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Var iable Met r ic Method for Minimizat ion* 

William C. Davidon 

Argonne National Labora to ry , Lemont , I l l inois 

This is a method for ni imerical ly de termining local min ima of dif-

ferent iable functions of seve ra l v a r i a b l e s . In the p r o c e s s of locating each 

min imum, a m a t r i x is de te rmined which c h a r a c t e r i z e s the behavior of the 

function about the min imum. Fo r a region in which the function depends 

quadra t ica l ly on the v a r i a b l e s , no m o r e than N i t e ra t ions a r e r equ i r ed , 

where N is the nunnber of v a r i a b l e s . By suitable choice of s ta r t ing va lues 

and without modification of the p r o c e d u r e , l inear cons t ra in t s can be imposed 

upon the v a r i a b l e s . 

* 
Work pe r fo rmed under the ausp ices of the U . S . Atomic Energy Commiss ion . 



- 2 -

1, INTRODUCTION 

The solution to many different types of physical and mathemat ica l p rob l ems 

can be obtained by minimizing a function of a finite number of v a r i a b l e s . Among 

these p rob lems a r e l e a s t - s q u a r e s fitting of exper imenta l data, de terminat ion of 

sca t t e r ing ampli tudes and energy eigenvalues by var ia t ional methods , the solu­

tion of differential equat ions, e tc . With the use of h igh-speed digital compu te r s , 

numer i ca l methods for finding the min ima of functions have rece ived inc reased 

at tent ion. Some of the p rocedu re s which have been used a r e those of optimum 
1 2 3 

gradiant , conjugate g rad ien t s , the Newton-Raphson i te ra t ion , and one by 
4 

Garwin and Reich, In many instances^ however, al l of these methods r equ i r e 

a l a rge number of i t e ra t ions to achieve a given accu racy in locating the min imum. 

Also for Sonne behav iors of the function being nninimized, the p r o c e d u r e s do not 

converge . 

The method to be p resen ted in this paper has been developed in an effort 

to improve the speed and accuracy with which the min ima of functions can be 

evaluated numer ica l ly . In addition, a m a t r i x cha rac t e r i z ing the behavior of the 

function in the neighborhood of the minimum is de te rmined in the p r o c e s s . 

L inear cons t ra in t s can be imposed upon the va r i ab le s by suitable choice of 

init ial condit ions, without a l te ra t ion of the p rocedure 

2. NOTATION 
N 

We will employ the summat ion convention, a ' b = ) a^ b . In d e s -
M- = l 

cr ibing the i t e ra t ive p r o c e d u r e , we will use symbols for m e m o r y locat ions 

r a the r than success ive values of a number ; e. g. , we would wr i te x + 3 -* x 

instead of x. + 3 = x. . In this notation, the sequence of opera t ions is genera l ly 

re levant . The following symbols will be used. 
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X : |x=l , . . . . N : the set of N independent va r i ab les 

f (x): the value of the function to be minimized evaltiated at the point x. 

ves of 

a f ( x ) 

g (x): the der iva t ives of f (x) with r e s p e c t to x evalxiated at x, 
[i. 

g (x) = 

h : a non-negat ive symmet r i c m a t r i x which will be used as a m e t r i c 

in the space of the v a r i a b l e s . 

A : the de te rminant of h 

e : 2 t imes accuracy to which the function f (x) is to be min imized , 

d : a l imit ing value for what is to be cons idered a s a " r ea sonab le" 

d e c r e a s e in the value of the function. 

K: an integer which specifies the number of t imes the va r i ab l e s 

a r e to be changed in a random manner to t e s t the re l iab i l i ty 

of the de te rmina t ion of the min imum. 

3. GEOMETRICAL INTERPRETATION 

It i s convenient to use geomet r i ca l concepts to desc r ibe the min imiza ­

tion p r o c e d u r e . We do so by consider ing the va r i ab l e s x to be the coordinates 

of a point in an N-dimens iona l l inear space . As shown in F ig . l a , the se t of 

X for which f (x) is constant forms an N-1 d imensional surface in this space . 

One of this family of sur faces p a s s e s through each x, and the surface about 

a point i s c h a r a c t e r i z e d by the gradient of the function at that point , 

r) f 
g (x) = . These N components of the gradient caji in tu rn be cons ide red 
^ ~ 8 xf^ 

as the coordina tes of a point in a different space , a s shown in F ig . l b . As long 

a s f (x) is differentiable a t al l points , t h e r e is a unique point g in the gradient 

space a s soc ia t ed with each point x in the posi t ion space , though the re nnay be 

m o r e than one x with the same g . 
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(a) (b) 
Fig . 1. Geom.etrical in terpreta t ion of X , and gji(x). 



In the neighborhood of any one point A the second der iva t ives of f (x) 

specify a l inear mapping of changes in posit ion, d x , onto changes in gradient 

d g , in accordance with 

d g = d x . (3.1) 
^ 9x^ 8x 

The vec to r s d x and d g will be in the same di rec t ion only if d x i s an 

eigenvector of the Hess ian m a t r i x , \\ | [ . If the ra t ios among 
9 X "̂  8 x^ 

the cor responding eigenvalues a r e l a rge , then for mos t d x the re will be con­

s ide rab le difference in the d i rec t ions of these two v e c t o r s . 

All i t e ra t ive gradient methods , of which this i s one, for locating the 

min ima of functions, cons is t of calcvilating g for var ious x in an effort to l o ­

cate those va lues of x for which g = 0, and for which the Hess ian m a t r i x 

II II i s posit ive definite. If this m a t r i x were constant and explicit ly 
8 x^ 8 x^ 

known, then the value of the gradient at one point would suffice to de te rmine the 

min imum. In that case the change des i r ed in g would be -g , so we would have 

8^f . V (3.2) 
_g - 2 ix 

^ 8 x'' 8 x^ 

from which we could obtain A x by mviltiplying Eq. (3 . 2) by the i nve r se of 

the m a t r i x [| 1| . However , i n m o s t sitxxations of i n t e r e s t , 
8 x^ 8 x^ 

32 f 
jj II is not constant , nor wo\ild explicit ly evaluating it at points that 

8 x^ 8 x^ 
might be far from a minimum r e p r e s e n t the b e s t expenditure of t i m e , 

82 f 

8 x^ 8 X 
Ins tead, an ini t ial t r i a l value is a s sumed for the m a t r i x | | 

This m a t r i x , denoted by h , specif ies a l inear mapping of all changes in the 

grad ien t onto changes in posi t ion. It is to be s y m m e t r i c and non-negat ive 

(posit ive definite if t h e r e a r e no cons t r a in t s on the v a r i a b l e s ) . After making 
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a change in the var iab le x , this t r i a l value is innproved on the bas i s of the actual 
g2 f 

re la t ion between the changes in g and x. If | | 1[ is constant , then 
"~ ~ 8 x^ 8 x^ 

after N i t e r a t ions , not only will the minimum of the function be de te rmined , but 
a lso the final value of h''̂  will equal | | 1 • We shall subsequently 

8 x*̂  8 X 
d i scuss the significance of this m a t r i x in specifying the accuracy to which the 

v a r i a b l e s have been de te rmined . 

The m a t r i x h can be used to a s soc ia t e a squared length to any gradient , 

defined by h g g . If the Hess ian m a t r i x were constant and h were i t s m -

v e r s e , then — h g g would be the annount by which f (x) would exceed i ts 
2 a V — 

minimum va lue . We therefore consider h as specifying a m e t r i c , and when 
ULV 

we re fe r to the lengths of v e c t o r s , we will imply the i r lengths using h as the 

m e t r i c . We have called the method a "var iable nnet r ic" method to ref lect the 
U.V 

fact that h i s changed after each i t e ra t ion . 

We have divided the p rocedure into five p a r t s which to a l a rge extent a r e 

logical ly dis t inct . This not only faci l i ta tes the p resen ta t ion and ana lys i s of the 

method, but it is convenient in p rog ra mming the method for nnachine computat ion. 

4. READY : CHART 1 

The function of this sect ion is to es tab l i sh a d i rec t ion along which to 

s e a r c h for a re la t ive min imum, and to box off an in te rva l in th is d i rec t ion 

within which a re la t ive minimum is located . In addit ion, the c r i t e r i o n for 

t e rmina t ing the i t e ra t ive p rocedu re is evaluated. 

Those opera t ions which a r e only pe r fo rmed at the beginning of the c a l -

ctdation and not r epea ted on success ive i t e ra t ions have been included in Char t 1. 

These include the loading of input da ta , in i t ia l p r i n t - o u t s , and the ini t ia l c a l ­

culation of the function and i t s gradient . This l a t t e r calculat ion i s t r e a t e d a s an 

independent subrout ine , which may on i t s in i t ia l and final calculat ion include 

Sonne opera t ions not p a r t of the usual i t e ra t ion , such a s loading ope ra t i ons . 
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calculat ion of quanti t ies for repea ted u s e , special p r i n t - o u t s , e tc . A coiinter 

record ing the number of i t e ra t ions has been found to be a convenience, and is 

labeled I . 

The i t e ra t ive p a r t of the computation begins with "READY 1". The 

d i rec t ion of the f i rs t s tep is chosen by using the m e t r i c h in the re la t ion 

-h^^^ g - , s ^ (4.1) 
V 

The component of the gradient in this d i rec t ion is evaltiated through the 

re la t ion 

s ^ g -*g . (4.2) 
|X s 

_ 1 

F r o m E q s . (4, 1) and (4. 2) we see that -g is the squared length of g, and hence 
^ 1 

the improvement to be expected in the function is --r; g . The posi t ive defi-
M S 

ni teness of h i n s u r e s that g i s negative so that the step is in a d i rec t ion 
s 

which (at l e a s t initially) d e c r e a s e s the f\inction. If i t s d e c r e a s e is within the 

a c c u r a c y des i r ed , i . e . , if g + « > 0, then the min imum has been de te rmined . 
s 

If not, we continue with the p r o c e d u r e . 

In a. f i r s t effort to bpx in the min imum, we take a step which i s twice 

the s ize that would locate the minimum if the t r i a l h were \\ 
" u V 

8 x*̂  8 X 

However , in o rde r to p reven t th is step from being unreasonably l a rge when the 

t r i a l h i s a poor e s t ima te , we r e s t r i c t the step to a length such that 

(X s ) g , the d e c r e a s e in the function if i t continued to d e c r e a s e l i nea r ly , i s 

not g r e a t e r than some p rea s s igned m a x i m u m , 2d. We then change x by 
x^ +\s^ ^x"-^ , (4.3) 

and calcti late the new value of the function and i t s g rad ien t at x . If the 
n + + 

projec t ion s g = g of the new gradien t in the d i rec t ion of the step is 
M- s ° _̂  

pos i t ive , or if the new value of the function f i s g r e a t e r than the or ig inal f, 
+ 

then the re is a re la t ive min imum along the d i rec t ion s between x and x , 
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and we proceed to "Aim" where we will in terpolate i ts posit ion. However, if 

ne i ther of these conditions is fulfilled, the function has dec reased and is d e ­

c reas ing a t the point x , and we infer that the step taken was too sma l l . If the 

step had been l imi ted by the p r e a s signed change in the fiinction d, we double d. 

If the s tep had been taken on the bas i s of h*̂  , we modify h so as to double the 

squared length of s^ leaving the length of a l l perpendicular vec to r s unchanged. 

This is accompl ished by 

h^̂ ^ + i s l ^ s ^ ^ h t ^ ^ (4.4) 
£ 

where i i s the squared length of s . This doubles the de te rminan t of h . 

The p r o c e s s i s then repea ted , s ta r t ing from the new posit ion 

5. AIM: CHART 2 

The function of th is sect ion i s to e s t ima te the locat ion of the re la t ive 

min imum within the in terva l se lec ted by "Ready". It a lso c o m p a r e s the i m ­

provement expected by going to this minimum with that from a step pe rpen ­

dicular to th is d i rec t ion . 

Inasmuch as the interpolat ion is along a one-d imens iona l in te rva l , it 

i s convenient to plot the fxinction along this d i rec t ion a s a s imple graph. F ig , 2. 

The values of f and f of the function at points x and x a r e known, and 

so a r e i ts s lopes g and g a t these two poin ts . We in terpola te for the locat ion 
s s 

of the minimum by choosing the " smoothes t " curve satisfying the boundary con­

ditions at x and x , namely the curve defined a s the one which min imizes 

/ •• C-B-) 
over the cu rve . This is the curve formed by a flat spring fitted to the known 

ord ina tes and s lopes a t the end points ,provided the slope is s m a l l . The resvtlting 

curve is a cubic , and i t s slope at any a (0 < a < \ ) i s given by 

8s <**) = Ss - 1 ^ <gs -̂  ") "-^ <Ss ^ C -̂  2^) ' <^' ^̂  
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f 

a = o a=X 
Fig . 2. Plot of f (x) along a one-dimensional in te rva l . 
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AIM 
3(f-f1 
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3 ^ . 0 -

9s - gs * 2Q 

CALL f, g 
at tM 

^(g^^ . z * 2Q) a 2 _ to 

I 
f^-Wo 

h/̂ ^g^ .-^SA^^tM 

f ^ g ^ - g / 

xMttM-^tM 

CHART 2: AIM 

DRESS 2 
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DRESS 1 
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where 

3 ( f - f ) + 
^ = - S r - ^ + ̂ s + Ss 

The root of Eq. (5. 1) that co r responds to a minim\im l ies between 0 and 1 

le of tl 

exp re s sed a s 

+ + 
by v i r tue of the fact that g < 0 and ei ther g > O o r z < g + g . I t can be 

' " S S S 3 

where 

a n d 

a . = \ (1 - a ) 
m m 

g + + Q - Z 
a = - ^ (5.2) 

Q-(^- - S s C 

The pa r t i cu l a r form of Eq. (5. 2) i s chosen to obtain maximum accu racy which 

might o therwise be los t in taking the difference of near ly equal quant i t i es . The 

amount by which the minimum in f i s expected to fall below f is given by 

\ 1 + 
r d a g (a) = 4 (g + z + 2Q) a 2 \ . (6.3) 

( \ - a \ ) ^ "* ^ 

The ant icipated change is now compared with what would be expected from a 

perpendicu la r s tep . On the b a s i s of the m e t r i c h"̂  , the s tep to the optimum 

point in the (N- l ) -d imens iona l surface perpendicvilar to s through x is 

given by 
g 

fJLV + °3 \1. JX. . . 
-^ g +-J— s"̂ — t"^. (5.4) 

The change in f to be expected from this s tep is — t^ g . Hence , the 
2 |J. 

decis ion whether to in te rpola te for the min imum along s or to change x by use 

of Eq . (5.4) i s made by compar ing g = t""̂  g with express ion (5. 3). 
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The purpose of allowing for this option is to improve the speed of con­

vergence when the function is not quadra t i c . Consider the situation of F ig . 3. 

The optimum point between x and x is point A, However, by going to point B , 

a g r e a t e r improvement can be made in the function. When the behavior of the 

function is desc r ibed by a curving val ley, this option is of pa r t i cu la r value, 

for it enables success ive i t e ra t ions to proceed around the curve without back­

t racking to the local minimum along each s tep. However , if evaluation of the 

fiinction at this new posit ion does not give a be t te r value than that expected from 

the in terpola t ion, then the in terpola ted posit ion is used. Should the new posit ion 
uv 

be be t t e r as expected, it i s then des i r ed to modify h to incorpora te the new m -
M, 

format ion obtained about the function. The full s tep taken is s tored at s , and 

i t s squared length is the sum of the squares of the step along s and the pe rpen­

dicular s tep , i. e. , s = -g + X^ i . The change in the gradient resul t ing from 

this s tep is s tored at g and these quanti t ies a r e used in the section " D r e s s " 

in a manner to be desc r ibed . 

For the in terpolated s tep, we set 

ax*^ + (1 - a ) x"^^ -̂̂  t ^ . (5.5) 

By d i r e c t use of the x ins tead of the s g r e a t e r accu racy is obtained in the 

event; that a is sma l l . After making this interpolat ion, we proceed to " F i r e " . 

6. FIRE: CHART 3 

The purpose of this section is to evaluate the function and i ts gradient 

a t the in terpola ted point and to de te rmine if the local minimum has been suf­

ficiently well located. If so , then the r a t e of change of gradient - is evaluated 

(or , m o r e accu ra t e ly , X t imes the r a t e of change) by interpolat ing fronn i t s 

va lues at X, X , and at the in terpola ted point. 

If the function were cubic , then f a t the in terpola ted point would be a 

min imum J the component of the gradient at th is point along s would be z e r o , 

and the second der iva t ive of the function at the min imum along the line would 
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Fig . 3. I l lus t ra t ion of p rocedure for non-quadra t ic functions, 
Point A is the optimum point along (x, x"̂ ) but point B is 
the location for the new t r i a l . 



FIRE 

CALL f, g^ 

AT tM 
s ' * 9 ^ — ^ 9s f*{ 

- f * € 

MIN 

f - f^ 

(l-a)X-*X 
t M — x + M 

9^ — 9^ 

9 s — g s 

AIM 

ra 1-0 _ /a l -o \ 

aX—X 

t/^ — x M 

9 s — 9 s 

AIM 

' o - Q 
t „ * 2 Q » g 3 

(g . ,g ) - ^ + ( g + . g \ h i 

^ s 

DRESS 

Ui 

CHART 3: FIRE 



-16-

be 2Q/X . However, as the function will generally be nrjore complicated, none 

of these properties of f and its derivatives at the interpolated point will be 

exactly satisfied. We designate the actual value of f and its gradient at the 

interpolated point by f and g . The component of g along s is s g = g . 
_ M- , [x — (i. s 

Should f be greater than f or f by a significant amount (> « ), the interpolation 

is not considered satisfactory and a new one is made within that part of the 

original interval for which f at the end point is smaller. 
— 4-

From the values of the gradient g , g , and g at three points along 
|X [J. [X 

a line, we can interpolate to obtain its rate of change at the interpolated point. 

With a quadratic interpolation for the gradient, we obtain 

(g - g ) ̂ rV + (g "̂  - i ) ^ * g «' (6-1) 
|x [X 1 - a [X |x a |JL s 

where — g is the rate of change of the gradient at the interpolated point. The 
X (xs 

jX 
c o m p o n e n t of g in the d i r e c t i o n of s . s g = g , c a n be e x p r e s s e d a s 

^ ''(XS ' "(XS " s s ' ^ 

i {^J-- + 1^) + 2Q ^ g (6.2) 
s 1-a a ss 

If the interpolated point were a minimum, then g =0 and g = 2Q, 
s s s 

An additional criterion imposed upon the interpolation is that the first 

term on the left of Eq. (6. 2) be smaller in magnitude than Q. Among other 

things, this insures that the interpolated value for the second derivative is 

positive. If this criterion is not f\ilfilled, a new interpolation is made within 

that part of the original interval forward which g slopes. 
s 

7. DRESS: CHART 4 

The purpose of this section is to modify the metric h*̂ ^ on the basis of 

information obtained about the function along the direction s. The new h^ is to 

have the property that (h )' g = X s , and must retain the information which 
V s 
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the p r e c e d i n g i t e r a t i o n s h a d g iven a b o u t the func t ion . 
ULV (1 U 

If the v e c t o r h g = t w e r e in the d i r e c t i o n of s , t hen i t would b e 
^vs ' 

ixv M- V In­
suf f ic ien t to add to h a m a t r i x p r o p o r t i o n a l to s s . If t i s no t in the 
d i r e c t i o n of s , the s m a l l e s t s q u a r e d l e n g t h for the d i f f e r e n c e b e t w e e n s ajid 

uv n V X I 
(h + a s s ) s i s o b t a i n e d when a = — — . F o r t h i s v a l u e of a, the 

v s g i 
^ s s 
R 2 o s s s q u a r e d l e n g t h of the ' d i f fe rence i s t w h e r e t^ i s the sqxiare l e n g t h of d, 

g ^ ' ' d^ d ^ Whei 

g o e s t h e c h a n g e : 

g d d . When t h i s quan t i t y i s su f f i c ien t ly s m a l l (<Ce ) , the m a t r i x h u n d e r -

h^ + ( - - 7 ) s ' ^ s ^ h'^ . ( 7 . 1 ) 
^ s s 

The c o r r e s p o n d i n g c h a n g e in the d e t e r m i n a n t of h i s 

- ^ ^ A - A . ( 7 . 2 ) 
g s s 

When the v e c t o r s t and s a r e not su f f i c ien t ly c o l i n e a r , i t i s n e c e s s a r y to 
ULV 

modi fy h b y a m a t r i x of r a n k two i n s t e a d of o n e , i . e . , 

hM-v _ t ^ ^ ^ ^ ^M-^v _̂  j^jxv^ ^ ^ 3 ^ 

to g s s 

T h e n the c h a n g e in the d e t e r m i n a n t of h i s 

Vg 
s s — A - A . ( 7 . 4 ) 

Af t e r t h e m a t r i x i s c h a n g e d , the i t e r a t i o n i s c o m p l e t e , and a f t e r p r i n t i n g ou t 

w h a t e v e r i n f o r m a t i o n i s d e s i r e d a b o u t t h i s p a r t of the c a l c u l a t i o n , a new i t e r a ­

t ion i s b e g u n . T h i s i s r e p e a t e d u n t i l the funct ion i s m i n i m i z e d to w i t h i n t h e 

a c c u r a c y r e q u i r e d . 
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8. S T U F F : C H A R T 5 

T h e p u r p o s e of t h i s s e c t i o n i s to t e s t how we l l the funct ion h a s b e e n m i n ­

i m i z e d and how w e l l the m a t r i c h a p p r o x i m a t e s [[ [[ a t the m i n -

8 x ^ 8 X 
i m u m . T h i s i s done by d i s p l a c i n g p o i n t x for t h e l o c a t i o n of the m i n i m u m in a 

r a n d o m d i r e c t i o n . 
(XV 

T h e d i s p l a c e m e n t of po in t x i s c h o s e n to b e a f ixed l e n g t h in t e r m s of h 

a s the m e t r i c . When h*^^ = | | | | , such a s t e p w i l l i n c r e a s e f by half 
8 X ^ 8 X*' 

the s q u a r e of the l e n g t h of the s t e p . 

If t he d i r e c t i o n w e r e to be r a n d o m l y d i s t r i b u t e d , t h e n i t would n o t b e 

s a t i s f a c t o r y to c h o o s e the ra j ige of e a c h c o m p o n e n t of t i n d e p e n d e n t l y , b u t 
ULV 

r a t h e r the r a n g e for the t shou ld b e such t h a t h''^ t t i s bounded by p r e -
(X p. V 

a s s i g n e d v a l u e s . H o w e v e r , t h i s r e f i n e m e n t h a s not b e e n i n c o r p o r a t e d in to the 

c h a r g s n o r t h e c o m p u t e r p r o g r a m . The l e n g t h of the s t e p h a s b e e n c h o s e n equa l 

to o n e , so t h a t the func t ion shou ld i n c r e a s e b y 1/2 w h e n e a c h r a n d o m s t e p i s t a k e n . 

S ign i f i cance of h : 

We e x a m i n e a l e a s t - s q u a r e s a n a l y s i s to i l l u s t r a t e how the i n i t i a l t r i a l 
(XV 

v a l u e for h i s c h o s e n , and w h a t i t s f inal v a l u e s i g n i f i e s . In t h i s c a s e , t h e 

func t ion to b e m i n i n i i z e d wi l l b e c h o s e n to be x ^ / ^ > w h e r e x ^ ^^ ^^® s t a t i s t i c a l 

m e a s u r e of g o o d n e s s of f i t . T h i s funct ion X^I2. i s t h e n a t u r a l l o g a r i t h m of the 

r e l a t i v e p r o b a b i l i t y for hav ing o b t a i n e d the o b s e r v e d s e t of d a t a a s a funct ion of 
IX 

t he v a r i a b l e s x b e i n g d e t e r m i n e d . 
ixv 11 8 ^ f II - ^ 

The m a t r i x h = | | [| t h e n s p e c i f i e s the s p r e a d s a n d c o r -

8 x 8 x^ 

r e l a t i o n s a m o n g the v a r i a b l e s by 

,N - x 2 / 2 
' X e 

« h'^ ( 8 . 1 ) 
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The diagonal e lements of h gives the m e a n - s q u a r e uncer ta in ty for each of the 

v a r i a b l e s , while the off-diagonal e lements de te rmine the co r re l a t ions among them. 

The ftdl significance of this m a t r i x (the e r r o r mat r ix ) is to be found in var ious 
5 

works on s t a t i s t i c s . It enables us to de te rmine the uncer ta in ty in any l inear 

function of the v a r i a b l e s , for if u = a x , then 

< - > = ^ . < - ^ > 
1̂  

< A u 2 > = a ^ a^ « x ^ ' x ^ > - <x^ '> <x^ > ) 

= a a h ^ ^ . (8.2a) 
p. V 

If u i s a m o r e genera l function of x , then if in a Taylor expansion about the value 

of X , der iva t ives higher than f i r s t can be ignored, ŵ e have 

< u ( x ) > = u ( < x ) ) 

8x^^ 8 x 
(8. 2b) 

If it is poss ib le to es t imate the accuracy with which the va r i ab l e s a r e 
M-V de te rmined , the use of such e s t i m a t e s in the init ial t r i a l value of h will speed 

the convergence of the minimizat ion p r o c e d u r e . Suppose, for example , that to 

fit some set of exper imenta l da ta , i t is es t imated that the va r i ab le s x have the 

value s: 

x i = 3. 0 ± 0. 1 

x2 = 28. 0 ± 2. 

x3 = 104 ± 102 (8, 3) 
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Then, the ini t ial va lues for x and h would be 

x ^ = ( 3 . 0 28.0 104) 

h^'^ 

0 .01 

0 

0 

0 

4 

0 (8.4) 

If th is e s t ima te is even c o r r e c t to within a couple of o r d e r s of magni tude, the 

number of i t e ra t ions r equ i red to locate the minimum may be substant ial ly l e s s 

than that for some m o r e a r b i t r a r y choice , such a s the unit m a t r i x . 

If it is des i r ed to impose l inear cons t ra in t s on the v a r i a b l e s , this can be 

readi ly done by s tar t ing with a m a t r i x h which is no longer posi t ive definite, 

but which has zero e igenvalues . F o r the cons t ra in t s 

(X 

a X = a 
1̂  

b x ^ = p, e t c . , (8.5) 

ixv 
the m a t r i x h m u s t be chosen so that 

h ^ ^ a = 0 
V 

h ^ ^ b = 0, (8.6) 
V 

and the s ta r t ing value for x m u s t satisfy Eq, (8 ,5) , Fo r example , if x^ is to 

be held constant , al l e lements of h in the thi rd row and th i rd column a r e se t 

equal to ze ro and x3 is se t equal to the constant va lue . 

When cons t ra in t s a r e imposed, ins tead of set t ing A equal to the de te rminan t 
(XV (X V 

of h (^0), i t i s se t equal to the product of the non-ze ro eigenvalue of h 

Then, (except for round-off e r r o r s ) , not only will the conditions (8. 6) be p r e ­

se rved in subsequent i t e r a t i ons , but a lso A will continue to equal the product of 

non-ze ro e igenvalues . 
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Though A is not used in the calcula t ions , i ts value may be of i n t e r e s t 
U(X 

in es t imat ing how well the va r i ab l e s have been de te rmined , s ince S h '̂  gives 
IXV 

the sum of the eigenvalues of h , while A gives thei r product . The square root 

of each of these eigenvalues is equal to one of the p r inc ipa l semiaxes of the 

e l l ipse formed by al l x for which f (x) exceeds i ts minimum value by 1/2. 

CONCLUSION 

The minimizat ion method descr ibed has been coded for the IBM-704 

using F o r t r a n . Exper ience is now being ga thered on the operat ion of the method 

with d ive r se types of functions. P a r t s of the p r o c e d u r e , nor incorporat ing al l 

of the provis ions descr ibed h e r e , have been in use for some t ime in l e a s t s q u a r e s 

calculat ions for such computations a s the ana lys is of ir - P sca t te r ing e x p e r i -
6 7 

nnents, for the ana lys i s of delayed neutron e x p e r i m e n t s , and s i m i l a r computa­

t ions . Though full ma themat ica l ana lys is of i ts s tabi l i ty ajid convergence have 

not been m a d e , genera l cons idera t ions and n u m e r i c a l exper ience with i t indicate 

that min ima of functions can be genera l ly m o r e quickly located thaji in a l t e rna te 
IXV 

p r o c e d u r e s . The abil i ty of the m e t r i c , h , to accumula te information about 

the function and to compensate for i l l -condit ioned g is the p r i m a r y r eason 

for th is advantage. 

The author wishes to thank Dr . G. Per low ajid D r . M. Peshkin for 

valued d i scuss ions and sugges t ions , and M r . K. Hi l l s t rom for ca r ry ing out 

the computer p rog ramming ajid opera t ion. 
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APPENDIX TO REPORT * 

Method 

If we have the gradient of the function at a point in the neighborhood 

of a nninimum together with G , (G = | | | | then, neglecting 
8 x ^ 8 x ^ 

higher o rde r t e r m s , the location of the mirdmum would be given in m a t r i x 

notation by 

e =x - G ; V . (1) 
- 1 

In the method to be descr ibed , a t r i a l m a t r i x is used for G and a step 

de te rmined by Eq. (1) i s taken. F r o m the change in the gradient resul t ing 

from this s tep , the t r i a l value is improved and this p rocedure is r epea ted . 
_ i 

The changes made in the t r i a l value for G a r e r e s t r i c t e d to keep the hunt­
ing p rocedure " r e a s o n a b l e " r e g a r d l e s s of the na ture of the function. Let H 

- 1 
be the t r i a l value for G . Then the step taken will be to the point 

x"̂  = X - I^ V . (2) 

The gradient at x , V , is then evaluated. Let D = V - V be the change 

in the gradient a s a r e su l t of the step S = x - X = - H V . We form the new 

t r i a l m a t r i x by 

H "̂  = H + a ( H ^7" )̂ (H ^•^) . (3) 
(XV (XV (X — V 

The constant a i s de te rmined by the following two condit ions: 
+ 

1. The ra t io of the de te rminan t of H to that of H should be between 
- 1 

R and R, where R is a p r e - a s s i g n e d constant g r e a t e r than 1. 

This is to prevent undue changes in the t r i a l m a t r i x and in pa r t i cu l a r 

if H is posi t ive definite, H will be posi t ive definite a l s o . 

* 
The following method is a descr ip t ion of a simplified method embodying some o 

the ideas of the p rocedure p resen ted in this r epo r t . 
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2. The non-negat ive quajitity 

A = D IH"' 'D +S(H^^)"^ S - 2 S - D (4) 

is to be minimized . This quantity vanishes when S = H D. The a which 

sa t is f ies these r e q u i r e m e n t s , together with the corr^sponding A, as f\anctions 
1 1 1 Q 

of N = V H "^ and M = V H a r e a s follows: 

Range of M a A 

M < - N / ( R - 1) 1 / (M-N) 0 

- N / ( R - 1 ) < M < N / ( R + 1 ) (1/RN) - (1/N) ( N - M + M R ) 2 / R N 

N / ( R + 1 ) < M < N R / ( R + 1 ) ( N ~ 2 M ) / N ( M - N ) 4 M ( N - M ) / N 

NR/(R + 1 ) < M < N R / ( R - 1) ( R / N ) _ ( l / N ) (M + NR - MR)2 /RN 

N R / R - K M 1/ (M-N) 0 (5) 

The dependence of A on M is be l l - shaped , s y m m e t r i c about a maximum at 

M = N / 2 , for which a = 0 and A = N. 

After forming the new t r i a l m a t r i x H , the next step is taken in accord­

ance with Eq. (2) and the p r o c e s s repea ted , provided that N = V H v i s 

g r e a t e r than some p re -ass igned c . When the gradient i s constant , it can be 

wr i t t en a s : 

V = G ^ ( x - e ) . (6) 

If u is an eigenvector of HG with eigenvalue one, then it will be an eigenvector 
+ 

of H G with eigenvcilue one a s wel l , s ince 

H^^G_u = H G u + a H V ^ ( V ^ H G u ) 

= u ^ a H 7"^ [\7 HG ( 1 - H G ) u ] 

= '̂  » (7) 
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F u r t h e r m o r e , when A = 0, 

H"*" G S = H"*" D = S (8) 

so that S becomes another such eigenvector . After no more than N steps (for 
_ i 

which A = 0), H will equal G and the following step will be to the exact m in ­
imum. 

The ent i re p rocedure is covar iant under an a r b i t r a r y l inea r coordinate 

transfornnation. Under these t r ans fo rmat ions of x , V t r a n s f o r m s a s a covar ian t 

vec to r , G transfornns as a covar iant tensor of 2nd rank, and H t r a n s f o r m s as a 

con t rava r i an t t ensor of 2nd rank . The in t r ins ic c h a r a c t e r i s t i c s of a pa r t i cu la r 

hvmting calculat ion a r e de te rmined by the eigenvalues of the mixed t ensor H G , 

and the components of the init ial value of (x-^ ) along the d i rec t ion of the c o r ­

responding e igenvec to rs . Since success ive s teps will br ing HG c lose r to 

unity, convergence will be rapidly acce le ra t ing even when G i tself i s i r r eg i i l a r . 

Cons t ra in t s of the form b ' x = c can be improved by using an init ial H which 

annixls b , i, e. , 

H . b = 0, 

and choosing the ini t ial vec to r x such that it sa t i s f ies b • x = c. Then a l l s t eps 

taken will be perpendicular to b and this inner product will be conserved . For 

example , if it is des i r ed to hold one component of x constajat, a l l the e lements 

of H cor responding to that connponent a r e init ial ly se t equal to z e r o . 
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