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Abstract

The Lase of a ﬂ@nriﬂ&§m§§¢i®g infinite Bose gas at.zero

.glgepr@s, g§;gg the ﬁepre§ent@t;on theory of nuclear Lie

groups .  The §1_§§ f _éﬁue§e<t tions describing such a system
is ybi_ip@d'by taking an "N/V l;mlt" of the f1n1te case.

These representati ons can also be determlned unlquely from

§h@~sglpﬁi§ns'pj a functional differential-equatioq,which

‘fgjigws in turn from a condition on the grbund state vector. .-

anal;y a syStem of functional differential equations is
formulated for a theory with interactions, using a proposed

definition of indefinite functional integration. -



1. Introduction.

There are two main reasons that non-relativistic models

.based oh‘algebras of local currents have recently drawn the

.» attention of theorists(1-3)

-

. First, they provide an ihter-
.esfing reforﬁaiation of ordina;y quantum mechanics in-terms
.Qf obéervablés éuch~és the paftiéle numbe;,density .p(ﬁ) andf'
"the>particle flux density ,g(ﬁﬂ, rather.thén_the seco;d—
 §uantizedvfield operatér' #(%}. in‘fhis paper‘Qe employ

:éuch a-refofmﬁlatiéﬂ to study tﬂe:propérties §f.an‘infihite
Bése system. For the case of nOﬁ—intefacting bosons éf zero
tgméerature, the loéalhcurrent algebré approach-leads to an
elegant restatement of known result§(4). ‘When interactions

are includéd, we develop a system of coupled functionai
.differential_equations whose solution would de;cribe the
'proéerfiés of an interacting Bose gas. While these gquations
are not expeCted to yiéld explicit éolutioﬁs to>most interécting
theories of‘inte}est, it is our hope thatithey will érove sus-
ceptiﬁle to somg method of1approximatioﬁ;

AThe second reasonvthat sﬁph-non—relativistic models ére
studied is £ﬁat'they may eventually shéd light:on locglvrela—
tivistic currehf algebras. As emphasized by Haag and by
Wightman, there are many similarities between relativistic

quantum.field theory and the quantum mechanics of




‘non-relativistic systems having infinitely many degrees of
- (5-6) . ' .
freedom . In particular, the vacuum state in quantum -

field theory is the analogue of the non-relativistic grouhd

‘state. It is to be Hoped then that the techniques of non-
"relativistie current algebra can be carried over‘and in-
| (1710)

5‘5

N
This paper is concerned with‘infinite Bose systems in

-corporated 1nto the study of relat1v1st1c models

the "N/V limit" or thermodynamic limit, in which the total

@

A L S gﬁ
number of particles N and the volume V of the system

.become'infinite.while the;ayerege density 3 ; ﬁ/v ep;roaches~
! finite coﬁstant.

In Section 2 we review the csse of a non—interecting
infinite Bose gas at zero temperature, frqm the standpoint. of
group representation theory. fﬁe gfdup is thatlebtained by
exponentiating'the local current commutatofs; 'Consequently

the focus of attention is on the properties of the ground

.state expectation fuqctional : e
o ip(f)' o L ‘
—_ 0 3 Q o - - .
L) = @, g - )

In Section 3 we show how a condition on the ground state

~ vector,

(Ve + 2i7) (x)0_ =0 , N " (1.2)



uﬁique;y determipes the class of re?resentations obtained by
. other means in Section 2. Section 4 reviews the concept of o *
fuhctiona; differentiation and proposes a specific definition~
'-fof a,coméaﬁion coneépt, the inaefinite functional integral. = - ,:_-:j'f
The results of Section 3'are'recast4as thé.derivation and
'sqlutionAof é functiona; difféfential'equatibn._7

Finally; Seption S formulates a SYSEEA 6f~$uch.functional”~

differential eQuatiohs for a theory with interactions.




2. The Free Bose Gas at Zero_Temperathre.

A. Preliminaries(l-3’ll)

A second-quantized non-relativistic Bose field W(gg'

satisfies the canonical commutation relations:

o T i(2.))
LT = ekl =0 L

The Fock representation for such a field'is defined as
follows. Let En be the Hilbert space of_compiex square
integrable functions of n vector variables which are

symmetric under the exchange of particle coordinates, and let

= 9 “n be the direct sum of the ﬂn. A vector Y € H

n=0 n

Y € B with (Y,Y¥) =T (¥ ¥ ®,
has components ¥ L With  (¥,1) (Y T ) < The

action of the fields i(x) and ¥*(x) in ¥ is defined by:

TV (e, x ) = (D)5 e ol x,x), (2.2)

0¥ ] Gy e )
. n (2.3)

- Tob(x-x )Y 5
n 521 (X=X a1 o e Xyr Xy




‘Defining the number density of particles as

P(X) = Y*(x)¥ () . - (2.4):

and the particle fluX‘dénsity (for particles of unit mass) .

.. 'l . . ) Lo . ‘. . 3\'. ..
2 =TI (R - V() ), ¢ (2.5)
one obtains the equal time current algebra g
.-[pgﬁ);pex)] =0 - - L ﬂi.""':'(Z;é) 
0
[P(x) 3y (¥) ] = =5 —[8 (x - y)p(x) ] (2.7)
R RN ax Ny g
[J.(x),J (y)] .
3t ke ‘ (2.8)
) B | ‘
= -1 Tl (x-y)I (%) ] + i [0 (x~ 7)1 (y) ] .
a x A J ‘ . a Y] : e (2888
Introducing the smeared currents
o L . S o .
- P(f) = p(")i)f(f“) d"x - (2.9)
and
Jlg) = J J(x)g(x) d”x A -(2.10)

we obtain the infinite dimensional Lie algebra




[p(£),p(q)] =

(2.11)
- [P(8),3(g) ) = ir(g-ve) (2.12)
: I‘?‘.ﬁ’;“&” = iJ(gVf - £:99) o U (2.13)

In Equations (2.9)-(2.13) the smearing fuhctions'(or
~ their components) belong to Schwartz'’s space s of C_ func- -

. tions of rapid decrease.

i'The action of p(f) and J(g)'_in the FockArepresentation

'(2.2)4(2.3)‘is'§iven by .

n . .
[e(£)¥) = Z f(ggj)‘l’n ) 4 (2.14)
J=1 '
and
0 .
[J(g)“] -gi X [g(x.) "V g(x )]W . (2.15)
j=l iy A\J ~] P :] ' .

'Theloperators P(f) and J(g) ,preservé' Nn as a

:subspace of H, and restricted to ¥ n’ deflne the n-particle

~representatlons of the current algebra (2. 11)—(2 13)

A group 1$ obtained by eXponentiating the Lie algebra

(2.11)-(2.13). ' Define

U(f) = oiP(E) (2.16)




add_
ig A T
ved) =72, (2.17)
A .:. .g . 3 '—, 3 - ) . . . . . - . . M N
where Agf“: IR- > R is the flow for time t by the vector
field g; i.e.,
a 19'\ . / . N . .
e = 9@, e (2.18)

and wt_dg(x)'=“x. .Then‘.U and V SAtisfy theigroup,

Aee,

multiplication rules

U(£)U(g) = U(E + g) o (2.19)
V() U(f) _ U(f « ,f_)"(f’..) | . (2.20)
VOV = Vi 8) ‘ "(.2'21) |
‘where - ¥ ‘_._;gdéﬁotes the composition of the flo§}s.

AN e

A representation-of the group satisfying,(2;19)—(2;21)

is in fact a‘fepreseﬁtation of the semidirect product 8 A X,
‘where 8 is the group of all f£'s (undef additibn)‘and  X
is the group of all" Q's (under compoéition).‘ The represén—'

tation theory of such a semidirect product typically focusses

. attention on the functional




. . . 3 SN 3
the smearing functions to be C_ functions on the torus T

L(f) = (Q,U(£)Q) , S (2.22)

‘'where  is a cyclic vector for the U(f)'s in the repre-

(12)

sentation .

B. The "N/V" Limit S e

. .»“/Consider a system of N bosons in a-box of volume V.

-*

. The N—partlcle representatlon of the L1e algebra (2. ll) (2. 13)

descrlbes such a system. Periodic boundary condltlons require

2

. a cube of volume V and of length 2L in each spatial

direction with corresponding points on opposite boundaries .

idenfified. The N-particle representation of the group

©(2.19)-(2.21) is

N,V (f)Y(xl,...,x ) = e I7 ) 3 ¥, X) (2.23)
and
v A : s - ‘a¢k 1
- Y[ ! >y . .
(W) (xl,...,x ) = Ygigil)""ﬂgng))Ldet ‘Lgf)J (2.24)

ox

where { is a C; flow on the torus. The deterﬁinant of
N

N . ‘
0¥"/Ox  is the Jacobian of the flow, expressed in the system

of local coordinates obtained by the above-mentioned

[P




fTthground state 0

.up to a complex phase "multiplier"

identification of the torus with the cube.
The normalized ground state wave function

! (x ,...,x.) for a system of N free bosons in a box of
'N',V M-\l h"'N . . . P

volume V is

."."{f"z:A?N,V(-'}El’;'”’A?fN) = (1/J§)N T . (2.’2.'5)

PR

N.y 1S a suitable cyclic vector with
’ . . N N .

"which to characterize the representation. " Thus we obtaiﬁ the

ground state expectation functional

'L (f) = (@

0
N,V N,V’UN,V(f) N,V

,V

The functional L(f) .in generél determinés»not oﬁly'
the représenéatioﬁ of U(f) Dbut also £hét of VQ&),,ét 1ea§t
(3) |

Now it is not possible to take.a limit 65.(2ﬂ25) as N |
and V become;infinite, but we can oBtain the liﬁit of
LN’V(f) as ﬁ,y —> ®  with N/V - p. The con§traint

N/V —> 5, where~'5 denotes a constant averége‘density,

suggests the'hame "N/ V limit" for the procedure used here.

(2.26)



.Carrying out this procedure,

L(f) = lim L (£) .
O N,v—> N,V
N/V—>
| - N
= lim (1 + £ 7 BxE 1])
N—>m\ N
= exp {5 | (TR _ d3i}‘ (2.27)

C. Defining the Representation

theory of nuclear Lie groups discusses (contindous) repre-
sentations of Schwartz's space 8 in terms of measures on
$', the continuous dual of’ 8. A functional L(f) is the
_ Fourier transform of a cylindrical measure Q on 8', and
thus defines a continuous fepresentation of 8, if and oniy~
if:

1) L(f) is continuous with respect to the tqpoldgy of 8

2) L(0) = 1, and

3) L(f) is positive definite in the sense that

v B T e )

J l)

SOA A -
N ACIEE S I ~ (2.28)

|
The Gel'fand-Vilenkin approach to the répfésentation' ' . _
2
Js,k=1
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Under these conditions,
e = R g - (2.29)
: " FES' ' : '

and fhe'representation of § méy be realized in the Hilbert
. . 2 -
space H = L“(S') of H-square ‘integrable functions on S,

- with

N e = E By (2:30)

for Y € Li(s'). Furthefmore, {1 (F) 1 is a cyclic vector
for the representation.

Therefore we need to check that Egq. (2.27) satisfies

the above three conditions, and indeed defines a. representa-

tion of S§.

Theorem 1. The functional L(f) = exp [5 f (elf(f)-l) d3x]
~is fhe'Fourieritransform of a cylindfical measure W on S',"
and thus defines a continuous representation (]"of S, with
a cYélic-vector Q such that L(f) = (Q,Uu(£)Q).

Proof: 1) L(f) is continuous with respéct to the usual

topology of §; for if £, f in 8 as j = =, then
if | ' '

(e ) 1) — (elf - 1) in 8, and
(elfj(,?i,) 3 S if(x) 3,

-1) dx —> j (e - 1) d°x



© 'where V contains the union of the supports of £

12
2) L(0) = 1.

3) If all of the £,--,£  in Eq. (2.28) have -

mn -

. T N R . L.
cqmpaqt support, then j,k=1 k JL(f k) mls the N/V limit
" 'of the sequence of positive functionals z A A (f A),

5,%=1 k"3, vty T £

1,...’fm.

- Therefore Eq. (2.28) holds for functions of compact support.

AT
e
R

s

ﬁﬁ;5éﬁy vfl,..;,fm €8 éan be approximaﬁed arbitrarily closely
in 8 by C_ functions of compacf support. Since L(f) is
contiguous, Eq. (2.28) holds for<all.-fl,...?fm € 8.

0.E.D.

Next we shall explicitly display the representation
U(f) defined by the functional L(£f) above(l3).

Let ¥ be the Fock space of a second-quantized canonical

" non-relativistic Bose field V¥ (x) satisfying Eq. (2.1). Let
- . A .

w-(:i) = ¥ (x) w5,

' R (2.31)
Vox(x) = ¥*(x) +«/5 .
e, Mman .
Then §' and V'* also satisfy canonical commutation
‘ relations. .The corresponding density is
PTx) = VY, I (2.32)

Awi

and  [p'(£),p'(9)] =

(G B A e T
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Theorem 2. With p'(x) defined in Fock space by Eq. (2.32),

' . cipt(f) . Lo
~a representation UF(f) = e is obtained for 8.  The
spbscribt F stands for Fock. The original Fock no-particle-

sState 'QF € ¥ is cyclic for this- representatlon and defines -

an éxpectatioh functional (Q pUE (f)Q ) = exp[p J fgi)— l) d3x].

Proof: First let us write p'(f)  in terms ofvthe original'

danonical fields;
» . (2.33)

P'(£) = p(E) + B J £(x) a3x + B%v*(f) 5 2y(n)

where p(f) 1is defined in Eq. (2.4). It is clear that QF

- is a cyclic vector for the polynomial algebra of operators

generated by the identity and the é'(f), f € 8. In fact,
‘ N
for a vector Y which is an element of n?O Hn" in ¥,
N+1 ' ’% : :
' Y€ & ¥ i H i ' ¥ =p Y% .
pr(£) _ n=0 'n in , With (p' (£f) )N+l p =V (f)‘l’N Thus,

. by the properties of the creation operators ¢*(f) which
. . N
follow from Eqi (2.3), if @0 H is contained in the closed

cyclic subspace generated by applylng polynomlals in the »p'(£f)
N+l '

to QF’ n?O ¥ is likewise in that subspaceﬂﬁ,BY 1nductlpn' ,
én N, QF is.a cyclic vector for the represeététion,

Next we show that QF is an analytic véétor for' p;(f).
In fact, from Eq. (2.33), it is certainly true that for

N ~ :

Ye & ¥ i H
.n:o .n ln4 J



e

14

le ¥l < aem @+ B el + ] £ Sxhlivl L, (2.44)

Qﬁere -”f”m‘= sup |f(x)|. Thus z 1:"'“FJ'(f)NQFH is
o xemr3 ™ N=0'

. N ' o :
bounded by N§0 ct (N+1l) where ¢ is a constant, and con-

verges'for sufficiently sﬁall' t. Similarly,:éll elements of

E - H are analytic vectors for p'(f);”fbr arbitrary. N.

n=0 - n

e.

Hav1ng_identified a common dense domain of analytic vectors

for the " p* (f), we can now conclude the ex1stence of a unltary
représéhtatlon U (f) = 1p (£) in ¥ with

) U =U ) .
U (£)U_(g) F(f +9) |

The cyclicity of QF for the Uf(f) follows immediately

from the fact that for Y in the domain of »p'(f),

J;[QF(tf)Y - Y] —> p'(f)y as t — O.

Finally it remains for us to evaluate (QF,Uf(f)Q ).

Define the operator-valued distribution

AE) =B [ £0x) a®x +p Sur(e) . (2.45)

ey

Then
9'(f)0F = A(f)ﬂF ’ : o - (2.46)

and a simple calculation shows that



eipf(f)A(g)e—ip'(f) = Z‘

‘Wwhere

15
[p'(£),A(g)] = A(fg). | (2.47)

Hence

-
.n

ad® (£)ale = Aty , (2.48)

n=0

(ad XY = [x,¥] . . (2.49)

w with L(£) = (@_,U_(£)0,
Now w1tb L(£f) ( F,U.F(f) F),

Ld Liee) = @,

idt pf(f)QF)

eitp'(f)

(Q A(f)QF) = (QF,A(gitff)eitp,' (£)

P a.) (2.50)

ar (e Ena et Fay o5 [ FF W g ox L)

This differential equétion in t, when supplemented with the

boundary condition L(0) = 1, has the unique solution

L(tf) = exp [p [ (

SEEX) gy 34y T (2.51)

Q.E.D,

Using the "functional derivative" to be introduced in

Section 4, Eq. (2.50) may be written

°
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1 SL(f) - 1f(X)L(f)

i 8f(x) T P e ,1..(2°52)

-

We haQé shown éhai ﬁq.A(2.27)‘defines a repfesenéation of
s, fhe normal subgroup of the semiairect.prcduct; and.haveA}
dispiaYed'thé representatiop, Next Qe show tﬁat~the fﬁll
group 8 A K' can be represenfed in thé4same Hiibert épace;-

The flrstistep is to ant1c1paté the form of the funct10na1
E(f,1) = (@, U(f)V(w)Q) by taklng another N/V 11m1t Again in'

the N-particle Fock representatlon in volume V,

Af)v (§)Q

4 = (@
v(f’:-q{m) ,( N,V’ N \Y% N,V m N,V)

T3 3 7 1N N - N N : T - »
- N i = n g .53
= d xl d xN \V) exp i . f&ﬁg) /wgﬁn) . (2.53)
where
2k . S
gw(x) = det ——Zix) - , - (2.54)
e F AT ax AN R . -

islthe'Jacobiah referred to in Eq. (2.24). Thén

E(f, w) = lim E_ _(£,V)
i N,V.—> c_o N’V o
N/V—>p

(2.55)

exp 17 [ (M7 Gy Gy -1 Ex x1

L
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A functional E on a topological -group G defines a

continuous représentation of G, if and only if:(14)
1) E is continuous,
2) E(1) =1, and
. m . _ 1 S .
z. . X X - A' . .. )
3) KsElg e 20 o (2.56)
J,k=1 ’ ' ‘

(V gl,.,..,gmG G, Kl,f,,,)\n;ec) °‘ ;’.

Now we are ready to pro?é the next result.

' Theorem 3. There exists a representation U(£f)V(V) of

$ A X in a Hilbert space ¥, with a cyclic vector Q € ¥,

such that E(faﬁ) = (Q,U(f)vgg)ﬂ) is given by Eq. (2.55).
Proof: We shall show that conditions 1)-3) above are satisfied

.2 2%

by E(£,V).

~1l) It is necessary to introduce a more careful definition
of R.(ls) Let Ho be the group of all C_ diffeomorphisms

from ]R3 onto ]RB, having compact support. We topologize

[N

fKé by means of the countable family of metrics

((@,W’)n - max sup
e o<iml<n  x€R

Nyt

Sl x5 ™ oy -y ™ o)

n=0,1,2,... (2.57)
‘ sty
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A : . 3
| € X = = _ X
fot ,faf o? where (m) ‘(ml,mz,m3), lml. k=l_mk,uand
g iml : . o .
¢(m)(x) = o ££%? — . ¥ is the completion of
me A 1.1 2, 2 3, 3

(3x7) " (3x7) " (3x7) \
ho ‘with.resneot to this topology; The topology has a countable
_ba51s of neighborhoods of each element of X 'and is metrlzable.
The group operations are continuous; X ’oontaine diffeomor-
phisms thch'ere not of compect Support, Sut whioh.suitably :

approximate the»identity mapping as |x| - o,
.o . A

Omitting‘the computations, it follows that -if fj — f

in 8 and qk >Y in ¥ as k,j — 5; then
lf]d? - 1) — (eifJQ_w' - 1) in 8, and
‘”‘k o
R 1f (x) ‘ ‘ .
j le /7, G - 1) Cxo—> [T - P

Thus E(f,w) is continuous.
2) Clearly E(0,1) = 1.

3) As in the proof of Theorem 1, choose first the
elements ‘flﬁYl)’°"’(fmﬁim) to have compaot support. Then

with _

. -1 ) ) .
(F58y) (855050 = (£

-1 : . 1
B 0 ARA TP T M I (2.58)
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the expression

.m . - : 1 l .
T A\ -£ ] ° Vo o Y- .

is the limit of the sequence

- -1 : ) ;1 . .
X )\ - -] - o . . .
M jEN,V([fj £ ] ¢k ’ ij,_ _“&,k_) -_ (2.60)

A~ ™My

j,k=1

as "N,V —=> = with NV — P, where the volume V contains

the union of all of the supports of £,...,f and ~£1’7'°Amm

But Eqg. (2.60) is positive since E is definéd in the

N,V

N-particle Fock representation in yolume V by Eq. (2.53).
Therefore ﬁé. (2.59) is pésitive for eleménfs of S AKX

which have compact suéport. But any element of 8 A X "can

- be apprdximated arbitrarily closely by elements having compact

éuppoft, dug éoithe definition of X as the completion of

Ro. Sincé E(f}i) is continuous, Eq. (2.59) ié.positive for

all elements of S N K,

N Q.E.D.

Thus there exists a continuous reprESentatidn U(f)V(%)
of 8 A X. in a Hilbert space ¥, with Q € ¥ cyclic for the

U(f)V(%), such that

E(f,V) = @,u(£)v(¥)a) . | ﬁ (2.61)

SV .

<~ sty R

et AN o S B A
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‘The next'step is to show that 0 is a cyclic vector for
the shbgréup [U(f)}- We shall use the following lemma, omitting

the proof which is not difficult.(lG)

. itA . . ’ :
Lemma 1. Let U(t) = e be a continuous one-parameter

unitary group in M With:.A self-édjoint; létA-Y’E H and
1ét~ £(t) =.(Y4U(t)Y) .be an entire analytic function of t.
Then Y is an‘éntire analyt}c vector for A; i‘oe° the‘seriés
b %-EIA”“{H - : "_-('2.62):
n=0
is absoiutely'convergent for all t; and Y is in.the aomain

of U(it).:

7

Theorem 4p In‘the representation of 8 A X defined by Egs.
(2.55) and (2.61), Q is cyclic for the [ka)}.

Proof: Let h € 8. Then with U(h) = elp(hl,,Eq. (2.55)

yields
S - = ith(x) 3 o S
@,u(th)d) = &° J le v =1ldix ' (2.63)

~which is an entire analytic function of t. Therefore by
Lemma 1, Q@ is in the domain of ep(h). ep(h)ﬂ is of course

in the closed cyclic subspace’ generated by thef{U(f)Q} .
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But it can be shown that v({)Q = ep(h)ﬂ, where

1n Jyw(f)° In fact,

e P (h)',n” 2

1 f‘(Q;U(‘ih)Vgﬂ)Q) - (Q,Vgﬂ—l)U(—ih)Q).

+ (i2,U(-2ih)i1) .

=1 - exp (5 J PNV -1 Pk (2.6
- R "- h‘dl—l(x) _— 3 - |
mexp [P [ (e7w VTG0 - 1) d¥x)
o | o I
rexp (7 [ (2P _ 1y 435

after'some manipulation of the Jacobians. Thus"Q' is éyciic

_ for the {(Uu(f)].

' Now we are ready>to represent the full group 8 A X

in ‘the Fock‘space of Theorem 2.

Theorem 5. With W'(§) = W&;} + 5% as in Eq. (2.31), with

- P'(x) given by Eq. (2.32), and with

U0 = SIHEOR0) - @i e ] (2.69)

fivva a3
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in the Fock space. of the non-relativistic canonical Bosg field

i

¥ (x), there exists a continuous unitary representation
Ao : . .

Ué(f)Vf(W) of the gioup 8 A ¥ such that

u_(£) = P () . (2.66)
F o . ,
i oy (.2 = L) '4 ' (2.67)

with-»ﬂF € B.'fhe original Fock vacuum state for V(x),.
’ ”m
=@ b0 | )
B(E,Y) = (,U (Bv ey (2.68)

where E(f,U) 1is given by Eg. (2.55).
Voiid!

Proof: First we assert that the representation of 8 A X

obtained in Theorem 3 can be mapped unitarily into the Fock

Hilbert space.

Let Q f> QF and U(f){ —> UF(f)QF, whe?e' QF and

UF(f) are as in Theorem 2. Since by Theorem 4, 1 is cyclic

- for the U(f), this mapping defines a unitary ;epresentation

not only of & but of 8 A X in the Fock Hilbert space; we

may write V() —> VF(W), and

-

E(£,1) = (O, U (D) V(1A
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It remains only to show that J'(g) as defined by
_Eq. (2.65) is indeed the infinitesimal generator of the one-
parameter unitary group Vf(wfg). By Stone's theorem, it is
" sufficient to show that
v 9 -
P (@, I

Clim : Q=3 (. ;. . (2.69)
0 it - F Pt F~~ o

‘the result theh,fdllowsAfrom the fact that P'(f) and J°'(qg)
satisfy the cbrrect:algebra of commutation relations on the
domain of polynomials in the p'(f) applied tb',Qf.

Now by Eg. (2.65),

A 1 o
! Q = — p*(V.9)0 ) )
I, =57 P | (2.70)
and
- g, _.
V_(®-) - T . .
) R ; 1 2
. = = ' (V-g)Q
lim || BT “F 21 P QWLQ) F” :
t=0
: Vf(?ég) -1 : .1 UF(SXZQ) - I. 9" A
= tim = e et 2 S QFH‘ ' (2.71)
s,t~0 LT . .
= 0

using Eq. (2.55) for E(f,l). Thus Eq. (2.69) is demonstrated.

QQE‘D.
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To summarize, we have obtained a representation of the .
group S A X, the exponentiated non-relativistic current
algebra, in the N/V limit. This was done by means of the

ekpectation functional E(£f,V¥). The representation~thus

' obtained was shown to be unitarily equivalent to an explicit

representation of the current commutators in a certain Fock
space, with the original Fock ground state being the cyclic

vector defining the functional E(f,@).

. In the néxt section we show how a condition on the cyclic

vector which aéserts that it is the physical ground‘state of.
an iﬁfinite'free Bose gas uniquely determines'tﬁe class of‘
representatioﬁs.obtained above; namely those definéd by

E(fa?) for an arbitrarily specified averaée particle density'l

P.
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3. A Condition on the Ground State.

In this section we.study representatibns of the current

ﬂalgebra, Eqs. (2 11)-(2.13), in which there ex1sts a cycllc

--'vector Qo satlsfylng the condltlon

[2i3(x) + (F0) ())@_=0 . - @)

o

'Qo}fﬁill usually be interpreted as the ground state of the -

system.

Convincing heuristic arguments that Eg. (3.1) determines ‘;'

the ground state of a non-interacting Bose gae have been

given.(ll’l7_19) Here we shall explore the consequences of

1

this constraint somewhat more systematically. We show that

for a system in a box with periodic boundary conditions,

, R 3 -
Eg. (3.1) implles that the operator J p(x) d x has 1nteger
eigenvalues. In Section 2 we saw that the expectatlon func-

e1p(f)Q )
o’

tional - (Qo" 'is given by Eq. (2.27) in the N/V
limit. In this section we show not only that eq (2.27)
determines a representation satisfying the constraint (3.1),'
' . (19) i .
as has been previously indicated , but that it defines the
unique class of representations having this propertyQ

Let us investigate the consequences of Eq. (3.1) on the

functional
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- L(f) - (Qo,eip(f)no)-:,, | o ‘;(‘3.2)

where I = is a cyclic vector in a representation of the

" current algebra, satiszing the condition

] = \ . Q - . .
2i3(9)0 | Pgn/g) o | (3.3)

Naturally we shall assume that» Qo is in the domain of the
operators J(g)‘ and pP(f) for all f£f,g € 8. Actually, for

the sake of mathematical rigor we shall assume slightly more.

-We suppose in addition that the bilinear form

(P(fl)Qo,p(fz)ﬂo) is continuous in fl and fz; i.e. if

— in 8 Q ) = Q-
£ £, in 8, then (p(fln)xo,p(fz)ﬂo) > (P(£,)0 ,P(£,)0),

and similarly for f It then follows that ”p(fn)ﬂéﬂz — 0

2"
if fn — 0 as n > «, This assumption is slightly stronger:

than assuming continuity.of the group representation U(f).

"It follows readily that L(f) is continuous in f; i.e. if

fn‘"‘> f in 8, then L(fn) — L(f). 1In fact,
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| ip(€£) - B
luee ) -l =@, (e nos elp(f))no)l
, ip (£ -f)
= [ Wa e ® T - e
ie(e), gy P ERD)
<l agllice - 1)l

< lecg - Bl —-5 0

as £ — f£.-
n ,

For the case of a system in a "box" wifﬁ péfiodic boundéry
conditions, assume that .Eq. (3.3) holds for éll infinitely
differentiablg periodip vector functions g. Thé componehts
of such functions will be said to be.in SV, where 3? has

the topology of a nuclear space.

Using Eq. (3.3), we derive a functional equation for

L(f) as follows. We have

d ' N ) ip (£) AN
—— v . —_ ) o .
o D(E+t9°g) =i ,e (Vg ) ,

.-whence it foli@ws ﬁsing Eq.(3.3) that'u

d _ | ' ip(£)
Ve = -
L(f + tV ,g.)t'=0 2(Qo,e-

at . . (3.4)

J (l\g:\)QO)

Similérly,
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d 3 '
ELE+ g =i, ege?Pa
= i(e g et Py ).
o (3.5)
_ ip(£f) -
= 20(9)0 e Q) |
iR (£)
- 2 (QO,J(’Q:)e QO) "o
_ Combining Eqs!‘(3.4) and (3.5), we have
a B Cap(g) o B
qc. L(f + tY g) f,( ,[Jgg) e ]Qo)j' :(3.6)

Now it follows from the current commutation relations that

031 L gig) - gy L (3.7)

et

Combining Egs. (3.6) and (3.7),

dt t=0 o’

A

SELEF g =@, [3(g) - P By (gt (B ie e,
o oo ip(£)
= @ig,p(gn et g )

sovm

N .
= - -V
3 i c L(f + tg f)t

3 0 * f}:' (3f§)

This equation can also be written in the form

@, B g + 10(g95) ) = o (3.9)

(o] PPERPSN
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for all f,g‘E s o? for éll (periodic, infiniﬁely differen-

tiable) f,g,ﬁ SV for a system.in a "box".: ' | ‘ . o
Tﬁus we have obtained a funcfional equatiéﬁ'for L(f)

frbm th¢>origigal conditioﬁ‘on'the groupd‘sgaéé:igo. | |
Next we shall show that Eq. (3.8) or (3.9) implies tﬁatb

L(f) must be of the form

L(£) = F(K(D) , T (3.10)
where
'K(f) = J (eif£§) - 1) d3x_

and F(z) is a.hoiomorphic function_of.the coﬁplex variable
z 1in the intérior of the range of K(fy;A
In order géjp;ove this reéult.we will’néed‘ﬁhe following
twq lemmas. :We'séy that the mapping t — 9, Sf the interyal
[0,1] into 8 (respectively Sv) is a differentiable mapping
: day

dt -kt

of [0,1] into 8 (resp. Sv) with derivative
(resp.4SV) if for each t € [0,1] we have that
-1 . ' A : o " :
- —_— —_ .
h (gt+h gt) kt as h 0; where thelcqnvergence,ls

in the topology of 8 (resp. SV).

Lemma 3.1. ‘Suppose that t —> g, € 8 (resp. SV) for
0 Lt 1l is a differentiable mapping of [O,l] into 8

(resp. SV)7 Furthermore, suppose that
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R |
-K(gt) ='I (e. - 1) d"x = a constant ; - (3.11)
: N ip (£) N o :
that L(f) = (Qo,e Qo) satisfies (3.8) or equivalently

(3.9): and that L(f) is continuous ih £ with respect to .

e S

'the_tépolégy of & (resp.‘8§)}?éfﬁeh' L(gt)"~is;a constant
independent of t.
'.Proof:‘ We shall prove the lemma by showing that

(Q/dt)L(gt) = 0. Let kt =’dgt/dt., We begin'by showing that

' : ‘ ir(g,)
e Le) =i@ e °

3t o(kt)Qo),; (3!12)

Now we have

h(Llg,,,) - L(g,))

o dp(g) ielg.)
=nheg, e P i Ttha
T | , A (3.13).
.ie(g,.) 1ip(g -g,-hk,) ihp(k. ) ‘ V
R t’ o t+h e - na)
- “ip(g,) ip(g | -gA—hk ) iﬁp(k ) ‘
=ht@,e Fe Rt EL TR - na)

-1 1Plgy)  iPlgy 4 -9, ~hk,)

PO, e T e -oay

Eétiﬁating the second term in Eq. (3.13) as. h—> 0 we find

that
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lh'lgob, eipfgti(eip(gt n 9 ‘hkt) -.1)0 N
clle g QP G S na |
<t Wp\gﬁih—:;zg - kt)QOH —0 . as h—>0 ,:
;ince' h- (g£+h f gt) - kt —;> 0 in §  (r§sé;'$V) as

“h —=-0. Hence, we have

lim h (L(g ) - L(g;))
e _t+h o t | o
: . ihp (k)
o 1p(gt) 1P{9  nm9 Thky) e % _1
= lim|e . e Qo’ h Qo
- h~0 .
ir(g,) . | , ‘
= i@, e P (k)0 ) (3.14)

Therefore, L(gt) is differentiable and

D(k )QO) ’ B (3015).

where kt = th/dt.

Next we Shqw that Eq. (3.11) implies

'ip(gt) | |
(ﬂo,e : ?(kt)ﬂo) =0 . | (3.16)

Let T- be the tempered distribution defined by



- 'ip(gt)'. : ‘ . )
T(F) = (e 7 p(H)R) . (3.17)

, From Eq. (3.9{ we have
T(7g + ig-VE) = 0 o © (3.18)

for f,g € 8 (resp. S&). Let Tg be the distribution

" defined by
T_(£) = T(e JF) S0 (3.19)
for g € 8 (resp. SV). Then we have

. i
T (Vof) = T(e 99 : f)
g Mmoo 7 /h\'.-

= T(V- (e 9f) + ie 1 9¢9g) = 0 . (3.20)
~my AA V asaRaa .
by Eq. (3.18). Hence,

VT (x) =0 and Tg(x) = C

2
o gh'-' -~ .

g

where Cg is a constant depending on g. Thus from Eq. (3.19)

we have

T(x) = cgeig‘ﬁ.‘i) . _ (3.21)

From Eq. (3.11),



., ig (x) | X ig (x) . .
é% J et 1) x = i J k (x)e t &r SEx=o0 .. (3.22)

Therefore by Egs. (3.21) and (3.15),

4 io(gtx |
a L(g,) = = i@ e P k)0 )

_lT(kt) =0 ,
Q.E.D.

The proof of the next lemma is extremely technlcal

therefore we shall present a mere sketch for the 1nf1n1te-.

volume case in the appendix.
Lemma 3.2. Suppose 9,59, €s (resp. SV) and

ig (x) | ig (gg)' : A
f (e et 1) d X f (e 2t 1) d3x . - (3.23)

Then for any two neighborhoods N, of 9, and " N, of 9,
in 8 (resp. SV), there exist functions hl € Ni and

hZ‘E 29 and a contlnuous mapplng t = ft of [O 1] into |

-8 (resp 8 ) differentiable in the open interval (0, 1),

such that fO = hl?~fl = hz- and

1ft(x) 3 :
(e =™ -1) d&°x = a constant ..



This lemma is easy té prove if’ ft is permitted to be
complex. The requirement that ft be real for”'o Ltgl

complicates the proof considerably.

- Proof: See.Appendix.

N tinuéds in g there are neighborhoods N, of gl and N

Theorem 3.3. Suppose that L(g) = (Qo,elp(g)ﬂo), defined for

- all real g € 8 (resp. SV), is continuous in- g with respect

to the topology of .S (resp. SV)° Fu;thermofe,ﬁéuppoée thatf

,h(g). satisfies Eq. (3.8) or equiﬁalentiy eq_(§.9). Thén

L(g) .is.of the;form
L(g) = F(K(g)) ,

where K(g) = I (elgaﬁ) - 1) d3x and where F(z) is a

holomorphic function of the complex variable z in the

interior of the range of K(g). - C e

Proof: Fifst we show that if .gl,gz.é 8 (resp. SV) and

ig. (x) . ig (x) : ,
(e 1f" - 1) d3x =] (e 2 . = 1) d33

i

then 'L(gl) :L(gz). Suppose € > 0. Siﬁce L(g) is con-

2

of 9, 'in 8 (resp. SV) such that
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lL(g)) - L) | < ¢/2 for all h, € N

1 1 )
‘ - (3.24)
IL(gz) -—L(hz)l < ef2 for'all h2 € N,
From Lemma 3;2 it follows that there exist functions ki € N1

“and k2 € N2 and a continuous mapping t —> fé of [0,1]

into . 8 (resp.'gv), differentiable in (O,l),-such that
0T 1?1 T R

- if (%) -

‘(e_-t f” - 1) d"x = a constant

Then, by Lemma (3.1), we have that L(kl) = L(kz). By the
- . | &
inequality (3.24), it follows that IL(gl') - L(g,) | < «.
_ o o
Since € > 0 is arbitrary, L(gl) = L(gz). Hence, L(ss’

depends only.on the number

U R(g) = J (29 (%) _ 1) <,33X .

Thus we have L(g) = F(K(g)), where F(z) is a complex
function defined on the range of K(g) for all g € 8
-A(resp. SV). We note that for 8 we have that the fange of g

‘ K(é)' is {z; Re 2<0 or z =0}, while for 8 the range

v’
of K(g) is fz: lzi-\fl £V }. Next we show that F(z) is

differentiable for 2z in the interior of the range of K(g).

If K(gl)“is a point in the interior of the range of
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K(g), then gl‘ is not a constant function. ‘Then there are

real fﬁnctions hl and h2 -which'have the property that,

as -the point (tl’tz) ‘runs over a two dimensional neighborhood

of (0,0), K(gl +vtlhl4+ t2h2) runs over a complex neighbor-

. i R + 1
hood of ‘K(g) | Thg mépplng (tl’tz). K(gv+:t.l 1t t2h2). |
is iﬁglytlc_;n‘ £ and t2, and sxn;e L(gl4+ tlhl + t2h2)
.igféifferentiablg in tl"ahd tz, it follows from the con-

_tfnuity‘aésumptions oh:’L(g) that F(z) is:differéntiable in
axneighbofhoodnof K(gi). Hence F(z) . is diff?rentiable in‘
the iﬁterior of the range of K(g). Sincé L(Q)i is coﬁtinuous
in g; it follows thaf F(z) 1is continuous on fhe wholé range
of K(g). |

Next we éhow that F(z) is holomorphic for . zk ih'the :

interior of the range of K(g). To prove this it is sufficient
to show that  .

3 Fu + iv) = -i 3v F(u + iv)

for z = u+iv in the interior of the range of K(g). Since

F(z) is‘differentiable we have-_




d | aF(K(g)) 9
3¢ L9 + g du  3elRe(K(g + th)) ]| _
+ 3F(K(g)) 9

5y 3glIn(K(g +lth)Jlt=o.

3 ,
= - _Ei%ﬁﬂll J h(x) sin g(x) d3x

A

+ OF(K(g))

3y J h(x) co; g(x) d3x . (3.?5) 

I\,n

Then from Eq. (3.8) we obtain

_ELELELL J (v;ﬁ)(f) sin ggﬁ) d3x
u : . 3
| (3.26) -
- K o ' ' » ;
+1 D) 1 eog) ) gin g(x) d’x
. a '
+ 1 “EK

av 4 (£:99) (x) cos g(x) d°x = 0
\'4 M pen ~ R A )

From the divergence theorem, we obtain the relatiQnShipsi

- &

i (v ) (%) sin g(x) Sx = -f &ﬁ}ig)Qi? cos g(x) é3x

"

-'J’ (V. f) (x) cos g(x) a>x

han J (£.99) (x) si,n é"(f“).d?'x (3.2"7)‘_

Combining (3.26) and (3.27) we fiad

(), ‘aﬂ%m) 09 By o

AWy Avny

If Q is not a constant, one can find an £ with
. /V\ﬂ
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-components in 8 (resp. S8.) such that

v

[ 06) (900 Sx £ 0

MY Y A

. A . o
. Hence, %% = -i g% » and F(z) is holomorphic for 2z in the
_interior of the range of K(g) . This completes the proof of

the theorem.
Q.E.D.
', Next we shall determine the eXplicit4form ef A

L(f)=\Qo,elp(f)Qo) under the further assumptlon that CU(£)v(y)

S}

determines a factor representatlon of the current algebra. The

importance of factor representations lies in the fact that every
representation of a C*-algebra (in particular, the C*—algebra

associated with currents) can be uniquely decomposed into a direct

integral of factor representatiqns.(Zl) Roughly speaking, if one

knows all of the factor representations of a C*—algebxa, one can
construct all representatlons by taking direct 1ntegrals.
Suppose we have a continuous unltary representatlon of

S_A.K We denote by QU the *-algebra of polynomlals in U(f)

oM

. and. V(¢) s Wlth f € § and y§ € X , and by U the commutant'

of I , i.e. the set of all bounded operators which commute with

the elements of U . Finally we denote by 4"  the bicommutant

of 4 , i.e. the commutant of 4’ - It follows from a theorem of



in the Hilbert space of the representation, and for ¢ > 0,
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(20)

von Neumann that ¥U" is the strong closure of 4, i.e. -

for A € ¥U" and any finite set of vectors [Yi; i=1,...,n)

" there exists a B € ¥ such that ,”(A = B)?i” < €. The

_représentétidn " U(f)V(¥) is said to be a factor representa-
3 - . M . " .

tion if 9 n.ﬂ" = {A1}; i.e. if the only opérétors common to
both %' and A" are multiples of the identity. Every

irreducible representation of the current algebra is a factor

.representation, since for irreducible representations

4 = (A1),

Let us turn to the question of determining
L(g) = (Qo,eiP(g)Qb)v for a factor reprgseptatién with a
vector Qo satisfying Eq. (3.1) or équivalently'Eq. (3.3).
“We begin with the case of 'a system iﬁ a box. Since the
function eogfz =1 1is in SV’ we can consider the operator

U(Xeo) = exp [ilp(eo)]. Since U(Xeo) commutes with

CU(£)V(¥) for all (£,V) € S A X, U(Xeo) is 'in the center of
A "wae .

the current algebra. Then for a factor representation we

must have U(Xeo).= w(M) I, where Jw(r)| = 1. By the group

~-propérty and by Stone's theorem, we then have

exp [iXp(eo)] = exp [irQ]I, and p(eo) =AQI,’where‘ 0 'is to

be interpreted as the total number of particles in the system.

| But we have already seen that L{(g) = F(K(g)) where F(z) 1is
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analytic for ,z-+ vl < Vv and continuous for <‘z.+ vl Ly
' t
Now we have

F(K(ke))) = Fﬁzeix -y) = 9 S (3.28)

s : ‘ ’ IS | i (A421
-Since F  is single-valued, F(vel -v) = F(vfel( .+2 ) -v).

i2mg
Hence e Q = +.

1l and 0 =0, 1, +2, ... . If F(z) is to

be holomorphic fbr lz-+ V1 <V we must have Q= 0,1,2,;..;-

hence it follows that F(z) is of the form

Q

‘z 4y o o
F(z) = { v ) , Q = 0’1’2’”: g _ ,(3'29)
Therefore
- o if(0 342 o
L(£f) = !\\JV e e ! d x) . ' (3.30)

Every representation of the current algebra can be ex-
preésed as a direct integral of factor representations; -thus
for an arbitrary representation of the current algebra in a

box with the ground étate.satisfying Eq. (3.1) or (3.3), L(f)

" is of the form .

S (3.31)



a1
with @ =0,1,2,..., Mo 2 0, and »QEOA“Q = 1.

!

Next we determine the form of L(f) for the case of

infinite volume. Again we assume that we have a factor repre-

sentation, and obtain the general case by taking

a direct
integral of faétor representations.
Consider the expression-
. ip(£)) 10(£,7) -
- = (0 ’ ‘ .
L_(fl + f2 ) ( o’€ e .Qo) , , (3 32)

6 g . n Y = - : =: . e e 0
where -fl ; f2 Qﬁ) f2g¥~ ngg forv n 9,1,2, and
£,€8; and where a is a vector of unit length.

Now we have

L n : n
4 L(f1 + f2 ) = F(K(fl + f2 ))
and
ST if, (x) if (Xrna) o

—_> K(fl) + K(fz)» as n f> m.‘ (3.33)

Since F 1is continuous we have

n
L(fl+ £.7)

) —> F(K(fl) + K(fz)) as n = o



42
'Noy the set of all operators of morm not greatervthan
one in a Hilbert space {(i.e. the unit ball) is compact in the
weak operator tooology. Therefore the sequence
ielf)) |
e has at least one cluster point ln the weak operator
topology which we shall call G . Sloce

ng.

1p(£, o | o
] 7™> 0 strongly as n — 0O (i.e. the

iJ(g)” 2
L e o ol 7 '

'

1p(£,7) - 4 : - A
e T tend to commute with elements of the current alge- -
bra as n —> =) , it follows that G is 'in the4commutantAof
the current algebra. Since G is a cluster point of a
sequence of elements of the current algebra, G is also in
the weak closure of the current algebra. Hence, by the assump-
tion of a factor representation G is a multiple of the. iden-

tity , i.e. G = AI .

Since we have the existence of the limit
L(fl +_f2 ) F(K(fl) + K(fz)) as n @

and since

2

L(fzn) = F(K(£,)) for all n

it follows from Eq. (3.32) that
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n) —_— XL(fl) as n —> «

LiE + 8

and
n
=X .
L(f2 ) L

Combining these equations, we find

: f | F(K(fl) + Kﬁ(vfz)) = F(K(fl))F(K(fz)) o | (3,'3‘.1) .

for all £,,£, € 8. Hence,

F(zl-+ zz) = F(zl)F(zz) ’y | | (3.35)

and it follows that F(z) is of the form F(z)-= A exp {Bz}°
Since F(0) = ; we have A = 1 and Sigce

ln(f)j = |[F(x(£))| < 1 for all f£ € S,.we have. lF(é)l <1
for all =z Wi£h  Re{z] < Q.b Hencev o> 0. énd' |

F(z) = exé {Ez}, Thus |

if (x) 3
Viiaky

L(f) = exp E‘I (e - 1) d&°x . -  (3.36)

)

For the general case of a representation with ground
state satisfying Eq. (3.1) or (3.3), L(f) is a direct‘integral

of functionals of the above form, i.e.



(=]
~

- * - ‘f - .
ne) = ) exp {5 [ (M o1y B}, | .37
Y - ’ . A. : ’ '
where u is a positive measure on - [0, =) nofmalized_éo that

C du(p) = 1.
J,‘O M (P) :

We summarize these results as follows:

st

Theorem 3.3. Suppose g — J(g) and 'ffzg'p(f)Q is a *-
. A ’ Co.

representation of the non-relativistic current algebra of

'Eqs.f(z.ll)-(2.13) with a cyclic vector Qo.lssﬁppose iﬂéz'is

in the domain of p(£) and J(g) for all £,g € 8, and that
. Avn : adstd

(D(fl)Qo,P(fé)Qo) is a continuous bilinear form on § X §

(resp° SV X.SV). Finally, suppose that
. Q ’= v. Q A' . . . . )
21J€3) ° pgh‘g) ° o ‘ (3.3)

Fa3113

for all g with componénts in 8§ (resp. Sv)o' Then if

L(f) = (Qo,elp(ﬁ)ﬂo), L(f) is of the form

wo = 5 (] MR Gy

L(f) = [ exp {5 ! (eif&i} -1) d3x}‘du(5)- '(3037f
: o . -

44

YYD,




45

K - : o
in the infinite volume case; where HQ >0 for Q= 0;1,2,.0.,
5 -
Lo
=0 "0

- normalized to unity.

=1 and where H is a positive measure on [0,%)

‘We remark that the form of L(f,g)'='(Qo,elp(f)e;J€§)Qo).‘
is completely determined by the form ofA‘L(f) together‘with.
_Eq. (3.3). . ST 4

Theorem 3.4. Representations’éorrésponding to.Eq..(3.30)

and Eq. (3.36) respectively are irreducible.

Proof: Supposing the contrary, there exists a .closed in-

variant subspace M of ¥. with U(£f)h g_m; v(y)mh c m; and
- SO . |
into ASG. + (1 - A) Qz with Ql € m,

we can,decomeée Qo
. N _
02 €M, 0<¢A <1, Then U(f)Q2 and - V($)02 are likewise
. YA
in M, Since is a cyclic vector for the U(f), it

follows that fU(f)Ql] generates a dense subsbaéevof m,
and {U(f)Qz] a dense subspacé»of.~ml. Fﬁ;tbéf@éré Ql‘ andz
02 aﬁe,in the domains of p(£f) aﬁd JQg) £y étone's
théo;eﬁ, witﬁ 'P(fiﬂl € m, p(f)Qz emn ,.etc._?Sincg |

.-"p(f yal2—'0 if £ — 0 as n-—> °°, ”9(.£ ya 2 — o
_ “n" o - - "n _ | n 1 : ,
and - “p(fn)QZH2 ——>:0, whence '(p(fl)gl,'p(ﬁé)ﬂi) and{
(p(fi)ﬂz,p(fé)ﬂz) are continuous in £ and fé. Evigéntly{

ZiJ(g)Ql = P(X‘g)ﬂl and similarly for 92.




.T*pfirhus the functionals. Ll(f) =,(Q1,U(f)01) and

' Lé(f) = (QZ,U(f)QZ) satisfy all of the assumptions made -
earlier in this section, with L(ff = XLl(f) + (1 - X)Lz(f)

'Consequently, L

, and L2 must each be of the form of Eq.

'(3.31).or (3.37), which is impossible unless Ly L2.= L.

Therefore the representations are irreducible.:
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4. Functional Calculus.

We have shown that in order to describe a free Bose'gas
.at zero temperature, one takes a representatlon of the current
algebra, Egs. (2.11)-(2.13), w1th a cyclic vector Q 'satis- .
:fying Eq. (3.1). This corresponds to maklng the assumptlon
'1p(f)
that the expectatlon functlonal L(f) = (Q ,e Q )

'satisé

0’
(19)
-fles a certaln functlonal dlfferentlal equatlon.. ~In

fact, with '
PN Do

K = 7000 + 21000 (1)

and

R(x)2 ) =0, Fe (4.2)

MY AL

@ LiP ()
o’

together with the ‘commutation relation

(e xx)1 = 219800 (2D (4.3)
one easily obtains
e @, ) + m Vp<x)e”"f’ ) (4.4)

which is the unsmeared form of Eq. (3.9).
Equation'(4.4) may be rewritten as a functional dif-

ferential equation as follows. We use the standard notation



L
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for functional derivatives. If L(f)' is a'conﬁinuous func-

. tional on Schwartz's space 8 we say ‘L has a functional

derivative at f if there is a tempered distribution T (x)

HSU¢h_£héq

L(f + tq) - L(F) _ ST
t =Tgla) - o 4

.iim
-0

e

We -denote the functional derivative by

Su(g)
SF(x) ~ ngf)

Awt

. L (4.6)

It is a consequence of the assumptions we made on L(f) . in

the beginning of Section 3 that L has a fuhcfionai deriva-
tive at all f € 8, and

SL(f) _ i@,etP(6)

8 (x) - p%m).. . (4.7)

Higher functional»derivatives are defined in exactly the same
fashion.
In.thisfnptation, Eq. (4.4) reads

SL(f) SL(f) _ S Cen
[ £(x )]éf( ) ,Yf.éfgﬁ) =0. N .. (4.8)

A unique solution to Eq. (4.8) is determined when the following

boundary conditions are imposed on L(f):
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©*(i) - L(£f) 1is a positive functional in-the-Bochrer - -~

: sense, Eq.'(2{28). This conditidn is a conSéqﬁenééiéf}the«

'interpretatipn of L(f) as an inne; product*infa-HilberE

'aspaée~of'posiﬁive norm. It establishes that théAméasures_‘.'b

Q

‘»positive;A ) ' - _ A 'ffji“} IR

L CwandAiu(E)iFappearing in Eqgs. (3;31)"énd (3.37)larej"_i-:?ff-iq

e RS

Co(ii) Ln(o) = 1. This~Condition,normalize$ theAinne:

" product to*o@e;A

C o (iii) |L(f)| g:l,"This'is a consequence 0f the ﬁnitarity.'

~of U(f), Eq. (2.16). This condition guarantees that the

average density P appeafing ih’Eqs.'(3.36) ahd (3.37) is é
positive numﬁef; : | - :

(iv) ﬁ(f) is anfgxtreméllsolutién;in thé:S¢nsé.thét,  ,
itkéannot.be~written as a convex>1inear7éoﬁbinéti§huof’fwé 55
A §tﬁer solutigns.' | :

.

COE(x) 1

(V)

=P=a specified.numbef;A1 *'
J;A'éonditioﬁ$ (i)—(iii) wefélemplbyed to pf&&evfﬂéorem 5;3;

'ﬁwhiéh imR}ies £hat Eq. k4.8) ha$~£he'unique,clagé.of~soluti§né
;;;specified by-Eqé; (3.31) or-(3;3;).j éonaitioﬁ'(ivy;.és.démdﬁ—
étrated‘in Théﬁrem 3.4,‘is_used éo résfrict tﬁe'geﬂgrairsglué
tion to the fofms (3.30) and (3.36) defining}i;réducible

"representations of the algebra (2.11)-(2.13).  Fina1ly,‘

PR .
e gt 0 s 3l A St W0 S W OO, I e L7 o, A APt &, stk m e ] = wl Aoy & AL
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.condition (v) selects the particular irreducible representation

-correspondingito a physical system having a specific value for'

the average density.

':;Having'written a functional differential equation for

~L(f) whose solutions deséribe-the‘infinite'frée Bose gas at

aispgcified average density, it is natural to seek an equation

or system of coupled equations whose solution would describe .

. . : R . L
-an infinite Bose gas with an interaction. Such a system is

proposed in-Section 5.
In this}section we derive é'mathematical relation between

two of the quantities which appear in Section 5. This relation

_ proves helpfui in completing the system of coupled equations,

and introduces the concept of indefinite functional integration..

" Define

P(f)

R(E50) = @k pia) RO

where K(x) = VP(x) + 21J(x) is an operator—vélued distribu-

MIn ey AN gaivy

" tion, and Qd is a-cyclic vector for the p(f).

- Consider the expression
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ir(f) _1 P
P(x) K ( )Q ) :

avr

J Q +*
Nlj(f’f) ( o’ Ki {f)e

- @ &iP(E)

1 .
KX)o Ky 09,)

vy,

RS

200, P L @0

~One way to define'such an expressioh has previouély heen

S 1) =

- ‘proposed. Here we shall, roughly speaklng, functlnnally

~iggegr§£e Rii' to obtaln N' |

In reprgséntat;ons of non-relativistic systems éf ‘
physiéal intereét one usuélly has that.lp(f)'z 6 if ’fﬁf) >0
for all X. This corresponds to the fact that »p  usﬁa1ly
deséfibes the number density for a single species of particle.
Let us for theAmoment pretend that pgﬁ? isla4well defined
self—gdjoint operator at each point X withqusitive spectrum.

Then we could write

o L. . 2 ip(£+itd )
——p(lx) etP(E) = | at e TP IP(E) =] adte BN
= 0 - o - |
‘ ' (4.11) -
where 'bx(y) = 8(x - y), the Dirac delta function. The
- - Ay Lo rHv = : . .
' relation between (f x,y) and Nij(f,x) would be given
by
* = I.. ' ; 8 " ,‘ ‘
Nlj(fﬁf) j gt Rij(f + it < X X) . (% 12)

0 a4 Ea 1N
A
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‘Now in general P(x) is not well-défined as an operator
-0 . * . e . .

at a poiht,'and an expression such as Rij(f + itéx, X, §)
. . . . L2 A

is not well defined. 1In fact, let us compute Rij for an
-infinite freé;Bose gas at zero témperature of ‘average density
- ._ - o ' S 1103
p,-w1th.'Qo the ground state. We have L(f) = (Qo,e Qo)

givénfby Eqg. (3.36). Suppose that h € 8 and Qh =_elp(h)ﬂo
fwéighéll'computé 'Ri?)(f,x, ) with fespect to the cyclic

~9"t Q. s
ector Q :

(h) L ip (£)
Rij (f’n)f’.}(\)

(LK, * (hx) e Ky (y)Q,)

ip (h) . , '
2_) (4.13)

» € K.(y)e

ip(h)ﬂ' ip(f)
. (o] J mw

(X (ff..)_ €

From Eq. (4.3) together with Ki(x)QO = 0, we have.

k; 09 Mo 2 236 ™ @ ny g oga e
or
_’;.;i’(hﬁ)nh = 2007 ()P ()0, . S @asy
Hence,
RS (Ex,y) = 40,0 () 0.0 () @,e D o0 (g0 )

1) T pon

2
7L ()
L, e

Ay '

4,7 () (3. (1



A straightforward computation of the functional derivatives
yields

( 1)

Vo2l

(f x,y) =
o (4. 17)

4(6 {1 () (3.h) (y) (F2e R 76 (x - y)e't ~~?)L(f)

.- It is clear that R__.(f + it6, x, x) is 'ill-defined, since
_ ' : ij X 7 T ‘ A

it coﬁtains e#ponentials'of delta fﬁnctions; as well as a
'délta,functiqn evaluated at zero.

: instead-we '-proposeffo iﬁferpfet‘Eq. (4:11)'éé
folioWs.' Let 62 be a sequence of functions in § 'which’

AN

converges to 6X in the sense of a distribution, i.e. for all

£f€S8

’

. n 3 .
lim f 5x(y)f(y) dy = £(x) .
neo - - .

We now interpret Eq. (4.12) by means of the limiﬁing procedure

n .

R | ' . e o _
. = i : i 6 6 6 : o . .
Nlj(fﬁﬁ?‘ .iiz i dt Rij(f + it 3§ %7 3£ ’ (4 18)

~We shall show that this definition works for the case of

. R;j)~ in Eq. (4;17). Notice that R( )(f,g,k) can be extendéd

from functions f,g,k € 8 to bounded Borel functions which

decrease faster than any Qplynomlal in x at infinity. ‘Then
: . . mn S



we can take our approximating sequence for a delta function

" to be the more.  convenient set of. functions

3

- o on® if Ix, -y.l < 2n for i =1,2,3
. r 4 . 2% ]
C82Uy) = . e - . (4.19)
o " 0 . otherwise : ‘
(h)

' n .n n -
: i + itd ) 6 i
'AComputlng R.j (f_; ito , o, ), we f;nd

A AN hn

R

n .n .n,
it 6 ) =
ij (£ + 1t x? x’ x)

n Ao And

AU ' n, UL AET
. i itd
Al(t,n)Lff + 1t6x‘) + A, (E,n)L(E + it8)) |

Ny . AnN

X L 3
452 | &Py | 200 0 (9) (3,0) () T FE(R) 720
v o v 1 Joee J - oawe

'. - e . . . - 3
_A_(t,n) = 4p d3y ne(a.h)(Y)(a-h)(Y)elfax?e tn- ’
2° YV i J .
_ . i

and where Vv = (y; ly, - x| < 1/2n for i =1,2,3). a

straightforward computation shows that

| -, 3
lL(f + ites:) - L(f)] ¢ 1 - P/

AW



55

. v 3' " .
for all x€ R, t >0 and f € 8, Hence, L(f + itéz) con-
. My . :

Aviy -

verges uniformly to L(f) as n => ®, Since Al(t,n) and
Az(t,n) convgrge in the Ll topology to absolutely integrable

functions, it follows that

Lim | dt R (£ + i8], o7, 67)
n—om 0 ) 1] : AN A rem
;- @ o . . . .
= (lim ;  (A;(t,n) + A (t,n)) AE)L(£) . = (4.20)

Now performing the integration over t, we have
J Ai(t,n) d? : (4.21)
0 .

- [d 3 b 3 4
-2% [ dy | @z enw (.0 () T HE(E) —

n n

as n.=> @, since the square of the volume of vV~ goes

as ‘n . - Furthermore,

f A, (t,n) dt = 45n3 j ‘(aih)ﬁx)(ajh)gzgel?EX?‘d3y
0 . v . ‘ )
. n )
> 4B .h) 0 (,h) (et (4.22)

Hence we have .
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lim ;  dt R (£ + itd" 8" &7
J ij X X x
O A Hom M.,

- ' if = . '
= 45(3,h) (9 (3.h) (y) e’ (X)L(f).  (4.23)
- Next we'éomputea N!j(h)(f x) directly, usihg the inter-

pretagibn of ‘fL/p&g) proposed earlier by Goldln and Sharp. (11) .

,Tﬂé§,ihterpret 1/p(x) "as the map —-——- ¥ x U ——> 3', where
S : , ren P(x) -

8' is the continuous dual of 8 and VU is the linear span..

of the vector-valued distributions {g(x)pQ&)él‘QfE:D, g € @M},

with D a dense invariant domain for p(f), £ .€ 8, and @

‘the real-valued C, functions which together with all deriva-

tives are polynomially bounded at <«

Now, uéing Eg. (4.15)

1p (£)
.(Qh,'e

L 1
X (0 T Ky (,’fmh) (x, o0, _, o K o)

i

AP35 00000, o o )(a 1) (x)p(x)ﬂ)

4(3n- 2;8) () (3m) () (Qo,eip(f)p%)go) T (4.24)

and
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e ip(E) '
Ny Bx) = (1, e K, *(x) pix) X3 (x)0)
. ' ip(£). .
- 21(9,£) (x) (2 ,e Ky ()0,)

4(aih) () (a'jh) J&f?'(oo’eip(f)pﬁﬁm_o) |

o) éf(:s“
- = 43(2,h) (x) (2.n) et @y, - (a.23)

: Qhere -L(f) 'ig.given by Eq. (3.36) in evaluatiné the_func;
tional_deriﬁétivé. Hence we see that ﬁq. (4,15)Agivesm£he
'cogrect reiatibﬁ between Rij and Nij for gﬁe case at hand..
We leave unanswered at_this time the imﬁortant problem of
determinihgka'general set'of sufficient-conditiqns to be im-
posed on Rij‘f{ﬁ)x);‘in.order to gnsufe tha# thé limiting

procedure of Eq, (4.18) leads to a well-defined expression.
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5.. Determining L(f) when the Particles Interact.

Tﬁe}preceding work has shown how the functional L(f) of
Eé; (3;36), which.determines an‘irreducibié representation of
the lééal current algebra (2.11)~-(2.13), can be défined
uniguely és‘fﬁe soiut&on to a functional différential

equation ':-:éatisfying the appropriate bodndary conditions

2 e

L
55 Fd

']§§ﬁﬁitions (1)~ (v) following Eq..(4.8)).

These rgsuits éppl? only.to'non-interactipg'bos@ns. Next
we ask whethgrvthe same pattérn of results pé:éiSts wheﬁ intér—
actions ére includedi Can one find a se£ of;fﬁhétional differ—\
ential equations which, When supplemented with suiﬁable boundary

conditions, determine a ground state expectation functional

"L(f)? 1In this section we suggest the possibility of an affirma-

tive answer to this guestion.
The ‘functional equation which defined L(f) for non-
interacting bosons was‘Eq. (4.8), obtained from the condition

(3.1),

Q = (V i Q =
KG09, = (99 + 249 (90, = 0

1AW

The first step towards deriving a corresponding set of func-
tional equations in the interacting case is to find conditions

replacing Eq. (3.1), since the latter correctly expresses the
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acstion of the Hamiltonian in a representation only for non-
interaecti ﬂg Pposons. These conditions take the form of eqpations

whigh relate, and ultimately determine, the following quantities:

| L(£) 16(£)

= ;e ) : e
i 39 = 0,6 Fxeon ) SR C ¥
e e -'P(f) I ey
Ry (Epy) = (K * (e kiR ) N
(f x) =
10 GP(E) B
G R TFii LR *‘X’p<x) L (x )JQ ) - 5

a3

We assume that the particles interact through a central -

two=body potential V(Ix - yl) and write the Hamiltonian
- = ) sl Mooy . .

(for particles of unit mass) as !
H §=; i d x K.*(x) K. (x)
B J 1 a P (,}A{A) 1wt
a3 F
*gu.dxdyp(x)V(lx-yl)pgg) - (5.5).

where ghg r@pegted index i is summed over i ='l,2,3. For
the Hamiltenian to be well defined it may be necessary to
subtraet frem Eg, (5.5) an infinite constant corresponding to

its gf@gﬁd state expectation value, thus establishing a zero

i e WMBE M maee . e e w




of the energy, (H - E )Q =0 .
. - o" o

It should also be noted that we have no guarantee that

Eq. (5.4) defining Nij(f,x) makes sense as it stands:-
. M .

Nevertheless there is reason to hope that the ensuing system |
of equations ultimately lends itself to'é meaningful inter-
pretatibﬁ ahd wé shall proceed as though the quantities under

discussion are all well-defined.
1. The first condition replacing - (3.1) f011¢ws.from the .
requirement that‘the cyclic ﬁector be an eigenvector of the

'energy opefator; |
(B -~ E)Q = 0, . (5.6)

"which we write in the form

ip(£f)

@ ,e HQO ) -EL(E) =0 . - (5.7)
0 o o - - ,

To write Eq. (5.7) as a relationship between funationals,

we introduce N;j(f,x), Eq. (5.4), and note that
, i -

1_6  1_b _ L ip(E),
3 PE(x) 1 3f(y) T = (‘Qo’p(,ff)Pglgi)e o) (5.8)

A

to obtain'



61

3 |
‘

o J,d X Nii(fﬁﬁz .

i-—jl . : : v (5.9)
.A » . 2 : .
C1¢r 303 6°1L(£) ‘
A 2.“ x &y vilx - yD 2 ()52 (7) - EL(E) = 0.
. " ) A .

2. A second equation follows from the requirement that

Qo' be invariant under time reversal,

M =Q ; a (5.10)

where T is'the anti-unitary time reversal operatér satis-
fying (TY,T%) = (¢,¥). To derive the desired equation from

(5.10), consider

ip (£) ip (£) SO -
Q et =
@_,e ,d‘ﬁ.’“o) (Te J(x)0_,T ) . | (5.11)
. -1 ' -1 .- .
Since Tp(f)T = p(£f), ?g(f)T = jggf), TiT = = -i, and
T = Q ,_we'find
o o
ip (£) § ip (£) oy
: Q : Q = -
1':’- ( O,? A:vJ;(A}'() 0) (Qo’g('\}f-)e QO) ‘o : (5012) A
. - ( —'. )
Recalling that 'elp‘flg(x)e ip(£) =~J(¥) —nzfgﬁ)p(ﬁg,

Eq. (3.7), we may write Eq. (5.12) in the form

© K(x)Q

An 1y (o]

P (E)

o’

O’

- @ ,ePeon ) - i ,eP Eopgreaa ) (5.13)

£




Finally we may introduce M(f,x), Eq. (5.2), and the appro-
Ay o

-priate functional derivatives, to find

- 18L(f SL(fY © . . : .
'J M(£, %) —“zgg(i —-—(—Léf(ﬁ)&)) - [7£(x) ] —J—Léf(é? . (5.14)

‘All of the dynamical information about a system of inter-

¥

gcfgﬁg bosons is expressed in Egs. (5.9) “and (5.14), when these

& - : .
equations. are supplemented with suitable boundary conditions.

ST However, the‘two equations relate three unknownifunctionals.j
' AThe additional relatlonshlps among the functlonals (S l)-(5 4)
needed to complete the system of equatlons are obtalned

entirely from consideration of the mathematical properties

of the functionals.

3. One of the remaining equations we needthas been
derived in Section 4. It relates the indefinite functional
integral of _Rij(fﬁﬁﬁz}’ Eqp (5.3), to the qdanti#y Nij(fgﬁ)’
Eq. (4.10). We can write Nij(fﬂf)’ Eqg. k5.4),'in terms'of

le(f,x,y) and' M(f,x) as follows:
~n oA PAY Any

S .
Ny (£,%) = 2(N (£, + NI (£,%))

+LRE CIM(E,X) + 1(30) ()M (£,%) (5.15)

where as in Eq. (4.18)
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' 'y = i : ‘ i 6n 6 6n .
N (£,%) = Lim | R(F + 4660, 87, 60) dt . (5.16)

. neo 0 ’oe Hwm M,

4. The‘final equatién relates Rij(f,x;y) ‘to M(f,x);

ol © b [ S3h

Referring to Section 2.C, we may write L(f), M(f,x) and
. : ) : rom o

Rij(f?§,3? as

L) = | & qum , (5.17)
o - Vg _ S e e i
) : 4r i(F,f) ' o , .}4 - L
CM(E,x) = QfF)e (K(x)Q) (F) du(F) . (5.18)
oo raw S' wor P . ' N .-

and

i(F,£)

J

A9 S du(F) , (5.19
.. (K3 ()Y (F) @ (F) , (5.19)

Rij(f’ﬁﬁx) = ¢ (Kigﬁ)Q)(F)e
wherel 8' 1is the continuous dual.of~Schwartz's~Spaée and K
is a cylindrical measure on $' uniquely determined by L(f).

We now define ﬁ(F,x) to be the inverse Fourier transform

of M(f,x); i.e.

. r i
M(f,)f) = J' el(F’f)

vy

M (F ,X) du (F) - 4. o (5.20)

S

It is not difficult to establish the existence of

ﬁ(F,x)' using standard methods in the Gel'fand-Vilenkin

IS A £
(3,12)

apbroach. Oné-may prove first that M(f,k) in
. M Iy




_positive) measure M
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Eq. (5.2) is the Fourier transform of a (not necessarily

, o 8'; then that every set of measure

zero. in K is of measure zero in ul; and conclude that the

Radon-Nikodym<derivativeA du (F)/du(F) exists and defines

ﬁ(F x) The assumptlons needed to carry through these argu-

ments ~amount to the statement that the ground state vector Qo

“"',,‘ :
e

<1s'1n'the domain of K(x).

el pion- BV

A Similarly,~define the inverse Fourier transform

(F x,Y) of Rijgfﬂzﬁxy by

YL ot

le (f;'.)‘(:,}() ‘; l(F f) (F X,Y) dH(F) . (5.21)

Then, since Q(F) 1 almost everywhere,

almost everywhere, or

R (Exy = SEOIETE, 08 (7, ) du(F) L (5.23).

SI

To summarize, we have the following system of coupled

functional equations.



1. "Schroedinger Equation" ((H - EO)Q° = 0):

3
L ¢ 3
g L 4 dxN;;EX L ~ .
i=1 o , - . . . (5.9)
; 1 63x &3y vilx-v)) 6%L() E L fj =0
2 JJ Y y - o.(‘ =0 .

oD TEGery)

'2. Time-reversal invariance (TQo =0 ):

nﬁ(fﬁi) =};§ﬂi 6f(x)) f'Q&fgﬁ)) g;%g% oo ﬂ5f14)

3. Indefinite functional integration relationship:

-y |
N . (f = = ' |
135X = F (5,2 + N, (£,2)) (5.15)

+ 103, (M (£,%) + i(éjf) M, (£,0

o]
”n

L P . ...n .n ,n
where N'.(f,x) = lim , R..(f + itd &§,.867) dt
lj‘( ,M“ N o JO ;J /an(’ ) fv(n’ IQ)\Sl

4. Fourier transform relationshipi

j- -el(F,f)

Rij ‘f’,ﬁ’ﬂx) " g,

ﬁi(F,l§_)ﬁj (F,,%) du (F) , (5.23)

where L(f) = IS' ei(F’f) du(F) and ,ﬁff;f? Aei(F’f)lg(F%ﬁ)du(F)

= -Jg'
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Equafions (5.15) apd (5.23) together express Nij(fﬁﬁ)
‘.in terms of ,ﬁ(faf) ~ana the measure W of which L(f)! is
.the Fouriér transform. Then, substituting for Nii(fﬂﬁ)’
Eqs; (5.9) and (5.14) relate the two functionals L(f) and
Mg . : |
e

The above system of equétions can be expected to determine

Lﬁf;i;“uniquely 6nly if it is supplemente&'ﬁy apprbpriate
Abszndary conditions, just‘as in the case of Eq. (4.é)vwhich
s . defined the f;ee system. fhe boundéryléonditions which appliéd
| to L(f) in the frée case clearly appli'in the interacting
case'as well. We do not know at this point whether these five
boundary conditions suffice to défermine a uniqqe solution to.
.Egs. (5.9), (5.14), (5.15) and (5.23) or whether additional
boﬁndary conditions are necessary. |
In cdntrast to the non—interaéting case aiséussed.in
- Sections 3 and 4, we have no means'of obtaining a sqlution
to the above system of equations, nor do we have techniques to
demonstrate that a solution exists or, if it exists, that it
: is'unique.;
There afe other ways to supply some of the'édAitional
information needed to complete the system of equations begun
with (5.9) and (5.14). For instance one can use the equation

of motion for J(x) in the form

NV AL
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S : (Qo,[eip( )J( X),Hl0)) =0 (5.24)

1Y AN

and the condltlon that the ground state be rotatlonally in-

Varlant

0% o f=lEgey Ox, 0 (s.29)
}iqgfﬁe form
‘ ’ ip(f A o PPN
i et . SERLEM) =0 . - (5.26)
: . . T (19) . ’
- Thus one obtains equations which can be solved so as to

express Nij(fif) in terms of R (f x,y) %Kfﬁﬁ) and
L(f); and Egs. (5.24) and (5.26) can replace Eq. (5.15).
In whatever‘fashion one choosés to completé'Eqs. (5.9)
and (5.14), oné can be sure that the resultlng set éf equatlons
'~ will not be amenable to exact solufion for L(f) .1n most !
'.S1tuatlon§ of practlcal interest. Therefore one would like
. to have techniques for its approximate deterﬁlnétloﬁ.. The
approach via functional dlfferentlal equatloﬁs is most in-
v1t1ng because it is suggestive of‘such technlqﬁes Aﬁ
é : 4apéroximate funétional L(f) would be one which was an
| approximate solution in some well-defined way to a system
of equations Qhose exact solution defined an irreducible

representation of a local current algebra. This is one ‘sense

£
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: ' : : . (74
in which it might have meaning to talk about an approximate

. ))
representation of a Lie algebra of local currents.

Finally, we would like-to mention that it is possible to

- develop systems of functional equationé whose solutions

determine representations of the canonical commutation rela-

tions, as has been done in references (19) and'(22).
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.Aggendix

In this appendix we sketch a proof of Lemma 3. 2, for
gl,gé € 8. We believe that Lemma 3.2 is also valld for- SV’
but it appears the proof would be Stlll more involved.

Throughout this section we let K(g) denote the functional
K evaluated at g €s ‘where
(x) 3.

k(@) = [ (9 - 1) o

Lemma 3.2.‘.Suppose' 9159, € 8 and K(gl) = K(gz)q Theh»for

"~ any two neighborhoods N, of g, and N, of g, in 8

1 2 2 ’

there exist functions hl € N.» h2 € N, and a continuous
mapping t —> ft of [0,1] into 8, differentiable in

(0,1), such that fo = hl, f1 = h2 and K(ft) = a constant.

Our sketch of a proof con51sts of a sequence of lemmas

stated without proof.

.Lemma A.1l. Suppose gl,g2 € §0R3) with K(gl) = K(gz),>and

N, and N, are neighborhoods of g, and ‘gz respectively,
in the Schwartz space topology of 8. Then there exist func-

tions hl € Nl and h2 € N2 such that K(hl) = K(hz) and

Hl and h2 have_compact support.
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Lemma A.2. Supboée t = z(t) is a differentiable mapping

of the closedvinterval [0,1] into the left half compléx
‘z-plane. Suppose that z(0) = z(1) =0 ahd that there is a

K ;»,d."such that IRe(z(t))| » ¢lIn(z(t)]] for all t € [0,1].
Then:#here is é'continuous mapping 't - kt of [0,1] 'into.

8, d%ﬁferentiab;e in (0,1), such that 'K(kt) = z(t) for all

T
AN

twéi[o;l], and k0 = kl = 0. Furthermore, the functions kt
.méy all be chosen to have -support in a single compact region
of IR?.

Lemma A.3. Suppose hl,h2 S SGR3) and K(hl) = K(hz). Then
there is a real-valued differentiable function s(t) for

t € [0,1] with s(0) = s(1) =1 and s(t) » 0 for all

-t € [0,1], such that if gtgﬁ? = (l-t)hl(s(t)§)4+ thz(s(tlﬁg
thén z(t) = K(hl) - K(gt) satisfies the hypotheses of

Lemma A.2.

Proof of Lemma 3.2: Suppose 9,595 € 8 and K(gl) = K(gz).

Let Nl and N2 be neighborhoods of 9, and 9, respectively.

1 1 2 2

By Lemma A.l, we can choose h € N, and h, € N, with

K(h)) = K(h,) _and with h, and h_ of compact support. By

1 2

Lemma A.3 there exists a differentiable function s(t) on the
interval [0,1], allowing us to construct

9, (x) = (1 - ,t)hl'(s(t),')){‘? + th,(s(t)x), with z(t) = K(h;) - K(g,)
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satisfying the hypotheses of Lemma A.2. Since h and h

1 2

have compact support, the Ie all have support in SOme'compact'

region S. By Lemma A.2, there is a continuous mapping

ot = kt of  [0,1] into VSCRB), differentiable in the open

interval (0,1), such that K(kt)‘= z(t) = K(hl) - K(gt).

By translating the functions kt we can ensure that the

functions kt and’ gt have disjoint supports;”without

changing the values of K(kt).:iThén let -ft = gt'+ kt;*we

ﬁavehvk(ft) ¥‘K‘gt +.k£) = K(gt) + K(kt) = K(hl)7 Since

fo = hl and f1 = h2,.the lemma is proved.
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