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 118 ga#& Pf # :89.n=-*irn*-fir-#sti:ng infinite Bose gas at zero

ge,mpeT#,#tr:e *s %9#14 1% the formalism of local current

8-19#4/#§4 Lus*V *hg, rep:r@§#Iltation theory of nuclear Lie
-

9-rPPP#..  The gl#is Pf T.«presentations describing such a system

. j--s  9»81:ngd  by  -taking  an   "N/V  limit"   of the finite   case.

Th838 F.ep-r. -sentations can also be determined uniquely from

the  .splutionsof a functional differential equatiog which
'follows in turn from a condition on the ground state vector.

Finally a system of functional differential equations is

formulated for a theory with interactions, using a proposed

definition of indefinite functional integration.

1
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1.  Introduction.
1/

There are two main reasons that non-relativistic models

based on algebras of local currents have recently drawn the

(1-3)attention of theorists First, they provide an inter-

esting reformulation of ordinary quantum mechanics in terms

of observables such as the particle number_density  P (3)  and

the particle flux density  J(x), rather than the second-
49,1 .=I

quantized field operator  4(5).  In this paper we employ

such a reformulation to study the properties of an infinite

Bose system. For the case of non-interacting bosons at zero

temperature, the local current algebra approach leads to an

(4)  '
elegant restatement of known results When interactions

are included, we develop  a'system of coupled functional

differential equations whose solution would describe the

properties of an interacting Bose gas. While these equations

are not expected to yield explicit solutions to most interacting

theories of interest, it is our hope that they will prove sus-

ceptible to some method of approximation.            -

The second reason that such non-relativistic models are

studied is that they may eventually shed light ·on local rela-

tivistic current algebras.  As emphasized by Haag and by

Wightman, there are many similarities between relativistic

quantum field theory and the quantum mechanics of       ,·

1 -
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non-relativistic systems having infinitely many degrees of

(5-6)freedom In particular, the vacuum state in quantum

field theory is the analogue of the non-relativistic ground

state. It is to be hoped then that the techniques of non-

relativistic current algebra can be carried over and in-

corporated into the study of relativistic models (1,7-10)

..-----,This paper is concerned with infinite Bose systems in
E:

the "N/V limit" or thermodynamic limit, in which the t6tal
0,

number of particles  N  and the volume  V  of the system
2        -      f

become infinite while the average density  p = N/V  approaches·

a finite constant.

In Section 2 we review the case of a non-interacting

infinite Bose gas at zero temperature, from the standpoint of

group representation theory. The group is that obtained by

exponentiating the local current commutators. Consequently

the focus of attention is on the properties of the ground

state expectation functional                 -

ip(f)
L(f) (0 'e 0 ). (1.1)0 0

In Section 3 we show how a condition on the ground state

vector,

(3, P      +       2 i,1.)    ('5,)  n o       =      0        ,                                                                                                     (1  .   2  )
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uniquely determines the class of representations obtained by '

other means in Section 2. Section 4 reviews the concept of              0

functional differentiation and proposes a specific definition

for a companion concept, the indefinite functional integral.

The results of Section 3 are recast as the derivation and

solution  of a functional differential 'equation.

Finally, Section 5 formulates a system of suchfunctional

differential equations for a theory with interactions.

-.....

I.



.

4 /

2. The Free Bose Gas at Zero Temperature.

(1-3,11)A.  Preliminaries

A second-quantized non-relativistic Bose field  4(x)
49

satisfies the canonical commutation relations:

[*(x),4*991   =   6 (5,-  2)
(2.1)

[$(x),9(y)] = [9*(x),0*(y)]=0.'.. , ,-i ..1 ,-2 ..'

The Fock representation for such a field is defined as

follows. Let H be the Hilbert space of complex squaren

integrable functions of  n  vector variables which are

symmetric under the exchange of particle coordinates, and let
U)

M= e M be the direct sum of the  A . A vector T E M
n=0  n                              n                   n

has components  T E M with  (9,9) = E (9 ,9 ) < oo.  Then   n             n  n n

action of the fields $(x) and   W* (x) in  M  is defined by:
.... A."S

[111(x),Flrl('x- '...,fin) = (n+1)21Fn+1<25, '...,A·1'29) ,  (2.2)
*0.

and

I  V  *  (x)  T  ln(X,1 '                 'Xn  

(2.3)
1 n

-2  ·2  I'                    -= n     *"   °C,x -x·j)Yn-1951' ' '''Zj, "''rxn)  '
j=1



.

1
5

Defining the number density of particles as

P(X) = **(X)7 (X) -   (2.4)A.# '.,«

and the particle flux density (for particles of unit mass)

as
n.

S (19    =   i-[ 0*(x) 2  (29     -     (3,111* ('i)) 4  (,3.)  1 , (2.5)
-

.W

one obtains the equal time current algebra

Ip (x),p (y)]  - 0 (2.6).'- '..

8[P(x),J. Cy)] = -i -T[6(x-y),p(x)] (2.7)M•·          K  ..,,.,

8 XK           '.1"

A . .,„

[Jj(x),Jk(Y)]
(2.8)

8                                8= -i    ,-[6(x-y)Jz(x) 1 + i    - [6 (x-y)J,_(y)]  .
3X

A          M..      ..4

ayl
...· K ..:.

Introducing the smeared currents

P (f)   =.j'  P (x) f (x) d3x (2.9)r.«            A.-

and

1

- J(g) = J J(x) 9(x) d3x .

(2 . 10)
1

h.... m. ,- , '..   ,/.:

we obtain the infinite dimensional Lie algebra
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[P (f),P (g) ]  = 0 (2.11)

[P(f),J(g)] = i P(g·Vf) (-2.12)- /"9 '-,

IJ(3),J(,9')] = iJ(govf - I.,39) (2.13)

In Equations (2.9)-(2.13) the smearing fuhctions (or
their components) belong to Schwartz's space    8    of  C-  func-
tions of rapid decrease.

The action of P (f) and J(g) in the Fock representation-"

(2.2)-(2.3) is given by

n
[p(f)T]  = .E  f(x.)9

, (2.14)n m J   nj=1

and

n
[J(,2,)1 ]n = -*i  E  [g(xj) .3.j +14 og(x-:).19- . (2.15)

j=1 ...,...,

Theoperators P (f) and         J (g) preserve M as a
n

subspace of  M, and restricted to H define the n-particlen'

representations of the current algebra (2.11)-(2.13).

A group is obtained by exponentiating the Lie algebra

(2.11)-(2.13). Define

U(f) = e
(2.16)

i P (f)
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and

V(R 2) = e ,                   (2.17)
iJ (g)

"V r

where  cp.-9:  IR  -> ]R    is the flow for time  t  by the vector
M. t

field  g; i.e.,
„'.

32€2(29
= g (*:2(X)) , (2.18)at                   ,v" t '1.,•·:

and 9  2(x) = x.  Then U and V satisfy the group
//t =0 6....

multiplication rules

-                          U(f)U(g) = U(f + g) (2.19)

V(*)U(f) = U(f 4 ¢)V($) (2.20)
... ,...         h ....

V(cp)V(*) = V(* o CP) , (2.21)
,·,.  n 4. i..

where  * '9  denotes the composition of the flows.
6.0,       ,  0.

A representation of the group satisfying (2.19)-(2.21)

is in fact a representation of the semidirect product  g A K,

where S is the group of all f's (under addition) and  K

is the group of all *'s (under composition). The represen-
...

-          tation theory of such a semidirect product typically focusses

attention on the functional

'
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L(f) (O,u(f)0) , (2.22)

where fl is a cyclic vector for the U(f)'s in the repre-

(12)sentation                                                              i

-

i

B.     The "N/V" Limit

,.. ' ," Consider a system of N bosons  in  a--box of volume   V.

Thd N-particle representation of the Lie algebra (2.11)-(2.13)

describes such a system.  Periodic boundary conditions require           1i:,- ...... ,1
3                   1the smearing functions to be C- functions on the torus  T

a cube of volume  V  and of length  2L  in each spatial

direction with corresponding points on opposite boundaries

identified. The N-particle representation of the group

(2.19)-(2.21) is

i     j Elf  (34)
U      (f) 1(x, '... , x.-).   = e

J T (ri, ...,X-) (2.23)N,V -7 1 , ,11N •' ·JN

and

a lit k                    . .t

VN'V(,4) g (*l' · · ' '2.li)   =  t. (1('il),-   '.f (xN) ) Ldet -IX) (2.24)1.-, J
BX

where 4    isa C flow on the torus. The determinant of00-'

84]c/ax'C'  is the Jacobian of the flow, expressed in the system

of local coordinates obtained by the above-mentioned       ,.

- t.
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identification of the torus with the cube.

The normalized ground state wave function

0   (x,,...,x-)  for a system of  N  free.bosons in a box ofN, V.,1 .....DI

volume V is

0            (X '..., x-)     =     (1/49)
N

(2.25)N,V ··,·1 A., N

.... ---

The ground state Q is a suitable cyclic vector with
N, V

which to characterize the representation. Thus we obtain the

ground state expectation functional                    ·               '

LN v(f) = (0 (f)7   )
-,        N, V'UN, V N, V

= '' d3x1...d3xN (1/V)N exp -i I f(?tj) 
j=1

N
= - '1     d3x  eif (,Q\ (2.26)\Y .

The functional L(f) in general determines not only

the  representation  of    U(f)    but  also  that  of    V(¢), at least
A.,

,.  (3)up to a complex phase "multiplier:     .
1

1 '               Now it is not possible to take a limit of (2.25) as  N

- and V become·,infinite, but we can obtain the limit of

i. L (f) as    N, V  ->  °°,  with    N/V  -> p. The constraintN,V
-           -

N/V -> P, where·  P  denotes a constant average density,

suggests  the  name "N/V limit"  for the procedure  used  here.
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---

Carrying out this procedure,

L(f) lim L    (f)

N, V ->   N, V
N/V-> P

- N'             if(x)lim  1 1+ t j d3*[ e -,   -  1 ] 
N -> 00

r- if (2.:) 3.-1-exp i P J (e - 1) d
xJ (2.27)

C.  Defining the Representation

The Gel'fand-Vilenkin approach to the representation

theory of nuclear Lie groups discusses (continuous) repre-

sentations of Schwartz's space  8  in terms of measures on

8', the continuous dual of 8. A functional L(f) is the

Fourier transform of a cylindrical measure  g  on  8', and

thus defines a continuous representation of  8, if and only

if:

1) L(f) is continuous with respect to the topology of  8,

2)  L(0) = 1, and

-     3) L(f) is positive definite in the sense that

(V fl' ·  'fm E 8, Al'   ,Am € C)

m

X    AXL(f  -fk) 1 0 (2.28)
j,k=1

k j   j
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Under these conditions,

L(f) = j dg (F)
, (2.29)ei(F.f)

FE &'

and the representation of  8  may be realized in the Hilbert
2space H = L (S')  of *-square integrable functions on  S',11

with

i(F,f)(U(f) T) (F) = e 9 (F) (2.30)

for T E L (8') Furthermore, 0 (F) 5 1 is a cyclic vector

for the representation.

Therefore we need to check that Eq. (2.27) satisfies

the above three conditions, and indeed defines a representa-

tion of  8.

Theorem 1. The functional  L(f) = exp [P j (e *.,   -1)    d  x]
- .   if(X)      3

is the Fourier. transform of a cylindrical measure B  on  &' '

and thus defines a continuous representation U  of  8, with

a cyclic .vector  0  such that  L(f) = (O,U(f)0).

Proof:  1) L(f) is continuous with respect to the usual

topology of  8; for if  f. -> f  in  8  as  j -> m, then
J

if.

(e 1 - 1) -> (e - 1) in  8 1 and
if

if.(x)

.f (e  J An'  _ .1.) c13'c  =  J' (eif(,?f)        3·

-       1)        d::

4.



12

2) L(0) = 1.

3)  If all of the  fl'...'fm  in Eq. (2.28) have

r    I X.L(f  - f )   is the N/V limitcompact support, then  j,k=l  k J
m

of the sequence of positive functionals  .I i A L (f.- f.),
j,k=l  k j N, V  j   k

A

where  V  contains the union of the supports of  fl'...'f .              &m -
*

Therefore Eq. (2:28) holds for functions of compact support.             1
B:    f

But.any  f1'...'f  €·8  can be approximated arbitrarily closelym

in  8  by Ca, functions of compact suppprt.  Since  L(f)  is

continuous, Eq. (2.28) holds for all ·fl'...,f  E g.m

O.E.D.

Next we shall explicitly display the representation

(13)
U(f) defined by the functional L(f) above

Let     be the Fock space of a second-quantized canonical

non-relativistic Bose field $(x) satisfying Eq. (2.1). Let
A'..

-

4  '  (29     =   4  (x,    + , /B    ,.-1

(2.31)

F4'*(x)   =  4*(x)   +     p   .
N,e. /6'61\

Then 4'  and *'* also satisfy canonical commutation

relations. .The corresponding density is

P'(X) = 4 '*(X)$'(X) (2.32)
.': ..., A..,

and        [  P  '   (f) ,  P  '  (g)   ]    =    0.

,.
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Theorem 2. With P'(x) defined in Fock space by Eq. (2.32),Ant

eiP'(f)a representation U (f) = is obtained for 8. TheF

subscript  F  stands for Fock.  The original Fock no-particle

state 0 €H is cyclic for this representation, and definesF

.- 2   if(x)       3
an expectation functional  (11F'UF (f)nF) = expl P J (e A., - 1) d x].

Proof: First let us write P'.(f) in terms of the original
--i----

canphical fields;

-l
-                                        P  ' (f)      =     P  (f) +     p    S     f  (29      d3 x    +     P z  111.*(f)      +3    2  111(f) , (2.33)

where' P(f) is defined in Eq. (2.4). It is clear that  0
F

is a cyclic vector for the polynomial algebra of operators

generated by the identity and the  p'(f), f E 8. In fact,
N

for a vector T which is an element of   e H in  N,n=0  n
N+1

P '(f) f  E    e   w
n=0 n N+1"    in  M, with   (P' (f).ly) -*

=P  **(f)YN. Thus,

by the properties of the creation operators  **(f)  which
N

follow from Eq. (2.3), if   9 8 is contained in the closedn=0  n

cyclic subspace generated by applying polynomials in the  P'(f)
N+1

to Q e H is  likewise  in that subspace. By inductionF' n=0  n

on N. 0 is a cyclic vector for the representation.'F

Next we show that 0 is an analytic vector for P ' (f) .
-                                                                                        

                                                      F

In fact, from Eq. (2.33), it is certainly true that for
N

T E e w
n=0 "n  in  M 

t
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||P'(f)T  C 4(1·+N)(1+P)(||f||  + |j' f(x) d3xl)Ilyll , (2.44)M.A

00 N
t Iwhere ||f||- = sup  |f(x) |.  Thus  I Fillp' (f) NQF|I  is

x €1R 3 A...

N=0
'...

00

bounded  by    NIO  CNtN (N + 1) where     c     is a constant,   and  con-
verges for sufficiently small  t.  Similarly, all elements of

-AE8 -Mn
are analytic vectors for P '(f),-for arbitrary    N.

.''

Having identified a common dense domain of analytic vectors

for the  p'(f), we can now concl
ude the existence of a unitary

......„.

ip,(f)
representation    U  (f)  = e in  H  with                   '

UF (f) UF (9)      UF (f  +  g).

-                          The  cyclicity  of    QF    for  the    UF (f) follows immediately

from the fact that for  T  in the domain of  P'(f),

1.[UF(tf)9  -  91  ->  P'(f)9   as    t  ->  0.it

Finally it remains  for us to
evaluate    (OF,UF (f)OF) .

Define the operator-valued distribution

A(f) =p s f(x) d3x +P U**(f) . (2.45)AY'.,

Then

P,(f)OF = A(f)0 . (2.46)F.

and a simple calculation shows that

6
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[P'(f),A(g)] = A(fg). (2.47)

Hence

00

n
iP'(f) -i P'(f) if

e A(g)e     1.(adnp,(f))A(g)  = A(e  g)  ,   (2.48)
L     n:

n=0

where

(ad X)Y = [X,Y] . (2.49)

Now with   L(f) =
(RF'U.F (f)RF) '

1 d itP'(f)7 -7.  L(tf) = (#F'e P,(f)OF)1 at

itp'(f) itf itP' (f)

=       F,
e

A(f)nf) = (QF'A(e
f)e 0) (2.50)F

itf itp'(f) - r  itf(x)      3
= (A*(e f)nF'e nF) =P J e ... f(x) d x L(tf) .

-:.'

This differential equation in  t, when supplemented with the

boundary condition  L(0) = 1, has the unique solution

itf (x)               3L(tf) = exp [P J (e   *-. - 1) d x] . (2.51)

Q.E.D.

Using the "functional derivative" to be introduced in

Section .4, Eq.  (2.50) may be written
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1 6L(f) - if(x)
= Pe b™L(f) . (2.52)i     6 f (x)

. .g

We have shown that Eq. (2.27) defines a representation of

6, the normal subgroup of the semidirect product, and have

displayed the representation. Next we show that the full

group g. A X can be represented in the same Hilbert space.

The first step is to anticipate the--form of the functional

E(f,111) = CO,U(f)V(*)0) by taking another N/V limit. Again inryn' ".,...

the N-particle Fock representation in volume  V,

E    (f.$) = (0 (f) V (4)0 )N,V '
..,- N,V'UN, V N,  V   M.·N,  V

3 3 /1\N r N - N       72
= ·d x ···d x

I exp  i i     E     f(x. )r  .    n    g   (x )1 (2.53)J                   1                          N    < Q.
j=1 -n=l -. J

r.,9 , 4 '-n 1

where

9 (x) det  91) (2.54)
8*k

11    ,·,·'-                                      a x

is the Jacobian referred to in Eq. (2.24). Then

E  (f 4       =             l i m            EN    V(f '1)
N, V -> o°        '
N/V->  

(2.55)

= exp [p f leif(2949* (x) - 11 d3x] .
.,...
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A functional  E  on a topological group  G  defines a

continuous representation of  G, if and only if: (14)

I)  E  is continuous,

2) .        E (1)     =    1,     and

m
3)    I   kkE(g-la )2 0 (2.56)

j,k-1  k j   k,j

 91'"·,gm€ G, Al' ""'Am€ C):

Now we are ready to prove the next result.

Theorem 3. There exists a representation U(f)V($) of
'-I

8 A K  in a Hilbert space  W, with a cyclic vector 0 E W,

such that  E(f,j,) = (O,U(f)Ve.)0) is given by Eq. (2.55).

Proof: We shall show that conditions 1)-3) above are satisfied

by  E(f,4)..., , ,

1)    It is necessary to introduce  a· more careful definition

of k. Let X be the group of all C- diffeomorphisms
(15)

0
33from IR onto   ]R , having compact support. We topologize

K   by means of the countable family of metrics0

<<Cp,$>> = max
sup,    1  (1   +    I x l    )

(cp (X) -.0
2 n (m)

(m)  ('x) ) 1Bu    pv n
Oilmlin  ,  x€ IR-

A·., P.:                        '.
... .-.

Me

n = 0,1,2,... (2.57)
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3

for  *,0  € }  where   (m) = (ml'm2'm3) '  Iml  = kEl Ink'  andA....                     0 '

(m) a i m' 4)(31
(X) =

r.el. *  is the completion of
M.          M..                   

    m

(BX ) (8X ) (3X )
1 1 2 m   3 m3

h   with respect to this topology.  The topology has a countable0

basis of neighborhoods  of each element  of    X,   and is metrizable.

The group operations are continuous. K  contains diffeomor-

phisms which are not of compact support, but which suitably

approximate the identity mapping as  Ixl -> o°.
*,b'.

Omitting the computations, it follows that·if  f. -> f
J

in       8        and       4       '->    9         in       X        as        k, j    ->    o°,     then
»..k

if' - if -
(e JJgtk - 1) -> (e 49  - 1)  in 8, and

if.(x)

j{e            -1]d x -, '  eif (X)47.1.(x)  - 1] d3x.1 » 49. (x)       3
4 ' .o                     J            V..., k

Thus E(f,4' ) is continuous.
A'.

2)  Clearly  E(0,1) = 1.

3)  As in the proof of Theorem 1, chbose first the

elements (f  4 ) ...,(f ,4 )  to have compact support.  Then1'.1 ' m - *m

with

-1 -1(fk'. k)   (fjf .·j)  - (-fk ' .Wk ' /.: 1) (f j, j)

-1 -1
=     ([ f j-  fk l     0  .t k     '  ,  .j     *$ 1 (2.58)

·····,1 k          '             '
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ithe expression

1
m

-1 -1                            1
j, =l AkxjE([fj - fk] ...tk ' j.j '.,tk ) (2.59)

is the limit of the sequence

m                              -
I IXE -1 -1

j,k=1  k j N,V([fj- fkl 0.1 9  - 0  4- ) (2.60)
k   ' -9 --     - *-K

as  N,V -> - with  N/V -> P , where the volume  V  contains

the union of all of the supports of fl,...,fill and *11, " ''j·m
But Eq. (2.60) is positive since E is defined in the-                                      ·    N,V
N-particle Fock representation in volume  V  by Eq. (2.53).

Therefore Eq. (2.59) is positive for elements of  & A K

which have compact support. But any element of  g A X  can

be approximated arbitrarily closely by elements having compact

support, due to .the definition of  X  as the completion of

*..  Since  E(f,$)  is continuous, Eq. (2.59) is positive for
0                                              -

all elements of g A X.

Q.E.D.

Thus there exists a continuous representation    U(f) V($ )
, I.

of  S A X  in a Hilbert space  H, with  0€ #  cyclic for the

U(f) V($ ), such that
".,I

E(f,„t.) = (0'U(f)V($)0) . (2.61)B.
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The next step is to show that 0 is a cyclic vector for

the   subgroup  l U (f)1. We shall  use the following lemma, omitting

the proof which is not difficult. (16)

itALemma 1. Let U(t) = e be a continuous one-parameter

unitary group in  U  with  A  self-adjoint; let  Y€ *  and

let  f(t) = CY,U(t)9)  be an entire analytic function of  t.

Then Y is an entire analytic vector for A; i.e. the series

CO

n

  L "AnY 11 (2.62)n:
n=0

is absoiutely convergent for all  t; and  Y  is in the domain

of U(it).

Theorem  4.    In the representation  of    g  A X defined  by Eqs.

(2.55) and (2.61), 0  is cyclic for the {U(f)].

Proof: Let  he S. Then with  U(h) = eip(h)*, Eq. (2.55)

yields

ith (x)           3
(O,u(th) 0)    =   ep  J I e           '., .1 -1]d  x

(2.63)

which  is an entire analytic function .of t. Therefore by

Lemma 1, 0  is in the domain of e e 0  is of courseP(h) P (h)

in the closed cyclic subspace'generated by the £U(f)0  ·
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eP (h)But it can be shown that  V($)0 = 0, whereA.,

h (x)   = ln
41 (x).  In fact,...

B..

-|| V<4) n - e P (h) il'12

= 1 - (O,U(-ih)V(111)0) - (O,V(111-1)U(-ih)0)6,·., ....

+      (R, U  ( -2 i h) d)

=     1     -     exp     [ p    f      (e h (,3 )4 9 ...  (23)      -     1)      d3 x ] (2.64)
Alt+

h W-1
- exp [p f (e .-   ,3)49$-i(*1 ) - i) d3x ]

...

+· exp [P j' (e2h ('x.) - 1) d3x]

after some manipulation of the Jacobians. Thus  0  is cyclic

for the {u (f) 1.

Q.E.D.

Now we are ready to represent the full group  g A K

in the Fock space of Theorem 2.

Theorem 5.  With W '(x) = 4 ( ) + P  as in Eq. (2.31), with
P'(x)  given by Eq. (2.32), and with• A.,

.: ' 9,) 6 *-I *'* 9-).7-4 ' e.) - (V-*'*(29)*'(x) 1 (2.65)
f.9.
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1

in the Fock space. of the non-relativistic canonical Bosp field

.4 (x), there exists a continuous unitary representation
*-,

Uv(f)V ($) of the group gAX such that
F F-

U (f) = e                        (2.66)i P'(f)
F

and  ...:
.:*5-

Vfet9) =
e -- (2.67)
iJ'(g)

..„ I
.....

Then with    f H  the original Fock vacuum state for  $(x),
+441

E  (f,f.)     =     ( F 'U F (f)V F (111)nF) (2.68)

where E(f,W) is given by Eq. (2.55).
*re,

Proof: First we assert that the representation of gAN

obtained in Theorem 3 can be mapped unitarily into the Fock

Hilbert space.

Let -0 -> 0 and  U(f)0 -> U (f)0 . where 0 and
F                 F    F'         F

UF(f)  are as in Theorem 2.  Since by Theorem 4, 0  is cyclic.

for the  U(f), this mapping defines a unitary representation

not only of  &  but of  g A X  in the Fock Hilbert space; we

may write  V($ ) -> V_ (4 ), and
B.                                       r-    - ·,

E(f'.t) = (HF'UF(f)VF(i)NF) '

.t
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It remains only to show that J'(g) as defined by
M.

Eq. (2.65) is indeed the infinitesimal generator of the one-

g.
parameter unitary group    V  (cp ... ). By Stone' s theorem,   it  is                         iF-t

t

sufficient to show that

V (op 3.) -I
F  -t

lini             n  = J' (g)917 i (2.69)
..dij.... t-0

it F ..:.

..'

the result then.follows from the fact that  P'(f)  and  J'(g)
-,

satisfy the correct algebra of commutation relations on the

domain of polynomials in the P' ( f) applied to  0 .F

Now by Eq. (2.65),

J '(g) 0  = ..1 p,(V·g)0 (2.70)F 2i „: ..': F,
r•··./

and

,  vf (ytf ) -I
lim 11

. d      -  11-  p,(V. g) 0    12
it F 2i F

t-0

V · (Cp .g)  - I 1     UF  (sy   ..g).       -      I
11 F

-·  t                                                                                                                                                                    o F | <2
=  lim 11

0 + - (2.71)it F 2 s
S,t-'0

using Eq. (2.55) for  E(f,$).  Thus Eq. (2.69) is demonstrated.

Q.E.D.

t
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To summarize, we have obtained a representation of the

group  g A X, the exponentiated non-relativistic current
'

t.

algebra, in the N/V limit.  This was done by means of the
.rl

expectation functional  E(f,$).  The representation thus
li

A.'.

obtained was shown to be unitarily equivalent to an explicit

representation of the current commutators in a certain Fock

space, with the original Fock ground state being the cyclic

vector defining the functional  E(f,4)....

In the n6xt section we show how a condition on the cyclic

vector. which asserts that it is the physical ground state of

an infinite free Bose gas uniquely determines the class of

representations obtained above; namely those defined by

E(f,$) for an arbitrarily .specified average particle density
....

P.

-.
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3.  A Condition on the Ground State.

In this section we study representations of the current

algebra, Eqs. (2.11)-(2.13), in which there exists a cyclic

· vector 0 satisfying the condition0

; [2ij(x) + EP)(x) ]Oo =0. (3.1)
./<41

.../,   .,1
...7       3          ;

0 y/will usually be interpreted as the ground state of the

system.
...

»„„.....
...

Convincing heuristic arguments  that  Eq. (3.1) determines

the ground state of a non-interacting Bose gas have been

(11,17-19)given. Here we shall explore the consequences of

this constraint somewhat more systematically. We show that4

for a system in a box with periodic boundary conditions,
3Eq.  (3.1) implies that the operator  J P(x) d x has integer

'....

eigenvalues. In Section 2 we saw that the expectation func-

tional  (0 , eiP (f)'
0 0 )  is given by Eq. (2.27) in the N/V

limit. In this section we show not only that Eq. (2.27)

:

determines a representation satisfying the constraint (3.1),

i as has been previously indicated(19), but that it defines the

unique class of representations having this property.

Let us investigate the consequences of Eq. (3.1) on the

functional

-

/
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L ( f )   =   (0   , e
no) ,           '      (3.2)

i P (f)n    .-
0

where  0   is a cyclic vector in a representation of the
0

current algebra, satisfying the condition

2 iJ(g)0 = P(V..g)0 (3.3)
„:.      0 '··        0

-                      for  all real vector functions     g with components  in    8.

Naturally we shall assume that 0 is in the domain of the
0

operators J(g) and P(f) for all  f,g E 8.  Actually, for
-.

the sake of mathematical rigor we shall assume slightly more.

We suppose in addition that the bilinear form

(P (fl)00, p (f2)No) is continuous in fl and f2; i.e. if
fln -> fl  in  8, then (P(fln)Ro'P(f2) 0) -  (P(fl)Ro'P(f2)Ro)'

and similarly for  f2.  It then follows that || P (fn)00|12 -> 0
if f  -> 0 as  n -> co. This assumption is slightly strongern

than assuming continuity.of the group representation  U(f).

It follows readily that L(f) is continuous in  f; i.e. if

f  -> f  in  8, then  L(f ) -> L(f).  In fact,n

I
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/

i P(f )

|I;(fn)  - L(f)|  = |<0 , (e n  - eip(f))0 )1
0

i P(f -f)
= |(e:ip(f)0         n

, (e _ I)no |0

ip (f  -f)
-ip(f)          n

C lie 0011.11(e -   I) 0011
,-

C 1.|Ip(fn - f)0011 -2 0

as f -> f.
n

For the case of a system in a "box" with periodic boundary

conditions, assume that  Eq. (3.3) holds for all infinitely

differentiable periodic vactor functions g. The components
e.'..

of such functions will be said to be in  8 . where  &   has
V'           V

the topology of a nuclear space.

Using Eq. (3.3), we derive a functional equation for

L(f) as follows. We have

i P(f)
Iit   L(f   + t v.g)

= i (Oo,
e p  (,7,.g)no)      ,t=0

i whence it follows using Eq.(3.3) that

i P(f)
d t L (f + t/..g) =  -2 (0   , e

J(9)Qo)
. (3.4)

t =0                           0                                ,·•„

Similarly,
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d                                ip(f)dt  L (f +  tv:g.) t=0  =  i (00, p e, : ) e 0 )
0 -

= i(p .:9)no'e n )
ip(f)

0

i P (f) (3.5)
= 2(J(g)Q ,e 0)F" 0    0

ip (f)=.2(flo,J(g)e no      

Combining   Eqs.      (3.4)     and     (3.5)  ,    we   have

d                                                           ip (f)at.L(f  +  t,3.9.:) t:=O    · (110'[J(g),e    '      jno) . 0 (3.6)
...,

Now it follows from the current commutation relations that

eiP(f) -i P(f)J(g)e = J(g) - p(g·Vf) . (3.7)
.... '0" 0- BI

Combining Eqs. (3.6) and (3.7),

d                                 i P(f) -i P(f) i P(f)Iii L(f + tI '3,) t:=O = 90' [J(g) - e J (g) e              le           Q  )
A,4 t..'.. 0

= (no,P(g'vf)e   Oo)
i P(f)

...     ....

1                                                              -i  Iit L ( f  +  ti ,·If) t=0 (3.8)

This equation can also be written in the form

i P (f)
(no' e [p(V·g) + ip(90vf)]0 ) =0 (3.9)*# ... 4·.. M,     0
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for all  f,g E 8  or for all (periodic, infinitely differen-
'..

tiable)   f,g f Sv  for a system.in a "box".
'.:

Thus   we   have obt ained a functional equation   for       L (f)

from the original condition on the ground state  0 .

Next we shall show that Eq. (3.8) or (3.9) implies that

L(f) must be of the form                   ·        '

L(f) = F(K(f·)) , (3.10)

where

K(f) = J (e -.  - 1) d xif(x)        3

and      F (z) is a holomorphic function of the complex variable

z  in the interior of the range of  K(f).

In order tq prove this result we will need the following

two lemmas.  We say that the mapping  t -> g of the interval
t

[0,1]  into  8  (respectively Sv) is a differentiable mapping
dgt

of [0,1] into 8 (resp. Sv) with derivative  - =k  €8dt     t

(resp. &v) if for each  t E [0,1]  we have that
h-1   -g)-,k as  h -> 0; where the convergence is

t+h    t       t

in the topology of  8   (resp. 5iv).

Lemma 3.1.  Suppose that  t -> gt E &  (resp. 3v) for

0<t <1  is a differentiable mapping of [0,1] into  &

(resp. Sv).  Furthermore, suppose that
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ig,  (x)r A„1            3
K (gt ,      -    .F (e -1)d x=a constant ; (3.11)

that  L(f)   (0 ,e 0 ) satisfies   (3.8) or equivalently
i P (f)

0         0

(3.9); and that L(f) is continuous in  f with respect to

the topology of'  8   (resp. &v) ·Then  L(gt)  ·is· a constant

independent of  t.

Proof:  We shall prove the lemma by showing that

(d/dt) L (gt) = O.  Let  kt = dgt/dt.. We begin by showing  that

iF (gt   L (gt) = i (oo, e P(k   )0   ) . (3.12)t  o

Now we have

h-.1(L(gt+h) - L(gt))

-1 t+hip(g   ) ip(gt 
= h  (no, (e -e

)no)
(3.13)

-1 ip(gt)  ip(g   -9 -hkt) ihp(kt)
= h  (00, e      (e e

- I)no)
t+h  t

-1     ip(gt) ip(gt+h-gt-hkt)  ihp(kt)
=h  (0 ,e      e               (e        - I)Oo)0

1      ip(gt)  ip(gt+h-gt-hkt)
+ h- (0 , e      (e               - I)No)0

Estimating the second term in Eq. (3.13) as  h -> 0  we find

that

,



3.1

|h-1(Q ,e      (e    t+h  t   t  - I)00)1

iP(gt)  ip(g   -9 -hk )

0

-ip(gt 
ip(g -g -hk )ille n | |Ih-1(e t+h       t.

0                                                             t      -   I) 0011

/gt+h
-g

t
C ll'pt -k )011 -30 as  h -> 0,h        t/ 0

-1
since  h  (gt+h - gt) - k -,0 in 8 (resp. Sv) ast

h   ->    0.       Hence,    we   have

lim h-1 (L (g   ) - L (g ))t+hh- 0

ihp(kt)C _iP(gt) -ip(g   -9 -hk )
=lim' e              e          t+ht      t  Q  (e - I)    \

\                                                                                 0/
-                 h-0                                                        0                h                0/

ip(gt 
= i(0 , e P(k )0 ) (3.14)0             to

Therefore, L(gt) is differentiable and

dL (gt) ip(gt 
dt        o            t  o  '=  i (0   , e P (k  )0  ) - (3.15)

where    kt = dgt:/dt.
Next we show that Eq. (3.11) implies

1

iP(gt 
(no,e P(kt)00) =0. (3.16)

Let T· be the tempered distribution defined by
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iP(gt 
T(f) (t' O,e P(f)Qo) ·        (3.17)

, From Eq.  (3.9) we have
4 '

T(v•g + ig vf)-= 0                   (3.18)
....... .....

I

for  f,g € 8  (resp. Sv).  Let  T  be the distribution*.                                                               g

defined by

T (f) = T(e-igf)                    (3.19)g

for  g <8  (resp. %v).  Then we have

T (V'f) = T(e-igv . f)
H.:   '.1 . ... /6'..

= T(v.(erigf) + ie-igf·vg) = O (3.20)»..  ,4 "MIN'-                                                                                     '

by Eq. (3.18).  Hence,

Z Tg (2 )    =   0          and          T  9 )    =   cg    ,

where c is a constant depending on g. Thus· from Eq. (3.19)g

we have

T (x)   =  c  eig (x) . (3.21)
A-             9

From Eq. (3.11),
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ig (x)
31- f (e  t

igt (x) ,  3
dt "

-    1)     d3 x    =    i    J   kt   ) e              -       d    x    =    0     .              (3.2 2)

Therefore by Eqs. (3.21) and (3.15),

d t L(gt) = i(no, e
P  (kt )0 0)

iF(gt 

=  iT (k  )   =  0'  .t                               -

Q.E.D.

The proof of the next lemma is extremely technical;

therefore we shall present a mere sketch for the infinite-

volume case in the appendix.

Lemma 3.2. Suppose 91,92 E S  (resp. Sv) and

ig, (x)

f ce
1     '. ···                                                  3                                                  ig2(x                                              3

-1)dx= f (e -1) d x . (3.23)

Then for any two neighborhoods  Nl  of  gl  and  N   of  g22
- -in     g     (resp. Sv), there exist functions    hl  E   Nl     and

h  E N. and a continuous mapping  t- >f2    2'                                    of  [0,1]  intot

8  (res$. 6v), differentiable in the open interval  .(0,1) ,

such that  fl = hl' fl = h2  and

if (X)
f Ce t-...                 3-1)d x=a constant .,
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This lemma is easy to prove if  ft  is permitted to be              '

complex.  The requirement that  ft  be real for  O f t i l

complicates the proof considerably.

Proof: See.Appendix.

ip(g)Theorem 3.3.  Suppose that  L(g) = (Oo, e
00), defined for

all. real  g€8  (resp. %v), is continuous in· -g  with respect

to the topology  of     8     (resp.   Sv)   Furthermore, suppose  that

L(g)  satisfies Eq. (3.8) or equivalently Eq. (3.9).  Then

L(g) is of the· form

L (g)   =  F (K (g) )    ,

where  K (g) = f (eig<Z) - 1) d3x and where  F(z)  is a

holomorphic function of the complex variable  z  in the

interior of the range of  K(g).

Proof:  First we show that if  gl,92 C S  (resp.  v) and

ig. (x)               3         .      ig2(29               3f (e  1 -1)d x=j (e - 1) d x

:           then  L(gl) = L(92).  Suppose  E > 0.  Since  L(g)  is con-

tinuous in  g  there are neighborhoods  Nl  of  gl  and  N2

of  92  in  8  (resp. gv) such that

1      -4
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| L (gl) - L (hl) | < E/2  for all  hl E Nl
 .(3.24)

 L(92) - L(h2)| < E/2  for all  h2 E N2 .1'

From Lemma 3.2 it follows that there exist functions  kl E Nl
  and k E N and a continuous mapping  t -> f   of  [0,1]22      t
into       8        (resp.  v), differentiable in (0,1), such that

f =k f - k   and0    1'1-2

   (eift ('3)
-1)d x=a constant .

3

         Then, by Lemma (3.1), we have that  L(k ) = L(k ).  By the
12

.

inequality (3.24), it follows that  |L(gl) - (92)| < <
Since  E>0 is arbitrary, L(gl) = L(92) ' Hence, L( *
depends only.on the number

ig (x)                3
K(g) = f (e , ). -1)d x.

Thus we have  L(g) = F(K(g)), where  F(z)  is a complex

function defined on the range of K(g) for all  g E S

(resp. Jv).  We note that for  8 we have that the range of

K(g)  is  {z; Re z<0  or  z= 0], while for  %v, the range

of K(g)  is  {z; |z+ V| CV].  Next we show that  F(z)  is
differentiable for  z  in the interior of the range of  K(g).

If    K (gl)      is a point   in the interior  of the range  of
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K(g), then  gl  is not a constant function.  Then there are

real functions  hl  and  h2  which have the property that,

as·the point  (tl't2)  runs over a two dimensional neighborhood

of  (0,0), K(91 + tlhl + t2h2)  runs over a complex neighbor-

hood of  K(g) . The mapping   (tl't2) -> K(g + .tlhl + t2h2)
is analytic.in  fl  and  t2' and since  L(gl + tlhl + t2h2)

-'.. S':/„.

is  differentiable  in t
1  and  t 2' it follows from the con-

tinuity assumptions on L(g) that F(z) is differentiable in

a  neighborhood  of    K (gl) . Hence    F (z) is differentiable  in

the interior of the range of  K(g).  Since  L(g).  is continuous

in  g, it follows that F(z) is continuous on the whole range

of  K(g).

Next we show that F(z) is holomorphic for z in the

interior of the range of K(g). To prove this it is sufficient

to show that

aw   F (u    +    iv)
8                8

-i - F(u + iv)Bv

1

for  z = u+iv  in the interior of the range of K(g). Since

F(z)  is differentiable we have

1-

1-

i.

t

,.

-t
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' =  aF (K (g))   _.8  L (g  + th).|t=0 au    at[Re(K(g + th))]|t=0

+ BF(K(q))  3av         [Im(K(g + th)]|t=0
aF(K(q))                   3

j  h (x)    sin  g (x)   d  x8.u -t *"l

+ aF(K(q))   h(x) cos g(x) d3.x .  (3.25)av *-, -0.-.    '4'.,

Then from Eq. (3.8) we obtain

BF(K(q)) „
-               a u               J       e .f)   (21)     s i n    g (29     d3 x

+ aF(K.(q)) .1, (,3.f) (,9 cos g(,19 d3xBV

(3.26)AF(K(q))+i f (f·vg) (x) sin g(x) d3xBU '0 ,... .".•
.60':

+i j' (f·vg)(x) :cos g(x) d3x =O.
BF(K(q))

29 ... ..:, h..

i

From the divergence theorem, we obtain the relationships

3j' (v f) (x) sin g(x) d3x   -.f (f'lg) (x) cos g(x) d xt.. A- . A.t
P.#t 4,·4

f (v.f) (x) cos g (x) d3x  f (f,vg) (x) sin g (x) d3x  (3.27)M., M.
libl. /VIM AM A-*r. .....

Combining (3.26) and (3.27) we find

( au +i
Bv ,     5      "-   . ", A+11

BF(K(q)). BF (K (g))')   (9·f)(x) e-ig (1) d3x =O.

If  g  is not a constant, one can find an  f  with
/V,41
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components in  8 (resp. g) such thatV

J   (V. f ) (x) e-ig (r:)   d3x 16  0   .
h. b... /.H.

Hence     -   =  -i -  .  and   F (z) is holomorphic for z in the
BF        BF

,

au Bv
1..

interior of the range of  K(g) .  .This completes the proof of

the theorem.

· Q.E.D.

Next we shall determine the explicit form of

L(f) =/0 .e n ) under the further assumption that  U(f)V(19)
ip(f)

.    0- '                        0                                                                                                                                                   A.

determines a factor representation of the current algebra. The

importance of factor representations lies in the fact that every

representation of a C*-algebra (in particular, the C*-algebra

associated with currents) can be uniquely decomposed into a direct
(21)integral of factor representations. Roughly speaking, if one

knows all of the factor representations of a C*-algebra, one can
construct all representations by taking direct integrals.

Suppose we have a continuous unitary r,epresentation of

5. A K We denote by elI the *-algebra of polynomials in U(f)

and  V(41) , with  f f&  and  9€X, and by 41' the commutant,».
,"'.

of  41   ,   i.e.   the  set  of all bounded operators which commute  with

the elements of U . Finally we denote by 11" the bicommutant

of V . i.e. the commutant of 9' It follows from a theorem of

I--
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(20)von Neumann that  W"  is the strong closure of W, i.e.

for A E m" and any finite set of vectors  [1.; i = 1,1..,n]
•                                                            1

in the Hilbert space of the representation, and for  E > 0,

there exists a B E W· such that  || (A - B)Yill <E.  The
representation U(f)V($) is said to be a factor representa-

'VW.

tion if  lt' n 21" = {AI]; i.e. if the only operators common to

both 21 ' and 21" are multiples of the identity. Every

irreducible representation of the current algebra is a factor

representation, since for irreducible representations

8,  =  {XI J.

Let us turn to the question of determining

L (g)   =   (0   , e n) for a factor representation with a
ip(g)

0 0

vector 0 satisfying Eq. (3.1) or equivalently EM. (3.3).
0

We begin with the case of a system in a box. Since the

function    e (5)   E  1    is  in    8   .  we can consider the operator

U(Xe ) = exp [iXP(e )].  Since U(Xe )  commutes with0 0

U(f)V($)  for·all  (f,$) E g A X, U(Xe )  is-in the center of
A·,· 0

the current algebra. Then for a factor representation we

must have U(Xe ) = w(X)I, where  |w(X)| = 1. By the group

property and by Stone's theorem, we then have

exp [ixp(e )] - exp [iXQ]I, and  P(e ) = QI, where' Q  is to0                                                  1

be interpreted as the total number of particles in the system.

But we have already seen that  L(g) = F(K(g)) where F(z) is
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analytic for  Iz+ VI <V and continuous for  |z + v I KV·
Now we have

F(K(Xe ) ) = F(V eik - v) = eiok .0                                                                      (3.28)

ix i(X+2n)Since F is single-valued, F«re -V)   = Fe,e -V).
i2TTQHence e

=    i        and       Q    =O,    11,    +2,      ...      .         I f       F (z) is to

be holomorphic for  |z+ V| <V  we must have  Q = 0,1,2,...;
hence it follows that F(z) is of the form

Q
/ Z + V)

F(z) =t v  )  ,     Q= 0,1,2,1,2,... . (3.29)

Therefore

 ··       if (x)     3  \Q
L(f)    =   i  J        e         6:.       d x) (3.30)'V

Every representation of the current algebra can be ex-

pressed  as a direct integral of factor representations;  .thus

for an arbitrary representation of the current algebra in a

box with the ground state satisfying Eq. (3.1) or (3.3), L(f)

' is of the form

O,

Q
L(f)

1    UQ<.1.v  ei f e.)   d3*)
, (3.31)

Q=0

'

4
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00

with  Q= 0,1,2,..., WQ 1 0, and   S  P  =1.Q=0  Q

Next we determine the form of L(f) for the case of

infinite volume. Again we assume that we have a factor repre-

sentation, and obtain the general case by taking a direct

integral of factor representations.

Consider the expression

iP(fl) ip(fl:)

L(fl + f2n) = (no,e     e    4 0) , (3.32)
C)

where fl E %; f2rl(/ .) = f2(,3S - na)  for n = 0,1,2,...  and
f2 E g; and where  a  is a vector of unit length.Ah,

Now we have

L(fl + f2n) = F(K(fl + f2n))

and

if (x) if (x-na)1 ,·.,     2 ,-,  ,·,·          3K(fl + f2n) = j (e      e          - 1) d x

-> K(fl) + K(f2)  as  n -> m. (3.33)

Since F is continuous we have

L(fl + f2n) >  F(K(fl) + K(f2))  as  n -> m .
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Now the set of all operators of norm not greater than

one in a Hilbert space (i.e. the unit ball) is compact int the

weak operator topology. Therefore the sequence

i p(f2n)
e          has at least one cluster point in the weak operator
topology which we shall call  G . Since

iJ(gl.
i p (f2n) .

Ie       :f#          , e 1 -3 0  strongly as  n -> 0  (i.e. the'...  ..4
ie (411)

e         tend to commute with elements of the current alge-

bra as  h - =) , it follows that  G  is in the combutant of

the current algebra. Since  G  is a cluster point of a

sequence of elements of the current algebra, G  is also in,

the weak closure of the current algebra.  Hence, by the assump-

tion of a factor representation  G  is a multiple of the idell-

tity, i.e. G =XI .

Since we have the existence of the limit

n
L(fl +-f2 ) -) F(Kifl) + K(f2))   as n--> co

and since

i L(f2nj = F(K(f21)   for all  n '

it follows from Eq. (3.321 that                                            i

.,
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L(fl + f2n)  ->  AL(fl)   as  n -, m

and

L(f2n)

Combining these equations, we find
....„>.

./.1    , -

F(K(fl) + K(f2)) = F(K(fl))F(K(f2)) (3.34)f

for all  f  f  E 8.  Hence,1' 2

F(zl + z2) = F(zl)F(z2) ' (3.35)

and it follows that  F(z)  is of the form F(z) = A exp {Pzl.

Since  F(0) =1  we have  A=1  and since

|L(f) | = |F(K(f))1 K 1  for all  f € 8, we have  |F(z) 1 & 1

for all  z  with  Re{z] L O.  Hence  P 1 0  and

F(z) = exp {pz].  Thus

L (f) = exp P *f (eif Qi) - 1) d3x . (3.36)

For the general case of a representation with ground

state satisfying Eq. (3.1) or (3.3), L(f) is a direct integral

of functionals of the above form, i.e.

(
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00

if (x)
L(f) = j  exp : p 1 (e ,". - 1) d3x  dg(P) , i

(3.37)i.          .1
0

where   B   is a positive measure  on . [0,-) normalized  so  that
00

fl dw (P) = 1.

We summarize these results as follows:

Theorem 3.3. Suppose  g -> J(g)  and  f-> p(f)  is a *-
... h„,

representation of the non-relativistic current algebra of

Eqs. (2.11)-(2.13) with a cyclic vector  0 . ·Suppose '0   is0

in the domain of  P(f)  and  J(g)  for all  f,g € 8, and that
.'."

(P(fl)00'P(f2)00)  is a continuous bilinear form on  g x 8

(resp.  6v X.Sv).  Finally, suppose that

2 iJ(g)0  = P (V.g)0 (3.3)
.... 0 ,••,...•                0

for all g with components in  8 ( resp. &v).  Then if
/6.':

L(f) = (0 ,e no), L(f)  is of the form
i P (f)

0                                                                                                                      .,

CO

L(f) 1     KQ( f      «i f (,19    43„)
Q

.(3.31)
V

Q=0

in a box of volume  V, and of the form

00

r       .-
I

if(x)L(f) = J
exp   w  p    i (e 'W. 1 -    1)     d3x     dw (p) . (3.37)L     J

0



d

45
C

in the infinite volume case; where    2 0  for  Q = 0,3,2,...,
a)

r     I.

Q=O  Q
= 1  and where  W  is a positive measure on  [0,°°)

normalized to unity.

We remark that the form of  L (f,g) = (00, e            I
i P(f)=iJ(g) 0 ).

M

is completely determined by the form of L(f) together with

Eq. (3.3). --i--„.

.

Theorem 3.4.  Representations corresponding to.Eq. (3.30)

and Eq. (3.36) respectively are irreducible.

Proof: Supposing the contrary, there exists a.closed in-

variant subspace  m of U. with U(f)mc m, V($)mc m; and
- -

we can decompose no  into  X80 1 + (1 - A)*n2 with £11 E m,
1

Q2 E I n,0<1<1.  Then U(f)Q2  and V(11) 2 are likewise
1

in   Ill . Since   0     is a cyclic vector for  the   U(f) ,  it0

follows that  (U(f)Q1]  generates a dense subspace of  m,
1

and  {0(f)n2]  a dense subspace of  m .  Furthermore  Nl  and

0   are in the domains of P(f) and         J (g) by Stone's
2

1

theorem, with .P(f)nl E m, P(f)n2 €m, etc.  Since

|| P (f  )0   2  _,  0    if    f    -> 0 as       n   -> °° '  P (fn) Q 112
-,0

n o       n

and  ||1)(f )0-|12 -> 0, whence  (p(f )0 . P(f2)£11)  andn z 1  1'

(P(fl)N2'P(f2)n2)
are continuous in f   and  f . Evidently,12

2 iJ (g) Ol = P ( :'g) nl and similarly for n2.
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Thus the functionals Ll(f) = (N ,U(f)01)· and
L2(f) = (82'U(f)02)  satisfy all of the assumptions made

earlier in this section, with  L(f) = ALl(f) + (1 - A)L2(f)

Consequently, Ll  and  L2  must each be of the form of Eq.

(3.31) or (3.37), which is impossible unless .Ll = L2 = L.

Therefore the representations are irreducible.

Q.E.D.

...



-                                 47

4.  Functional Calculus.

We have shown that in order to describe a free Bose gas

at zero temperature, one takes a representation of the current

algebra, Eqs. (2.11)-(2.13), with a cyclic vector 0 satis-0
fying Eq. (3.1). This corresponds to making the assumption

i P(f)that the expectation functional  L(f) = (90,e - 00) satis-

(19)fies a certain functional differential equation. In

fact, with

K(x) = VP(x) + 2iJ(x) (4.1), ,..... ..»: IIi. Ant  /.

and

(00,e K(x)no) =0, (4.2)
i P(f)

....  A.,

together with the 'commutation relation

i P(f) i P(f)                  '[e   · ,K(x)] = -2ivf(x)P(x)e     ,         (4.3)6..': ':. "61'. 4,•t       ....

one easily obtains

-i3,f(x)(Oo,e p (,3,) no)   +   (00,: p (x) e 0 ).=0, (4.4)
ip (f) ip(f)

-                                                                                                                                                                                                                                                 0

which is the unsmeared form of Eq. (3.9).

Equation (4.4) may be rewritten as a functional dif-

ferential equation as follows. We use the standard notation
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for functional derivatives. If L(f) is a' continuous fund-

tional on Schwartz's space  8  we say  L has a functional

derivative at  f  if there is a tempered distribution  Tf(x)B.

such that

lim (4.5)
L(f + tq) - L(f)

t-0         t        =
 Tf(g) ·

"r ...4-8- .3
..r.

We-denote the functional derivative by

*.
...%•.

6 L(f)
6 f(X) f 2-:...     0

T (x) (4.6)
t....

It is a consequence of the assumptions we made on  L(f) .. in

the beginning of Section 3 that L  has a functional deriva-

tive at all  f E 8, and

6 L(f) i P(f)= i(O,e P(X)0) . (4.7)6 f (X) /'A, ,

Higher functional·derivatives are defined in exactly the same

fashion.

In this notation, Eq. (4.4) reads

iIvf (  16L(f) + 9  6L(f)
A 61

x) 'af(x)   , ·x 6f(x)
-0' (4.8)

r.". b           ....

A unique solution to Eq. (4.8) is determined when the following

boundary conditions are imposed on  L(f):

1                        lA
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.

-; - (i)  L(f)  is a positive functional in-the-Bochrier  -

sense, Eq. (2.28).  This condition is a consequence-Ofithe-

i4terpretation of L(f) as an inner product:in-a-Hilberi

space of positive norm.  It establishes that the measures

wQ  '·and  #(P) "appearing in Eqs. (3.31) and (3.37)·are -

positive.
---

(ii)  L(0) = 1. This condition. normalizes the inner

product  to  one.

(iii)  |L(f)| < 1.  This is a consequence of the unitarity

of  U(f), Eq. (2.16).  This condition guarantees that the

average density  P  appearing in Eqs. (3.36) and (3.37) is a

positive number.

(iv) L(f) is an,extremal solution in the sense that

it  cannot be written  as a convex linear combination of  two   -- ,

other solutions.

WL   I

(Y)      6 f (x) 1

=P=a specified number.
,.... f=0

' Conditions (i)-(iii) were ·employed to prove Theorem 3.3,

which implies that Eq. (4.8) has·the unique class of solutions
C

:specified by Eqs. (3.31) or (3.37). Condition (iv), as demon-

strated in Theorem 3.4, is used to restrict the general solu-

tion to the forms (3.30) and (3.36) defining irreducible

representations of the algebra (2.11)-(2.13).  Finally,
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condition (v) selects the particular irreducible representation

corresponding to a physical system having a specific vdlue for

the average density.

Having written a functional differential equation for

L(f)  whose.solutions describe the infinite free Bose gas at

a specified average density, it is natural to seek an equation

or system of coupled equations whose solution would describe

-an   infinite   Bose   gas   with an interaction. Such a system is

proposed in Section 5.

In this section we derive a mathematical relation between

two of the quantities which appear in Section 5.  This relation

proves helpful in completing the system of coupled equations,

and introduces the concept of indefinite functional integration.

Define

'.. .                  ip(f)R,.(f,x,y) = (0 ,K.*(x)e K.(Y)0 ) , (4.9)1] M. 'b 0 1 4
J  ,·w       0

where K(x) =,VP(x) + 2iJ(x) is an operator-valued distribu-
h... ,•h, 'v¥. A..1 B- .,„

tion, and  0·is a cyclic vector for the  P(f).
0

Consider the expression

I
-
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i P (f)     1Nij (f,3.)   =   (no,  Ki*(x) e -.   K.(x)0 )PCx) ]*-, 0
4...

= (910, e K.*(x)
K (2.t.)GO)

i P(f)        1
1 A.:

P (29     j

-  2 i (a. f)(x)(Oo, e K.(x)0 ) . (4.10)
i P(f)

*         '*                                        J  k...      O

-One way to define such an expression has previously been
...*7 S...."

-i---

proposed. Here we shall, roughly speaking, functionally
(11)

integrate R.. to obtain  N:.:
1J 1J

«'.
 ...: .e,

In representations of non-relativistic systems of               '

physical interest one usually  has  that     P (f)  2  0    if    f (x)  2.0
-                                                                                                                                                                                                                                                                                                                                  ........

for all  x.  This corresponds to the fact that  P  usually.",..

describes the number dendity for a single species of particle.

Let us for the moment pretend that P(X) is a well defined
/  rf.,

self-adjoint operator at each point  x, with positive spectrum.
..=

Then we could write

e      iP(f+it6 )1  eip(f)    ''       -tp(x)eip(f)    r             .  x
P(X)                                    J= j dte ..... = I   dt e ,«.

-                        0                                            0

(4.11)

where  ax(Y) = 6(x - y), the Dirac delta function.  The
'.,1 '. k As,1

A..

relation between R..(f,x,y) and N:.(f.x) would be given1] A' .      /.. 1 l],/.
by

CO

N:.(f.x) = J  dt R..(f + it6 X, X) . (4.12)1J ,·                                                        1 J                                         X'     /5.       Ab,

0                                                                                         A-

-t
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Now in general P(X) is not well-defined as an operator' A..:

  at a point, and an expression such as  R..(f + it6 , x  x)
1J X       *41'   A .1

'...

is not well defined.  In fact, let us compute R.. for an
1J

infinite free  Bose  gas  at zero temperature of average density

-                                                      i P(f)p,    with 0 the ground state.  We have  L(f) = (0 ,e 0)0 0 0

given by Eq. (3*36).  Suppose that  h E S  and  0  = eiP(h)Q .
h                      0.

(h)
--Ii---*

We shall compute  R. .  (f,x, y) with respect to the cyclic1 J               -  -.,

vector nh 

(h) i P(f)R..  (f,x, y) = (0- ,K.*(x) e K j· (/,) nh)1 J M A. h 1 b. n

6 (K. (x)eiP(h)0 eip(f) i P(h)K.(y)e n ) (4.13)
1  k...                     0,                    J *'M                     .0

From Eq. (4.3) together with  K. (x)0  = 0, we have
1 AY.:  0

Ki(x)e
u       = 2ie

(aih) (x) P (,5.) Ro (4.14)
i p (·h)- i P (h)

M,                           0

or   „

Ki (x) nh = 2i ( 3 ih) (:9 p (29 nh · (4.15)

Hence,

(h) i P(f)
Ri j      (f,ic,z)     =    4 (aih)   fo.)   (8 jh)  iy)   (no, e                   P  t:)  p  C y) no)

....

2

= -4(aih) tx) (aih) (y) (4.16)
6 L(f)

 .'. df(x)af(y)
A, ·,

A.,·      i

.t
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A straightforward computation of the functional derivatives

yields

(h)
R.. (f,x, y) =
1J . ,-, All

(4.17)

4(aih) (x) (ajh) Lr) (32eif (x:)eif ty,)  +  06(x-y) eif (,3,))L(f)
b..  ....

(h)
It is clear that   R.. (f + it 6    x x) is--ill-defined, since

1J 2  -'  *
-*.

it contains exponentials of delta functions, as well as a

delta function evaluated at zero.

Instead we propose to interpret Eq. (4.11) as

follows.  Let  6n be a sequence of functions in  8  which
X
A.,

converges to 6 in the sense of a distribution, i.e. for allX
A-'

f E g,

lim    j'    6 n
(y) f (y)   d3y  =  f (2    .

X w    A *1Ir go             .#

We now interpret Eq. (4.12) by means of the limiting procedure

CD

N'.(f.x) = lim .   dt R..(f + itbn, Bn, 6n) (4.18)1J K...
n#-    0              l]                   X-     X      Xrn     ,·, / A In

We shall show that this definition works for the case of

(h) (h)R.    in Eq. (4.17). Notice that R- (f,g,k) can be extended
1j                                  lj

from functions  f,g,k E 8  to bounded Borel functions which

decrease faster than any Rolynomial in  x  at infinity.  Then
--                             Mn
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we can take our approximating sequence for a delta function

to be the more convenient set of. functions

r n3   if  Ixi - yil K 1/2n  for  i = 1,2,3

6;; (Y)     = 1 (4.19)
M:,

0    otherwise

Computing  RC:)(f + it6n. an, 6n). we find
1]         X   X   X'

A'r .....      A.

(h) n n
Rij (f + itax, 6x, an) =

/, "•               A •'                A.'

Al(t,n)L(f + it6 ) + A2(t,n)L(f + it6x) ,
Al M"

where

Al(t,n)

... 3
-

3 6
if (z)_if (z)   -2tn34P  JV  d y  v  d z n (aih) ty) (3 h) tz)e . e A.'   e

n n

- I.

and

A2(t,n)  =  43. J      d3y  n6(Bih) (y) (B,h) (y)eif (,K  e-tr13  ,
V                                                  J       ,• 4.,n

\

and where  Vn = (y; |yi - xi I K 1/2n  for  i = .1,2,3] .  A
straightforward computation shows that

|L(f + it6n) - L(f)' i l- e-P/n3X
A •\·

A
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3

for all  x E R,t 1 0  and  f€ 8.  Hence, L(f + it6n)  con-
b'                                                                                                                                                                                                                        X

k.,

verges uniformly to   L(f)    as   n -> °°. Since   Al(t,n)   and
1

A2 (t,n)  converge in the L  topology to absolutely integrable

functions, it follows that

CO

lim j   dt Rij (f + itjn,  6 n,  On)
n=-             0 b 1.'"

(30

(

= tlim J   (Al(t,n) + A2(-t'n)) dt £(f) .   (4.20)tr 00       0

Now performing the integration over  t, we have

CO

1 A (t.n) dtJ 1 '                    (4.21)0

-2 3-    3
= 2 P n j       d  y  j      d3 z  (aih) (y) (8 h) (z)eif fY)eif(,f)   -,  0

V V AV.··

n n

as  n -> °°, since the square of the volume of  V   goes
-6as n Furthermore,

a)
0 1 if (y)    .3
j   A2(t,n) dt = 4pn  j (a,h)(y)(84h)(y) e /,1 1. d y
0        V   »" J       /,PH

n

->    43(8. h)(x)(8.h)(x) eif (,1) (4.22)1 Ay.' ] 44

Hence we have
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00

lim j   dt R..(f + it6n- 6n  6nl
r»0 0        0                       1 1 X'  X'  X'

A- "•n M. 5

if(x)= 4 p(Bih) (,39) (34h) (y)e     L(f) . (4.23)
J         A.'

, (h)Next we compute N. (f, x)  directly, using the inter-1 j                 A»'

pretation of 1/ p (x) proposed earlier by Goldin and Sharp.
t.,%1

-.:.:                   
                        

               (11)

1 --
They.. interpret  1/ P (x)  as the map , U x t -> 8", whereB.                          P 99.  I8.'  is the continuous dual of 8 and U is the linear span

g.„ 0
-

of the vector-valued distributions
{9(x) P (29*21 0 € D, 

g€ *MJ,

with  D  a dense invariant domain for  P(f), f.€ 8, and  GM

the real-valued C- functions which together with all deriva-

tives are polynomially bounded at  -.

Now, using Eq. (4.15)

 0 dip (f)K.*(x). K.(x)0 1 = CK.(x)0 K.(x)0!
1             \     /1

h, 1 A-
PCX)  J M  h/    \ 1 A-- h-f' P (/2

j m.' hj
A..:

-                                                                                                              1

= 41 (B.h-·aif) (x)p(x)0
(8 h)(x) p (x) 0.)\ 1 /4:·               A# ,          n- f '  P (x) j '•.       6,       n

ip(f)= 4(Bih- 8.f)(x)(8.h)(x)(0 ,e p (.x)no) , (4.24)& P..... J ,·- O

and

-6

2-
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(h), ip (f)               1
N.  .       (f,x)    =    (n'   . e K.*(x) K (x)0 )

1  J                             ' .                                       hi                                                    1          A I.· P (,9 j .1.I, h

- 2i (B.f)(x)(0 .e K.(x)0 )
i P (f)

1                     ,:1. h J  #, ··,    h

i P(f)= 4(3.h)(x) (B.;h)(x).(Oo,e P (X)0  )1 BM J Al· A  r.          0

=  -4i (3 -h)(x)(3,h)(x) 6 L(f)
,W,/ ] ..J 6 f (/5)

if(x)+ 2 J
= 43(Bih) (x) (8.h) (x)e   +-,L(f)- , (4.25)-     M J A...//

where L(f) is given by Eq. (3.36) in evaluating the func-
.•»·,·t..,

tional derivative. Hence we see that Eq. (4.18) gives .the

correct relation between R. and N:. for the case at hand.
1 j         11

We leave unanswered at this time the important problem of

determining a general set of sufficient conditions to be im-

posed on   R. . (f,x,y) , in order to ensure that the limiting1 J                  .4.    ".1

procedure of Eq. (4.18) leads to a well-defined expression.

.t
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5. Determining L(f) when the Particles Interact.

The.preceding work has shown how the functional L(f) of

Eq. (3.36), which determines an irreducible representation of

the local current algebra (2.11)-(2.13), can be defined

uniquely as the solution to  a  functional differential

equation satisfying the appropriate boundary conditions./„,1).....

(Coddition,s (i)-(v) following Eq. (4.8)).

These results apply only to non-interacting bosons.  Next

we ask whether the same pattern of results persists when inter-

actions are included. Can one find a set of functional differ-

ential equations which, when supplemented with suitable boundary

conditions, determine a ground state expectation functional

L(f)?  In this section we suggest the possibility of an affirma-

tive answer to this Muestion.

The 'functional equation which defined L(f) for non-

interacting bosons was Eq. (4.8), obtained from the condition

(3.1),

K(x)0  = (90 + 2iJ)(x)0  =0.
..:.    0'., 0 /'W. #.i         /.  h·,             0

-        The first step towards deriving a corresponding set of func-

tional equations in the interacting case is to find conditions

replacing Eq. (3.1), since the latter correctly expresses the

.t
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action of the Hamiltonian in a representation only for non-               ;
i

interacting bgBons.  These conditions take the form of equations

whigh relit@, And ultimately determine, the following quantities:

ip (f) (5.1)L (f)   e   (89, # 0).0

i P (f) (5.2): Mif,M) 5 (09,@ ji(x)no) ----...*

e"

1·.

i P(f)
K.(y)0 ) (5.3)Rij (f '3''K)   5  (00'Ki* (Z,) e J m.  0

N..(f, PC)
1 3            A,I

*(0„,, K.*(x) K     (x)    +   K   * (x) K (x) D  .  (5.4)SP (f)-             1                              1
L   j.     4,M   p (X) j A"

j         w.,   P   (X)        i    A-       1      0/
*. /64,1

-              We a -sume that the particles interact through a central

two=body potential  V(|x - y|)  and write the Hamiltonian
t'*: *IiI

(1)
(for particle@ of Unit mass) as

H- 1    d3 x K.*
(x) K, (x)

1

1   *   P (X) l      /. ·· "
r ./

1  -:  3   3
4  3'  j j    d   x   d   y   P e) V C 1'1  - ,Y l) P ty..) , (5.5)

Wh@re th@ %@p@ated index  i  is summed over  i = 1,2,3.  For

th@ Hamiltenian to be well-defined it may be necessary to

@ubtraet from Es, (5.5) an infinite constant corresponding to

it@ ground @tate expectation value, thus establishing a zero

-
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of the energy, CH -E)0  =0.00            '

It should also be noted that we have no guarantee that

Eq. (5.4) defining  N.·(f x) makes sense as it stands.11 "-
Nevertheless there is reason to hope that the ensuing system

of equations ultimately lends itself to a meaningful inter-

pretation and we shall proceed as though the quantities under

discussion are all well-defined. ---- --

1.  The first condition replacing (3.1) follows.from the

requirement that the cyclic vector be an eigenvector of the

energy operator,

(5.6)(E  -  EO) 0  =  0,

which we write in the form

(0  , e HO )-EL(f) =0.ip(f) (5.7)          '
0            0 0

To write Eq. (5.7) as a relationship between funetionals,

we introduce N..(f,x), Eq. (5.4), and note that
.l J       .0

1 6 1 6 ip(f)
-       L(f) = (Q ,P(x)p(y)e 0) (5.8)i  6f (x)     i  5f (y) O A" A.-'                       0

'

to obtain
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3                 '

1          ,           J.    d3 x    N i i  (f '':9
i=1 (5.9)

1 r. 62L(f)- 2 jj d3x d3y v(1,1-31) - E L(f)      0 .6 f(x)6 f(y)    0
/64"             h.

2.  A secon4 equation follows from the requirement that

0 be invariant under   t ime reversal,
-C.

TR=0 ; (5.10)
0 0

.)«-.......
.

where  T  is the anti-unitary time reversal operatdr satis-

fying  VT,TA) = (0,7). To derive the desired equation from

(5.10), consider

(no,e J(x)0    )     = , (T e J (x) 0    , Too)

i P(f) ip(f) (5.11)
4 1   A., 0 -- 0

-1 -1 -1
Since TP(f)T =  P (f),  TJ (x) T = -J(x), TiT   = -i, and

1... /... » 7     An

TO  = 0 ,-we find
0 0

i P(f) i P(f)

(no,e J(x)no) = -(no,J(x)
e 0) . (5.12)

A.. At $   Mp                             0

r

i P(f) -i P(f)
J (x) e = J(x) - Vf(x)p(x),

Recalling that  e M" Aw B. r-'' /. 4           A..               A 1 K

Eq. (3.7), we may write Eq. (5.12) in the form

(00,
e

K(x)f10) -
ip(f)

A. ....

ip(f) ip(f) (5.13)(il   , e vp (x)Q ) - i(no,e P(x)vf(X)no) 00   h." A•' 0 /»-.1 4-,   t...

«'
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Finally we may introduce  M(f,x), Eq. (5.2), and the appro-
».4       „...

· priate functional derivatives,  to find

M(f,x) = -  [v f (x)] (5.14)v (1 aL(f)) 6 L(f)
#,4. "Y.61 A"X\ i a f(x) / An ".l 6 f ('X)    ..„ 1'-

All of the dynamical information about a system of inter-
74.ac€ing bosons is expressed in Eqs. (5.9)-and .(5.14), when these
>

f.
equations are supplemented with suitable boundary conditions.

However, the two equations relate three unknown functionals.. 5--'.4...

The additional relationships among the functionals (5.1)-(5.4)
needed to complete the system of equations are obtained

entirely from consideration of the mathematical properties

of the functionals.

3.  One of the remaining equations we need has been

derived in Section 4. It relates the indefinite functional

integral of Rij(fec,z),  Eq.  (5.3),  to the quantity Nij(f '3),
Eq. 44.10).  We can write  N,.(f,x), Eq. (5.4), in terms of

1 J      '.1.1

R. . (f,x,y) and M (f x) as follows:
1 j        -. .... , A ,·

1

Nij(fec) = i(Nij(f,29 + Nji(f,29)

+ i (aif) (x)M,(f,-x) + i (8.f) O.c)M. (f, g , (5.15)

where as in Eq. (4.18)

.t.
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(X>

N:.(f,x) = lim f  R  (f + it6n, 6 n, 6 n) dt . ,(5.16)
n49 0 /.....A.4 ty.'..

J ij X X

4.  The final equation relates  R,.(f,x, y)  to  M(f,x).
1 J             ,-4 'Wn ,/.1 1       A.'11

Referring to Section 2.C, we may write  L(f), M(f,x)  and
r...      r'-

R,.(f,x, y) as
1J *1.    M -

'*.

ir i(F,f) (5.17)
L(f) = j  

e dg (F)    ,

»Y".=". ---:.

p       i(F,f)
M(f,x)    =               Oo(F )e (K  (x) Oc)    (F)       dti  (F) , (5.18)
R.. n.              .1

g,                        
            -bu.

and

(F f)
Rij(f,3,3)   =  Jg,   (Ki (3)QO) (F)el    '     (Kj  y)iD (F)   dg (F)   ,   (5.19)

where 8' is the continuous dual of Schwartz's·space and  W

is a·cylindrical measure on  8'  uniquely determined by  L(f).

We now define  M(F,x)  to be the inverse Fourier transform....             0-

of  M(f,x); i.e.
I...               h./1

1 r   i(F,f)-

 M(f,x)     =    j   
e M (F,.x)     dw (F) . (5.20)

"'-

1

' It is not difficult to establish the existence of

A(F,x)  using standard methods in the Gel'fand-Vilenkin
ty'l,

(3,12)
approach. One may prove first that M(f,x) in

'....,

.t
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Eq. (5.2) is the Fourier transform of a (not necessarily

.positive) measure  01  on  8'; then that every set of measure

zero     in 11 is of measure zero in  g ; and conclude that the
1

Radon-Nikodym derivative    dwl (F)/dw (F) exists and defines

A(F,x).  The assumptions needed to carry through these argu-
M.         '.....

ments amount  to .the statement  that the ground state vector   Oo
.$...r

is   in-  the   domain   of     K (x).
,+

RB ,..

Similarly,·define the inverse Fourier transform

-»„...
i.. (F,x, y)   of   R.. (f,5''Y)   by

l]                   ...b: 1]. ,

i (F,f)=
Rij(f),Ix,,y) = J8,

e R..(F,x, y) dg(F) . (5.21)
1 J           'h.  A-

Then, since  OJF) 2 1  almost everywhere,

A..(F,x, y) (5.22)
13 r.,1 /'. Ai (F,2.) Aj  (F <K)

almost everywhere, or

Rij(fe,f) = j.8, ei(F,f)Ri.(F,/J)Rj(F, ) du(F) . (5.23).

1

/.

To summarize, we have the following system of coupled

functional equations.

-t
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1. "Schroedinger Equation"  ( (H - EQ) 0- = 0) :0

3

1 C ,    3

8   Z     J  d  x Nii (fe,)
i=1 (5.9)

62L (f)- i ff d3x d3y V(Ix- 1) - E L(f) = 0 .** /  6 f (x) 6 f (y)   0
A.1               +1*1

2.  Time-reversal invariance  (TOo = 00):

M(f,x) =v t- /1  -   (lf (,5,)) (5.14)
/1 6 L(f)\ 6 L(f)

A„,        ,":           *-25:i i    6 f (29 6 f(X) ..
&..,

3.  Ihdefinite functional integration relationship:

N..(f,x) . 1(N:.(f,x) + N:.(f,x))
1 1 + 2 11 An\ Jl -A#i

(5.15)

+ i (B.f)(x)M.(f,x) + i (8.f)(x)M. (f,x) ,1 »., J h., 1-11

CO
.

where   N: . (f,x) -= lim  

R..(f + it 6 ,6,6)d t.
n          n          n

1J B., J lj X ..X   X
Il-- % 0 A... A»' Awl

4.  Fourier transform relationship:

Ri j(f,z,Z)   =  jg,   ei (F, f )Ai (F,x)A (F«)   dif (F) , (5.23)

..   -i (F,f)where  L(f) = f   ei(F,f) dg(F)  and 21(f,x) = Jg, c R(F,x)du(F)9 g,
,•11 1 /'Y') '™,
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Equations (5.15) and (5.23) together express  N., (f x)
1 3         M

in terms of M(f,x) and the measure W of which L(f) is
tvi:·            »I

the Fourier transform.  Then, substituting for  N..(f,x),
11        *v.

Eqs. (5.9) and (5.14) relate the two functionals L(f) and

M(f,x) .
Ary...    n·.-

The  above  syst em of equations  can be expected to determine

Ii'(f) :--uniquely  only  if  it  is  supplemented- by appropriate

boundary conditions, just as in the case of Eq. (4.8) which

.·.

defined the free system.  The boundary conditions which applied»....

to L(f) in the free case  clearly apply in the interacting

case as well.  We do not know at this point whether these five

boundary conditions suffice to determine a unique solution to

Eqs. (5.9), (5.14), (5.15) and (5.23) or whether additional

boundary conditions are necessary.

In contrast to the non-interacting case discussed in

-        Sections  3    and  4,  we have no means of obtaining a solution

to the above system of equations, nor do we have techniques to

demonstrate that a solution exists or, if it exists, that it

is unique.

There are other ways to supply some of the additional

information needed to complete the system of equations begun

with (5.9) and (5.14) . For instance one can use the equation

of motion for J(x) in the form
/16': Al).

.t
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(0 Ie J(x),H]Oo) = 0 (5.24)
ip(f)

0 7                         *'• •  A··• 

and the condition that the ground state be rotationally in-
variant

Z 91 = 0    ,   Z =  xXJ(x) d3x , (5.25)0       0                       . *'.-A-•\
64

./f . ----
A

 -«.:.

ini€he form

54....„4.
r.......... . i P(f)(no, le      N..(f,3,),&]00) =0. (5.26)1J

(19)-        Thus one obtains equations which can be solved so as to

express  N, .(f,x) in terms of  A .(f, ,y'), .M,(fcc)   andlJ ... 1J .-.4

L(f); and Eqs. (5.24) and (5.26) can replace Eq. (5.15).

In whatever fashion one chooses to complete Eqs. (5.9)

and (5.14), one can be sure that the resulting, set of equations

will not be amenable to exact solution for  L(f)  in most

situations of practical interest. Therefore one would like

to have techniques for its approximate determination. The

approach via functional differential equations is most in-

viting because it is suggestive of such techniques. An

i approximate functional L(f) would be one which was an

approximate solution in some well-defined way to a system

of equations whose exact solution defined an irreducible

representation of a local current algebra. This is one sense

.t
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CL
in which it might have meaning to talk about an approximate

))

representation of a Lie algebra of local currents.

Finally, we would like-to mention that it is possible to

develop systems of functional equations whose solutions

determine representations of the canonical commutation rela-

.

tions, as has been done in references (19) and (22).

1

-

-

h.
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Appendix

In this appendix we sketch a proof of Lemma 3.2, for

gl,92 E g.  We believe that Lemma 3.2 is also valid for  8 .V'

but it appears the proof would be still more involved.

Throughout this section we let K(g) denote the functional

K  evaluated at  g €8 where
--

o       ig (x)                 3K (g)   =  j   (e     b-1   -  1)   d  x   .

Lemma 3.2.  Suppose  gl,92 f 8  and K(gl) = K(92).  Then for

any two neighborhoods  Nl  of  gl  and  N2  of  92  in  8,

there exist functions h E N h E N and a continuous1    1'  2    2
mapping  t -> f of  [0,1]  into  8, differentiable int

(0,1), such that  f  =h   f  -h   and  K(ftj =a constant.1'1-2

Our sketch of a proof consists of a sequence of lemmas

stated without proof. -.

Lemma A.1. Suppose 91,92 f SOR3)  with K(gl) = K(92), and
Nl  and  N2  are neighborhoods of  gl  and  92  respectively,

in the Schwartz space topology of  8.  Then there exist func-

tions  hl € Nl  and  h2 E N2  such that  K (hl) = K (h2)  and
h   and h have compact support.12

-
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Lemma A.2. Suppose  t -> z(t) is a differentiable mapping

of the closed interval  [0,1]  into the left half complex

z-plane. Suppose that Z(0) = Z(1) = 0 and that there is a

6 >.0.  such that  |Re{z(t)] 1 1 61 Im{z(t)11 for all  t E [0,1].
Then·there is a continuous mapping t-,k of [0,1]  intot

8, differentiable in  (0,1), such that  K(kt) = z(t)  for all
.4

-V'

t' E-  [0,1], and  kQ = kl = 0.  Furthermore; the functions  kt€

may all be chosen to have·support in a single compact region

of  R .
3

Lemma A.3. Suppose  hl'h2 E g OR3)  and  K(hl) = K(h2).  Then

thereis a real-valued differentiable function  s(t)  for

t E [O,1]  with  s(0) = s(1) = 1  and  s(t) > 0  for all

t E [O,1], such .that if  gt(Zi) = (1- t)hl(s(t)/3) + th2(s(t),x)
then .z(t) = K(hl) - K(g )  satisfies the hypotheses of

Lemma A.2.

Proof of iemma 3.2:  Suppose  gi,92 f 8  and K(gl) K(92 

Let  Nl  and  N2  be neighborhoods of  gl  and  g   respectively.2

 

By Lemma A.1, we can choose  h E N and h EN with1 1   2 2

K(hl) = K(h2)  and with  h   and  h   of compact support.  By
·                                                                                                             1                               2

Lemma A.3 there exists a differentiable function S(t) on the

interval [0,1], allowing us to construct

gt (A) = (1 - t)hl (s (t)/.? + th2 (s (t),fi)' with z (t)  = K(hl)  - K (gi:)

-6

-

1

-



71

satisfying the hypotheses of Lemma A.2. Since h and  h12

have compact support, the  g   all have support in some compact

region  S.  By Lemma A.2, there is a continuous mapping

t -> k of  [0,1]  into &(R ), differentiable in the open
3

t

interval  (0,1), such that  K(kt) = z(t) .= K(hl) - K(gt) ·

By translating the functions  kt  we can ensure that the

functions  kt  and  g   have disjoint supports, without

changing the values of  K(kt).  .Then let  ft = gt + kt; we

have  K(ft) = K(gt + kt) = K(gt) + K(kt) = K(hl).  Since

fl = hl  and  fl = h2' the lemma is proved.

*



.

72

References

1.  R.F. Dashen and D.H. Sharp, Phys. Rev. 165, 1857 (1968).

2.  J. Grodnik and D.H. Sharp, Phys. Rev. D, 1, 1531 (1970).

3.  G. Goldin, J. Math. Phys. 12, 462 (1971).

4....H. Araki anti E.J. Woods, J. Math. Phys. 4, 637 (1963) .
-*

5.:»- R. Haag, "Particles and Cross Sections ·in a Theory of

Local Observables" in Recent Developments in Particle

Physics ed. M.J. Moravcsik (New York: Gordon and Breach

Science Publishers 1966).

6.  A.S. Wightman, "The Problem of Existence of Solutions in

Ouantum Field Theory" in Proceedings of the Fifth Annual

Eastern Theoretical Physics Conference ed. D. Feldman

(New york: W.A. Benjamin, Inc.  1967) .

7. , D.H. Sharp, Phys. .Rev. 165, 1867 (1968) .

8.  H. Sugarwara, Phys. Rev. 170, 1659 (1968).

9.  C. Sommerfield, Phys. Rev. 176, 2019 (1968).

10.  A. Dicke and G. Goldin, Phys. Rev. DS, 845 (1972).

11. G. Goldin and D.H. Sharp, "Lie Algebras of Local Currents

and their Representations" in 1969 Battelle Rencontres:

Group Representations, ed. V. Bargmann (Berlin:

t



..

2

73

Springer-Verlag, 1970).

12. I. Gel'fand and N. Vilenkin, Generalized Functions,

Vol. 4, Applications of Harmonic Analysis (New York:
I                                                                                                                                                               .i

Academic Press, 1964).

13. The authors wish to thank Professor R. Haag for helpful

suggestions concerning this point.

14. See, for example, M.A. Naimark, Normed Rings (Groningen,

P. Noordhoff N.V., 1964).

15.  G. Goldin, Ph.D. Thesis, Princeton University (1968 ,

unpublished).

16. E. Nelson, Ann. Math. 70, 572 (1959).

17.  W.J. Pardee, L. Schlessinger, and J. Wright, Phys. Rev.

175, 2140 (1968).

18.  J. Grodnik and D.H. Sharp, Phys. Rev. 2 1, 1546 (1970).

-:'

19. G. Goldin and D.H. Sharp, "Functional Differential

Equations Determining Representations of Local Current

Algebras" in Magic Without Magic: John Archibald Wheeler,

J.R. Klauder, Ed. (San Francisco:  W.H. Freeman Co. 1972).

20.  J. Dixmier, Les alqJbres d'ope-rateurs dans l'espace

Hilbertien (Gauthier-Villars, Paris, 1957).



I.

..

'i
It

74                 <

21.  J. Dixmier, Les-£*-algZbres et le
urs repFSsentations

(Gauthier-Villars, Paris, 1964).
. 1                                      

                                       
                                       

                                       
                                       

                                       
                                       

                                       
                                       

                                       
                                       

                                       
                                       

   -

22.  J. Grodnik, Phys. Rev. D 3, 2955 
(1971).

4
:.*:: 2

, i-4     ./             ..·
2                                                                    

                                                      ...

.

t.i...

/

·

I

-„.-

'

2-.


