induced i n  f o i l s  beyond where the  deuteron energy has been degraded 

t o  zero indicated t h a t ,  as an approximate l i m i t ,  2 percent of t he  

t o t a l  cross  sect ion at  the  peak of t he  exc i ta t ion  funct ions  f o r  the  

production of u~~~ and ~h~~~ w a s  caused by t he  (n,r) react ion.  

The neutron background should be proportionately much higher f o r  

60-inch than f o r  184-inch cyclotron runs due t o  t he  th icker  

t a r g e t s  used and t he  f a c t  t h a t  the  118 inch coll imated beam of 

deuterons reaching t h e  t a r g e t  represents only about 5 percent of t he  

t o t a l  number of deuterons s t r i k i n g  ,the aluminum collimat.or. :, 
'4. 
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I n  TabiLe s 1 .through 5 .may be f oGd values .of... the  . cross section 

38 f o r t h e  3 (d ,p )~239  reaction f o r  various dkuteron energies a s  

obtained from the f i v e  runs on the Berkeley 60-inch cyclotron.  

Self sca t te r ing  f ac to r s  f o r  .the var ious ,  sanple thicknesses are  a l so  

included i n  the  t ab l e s .  Tne same ~ e l f s c a ~ t t e r i n g  f ac to r s  f o r  . 

U 0 as f o r  F ~ ( M O  ) are assued .  The alr/wlndow correction 
3 8 3 2 

f a c t o r  w a s  taken as 1 . 0 6 9 ~  

Table 1 

U238(d,p)U239; run 1 on the Berkeley 60-inch cyclotron. ' 

2 m g  U238/cm2 Deuteron Energy 'U239 mg U 0 /cm f s s  u308 
(&lev) (mb) 3 8 

Table 2 

~ ~ ~ ~ ( d , p ) ~ ~ ~ ~ ;  mk z an t h e  Berkeley 60-incd cyclotron. 

2 mg ~ ~ ~ ~ / ~ m ~  Deuteron Energy u ~ 2 3 9  q 0 /cm fss  
3 8 ' (MCV) (mb 3 0 



Table 3 

$38(d,p)~239; run 3 on t he  Berkeley 60-inch 'cyclotron. 

u 2 s~238/cm2 Deuteron Energy ~ 2 3 9  mg U 0 /cm iss u308 
(MeV) (mb 

3 8 

;' .../ , : 
.,, ,. <'/*' ;, , !:; !,',,;; ; .; %., ,, , /' ,,. ' '/ , 

Table 4 {$&&< " , : : 4 j > . , 7 : . j  ,: 6 , .,;,/ >*,I ./ 
i,,c,:.::t ,5 , ";!'?,;!;:;"c:"$ ,:$ .. 

2 39 
!: ;.;:; . . ,. , ;.; j(y< f 3 8 [ d , p ) ~  . ; run 4-:,bn t he  Berkeley 60-inch cyclo<r6n. - . .; 

2 m g  . ~ ~ ~ ~ / c m ~  Deuteron Energy 0 ~ 2 3 9  mg u30dcm 
f ss U308 

(MeV) (mb 1 



Table 5 . . 
. . 

~ ~ ~ ~ ( d  , p ) ~ ~ ~ ' ;  run 5 o n  the  Berkeley 60-inch . cyclotron. . 

Table 6 l i s t s  t h e  r e s u l t s  of t h e  deuteron 'bombardments on, , 

'uranium using t he  Berkeley 184-inch cyclotron; 

Table 6 

$38(d,p)U239; runs on the Berkeley 184-inch cyclotron.  

2 2 Deuteron Energy 'u239 mg U 0 /cm f ss U308 
3 8 .  

Avg:. mg ~ l / c m  fss 
( M ~ v )  ( ~ b  

The ~ ~ ~ ~ ( d , p ) ~ ~ ~ ~  exc i ta t ion  function i n  t h e  ranges qf t he  

Berkeley 60-inch and 184-inch cyclotrons i s  given i n  Figures 7 and 8, 
. . 



- RUN 2 

A - RUN 3 

7 - RUN 4 

I! ! ! ! lb 1'1 I? Ib lb I! 16 ,! 8 .  1 4 ? 0  
DEUTERON ENERGY ( ME V ) 

Fig. 7 - u ~ ~ ~ ( ~ , ~ ) u ~ "  excitation function in the range 
of the Berkeley 60-inch cyclotron. 



Fig. 8 - ~ ~ ~ ~ d , ~ ) ~ ~ ~ ~  excitation function in the range 
of the Berkeley 184-inch cyclotron. ' 
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3f" 
respectively.' Both sections are  shown. together in 'Figure 21. , The . 

values of .the cross sections given by t h i s  exci ta t ion funct'iori, - 
' 

as 'we l l  as  cross section values f o r  a l l  other exci ta t ion functions 

given l a t e r ,  should be accurate within +-20 percent f o r  t h a t  portion 

of the kxcitation function down t o  the area.  of .the peak. ~ e ~ o n d  the  

relat ively.  f l a t  area.  of 'the 'curve near the peak, values of the 
. . 

cross section become increasingly unreliable. I n  a stacked f o i l  

experiment, especially with low energy par t ic les ,  range straggling 

causes an'energy spread; &, amongst 'even or iginal ly  monoenergetic 

deuterons t h a t  increases with increasing ta rge t  thickness. I n  

addition, an i n i t i a l  energy spread, & o f  the  deuterons from the 
\ 0 - 1 

' . 60-inch cyclotron increases a s  E with increasing t a rge t  thickness. 

. A t h i r d  cause of energy spread i s  the accumulated nonuniformities 

i n  individ.ua1 f o i l  thicknesses. Thus par t  of. the beam w i l l  

probably see a somewhat thicker  ,or thinner target .  than the r e s t .  

2 .  ~ h ~ ~ ~ ( d , p ) ~ h ~ ~ ~ ~  --The y ie ld  of t h e  23.3 minute half - l i f e  

233 ~h~~~ was obtained from the  ac t iv i ty  ot' the daughlar Pa 
' 

'correction was made f o r  the decay of ~h~~~ from the time of bom- 

bardment t o  the time of .separation of ' a l l  i n i t i a . 1 1 ~  formed 

protactinium. The 27.4 day h a l f i l i f e  i s  the only 

ac t iv i ty  seen i n  the  f i n a l l y  separated protactinium fract ion.  

Tables 7 through 9 l i s t  r e su l t s  of three runs on the Berkeley 60-inch 

. . cyclotron. DiTficulties arose i n  measuring the  beam current i n  the 
, I 

f i r s t  and t h i r d  rms. Shorts i n  the c i rqb i t  . resu l ted  i n  apparent 
. ..? 

t o t a l  beam currents in  excess of the actual ,  Because of t h i s ,  the 



cross sections obtained i n  these rms are  given i n  the  tables '  

normalized t o  . the highest and most: correct - of ' the three.  runs, 

nmber two.. 

Table 7 . 

~ h ~ , ~ ~ ( d , ~ ) ~ h ~ ~ ~ ;  run 1 on the Berkeley 60-inch cyc1,otron. 

. mg ~ h ~ ~ ~ / c m ~  Deuteron Energy ( ~ e v )  . a 'mb). 
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Table 8. 

. . ~ h ~ ~ ~ ( d , p ) ~ h ~ ~ ~ ;  run 2 on the Berkeley 60-inch cyclotron. 

mg ~ h ~ ~ ~ / c m ~  Deuteron Ener-gy (~ev) 0 (mb) 

13.93 20 .oo 117 



Table ,9 . . 

~ h ~ ~ ~ ( d , p ) ~ h ~ ~ ~ ;  run 3 on the  Berkeley 60-inch cyclotron. 

mg ~ h ~ ~ ~ / c m ~  Deuteron Energy . ( ~ e v )  cr (mb). 

2 32 The values of t he  cross  section f o r  the  Th ( d , p ) ~ h ~ j j  

exc i ta t ion  function become increasingly unreliable f o r  deuteron 

energies beiow the  area of the peak f o r  the  .reasons given i n  con- 

. nection with the  U238(d9p)'~239 reaction.  However, i n  the  cake df 

' thorium there i s  an addi t ional  complication. The i n i t i a l  counting 

r a t e  of many of the  samples was weJ.1 helow 50  counts/minute, some 

around 10 or lower. The resu l t ing  s t a t i s t i c s  and the  possible 

presence of a very small mount of impurity hindered the drawing 

of a sa t i s fac tory  decay l i ne .  The small i n i t i a l .  counting r a t e  was 

the  r e su l t ,  of slnall cross sections a t  low deuteron energies, small 
.. . , . 

beam current passed by the  collima,tor, and the  r e l a t i ve ly  long 



half  - l i f e  of compared with u~~~~ as well  a s  poor chemical y i e ld  

i n  some cases,  Long bombardments were ruled out because of t h e  

23.3 'minute half - l i f e  of ~h~~~~ As has been pointed out e a r l i e r ,  

t h e  ef f e c t  of neutron background . i s  small . f o r  observed cross  

sect ions  near t he  peak i n  deuteron bombardments on t h e  Berkeley 

60-inch cyclotron. '  However, t h e  contribution of.t,he ( n , ~ )  reaction 

becomes r e l a t i ve ly  of increasing importance f o r  small deuteron 

energies where t he  (d,p) cross  sect ion values a r e  small.  No 

correct ions  f o r  . th i s  . e f fec t  have been made i n  the  given exc i t a t i on  

functions on uranium or  thorium. There are. t w o  reasons f o r  t h i s .  

Fi ' rs t ,  t he  neutron background i s  not a constant f o r  a l l  of the  

stacked f o i l s  but  should increase with increasing t a r g e t  thickness.  

Secondly, t he  same correct ion cannot be made, per  given number 

of deuterons s t r i k ing  the  t a r g e t ,  from one bombardment t o  another 

sinc.e.'the percentage .of deuterons passed by the  coll imator of the  

t o t a l  number s t r t k ing  it usual ly  var ies .  

The &8ul t s  of the  deuteron bombardments on thorium using 

the Berkeley .1.84-j,nch cyclotron & r e .  givcn i n  Table 10. 

Table 10 

233 ~ h ' ~ ' ( d , ~ ) ~ h  ; runs on the  Berkeley 184-inch cyclotron. 

~ e i t e r o n  Energy ( ~ e v )  cr (mb) mg ~ l / c m  2 
fo s  Al 



- 
Figures 9 and 10 give  graphically the  ThZ3' ( d 9 p ) ~ h 2 3 3  exc i ta t ion  4 

funct ion i n  t he  ranges .of t he  Serkeley 60-inch cyclotron and the  

Berkeley 184-inch cyclotron, respectively.  Bot" sect ions  are  

shown together  i n  Figure 11. 
- 

. . 

3. ~ h ~ ~ , ~ ( d  ,n)E&.233. --In t h e - f  i r s t  Berkeley 60-inc,h cyclotron 

deuteron bombardment on t h o r i m ,  al te ' rnate ' thorium f uilv were 

worked up without removal of i n i t i a l l y  formed protactinium. I n  

t h e  energy range encountered, only w a s  detectable  i n  t h e  ' . 

r e s u l t i n g  protactinium f r ac t i on  . This represented the  combined y i e ld s  

of t he  Th232(d9p)Th233 and ~ h ~ ~ ~ ( d , n ) ~ a ~ ~ ~  react ions  a s  a l l  of the  . .  

~h~~~ had decayed. t o  before t h e  f o i l s  were worked up. Table 11 

gives  t h e ,  observed combined cross  sect ion f o r  t h e  two react ions .  

'Table 11 

2 32 ' . ' . ~ h ~ ~ ~ ( d , p ) ~ h ~ ~ ~  plus  Th .. ( d , n ) ~ a ' ~ ~ ;  x u n  1 on the  
Berkeley 60-inch cyclotron,  

m g  ~ h ~ ~ ~ / c n ~  Deuteron Energy ( ~ e v )  a (mb) 



- 
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.-RUN 2 

A-RUN 3 

'6 ! ! A /O ! I2 I! ,! ,b I6 I! 1 i', 2 0  
DEUTERON ENERGY ( MEV ) 

Fig. 9 - ' ~ h ~ ~ ~ ( d , ~ ) ~ h ~ ~ ~  and t ~ h ~ ' ~ ( d , n ) p a ~ ~  excitation 
functions in the range :of the Berkeley 60-inch cyclotron. 



Fig. 10- lh232(d,p)Th2dS excitation function in the rang= 
of the Berkeley 184-inch cyclotron. 

t 



Fig. 11 -Comparison of the u ~ ~ ~ ( ~ , ~ ) u ~ ~ ~  and the ~ h ~ ' ~ ( d , p )  I'h2" 
excitation functions. . . 



Figure 9 gives t h e  combined .exc.itation function a s  well  a s  the  1, 

23.3 ThZ3'(d,n)~a exc i t a t i on  func t i on  a s  obtained from the  difference 

of t h e  combined and t he  ~ h ~ ~ ' ( d , p ) T h ~ ~ ~  exc i ta t ion  functions.  Values - 

of t h e  cross sect ion of t he  ~ h ~ ~ ~ ( d , n ) ~ a ~ ~ ~  exc i ta t ion  funp+inn svm 

- 
qui te  unrel iable  f o r  deuteron energies below t h e  area' of .  t he  peak 

due t o  t h e  f a c t  t h a t  they a re  obtained fro111 the rlirrerttrlce of two 

r e l a t i v e l y  l a rge  f i gu re s ,  both subject  .Lo ra ther  l a rge  e r r o r s .  

4. Pt198(d,p)Pt199. --b&ss sect ions  f o r  the  formation of 

F%199 were. obtained from the  a c t i v i t y  of t h e  daughter, 3 .15 day "- 

h a l f - l i f e  A U ' ~ ~ ,  i n  t he  f i n a l  gold f r ac t i on .  A I ~ ~ ~ ~  was t h e  only : 

a c t i v i t y  i n  t h i s  f r ac t i on .  Correction was made f o r  t he  decay of 

31 minute h a l f - l i f e  F't199 from t h e  time of bombardment to the  t i m e  

of removal of i n i t i a l l y  formed gold. The combined airfwindow 

correct ion f a c t o r  f o r  t h e  three be ta  p a r t i c l e s  of A U ~ ~ ~  i s  1.760 j 

t h e  combined saturated platinum k&sca~%erin_g f a c to r  i s  1.560. 

Combined s e l f s ca t t e r i ng  correct ions  were obtained by assuming t h e  

. same f ac to r s  - fo r  gold  a s  f o r  P ~ ( N O ~ ) ~ .  Table 12 gives t he  r e s u l t s  

of. deuteron bombardments on .p.l.a.t.inum using t he  Berkel-cy 184-5dch . i  

cyclotron.  These r e s u l t s  a re  shown graph!.ca.l.ly i n  Figure 12,  

Table 12 

Pt198(d,p)Pt199; runs on t he  Berlteley 184-inch cyclotron . 

DeuteronEnergy o (mb) mgAu/cm2 fis AL, Avg. m@,.m/cm 2 f ss  Al 
" (bfev) . , 



Fig. 12 - ~ ' " ( d , ~ )  PtiN excitation function in the range 
of the Berkeley 184-inch cyclotron. 
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5 .  Pd1lo-(d,p)Pd l l l g  + p d l l l m  . --Two s e r i e s  of - deuteron bom- 

bardment s on palladium were completed uShr-ig. t he  Berkeley 184-inch 

cyclotron.  I n  t h e  f i r s t  s e r i e s  a l l  of t h e  22 minute h a l f - l i f e  

Pdl1lg wks allowed t o  decay before the  samples were scavenged t o  

remove a l l  s i l v e r .  Thus- only the  y i e ld  of t h e  5.5 hour hal f  -1if e 

isomer Pd l l l m  
w a s  measured. Thic was obtained f.~.urn t h e . a c t i v i t y  

of t he  da~lght.er, 7.6 d a y  half  - l i f e  A~'", iri s i l v e r  f r ac t i on  

removed a f t e r  decay of a l l  Pd1llm0 The only observable a c t i v i t y  

111 i n  t h a t  f r ac t i on  was due t o  Ag . The number of o r i g ina l l y  

formed atoms of Pdl1lm) taking i n to  account, i t s  75 percrrrt decay t o  

~ d ' l l ~ )  can be calcula ted from the  number of remaining atoms of 

Agl" a t  any time, t, a f t e r  t he  time of s i l v e r  scavenge a s  

follows : 

T i s  t h e  length  of 'time from the  end of bombardment t o  the t ime.of 
I 

s i l v e r  scavenge. C i s  t he  correction f ~ c t o r  used'herc n.nd '.in a l l  

o ther  cases t o  cor rec t  f o r  length  of bombardment comparable t o  t he  

half  -1if C of t h e  product nuclide and ' i s  calc'ulated a s  f ollqws : 

t here, i s  the  length  o f .  bombardment . 



I n  the .secont3 ser ies  ,o'f 'bombardments, a l l  i n i t i a l l y  produced 

' s i l v e r  was removed'as'soon as 'possible .  After t h i s ,  s i l ve r  was 

l l l g  ~d ,milked .from the sample twice; once Tjhen most of .the Pd. 

some of the pdlllm had decayed, and secondly when a l l  the r e s t  of 

t 
the Pd Illg and. Pd Illm had decayed; Let N - I1 . be the number of 

' 

. . Agll l  . . 

atoms of Aglll resulting, from the f i r s t  milking remaining a t  the.  
. . 

same time or t + T a f t e r  the i n i t i a l  s i lve r  scavenge. T . i s  the 

length of time between the  time of scavenge and tha t  of the f i r s t . .  . 

milking; Allo&ng r t o  b e  the t ime from the end of bombardment t b  

the time of .scavenge we obtain the  following relat ions:  

J p d l l l m  (T + 4) 
t 

1 : 
[ b :  

N . -  I1 = e I 

A g l l l  
I 

1 



Agll l  

C1 and'C a re  the ,correction fac tors  f o r  ' the length of 
2 

bombardment comparable t o  -the half -lives of Pd l l lm  
lllg and Pd , 

respectively, . 1 n i t i a l  yields  .of 'both isomers can be -caicuPated from 

t h e  Aglll a c t i v i t y ,  i n  both milkings by means of t h e  relat ions given. 

above. . 
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w r  
The resu1t.s .of t h e  two -series of bombardments a r e  given i n  

Tables 13, 14, and 1 5  and a r e  shown graphical ly  i n  Figure 13. I n  

Table 15  i s  given t he  r a t i o  of t h e  cross  sect ion of formation of 

pdlllm t o  t h a t  of pdl!'lg at various.  deuteron energies i n  t he  second 

s e r i e s  of runs. The composite air-window correct ' ion f a c t o r  f o r  the  

be ta  p a r t i c l e s  of Agl" was taken a s  1.087. The s e l f s ca t t e r i ng  

f a c t o r s  f o r  t h e  th ree  be ta  p a r t i c l e s  i n  s i l v e r  were obtained from 

the  average of t he  f a c t o r s  f o r  t he  be ta  p a r t i c l e s  i n  P ~ ( N O  ) and . 
3 2 

N a C 1 .  

'.: Table 13  

~ d ~ ~ ~ ( d , p ) P d ~ ~ ~ ;  f i r s t  s e r i e s  of Funs on t he  
. Berkeley 184-inch cyclotron. 

~ e u t e r o i  Energy u (hb) mg Ag/cm2 f 2 
s s  4 3  Avg. m g ~ l / c m  f s s  

( ~ e v )  . ' 

Table 14 

~ d l l ~ ( d ~ p ) P d l l ~ ;  second s e r i e s  of runs on t h e  
Berkeley 184-inch cyclotron. 

2 2 
Deuteron Energy u (mb) mg ~ ~ / f m  . f s s  Ag Avg. mg Al/cm fss  Al 

(MeV) 



QKUTERQN ENERGY ( M E V )  

. . 

Fig. 1 3 - ~ d ~ ~ ~ ( d , ~ ) ~ d ~ ~ ~ ~  and ~ d ~ ' ( d , p ) P d ' ~ ~ g  excitation 
functions in the range of the Berkeley 184-inch cyclotrbn. 



~ d l ' ~ ( d , p ) ~ d l l ~ ~ ;  second s e r i e s  of runs on t he  
V .  Berkeley 184-inch.cyclotron. 
- 

2 Deute-ron. Energy o (mb ). . 'pdl1lm m g  Ag/cm f Ag Avg mg u / c m  2 f Ss Al 
r ,  

(MeV] .Zpdlllg - "... , 

It should be mentioned t h a t  C. L. ~ c ~ i n n i s ~  repor t s  t h a t  Pd l l l g  

decays t o  an exc i ted  s t a t e io f  A~~~~ whose 60 kev conversion 
. . 

. . . . 
. . .  . .  . .  . . . . ( .  . . . 

e lec t rons  have been observed. ,On the  ba s i s  of t he  s h e l l  model he 

make5 the  following assignments: pdl1lm - hllI2, . . 
' pdlllg - d ' 

512' 

- 712, and Ag 111 . 4 
- p11/2 

P . C . Stevenson and H . G;' Hicks 

. repor t  the. existence' of Ag lllm with a h a l f - l i f e  of l e i s  than f $ve 
, ; 

' , .  ' 
. . 
. .  . . . 

l i l g  . ' . . . . . 
, minutes. Yield considerations of fIg1l1 from ' ~ h ' l ' ~  and Pd 

. . . . . . 
1Plm . . .  

I .  . 
. i n d i c a t e  some p- branching i n  Ag . ~ g " ~  has been given an F . . 

c l a s s i f i c a t i on .  The existence of a-..short - l ived p' ac t ive  isomer 
. . 

of ~ g l l l  could r e s u l t  i n  Cx-rors i n  the  c r a s s  sect ion values given +. 

above. ' 

1 '  

6 .  ~ r ~ ~ ( d , p ) z r ~ ~ .  --  he y i e ld  of ~ r ~ ~ ,  obtained i n  deuteron 
. . . . .  

bomba&nents on ~r~~ using t he  Berkeley 184-inch cyclotron,  was ' ,  

measured.by the  a c t i v i t y  o f  t h a t  had,grown 53ylim: the  niobium 

f r ac t i on  taken .from the  zirconium sample a f t e r  removal of 



i n i t i a l l y  formed niobium. The 72.1 minute hal f  - l i f e  Nbg7 i s  . t he  

. daughter o f 6 0  s e c o n d h a l f - l i f e  t o  which 17 hour h a l f - l i f e  

z r g 7  decays; 

It was d i f f i c u l t  t o  remove a l l  of t h e  i n i t i a l l y  formed niobium 

without causing l o s s  of zirconium. The same separation of niobium 

from zirconium was used f o r  both t he  s caveng in~  and the milking. 

This separation allowed no weighable amounts of zirconium t o  be 

ca r r i ed  over with t h e  niobium c a r r i e r .  Bowever, a t a i l  . resul ted 

i n  the  decay of a c t i v i t i e s  i n  t h e  f inal .niobium f rac t ion .  'The 

t a i l  consisted l a rge ly  of 15.0 hour hal f  - l i f e  ,I!Jb9' a c t i v i t y  with 

a small.amount of longer-1ived.niobimi a c t i v i t y .  Very good 72.1 . 

97 minute h a l f - l i f e  l i n e s  of Nb , a c t i v i t y  were r,esolved by subtract ion 

of the  , t a i l  a c t i v i t y  from the  gross a c t i v i t y .  

Let T and T represent  respect ively  the  times of bombardment 
1 2 . . 

and i n i t i a l l y  formed niobium scavenge. I f  t is allowed t o  
. a .  , - 

I *  

represent  the length  of time from niobium scavenge t o  f i n a l  niobium 

milking, the  following r e l a t i o n  allows t he  determination of t he  ' .  

i n i t i a l  number of zrg7 atoms formed i n  the  bombardment: 

'   he . r e s u l t s  of t he  deuteron bombardments on zirconium using..:$:.-: 
- 

. I. 

the,Berkeley 184-inch cyclotron a r e  l i s t e d . i n . T a b l e . 1 6  and a r e  

.shown g raph i ca l . 1~  i-n Figure 14. The air-window correct ion f ac to r  

used f o r  the  1.267 Mev maximum energy be ta  p a r t i c l e   of.^;^^ is  



. Fig. 1 4 - ~ r ~ ~ ( d , ~ ) ~ r ~ '  excitation function in the range of 
the Berkeley 184-inch cyclotron. 



1 .O72. The s e l f  s ca t t e r i ng  f ac to r s  f o r  t he  be ta  p a r t i c l e s  of Nb 97 

in.Nb 0 were taken a s  t h e  average of those f o r  P ~ ( N O  ) and N a C 1 .  
2 5 3 2 

Table 16 

96 Z r  (d9p)zrg7; runs on the  ~ e r k e l e y  184-inch cyclotron; 

2 2 
Deuteron Energy o (mb) mg Nb 0 / c m  f s s  Nb Avg. mg ~ l / c m  fss Al 

2 5 2 5 ( M ~ v )  . . 

5 6 7 . M r ~ ~ ~ ( d ~ p ) M n  +--The y i e ld  of h ~ n ~ ~  was obtained d i r e c t l y  

from the  ~ ~ 5 9 6  hour half  - l i f e  MnS6 a c i i v i t y  observed i n  pur i f i ed  

samples of MnO After decay of shor ter- l ived manganese a c t i v i t i e s ,  .' 
2 ' 

5 6 l i n e s  corresponding t o  Ym a c t i v i t y  r e  s1.13.ted. 
. . 

The r e s u l t s  of deuteron. bombardments on mangane se using . the 
. . 

Berkeley 184-inch cyclotron..are. l i s t e d  i n  Table 17 and are  shown 

graphical ly  i n  Figure 15 .  The composite air-window correct ion 

Sactor  f o r  t he  three  b e t a  par-bicles of Mn56 w a s  taken a s  1.073. 

Self  s ca t t e r i ng  correct ing f ac to r s  were obtained by assuming MnOp 

equivalent  t o  N a C 1 .  



Fig. 15 - ~ n ~ a ( d , ~ ) M . n ~ ~  excitation function in the range of 
the Berkeley 184-inch cyclotron. 
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Table I7 b 

5 5 M n  ( d , p ) ~ n ~ ~ ;  runs on t he  Berkeley 184-inch cylcotron. 

2 ~ e u t e ' r o n  Energy o (mb) mg M.no2/cm f s s  Mn02 mg ~ l / c m  2 f Ss Al 
( ~ e v ) .  . .. 

8. B i209 (d ,p )~ i  210 ( R ~ E )  . --~ho&h no experimentai work on 

bismuth was done i n  the  s e r i e s  of experiments described .hereJ 

209 ' data  on the Bi ( d , p ) ~ a E  exc i ta t ion  function i s  included because 

of i t s  importance in re la t ion  t o  t h e  other  expeyimental f indings . 
Cross sect ion values given i n  Table 18 are  those of Si-Chang 

2 27 
Fung corrected f o r  t he  redetermined and. rec&lcula ted A 1  ( d , a p ) ~ a  2 4 

exc i t a t i on  function.  The high gnergy BiZoi)(d , p ) ~ a E  exc i ta t ion  ; 

funct ion i s  shown graphical ly  i n  Figure 16. 

Table 18 

~ i ~ ' ~ ( d , p ) R a E ;  runs on t h e  Berkeley 184-irich: cyclot ron .' 
DauLaru~l  ~ n c r g y  Avg. ?-(mb) . .  ' Deuteron Energy Avg . a (mb) - 

(MeV) 



. ' DEUTERON ENERGY ( MEV.) 

Fig. 1 6 - ~ i ~ ~ ~ ( d , ~ ) ~ i ~ ~  (RaE) excitation function in the 
range of the Berkeley 184-inch cyclotron. 



E. DISCUSSION 

Comparison of . the (d,p) exci ta t ion functions ' i n  the  range of 

.deuteron energies from 50 *o 190 Mev. reveals the  s t r i k ing  s imi la r i ty  

they a l l  exh;&biftboth i n  absolute magnitude of cross section and 

decrease i n  cross  ,sect ion with increasing incident deuteron energy. 

209 ttLe observed cy,-,ss s e ~ . ~ ~ , - , H s  noL With the exception of B i  , 
vary by much more than a factor  of two f rou  each other a t  any' oae 

energy. It appears qui te  l i k e l y  t h a t  the  same mechanism, t o  about 

the  same extent i n  each case, i s  respon'sible f o r  the various 

exci ta t ion functions.  

It was suggested by J. 0. Rasmussen t h a t  the r e s u l t s  could be 

explained by asswning,neutron capture t o  bound l eve l s  corresponding 

t o  those of a "par t ic le  i n  a box, " wi-bh negligible i n i t i a l  compound 

'nucleus formation. ~ e c e n t  measurements of the t o t a l  nuclear c.ross 

8,9 
section f o r  neutrons by Mil ler ,  Adair, Barschall and others are  

10 
' a t  variance with calculated t o t a l  neutron cross sect ions  . . based 

on the "strong in te rac t ion  theory" or immediate compound nucleus 

formation. These r e m i t s ,  along with .the success of ' the s h e l l  

model of nuclear s t ructure ,  suggest t h a t  a nucleon, entering the 

nucleus from the outside,  t o  some extent w i l l  move l i k e  an inde- 

- pendent. i n  a poten t ia l  trough and in te rac t  r e l a t i ve ly  

weakly with t he  other nucleons. 

Feshbach, Porter ,  a n d  weisskogfl1 have accounted f o r  the  

measured t o t a l  neutron cross  sections below 3 'Mev i n  terms of 

s ingle-par t ic le  sca t te r ing  .in a complex ,po ten t ia l ,  the  imaginary 

par t  of . the po ten t ia l  representing ,absorption . into t he  compound 
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nucleus. They 'at tacked t he  problem from the  two opposite points  of 

. . 

view, t he  "strong interaction'. '  o r  d i r e c t  compound nucleus formation,  

theory and t he  "no interaction1'  o r  'gingle nucleon i n  an a&age 

nuclear po t en t i a l  f i e l d  theory,  They found -the data  be s t  f i t t e d  

' an intermediate ' theory,  t h a t  of " s l igh t  in te rac t ion ,  I' I n  t h e  

"s l igh t  in teract ion"  theory, a l l  exci ted ' l eve l s  of t h e  t a rge t  - 
' 

nucleus.may be neglected .except the  .one which i s  neares t  t o  

"resonance." A l e v e l  i s  i n  resonance i f  i t s  energy i s  such t h a t .  

it can be exci ted by a jump of ' the  neutron f.rom i t s  i n i t i a l  .ener& 

Into  a bound s t a t e  of the!  wel l .  Peshbach, Por ter ,  and Weisskopf 

concluded t h a t  a neutron of low energy outside the  nucleus w i l l  ' 

kun a distance of about 2 x 10-l2 cm i n  t he  i n t e r i o r  before it i s  

"amalgamated" i n to  co l lec t ive  motion by nuclear matter .  

Bohr a n d .  ~ o t t e l s o n ' ~  s t a t e  t h a t  significance of s ingle  -par t i c le  

motion depends oh %he r e l a t i v e  magnitude of ' the. coupling energy, W, 

and-.the s ing le -par t i c le  l e v e l  spac.ing, A, given by: . '  

where K i s  t he  nucleon wave number i n  the .average nucleon po ten t ia l .  

For W l a rge r  than . A  ( - 1 ~ 0  lim1I3 ~ e v )  in te rac t ions  de stray t h e  e f f e c t s  

of undisturbed s ing le -par t i c le  motion, and t he  proper t ies  of .the 

_..-I individual  conf igurat ion a re  uniformly dis t r ibuted ' '  over the  whole 

energy spectrum. Such a s i t ua t i on  corresponds t o  t h e  strong i n t e r -  

a c t i o n  theory o f  nuclear react ions ,  according t o  which t he  incident 

p a r t i c l e  shares i t s  energy with many degrees of freedom of t h c  

dompound system i n  a time short' compared ' t o  t h a t  required f o r  - a  



'-.. 
t r a v e r s a l .  of ' the  nucleus. . They fu r the r  . s t a t e  . that ,  f o r  W . l e ss  than 

A, d i r e c t  couplings between entrance and e x i t  channels may l e a d ' t o  
d 

nuclear react ions  which do not pass through t he  compound s tage.  

The ( d , ~ )  react ion i s  an example OF the  Oppenheimer-Phillips 

o r  s t r ipp ing  react ion.  A deuteron  impinge.^ upon a ,nucleus and t he  

neutron i s  styipped .from the  proton and i c  capturcd i n  e i t h e r  an 
, 

es sen t i a f fy  zero o r   light poci t ivc  cnergy a t a t e  o r  a negative 

o r  v i r t u a l  s t a t e  by t h e  po t en t i a l  trough of the  t a r g e t  nucleus. 

The proton escapes with e s sen t i a l l y  a l l  o r  even l a r g e r  energy 

than possessed by t he  o r ig ina l  deuteron. The captured neutron i s  

l imi ted  t o  s l i g h t l y  posit ive- o r  smaller energy s ince . t oo . l a rge  an 

energy ,addit ion t o  t he  nucleus would open add i t iona l  escape chan- . 
riels, In other  words, cause nucleons t o  be boi led o f f ,  o r  some 

o ther  nucleon react ion t o  take place r e su l t i ng  i n  a d i f f e r en t  

nuclide than t he  one obtained by the  (d,p) react ion.  Since the  

(n jy)  react ion occurs f o r  f a s t  neutrons with energies up t o  

several  Mev, it i s  reasonable t o  expect t h a t  %he (d,p) react ion 

i s  possible f o r  capture of 'neutrons .with smal.1 pos i t ive  energy. 

,, I n  t h i s  case rad ia t ive  einission i s  .more probable than .pa r t i c le  

emission. However, a s  neutron energy becomes increasingly pos i t ive ,  

r e  -emission of ,- t h e  neutron rapidly  becomes more probable, f o r  

transmission, T = 1 - R, and: 

Where R i s . t h e  coef f ic ien t  of r e f l ec t i on  f o r  a neutron of energy, 

E, caused by a po t en t i a l  V. 



The above considerations show t h a t  f o r  ' the  (d,p) react ion we 

have small neutron coupling energy, and the  neutron should, f 0 r . a  

time , a c t  t o  a considerable extent  l i k e  a n .  independent l pa r t i c l e  

i n  t he  nuclear po t en t i a l  trough,. 

The t o t a l  cross  sect ion f o r  t h e  (d,p) reaction,  t o  a rough 

approximat ion, can.. be thought of a s  be ing proportional  t o  t he  

densi ty  of neutrons enter ing the  nuclear surface u 5 t b  small 

enough energies t o  be captured without causing add i t iona l  nuclear 

react ions  a n d ' t o  the  t o t a l  number of l e v e l  vacancies i n  t h e  nucleon 

po t en t i a l  wel l  avai lable  t o  these  neutrons. The f i r s t  quant i ty  i s  

a s t a t i s t i c a l  function of increasing deuteron energy and f a l l s  off  

w i t h ' t h i s  increase.  It should be e s sen t i a l l y  t he  same f o r  , a l l  

t h e  nuclides studied.  The second quanti ty,  probably r e l a t ed  t o  

Peaslee ' s13 Sticking probabi l i ty ;  6 n, we might examine by 

approximating t he  nuclear po t en t i a l  trough t o  a spher ica l .  po t en t i a l  

. . 
well  of nuclear dimensions and ca lcu la t ing  t he  avai lable  s ingle  

. . 

= p a r t i c l e  l eve l s .  

The spacing of l e v e l s  0f .a  spher ical  po t en t i a l  wel l  o r  i n f i n i t e  

depth may be obtained from t h e  zeros of . spher ical  Bessel  funct ions .  14 

Solutions f o r  t he  energy, E ,  of l eve l s  a r e  obtained from values of 

K f o r  J ~ ( K R )  = 0, where R = 1.51 A l l 3  x 10 - I3  cm-l: 

I n    able' 19  a r e  l i s t e d  the  energies of various l eve l s  of t h e  

nuclides studie.d a s  found above, ~ h e s e  l e v e l s  a r e  a godd 
' 

approximation f o r . t h e  spacing i n  a wel l  of f i n i t e  depth except 
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Table 19 

Single P a r t i c l e  ~ e v e l s  Calculated from the  zeros 'of 
.Jd (KR) f o r  a Spherical  Po ten t ia l  Well of I n f i n i t e  Depth 

' A-U 238 B-Th232 C-Bi2?9 D-h198 E-Pd F-Zr96 G-Mn 5 5 
She l l  Energy Energy Energy Energy Energy Energy Energy 

( ~ e v )  (Mev) (Mev.). (M~V)  . ( ~ e v )  ' (Mev) '(Mev) 



f o r  t he  case of S l eve l s ,  because t he  wave function i s  not 

decreasing a s  rapidly  a t  the  radius of the  well  as For l eve l s  

df higher angular momentG. Thus, more of the,wave function 

f o r  an ,S l e v e l  " s t i cks  out" of ' the well  and. t h i s  broadening,, 

r e su l t i ng  from f i n i t e  wel l  depth.9, causes a depression of the  

energy f o r  ' the  l eve l .  For S l e v e l s , .  y ( r  times t he  wave 

funct ion) ,  f o r  a p a r t i c l e  i n  the  spher2cal po t en t i a l  well ,  may 

be 'given a s  : 

Outside the  well it may be given a s :  I 

A t  the  nuclear radius,  R,  t h e  two wave functions and - the i r  

f i r s t  de r iva t ives  must be equal: 

15 . . 
Taking t h e  depth of t h e  p o t e n t i a l  well ,  U = 28.3 Mev, a 

graphical  solution,  a s  i n  Figure 17 allows us t o  f i n d  KR values 

f o r  t he  various S l eve l s  f o r  which a neutron i s  bound by t he  

po t&nt ia l  wells  of ' the  various nuclides studied.  In'.Table 20 

a r e  l i s t e d ' t h e  energy l e v e l s  of the  bound S s t a t e s  calcula ted .from 

t h e  'KR value s o  . . .  



Flg. I7 -Graphical solution of the relations,hip, sinKR = EX/ 
l 



b y .  
Table 20 

Bound'Single Pa r t i c l e  S Levels f o r  a Spherical  Po ten t ia l  
Well of .28: 3 Mev Eepth 

u238 ' Th232 ,i "9 ,pt198 :pdl10 . Zr g6 m55 
Level Energy Energy Energy. Energy Energy Energy Energy 

( ~ e v )  ( ~ e v )  ( ~ e v )  ( e )  ( ~ e v )  ( ~ e v )  ( ~ e v )  

Ndt a l l  the  le~els:. . :obtained f o r  .the po t en t i a l  trough may be 

f i l l e d  'by t h e  captured.  neutron, f o r  'most of them have been 

occupied by t he  neutrons already present i n  t he  nucleus. 

Klinkenberg16 gives t he  order of f i l l i n g  by nuclides a s  mass 

number increases according-to t he  nuclear s h e l l  model, This 

.enables us.  t o  discover t h e  l e v e l s  avai lable  f o r  neutron capture.  

I n  Table .21 a re  l i s t e d  the' neutron s h e l l  s t ruc tures  f o r  t he  nuclides ' 

studied.  

Th&. as 'Sdpt i8n:  oL:.~a;..s$hCric.a.Jlopotential well  f o r  ' the  nucleus 

i s  only an approximation t o  r e a l i t y .  For .example, t h e  existence 

of' an odd. nucleon i n  t h e  nucleus, a s  i n  ~i~~~ and ~n~~ , would 

, a l t e r  t he  shape of ' t h e  nuc1eu.s and ' a  spheroidal po t en t i a l  wel l  
.. . . . 

would r e s u l t .  This case has been t r e a t e d  by ~ a i n w s t e r l ~  and 

o thers  .15 Also, t he  assumption of a f r e e  p a r t i c l e  i n  the  
. . 

nucleus with no in te rac t ion  with other  nucleons i s  only' a f irst  

-.. approximation, f o r  there  i s  probably some in te rac t ion  as i n  t he  

"s l igh t  in te rac t ion"  theory. Therefore, one would expect some 



Table 21 '  

. .  . 
'completed Neutron s t ruc tu r e s  .. 

. . 

$38 Th232 ~i 209 ,198 Leve 1 pd1l0 ZI- 96 ,fi55 

. . 

Tota l  . .. Tk6. :.: . 142 , ' 126 120 . 6!+ 



imperfections t o  show up i n  t he  simple .model described here. I n  

Table 21 are ' found l eve l s  f i l l e d  t h a t  should not be bound .according 

. t o  t he  nuclear po ten t ia l -  assumed and the  l e v e l  spacing .given i n  
. . 

Table 19. To cor rec t  f o r  . t h i s  seeming..:depsession of the. l eve l s ,  

, it w i l l  be assumed t h a t  the.  energet ic  l i m i t  f o r  bound s t a t e s  w i l l  

be taken a s  t he  energy of t he  l a s t  l e v e l  being f i l l e d  a s  given 

by Table 19 plus  t h e  binding' energy of . . a  neutron i n  t he  pa r t i cu l a r  

t a r g e t  nucleus minus the  pa i r ing  energy of ' the  l a s t  neutron added 

plus  about 4 Mev, which i s  taken a s  t he  approximate,maximum 

pos i t ive  energy with which a neutron .may'be captured and cause no 

appreciable bo i l ing  off  of nucleons. A l l  t h i s  amounts t o  roughly 

8: . .~ev t o  12 Mev, depeiiding on binding and pa i r ing  energies,  over 

.the energy of the  l a s t  f i l l e d  s t a t e  a s  given i n  Table 19. 

O f  course there  i s  no coulombic po t en t i a l  b a r r i e r  f o r  neutrons 

offered by t he  nucleus, but  the re  i s  the  problem of t h e  cen t r i fuga l  - 
b a r r i e r  f o r  a l l  neutrons with an angular momentum of one o r  .greater .  

For t he  even-even nuclei  studied t he  angular .momentum of the  . f i r s t  

r.la.pturerl s t a t e  of the 'neutron must be equal t o  t h a t  c a r r i ed  i n  by 

t he  neutron. I n  Figure 18 are  p lo t ted  values of t he  centr i fugal . ,  

!ba r r ie r  versus mass number ' f o r  neutrons and protons of .various.  

angular momenta a s  calculated-- by H. B. Levy, assuming-. 
-. .. 

Ro = 1 .5  x 10-l3 cm and t he  neutron o r  proton i n  contact  with t h e  

deuterofi.  Clark and IrvineiB i n  t h e i f  work on t h e  (d,p) e x c i t a t i o n  

functions on ~a~~ and Br81 show t h a t  t h e  experimental curves can 

be reproduced t heo re t i c a l l y  i f  it i s  assumed t h a t  only impartation 

of <.angular momenta of 0 ,  1, and 2 t o  the  :nuc:leus:; a r e  importarit. 
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br  
Actually inclusion of .only ::.O, 1, and 2 angular -momenta impartat ion 

. .  - 9 . L  ' .  . .  - . .. 

23 
.. . . 

81 gives a curve s l i gh t ly  high f o r  Na ,and  somewhat low .for B r  

That would'mean t h a t  impartation of 1 , =  3 e n t e r s  i n t o  the.c.ase 

81 o f  ~r , t o  some extent,  a i ~ d  impartation of A = 2 i s  sameyhat 
. . . .  . 

. .. 

'hindered i n  the  case of ~a~~ ' These c o n s i d e r a t i o ~ s  , i f  thought . 

involved with the  .problem of the  centirif ugai b a r r i e r  , would, 

from' the . 'p lo t  of . cen t r i fuga l  l jarr ier  .versus' mass number . fo r  .. . 
I 

= 2 and 1; = 3; tend t o  place a l i m i t  of about 4 M@v o n t h e  

maximum amount of .  posi t ive  energy a neutron may be captured with 
. . 

an& cause no appreciable boi l ing off of nucleons, or  other.  i n e l e a r  

react ions .  

For .nuclides of large'.mass number ' the cen t r i fuga l  ba r r i e r  , i s  
. . 

lower ' fo r  neutrons of .the same angular momentum than f o r ,  l i g h t e r  

nuclides. The heav ie r  nucl ides  should be able t o  capture neutrons 

of greater  ,angular .momenta. However, it i s  improbable. t h a t  

neutrons required t o  penetrate a centr i fugal  ba r r i e r  greater  than 

4 o r  5 Mev contribute s ign i f ican t ly  t o  the  (d,p) reaction.  For 

t h i s  reason capture of neutrons up t o  angular momentum of 11. f o r  

the  heaviest nuclides w i l l  only be considered i n  determining the 

nuclear l eve l s  available f o r  the (&;p) reaction, even though there  

w i l l  be a cer ta in  amount of leakage through the  cen t r i fuga l  

ba r r i e r  of neutrons of g r e a t e r  dn. 

There a re  'other 'reasons f o r  l imi t ing  .the angular :momenta of 

neutrons contributing ' t o  the  (d,p) reaction.  .Butler ' 19-22 points 

out t h a t  the  requirements of-.conservation of angular ,momentum and 

of pa r i t y  allow the nucleus t.o accept .a  neutron with only very 



l imited values of angular momenta. Where more than one value of Sib 

4 i s  allowed t o  be accepted f o r  a cer tain s t a t e  by the se lec-  . 

. . > 
t i o n  ru1e.s) the lowest value i s  the most important. '~a 'weve ,  . . ,- 

. . .  
according t o  the she l l  model the i n i t i a l  nucleus w i l l  accept a . - 

par t i c l e  only i n  a cer tain def in i te  o rb i t a l  anghlar .'momentuh 

s t a t e .  In the s t r ipping process, the angular d5stribu.ti.ofi gf the 
. . .  

outgnlng part,lc:l-e is a funation of thc angular uumr~Luu of the  

captured par t ic le .  The angular dis t r ibut ions a l l  show a pro- 
. . 

nounced p e e  a t .  small angles, t h i s  maximum lying d i rec t ly  forward 

i f  A = 0, but moving progressively toward:, larger  values a s  

1: i s  increased. I n  the re la t ive ly  small number o f  angular 

d i s t r ibu t ions  studied, it was found f o r  l i g h t  nuclei t ha t  neutrons 'L 

-of angular momenta 0, 1, and 2 were accepted. Study of .the ,angular' 
. - -  . * 

dis t r ibut ion  and energy of protons resul t ing from the. (d,p) 

react  ions investigated here would give viluable h f  ormat ion on 

what nuclear leve ls  are  involved i n  the capture of the neutron, 

the  values of en allowed, and the deviation f mm the she l l  model 

i n  -each case. . .  . . 

It i s  interest ing t o  note ' tha t  throughout the energy range 

studied the cross section f o r  the formation of the .high spin 

110 
i s o u r .  ur pd'll ~ Y & I  W is lower. . L h w  that Par the iormation 

* 
of the lower spin ground s t a t e  of ~ d l l l ~  This i s  contrary t o  the '4 

3 

cases studied by Biller13 i n  the f i s s ion  of Bi209 with 340 Mev - 
. . 

' p.rot6ns and ~ e v ~ ~ ~  in the reaction ~n~~ ( ~ x , n ) C ! o ~ ~ ~  + c . o ~ ~  with ' ,  

24 t o  11 Mkv alpha par t ic les .  They founi t h a t .  the forhation'  of 

the isomer, e i the r '  ground s t a t e  o r  excited s t a t e ,  k i t h  greater  
. , 



spin was favored over t h a t  with smaller spin, sometimes t o  t he  

apparent exclusion of the  l a t t e r .  Such r e su l t s  are  t o  be expected 

i n  the  case o f  f a i r l y  high energy spal la t ion or  f i s s ion .  D + C ~  

compound nucieus format ion .involving ,appreciable exci ta t ions  re - 
s u l t  from these reactions;  therefore,  greater  y ie lds  of the 

isomer with greater  spin should r e s u l t  from greater  s t d i s t i c a l  

weight of the  s t a t e .  However, the  isomer with smaller spin, 

could be expected t o  be produced i n  greater  abundance i n  a (d,p) 

reaction on an even-even nuclide than t h a t  .of greater  sp in . ,  It 

i s  reasonable t o  expect t h a t  i n i t i a l  small spin s t a t e s  formed i n  

the s t r ipping reaction would more often r e su l t  i n  the  formation of 

' the small spin isomer .than the large spin isomer and vice versa: 

However, since considerations of nuclear l eve l  spacing and cen t r i -  

fugal  ba r r i e r  e f f ec t s  tend t o  favor the capture of .a neutron with 
. . 

small angular momentum, the  r,esultant s t a t e  w i l l  tend t o  have 

small angular'momentum and the formation o f ' t h e  Small spin isomer 
. . 

should be favored-; 

.2 
Kelly!: and seg1-2~ and Si-Chang Fung have studied the  (d,,p) 

reaction on 8i209 t o  give RaE.  ' This i s  not the complete 

~ i ~ ~ ~ ( d , p ) ~ i ~ ~ ~  exci ta t ion function a s  the  long-lived (half - l i f e  

6 
approximately 10  years) isomer of 8i210 i s  not s e e n ,  This i so-  

I 

mer .has been placed 25 f 40 kev below R a E  i n  energydnd has been 

assigned a spin of 4 or  greater.e4 The spin of 8iEo9 i s  912 and 

t h a t  of RaE i s  zero. For the  same considerations given above, the 

angular momenta brought i n  by neutrons i n  the ~ i ~ O ~ ( d , ~ ) ~ i  210 

reactions are  l imited.  However, the  i n i t i a l  spin of the  B i  209 



. . 

nucleus i s  l a rge  ark the" 1-imited an'gular ' homentum of.! thk c'iptured 
., , . 

aeut ron should ten'd. t o  keep'. t h e  spin of. t h e  ' f i n a l  ' s t a t e  of B i  
210' 

- 
large .  In  o ther  w o r d s , i n  a '(d,p) reabtibn on BiZo9 t h e  formation 

4 :  

o f  t he  long- l ived s t a t e  of Bi2l0 should be favored 'over t h a t  of ' 

I n   able 22 a r e  t o ' b e  found, bksed on t he  simple model pre- 

.. . 
sented .here, t h e  l eve l s -  a 'keutron may be captured i n to  f n r '  each 

nuciide studied.and t h e  numbej: of vacancies based on these  l eve l s :  

The' l e v e l s  a i e  l imi ted  t o  t h e  bound l e v e l s  t h a t  can be formed from 

t h e  l imi ted  'acceptable ' neutron angular momenta. It i s  t o  be noted 

t h a t  t h e  number of vacancies i n  a l l  cases a r e  of t h e  same order of 

magnitude and, except f o r  Mn55, d i f f e r  from each other by l e s s  

than a f a c t o r  of two. Actually t he  agreement with Mn55 i s  pi-obabiy 
(I 

b e t t e r  than Table 22 ind ica tes  a s  some of t h e  higher& value l eve l s  . 
. 

allowed i n ' ~ a b 1 e  22 r e s u l t  from allowing capture of neutrons with . . 

so .  high an a value,  and therefore  energy' due . t o  t h e  cen t r i fuga l  

b a r r i e r ,  t h a t  they a r e  on t he  border l ine  of causing 'other  nuclear 

reactions. '  Also,'some of t h e  l eve l s  indicated as 'a l lowed a r e  on t h e  

border l ine  of being bound. Perhaps, because of the.. requirements of 

conservatiori of angular momentum &d pa r i t y ,  (d,p) reac t  ions,  

throughout t h e  e n t i r e  i-ange .of nuclihes , proceed i a i n l y  throogh t h e  

. . 
capture of neutrons with angular momenta l e s s  than 3 or ,  4. 

Thus, t h e  number of vacancies f o r  a captured neutron i s  seen 

t o  be about t h e  same f o r  a l l  t h e  nuc1:ides studied i n  t h e  range of 

50 t o  190 Mev, With t he  exception of t h e  cross  



Table 22 

Allowed Single P a r t i c l e  Vacancies f o r  Ueutron Capture 
. . 

238 Th232 Bi Level u , lg8 ,.pdllo Zr 

To ta l  20 20 30 

sec t lons  i n  t h i s  energy range a r e  about t he  same f o r  a l l ' c a s e s  

s tudied so f a r ,  .However, as pointed out above ,~only  one 

isomer of si210 w a s  seen and it i s  expected t h a t  t he  o ther  is 

formed i n  l a r g e r  abundance i n  the  . ' (djp)  react ion.  
. ,  
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73. 
It i s  inkeresling t o  speculate on the nucleon l e v e l  density 

expected i f  the observed (d,p) reactions were thought of a s  

proceeding by d i r e c t  compound. nucleus f o . m t i o n .  R l a t t  and 

we5sskopf a5 give a se,mie&irical formula f o r  nuclear ].eve1 

density: ' 

e a11t.l are constants f6r each mass number and E i s  the exci- 

t a t f o n  energy imparted t o  t'h.e nucleus. This equation i s  only . a  

f i r s t  extremely rough a p p r o x d t i o n  but should give us a semi- 

quant i ta t ive  idea of the  t rend  i n  nuclear level. dens+ty from 

small mass numbers t o  large.  Using constants given by B la t t  and 

~ e i s s k o p f  f o r  mass numbers 63 and 231, and takin.g E a s  equal: t o  it 

4 Nev plus the epproximate b5nd:ing energy of 6 Mev f o r  A = 231 
,4 

and 8 Mev f o r  A - 63, we obtain the  foll.oving rtt-tio of 

nucleon l e v e l  dens i t i es :  

O f  course, neutrons of zero and negative energy w : i l l  be captured, 

and the  r a t i o  of l e v e l  dens i t i es  w i l l  tend t o  decrease f o r  de- 

creasirrg neutron energy. A s s ~ i n g  neutrons,coming i n  with 

such  energy that E = 1 Mev. f o r  A = 231 and E = 3 Mev f o r  A = 63 

(because of the difference i n  bind.ing energy), we obtain the 

following r a t i o .  of l e v e l  densities: ..; 

w(l ,  Mev) . .  ,. 
231 

. : . ' .  

= 2.75 0 

~ ( 3  Mev)63 
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7 9  
However, the  d l  s t r i bu t i on  of neutrons with a pa r t i cu l a r  energy 

resu l t ing  from the  s t r ipp ing  process rapidly  f a l l s  off  with de- 

creas ing neutron energy. Thus t he  e f f ec t i ve  r a t i o  of l e v e l  den- 

s i t i e s  over t he  range of permitted neutron *energies w i l l  be qui te  

l a rge .  Therefore, on the  ba s i s  of d i r e c t  compound nucleus 

formation, t he  cross  section f o r  t he  (&,p) react ion could 

reasonably be expected t o  show a considerable increase from the  

region of small t o  the  region of large  mass numbers. Thus t h e  

experimental r e s u l t s  would seem t o  indicate  t h a t  the  s ingle  

p a r t i c l e  i n  an average nuclear po t en t i a l  model pepresents a, 

good f i r s t  approximation i n  explaining t he  observed t o t a l  cross  
i 

se.c%Lons f o r  t he  (d ,,p) react ions .  
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