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PART TWO 

8 
HlCGH .INTENSITY LIGHT SOURCES : 

A. A STABLE ARC SOURCE OF INTENSE CN ~3883 RADIATION 

B. A METHOD FQR THE DETTBMINATION OF BRIGIITNESS TEMPERATURES 
OF LIGHT SOURCES 

E a r l  Fremont Worden, Jr. . 

Radiation Laboratory and Department of Chemistry 
Universi ty of  California,  Berkeley, Cal i fornia  

October 9, 1958 

ABSTRACT 

A. A s t ab l e  carbon a r c  operated i n  controlled atmosphere i s  

described. The a r c  w a s  designed t o  serve as a l i g h t  source during 

2 l i f e t ime  s tud ies  of the  B Z s t a t e  of the  CN molecule. The CN 

radia t ion .from the  plasma of the a r c  was investigated and folmd t o  

have a br ightness  temperature n f  5500°K at  h3883 A. This 1s con- 

s iderably  higher than an est imate of  the  value required f o r  l i f e t ime  

. .  . 
measurements. . . 

The s t a b i l i t y  of the carbon a r c  under various conditions i s  

discussed. 

B. For successful  l i f e t ime  measurements, the l i g h t  source 

employed must have a high br ightness  temperature ( i n t ens i t y ) .  A 

method f o r  the  determination of the  brightness temperature of a 

l i g h t  source a t  a spec i f i c  wave length  i s  described. The method 

has been used f o r  determining the  br ightness  temperatures of some 

avai lable  l i g h t  sources.  Sodium, thallium, and mercury discharge 

lamps, a medium-pressure mercury a r c  lamp, and the  carbon a r c  were 

studied.  

+Part  Two of t h e s i s  submitted f o r  the  degree of Doctor o f  Philosophy 
i n  Chemistry. P a r t  One is  "Spectra of  Some Aliphatic Aldehydes and 
Their Monodeutero Derivatives, " UCRL-8508, Oct . , 1958. 



A. A STABLE ARC SOURCE OF INTENSE CN X3883 RADIATION 

INTRODUCTION 

2 2 A s table ,  high-intensity source of CN B Z - X Z ~ 3 8 8 3  emission 

2 i s  needed i n  order to  determine the l i fe t ime of the B Z upper s t a t e  

of the CN molecule. The intense source i s  to  serve as a l i g h t  source 
* :. 

i n  the l i fe t ime apparatus. The l i g h t  source f o r  the l ifetime 

apparatus must f ' u l f i l l  certain requirements ., The source must, have 

2 
a minirmun area, about 60 mm , and length, 10 mm. It should have a 

high brightness temperature ( in tens i ty)  at,  and, i f  possible, only 

a t  the wave length o r  wave-length range of in t e res t .  The l i g h t  sburce 

must operate without rapid in tens i ty  fluctuations and be capable of 

uninterrupted operation f o r  several hours. 

A log ica l  source f o r  CN emission with high in tens i ty  is  the 

carbon arc  plasma o r  a rc  stream. The major pa r t  of the l i g h t  emitted 

from the plasma of an a rc  between pure carbon electrodes r e su l t s  from 

the CN v io le t  system, the emission desired here. For our purposes, 

the 0-0 band o r  the Av=0 sequence s t a r t ing  a t  3883 A i s  of primary -1 

concern, since it is  the only emission from the l i g h t  source that w i l l  

be used fo r  exci ta t ion of the CN molecules i n  the opt ica l  path of the 

l i fe t ime apparatus. Light of other wave lengths must be f i l t e r e d  out, 

and, i n  order t o  minimize f i l t e r i n g  problems, l i g h t  emitted a t  wave 

lengths other than those of the Av=O sequence should be minimized. 

Thus, the carbon a rc  between pure carbon electrodes, with a s table  

plasma and burning i n  a i r  o r  nitrogen, seemed idea l .  

* 
The lifetime apparatus and reasons f o r  determining the l i fe t ime of 

the B ~ Z  s t a t e  of CN are  reported by ~ r e w e r . 1  



The carbon a rc  between sol id  carbon o r  graphite electrodes, however, 
I 

i s  notoriously unstable,, especially. the a r c  stream o r  plasma. . In  a 

search of the l i t e ra tu re  ( there is w excellent bibliography up t o  

~ 9 4 2 ) , ~  it was found tha t  most of thework on s tab i l iza t ion  was 

directed toward s tab i l iz ing  the mgde hot spot3'4 and increasing the 

emission of white l i gh t  from the anode surface and from the vapor j e t  5 
6 

issuing from the surface. I n  general, the a r c  is  s tabi l ized by use 

of electrodes cored with oxides o r  halides of metals-usually the rare  

ear th  metals-which enhan.ce the amount of w h i t e  l i g h t  emitted by the  

arc.7 I n  a few attempts t o  s t ab i l i ze  the emission from the plasma 
. . 

of a pure carbon arc,  the plasma was t o  serve f o r  spectroscopic studies 

and a long-lived, very s table  a rc  was not necessary. 

Therefore the investigation of the carbon arc,  f i r s t  i n  air  and 

l a t e r  i n  controlled atmosphere, was . in i t ia ted .  The 5nvestigation was 

directed. toward the pmductPun'of a s table  plasma between pure carbon 

electrodes, since cored carbons, although they yield a more s table  arc,  

8 
are  known t o  lower the plasma temperature and undoubtedly would lower 

the brightness temperature of the CN emission. Burning the a r c  i n  an 

atmosphere of nitrogen appeared promising because of the poss ib i l i t y  

of increasing the opt ica l  thickness of the CN i n  the excited s t a t e  
* 

( C N  ) i n  the a rc  p lasm.  
* 

If CN concentration is controlled by any o r  a l l  of the reactions 

2 
~ ( ~ r ) +  1/m2(g) = C N * ( ~ , B  2) , m1750 = 16056 kca l  9 

* 1 ,  
~ ( g )  + l / a 2 ( g )  = , kcal  

"K * I f  
c2(g) + qw,$g) = CN %750 = . 6356 kca l  

* .  1 1 .  

c3(g) + 1/m2(g) = CN , AH.&,5d = 92k6 kcal  

* 
the concentration of CM w i l l  change with the square root of the 



. ... . 

nitrogen pressure. Thus, increasing the nitrogen' a t  .constant 

. * . . . , 

temperature increases %he CN concentration. A t  constant nitrogen 
* 

pressure the concentration of CN increases with temperature u n t i l  the 

A" 
major gaseous carbon species' becomes' C( g ) (-5500°K). The CN concen- 

t r a t ion  is  l i t t l e  affected 'by temperature u n t i l  the concentration of 

molecular nitrogen i s  depleted by dissociation ( - 8 0 0 0 ~ ~ )  .lo Above 
'+ 

t h i s  teqpe'rature, the concentration of CN decreases with increasing 

temperature. 

The a r c  was investigated f i r s t  i n  a i r  i n  order t o  determine 

whether o r  not such an arc  was p rac t i ca l  and, i f  not, t o  determine 

w h a t  factors  contribute t o  the stab1ll.l;y ur ina*ta.bility of the arc .  



The Carbon Arc i n  A i r  

Apparatus 

The arc  was operated i n  free air  between ve r t i ca l  electrodes held 

by  simple clamp electrode holders with provision fo r  independent 

ve r t i ca l  adjustment. The e l e c t r i c a l  c i r cu i t  and arrangement of the 
. . 

electrodes .and the water-cooled copper constrictors (when they were 

employed) are  represented i n  Fig. 1, 

The electrodes are  drawn as they appeared a f t e r  the a rc  had been 

operated fo r  a few minutes ( a l l  the electrodes employed assumed t h i s  

general appearance ) . The cathode was symmetrical about i ts,  a&, 

while the anode w a s  unsymmetrical, with a f l a t  e l l i p so ida l  face a t  

an angle of About 60 degrees t o  i t s  axis. The types of electrodes 

employed are  l i s t e d  i n  Table I. 

The water-cooled copper constrictors,  so called because they 

reduce the diameter of the a rc  plasma a t  t h e i r  position, are  some- 

timeb referred t o  as d iaphgms;  11'12 the name "constrictor" is  pre- 

ferred here. The use of 'constrictors was suggested by Maecker. 13 

They were constructed by simply d r i l l i n g  a small hole i n  a piece of 

copper plate  (about 35x35xl mm) and soft-soldering a loop of 3/16-inch 

copper tubing (about 20 nnp'in diameter) t o  the plate  together with a 

rod fo r  ciamping the constri,ctor i n  p o ~ i t f o n .  Water pasbing through 

the tubing provides suf f ic ien t  cooling t o  prevent melting o r  gross, 

deterioration of a 2 mm-diameter o r i f i ce  even a t  a rc  currents up t o  

30 amperes. I n  most of the work with constrictors,  two were placed 

between the a rc  electrodes as i n  Fig. 1. The diameter of the o r i f i ce  

i n  each of these constrictors w a s  2.150.1 mm. Several other constric- 
. . 



ANODE - 

COPPER 
CONSTRICTORS 

CATHODE 

: Fig.  1. Elec t r ica l  c i rcui t  and arrangement  of e lectrodes and 
water -cooled copper cons t r ic tors  employed for  the studies 
nf the carbon a r c  in a i r .  

V1 and V2. 0-  to  300-v dc voltmeter.  
. . 

V 3 .  0-  to  150-v dc voltmeter.  

A. 0-  t o  30-amp dc ammeter .  



Table I 

Types of a r c  electrodei  employed 

- -- - 

Type of carbon Diameter Diameter , Use a 
of carbon of core 

National Carbon co .b Spe c i a1  (1/4 i n )  
Graphite Spectroscopic 6.3 Fm 

Nationa.1 Carbon Co . 
Micropro jec to r  Cored 5.8 m 

none 

1 .4  m 

Anode and 
cathode 

Cathode 

Nationdl Carbon Co. 
Micropro jec to r  Cored 8 .0  mm 1 . 4  mm Anode 

Nationkl' Carbon Co . 
H. I. White Light 11.0 mm 5. mm . Anode 

Graphite (o r ig in  
unknown ) 9.3 nm none Anode 

C 
Unf-Led Carbon Products Co . (1/8 i n )  Cathode 'and 
Spectroscopic Graphite 3i2 mm , none anode 

a 
TKe core mater ia ls  a r e  ra re  ea r th  oxides,'proba.bly Ce. 

! b ~ h e  ~ a t i o n a l  Carbon Co. 
30 East  42nd S t .  
New York 17, N.Y. 

C United Carbon Products Co . , Inc. 
. 1300 No. Madison Ave. 

Bay City, Mich. 
. . 



t o r s  of varying o r i f i ce  diameter, 1 . 5  t o  4.4 mm, were constructed 

and used individually. . . . . . . .  . . 
. . . . .  . . . . - .  

The b a l l a s t  resistance, R1, served t o  vary the power dissipated 

i n  the arc .  With a rcs  operated without constrictors,  a coiled i ron 
. . , - . . 

wire re@ s t o r  of 30-ampere capacity and O-to..30-ohm resistance was 

employed as a b a l l a s t .  Two of these r e s i s to r s  were used i n  pa ra l l e l  

when the a r c  was operated with constrictors.  This was necessary 

because of the higher . i n t r i n s i c  resistance of the a rc ,  when operated 

with constrictors.  

The voltmeters V1, V2, and V' m d  ammeter A were Weston Elec t r ica l  3 
I n a t m g n t  Corp. mndel 489 dc meters. 

The power supply was  the output of a 220-v dc generator. 

The arc,  when operated without constrictors,  was struck by bring- 

ing the electrodes in to  contact (with the power already on) and draw- 

ing out the a rc  t o  the desired length. I n  operation with constrictors,  

the exploding-wire technique w a s  emplopd: a length of 32-gauge copper . , 

wire was threaded through the constr ic tor  o r  constrictprs a11d aligned 

In  C U L ~ L S C ~  w i t h  thc cleotrodeo, and. then the power was turned on a t  

f a i r l y  low b a l l a s t  resistance t o  ensure s t r ik ing .  The wire must not 

be i n  contact with the constrictors i f  misfirirlgs a re  t o  be avoided. 
. . 

An image of the arc,  magnified X3, was projected on a ruled screen 

and the a rc  length and electrode posit ions were controlled manually; 

. , 

Measurements and Their Accuracy 

The a rc  length w a s  determined by measuring the distance between 

the cathode and anode hot spots on the screen and then dividing by the 

known magnification factor .  The length was a lso  measured with a vernier 

cal iper  rule a f t e r  the a r c  was extinguished. Tne ac tua l  a rc  length was 

dependent on the nature of the electrodes, which determined the amount 



of hot-spot wandering. The a rc  lengths determined i n  t h i s  manner are  

probably accurate t o  .+1 mm, the accuracy improving with improved hot- 

spot s t ab i l i t y .  

The distance between the facing surfaces of the constrictors 

w a s  determined with a vernier cal iper  rule read t o  0 .1  mm. The 

constrictor o r i f i ce  diameters were obtained by measuring the d i a k t e r  
I 

of a, ' d r i l l  just  f i t t i n g  the orifice ' .  

The.l electrode' dimensions were determined with the vernier  caliper 

rule .  
, , 

The current through the ammeter A could be read t o  0.1 ~lmp with . 

a precision b e t t e r  than 0 .1  amp, but  because of the fluctuant nature 
L I' 

I I 

a ,i 

of the carbon a r c  i n  air  (except when operated under s t r ingent ly con- " $ 

*<; 

t ro l l ed  conditions3' ') the accuracy of the current readings was some - 
what lesb. m e  uncertainty i n  the current readings is  i n  general l e s s  

' \ 

than P0.5 amp. . - .  

' a.6  

The voltmeters employed to  measure the potent ia l  drop over various' 

regions ,of the a rc  could be read t o  the nearest  vo l t  with a precision 

b e t t e r  than 2 1  v. The accuracy of the ac tua l  readings, however, l ike  

the accuracy of the current readings, was dependent on the a r c  s t a b i l i t y .  

The uncertainty i n  the voltage readings is  about +2 v. 

PD1, the potent ia l  drop across the arc,  w a s  read from voltmeter V . 1. ' 
PD2, the potent ia l  drop between the &ode and the first constr ic tor  was 

determined by voltmeter V2; and PD the potent ia l  drop i n  the region 
3' 

between the two constrictors,  was given by voltme'ter V 3 



Method I 

In  order ' t o  determine what conditions produced the most s table  

a r c  i n  a i r  a t  atmospheric pressure, measurements of the a rc  charac- 

t e r i s t i c s  were made on arcs  operating a t  d i f fe rent  values of various 

parameters. The foll'owing parameters were varied: 

a. The power input. 

b . The a rc  - length. 

c. The electrodes, both t h e i r  composition and t h e i r  diameter. 

d .  The a r c  p l a~ma  dimensions, by use of  constrictor^.. 

7 % ~  re la t ive  s tab ' i l i ty  of the a r c  a s  the various parameters were 

changed was determined by v isua l  observation as well  as by the current- 

voltage readings.  attempt^ t o  use a recording spec.l;rophotometer t o  

'determine changes i n  the in tens i ty  of the plasma radiation a s  the . 

parameters were changed were unsuccessful i n  most cases because of 

the i n s t a b i l i t y  of the a rc .  



The Arc i n  Controlled Atmosphere 

Appa'ratus 

The- ,arc chamber 

The controlied atnksphere a r c  i s  shown schematically i n  Fig. 2. 

,A paptiti1 view of  a plane through the  center  is  given i n  the  f igure .  
, 

The main body J of the  chamber consis ts  of  a 7-in. length  of 

6 - i n .  od brass  pipe with four  2-1/4-in. od brass  pipes  2 i n .  i n  length 

. joined ' to the  large  pi.pe, each a t  r i g h t  angles t o  f t s  neighbor and the  

&is of  the  large  pipe.  The ends of the  pipes have c o l l a r s  with pro- 
* .  

vis ion  f o r  rubber 0 r ings  i n  order  t o  permit vacuum sea l s  t o  be made 

between the main body of the  chamber.and the  accessor ies .  ,, 

The a r c  chamber::uas . . , .  cbo~ed,~:inidk.ie~r.  , to remove the  heat  radia ted . . . ..,. .. . , . I  , . '  , . .  
..< .... 

by the a r c .  The cooling w a s  e f fec ted  by passing wa?er through copper 

tubing soldered t o  the  main body and the  .end p l a t e s  of the  chamber. 

The cooling was necessary t o  prevent overheating' and de te r io ra t ion  

1 4  o f  the 0 r ings.  and the  glands, of  the  Wilson s ea l s .  

.The electrode-holding assembly i s  made up of a water-cooled 

e lect rode holder A, attkched through an e l e c t r i c a l  i n su l a to r  B, t o  

a s t a i n l e s s  s t e e l  tube F, which allows e lect rode posit ion'adjustment 

by s l i d ing  through the  Wilson s e a l  E. The ~ i l i o n  s e a l  i s  at tached t o  

, the  end p l a t e  of  the  a r c  chamber, with the  0 r i ng  providing a vacuum 

sea l .  The e lect rode-posi t ion adjustment i s  e f fec ted  by turning the  

r i n g  C, which ro t a t e s  the  ou te r  member of two threaded coaxial  pipes 

(8 threads per  inch).  The inner  member i s  held r i g i d l y  aga ins t  the  

end p l a t e  of the  a r c  chamber by a s e t  of s tuds  and.wing nuts .  The , 

elect rode holder and s t e e l  tube a r e  held aga ins t  the  ou te r  member by 

v i r t ue  of  the reduced atmosphere i n  the  a r c  chamber. I n  order  t o  
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Fig.  2. . The controlled-atmosphere a r c  chamber. 

A .  Water-cooled electrode holder. 

B. B ' e e l i t e  insu la t ion  f o r  e l e c t r i c a l  shie lding of  the e lec -  

trode holder from the body of the a r c  chamber. 

C. Bakeli te r i ng  f o r  r o t a t i ng  the ou te r  member of  the 

electrode-ad justment assembly. 

D. Electrode position-adjustment assembly. Dashed l i n e  

ind ica tes  threaded area .  
. .. 

E. Wilson s ea l .  Gland (no d e t a i l s  given) out l ined by dashed 

l i n e s  . 
F. Skainless s t e e l  cylinder which s l i d e s  through the Wilson 

s e a l  'gland. 

G. Cathode. 

H. Anode. 

. I. End p l a t e .  

J. Main body of  the  a r c  chamber. 

K.  Gas vent .  

L. Compression r ing .  t o  hold window o r  adaptors.  
I 

M. Window. 



operate 'at atmospheric pressure o r  above, the position-control 

mechanism and 'the Wilson sea l  would require modification. 

The electrode-holder assemblies can be accommodated by the end 

plates ,  as shown i n  the diagrain, o r  by any one of the four window 

ports .  Thus it is  possible to  operate an a rc  between elec'trodes which 

are  ve r t i ca l  and opposing, horizon'La1 and opposing, o r  a t  r ight  angles 

i n  any of three possible orientations.  I n  any one of these possible 

or ientat ions,  the a rc  can be viewed through a,window perpendicular 

Lo the plane containing the electrodes, or,  when the electrodes are  

v:t.. r igh t  angles, g a s a l l e l  t o  the ax is  of e i the r  electrode. . 

In  the view shown i n  Fig. 2, the or ientat ion generally emgloyed, 

the cathode and i t s  holder assembly are  i n  the plane of the paper, 

and the anode and i t s  holder assembly are  perpendicular t o  t h i s  plane. 

Auxf l l a r y  equipment 

The e l e c t r i c a l  c i r c u i t  w a s  as shown i n  Fig. 1, with R a single 
1 

0-to 30-ohm r e s i s t o r  of coiled i ron wire. The voltmeter V and 
1 

m e t e r  A served to  detelvline the terminal character is t ics  of the a rc .  

The power supply was the output from a 220-v dc generator, and the 

inaximum l i n e  capacity, l imited by cl.rcuit breakers, was about 30 amp .' 

In  order t o  maintain a reduced atmosphere i n  the a r c  chamber 

under flow conditions, a 33 l i t e r s  per minute ( f r e e  a i r )  vacuum pumg 

w a s  connected t o  the chamber through an adapter aacomodated by one 

of the window ports .  The pumping ra t e  was controlled by a large glass 

stopcock. The exhaust gases f m i u  the pump were vented from the room. 

Tank dry nitrogen was l ed  through a reducing valve and rubber 

hose to  the window vent where the anode electrode-holder assembly was 

housed. The flow of nitrogen was controlled by a small needle valve. 



A i r  from the  room, when used, was bled i n to  the  chamber through 

a window vent opposite the window used f o r  spec t r a l  observation of 

the a r c .  The flow r a t e  w a s  controlled by. a small needle. 'valve.  

The pressure i n  the  a r c  chamber was measured with a conven- 

t i o n a l  U-tube mercury manometer. The manometer w a s  connected t o  the  

. I 
chamber through an adapter, usual ly  housed a t  the  top end p l a t e  of 

the  chamber, and w a s  protected from soot by a t r a p  f i ' l led  wi th  g lass  

wool. 

Operation , 

The a r c  was s t a r t e d  by bringing the  e lect rodes  i n to  contact  (with - . I , ;  . a 

the  power a l ready on.) and drawing out  the  a r c  u n t i l  the  e lect rodes  . 

were a t  predetermined pos i t ions .  The electrode pos i t ions  'were con- . . 

t r o l l e d  by maintaining the  images of the  electrode hot spots  on a 

ruled screen a.t appropriate pos i t ions .  

The pressure i n  the  a r c  chamber and the  flow r a t e  of the  ambient 

gas were adjusted before the  a r c  w a s  s t ruck.  Further ad.justments 

were required a f t e r  the a r c  w a s  s t ruck i f  a spec i f i c  pressure was 

desi red.  For operation i n  pure nitrogen, the  a r c  chamber w a s  f lushed 

with nitrogen before the a r c  w a s  s t ruck.  The t o t a l  ,flow r a t e  of  the 

gas .through the  chamber w a s  usua l ly  around 1/2 l i t e r  pe r  minute. 

With ni t rogen-ai r  mixtures, most of  the  ambient gas w a s  ni trogen,  

since the. air flow w a s  about 1& of the  t o t a l  flow. The ' a i r  flow 

. . '  w a s  general ly  reduced t o  the  lowest r a t e  s u f f i c i e n t  t o  remove the  

carbon .vapor from the  a r c  and prevent soot  deposi t ion.  

The windows of  the chamber had t o  be cleaned qui te  f requent ly  

when the  'arc was operated i n  pure nitrogen because of "fogging" ( i . e .  

deposit ion - of soot o r  dus t ) ,  e spec ia l ly  a t  high curyents . With 



nitrogen-and-air mixture, l i t t l e  o r  no fogging of the  windows 

occurred. Fogging resu l ted  i f  the  .flow r a t e  w a s  too rapid, espec- 

i a l l y  when the  gas flow was through the  vent a t  the  window i n  

question, o r  through the  ' v en t  on the  opposite s ide  of  the  chamber. 

(Although the  window .vents were intended t o  prevent 'fogging of the  

window, it w a s  found i n  operation t h a t  the e f f e c t  was j u s t  the  

,opposite. ) The .soot. o r  dus t  was  blown o r  drawii by convection 

currents  aga ins t  the  window, where it formed a fi lm. For t h i s  

reason, no gas w a s  admitted through the vent of the  window employed 

f o r  spec t r a l  i n t e n s i t y  inves l;_lg3,l;ions0 

Slow flow r a t e s  were necessary f o r  s a t i s f ac to ry  operation of 

the  a r c .  A t  high flow r a t e s ,  the  ambient gas became turbulent ,  

which caused i n s t a b i l i t i e s  i n  the  a r c  operation.  . 

Measurements 

The current  through -(;he a r c  was . . determined t o  the  neares t  0.1 amp. 
( ., : . . 

The uncer ta inty  i n  reading the. .ammeter w a s  kO.1 amp with s tab le  a r c  

operation and k0.5 amp when the' a r c  w a s  unsteady. 

The p o t e n t i a l  drop 'across the  arc, w a s  read t o  the  neares t  v o l t .  

The uncer ta inty  i n  the  readings w a s  l e s s  .than k 1  v during s t ab l e  

operation and '2 v during unstable operation of  the  a rc .  

The pressure i n  the  a r c  chamber was determined while t he  a r c  

was i n  operat ion.  The pressure .was read t o  the  neares t  1 rmn with 

an uncer ta inty  l e s s  than fl mm under s t a t i ona ry  flow condit ions.  

The i n t e n s i t y  of  the  k3883 CN emission from the  a r c  plasma was  

masilred w i th .  a ~ ~ e c t r o p h o t o m e t e r  described i n  P a r t  IIB of  t h i s  t h e s i s .  

The i n t e n s i t y  determina-Lions were made on a por t ion of the  a r c  plasma 

viewed perpendicular t o  the  plane containing the e lec t rodes .  



The a r c  s t ab i l i t y .was  studied with d i f f e r en t  ambient gas 
. . 

compositions and pressures,  d i f f e r en t  e lect rode types, and various 

power inputs .  The i n t ens i t y  of  the  ~3883 CN emission was a l s o  s tudied 

as a function of the same var iables .  

The brightness temperatureof  the  ~3883 CN emission was determined . 

, under various conditions of a r c  operation and a t  various pos i t ions  

i n  the a r c  stream ( the  method i s  described i n  Pa r t  IIB of t h i s  t h e s i s ) .  



RESULTS AND DISCUSSION 

The carbon Arc i n  A i r  

S t a b i l i t y  

The s t a b i l i t y  of the  carbon arc burning i n  a i r  was found unsat- 

i s f a c t o ~ y  f o r  a l i g h t  source with the  requirements s e t  f o r t h  In  the 

~ n t r o d u c t i o n .  The . r e su l t s  of  the  s tud ies  a r e  reported here i n  f u l l ,  

however, s ince  they describe the  various phenomena cha rac t e r i s t i c  

of  t he  carbon a r c .  Also, these s tud ies  played an important r o l e  i n  

t he  determination of the conditions that would most l i k e l y  produce 

the s tab le  a r c  plasma desi red.  ('l'he genenil  s t a b i l i t y  of  t h e  carbon 

a r c  a n d  d e t a i l s  o f  the  s tud ies  a r e  more f u l l y  d e a l t  with below. ) 

The carbon a r c  operated i n  a i r  a t  atmospheric pressure between 

6.3-mm diameter graphi te  e lect rodes  and without cons t r i c to rs  w a s  

qu i t e  unstable .  Arc stream o r  arc plasma osci l la t ionc; ,  caused by 

t he  constant wandering of  the  cathode hot spot and occasional  jump- 

ing  about of  the  anode hot spot,  coupled with in te rmi t ten t  emrp.l;ioas 

of  both e lec t rodes  ( t he se  eruptions changed the  composition of  the  

a r c  p l a s m  and consequent3,y i t s  emission cha rac t e r i s t i c s ) ,  rendered 

t h i s  type of  a r c  use less  f o r  our  purposes. 
. . 

The s t a b i l i t y  o f  t h i s  a r c  was improved by using 5.8-mm cored 

carbons a s  cathodes. The o s c i l l a t i o n s  produced by cathode spot 

wandering were removed, s ince  the  cathode spot w a s  .. confined t o  the  

cen t ra l ,  cored region of  the  cathode face .  The a r c  plasma was  s t i l l  

subject  t o  i n t e n s i t y  f luc tua t ions  from elect rode erupt ions  and pos i t ion  

i n s t a b i l i t y  caused by anode spot  jumps. The use o f  8-mm cored e l e c t -  

rodes as anode mate r ia l  produced no marked improvement i n  the  a r c  



s t a b i l i t y .  The use of larger-diameter e lect rodes  gave l e s s  satis- 

factory operation.  

The a r c  s t a b i l i t y  improved with decreasing a r c  length  (from 

20 mm down t o  a few m), and as the power s e t t i ngs  yielded conditions 
3-> 

approaching those s e t  f o r t h  by MacPherson. '-' 

H.  Maecker suggested the  use of  cons t r i c to rs  as a method of 

increasing the temperature of the  plasma ( i f  needed t o  enhance the  

i n t e n s i t y  of " l ines  " requiring high exc i ta t ion  ) .13 More 

' important, these constricFors serve t o  control  the  physical  pos i t ion  

of the a r c  plasma. 

' A s ingle  const r ic tor ,  placed a few mm from a graphite cathode, 

served t o  produce a f a i r l y  steady a r c  plasma between i t s  o r i f i c e  and a 

steady anode spot.  The fixed cons t r i c to r  o r i f i c e  damped the  o s c i l l -  

a t i ons  produced by the  wandering cathode spot .  Two cons t r i c to rs  i n  

s e r i e s  were, o f  course, more e f f ec t i ve  and the  plasma between the  

cons t r i c to rs  w a s  a l s o  qui te  s t ab l e .  The i n t e n s i t y  of the  emission . 

from these s p a t i a l l y  s tab le  regions of the  a r c  stream w a s  subject  

t o  f luc tua t ions  because of  e lect rode eruptions as wel l  as cathode spot 

wandering. The cathode spot  wandering'produces i n t e n s i t y  f luc tua t ions  

by changing the  t o t a l  a r c  length, and, consequently the  ener& d i s s i -  

pated per  u n i t  length of the a r c  stream; the  cathode spot  wandering. 

w a s  eliminated when cored carbons were used, bu t  the  i n t e n s i t y  

f luctuat ions  from elect rode erupt ions  remained. 

.The most s tab le  a r c  obtained i n  open a i r  w a s  t h a t  between a 

5.8-nrm cored carbon cathode and an 8-mm cored anode, o r  between the  

same ca,thode and a 6 .3 -mm graphi te  anode with two colas t r i c t o r s  i n  

. series-that is, an a r c  arranged as i n  Fig.  1, operating near Mac- 

' 3 Pherson condit ions.  



11 -24. 

A l l  the  carbon a r c s  operated i n . a i r  displayed some undesirable 

fea tures  .. Because of the  rapid consumption of electrode material ,  
. . 

the  e lect rodes  required \almost constant adjustment. . I n  addit ion,  

the  t d t a l   continuous burning time 'of the  a r c  was shor t ,  l e s s  than ' 

1 hour. These f a i l i n g s  could have'been remedied by employing corn- . 

p l i ca t ed  e lect rode-feed mechanisms,. such a s  designed by Finkelnberg 

6 '-" 

and I a t e l  . Another undesirable cha rac t e r i s t i c ,  associated with the  

a r c  operated w i t h  cons t r i c to rs ,  w a s  thc  irksome job of  a l i g ~ ~ i n g  a 

copper wire between t he  e lect rodes  i n  order t o  s t r i k e  an a r c  through 

t h e  cons t r i c to r  o r i f i c e .  The p o s s i b i l i t y  - of  el iminating these  un-  

des i rable  f ea tu r e s  and the  ove r - a l l  appeal oi' worklng With a curl- 

t r o l l e d  atmosphere prompted the design and use of  the  contrulled- 

atmosphere chamber. 

De ta i l s  o f  the  Inves t iga t ion  of  Arcs i n  A i r  
. . 

Charac te r i s t i c  curves 

The cha rac t e r i s t i c  curve f o r  an a r c  i s  a p l o t  of po t en t i a l  drop 

aga ins t  the arc current .  Figures 3 t o  6 represent  t y p i c a l  character-  

i s t i c  curves obtained f o r  the  carbon a r c  i n  air ,  operated a3 arranged 

i n  Fig .  3. Figure 7 i s  a cha rac t e r i s t i c  curve f o r  a pure graphi te  

a r c  i n  a i r - w i t h o u t  cons t r i c to r s .  ' Curves .a and c i n  Figs.  3 and 4 

and the curve i n  Fig.  7 represent  the  terminal  cha rac t e r i s t i c s  of  

carbon.arcs  operated under the  conditions s t a t e d  i n  the  legend. The 

curves b and d i n  Figs .  3 and 7 represent  the  cha rac t e r i s t i c  curve 1 .  

f o r  the anode and t he  a r c  plasma between i t . a n d  t he  f i r s t  cons t r i c to r .  

The curves i n  Figs.  5 and 6 a r e  the  cha rac t e r i s t i c  curves f o r  the  

plasma between the  two cons t r i c to rs ,  and represent the  general  plasma 

cha rac t e r i s t i c s .  
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Fig .  3. Potential drop vs cur rent  for  a carbon a r c  between 
graphite electru'des in a i r  a t  a tmospheric  p r e s s u r e  ( see  Fig.  
1 f o r  a r c  arrangement) .  Electrode separation, 25 m m ;  
constr ic tor  .separation, 7 mm .' 
a' PD1 VS I \  for  an a r c  with 6.3 -mm graphite anode and 

cathode. 
b. PD2 vs I 

C o  PD1 vS '1 for  an a r c  with 9.3 -mm graphite anode and 1 6.3-mm graphite cathod;. 
d. PDZ vs I 



I in Amp 

MU- 1622 1 

Fig.  4. Potential  drop  vs cur rent  f o r  an a r c  in a i r  a t  a tmospheric  
p res su re  between cored carbon electrodes (see Fig .  1  fo r  
a r c  arrangement) .  Electrode separation, 25 m m ;  constr ic tor  

. separation, 7 mm. 

a. PD1 vs I 
fp r  an a r c  with 5.8-mm cathode and 8-mm 

b. ., PD2 vs I anode. 

c. PD1 vs I fo r  an a r c  with 5.8 -mm cathode and I. 1 -mm 
anode. 

de PDZ vs I 



I' in  Amp 

MU- 'I 6222 

F i g .  5. Potential drop between the cons t r ic tors  vs cur rent  
, for  an a r c  betweeil 6.3-mm graphite e lectrodes (see 

Fig.  1 for  a r c  a r rangement) .  Electrode separat ion,  
25 m m ;  constr ic tor  separation: curve a ,  7 m m ;  curve b, 
3 mm. 



1 i n .  Amp 

MU- 1 6223 

Fig. . b .  Potential .drop between the constr ictors  vs current  for  an 
a r c  between a 5.8-mm cored carbon cathode and an 8-mm 
cored carbon anode (see Fig. 1 for a r c  arrangement) .  
Electrode separation, 25 mm; constrictor separation, 7 mm.  



I' in Amp 

MU- 16224 ' 

Fig.  7. Potential  drop vs cu r ren t  for  an a r c  burning f r e e  in a i r  
.(no cons t r ic tors )  between 6.3-mm graphite elec.trodes. 
Electrode separation, 1 3  mm. 



The slopes of these character is t ic  curves a re  defined a s  the 

resistance charac ter i s t ic  of the a rc .  l5 For the low-current carbon 

arc ,  the slope is  negatiue, and the a r c  i s  said t o  have a f a l l i n g  o r  

declining c h a k t e r i s t i c ,  sometimes called a negative r$sistanc@. I . 

prefer  the term Itnegative-resistance character is t ic"  to  describe t h i s  
. . 

property. . . 

A l l  the curves have negative sJ.opes i n  the low-current region 

except the curve i n  Fig. 6, which has. a posi t ive slope. below 10 amp. 

Thus, the .) p-lasma between the 'constrictors of t h i s  a r c ; I s  a posi t ive-  

restls.l;anc.:e clml-acteriatic . %'his beha.vio:rW was observed only when cored 

camons were eq loyed  as anode material. When the anode was s t i l i  
. . * 

f resh  and unshdped the cu&e retained the negative slope below 10 amp 

charac ter i s t ic  of the pure carbon anode a r c  curve. With an anode tha t  

w a s  shaped' a f t e r .  some use, the posi t ive slope always resulted. The 

core material  must i n  some way a f f e c t  the plasma between the constric- 

t o r s  o r  the potent ia l  of the constr ic tors .  Although the resistance 

charac ter i s t ic  of this region of the a rc  was posit ive,  the terminal 

resistance chal-acteristic of the a rc  remained negative. Since the 

phenomenon seemed unimportant i n  the inve~t iga t ivr l  for a method to  

produce a s table  arc ,  no extensive s tudies  were carried out and the 

phenomenon remains unexplained. 

A well-known occurrence i n  carbon arcs  i n  a i r  is  the discontin- 

3r4'16)17 see Figs. 3, 4 u i t y  o r  '"break" i n  the charac ter i s t ic  curve, 

and 7-  S5milar curves a re  reported by Schluge and ~ i n k e l n b e r ~ ' ~  and 

i n  ~ a r r 0 w . l ~  The break i n  the character is t ic .  curve i s  associated with 

* 
T'he unshaped electrode would release a higher f rac t ion  of carbon into 

the a rc  stream than the shaped electrode. .  



' 

a sharp change i n  the  a r c  operation.  

. . ' When an a r c  i s .  being operated with proper electrode 'dimensions 

and a t  proper current  the  a r c  burns qu i e t l y  with the  anode face 

cdmpletely covered by a uniformly incandescent anode spot .  On 
. . 

increase of  the current ,  the  anode suddenly starts hissing,  and a 

sharp increase i n  current  and decrease i n  po t en t i a l  drop occur with 

the  outbreak of hi.ssing. MacPherson has labeled the  quiet-burning 

a r c  a normal a r c  and the h i ss ing  a r c  an overloaded a r c  

From an examination of the  cha rac t e r i s t i c  curves i n  Figs.  3 and 

4, it i s  read i ly  seen t h a t  the  t r ans i t i on  i s  t o  be a t t r i b u t e d  t o  a 

change i n  the  anode mechanism.. Curves c and d show no break, because 

of the  large  anode diameters of these a rcs ,  and represent the plasma 
I 

cha rac t e r i s t i c  over the  break region of Curves a and b .  By comparison 

of the' curves; the  anode po t en t i a l  drop ( t he  anode drop) .  i s  estimated 
)C 

t o  be 9 t o . 1 0  v l e s s  i n  the overloaded a r c  than i n  the  normal arc. '  

The break i n  the  cha rac t e r i s t i c  curve, o r  the  a r c  t r ans i t i on ,  

occurs a t  a c r i t i c a l  value of the current  dens i ty  a t  the  anode sur- 

face .  The value of  the  c r i t i c a l  current  densi ty  f o r  the  t r ans i t i on ,  

and fu r the r  d e t a i l s  .about the  nature of the  t r a n s i t i o n  a r e .  included 

i n  ' the sect ion e n t i t l e d  "~hk Anode. " 

The overloaded'arc i s  a l s o  characterized by a rapid  r a t e  o f  

electrode erosion a t  the  anode surface, and, because of the  nature 

of the anode m~chanism, it i s  l e s s  s t ab l e  a t  low power input than 

* 
For a carbon a r c  wi th  an anode .which contains a large  amount of core 

inaterial ,  the  opposite anode-drop 'change has been reported; see Refs. 
15 and 18. 'The observation of about the  .same value f o r  both the  graphite 
and cored e lect rodes  employed here ind ica tes  t h a t  the  proper t ies  of the 
cored anode employed a r e  determined by carbon. The 8-mm diameter cored 
e lect rodes  employed here a r e  l a rge ly  carbon (see  Tab.le I ) .  



. .  . .  
t he  normal a r c .  The overloaded a r c  i s  therefore  an undesirable form 

of the  carbon a r c  as a source of steady plasma emissidn. 

The contracted a r c  coluhn 

The contracted arc ,column i n  the  carbon a r c ,  stream has been 

reported i n  , the  l i t e ra t in re  and discussed by severa l  Qnvestigators . 5,11,13 

The contracted a r c  column does not  form i n  a free-burning a r c  i n  air  

imtil .  a r c  currents  above 80 amp a re  reached. According t o  ~ i n ~ t l t h e  

appearance of the  contracted column i s  dependent on , t he  ambient gas. 

Finkelnberg s t a t e s  t h a t  the  contracted column conducts the  major 
, . 

portion.ok' t h e  arc cmreri t  a t  l1igl1 current  dens i t i e s  of 1..O t o  30 amp 

2 5 per  mm . . . 

. . The contracted. arc ,  column can be formed a t  lower a r c  currents  by 

, ..employing cons t r i c to r s .  11' i3 The author, by employing constr ic tors  

of.  s u f f i c i e n t l y  small d t k e t e r ,  . ha s  produced contracted columns of 

appreciable le'ngth wi th  a carbon a r c  i n  a i r  a t  currents  as low as 

15 amp. To permit determination of the. csLtioaJ. value of the  current  

dens i ty  f o r  the  formation o f  the  contracted copurrm, [;he a r c  wao oper- 

aLed t.l\~vugh eons t r i c to rc  with or iPi  CF! diameters vary1 ng from 4.4 t o  

1 . 5  mm, and observations were made of  the  current  wherl the  contracted 

col& f i r s t  appeared i n  the  center  o f  the  cons t r i c to r .  From the  known 

a r e a  of the o r i f i c e  an  average current  dens i ty  could be calcula ted i n  

each case. A p l o t  of  log  log  current  dens i ty  versus area ,  when ex t ra -  

polated t o  zero area-the a r ea  of the  contracted column on Sormatiorr-- 

yielded a value o f  12 52 amp pe r  m2 as the  current  dens i ty  required 
I 

f o r  formation of  a contracted column i n  a carbon a r c  i n  a i r  a t  atmos- 

pher ic  pressure .  



The contracted column has a very high temperature, -10, 0 0 0 ° ~ ,  

and emits l a rge ly  a t ~ m i c ~ l i n e s  and continuum. 5'11 m e  contracted 

column with i t s  high temperature i s  a po.or source of CN emission 

because most of  the  CN i n  the  a r c  stream would be 'decomposed a t  the  

temperature of  the  column. - Indeed, when the  plasljna between two con- 

s t r i c t o r s  of  a carbon a r c  w a s  imaged on the s l i t  o f  a recording 

spectrophotometer the  i n t e n s i t y  of  the  CN ~ 3 8 8 3  emission was  observed 

, 
tp decrease markedly when a contracted column w a s  formed by suddenly 

increas ing the  a r c  curren.t . 



The Arc i n  Controlled Atmosphere 

S t a b i l i t x  

A pure ,graphite a r c  i r i  ni trogen was  found unsat is factory as a 

s t ab l e  source o f .  CN emission. The cathode spa$ w a s  unsteady, under- 

going i n t enp i t t en t  jumps from p i t  t o  p i t .  With a 5.8-mm cored 

carbun a s  cathode, the  a r c  operated. very s t ead l l y  i r n i t r o g e n  a t  

reduced pressure (about 140 mm) f o r  15 t o  30 min, but ,  after t h i s  

time, sooting o f  both electro'des and deep p i t t i n g  of  the  cathode 

ciiustd migration0 of both t.he anode a n d  cathode spots,, and the  a r c  

be c&e unstable ( f u r t h e r  discussion of t h i s  i n s t a b i l i t y  is  given i n  

 he Anode" and "The Cathode "). The a r c  could be rejuvenated by 

burning it i n  a i r  f o r  some time, then re turning t o  pure ~ l i t r ogen ,  o r  

by removing the  p i t t e d  and sooted e lect rode ends. The tendency 

toward i n s t a b i l i t y  increased with increasing pressure o f  nitrogen.  

Somers and Smit, i n  t h e i r  s tud ies  o f  the  carbon a r c  i n  nitrogen,  

repor t  t h a t  the  a r c  between pure carbon e lect rodes  a t  one atmosphere 

pressure o f  nitrogen becomes unstable a f t e r  about 1 5  min of operation.  1-9 

They a l so  obse-med an increase i n  tendency toward i n s t a b i l i t y  with 

increase i n  pressure.  

When the  a r c  i s  being operated a t  increas ing currents  i n  nitrogen, 

and with a f r e sh  6.3-mm graphi te  anode, no sharp break o r  t r a n s i t i o n  

w a s  observed. This i s  t o  be explained by the  ' anode surface ava i lab le  
9 

i n  nitrogen,  where l i t t l e  o r  no spikdle of the  e lect rode occurs. 

* 
The g rea t e r  p a r t  of  e lect rode spindle ( t aper ing)  i s  caused by oxidation 

r a t h e r  than by evaporation. 



From a measurement of the  ac t ive  anode c r a t e r ' a r ea ,  the  current  

necessary t o  produce a t r a n s i t i o n  t o  the  overloaded a r c  w a s  e s t i -  
\ . . 

mated t o  be about 40 amp based on observations i n  a i r .  (See sec t ion  

e n t i t l e d  "The Anode. " The r e s u l t s  o.f experiments t o  d e t e d n e  the  

current  densi ty  a t  the  anode when the  t r ans i t i on  occurs a r e  contain- 

ed i n  t h a t  sect ion.  ) 

I n  an atmosphere of nitrogen and a small amouht of  a i r . a t  steady 

gas flow, the  a r c  between 6.3-mm graphite eleotrodco w a s  u s t a b l e  

because o f  the  cathode wandering cha rac t e r i s t i c  of  the  carbon a r c  i n  

air.  The average i n t ens i t y  of the plasma emission remained constant 

i n  time, bu t  the  wandering cathode spot-by causing plasma-position 

o s ~ i l l a t i o n s  as wel l  as arc-length changes-produced rapid  i n t e n s i t y  

f luc tua t ions ,  amounting t o  a t  l e a s t  +lo$ of the  t o t a l  i n t ens i t y .  

The a r c  with 5.8-nu1 cored. carbon cathode and 6.3-rmn graphite 

anode, burning i n  a ni t rogen-afr  mixture, 'was the  most s tab le  a r c  

produced. An a r c  of  t h i s  type could be operated' a t  l e a s t  4 h o u r s ,  

and up t o  8 hours, without 5n te r rup t ionJ '  and wi th 've ry  l i t t l e  i n s t a -  

b i l i t y  o r  change i n  the i n t e n s i t y  of  the  plasma emission,. Typical 

operating conditions f o r  t h i s  s tab le  a r c  a re  'as follows: t o t a l  gas 

flpw, 0.5 l i t e r  per  min; r a t i o , o f  nitrogen t o  a i r  flow, about 10  t o  1; 
4 

current ,  9 .5  amp; po ten t i a l  drop, 65 v; o r i en t a t i on  of e lect rodes  and * 

plasma dimensions )(see Fig. 8 and Table 11). 
\ 

The CN A3883 emission from t h i s  a r c  w a s  f ree  from any rap id ,  

i n t e n s i t y  f luctuat ions ,  but  a slow d r i f t  i n  in tens i ty ,  not  e n t i r e l y  

compensated f o r  by electrode-posit ion adjustment, was present .  The 

d r i f t  toward lower i n t e n s i t y  durin,g a 1/2 hour period would amount 

t o  about '3 t o  646 of the  t o t a l  i n t ens i t y .  Since only  rapid  f luc tua t ions  ' 
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Fig.  8. Electrode orientation for  the carbon a r c  in  controlled 
atmosphere.  The distances a and b determine the a r c  t r im.  
S3883 values art: given at various pocitions in the plasma 
(see Row 2 in  Table I1 for the a r c  operating conditions). 

A, A~iv(.le, 6 . 3  - m l m  graphite.  

B. Violet co re  of the a r c  plasma.  

C .  Cathode, 5.8-mm c o r e d c a r b o n  with the cored and 
pitted regions outlined by the dashed lines. 



Table I1 

Values of S 
388 3 

obtained with conditions of a r c  operation 

* 
Electrodes Po ten t ia l  drop Current . Atmosphere Pressure .a . b* 

Cathode Anode ( v o l t s )  (-1 (OK). 

5.8-mm cored 6.3-mm graphite 
carbon A 

5.8-mm cored 6.3-mm graphite 
carbon 

3.2-mm graphite 6.3-mm graphite 6322 
. - 

3.2-mm graphite 6.3-mm graphite 70+2 

9.4 N + air  
2 138 

10.520.3 ' air 

* 
Arc dimensions, Fig. 8. 

- 
t ~ r i g h t n e s s  temperatures determined f o r  a posi t ion i n  :he plasma jus t  above t h e  cathode, see Fig.  8 .  



i n  the  i n t e n s i t y  have adverse e f f e c t s  on the measurements t o  be 

made with t h i s  l i g h t  source, .the slow i n t e n s i t y  d r i f t  i s  to le rab le .  
1 

. . 

The d r i f t  . is  usua l ly  coupled with a s l i g h t  decrease i n  current  and 

increase i n  pq t en t i a l .  drop. These changes r e s u l t  from an increase 

' i n  the '  a r c  length  caused by p i t t i n g  of the  core , i n  the center o f  the 
. . . .  . 

cathode. The pr6duce.s an' uncompensated change i n  the a r c  

length,  s ince  the  length i s  control led by keeping the  image of the  

cathode,, viewed' from the  s ide ,  a t  a f ixed pos i t ioh .  This p i t t i n g  

can be el iminated a t  the expense of  uninterrupted operation time 

by using a l a rge r  p a r t i a l  pressure uB oxygen. Also, the  use of 

cored e lect rodes  with th inner  carbon walls would prevent p i t t i n g .  

The i n t e n s i t y  d r i f t '  can a l so  be associa ted with s l i g h t  fogging 

of  the  window wi th  time. A carbon deposi t  on the  window can be 

detected a f t e r  a few hours of  operation.  

The s p e c t r a l  output of  the  plasma of  t h i s  a r c  i s  confined la rge ly  

t o  CN emission. No core-material  l i n e s  were observed with i n t e n s i t i e s  

g r ea t e r  than t h i*  of a tungsten s t r i p  lamp a t  2 8 0 0 ~ ~  i n  t he  s p e c t r a l  

region 3800 t o  ' 6500 A. The absence o f  these  l i n e s   result^ from the  

low concentration of core mate r ia l  i n  the  a r c  plasma. The slow' 

evaporation of  cathode mate r ia l  and slow de te r io ra t ion  of the  e lec -  

t rodes  ( l imi ted  oxidat ion by  ' the  small amount of oxygen) l i m i t  the  

concentrat ion o f  core mate r ia l  en te r ing  the  a r c  stream. This i s  i n  

agreement with the  f indings of Somers and s m i t 1 9  f o r  e lect rodes  

cored with K C 1  burning In  ni t rogen.  
. . 

Another condit ion favoring a low concentration of  core-material  

atoms i n  ' the  plasma Y s  the .  d i r e c t i o n , o f  t he  p o t e n t i a l  f i e l d  i n  the  a r c .  



The r a r e  ea r ths  (.the mater ia ls  usual ly  present as oxide-carbon 

nixtures  i n .  the core) have low ionizat ion po ten t ia l s ,  and as ions 

i n  the plasma would tend t o  d r i f t  back t o  the cathode. 
,. 

The In t ens i t y  of the  CN ~ 3 8 8 3  Emission 

The i n t ens i t y  of the  CN X3883 emission from the a r c  plasma i s  
* 

discussed, i n  general,  i n  terms of  brightness temperature. The 

brightness temperature of the  CN k3883 emission w i l l  henceforth 

bc designated 3 
3883,' 

A p l o t  of  S 
388 3 

i n  O K  versus power input i n  w a t t s  i s  given i n  

.Fig. 9. The brightness temperature w a s  found t o  increase l i n e a r l y  

i n  the  region of power input investigated,  with a two-fold increase 

i n .  power input  producing a 300°K r i s e  i n  S 
3883' 

The increase i n  S 
3883 

r ecu l t s  from an increase i n  the plasma temperature, which, i n  turn ,  

depends on the  increase i n  the  current  densi ty .  Since the  plasma 

dimensions increase with increasing current ,  the increase i n  plasma 

temperature---and a l s o  the  increase i n  %is expected t o  be s l i g h t .  Had 

the  plasma dimensions been held constant, the  increase i n  S 388 3 

have been more rapid .  

The increase i n  S 
.. 3883 

with increase i n  plasma temperature does 

not  continue indef in i te ly ,  as the increase i n  degree of  d i s soc ia t ion  

soon outweighs the  increase i n  degree of exc i ta t ion ,  and the  b r igh t -  

ness temperature decreases.  

Figure 10 i s  a p l o t  of i n t ens i t y  vs  pressure during a pumpdown 

of the' chamber with the  a r c  burning i n  pure nitrogen.  A s  can be sken, 

* 
See P a r t  B f o r  the de f in i t i on  of brightness temperature and the  method 

of determination. 
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Fig.  9. S3883 vs power input for  an a r c  in a nitrogen-air  mixture 
a t  140 m m  .Hg p res su re .  Arc  dimensions: a ,  12.6 m m ;  
b, 5.2 mm.  Aperture positioned near  the cathode in the 
center  of the plasma (see  F ig .  8). 
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Fig. 10. Intensity of the C N  3 8 8 3  radiation f rom the a r c  plasma 
vs nitrogen p ressu re  during a pumpdown of the 'arc  chamber. 
Total pumpdown time was 5 min, 



the  i n t ens i t y  f i r s t  increases and then decreases as the pressure of  

nitrogen decreases.  The pressure of  nitrogen under s t a t i c  conditions 

giving the maximum in t ens i t y  w a s  found t o  be 140 mrn,Hg. 

The decrease i n  i n t e n s i t y  below 100 mm can be a t t r i bu t ed  t o  a 

decrease i n  the  concentration of CN coupled wi th  a .decrease i n  the  

plasma temperature. (The plasma temperature of  a carbon a r c  i s  

known t o  decrease qu i t e  rapidly  with decreasing pressure below 0 .1  atmos . 

See r e f s -  20,21. ) The decrease i n  i n t e n s i t y  above 140 mm pressure can 

be a t t r i b u t e d  only  to self-absorption.  The e f f e c t  of self-absorption 

is  discussed i n  d e t a i l  Later, see p. 56 . Brie f ly ,  a t  low concentra- 

t i ons  of CN self-absorption by the  cooler layers  of  CN surrounding 

t he  hot c en t r a l  plasma i s  unimportant, b u t  a t  higher pressures  of 

nitrogen, a t  which the  concentration o f  CN has increased su f f i c i en t l y ,  

the  cooler l ayers  a re  very e f f ec t i ve  i n  absorbing the rad ia t ion  from 

the  hot c en t r a l  regions.  A s  a r e su l t ,  the  i n t ens i t y  of  the  CN emission 

i s  reduced. 

A brightness  temperature of  4780°K w a s  observed for. a carbon a r c  

i n  pure nitrogen,  and a value of  5350."K was observed f o r  the  same a r c  

i n  a n i t rogen-s i r  mixture, The a r c  conditions a r e  given i n  Table '11 

rows 1 and 2. The "increase i n  br ightness  temperature r e s u l t s  from. 

the  presence of oxygen i n  the  atmosphere around the  a r c  stream. 

I n  nitrogen,  the  a r c  burns surrounded by a mantle of  carbon dust  

and cooling gases, among them some CN. The mantle a c t s  t o  a t t enua te  

.the i n t e n s i t y  of the  l i g h t  emitted i n  the  center  of  the  a r c  stream. 

The introduction of a small amount of  oxygen i n to  the atmosphere 

immediately removes t h i s  mantle by burning the  carbon evaporated from 



t he  e lect rodes  and, al,so, by' oxidizing the  carbonaceous gases i n  the 

cooling layers  of  the  a r c  stream before they form carbon dust .  
. . 

Thus a small amount of oxygen i n  the atmosphere around the a r c  

is  necessEiry f o r  obtaining a higher brightness temperature o f  CN A3883 

emission. 

. Figure 11 gives .the change i n  S 
388 3 

with pressure f o r  an a r c  

operating i n  a ni t rogen-ai r  mixture. The curve i s  very similar i n  

shape t o  the  curve obtained by o m s t e i n ,  Brinkman, and ~ e u n e E ~ O  f o r  

the  plasma 'temperature 'of an a r c  a t  various pressures of air .  A s  

'with nitrogen, it i s  concluded t h a t  a t  low pressures the  in tensi t ;  
% " 

(brightness temperature) of  the  CN emission is  decreased both by 
2 

the  lower plasma temperature and by the  lower concentration of CN. . .' !I 

Above 100 mm pressure,  the  increase i n  the  br ightness  temperature i s  

slow, and is  probably due to t h e  increase i n  plasma teuiperat;ure r a the r  ' .  . 

. '. < . :: . . .  ',i' 
than because of  any increase i n  the concentration of CN. 

The optimum pressure of  n i t rogen-ai r  f o r  operation of  the  a r c  i s  . . 

between 140 mti and ' 350 mm E I g .  I n  t h i s  range of  pressures,  the  change 

i n  br ightness  temperature with pressure . is  slow,. and the  a r c  assembly, 

espec ia l ly  the  e lect rode-adjust ing mechanism, i s  l e a s t  troublesome. 

The S 
388 3 

of  an a r c  with pure graphite e lect rodes  was determined 

(5450 290)' (see  Table 'TI) and fdund t o  be higher than t h a t  o f  an a r c  

with a cored carbon cathode ( 5 3 5 0 0 ~ ) .  The increased s t a b i l i t y  of the  

, a r c  with cored carbon cathode is  much moxie important than the  s l i g h t  

increase i n  br ightness  temperature gained by the use of  a graphi te  

cathode . 

s3883 
w a s  determined f o r  an  a r c  between graphite e lect rodes  i n  a 



Fig.  11. S3883 vs p r e s s u r e  of the nitrogen-air mixture in the 
a r c  chamber f o r  an a r c  burning between a 5.8-mm cored 
carbon cathode and 6.3-mm graphite anode. . . 



11-4.5 
. . 

. . .  

nitrogen-air  'atmosphere and a l s p  i n  pure air atmosphere ( see Table 

I1 ) . The, values were the  same, within experimental uncertainty 
. ' 

(5450'90 and 5480 '60~~) .  This ind ica tes  t h a t  a f t e r  the  introduction 

of a small amount of oxygen i.nto the  a r c  chamber with the  a r c -  burning 

. . 
i n  nitrogen, f'urther increase i n  the  concentrati'on of oxygen i s  

' 

i ne f f ec tua l  as f a r  as increase i n  S '  i s  concerned. 
3883 

No determination of  S 
388 3 

f b r  an a r c  with a cored carbon cathode 

burning i n  air  was  made, bu t  o n  the  assumption t h a t  838g3 fol 1 ows 

qua l i t a t i ve ly  the  p l a s m  temperature, a decrease, i n  S 
3883 be 

expected. (The plasma temperature o f  an a r c  between cored e lect rodes  

i n  a i r  has been reported by a number of  inves t iga tors  t o  be lower than 
% .  8,12,21-24 

t h a t -  of  an a r c  between pure carbon e l ec t rodes  1 

S 
3883 

w a s  determined a t  var ious  posi t ions ,  as shown i n  Fig. 8. 
. . 

The values vary wi th  gos i t i on  in the expected manner atld 111 qualfl 

t a t i v e  agreement with t he  va r i a t i on  of  plasma temperature i n  the  low- 

currenk a r c .  8'24<25 The arc-stream a rea  between 'the e lec t rode  hot 

spots-  presents  a source of  CN ~ 3 8 8 3  emission which i s  f a i r l y  uniform 

i n  br ightness  temperature. 



Arc S t a b i l i t y  and the Arc Mechanism 

The a r c  ' s t ab iL i ty  i s  discussed i n  terms o f ,  the  mechanisms 

occurring i n  the  three  regions of the  arc ;  the  cathode and i t s  f a l l  

space, ' the anode and i t s  f a l l '  space, and the  a r c  stream o r  plasma. 

(The f a l l  space i s  t h a t  space extending a few f r ac t i ons  of  a m i n  

f r o n t  of the  e lect rode,  which i s  characterized by a very s teep 

p o t e n t i a l  g r ad i en t . )  

The Cathode 

I n  a carbon a rc ,  the  g r ea t e r  p a r t  of  the  a r c  current  i s  carr ied 

by e lect rons ,  and the  t'unctlon of  the  cathode i s  t o  s1.l.ppl.y these 

e lec t rons .  The el-ectrons are emitted thermally from the  cathode 

surface,  and the  surface i s  maintained a t  the  required temperature 

by the  enerw,  re leased from the  impinging pos i t ive  ions .  The ions 

a r e  accelera ted by the  sharp p o t e n t i a l  drop i n  the  f a l l  space; the  

drop i n  the  carbon a r c  i s  about 10 v. 5,17  he temperature of  the  

cathode spot  depends on the  composition of the  e lect rode . .. mater ia l ,  

the  work function, and  conductivity, and the  spak ; s i ze  depends on 
..... 

the  conductivity and diameter of t.he ,electrode i n  a d d i t i o n  t o  the  . - , . . . . . - . . . 

4 

cur ren t .  . 

Let us f i rs t  consider the  carbon a r c  i n  a i r .  The shape of  the  

26 
cathode (see  Fig. 1 )  i s  determined by oxidation and not  by evaporation. 

I n  an a r c  with a 6.3-mm graphi te  cathode, which has a f a i r l y  high work 

function and heat  conductivity i n  comparison wi th  e lect rodes  cored 

w,ith r a r e  e a r t h  oxides, the  cathode spot  i s  very small, l e s s  than 

2 
1 mm. Aside from Lhe cgthode spot, the  cathode surface i s  f a i r l y  , 

cool because of t he  s i z e  and conductivity of the  graphite e lect rode.  



The heating a t  the  spot i s  very'shallow, permitt ing the  hot spot t o  
. . 

wander..about the  cooler cathode dome, which i s  f a i r l y  uniform i n  

temperature. The constant wandering may r e s u l t  because the  f resh ly  

oxidized surface a t  the  edge of  the  hot spot  o f f e r s  a lower wo'rk 
. . 

L n c t i o n  f o r  the  re lease  of e lect rons .  ' Migration up the  s ide  of  the  

e lect rode i s  unfavorable because of  the  temperature gradient .  

With coked carbon e lect rodes  i n  air, the cathode spot i s  con- 

f ined to the  cen t r a l  cored region of the  e lect rode by vi r tue .  of  the  

low work function f o r  e lec t ron  emission a t  the  surface of the  r a r e  

ea r th  oxide. 

The energy d i ss ipa ted  per  u n i t  surface a rea  of the  cathode spot 

i s  given by the  current  dens i ty  and the  po t en t i a l  drop. The 'current  

dens i ty  'at the  cathode spot  -on the  6.3-mm graphite cathode w a s  e s t i -  

2 mated as 10' amp per  mm , the  opot area. increasing with current .  

With the  5.8-mm-cored carbon cathode, however, the current  dens i ty  

v a r i e d  from 3 t o  10 amp per  m2 because the  spot a r ea  remained 

e s s e n t i a l l y  constant ( t he  a r ea  of  the  core) .  

The high-current-density cathode spot  i n  the  graphite a r c  i s  

the  s e a t  of the  contracted column i n  the  free-burning high-current 

a rc ,  5'11 s ince  the  plasma diameter i s  l e a s t .  a t  the  cathode spot. I n  

the  invest igat ions  ca r r ied  out  with cons t r i c to rs ,  I have observed tht 

the  formation of the  contracted column i n  the  constr ic ted region w a s  

accompanied hy the  appearance of  a similar contracted column a t  the  

cathode, independent of the  cons t r i c to r  diameter. A s  t he  current  

through the  a r c  is  increased, these columns increase i n  length  and 

Join  i n  t h e  d i f fuse  plasma surrounding them. A t  the  same currents  i n  , 

a free-burning a r c  no contracted column w a s  observed. The prevention, 



( 
by the constr ic tor ,  of the expansion of the a r c  plasma along the 

length of the  a r c  column as the current i s  increased ( the  usual 

occurrence i n  a free-burning a r c )  i s  offered a s  an explanation. 

After operation ,of an a r c  between graphite electrodes i n  

nitroken, the cathode t i p  surface was found t o  be covered with lamp- 

black and -y p i t s  o r  small craters ,  usual ly  l e s s  than I. mm i n  

diameter. From t h i s  appearance it i s  possible t o  o f f e r  the follow- 

ing explanation f o r  the instabil i ' ty '  of t h i s  a rc  i n  nitrogen. In  
I ) 

a i r ,  the carbon evqora t ed  from the hot spot  i s  oxidized, and the 

electrode carbon i t s e l f  i s  oxidized. Thus the cathode surface of  

an a r c  i n  a i r  i s  a clean graphite surface.  - I n  ni$~ogen, the 

evaporated carbon is not consumed, no oxidation of the electrode , 

occurs, and, furthermore, the carbon vapors dif fusing from the c a t h d e  

spot a re  condensed a t  the very edge of  the spot by the cool electrode 

surface.  This layer  of lampblack o r  v e i l  of amorphous carbon i s  a 

poor thermal o r  e l e c t r i c a l  conductor, and a c t s  t o  prevent smoo'tt~ 

migration of the  hot spot. Since the ca't;llode spot i s  trapped by the 

condensing vapors, it remains f o r  some time f ixed i n  posi t ion and 

forms a p i t  o r  c r a t e r  i n  the electrode a t  t h i s  poait ion.  After an 

indef in i te  time in te rva l ,  the hot spot migrates very rapidly,  jumps 

from t h i s  c ra te r ,  and forms another c r a t e r  a t  a new s i t e  by the same 

process. Thus, the face of the  cathode becomes covered with small 

craters, '  and jumping from c ra t e r  t o  crate; by the hot spot i s  qu i te  

common. The cathode spot sometimes wande~s up the side of the e lec-  

trode,  espec ia l ly  a f t e r  the face has become covered with a layer  of 

lampblack. 

This type of cathode mecl~anism  render^ the a r c  useless  a s  a s tab le  

source of  CN emission. 



With the  5.8-mm cored carbon cathode, the  cathode spot remained 

fixed and the  a r c  operated very s tead i ly .  After  some time, the  a r c  

became unsteady, with the  cathode spot  dancing about .on t h e  r i m  of 

the deeply c ra te  red e lect rode.  ' The' deep c r a t e r  r e s u l t s  from the  hot 

s p o t ' s  being confined t o  the surface of the  core and evaporating only 
. . .  

core mater ia l .  After  the  c r a t e r  becomes about 5 mm deep the  cathode 

spot  migrates t o  the  r i m  of  the  c r a t e r  and produces an a r c  o f  the  

same type as formed with a gr iph i te  cathode, Migration back t o  the  

core i s  prevented by the  depth of the  c r a t e r .  Removal of  the  c r a t e r  

w a l l s  i n  any manner, of  course, r e s to r e s  the  cathode spot t o  i t s  posi-  

t i o n  on the  core. 

The Anode . 

The anode of the  carbon a r c  serves t o  receive the. current-  

carrying e lec t rons .  The. a r c  with a s o i i d  graphi te  or,homogeneous 

carbon anode has two forms of anode spot,  a low-current-density 
L .  

noiseless  form, and a, high-current-density h i ss ing  form. These two 

types of 'anode spots  have been described i n  the  lf ie ' rature many 

times. 3' 4' 5'17'27 Mechanisms have been presented f o r  the  low-current- 

28 dens i ty  anode and the  high-current-density anode. 5 , 2 6 2 8  T~~~~ 

mechanisms have been developed on the  b a s i s  of  observations made on 

a r c s  with l a rge  b u n t s  o f  core mater ia l .  . 

I n  the  pure carbon a rc ,  as i n  the  cored carbon a r c ,  the  anode, 

i n  addi t ion t o  receiving the  e lect rons ,  provides by therhionic  emission 

some of the  posi t ive '  ions necessary t o  neu t ra l i ze  the  space charge i n  

a r c  stream.28 Thus,' a ce r t a in  p o t e n t i a l  drop, dependent on the  work 

function f o r  thermionic emission of pos i t ive  ions a t  the  e lect rode 



surface,  i s  required i n  the  region jus t  i n  f ron t  of  the  anode. I n  

the  pure carbon a r c  t he '  anode drop m y  be 30 v, while i n  a r c  with 
. , 

l a rge  cen t ra l  core, the  anode drop may be 5 t o  10  v .  15  

The temperature o f  the  anode surface and the  r a t e  of  evaporation 

of the  anode mate r ia l  a r e  dependent on the  current  densi ty  a t  the  

,anode surface s ince  ' t he  current  densi ty  and the  anode drop determine 
. . 

the  energy d i ss ipa ted  a t  the  surface.  

The low-current-density noiseless  anode spot  i s  a uniformly 

incandescent surface.  which general ly  covers the e n t i r e  face o f  
. . 

the anode i.n a pmper ly  adjusted a r c  and represents  the  s tab le  form 

o f  the  low-current a r c .  If the  current  densi ty  a.1; the  anode i s  . . 

increased above a c r i t i c a l  value ( t h i s  value may. be dependent on the  

e lect rode arrangement o r  t r i m ) ,  the  high-current-density anode spot 

i s  formed. This form i s  characterized by a lower anode drop (about 

10 v l e s s ) ,  a marked increase i n  the  r a t e  of  e lect rode evaporation, 
-x- 

and a lower incandescent br ightness ,  i n  add i t ion  t o  the  higher current  

densi ty .  

It was possible,  with a properly adjusted arc arranged ac ~hown 

i n  .F'ig. 1, t o  upbyate the  arc f luc tua t ing  between the r~ormal, low- 

current-density anode form and the  overloaded, high-current-density 

anode form. Such an a r c  was  in te r rup ted  and the  e f f ec t i ve  a r ea  of  

t he  anode spot  was measured ( t he  a r ea  of  the  well-shaped c r a t e r ) .  

*' 
I n  determining the  br ightness  temperature of the  low-current-density 

anode spot,  one found t h a t  t he  i n t e n s i t y  of  the  rad ia t ion  always 
decreased whenever the  high-current-density anode spot  w a s  formed. 
A t  s u f f i c i e n t l y  high c ~ r r r e n t  dens i t i es ,  however, the  i n t e n s i t y  of  the  
ho t  gases i n  f r o n t  o f  the  anode increases  the  i n t e n s i t y  above that of  
the  low-current-density anode. See Refs . 4 and 26. 



From v i sua l  observatipn the  a rea  of  the anode spot appeared t o  remain 

constant. I f  any change occurred, it was a decrease i n  the a rea  of  

the  spot on formation ,o f  the  overlo'aded a rc .  From the  currents  
. . 

2 observed f o r  the  a r c  i n  both forms, a .current densi ty  of 1 &p per  mm 

as a maximum f o r  the  normal a r c  and a current  densi ty  of  1.1 amp per  mm 2 
. . 

as the  miniumum f o r  the.overloaded a r c  were obtained. The maximum 

current  densi ty  f o r  the  normal a r c  operated a s  shown i n  Fig.  8 was 
I .  ' 

2 found t o  b e . l . 2  a~ per  mm . The dif ference i s  i n  the  e ~ e c t e d  

d i rec t ion ,  if the change i n  anode apot type is  temperature-dependent, 

s ince in '  the  v e r t i c a l  a r c  the  hot  column gases a r e  passed over the  

anode by convection.currents,  bu t  when the  anode i s  hor izontal ,  a 

large  p a r t  of  the  column gases i s  ca r r ied  away without passing over 

the  surface df the anode. 

The current  dens i t i e s  given a r e  f o r  a graphite anode burning i n  sli 

air  atmosphere. The current  dens i t i e s  a t  the t r a n s i t i o n  po in t s  were 

determined .for a graphite. 'anode i n  nitrogen and found t o  be 1 . 4  and 
2. 

2 1 . 5  amp per  mm . ' 4 
Since the  t r a n s i t i o n  region represents  an unstable region of oper- 

a t ion , .  current  dens i t i e s  near  these values a r e  t o  be avoided i f  a 

stable a r c  of  e i t h e r  form i s  desi red.  

With an improperly adjusted..  low-current arc, a high-current- 

dens i ty  anode spo t  t h a t  is  very unstable i n  pos i t ion  w i l l  be formed. 

This type of anode spot w a s  .obse'rved when'the 'power input  was too low 

f o r  the  s i ze  of  'ele'ctrode employed. 'The anode .spot of t h i s  type pre- 
. . , 9 

Gumably a r i s e s  by the  following process.  A s  the  power d i ss ipa ted  a t  

the  anode surface decreases, the  incandescent hot  spot  of  t he  normal 



a r c  i s  reduced i n  s i z e  because of:. the  minimum temperatuse required t o  

emit the  posi t ive .  ions necessary f o r  t h e  a r c  mechanism. I f  t he  , 

'e lectrode.  i s  of  s u f f i c i e n t  s i z e  (has s u f f i c i e n t  heat ,  capacity),  the  

. . anode spot , reduces  i n , s i z e  u n t i l  the ' .current  densi ty  and spot 

temperature reach the  values needed f o r  the  t r a n s i t i o n  t o ' t h e  high- 

current-density anode. Because of  the  small s i z e  of the  anode' spot,  
- 

the  enelgy d i ss ipa ted  per, u n i t  surface a r ea  i s  high, but ,  because of  

the  xapid evaporation of anode material., the  f r ac t i on  'conducted i n t o  

the  e lec t rode  . . is  lpw. ' As a r e s u l t ,  , t h e  heating a t  the  anode surface 

i s  .very shallow and the  spot  i s  caqable o f  wandering; about the  surface 

of the  anode and even up the  s ide ,  sometimes t o  such dis tances  t h a t  

the  a r c  is  extinguished. 

This type of  a r c  i s  always formed when an a r c  i s  f r e sh ly  s t ruck 

between cold e lec t rodes .  The a r c  w i l l  p e r s i s t  i n  t h i s  form unless the  

t o t a l  power input i s  s u f f i c i e n t  f o r  the  small f r ac t i on  conducted i n to  

the  e lect rode t o  heat  the e lect rode t o  a tempera'l;~ire high enough f o r  

the  formation of the  low-current-density anode. 

Thus, the  a r c  with a low-current-density anode has a minimurrl 

current  (power inpu t )  requirement f o r  stable operation ao well  as a 

maximum to l e r ab l e  current ,  both dependent on the  s i ze  of the  e lect rodes .  

With a carbon a r c  i n  nitrogen, the  high-current-density anode a r c  

( t h e  migrating-spot type)  a r i s e s  i n  s t i l l  another manner. Because of  

the  absence of  anode spindle i n  nitrogen atmosphere, the  danger of  

reaching am overloaded a r c  i s  lessened.  This advantage i s  removed by 

the  e f f e c t  of  soot  formed by t h i s  a r c .  The carbon vapors from the  

anode spot  a r e  condensed a t  t he  edge of the  e lect rode and the  carbon dust  

i n  the  mantle arould  the a r c  stream for1us a cone of  soot around t he  end 



of  the electrode and r e s t r i c t s ' t h e  plasma diameter a t  the  anode. A s  

a r e su l t ,  the current  densi ty  i s  increased u n t i l  a high-current- 

densi ty  anode spot is  formed. This spot  then wanders about on the  
I 

anode by blowing o f f  the so6t i n  i ts  path.  The time required f o r  

t h i s  ty'pe of a r c  t o  form i n  140-m nitrogen w a s  about 15  t o  30 min. 

The a r c  can be res tored t o  the ' low-current-density anode ,type 
. . . . 

simply by introducing a small amount of  oxygen i n to  the  atmosphere t d  

remove, the  soot .  
I 

The Arc Stream a r  Plasma 

The a r c  stream o r  plasma serves t o  conduct the  current  between the  

e lect rodes  of the  a r c .  The mode of conduction depends on the ambient 

gas and i t s  conditions. . I n  the  carbon a rc ,  most of  the  current, 

i s  car r ied  by e lec t rons .  The s t a b i l i t y  of  the  p1a;sma when the  a r c  

i s  operated i n  a nonturbulent atmosphere i s  dependent only on the  

: s t a b i l i t y  of the cathode and anode hot  spo ts .  Thus a s tab le  s e t  of  

electro'des . . guarantees a s t ab l e  pl:sm. 

  he rad ia t ion  emitted by the  plasma is of  importance here. The 

character  of  the  l i g h t  emitted by the  plasma is dependent on a number 

of parameters.. The molecules and atoms present  i n  the  plasma, the  mode 

of exc i t a t i on  of  the  emit ters ,  and the  temperature'and pressure of the  

12,29 emit t ing gas a r e  amoung the  more important parameters. 

I n  the  low-pressure a r c  o r  discharge, the  &in w d e  of  exc i t a t i on  

1 ' o f .  the  emi t te r s  i s  e lec t ron ic ,  t h a t  is,  by c o l l i s i o n  with hot  e lec t rons .  

The temperature of the  e lec t ron  gas i n  the  plasma i s  many times the  

gas temperature. A s  the  pressure of  the  gas i s  increased, the  .frequency 

of co l l i s i ons  i s  increased and the , two temperatures approach each o ther .  

Above 100 mm Hg the  two temperatures a r e  approximately.equa1, b u t  the  

, 



electron-gas temperature must remain s l i g h t l y  higher, s ince the mode 

of  heating i s  by energy t r ans f e r  from the  e lect rons  accelerated by 

the  po t en t i a l  gradient  i n  the  a r c  plasma. ' 12' 21 A t  these pressures , 

the  exc i ta t ion  i s  e s sen t i g l l y  thermal, and the  gas emits a s  a gas a t  

t he  temperature o f  the  plasma. That the mode of  exc i ta t ion  i n  the 
. . 

carbon a r c  i n  air  a t  atmospheric is  t h e r m l ,  has been demonstrated 

8 by Kruithof qnd Witte . 23 . 

In  the  pure carbon a r c  i n  air  o r  nitrogen 'with a low-current- 

. densi ty  plasma, the  emission i s  from such species a s  N CN, C ,  N, C2 2' 

and smaller concent.rat.inns of other  carbonaceous species.  The oxygen 

i s  used up i n  the  cooler l ayers  of  the  a r c  and is  unimportant as 

an emi t te r  o r  an a const i tuent  i n  emit t ing species.  , I f  the  a r c  5s 

operated between e lect rodes  cored with metal oxides o r  o ther  materials ,  

l i n e s  from vsr ious  species of  the  core mater ia l  .are a l so  prevalent  

i n  the emission from the  plasma. The i n t e n s i t y  of a. spec i f i c  " l ine"  

depends on the  concentration, o p t i c a l  density,  o r  thickness12 of the  

species,   it^ t r a n s i t i o n  probabil ' i ty,  the  exc i ta t ion  po ten t ia l ,  and 

the, e f f ec t i ve  excf t a t i o n  temperature of  the  plasma. 

Before considering the  - i n t ens i t y  of  the  CN emission from the  carbon 

a r c  plasma l e t  us f i r s t  d iscuss  the  e f f e c t  of cons t r i c to rs  on the 

plasma. 

The e f f e c t  of  cons t r i c to rs  on the  plasma 

When cons t r i c to r s  a r e  present  i n  the  a r c  stream, the  plasma within 

the  o r i f i c e  region i s  reduced i n  diameter, and i t s  temperature i s  

r a i ~ e d ,  producing a region of higher exc i t a t i on  temperature. l2  his 

may o r  may not be a favorable condition, as it may increase o r  decrease 

the  concentration of the  emit t ing species .  



. Spectra were taken of the  emission from the plasma between the  
. . 

cons t r i c to r  p l a t e s  of an a r c  burning betwe,en cored e lect rodes .  These 

spectra,  i n  contras t  t o  those taken of  the plasma between the  cored 

e lect rodes  of  an .open a rc ,  were' &void of 'core-material l i n e s .  The 

absence. of  these l i n e s  must be a t t r i b u t e d  :to the  ac t ion  .of the  con- 
.. . . . 

s t r i c t o r  p l a t e s .  . . . . 
. . 

The atoms from the  core materials ,  usual ly  ra re  ea r th  oxides, 

have low ionizat ion po ten t ia l s ,  and therefore  . ex i s t  i n  the  plasma 

as ions ' and  emit . ion  l ine 's .  The cons t r i c to rs  a c t  t o  remove these 

ions a t  the  o r i f i c e s  and prevent ' them from enter ing the  plasma region 

between ' cons t r i c td rs  by the  following mechanism. The e l e c t r i c a l l y  

f l oa t i ng  copper constrictork'become negatively charged by the  very 

mobile e lec t rons  cq l l id ing  with the  o r i f i c e  w a l l s .  ( see  the  d i s -  

cussion by   arrow^' oh the  e f f ec t  of probes i n  a discharge. ) Thus 

a po t en t i a l  gradient  , is ' formed along the  radius  of  the  plasma i n  the 

o r i f i c e ,  and t he : i ons  i n  the  plasma a r e  accelera ted t o  the  w a l l s  of 

the  o r i f i c e  and co l l ec t  the re .  The negative charge i s  maintained on 

the  cons t r i c to rs  becau'se of the  higher mobil i ty and ve loc i ty  of the  

e lec t rons  as compared with t h a t  o f  the  heavier ions.  

Thus, the  use of  cons t r i c to rs  t o  enhance the  i n t e n s i t y  o f  an ion 

l5ne through increase of  the  plasma temperature w i l l  r e s u l t  i n  a 

weakening of the  l i n e  because of the  reduction i n  the  o p t i c a l  t h i c k - .  

ness of  the  ion i n  the  plasma between the  cons t r i c to rs .  For enhancing 

the  i n t ens i t y  o f a t o m i c  o r  a r c  l i ne s ,  on the  o ther  hand, when the atom 
. . 

has a high ion iza t ion  p o t e n t i a l  and the  upper s t a t e  of the  l i n e  has a 

. . \ high exc i t a t i on  po t en t i a l ,  the  use of  cons t r i c to rs  w i l l  prove p ro f i t ab l e .  



The i n t e n s i t y  of the CN X3883 emission 

I n  an attempt t o  bu i id  up the. i n t ens i t y  of the  CN emission 

( increase  S ), the l o g i c a l  mode of  a t t ack  i s  t o  bu i ld  up the 388 3 
o p t i c a l  dens i ty  (concentra t ion)  of  the CN i n  the plasma so t h a t  

the  i n t ens i t y  of the  center of  the  ~ 3 8 8 3  head w . i l l  become equal t o  
. . 

t h a t  of  a black body a t  the temperature of the plasma, the  maximum 

possible  (S  
388 3 

equal t o  the plasma temperature ). The o p t i c a l  

dens i ty  of CN should be highest  i n  the plasma of  a carbon a r c  

'burning i n  a nitrogen atmosphere, and indeed, it is .  But, it i s  

a100 very high t,hroughout the  e n t i r e  region of the  a r c  plasma, and, 

because o f  the  temperature gradient  along the  radius of the a r c  

column, S 
388 3 

i s  lowered by s e l f  -absorption e f f e c t s .  

., A t  low pressures .o f  nitrogen,  5388 3 increases with the pressure 

of  m.i.trogen . ('from a few mm t o  140 .mm Hg ) u n t i l  the  o p t i c a l  densi ty  

of the CN becomes high,enough so t h a t  the  increase i n  self-absorp- 

t i o n i n  the  coo l e~ .  l ayers  of  plasnu cancels the increase i n  S 
388 3 

r e su l t i ng  from the  increased p l a s m  tempera'bure at Bhc center of 

the  plasma. Further increase  i n  the nitrogen pressure increases  

the  o p t i c a l  dens i ty  and self-ah so:^-ytion more rapidby th&. the ~lasma 

temperature, and, as a r e s u l t ,  S decreases with increas ing 
3883 

' pressure .  , Thus, even though S 
3883 

may be very high a t  the  center of 

the  a r c  stream ( ~ o s s i b l ~  equal  t o  the  plasma temperature, 5800 t o  

6 6 0 0 " ~ ) )  the  measured S 
3883 

of the  plasma emission i s  below 4800"1(. 

S 
388 3 

has been found t o  be much higher when a small amount of 

oxygen i s  present  i n  the  ambient atmosphere. The increase r e s u l t s  

not  only from removal of  .[;lie mantle of  carbon dust  around the  a r c  

stremi,  bu t  a l so ,  and more impor'tant, from reduction of  the  CN o p t i c a l  



dens i ty  i n  the co l l e r  l ayers  of  plasma. The oxygen d i f f u s e s  i n to  

the,  plasma and oxidizes the CN i n  the  cooli-ng i s e l f  -absorbing layers ,  

but ,  a t  pl"oper concentration,. does not reduce. the 'concentra t ion of  
, . 

C N  i n .  &e . ' cen t ra l  part df  t he  pla$ma. Thus by reducing the  amount 
. . 

of  self-absorption without reducing the '  i n t ens i t y  of the  emission 

from the cen t r a l  hot  plasma, . the oxygen serves t o  increase S 
388 3 

from -4800 t o  5 3 0 0 ~ ~ .  ' 

Coiiipa~ison of  S and the  plasma tempkrature 
3883 .: 

No ieasureyents were made t o  determine the plasma temperature 

o f ' t h e  a r c  Cieveloped i n  This research, but ,  from the  values reported 
. (. 

f o r  a r c s  operated under very ,sim+lar 'conditions, 8'19 the  plasma 
. . 

temperature i s  est imated t o  l i e  between 5800 and 6 6 0 0 ~ ~ .  Because 

of  the  higher currents  employed here (9.5 aup vs 5 arnp o r  l e s s )  

and because the  anode employed. here. w a s  uncored ( s o l i d  graphite ), 
, , . '  , 

the  higher temperature i s  .favored. The value of S around 5300°K, 
3883' .. 

is  i n  .the expected range since high o p t i c a l  dens i t i e s  a r e  general ly  
. , 

not a t t a ined  a t  high plasma temperaturesJl2.and sel f -absorpt ion by 

the  cooler l ayers  can hardly be expected t o  be completely removed. 

I n  addi t ion,  the  value of 5300 represents  a minimum value f o r  S 

*. 
388 3 

f o r  the  a r c  a t  optimum condit ions.  

The est imated value o f  S of  5500°K (see  p .  97 ) i s  about llOO°K 
A .  

below the estimated p l a s m  temperature, 6 6 0 0 ° ~ ,  the  maximum SX possible .  

This means t h a t  the  i n t e n s i t y  radia ted by the  a r c  stream a t  3883 A i s  
. , 

about one-third the'maximum possible  i n t ens i t y .  
. . 

* 
Because of instrument l im i t a t i ons  i n  Me measurement ,of  S the  

iralues reported here a r e  suspected of  be ing  too low. See J~!?'IIB. 



CONCLUSIONS 

Studies have been ca r r ied  out  on various carbon a r c s  i n  air 

which have resu l ted  i n  an understanding of the requirements 

nece.ssary f o r  the  production of  an a r c  with the desired s t a b i l i t y .  

The fea tures  t h a t  rendered. the  carbon a r c  undesirable were studied 

and the  c r i t i c a l  conditions f o r  t h e i r  formation were determined i n  

order  t h a t  they might be avoided. 

From these s tud ies ,  it wai establ ished t h a t  f o r  the  s t ab l e  a r c  

rqu3.red : 

1. The s i z e  of the e lect rodes  t o  be employed is  determined by 

the  power ava i lab le .  A ce r t a in  power diss ipat ion,  dependent 

on e lect rode s ize ,  i s  required t o  e s t ab l i sh  s t ab l e  e lect rode.  . 

behavior. 

2. The high-current-density anode spot  is  undesirable and can 

be avoided by ad jus t ing  the  power input t o  y i e ld  the  proper 

current  dens i ty  a t  the  anode spot .  For a 6.3-mm graphi te  

anode, the  a r c  current  should be between 8 and 10 amp i f  

the  a r c  i s  operated i n  air ,  but the upper l i m i t  car1 I J ~  

extended i n  control led atmosphere. 

3. The high-current-density contracted column i s  t o  be avoided 

when the  amouht of  the  emit t ing species can be depleted 

because of the  high temperatures i n  the  column plasma. 

4. The use of a cored carbon cathode with a small core diameter 

i s  necessary t o  e s t a b l i s h  a s t ab l e  cathode spot  and prevent 

plasma motion. 

,' : 
. 5 .  Constr ic tors  a r e  u s e f l ~ l  f o r  es tab l i sh ing  a plasma t h a t  i~ 



f ixed i n  pos i t ion  .and qu i t e .  s t ab le  i n  emission cha rac t e r i s t i c s .  

6 .  The carbon a r c  i n  air, because,of rapid electrode consumption, 

' requires  constant ele.ctrode adjustment i n  order t o  maintain 

constant i n t ens i t y  of  emission from the plasma. 
, . 

. For the  study of! the  carbon a r c  i n  controlled atmosphere, an a r c  

I chamber wag designed which would allow considerable variat iori  of the 

a r c  operation. condi'tions . 
A s  a r e s u l t  of  the  s tud ies  of  the  carbon a r c  i n  control led atmos- 

phere, a k t a b ~ e ,  intense source of  CN emission has been produced. 
. . 

The following requirements have been found the  most c r i t i c a l  i n  

es tab l i sh ing  a s t ab l e  carbon a r c  . that .  w i l l  produce constant and 

intense  CN emission: . . 
L 

1. A cored carbon cathode i s  necessary t o  e s t ab l i sh  a s tab le  

cathode hot cpot.  The core diameter should not be too la rge .  

The reduction i n  S 
388 3 

as a r e s u l t  of employing a cored 

cathode i n  place .of a s o l i d  graphite coltimn is negl igible  i n  
i 

com-parisdn with the  gain i n  s t a b i l i t y .  

2. A s o l i d  graphite anode is  preferred over a cored anode 

. because the  arc '  with a graphite anode has a higher plasma 

temperature without l o s s  i n  s t a b i l i t i .  The cored anode would 

add metal ions t o  the  plasma and reduce the  plasma tempera- 

t u r e  and S 3883 ' . . 

3. The electrode o r i en t a t i on  o r  t r i m  should be t h a t  shown i n  

Fig.  8, s ince  the  a n o d e . s t a b i l i t y  i s  enhanced i f  the  anode 

i s  held horizo'rital and the  cathode is  held v e r t i c a l  and . . 

s l i g h t l y  below the  end o f  the  anode. 

4. ' A reduced prebsure i s  important-, not  o n l y  because it i s  



convenient f o r  operation of the  a r c  chamber, bu t  a l so  

' because the. anode spot. exh ib i t s '  an enhanced s t a b i l i t y  

below 400-mrn Hg pressure with the  atmosphere and currents  

employed. here .  

5.  The atmosphere should be l a rge ly  nitrogen i n  order t o  obta in  

a high CN concentration i n  the  plasma and lengthen the l i f e  

of  the  e lect rodes .  

6 .  A s m l l  concentratioll of  oxygen ,is required i n  the a rc -  

chamber atmosphere f o r  a number of reasons..  It removes 

t he  mantle o f  carbon dust  t h a t  surrounds the a r c  stream of  

a carbon a r c  i n  nitrogen and increases the i n t ens i t y  of  

emission from the plasma. It serves t o  reduce the  adverse 

e f f e c t s  of  se l f -absorpt ion by oxidizing a large  por t ion of  , 

the  CN as it d i f fuses  i n to  the  cooler l ayers  of the  plasm@. 

The oxygen i s  a l so  necessary.to keep the  e lect rodes  c l ea r  of 

soot  and, thereby, prevent e lect rode -spot i n s t a b i l i t i e s .  

Slight. oxidat.ion of t h e  ~a.t~hnr3.e casing t o  prevent deep g i t t i n g  

a t  t he  core and the  r e su l t an t  i n s t a b i l i t y  i s  another function 

of  the  small oxygen content .  High concentration of oxygen 

i s  t o  be avoided because of  the  rapid r a t e  of e lect rode 

consumption r e su l t i ng .  I n  an a r c  with cored e lect rodes ,  the  

increased r a t e  of cons~unption lowers the  plasma temperature 

by introducing a l a rge  concentration of  core mater ia l ,  metal 

ions,  and atoms. 

The most s a t i s f a c t o r y  condit ions f o r  the  operation of  the  a r c  i n  

t he  control led atmosphere were determined b y  studying the  a r c  s t a b i l i t y  
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as a f'unction of various parameters. . 

The br ightness  temperature, S 
3883' 

of the  CN emission from the  

'plasma of  the  s tab le .  carbon arc-  developed'was determined. The value 

obtained, -5500°K, probably represents  the  highest  a t t a i nab l e  with 

the  carbon 'arc  because of the d i s soc ia t ion  and se l f -absorpt ion pro- 

cesses a'ssociated w i th .  the  carbov-arc plasma. 



B .  A IvETHOD FOR THE DETERMINATION OF BRIG-SS TEMPERATURES 

INTRODUCTION . . . . 

. . 

A p r o g r m  d i rec ted  toward the  determination of radia t ive  l i f e -  

times of  high-temperature molecules has been i n i t i a t e d  i n  these 

l a h ~ r a t ~ o r i e s .  The apparatus employed f o r  the  d.etemi.nation of such 

l i fe t imes  requires  l i g h t  S ~ u r c e s  with high radiant  f l ux  ( i n t e n s i t y )  

a t  spec i f ic  wave lengths1 (see  Introduction,  P a r t  A ) .  

For our purposes, the ,most convenient method f o r  expressing 

the  i n t ens i t y  of a l i g h t  source a t  a given, wave length i s  through 
* 

l ~~ . l g l l  Lrle s s  Leluyera Lu1.e . The b~.i&'l;lle ss . I ; ~ I I ~ ~ ~ I * L ' s L ~ u Y ~  of a l i g h t  

source a t  a spec i f i c  wave length i s  equal t o  the  temperature o f  a 

black-body source which, a t  the  same wave length,  gives the  same 

in t ens i t y  per  u n i t  wave-length i n t e r v a l  a s  the  l i g h t  source. 

A knowledge of the  brightness temperature of a l i g h t  source 

a t  a spec i f i c  wave length  allows one t o  calcula te  the  number o f  

quanta emitted by the  lamp a t  t h a t  wave length  over a wave-length 

i n t e r v a l  commensurate with the  brightness temperature. Equation 

2 
(R-1,) ~ ~ V P S  t,hp j,n.t#pns;i t.y j n  qi~n.nt,a. per secnnd per cm source area 

p e r  s teradian per  u n i t  wave-length i n t e r v a l  f o r  a source with b r igh t -  

ness temperature S a t  X .  
X 

a 

From the  known a rea  o f  the  source and the e f f ic iency  &f the  o p t i c a l  

system, the  effe-c t ive  number o f  quanta can be calcula ted f o r  a given 

* 
The br ightness  temperature a t  the  wave length h w i l l  be expressed i n  

t h i s  t h e s i s  as S 
X ' 



. ' .  r- -.. ' ' . .  
system. 

. . 
Richard Brewer, i n  h i s  t he s i s ,  has out l ined the method f o r  

calcula t ing the  minimum value of S required f o r  a l i g h t  source 
. .X 

. . . . , . . .  . . . 

t o  be .usefu1  for"d&.ermining t h e ' l i f e t i m e -  of a spec i f i c  spe'cies 
. . '  

with the  l i fe t ime  appartitus avai lable  .' It i s  important, f o r  t he  

success o f ' a  l i f e t ime  measurement, t o  know that . the  lamp has a 

s u f f i c i e n t l y  high brightkess temperature a t '  the  required wave length.  
, . 

I n  general ,  i n t e n s i t i e s  of  l ightsources  a r e  given i n  terms 

which do not allow us t o  determine the  usefulness of a lamp f o r  
. . 2 

.our  purposes. Expression of the  i n t e n s i t y  i n  candles per  mm , 

although useful '  fo'r dete-ning the  l i gh t i ng  effect iveness  of  a 
, . 

lamp (admittedly, the  purpose' of most commercial lamps), is  use less  

f o r  the  determination of  the  number of  q w t a  emitted by the  lamp 
. . 

a t  a spec i f i c  wave length.  The spec t r a l  energy d i s t r i bu t i on  of a 
. . 

lamp e q r e s s e d  i n  w a t t s  per  100 A o r  o ther  1arge.wave-length i n t e rva l ,  

while more he lpfu l  than candles per  mm2 for '  determining the  usefulness 

of a l i g h t  source, does not  y ie ld  the  quanta per  u n i t  wave-length 
. . I 

i n t e r v a l  a t . a  spec i f i c  wave length  unless  the  exact  p r o f i l e  of  the  
. . 

lamp rad ia t ion  i s  known. This is  e spec i a l l y  t r ue  f o r  sources t h a t  

emit atomic l i n e s  o r  o ther  sharp features ,  the  kind o f  source of  

i n t e r e s t  f o r  our  purposes. 

Because of  the  lack o f  da ta  o f  the  type necessary t o  determine 

the br ightness  temperatures o f  ava i lab le  sources,. the  development 

of a method f o r  determining S values of  l i g h t  sources and app l ica t ion  X 

of  the  method t o  avai lable  l i g h t  sources w a s  i n i t i a t e d .  

A s  s t a t e d  e a r l i e r ,  l i g h t  sources of  high i n t e n s i t y  a t  spec i f i c  

wave lengths  a r e  of i n t e r e s t  f o r  l i f e t ime  s tud ies .  Such sources'  as 



commercially ava i lab le  vapor discharge and a r c  lamps prove useful  

,a i f  the lamp emits rad ia t ion  a t  the  wave length a t  which the  species 

of i n t e r e s t  absorbs. I n  some cases, e spec ia l ly  i n  study of atomic 

species, sharp l i n e  sources a r e  desi rable ,  whereas f o r  s tud ies  of 
. . 

molecular species i n  which a number of  r o t a t i ona l  l i n e s  a r e  capable 
. . . . 

of absorbing rad ia t ion ,  a broadened l i n e  source such as a medium- 

o r  high-pressure a r c  lamp may be more desi rable .  Also, with broad- 
. . 

ened scurces, the  p o s s i b i l i t y  of  overlap of  emit t ing and absorbing 

wave length i s  grea te r .  

Perhaps the  pes t  sources o f  very intense s h a q  l i n e s  may prove 

t o  be microwave'-powered sources similar t o  those described by Ham 

and waleh31 and by Branner, Ferguson, and ~ e h l i n . ~ '  Ham and Wolsh 

describe lamps f o r  use i n  Raman s tud ies  containing mercury vapor, 

sodium vapor, o r  helium gas which emit very intense,  sharp l i n e s  

cha rac t e r i s t i c  of the  vapor o r  gas, and suggest t h a t  o ther  vapors 
. . 

o r  gases could be employed. The mercury lamp described by Branner, 

2 
Furguson, and Wehlen emits 0.01 w a t t  per  cm per  s teradian a t  5461 A 

from a l i n e  of 0.03 A - h a l f  width. 32   he br ightness  temperature of 

powered sources may prove very usefu l  as l i g h t  sources f o r  l i f e t ime  
. .. 

s tud ies  . 



METHOD . 

The brightness temperatures of the l i g h t  sources were deter-  
, . 

. .  , 

mined by compariscjn of'  the . i n t ens i ty  d f  t he  radiat ion from each 

source with t h a t  .from a tungsten s t r i p  lamp of known brightness 

temperature a t  the sake wave length and wave-length in te rva l .  
. .  . . . 

~ c c d r d i n ~ '  t o  ~ i e r i ~ k  'Law (,which holds f o r  the tkmera ture  s 

and wave lenkths of concern here), the i n t ens i ty  of a source a t  

the ,  wave length' X i s  given by , . . 

-( c2/xsx :, I ( L )  g:= ,  ~(2hc /11~ . ) ,  e 9 (B-2) 

where s is the 'brightness temperature and. A i s  the area of the X 
, ' .. 

source.. 

If the.  i n t e n s i t i e s  5 and I f o r  the tungsten s t r i p  lamp and 
. , ,  

the l i g h t  source; r e s p e c t i ~ e l ~ ,  a re  determined with  equal source 
* .  

area,  the brightness te'mperature of the l i g h t  source, s,, can be 

calculated from 

, l/sn - (2.303/c2) X log( l&),  (B-3 ) 

where c is the second radiat ion constant ( c = 1.4380 cm deg, 
2 2 . . 

ITS 1948), X i s  . . the  wave length i n  cm, and is  .the brightness 

temperature of the tungsten s t r i p  lamp a t  the wave leng%h 1. 

can be calculated from 
Sw6550 

( a s  measured with an op t i ca l  

pyrometer) :and the following. equation: 
. . 

1/sX = 1/%i550 - ( 2  -'303/c2)(6. ~ ~ x ~ o - ~ L o ~ ( . ~ / T E  ) 6550 - Uog( I/T€ ) . 

I n  t h i s  equation, T i s  the transmission of the lamp envelope a t  A ,  

and E i s  the e~ssivity~of.cold-rolled tungsten a t  the wave length X 

and the  t rue  temperature T of the tungsten s t r i p  ,f i lament.  The wave 



l eng th  6550 is  the  e f f ec t i ve  wave length of the  optical .pyrometer used 

t o  determine 
%6550 

o f  the tungsten s t r i p  lamp. (The value Xe = 6550 A 

i s  t he  value given by ~ i l l i a m  T .  ~ i c k s  f o r  the  pyr&neter employed.33) 

Thus-, i n  order t o  determine the  brightness temperature of a 

l i g h t  source by t h i s  method, one must determine t h e  following quan t i t i es :  

1. The r a t i o  of i n t e n s i t i e s  (11%) a t  the  wave length  X and wave- 

length  i n t e r v a l  dX. (The ' i ~ ~ o r t a n c e  of dh w i l l  be considered 

/ 
sho r t l y .  ) 

2. %6550' the  br ightness  temperature of the  tungsten s t r i p  lamp 

a L  L,he c.rfectlv& wave length of the op t i ca l  pyrometer. 

The methods employed i n  determining the& quan t i t i e s  a r e  re la ted  i n  the  

following sec t ions .  

The l i g h t  sburces 'of  concern here a r e  general ly  l i n e  sources, and, 

s ince  the s t r i p  lamp omits a continuum, we a r e  comparing the i n t e n s i t y  

of a continuum with the  i n t ens i t y  of  a l i n e  of f i n i t e  width. I n  order  

t o  determine accurate ly  the i n t e n s i t y  of  the  peak of the spec t r a l  l i n e  

from the l i g h t  source, the wave-length i n t e r v a l  dA should be small 

compared with the  width of t h e  l i n e .  The spectrometer must have 

s u f f i c i e n t  resolving power t o  give the  t r ue  slla'pe of the  spec t r a l  l i ne ,  

t h a t  is, the  instrument must not  broaden the  l i n e .  Any broadening of  

the  l i n e  by the  instrument reduces the value of the  i n t ens i t y .pe r  u n i t  

wave-length i n t e r v a l  a t  the  peak of the  l i n e .  This y ie lds  a low value 

of S. s ince  a' s l i g h t  instrument broadening has no e f f e c t  on the  i n t e n s i t y  X 7 

per  dX of  the  contirluous emission from the tungsten s t r i p  lamp. 

Unfortunately, i n  the  measurements ca r r ied  ou t  here (with the  

exception of the  work with medih-pressure mercury lamps), instrument 

',broadening l imi ted the '  usefulness of  the  method f o r  determining the  

t r ue  value of S fo r  the  narrow l i n e  sources invest igated.  The values 
, X 



o f  S obtained represent  minimum values f o r  determining the usefulness 
X 

of a l i g h t  source. . . 

The problem of ins'trument broadening i s  given fu r t he r  considerat ion 
' 

: . .I 

i n  ' the next sect ion.  



EWERIMENTAL PROCEDURE: 

Determination of I/% 

I n  determining the  ' r a t i o  of i n t e n s i t i e s ,  1 there  a r e  three  

conditions t o  be s a t i s f i e d .  F i r s t ,  the e f f ec t i ve  a rea  of t he  l i g h t  

source and the  s t r i p  lamp must be equa l . '  Second, the  i n t e n s i t i e s  

must be measured a t  t he  same wave length and, t h i rd ,  from the  same 

wave-length i n t e r v a l .  I n  carrying out  the measurements, the  i n t ens i t y  

of the  l i g h t  source w a s  determined f i r s t ,  then t h a t  o f  the s t r j -p  

lamp, with i den t i ca l  op t ics .  

The o p t i c a l  arrangement employed i n  order t o  f u l f i l l  the  require-  

ment of equal  e f f ec t i ve  source a r ea  i s  represented schematically i n  

Fig.  12. An image of the l i g h t  source o r  s t r i p  lamp filament X is  

formed on an aper ture  A by the  l ens  L It i s  important t h a t  t h i s  
1 ' 

aper ture  be f i l l e d  by the  region of the  l i g h t  source which i s  of  

i n t e r e s t  and, i n  turn ,  by the  tungsten s t r i p  f i lament wh,en each is i n  

sharp focus with the  same op t i c s .  With t h i s  accomplished, the  require-  

ment fo r  equal  source a rea  i s  fu l f i l l ed , .  

which may be needed t o  weaken the  i n t e n s i t y  of the  rad ia t ion  (by neu t r a l  

f i l t e r s )  o r  prevent l i g h t  o f  c e r t a in  wave lengths from en te r ing  the 

spectrograph s l i t  (band-pass f i l t e r s  ), and the  l ens  L which serves 
2, 

t o  form an  image of the  aper ture  on the  s l i t  of  the  spectrograph. 

I n  order  t o  f u l f i l l  the  second and t h i r d  conditions ( a t  l e a s t  i n  

p a r t )  and, a l so ,  t o  measure the  i n t ens i t y ,  a +meter concave-grating 

spectrograph equipped with a scanning photomultiplier  was employed. 

The output from the  PC11 photomultiplier  i s  fed i n to  an ampli f ier  and 
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Fig .  12. Schematic of the optic; employed for  br ightness  - 
. t empera ture  determinations.  

X. Light source  or  tungsten s t r ip  lamp. 

L1. ~ o h b l e  convex quartz  lens, 10- or 23 -mm focal length. 

A. Defining aper ture ,  opening about 2mm in diameter .  

L2. Double convex lens,  23-cm focal length. . 

So Entrance s l i t  of the -3-meter grating spectrograph.  



. 1  

the  ampli f ier  output i n t o  a Brown '%lectronik"  s t r i p - cha r t  recorder.  

 h he scanner and ampli f ier  were constructed by D r .  John P h i l l i p s  and 

have been described by him.34) 

The apparatus i s  so arranged that the  image of  the entrance s l i t  

o f  the  spectrograph i s  focused on a s l i t  placed i n  f ron t  of -Lhe 

photomultiplier .  The s l i t  is  moved along the  Rowland c i r c l e  of the 

spectrograph by a synchronous motor and an .appropriate gear t r a i n .  ' 

Thus, t he  wave length  X i s  determined by the  pos i t ion  of the  s l i t  on 

the  Rowland c i r c l e ,  and the wave-length i n t e r v a l  dX i s  determined by' 

the width of the  slit, srlil the  l i n e a r  rec iproca l  d ispers ion o f  the  

, spectrograph. The i n t e n s i t y  of the  l i g h t  o f  wave length X and wave- 

length  i n t e r v a l  dh, i s  measured by the  response of  the  ampli f ier  and 

Brown recorder.  

Procedure f o r  Measurement of  the  In t ens i t y  

With t h e , l i g h t  source operating as desired,  the, spec t r a l  feature  

of i n t e r e s t  from the  lamp w a s  scanned a t  the  slowest scan speed (0.67 

o r  U.33 A per  mln, 1 ~ 4 ,  ur' 2115. usdcl-, respr,ct ively) i n  both direct.io_n..s. 

An indicat ion ~f the shape of  the  feature  was gained i n  t h i s  manner. 

 h he resolut ion of  the  3-meter spectrograph i s  not  s u f f i c i e n t  t o  give 
. 

the  t rue  p r o f i l e  of a sharp spe.ctra1 f ea tu r e . )  After  the  shape of 

the  feature  ( a s  given by the  instrument')' w a s  revealed, the  s l i t  of 
. . . . .  

0 .  

t he  sc,annihg- photomultiplier  w a s  moved t o  the  pos i t ion  of  i n t e r e s t  . , 

and a scan of  i n t e n s i t y  with time w a s  taken. This w a s  necessary . in  
. . . .  . .  

order  t b  obta in  a b e t t e r  measure of the  t r ue  i n t e n s i t y  (espec ia l ly  

of  sharp s p e c t r a l  fea tu res ) ,  s ince  the  response time of the  ampli f ier-  

recorder c i r c u i t w a s  too slow t o  give f u l l  response even a t  the  slowest 



scan speed. 

The posi t ioning of the  photomultiplier  s l i t  w a s  accomplished by 

slowly' changing . the . 'posi t ion o f '  the  's l i t  through hand ro ta t ion  of 
. . . .. 

. . 

the  &y-nchrdndui ,motor armatirre . When the  f e a t u r e  had a s ing le  peak, 

. t h e  s l i t  was'moved u n t i l  the  pos i t ion  giving max imum recorder response 

was  reached.; and t h i s  i n t ens i t y  w a s  recorded.as the  peak i n t ens i t y  of 
. . 

. . 
the  fea ture .  ' ~ h e i  the  feature  exhibi ted reversal ,  the same procedure 

. . 

. . . . . . 
w a s  foilowed in .o rde r  t o  ob t a in . t he  maximum in t ens i t y  of the  wings and 

. . .  I . . 

the mini- , i n t ens i t y  o f  the  centra l ,  .reversed por t ion of t he  l i n e .  
. . 

After  completion of  the  i n t e n s i t y  measurements on the  ' l i g h t -  

spur& fea ture ,  the' . .  l i g h t  . source was replaced by ' t he  tungsten s t r i p  ' 

lamp and , t he  i n t e n s i t y  of  the  s t r i p  lamp w a s  measured with the  photo- 

mul t ip l i e r  s l i t  a t  the  peak i n t e n s i t y  o r  center of  the  spec t r a l  fea tu re .  

, When the' l i g h t  source contained, severa l  , ape c t r a l  fea tu res  of  
, , 

i n t e r e s t ,  a separate experiment of  t h i s '  type w a s  ca r r ied  ou t  f o r  each 
4 .  

fea ture  . 
. :  

Uncerta int ies  i n  the  i n t e n s i t y  r a t i o  

I Be cause sX "s, i n  general,  . much lower than -Sh  f o r  the  spec t r a l  

fea tu re  from the  l i g h t  source ( - 2 7 0 0 ~ ~  as compared with -5000"~),  a 

wide va r i a t i on  i n  gain f ac to r  was required (-600) i n  order t o  determine' 

the  i n t e n s i t y  of  both sources with any accuracy. The ampli f ier  as 

designed w a s  very wel l  su i t ed  for.  t h i s ,  as it i s  poss ible  t o  change 

the ampli f icat ion over a f a c t o r  of  1000. ' The ampli f icat ion f ac to r s  
)C 

were , k n o p  with  an uncer ta inty  of  about f *. 
* 

The . au tho r  .is indebted t o  M r .  John Engelke f o r  the  determination of 
many o f  the  amplificat5on f ac to r s .  



The response of tk amplif ier-recorder c i r c u i t  w a s  l i n e a r  t o  

wi thin  *l$ and the  i n t ens i t i e s .  read from the  recor,der char t  were 

wi thin  t h i s  range' of uncer ta inty .  

The above.uncertainties a r e  believed t o  be below the  uncer ta inty  

i n  the  i n t e n s i t y  r a t i o  which may a r i s e  from improper focus of  the  l i g h t  

source o r  the  s t r i p  lamp on the aper ture .  Improper focusing a t  the  

aperture resul1;s i n  change i n  the  e f f ec t i ve  a rea  of the  source o f  

l i g h t ,  and t h i s  produces a change i n  the recorded i n t ens i t y .  I n  

order  t o  r ea l i z e  the  uncer ta inty  involved, the  tungsten strip lamp 

was delfbel.a'tely illuved i n  and ou t  of focuo . When the  lamp was 

obviously i n  bad focus, t h e . i n t e n s i t y  deviated from the  value when 

the lamp was  i n  focus by lo$. When the lamp was refocused, i n t e n s i t i e s  

were reproducible. wi thin  '2%. 
. . 

About '5% represents  a good est imate of  the uncer ta inty  i n  the  

i n t e n s i t y  r a t i o  r e su l t i ng  from the  uncer ta in t ies  discussed.  An 

uncer ta inty  of  +576 i n  the  i n t e n s i t y  r a t i o  produces an uncer ta in ty  

of only kl'$ i n  the  value o f  SL when the  value of S l i e s  between 3500 x 
and 6000"~ ,  the  range f o r  S values determined i n  thzs research.  

X 

This uncer ta inty  i s  representa t ive  of  th uncer ta inty  . i n  the  

values.  o f  S determined f o r  fea tu res  t h a t  a r e  broad, such as l i n e s  X 

from a high-pressure lamp o r  f o r  the  continuum from some high- intensi ty  

source such as the  anode of a py rome t~ i c  a r c .  With the  spectrometer 

employed i n  these s tudies ,  the  values of  S f o r  l i g h t  sources emit t ing 
X 

l i n e s  o r  sharp fea tures  with a width a t  ha l f  i n t e n s i t y  l e s s  than about 

0 . 1  A a r e  . subject  t o  much l a rge r  uncer ta inty  because of  the  e f f e c t  of 

instrumehk broadening. 



Instrument broadening 

A s  s t a t ed  e a r l i e r ,  it i s  important when t h i s  method i s  employed 

t o  determine S that 'the ' spectrograph employed y ie ld  the  t rue  shape 
X .;. . . .. . 

of the l i n e ' . i n  order t h a t  the  i n t ens i t y  measured over the  wave-length 

i n t e r v a l  djL a t  X be representative of the  t rue  i n t ens i t y .  Because of 

the.narrow half  width of the  spec t r a l  fea tu res  emitted by most of the 

l i g h t  sources' invest igated here, the  spectrograph employed w a s  not 

\ capable of resolving the t r ue  l i n e  shapk of the  fea tures .  

The dispkrsidri and resolvtng power of  .the 3-meter g ra t ing  

spectrograph a r e  givefi i n  Table 111. Since the  width of the  image . 

of  a monchromatic l i n e  formed a t  the Rowland c i r c l e  of  the  spectro- 
- 

graph i s  given approximately by the  s& of  the  t h e o r e t i c a l  resolving 
., 

power and t he  entrance s l i t  width ( t he  width i n  A of the  image of  the 

entrance s.l.5.t 'at, the Rowland c i r c l e ) ,  it is possible  t o  e o t i m t e  the  
. . 

minimum l i n e  width of a spec t r a l  feature  a t  the photomultiplier  s l i t .  

The instrument' broadening (width  added t o  the inherent  width of  the  
' 

spec t r a l  f e a tu r e )  estimated f o r  the  3-meter spectrograph i s  given i n  Table 

IV f o r  various s l i t  widths employed. The est imated minimum instrument . 

broadening.with t h i s  spectrograph a s  employed i s  0.07 A i n  the  f i r s t  

order and 0.04 A i n  the  second order .  Thus, any s p e c t r a l  feature  with 

a ha l f - i n t ens i t y  width l e s s  than 0 .1  A w i l l  be considerably broadened 

by the  instrument. 

The'photomultiplier  s l i t ,  which determined dX, could be s e t  a t  such 

a width that dX w a s  much smaller  than the  instrument broadening. The 

i n t e n s i t i e s  recorded a r e  therefore  representa t ive  of the  fea ture  as given 

by the  instrument. 



The r e  solving power. and dispersion of  the spectrographs employed 

Spectrograph Grating ru l ing  Order Dispersion Resolution 
, (A per  mm) (A a t  4 0 0 0 ~ )  

- 
+meter -5 i n  at  15,000 1st 5 3 0-053 . - 

l ines .  per  inch 2nd 2.7 , 0.027 

21- f t  -5 i n  a t  30,000 1st 1.32 0.027 
l i n e s  per  inch 2nd 0.66 0.014 

. . 

Table IV 

Instrument broadening (an est imate of the width added t o  the na tu r a l  
width of  a spec t r a l  f e a tu r e )  ' 

Entrance s l i t  Broadening i n  A a t  4000A, 
Spectrograph . a 1st order 2nd order 



I f  the  t r ue  p r o f i l e  of the spec t r a l  feature  i s  known, an est imate 

of the t r ue  i n t ens i t y  c a n b e  gained. The peak height o r  i n t ens i t y  of 

a spec t r a l  feature  . is d i r e c t l y  t o  the  half  - in tens i ty  

width i f  the feature  "is t r i angula r  i n  shape. Knowing the  t r ue  ha l f  

'width of  the  spec t r a l  feature  and the  half  width of the  . instrumentally 

broadened l i n e  .one can obta in  the  t r ue  i n t ens i t y  by multiplying the  

observed i n t e n s i t y  by the  r a t i o  of the ha l f  widths. 

I n  order  t o  gain a b e t t e r  est imate o f  the  shape of the  spec t r a l  

fea tu res  from the  ' l i gh t .  sburces - inves.tigate,d here, a 21-f t  concave - 

. spectrograph was employed. ,The dispersion and reso lu t ion  of 

t h i s  spectrograph a r e  given i n  Table I11 and the  estimated instrument 

broadening i n  Table IV. 

The spec t ra  o f  the  l i g h t  sources were recorded photographically, 

and the  p l a t e s  were analyzed with a recording microphotometer. Hyper- 

f ine  s p l i t t i n g  and reversa l  of "sharp " . l i ne s  which remained unresolved 

by the  3-meter spectrograph and:sca~ner were resolved i n  t h i s  manner. 

Estimates of the  t r ue  widths of  the  spec t r a l  fea tu res  were made 

from the  spectra  recorded with the  21-f t  spe,ctrograph. These estimated 

widths were used with the  instrument broadening of  the 3-meter spectro- 

. .graph t o  est imate the  t r ue  i n t e n s i t y  of  the  spec t r a l  fea tu re .  The 

estimated width w a s  added t o  the  instrument broadening and taken as the  

width of the  l i n e  a t  the photomultiplier  s l i t .  This width w a s  divided 

by the  est imated width and the  observed i n t ens i t y  was mult ip l ied by 

t h i s  quot ient  t o g i v e  the  estimated t r ue  i n t e n s i t y  of t h e ' s p e c t r a l  
.. .. . . 

fea ture .  



Determination of %6550 and $" 

The Tu&steh strip Lamp 

The'.kungsten s t r i p  1-p employed a s , . a  sdurce of rad ia t ion  of  known 
..,. . 

brightness  temperature was a General l e c t r i c  ~ ~ A / T J o / ~ P - ~ v  lamp with 

. . 
an S R ~ A  f i lament.  . The' lamp w a s  operated a t  approximately 10 v dc and 

.. . 

. 1 p .  The.powgr supply f o r  the  l&p consisted of a full-wave 30-amp 
. . 

selenium r e c t i f i e r  .with a balk of storage b a t t e r i e s  dcting a s  a buf fe r  

t o  remove ripple from t h e  r e c t i f i e r  output.  The power supply f o r  the  
. . 

r e c t i f i e r  '&as Sola s t a b i l i z e d  ilO$:aC regulated by a 'powerstat .  . 

 he currerl L ~ h ~ u u ~ l ~  " t h e  h p  f il&ient 1~8s determind?, hy measuring 
. . 

the  po t en t i a l  drop .across .a precis ion 0.01-ohm res is tance wtth a 

precis ion potentiometer. The current  w a s  regulated by adjustment of 

the  powerstat.  After  the lamp ' w a s  ' s u f f i c i e n t l y  warmed, the  current  

remained e ~ s e n t i a l l ~ .  constant .  

In  a few cases, the  lamp tempera'Lure w a s  determined from a 

i 
pse.v.iously de t e  mined curve of  lamp temperature versus lamp current ,  

bu t ,  generally,  the temperature of the  lamp wa,s cletcimined i n  poci t ion 

a f t e r  the  i n t e n s i t y  de teLdr ia t ion  (wi th  txe. carbon a r c )  o r  during the  

i n t ens i t y  dete rmi'nation (with commercial lamps ) . Thk lamp current  

serve'd as. a ,check on the  s t a b i l i t y  of the  lamp during the  i n t ens i t y  

determination. 

. . 

The br ightness  temperature, %6550) of the  tungsten s t r i p  lamp 

was measured w i th .8  disappearing-filament o p t i c a l  pyrometer. The 

number of  temperature readings made during each i n t e n s i t y  determ9nalion 



bu t  a t  l e a s t  three and up t o  e igh t  readings were taken each time. The 

mean deviation of  the  ' scale  readings f o r  any one i k t ens i t y  determin- 

a t i o n  was le,ss than k2,OK. 

A l l  the  temperature measurements were made by using op t i ca l  

*' 
pyrometer NO. 2, Leeds and ~ o r t h r h ~  SN 749235. This pyrometer w a s  

compared with No. 3, Leeds and Northnip SN 709371, a pyrometer used 

only  f o r  comparison purposes and recen t ly  ca l ib ra ted  a t  the  National 

Bureau o f  Standards i n  w$shington, D.  C .   a an. 1958). The pyrometer 

sca le  readings were found t o  d i f f e r  by a near ly  *constant amount (10.552OC ) 

. i n  the  .range of  sca le  readings. ,2000 t o  2600°C. This d i f ference w a s  

subtracted from the  scale  reading of pyrometer No. 2 t o  give a value 

corresponding t o  a scale  reading f o r  pyrometer No. 3. The correct ion 

supplied by the  National Bureau o f  Standardswas then applied t o  t h i s  

value and 273°C added . i n  order  t o  obta in  
, %6550. 

Thus, the  temperature scale  employed here i s  t h a t  of  the  National 
I 

Bureau of Standards (1958) wi thin  the  uncer ta in t ies  involved i n  opti.ca1 

pyrometry.  h he temperature sca le  i s  based on the  Planck r a d i a t i o n .  

l a w ,  with c = 1.4380 and the  gold point  as 1336'1~. ) The lamp br ightness  
2 .  

temperatures a r e  probably wi thin  5 5 ' ~  of t h i s  scale.. A t  2 6 5 0 ° ~ ,  the  

, u sua l  value of 
%6550' 

an uncer ta inty  of  '5°K i n  
b 5 5 o  

w i l l  produce an 

uncer ta inty  of .  l e s s  t h w  +I$ i n  S i n  the  temperature range, 3500 t o  
. , X 

6000 OK. 

Determination o f  S-- 

For t he . ca l cu l a t i on  of S the  br ightness  temperature of  the  tungsten 
k'. 

' * 
The o p t i c a l  pyrometers i n  the  possession.o'f t h i s  laboratory have 

laboratory i den t i f i c a t i on  numbers on t h e i r  faces .  



s t r i p  lamp a t  A must be calculated by using (B-4) . '  The emiss ivi ty  

o r  the tungsten s t r i p  and ,T, the  t r a n s d s s i o n  of the lamp envelope, 

must be known a t  6550 A and a t  h.  

For the  emiss ivi ty  6f the tt;ungs,ten. s t r ip . '  a t  the t r ue  tkmperature 

o f  the s t r i p  and ,wave length h, the values given by De ~ 0 s ~ ~  were 

. . *  
employed. . . 

The value of  T. a t  various- wave lengths w a s  determined with the  

a i d  of 'a Cary model 1k-M Recording Spectrometer . The op t i ca l  path  

of  the instrumeit: w a s  masked, and the  akso'rptibn of an a rea  of the 
, - 2 -  . . 

envelope equal t o  t h a t  i n  the o p t i c a l  t r a i n  ( ~ i g .  12)  w a s  determined 

f o r  the lamp employed ( in ta ' c t ) .  .An envelope from a lamp of the  same 
. . 

type w a s  Cut i n  ha l f  ,along' the a x i s  of  the  envelope and the  absorption 

was determined f o r  the  whole envelope and f o r  one-half of the  envelope 

as it appears to ,the tungsten s t r i p  i n  the  o p t i c a l  t r a i n .  By multi-  

p lying t he  absorption of the  i n t a c t  lamp by the  appropriate r a t i o  of  

these  absorptions,  one could obta in  an estimate of the  absorption and, 

. thus,  the  transmission of the  lamp envelope i n  the o p t i c a l  path .  

Values of  TE a t  the  wave lengths where S w a s  measured a r e  given X 

i n  Ta'ble V,  together  with the calculated values of R ,  -where 

A s  seen' . in the  t ab le ,  the value of TE is  near ly  constant; the  

change i n  a nearly cancels the  change i n  E over the  wave-length 

. . region of  i n t e r e s t .  

* 
De Vos s t a t e s  t h a t  the  emi s s iv i t i e s  given i n  h i s  paper may be applied 

t o  a well-annealed tungsten s t r i p  lamp with di f ferences  l e s s  than 20.35 
Operation of  the  lagp a t  about 3 0 0 0 ~ ~  serves t o  form a well-annealed 
tungsten s t r i p .  The lamp employed here had been t r ea t ed  i n  ' t h i s  manner. 9 



Table . V 

Values of TE and B a t  wave lengths a t  which SX values were determined 
(B as defined by Eq.  (B-5) )  

The uncer ta in t ies  i n  S r e su l t i ng  from uncer ta in t ies  i n  the  
X 

values of TE employed a r e  probably l e s s  than '2%. This i s  we l l  

below the  uncer ta in t ies  produced i n  S values because of  instrument 
X 

broadening. 



Light Sources Investigated;  Operating Conditions 

The ThaI.J..i~un Tmp 

* 
The thal l ium lamp investigated was an O s r a m  Spectra l  Lamp. 

The lamp i s  a discharge lamp f i t t e d .  with glow elect rodes ,  and the, 

emission from th6 lamp i s  radia ted i n  the  form of l i n e  spec t ra  from 

the  vapors' i n  the  lamp. Operating pressures '  a re  not  avai lable ,  but  

' t 
presumably they a r e  low., 

The lamp was .operated liear the  spkcified c q d i t i o n s  of 14  v 

pntpnt ia l  drop 'across the  lamp and 1 amp cur ren t ,  The power supply 

w a s  a 220-v dc sburce with -200 'ohms s e r i e s  res is tance a s  a b a l l a s t .  

The lamp w a s  allowed t o  warn 'for. about 20 min before o'bservations 

were made. The p o t e n t i a l  drop across  the  lamp and the  current  were 

recorded during t he  i n t e n s i t y  measurements. The values a r e  reported 

with the brightness-temperature values i n  Table VI i n  Results  and 

Discussion, p .  84. 

The Sodium Lamp 

The.Pirani-type sodium lamp invest igated was a General E l e c t r i c  

N a - I  sodium lamp, operated under various condit ions.  The recommended 

voltage and current  a r e  8 v and 3 amp. These operation cha rac t e r i s t i c s  

a r e  f o r  operat ion wi th  an a c  voltage supply. 

Here, a 110-v dc source with a ~ e r i e s  ballast res is tance served 

* 
These lamps a re  manufactured by O s r a m  GMBH, Ber l in ,  Germany and a r e  

ava i lab le  through George W .  Gates and Co., Inc . ,  Fra&lin Square, N. Y. 

 h he company es t imates  the  thal l ium pressure as approximately 0.01 mm. 
The lamps a r e  argon-f i l led  t o  2 0 . m m  Hg and operate a t  about 30-rnm Hg 
pressure,  according t o  the  company. (p r iva te  communication from Osrani 
m H ,  1956.) 



as a power supply f o r  the lamp. The lamp contains coi'led f i laments 

which were heat id  by a 2-v storage ba t t e ry .    he heat  from these 

f i laments evaporates some of  the sodium i n  the  'lamp and a discharge 

r e su l t s ,  the  whole lamp envelope becoming f i l l e d  with so,dium vapor 

rad ia t ion ,    he lamp a l so  contains 'some r a r e  gas f i l l i n g .  The vapor 

'pressure of the sodium ,vapor i n  the  l&mp envelope depends on the  

temperature of the  w a l l s  of the  lamp. The discharge envelope is  

surrounded by an insu la t ing  evacuated jacket i n  order t o  reduce 
. . . . 

temperature gradients  i n  the discharge tube.  

The i n t e n s i t i e s  of  the sodium D l i n e s  'were measured under various 

operating conditions. The conditions f i n a l l y  used during brightness-  . ..!c . .  

temperature measurements were po ten t ia l ,  3 .'5 v; current', 2.3 amp; aria . . .  !, .. . :;.. 
< , r .. . -;;>,; 

both f i laments heated. The lamp operates s a t i s f s c t o r i l y  i f  only  the  rn .. 

cathode is  heated, bu t  the i n t e n s i t y  i s  increased s l i g h t l y  i f  both. 
. - ' 3  
' , P.," 

filaments a r e  heated. . ,  , 

The i n t e n s i t y  of rad ia t ion  i s  not constant over the  a r ea  o f  the  

source, bu t  va r i e s  by a f ac to r  o f  about two from the  most in tense  
' 

region (near  the  cathode) t o  the  edges' of  the lamp. The brightness-  
> 

temperature measurements were made' a t  the  most intense region o f  the  

lamp. 

The Mercury Germicidal .&amp 

A General E l e c t r i c , ~ L 8 ~ 6  germicidal lamp w a s  operated with a & - w a t t  

' fluorescent lamp power supply and 60-cycle 110-v ac .  The lamp current  

i s  about 0 . 1  amp. 

The pressure of mercury vapor i n  the  discharge tube i s  controlled 

by the cooles t  p a r t  of  the  tube.  , The pressure probably reaches a few 

hundredths of  a mm of Hg. 



11-82 
I 

. . 

The Mercury ~ 1 0 0 ~ 4  Lamps 

Three General E l e c t r i c  11100~4 mercury lamps were invest igated.  

,The same power supply (200-v dc through 200 ohms s e r i e s  res is tance ) 
. . 

was .employed f o r  a l l . t h r e e  lamps. 'The lamp po t en t i a l  drop and current  
I 

var ied from lamp t o  lamp and a l s o  with the  po l a r i t y  employed. These 

q u a n t i t i e ~  were determined d.l>.rj.ng each brightness-temperature measure - 

ment 

The la.xrps4were allowed t d  warm f o r  15 t o  20 min t o  give measure- 

ments which were constant i n  time. I n t ens i t y  measurements were made 
. . 

during warm-up periods', also..  

The Hi-00~4 lamp is a n .  a r c  l a p  'and byerates ,at a prcsoure of about 

10 atmospheres- The intense a r c  columl of the  lamp i s  about 3-mm i n  

diameter and about 20-mm i n  length .  
. , . . . . 

The Carbon Arcs ' . 

The brightness.  temperature of t he  elnissiol~ from the  plasma of 

the controlled-atmosphere a r c  described i n  P a r t  A was investigated.  a t  

3883 A .  Thc operqting conditions such as amblerit gas pressure,  .current ,  

po t en t i a l  drop, and a r c  length  are given i n  Table X I  i n  Results  and 

Discussion, p.  98. The ambient gas compositiun, electrode or ien ta t ion ,  

and composition of the  e lect rodes  have been discukked i n  P a r t  A. 

A pyrometric a rc ,  2'4 w a s  approximated as closely  as possible  by 

using an ava i lab le  ar'c assembly. The emission from the  anode was . 
invest igated i n  order  t o  determine S values a t  various wa+e lengths.  

X 

The a r c  was  operated i n  ,air a t  atmospheyic pressure with a 6.3-mm 

spectroscopic graphi te  anode and a 5.8-DI~ cored carbon cathode, held a t  

r i g h t  angles with the anode hor izontal  and the  cathode v e r t i c a l  and 



below the anode. ( ~ h e s e  e lect rodes  a r e  described i n  Table I, p .  12 )  

The e lect rodes  were held i n  pos i t ion  with a Bausch and Lomb micro- 

pro jectbr  a r c  a'ksembly, bu t  with t h i s  a r c  p ro jec tor  independent 

adjustment of the  e lect rodes  was not possible,  as the electrode 

.holders  were coupled t o  one adjus,tment control .  Therefore, it w a s  

d i f f i c u l t  t o  maintain the  a r c  operating near the  conditions specif ied 

4 
f o r  a pyrometric . a rc .  

Cored. carbdn e lect rbdes  were .employed a s  cathode ,mater ia l  i n  

.order t o  maintain an a r c  t h a t  w a s  reasonably s t ab l e .  The recommended 

graphite 3 .'2-mm elect rodes  gave unsat is factory operation with t h i s  

arc, assembly . 
In t ens i t y  measurements were made when the  a r c  operated s t ead i l y .  

The op t i c s  were such t h a t  the  anode w a s  viewed normal t o  i t s  surface .  

The a r c  current  and p o t e n t i a l  drop were, measured during i n t ens i t y  

determinations, bu t  the  r e l a t i v e  pos i t ion  of  . the  e lect rodes ,  which .. -.,'. . . .  
, ,,>'. ' 

i s  undoubtedly of importance i n  determining the  anode temperature;.  . .. . ..It I d  , .. 

w a s  not measured because of  the  nature o f  the  a r c  assembly. 



Each l i g h t  source i s  here considered i n  turn ,  and the values 

of S ( the  di rect ly .observed value and the  estimated value)  a r e  X 

discussed and evaluated.  It becomes evident t h a t  the  d i r e c t l y  
' . 

obselve'd value of 8 represents ,  i n  gen&rsl, a minimum yalue. of X 

S f o r  sharp spec t r a l  fea tu res ,  and t h a t  the estimated value of S X X' 

although more uncertain,  2s more representa t ive  of  the t rue  value 

Vhe 'L'hallium Lamp 

2 
ll'he va lues  o f S  were determined a t  X3775.5 A ( 7  911, - 6% ) X ' .  

2 
1/2 

and a t  X53500 2 A ( 7  S - 6% ), and a r e  given i n  Table V I .  For, 
1/2 1/2 

Table V I -  
P 

~ , .  

S values f o r  an O s r a m  thall ium lamp X 

Current PD Wave length  "Component" In t ens i t y  ~ ~ ( o b s )  ~ ~ ( e s t )  
(amp) !v) C A  r a t i o  ( OK) ( O K )  

determination o f  S a t  5350 A, a Wratten No. 3 f i l t e r ,  which cuts  o f f  
X . 

l i g h t  below 4500 A, was  placed i n  the  o p t i c a l  t r a i n .  For measurements 

a t  3775.5 A, a 'wra t t en  No. 18a f i l t e r ,  which passes l i g h t  i n  the  wave- 

length range 3000 t o  4000 A with peak transmission a t  3600,A, was 

employed. 

The i n t e n s i t y  measurements a t  5350 A were ca r r ied  out  hy using the  



3-meter g ra t ing  spectrograph i n  the  f i r s t  order.  The " l ine , "  as 

scanned, appeared asymmetric, y i t h  the most intense por t ion tbward 

the  red.  The f i r s t -o rde r  spectra  taken with the  21-f t  g ra t ing  

spectrograph' revealed t h a t  the  " l ine"  a t  5350 A consis ts  of a t  l e a s t  

two components (see  Table V I ) .  These components a r e  the  r e s u l t  of  

the  hyperfine s p l i t t i n g  i n  thall ium. The d e t a i l s  of  the  hyperfine 

s t ruc ture  6f the thall ium spectrum a r e  given by Jackson36 and Schuler 

37 and Keys tone . 

Since na tu r a l l y  occurring thall ium consists of two isotopes,  each 
\ 

with a ' n u c l e a r  spin  of 1/2, the  thal l ium l i n e s  5350 and 3775 ;5  A a r e  

expected t o  exh ib i t  s i x  components each.37 The s p l i t t i n g  of the  

5350 A lime i s  .such t ha t ,  even with high resolut ion,  only four l i n e s  

a r e  observed36 a s  two p a i r s  of l i n e s .  The p a i r s  a r e  separated by 

0.118 A, while the  separation between the  two " l i n e s "  i n  each p a i r  

i s  about 0.016 A,  

The eniission from the  thal l ium l a m p  a t  5350 A is  ,expected to 

consis t  of  two l i n e s  separated by 0.118 A, s ince  the  width of  each 

component i s  expected t o  be large  enough t o  cause overlap of  the  c lose ly  
. .  . 

spaced l i n e s .  The width of each of  the  two l i n e s  was  est imated as 
* 

0.025 A, and the  width of the  l i n e  from the 3-meter spectrograph w a s  

estimated as 0. I. A. The width of  the  l i n e  recorded by t he  3-meter 

spectrograph scanner (which included a l l  components i n  one unresolved' - 

l i n e )  w a s  0.20 A. 

The r e l a t i v e  i n t e n s i t i e s  of  the  "components '' given i n  Table . V I  

' f o r  the  5350-4, emission were estimated from the  photographic p l a t e s  

8 
. A component width of  0.0@ A ( ~ o p p l e r  width a t  1 0 0 8 ~ )  was assumed Bnd 
added t o  t h e .  separation o f  the  c lose ly  spaced l i n e s .  

' 



taken .yi-th the 21-ft spectrograph. The S. ( e s t  ) values were obtained by 
. . . . .: . . 

X 
hul t i i ly ing '  .the peak in tens i ty  from the re corder chart by the r a t io  of 

. . 

' the  estimated half widths and the re la t ive  inte.nsit ies.  
. . 

. . 
. A t  j775'.5 A, one cell-resolved l i n e  and a p a i r  of p a r t i a l l y  

\ 

resolved l ines  were observed' by using,'the 3-meter spectrograph and 
. n  . ' 

. scanner. i n  ' the second order. The spectra taken with the 21-ft spectro- 

graph exhibited three well-resolved l ines .  According t o  ~ackson,  36 the 

s i x  components appear as three pa i r s  of l i nes  and the separation of 
. . (  

the' l i kes  i n  each p a i r  i s  about 0.007 A. Again, the width of each 

component, as emitted by  the lamp Is exgec.ted to  eause overlap of 

the closely spaced l ines  i n  each pa i r .  The width of each l ine  was 

estimated as 0.013 A (0.007 A plus 0.006 A, the Doppler width of a l i n e  

a t  1 0 0 0 ~ ~ ) .  The width of the 3-meter spectrograph l ine  was estimated a s  
4 

0.054 A; the width ubserved with the scanner was  -0.054 A. 

The re la t ive  in t ens i t i e s  of the l ines  a t  3775.5 A were obtained 

from the scariner recorder. chart  and the photographic p la tes  taken with 

the 21-ft spectrograph. 

The S ( e s t )  values given i n  Table VP are  believed to  be low estimates, 
X 

but the t rue value is probably within 5009C.oP these estimates. 

The l i n e s  exdtted by the thallium lamp show no signs of reversal  

( the  - l ines  appear sharp, no f la t tened tops) within the limits of the 

21-ft  spectrograph. Examination of the lamp radiation with a Fabre- 

Perot interferometer would be required.lto determine the 'exact prof i le  

of the l i n e s .  

The Sodium Lamp 

S, volu68, a t  A5890 (3% 312 - and ~ 5 8 9 6  (3?P112 - 32~1,2) 



were;de.termine.d . f o r  .a Ge.nera1 Elec t r ic  Na-I lamp, and the resu l t s  are  . .. .:... , I '  . . .  . . . . . . .. . 
. . .: ..: . . . . 

. ' .&ivkn' , , ip.~&ble . . .  VII.; The measur&enti were made w i t h  a Wratten No. 4 
. . .:. .. . . 

. ~ i l t e r  ' i n  .the .opt5cal t r a i n .  . . . The .fi l l ier removes, .all radiation below 
. . .  

, 4600 A; thus , .  any l i g h t  from high& orders w a s  eliminated. 
, . 

With :tk;e. 3-meter spectrograph and scanner i n  the f i r s t :  order, 

the.  . . iodiulh . .. .D l ines  appeaired as single t r iangle  - shaped . l i n e s  , and . . 
. ' .  

, . $he . in tens i ty  , . of each l ine.  was..measured a t  the peak of the t r iangle .  
. .  . 

The spk$tr+: taken H f t h  the 21- f t  .spe.c.trograph i n  the f i r s t  order 
. .  . .  . . . . 

, . . . .  ., :, . . . . . .  , %  , .  . , .  , i- 

; . re.v.eale3 . j t ha t  ;thq.Lgnes were . reversed :(see Table V I I  ) . The re la t ive  
:.. . . .  . .  . , 

: ' . .  . . , .  . 
. . . . .  

. intensi-t;$e,g' of., ,%he wing p&&k's and. the reGersed - center of each l ine  
' I .  L .. 

. . 

were es't!ma;ted. frbm the phot6g,raphic plates ,  and values of S ( e s t )  
. . X 

are a t  these posit ions on the l ine  prof i le ,  Table VII. 
. . . . .  
. . 

,  he width.; o f ,  the D l ineb were estimated from the 21-ft spectra- 
. . .  

g ~ a p l ~ '  spec' lra and are given i n  ~ a ' b l e  VII, Column 4. ' The widths of 

the l ines  . . from t h e  3-meter spectrograph were estimated a s  0.15 A a t  
. > 

5896 . a  and . 0 . h  . .  ,, A at  5890. The corresponding values observed with the 
. . 

scanner were -0.17 and -0.20 A. 

'The. S ( e s t  ) ealues were calculated by multiplying the peak 
X 

in tens i ty  of the l ine  read from the recorder chart by the r a t i o  of 

the estimated half  widths and by the re la t ive  in t ens i t i e s  a t  the various 

posit ions on the. l i n e .  The S ( 'es t )  values f o r  the peaks of the wings X 

m& be: s l igh t ly  low, while the value f o r  the reversed center may be 

too high. ' The t rue  S values a t  the wing peaks a re  probably within 
X 

2 0 0 ' ~  .of the estimated values. 

Because of the l imited resolution of the .21-f t  spectrograph, the 

extent of . l ine ' reversa l  f o r t h e  sodium D l i nes  is  not exactly known, 

but it is expected t o  be greater  than the amount estimated. 



Table VII , 

. . 
.S values. f o r  the Na D.-lines em2tted by a Genera l  Elect.r ic NE-I Laanp . . 

X 

Current . Poten t ia l  drop Wave length HaiP width . Positi'on om . l ine: .  X Relative ~ ~ ( 0 ~ ~ s )  . ~ ~ ( e s t )  
( . b e  1 , (vo l t s )  (A - ( A )  (A interisfty : 
* - .- . . 

3.55k0.05 5896 0.07 Peak of red a n g :  0.03 1 

Reversed center: 0 0.63 

Peak of v i ~ l e t  wing: 0.02 0.82 . 

Peak of red wing: 0.04 1 

Reversed Center: 0 0.49 

Peak of vicll?twing:0.03 0.87 



. . I f ,  the N a - I  'lamp were 'to be employed,,,as a l i g h t  source fo r  the 

studx.of ,sodium-atom radiative , l ifetimes, the D l i nes  emitted by the 
. . 

l&p .should be investigated ' a t  higher resolution t o  determine the 

extent of the reversal.  

It has been extimated tha t  the minimum value of SX t ha t  a l igh t  

source . . must have a t  the centers of the D l ines  i n  order t o  obtain 

meaningful l ifetime measurements 'with the l ifetime apparatus ava'il- 

able i s  1 8 5 ~ ~ . 1  Unless there i s  an extreme amount of reversal a t  

the centers of the D l i nes  emitted by the Na-I lamp employed he're, 
. , 

the lamp appears t o  be an excellent l i g h t  source f o r  l ifetime measure- 

ments, on sodium.. - The ldmp 'may also be useful fo r  studies of molecules 

with l ines  which overlap the D l i nes .  

The Mercury Germicidal . - . -. - Lamp 

The General Elec t r ic  ~ 1 8 ~ 6  lamps are  characterized by the narrow 

l ines  which they emit ( t h i s  i s  nok t rue  f o r  a l l  these lamps, however). 

The lamp investigated diil have very narrow l ines  and f o r  t h i s  reason 

t h i s  lamp was used fo r  focusing the spectrographs. 

The values of SA f o r  the 4358 and 4047 A l i n e s  emitted by the 

lamp are  given i n  Table V I I I .  / 

Table V I I I  

S values fo r  a General ~ l e c t r i c  germicidal lamp 
. X 

Wave length , . Tran.s i t ion  sx( obs s ( e s t )  
(A ( O K )  OK) 

4358 , .  73si , -6% .1 ' 3450 4250 



The measurements f o r  the  determination of S were carr ied out  by 
h. 

using the second order  o f  the  3-meter 'spectrograph. No band-pass 

f i l t e r s  were employed during the  i n t ens i t y  measurements, but ,  i n  t h i s  
. . . . 

wave length region, f i l t e r s  have no observable e f f e c t  on the  value of 

S h' obtained because the  s e n s i t i v i t y  of the  photomultiplier  a t  8000 A 

30 
i s  . . extrem&ly low. 

The h a l f  width of the  mask irltense hyperfine component of the  

mercury l ines34,  w a s  estimated as 0.007 A and the  width of the  3-meter 
I\ 

spectrograph l i n e s  0.044 A i n  order t o  obta in  the  S ( e s t  ) values. The X 

, width of the 4358 A l i n e  as recorded by .the scaurler was 4 . 0 4 5  A, and 

f o r  the  4047 l i n e  a width of 0.063 A w a s  found. The 4047 A l i n e  had 

a l a rge r  width because of  t h e  presence of  a second f a i r l y  intense 

unresolved hyperfine component ( s p l i t t i n g  0.05 A; r e l a t i ve  i n t ens i t y  

-0.2 according t o  spec t ra  taken with the  21-f t  spectrograph).  h he 

hyperfine s t ruc tu r e s  of  the mercury l i n e s  from an unreversed a r c  a r e  

given by Pool and Simmons,. 38 ) 

I n  obta ining ~ ~ ( e s t )  t he  e f f e c t  0.f the  unresolved components on the  

i n t e n s i t y  of the  l i n e s  was neglected. % 
The values of  S ( e s t )  reported i n  Table V I I I  may be as much as X 

5 0 0 ' ~  from the  t r ue  value of  S ' bu t  the  values a r e  considered a s  X ' 
b e t t e r  es t imates  of t he  t rue  br ightness  temperature i n  the same temper- 

a tu r e  range. 

The Mercury Hl00A4 Lamps 

S values f o r  th ree  Genera1,Electric ~100A4 mercury lamps were X 

determined a t  various values of .X .  Although the  lamp operating voltage 

and current  var ied from lamp LO lap, the  lamps were found' t o  be qu i te  



uniform i n  S values, as can be seen i n  Table IX, which gives values 
. A 

of '5461 obtsined f0.r each .lamp. T'he' 'differehces i n  the  S values f o r  
X 

.. . 

, . the . three lamps a t  each wave length were i n  the same d i rec t ion  and of  

the  same order qf  magnitude (-100'~) as those f o u n d a t  5461 A. The 

* 
values of  S obtained a t ' v a r i o u s  wave lengths f o r  the lamp Hl00A4-I1 

X, 

a re  given i n  Table X together with the ope-rating conditions of  the 
, 

'lamp and the cha rac t e r i s t i c s  of the  emitted mercury l i n e s .  The values 

of Sh a re  given a t  the  peaks of the  wings and a t  the  center of  the 

reversed por t ion of  l i n e s  exhibi t ing reversa l .  

The values of  S have 'been given t o  the  neares t  10°K f o r  t h i s  lamp, A .  

but  the  corresponding values f o r  some o ther  Hl00A4 lamp may d i f f e r  by 

100°K o r  mord from. these values.  

Since the  shapes of the  l i n e s  emitted by these lamps a r e  not  

un i for i~ ,  reproductions of  the  , l i n e s  as recorded by the  3-meter spectro- 

graph scanner a r e  given i n  Fig. 13. The wave length  of  the  t r a n s i t i o n ( s )  

responsible f o r  the  l i n e  a r e  given below each p r o f i l e .  The ordinate  i n  
l 

each case is  r e l a t i v e  i n t e n s i t y  with the  peak i n t e n s i t y  normalized t o  

un i ty .  The abscissa  is'&, i n  A, the' d is tance from the  center of the  

l i n e .  The center of the l i n e  w a s  taken as the  peak of the  p r o f i l e  when 

the  l i n e  w a s  imreversed and as the  center  of  the  reversed por t ion when 

the  l i n e  w a s  reversed. 

The l i n e s  a r e  qui te  broad, as expected, s ince  the  pressure i n  the  

a r c  envelope during operation is  about 10  a t m s . '  Reversal i s  a l so  

iC 
The lamp has been i den t i f i ed  by insc r ib ing  the  numeral I1 on the  base.  

t Value given by the  General E l e c t r i c  Company i n  a pr iva te  communication 
( A U ~ .  1958); 



Table IX 

S values a t  ~ 5 4 6 ~ . 7  f o r  three  General E l e c t r i c  11100~4 lamps X 

Lamp 110. Lamp Law? Po l a r i t y  Half width &(RW)" 11, M.(W 
voltage current  . . ( A >  .. . . . 

( v >  (amp) - - 

&&(:Pw) amd &(w) a r e  the dis tances  from the center  of  the  l i n e  t o  the  peak of the  red  wing and 
v i o l e t  wing of the -reversed l i n s .  The wave lengths given f o r  the centers of  the  l i n e s  a r e  
l i t e r a t u r e  values; see Ref. 39, p. 202. 



Z 

t '  Table X 

. S values fo r  a ~ e n e . r a l  E l e c t r i c ~ 0 0 A 4  lamp - . . A .  , . . 

Lamp h~ Wratten Half width , & ( I w ) ~  A & ( v w ) ~  SX 
voltage current f i l t e r  

(A) (A 1 ( OK) 

121 0.66 18a . 0.26 3341.5 4440 

+O .23 . 5300 

122 0.68 18a 1.16 3650.2 4750 

a&(RW) and &(VW) ,are  the distances from the centdr of the l ine  to  .the 
peak of the red wing and v io le t  wing of the reversed l ine .  . The wave 
lengths given fo r  the centers of the l ines  a re  l i t e r a t u r e  values; see 
Ref. 39, p .  202. 



Fig.  13. Prof i les  of various m e r c u r y  l ines emitted by a Genera l  
Elec t r ic  H100A4 m e r c u r y  lamp. Profi les  taken direct ly  
from char t  recordings of the 3-meter-grat ing spectrograph 
S,C anne r . 



expectkd when the  l i n e  i s  very ' ln tense  because of  thk large  tempera- 

t u r e  gradient  across  the radius of  the  a rc  col;umix.and.:,the high op t i ca l  

densi ty  (pressure)  of the  mercury vapor. The gas temperature a t  the  

center of the a r c  'column i s  undoubtedly above 6 0 0 0 " ~  (see  Ref; 26, p.  

l o ) ,  bu t  the  w a l l s  o f ,  the .  envelope surrounding the a r c  column a few 

mm away a r e  probably below 1 0 0 0 " ~ .  

The i n t e n s i t y  of the emission from the  ~100A4 lanip when operated 

with a dc power supply w a s  found t o  very s l i g h t l y  .(not more than about 

3%) along the  length of the  a r c  column. The brightness temperatures 

. reported i n  Table M a re  f o r  the  center of  the  a r c  column, which w a s  

not  the most in tense  region of the  column.  he in tens i ty ,  i n  general,  

decreased along the  length  o f .  the  column from one electrode t o  the  

o ther .  \ 

The i n t e n s i t y  of the  emLssion i s  increased s l i g h t l y  by a i r -cool ing 

the  lamp. The a r c  column was observed t o  decrease s l i g h t l y ' i n  radius  

when the  lamp was air-cooled;  the  r e su l t i ng  increase i n  power d i ss ipa ted  

per  u n i t  volume of  a r c  column produced the  increase .. .- 
i n  . the  . - . . i n t ens i t y .  . . . . 

Experiments were ca r r ied  ou t  i n  which the  scanner s l i t  w a s  l e f t  

a t  the center  of  the  reversed por t ion of  a l i n e  and the  i n t e n s i t y  w a s  

observ'ed from the  time the  lamp w a s  turned on u n t i l  it w a s  completely 

warmed. The i n t e n s i t y  increased as the  lamp warmed, reached a maximum, 

and then decreased. The maximum i n t e n s i t y  was always grea te r  than the  

i n t e n s i t y  a t ' t h e  peaks o f  the  wings when the lamp w a s  f u l l y  warmed. 

No experiments were made t o  determine the  change i n  the  i n t e n s i t y  

of lamp emission w,ith change i n  input,  bu t  it i s  poss ible ,  i n  

view of  the  above, tbat the  i n t e n s i t y  a t  the centers  of  the  'reversed 

l i n e s  might be increased by operat ing the  lamp a t  lower power input  



( i f  mo're i n t ens i t y  a t  t h a t  wave length  were desi red) .  . 

The Hl00A4 mercury lamp o f f e r s  a nymber o f  l i n e s  with peak S 
. X 

values i n  t he  . . 5000 '~  range (see  Table M ) .  From the  p r o f i l e  and 

S -  of the l i n e s  and a knowledge of  the  absorption profilre of  species X 

of  i n t e r e s t ,  one can calcula te  whether o r  n'ot the  lamp w i l l  be of use 

f o r  the  determination of the  l i fe t ime  of  t h a t  species with the  l i f e -  

1 
time apparatus ava i lab le .  



The Carbon Axe. P l a sm.  
. , 

Values f o r  S were determined f o r  the peak of  the 0-0 head of 
, . .  X .  

2 2 the  A3883 .(I3 Z - X Z )  CN ,system 'emitted from the  plasma of the carbon 

a r c  described i n  Table XI contains S values f o r  the  emission from X 

the center of  t he  a r c  plasma. Values of  S (obs ) from o ther  p a r t s  
388 3 

of  the  plagma a r e .  given i n  Fig. 8. 

The values of  S were determined by using the  f i r s t  and the  
X 

second order  of  the 3-HI:-ter spectrograph. The emission from the  

plasma w a s  photographed i n  the  second order of  the  21-f t  spectro- 

graph .and the  p r o f i l e  of ' the  CN 0-0 'head a t  3883 A i; given i n  Fig. 14. 

The width a t  ha l f  i n t e n s i t y  of the  triangle-shaped por t ion of the  head 

was estimated t o  be 0.1& A, and the i n t e n s i t y  correct ions  f o r  i n s t ru -  

ment broadening by the  3-meter spectrograph were made from t h i s  width. 

The agreement between the  S ( e s t )  values obtained i n  the  two orders  X 

i s  close and serves as some ju s t i f i c a t i on  of the  me'thod used (see 

Experimental Procedure, Instrument Broadening, p . 73 ) . 
The average o f  the  S ( e s t )  values.  i s  5490"~ ,  thus the  brightness 

X, 

temperature of the. peak of  the  0-0 head of  tk CN v i o l e t  system 

emission'.from the  center  of the  plasma of an a r c  run i n  control led 

atmosphere as spec i f ied  i n  the  t ab l e  and P a r t  IIA is believed t o  be 

near 5500°K. This value is  f o r  an a r c  i n  a ni t rogen-ai r  mixture, the  

corresponding value f o r  an a r c  ' in  pure nitrogen i s  believed t o  be near 

5000°K (see  Table X I ) .  

The CN emission from the  a r c  appears (within the  limits of the  

21-f t  spectrograph) t o  be unreversed ( see  Fig. 14) .  The absence of 

reversa l  can probably be a t t r i b u t e d  t o  the  sho r t  l i f e  of the  CN r ad i ca l  



Table X I  

8 v a l u e s f o r  the  A3883 emissibn from the carbon a r c  plasma,a x ; 

Arc Pressure Arc 3-meter ~ ~ ( o b s ) ,  ~ ~ ( e s t )  
Po t en t i a l  Current o f  ~ ~ - ( ~ i r )  length  spectrograph 
drop (v) (amp) (m Hi31 (lnm 1 order  ( O K )  ( O K )  

- 
"'l'he a r c  plasma P~iv t s t iga ted  was the  pl.asm& of the s t ab l e  arc i n  con- 
t r o l l e d  atmosphere described i n  P a r t  A. A cored carbon cathode and 
gra.phi.te anode were euployed during a l l  the  measurements reported i n  
t h i s  t a b l e .  

b~ Wratten 18a f i l t e r  w a s  employed i n  the  o p t i c s  during these  measure- 
. . ments. 

C These values were obtained with the  a r c  burning i n  a pure nitrogen , 
atmosphere . 



AA in A 

MU- 16230 

Fig .  14. The profile of the C N  1 3 8 8 3  band head emitted f rom the 
plasma of an a r c  burning in nitrogen-air  mixture.  The a r c  
conditions were essent ial ly  those given in Table 11, Row 2. 



i n  the  cooling gas l ayers  surrounding the  a r c  plasma. A t  s u f f i c i e n t l y  

high pressures of  nitrogen and i n  the absence of  oxygen, s e l f -  

absorption i s  known t o  be large  (see P a r t  IIA and Ref. 13 )  and it 

is possible that some reversa l  may occur. 

From the  p r o f i l e  i n  Fig. 14  it i s  read i ly  seen that ,  the  i n t ens i t y  

of  the  emission f a l l s  o f f  qui te  sharply, s ince  the  ro t a t i ona l  l i n e s  

begin t o  open a t  a shor t  distance. from the  head and the  amount of  

overlap i s  reduced. A t  ro ta t ion  l i n e  -37, +20 (two overlapping l i n e s )  

t he  in tens , i ty  has f a l l e n  t o  1/3 the value a t  the  peak. From t h i s  po in t  

t o  shor te r  wave l e r~g ths  the d e c r e a ~ e  i s  slow. ' A t  r o t a t i on  l i n e  -62, 

the  i n t e n s i t y  i s  about 1/10 t h a t  at  t he  head and the  corresponding S 
X 

value i s  about 4 0 0 0 ~ ~ .  

Brewer has estimated the  value of  S 
388 3 

required f o r  a l i g h t  source 

2 i r i  order t o  obta in  a r e l i a b l e  measurement of  the l i fe t ime  of the  B Z 

s t a t e  of the  CN molecule with the  ava i lab le  l i f e t ime  apparatus. l4 The 

value, 3 1 5 0 6 ~ ,  is  considerably below the  value of  5 5 0 0 ' ~  observed fo r  

the  emission from the plasma o f  the  carbon a r c .  Thus it appears tlla't 

the  a r c  source described i n  P a r t  I I A  y ie lds  about 100 times the  minimum 

r e q u i r ~ d  rad ia t ion .  

The Carbon Arc Anode 

The br ightness  temperature of  the  anode surface of  a carbon a r c  

has been measured at  various wave lengths  and the  values found a r e  

reported i n  Table XII. These measurements were ca r r ied  ou t  because 

, the.  br ightness  temperature of the  .anode of  a pyrometric a r c  a t  6550 A 
. . 

appears t o  be the  only d i r e c t l y  measured br ightness  temperature i n  

the  l i t e r a t u r e .  



; Table X I 1  

S'. values f o r  the anode'of ,a.carbon arc  . : . . X ; .  
.. . . .. - .  

Wave length Wratten No o f '  
:A 

Literature values of the 
(A) .  . , , f i l t e r  determinations ., ( K) brightness temperature 

. . 

 value ,&ported by ~ u l e  r40 k i t h  . 2  c = 1.4380 ; . . 

: .;. , . 
'value, .-ri%pb?ted by Chaney,, Hamister, and  lass, corre cted f o r  c2 ' .  ','; 

",!' . . ; I' 
. . . .  . . . - .  

%slues, calculated, by using e'missivities of the anode and the t rue ' 

40 anode temperature as repor71;ed by Euler. _ .- 
Because of the nature of the a r c  assembly employed,(see Experimental 

procedure, ~ i g h t  Sources ~ n v e s t i ~ a t e d ,  p . 82 ), the conditidns ipe c i f ied  

by MacPherson fo r  a, pyrometric a rc  were hdoubtedly not maintained 

constantly. Thus. the values; of S reported here a re  not very re l iab le  
.. . . . A. .. . 

a s  values of the maximum brightness temperature of the pyrometric a rc  

anode . . 

Euler has determined the emissivity of the pyrometric a rc  anode 
. 

' From the , at  a r c  temperature over a wide wave length region. 
. .  . . , .  

emissivity and t rue temperature of the anode, 3995f ?2'~, 40 the br ight-  

ness temperature 5% wave length X can b e calculated. ' The values of 



SX reported i n  Table XI1 f o r  wave lengths below 6550 A a r e  lower 

than these calculated values.  A possible explanation may be absorp- 

t i o n  of the  .emission from the  =lode by the  ,cool gas l ayers  which it. G 

passes through. Most of  the mater ia ls  i n  the a r c  gases have t r ans i -  

t ions .  i n  the  wave-length region below 6000 A.  I r r e g u l a r i t i e s  i n  the 

emission a t  some of  these wave lengths were observed 'when scans i n  

wave length  were taken. 

A t  6550, the value of 3 8 2 0 ' ~  obtained i n . ' t h i s  invest igat ion i s  

i n  good agreement with the  value reported by ~ u l e r ~ '  and i n  f a i r  

agreement w i t h  t he  valire reported by Chany, &mister, and Glass 3 

(corrected f o r  the  change i n  the  accepted value of c 1.433 t o  1.4380)'. 2' 

With a b e t t e r  a r c  assembly and care fu l ly  determined' i n t e n s i t i e s ,  

more r e l i ab l e  values of  S f o r  the  pyrometric a r c  could be obtained by 
X 

using the  methud employed here.  

The value of  3 8 2 0 ' ~  i s  i n  agreement with l i t e r a t u r e  values within 

the  .limits of uncertainty,  +I%, claimed ,for the  method. , 



CONCLUSIONS 

A method fo r  'determining d i r ec t ly  the brightness temperature 

of a l i g h t  source a t  a specif ic  wave length A has been developed, 

. a d  applied t o  several available l i g h t  sources. 

A measurement of the carbon-arc anode brightness temperature 

a t  6550 A has been made and found i n  agreement with values' reported 

i n  the l i t e ra tu re .  

Be cause of instrument l i m i t a t i b n ~ ,  ' the brightne ss-temperature 

values reported here fo r  spec t ra l  features t h a t  have narrow half-  . .  : . . . .  

. , in tens i ty  widths have considerable uncertainty associated with them. 
. . 

I 1. . . 
They do, however, represent minimum values of tk brightness temper- 

' .., 
ature f o r  tha t  ' spec t ra l  feature.  

The brightness temperatures determined by th i c  method may be 
2 

used to es tab l i sh  the usefulness of a l i g h t  source f o r  the measure- 

1 . , :. <: . 
-, 

ment of l ifetimes'  with the. available l i fe t ime appaGtds::. 
. . 

The Pirani  sodium lamp and the carbon-arc plasma have been found 

t o  have brightness temperatures (a t  the desire'd wave lengths) con- 

1 
siderably higher than the minimum' values estimated as necessary for  

l i fe t ime measurements on ' the  sodium atom and CN radical,  respectively. 
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