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ABSTRACT 

4 
The process ~(q)- q>(p) +anything, the process in ~ theory analogous to 

e-- hadron +anything, is examined in ·~ 4 
field theory for large values of 

2 
q • 

Some heuristic arguments as to the strength of mass singularities in a particular two-

particle irreducible ompl itude make it possible to argue that a light-cone-like ex

pansion exists when q2 - m • This light cone expansion has virtually aU of the prop-. 

erties of the usual I ight cone expansion except that it is not an expansion in tenns of 

invariant amplitudes associated with local operators. In case ,
4 

theory has an 

eigenvalue, (3 (gCD) = 0, the moments of the annihilation cross section will have a 

power behavior in q2 , a power unrelated to the powers of q
2 

appearing in any de~ply 

inelastic scattering process. Also, at an eigenvalue the average multiplicity of particles 

produced, a quantity governed by the Callan-Symanzik equation in this theory, grows 

like a·fractional power of q
2 

• 



~--------------------------------------------------------~----------------------------~ 

'\ 

I. Introduction 

Two types of reactions occupy a very: special position in high energy physics. 

· These two reactions ~re e +e... total anni~~!ation into hadrons and deeply inelastic 

electron scattering off hadmns. In each of these reactions one is testing the short-
- -~----------~,,~-· ,..-.- ~ 

distance behavior of the underlying theory of hadrons. This is the region where the 

physical masses of the hadroris, and indeed the physical hadrons themselves, do not 

ploy an essential role •. The case of e +e- to;~l annihilation is the simpler of the two 

eases. The total ann.ihi lotion cross section,. fl' ( q2) , is proportional tO 

J 8iqX d
4

x < j(x) j(O) >o 1 

where j(x) is the hadronie ·part of the electromagnetic current. f#e neglect vector . 

indices for this casual discussion.) When q2 becomes large, x2 ..... 1/q2 • The Wil

son expansion (1) then tells us that the Iorge q2 behavior depends only on the proper-

ties of.the underlying ze..O .. mass theory, and that these properties are severely eon

strained by renonnal ization requirements (2, 3). 

Deeply inelastic electron scattering is proportional to 

' 2p • q ' . 2 
where p. represents some hadron and w =- T . In this case, for large q , the 

moments 

I 



----------------------------------~ ---- ~-

2. 

factorize, f P ( q2) = F P f ( q2) , and f (q2) depends only on the short-distance 
n n n n 

behavior of the theor/
4>. F~, on the other hand, depends on the details of the par-

ticular hadron off which the electrons scatter. It is the light cone expansion(S,
6

), 

which extracts particular invariant amplituaes·from a Wilson expansion, that guaran

tees that f (q2) depends only on the underlying zero-mass theory. 
n 

It is probably not obvious whether e +e- inclusive annihilation into hadrons 

has properties similar to those'of the above mentioned processes (7-lO) .. The cross 

section for e +e-- hadron (p) +anything is proportional to 

where jh (x) is an hadroni c source function, i denotes an anti-time-ordered product, 

a~d now w = 2P 2• q with q2 time:..! ike. When w is fixed c:~d q2 - oo, kinemat- · 

ically x2 -0 q just as in the case of deeply ine~astic electron scattering. However, 

here the Wilson expansion does not apply. Even if x J.A.- 0 there may still be operators 

between j(x) and j(O) and no analog of the Wilson expansion has been established for 

products like 

lim j(x) j(z) j(O} 
x- 0 

If the Wilson expansion is not valid one cannot expect that the I ight cone expansion 
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wi II be valid. The following question presents itself. 
2 

Is the q - oo I imit, and 

· I . I 2 1/ 2 0 · + ~ · I . 'h'l t' ' I k' t' srmu taneous y x - q - , rn e e me usrve ann1 1 a ron s1mp y a merna rc 

region on the I ight cone, or is .there an analog of the I ight cone expansion, related 

to an underlying zero-mass theory(ll)' which applies to this case? In this paper it 

will be argued that the latter is in fact what occurs. That is, there is an expansion 

which resembles an ordinary light cone expansion in all its details except that local 

operators, or particular invariant amp I itudes coming from local operato.rs~ do not occur 

in the expansion. Thus,· if one defines 

then 

h 2 2 
= !

1 
h 2 2 

to- (p I q ) dt.> t.)fr T (p I t.>, q ) I 

0 

lim 
2 q -+(X) 

h 2 2 
tO'" (p I q ) = 

i= 

h 2 2 r (p ) t. {q ) 
± . lcr' 

lfr 

4 2 
so long as Re cr > 0 (cp theory). to-(q ) has no ·dependence on the produced had-

ron, h , obeys a coupled Callan ... Symanzik equation (12, 13), and is determined by 

the zero-mass theory. The theory which will be ~xamined in detail in this paper is· 

q> 
4 

theory for which the above equation and statements are true in each order of pertur-

bation theory. 

M outline of this paper may be helpful. In Section II a familiar problem, that 

of deeply inelastic electron scattering, or at least a cp4 
analog of that process, is 

worked out in detail. This will be referred to as th~ space-like case since q
2 

is space-

like. The light cone expansion and Callan-Symanzik equation are derived by means of 

a diQgonalization of the Bethe ... Salpeter equation along with some additional subtractions. 
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The spirit, but not the details, follows treatments given by Symanzik in deriving the 

Wilson expansion from the Bethe-Salpeter equation (ll). The essential ingredient 

·• 

needed in order to obtain the light cone expansion is the stateme~t that the two .. par-

~icle irreducible part of the forward four-point function, V(p, q), behaves as if it 

were not evaluated at an exceptional momentum. (Here two-partiele irreducibility 

is in the channel of zero four momentum.) That means 

2 2 2 v ( P 1 (J)I q ) "' v (0, (J)I· q ) 

2 2• 2 
is the order of p /q for q - oo and t.>. fixed. This property can be obtained in 

a number of ways. In particular, Zimmerman's proof-of the WHson expansion can be 

used(14). 

In Section III the problem of an annihilation amplitude, the time-like case, is 

worked out in detail. The procedure is imitative of the space~like case. The diagon= 

. alization procedure is only slightly different from that of Section II. The subtraction 

procedure is much as in Section II given the important property of the two-particle 

irreducible part, 

[1·1 ~ 2 2 /
1 

IJ" 2] = lim dw r.J V(p , w, q ) - · dt,_fa) V(O, w, q.) 0 
2 . 0 0 

q -oo 

so long as Re <r > -1 • A light cone expansion, Eq. (30), and a Callan ... Symanzik 

equation, Eq. (42), are obtained. It should be mentioned, however, that there is no 

·analog of the Wi I son expansion given for this proces$, 
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In Section IV an example is worked out in detail both for the space-like and 

time-1 ike cases. 

The major part of this paper is an attempt to establish the fact that the zero-mass 

theory can determine many aspects of the large q
2 

behavior of an amplitude which has 

time-like q
2 

and for which the Wilson and operator light cone expansions do not apply. 

· There has often been reluctance about applying renormal ization group techniques to 

time-like regions. The apparent cause for concern is the absence of Weinberg•s theo

rem (l5). We feel that time- I ike regions are not esse~tially different from space-I ike 

regions as far as the possibility of using renormalization group and Callan-Symanzik 

techniques. Consider, for example, the simplest of all possible amplitudes in <1>
4 

theory, the propagator, 

J 4 iqx = d x e < T q>(x) q>(O) >o 

For q
2 

space- I ike the dominant q
2 

beha·,;ior, for any given g.·..Jph of b. ~ , is 

governed by the renormalization group. What a~out time-like q2 ? Suppose one is 

considering a graph of nth order in g • Then, if the renormalized mass of the <1> par

ticle is m, the highest possible threshold in q
2 

is at q: = [ (n + l)m ] 2 • So in 

order to reach an as~mptotic domain, even for q
2 

space-like, one needs I q2 I >> q; . 

If q
2 

is time-Hke and q
2 >> q: the thresholds are far away and the mass, m, should 

be irrelevant so long as renormalizations are carried out at a mass, I\, independent of 

m • The question of whether q2 is space-like or time-like, then, should not be relevant 

r;o long as the invariants are large compared to the possible thresholds. Further, suppose 
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one takes_the imaginary part of A~- for q
2 

large and time-like. Taking the imaginary 

part is just a numerical operation and cannot change the asymptotic behavior. But taking 

the imaginary part puts many internal partide,s on their.mass shells s0 one might expect 

that mass dependences could not disappear in this case. A little thought, however, con= 

vinces one thatsetting internal particles on their mass shells does not in general introduce 

a mass dependenc::'e. Mass dependence arises when internal groups of particles are near 

threshol~s. In the case of the propagator, the thoorems on mass. singularities(16-lS) 

goorcmtee that these threshold dependences will be Weak. 

For the amplitude which is the topic of this paper, inclusive annihilation, the 

rigorous mass singularity arguments do not apply, as different internal propagators may 

have c:lifferent signs for their i E terms. However, the strengths of the mass singular-

ities in the twe=-particle irreducible part of the amplitude can be estimated, heuristically.~ 

and are found to be sufficiently weak that renormaiization group arguments apply. The 

full amplitude can be handled exactly as in the case of deeply inelastic electron scat= 

tering, by making additional subtractions in the Bethe-Salpeter equation. 

Let me now ccomment on Q few topics which are not considered in this paper. 

1) Other theories. The only theory dealt with in this paper is 94' 
4 

theory. I suspect 

that similar resuits will hold for other field theories .also.· g·'ll y
5 

tVq, and g i 'I' tr theo"' 

ries are probably not very difficult ·to handle, and probably all the results which have 

been obtained in this paper will carry over there including the calculation of avera~e 

multiplicities from the. Callan ... Symanzik equation. Massive quantum electrodynamics is 

a much more difficult theory to handle because of the spin one meson and gauge inval""' 

ianee. Presumably the q
2 

dependence for fixed (J will still be govemed by the zero= 
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mass theory, but quite likely the very small w region, at whi·ch relatively few particles 

are produced in q> 
4 

theory, is quite impo~i'ant in this theory and will not be governed 

by the zero-mass theory (l9). 

2) Average multiplicities of produced particles. The average number of produced 

particles of the type h is 

.. 2 1 
" nh ( q ) Ct.. --:-2 

cr (q.) 

2 h 2 . 
for large q with T as used previously in this introduction and ~ (q ) the total 

annihilation c~oss section. Thus the Callan-Symanzik equation governs the average 

multiplicity of produced hadrons. We can obtain more information .by using the energy~ 

momentum sum rule (20) 

so that 

- 2 nh(q ) 

If the theory has an eigenvalue, (3 (g
00

) = 0 , then the moments 
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2 otu 2 
behave as (q ) for large. q • Now OlCT must be a monotonic non-increasing 

f · f r: I .. 1 2) 1 2)0&. 1 -oc.2 wt"th ' d h unct1on o o- 1 ror rea (S"" 1 so nh,q Ol ,q Ot.
1 
~~,an t e 

average multiplicity grows like a po:-ver of q2 

This is reminiscent of the bootstrap scheme of Poly~ko)2 1). 

3) The w - 0 limit. For large q2 write (7) 

2 2 
T(p I w, q ) = 1 ;I a I + i 00 

· -cr-1 2 2 
"1m . dO" t.) t()"" (p 1 q ) 

jaj-ioo 

with 

Now 

2 2 
t(J' (p 1 q ) 

/

1 
2 2 = dw wa- T(p , w, q ) 

0 

The large q
2 

behavior of tcr (q
2

) is constrained by reliormal ization and thus the large 

q
2 

behavior of T(p
2

, w, q
2

) is constrained For fixed w • When w becomes small 

2 4 2 1 
( b h P ) h -o-- I h h w must e greater t an 2 t e w factor wou d indicat·e t at t e a' contour 

q 
should be distorted to the left. However, at r::s- = 0 there are singularities in t G" , 

in perturbation theory, and as the example of Section IV shows, these singularities may 
2 2 

even sum to an essential singularity at C5" = 0 • In the region ( ;.. , ; ) << w2 << 1 
q q 

the w behavior of T (p
2

, w, q
2

) should be determined by the zero mass since the singu-

larities near ~ = 0 of /
1 

dw we- T(p2
, w, q2) are determined by the zero-mass 

0 
theory. 
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. 4) C . • t" f h . l"k • (ll, 22- 25) Th "'" t" f th ontmua ron .rom t e space- •. e reg1on ·• e con·nnua 1on rom. e 

non-for'Ward space-like region to the time-like region is tortuous, and the singularity 

structure is difficf.llt to determine~. However, it seems dear that one could, heuris-
, 

. tically, use continuation::arguments to show that the time-like V{P, w, Q) (see ~q. 

(28)) becomes independent of p when (,) is fixed and Q is large if the analogous 

non-forward space=like quantity has this pr:gpe'rty • 

. 5) Other amplitudes. Finally, the questi~n arises as to which .other sorts of ampli ... 

tudes have thei"r light cone behavior constrained by renorrnalization requirements. We 

have not attempted to answer this question in any detail. It seems reasonable, though, 

that Wightman functions in general should have such constraints and possibly also such 

amp I itudes as occur in JA-pair production in proton ... proton coli isions. 
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II. Space - Like Equations 

Consider the amplitude f(p • q, q
2

) given by 

(1) 

(In what follows only a theory of the type ;C 
1
(x) = - ~ cf> 

4 
(x) wi II be considered.) 

Equation (1) represents the scattering of an off-shell field, cf>, on a particle of mass m • 

This amplitude is analogous to amplitudes which occur in studies of deeply inelastic elec-

tron scattering. Further, define the completely off-shell amplitude 

T(p2, p. q, q2) = iJd4x d4y d4z eiq· x+ip• (Y-z)<i(e~>(x) cJ>(y)) T(ct>{O) cf>(z)) >
0 

I 2 1 2 -2 
[AF(p ) AF (q ) ] (2) 

where 6 ~ is the full, renormalized propagator for the cf> field, and f denotes the 

2 2 . 
anti-time-ordered product. Now, when q and p are below their thresholds 

. -2 2 -2 2 2 2 
·diSC(p+q)2 T(p ,p. q, q) = 2i 1m T(p I p. q, q) = T(p I p. q, q) (3) 

where· 

T(p2, p. q, q2) = ijd4x d4y d4z eiq. x+ip(y-z) < T e~>(x) cf>(y) '(z) cf>{O) ~0 

I 2 I 2 -2 
[ A F (p ) .6 F (q ) J . 

is the ordinary, amputated, time-ordered product. When q
2 

is above its threshold 

Eq. (3) ceases to be true. 
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In the region of large space-like q2 , fixed w =- 2P·2q , and fixed p2 the 
q 

behavior of the time-ordered product and that of the discontinuity are the same since 

the discontinuity is trivially related to the time-ordered product. (The fact that the 

time-ordered product and the discontinuity have the same behavior in the Bjorken 

scaling region is also guaranteed by the light cone expansion.) When . q2 becomes 

· time-like and Eq. (3) ceases to hold, there is ·no known relation between the time

ordered product, Eq. (4), and the discontinuity, Eq. (2), in the q2 -+ ex>, w fixed 

limit (B). Clearly the Wilson expansion does not directly apply to an amplitude like T 

. 
in Eq. (2), since the operators q,(x) and q,{O) may have additional operators between 

them as x · ~ ·o • 

In this section q
2 

space-I ike is assumed. The Callan-Symanzik (1 2), (la) equa-

tion will be derived for the amplitude, T 1 by a method which can be generalized to 

time-like q
2 

• The previous methods of obtaining Callan-Syma~zik equations for the 

m?ments of T (
4

), (
26

) utilized the light cone expansion and thus cannot be easily 

generalized. 

A. Integral Equation and Diagonalization 

An integral equation for T can be given in terms of a two-particle irreducible 

· kemel, the pot~ntial V 

2 2 2 2 14 2 2 T(p, p• q, q} = V(p I p• q, q) + d k T(p I p• k, ~) 

I 2 2 2 2 . I A F (k ) ·I v (k I k. q I q ) (5) 
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Equation (5) is il!ustrated in Figure ~~ 
2 2 ' V(p 9 p. q·, .q ) is defined as in tq. (2) except 

only those graphs are included which do not have two=partic!a sta~es in the channeJ of 

iteration. Beccu.ise_ absorptive dmp!ihJdes are used, the Bethe-Salpetet equation, Eq. (5)1 

!s finite once internal subtractions are performed. in V arid A~ • Equation (5) is em 

exaCt equation in renorma!ized perturbation theory. 

Equation (5) is a four dimensional equation with one triviai variable. This equn~ 

Hon can be reduced to a one-=dimensional eqootion as pointed out by Nussinov and Ros= 

ner(27). To this end i!;troduce the variables Q, K, P 1 cl-1~·.; ~h r:;, at~- defined 
I 2 

by 

2 2 
q = ~ Q , 

- q • k = Q K ch ~ 1 1 k • p = K P ch t'2 , p • q = P Q c:h ~ 

Ul h h fo ' 7. . l'k' Wh 2 d 2 ! "k vH3 (]Ve c osen, r conven1encei p- space- 1 e. .en p · an q are space= 1. sit 

kinematics requires that k2 also be space=!ike so that Q § P, K are real and positive. 

We may write the volume of ir.tegr<ltion in terms of these new variables 

. 3 . . 
2v K d h ,.... h ,.. ('" '" ,. ) = .. sh·t. Kde (,ldc s2 8s:.=~ 1 -s2 (6) 

. 2 2 2 2 
where . (q ... k} · ~ 4m , (k + p) ~ ·4m has been used to put the step function in 

the form used above. 

Now define 

(7) 
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with the inversion 

T(P, Q I ~) f
l+ioo 

= 2n i dcr 
L- ioo 

(8) 

where it is assumed that 

L+l 
(ch ~) T(P, Q, ~) ~ 0 

~ -+-00. 

Equations (6) and (7), along with the expression 

1 = 2nT 

give, when substituted into (5) 

TIS"(P, Q) 2n = VG" (P, Q) + 
G' 
J K3 

dK T~(P, K) I~~ (K) 12 
VCJ'(K, Q} . 

(9) 

Equation (9) is a one-dimensional equation for the absorptive part, T , in tenns· of the 

potential, V • We wish to study this equation as Q _...oo • To simplify this task it;is 

helpful to recast this equation into one where additional subtractions have been per-

· fonned. 



B. Subtraction Procedure and Behavior of the Two-Pmtide Iereducible Part 

The equation 

.can be rewritten inr:o slightly different form ir. terms of the variable 

2p. q . 2P 
1 

., 

~J =.= --r = '"0" en~ • Tnus, 
q 

Q 
= w(,),. 

and 

where 

. fm. -
= J . ? ? · P-+4··--

. 1 + . . - rn ..... 
. Q~' 

Slmilcriy, defining 

Eq. {9) becomes 

14. 

(IO) 

J 
(11) 

26" 'tt !D 3 . . 2 
tcr (P, Q) - vu(P, Q) + .. ;;·--· J~ K dK t«(P, K) J A~ (K) J vtr( K_r Q) • 

·(12} 
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Now for large Q and fixed P 

(X) 

ta- (P, Q) = J dww-c- T(P, Q, w) 
. 1 

(13a} 

(X) 

vr (P, Q) = J dw w -rr V(P, Q, w) 
1 

(13b) 

' where the corrections are of the order m
2/Q2 

and P2/Q2 • When P is fixed and 

Q is large 

vtr(P, Q) - vtr(O, Q) ~ 0 (14) 

with corrections again of order P2
/Q

2 • That is, vs (P, Q) loses its P dependence 

when Q becomes large. In the case ~f space-like q
2 , the situation under discussion 

here, Eq. (14) follows from the I ight cone expansion (2B). 

(p I q>(x) q>(O) I p) 

where 

But, 

~ 
2 

X --+ Q 

p • x fixed 



I 

!s Immediately related, by Fourier trorisformt to 

whHe 

' . ' 

is related to the two.,part!cle irreducible patt',bf 

which con have no p dependence other· than p p , , • ~ • p, • 
, , al ~ an 

where 

.,. b • L _j < --' b • ' -""' 04).b • ' d ' . I 10 o tam tne ueSitco so trocbon ptoctroure8 egm m, uchve y. 

= Reg(P Q) '0 Q) VIS • 1 + VO'{ ! 

a~(O 

P fixed 

0 . 

Also, write 

16. 

Write 

ft 
2 fi f 3 , , ' . > 'I',' • 12 """""""" K 'dK v (P, K) v (K,,Q ~F(K) 1 

(I' ' ' -~ u ' 



and 

C~eatiy 

{2)Reg(P a· ) 
VC" - ll =~) 0 

a ... ro 
P fixed 

so ro second order in the potential 

v~ (P, Q) + v;2){P, Q) ~ [1 + r~l)(P) J vtr(01 Q) + vj~)(O, Q) • 
Q4co 
P fixed 

17. 

Th!s looks I ike the start of a Wi!~n expa..~sion. The iteration procedure can be compieted 

by defining the star~dard renonnali:zation operator r by 

r vtf {K, Q) = 

Then Eq. (12) cat! be written as 

v (0, Q) • 
tr· 

Cor~sidering ( 1 - r) vcr (P, Q) and r vv{P, Q)' as separate potentials, t.,..( P, Q) can 



be written as 

or 

t,. (P, Q) = t .. Re9(P, Q) + r t.,.(P, Q) + 2:w J K3 
J 6~ (K) j2dK 

Reg 
ta- {P, K) r t,..(K,Q) 

tcr {P, Q) = t:eg(P, Q) + f;. (P) ta-(0, Q) 

where t:eg is defined by 

.. 
tcr

Reg. ( P, Q) ( · ) ( . ) 21f 1r j 3 I ' 
1
2 = 1 - r vG" P, Q + -;:- K 6F (K) dK 

18. 

(16) 

t:eg(P, K) ( 1 - ·r) v~ (K, Q) (17a) 

and 

Equations (16) and (17) constitute a light cone expansion with rr a continued 

index of the operators in that expansion. In order to obtain the Callan-Symanzik equa-

tione we need an equation for the four-point function with a mass insertion. 

C. Mass Insertion and Callan-Symanzik Equation 

. The operator 

(18) 
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inserts the operator 

4' '11) 
into the n=point amputated vertex function in <P theory\ • ( p(g) 1 K (g} 6 and 

cp(g) 1 not to be eor;fused with the field ~(xi, are defined as in S~anzik(ll).) Thus, 

!. ••.• 

- • 2 ~ f A A A 4 'iqx+ip(y ... %1\ = ·2 1 lm m +f.s)J d- x d- y d · z d w e . 

. . 2 - a · 2 1 2 ""2 
< T cp(x) +(y) cp(z) -v(O) N2 { ~ (w)} >0 [~F (p ) AF (q ) ] • 

Applying (18) to (12) ohe obtains" 

where A me.a!'ls that the amplitude has a mass insertion included. ·Now 

A 
v (P,; Q) 
tr 

-==ii;>) 0 
Q-.ro 

P arbitrary 

(19) 
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up to corrections of the order m
2;a2 

1 so for large Q Eq. (19) reads 

. 
+ 

2
o-n JK

3 ! b.
1

F(K) !2 dKt (P,K)v (K,Q) • (20) 
~ . ~ . ~ 

, The kernel of Eq. (20) is the same as E.q. (12) so we can immediately conclude that 

\ 

~ ~ 

tcr(P,Q) > rcr(P) tG'"(O,Q) 
Q....,.oo 

(21a) 

P fixed 

wrere, for completeness, 

A ro- CP> = 
2
;" JK3dKIA~ (K) 1

2 ~ .. (P, K) rcr (K) + 2 
2
;" I K3 Ill~ (K) A; (K) ldK 

. t<r (P, K) ~(~) 

+ [ ~ )
2
/ K

3 I A:~ (K) 1
2 

(K')
3 Ill~ (K') 1

2 
dK dK' tO'(P, K) ~.,.(K, K') r;. (K') . 

(21b) . 

. Combining (16), (18) and (21) one obtains 

[ 
m

2 -!-,_ + ~ .!_ -4 ((} J;.(P) t~(O, Q) = 
. am ag 

"' Now rO" (0) ;:: l by our method of subtraction while . rq'(O) =a IT I some function of 

g c.alculr.rbl£J1 order by order, in perturbation theory. Thus 

L__------------------------------------------------~------------------------
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(22) 

which is the desired result. 

There a~e only.: a few key steps involved in obto!nir-,g Eq. (22) t 

4 i} the integra! equation .{12) which is simply o property of the topology of · q, thooty, 

and is easily generaiiz:ed to the edse of t!me .. iike o} !' 

. 2 
ii) Equation (14) which fci!!ows from the Hght cone eXpdr:'ISion when q . is space.,. 

llke, but which most be redetived when q2 !s time ... like, <:md 

iii) Equations {16) and (21) which follow directly from (14). 

Thus, the key to the Ca!lon-Syman:tik equation is the ralation 

v
6

(P,Q) "' v@'"{O,Qj ~ 0 
P fixed 
a~oo 

which will be generalized to the case .;,f time-Hke c/· lfl the next port of this paper. 
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III. Time - Like Equations 

A. Integral Equation and Diagonalization 

Consideri again, the amplitude T{p
2
, p • q, q

2
) as given by Eq. {2), 

but now suppose that p 
2 

and q
2 

are time-I ike and Po q
0 

- I p J I q I = P • q <. 0 • 

It is convenient to let p-+ - p so that p ·. q > 0 and Po> 0 • The integral' equa

tion {5) follows immediately as it is simply a property of the topology of the Feynman 

graphs. Again, introduce variables Q , K , P 1 ch ~ 1 ch ~ 
1 

, ch ~ 2 by 

k2 = K2 2 . p2 
I p = 

q • p = Q P ch ~ 1 q • k = Q K ch ~ 1 1 k. • p = · K P ch ~ 2 

The momentum flow of the integral equation is indicated in Figure 2. When q
2 

and p
2 

are time-like K is real and positive. Now 

replaces {6). Equation {7) no longer diagonal izes the integral equation because the 

step-functions in (6) and (23) are quite different. Equation {7) r.epresents a diagonal-

ization by means of representations of 0 (31 1) in a non-compact 0 {21 1) basis, often 

called 0 (31 1) functions of the second kind. Such representation functions are approp

riate when k
2

1 p
2
, and q

2 
are space-like, since the little group of a space-like 
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vector can be taken to be 0 (21 1) • Here k
2 

1 p
2 

1 and q
2 

are time-like so the 

natural representation functions are those of 0 {31 1) in the compact 0 (3) basis. 

When the external particles are spinless these functions are(
29) 

sh a- ~ 

sh ~ 

No group. theory is neede.d if one simply observes that 

19 C~ - I ~ 1 - ~2 I l- 9 C~ - c 1 - ~2> = -¥ Ji."' 
-too 

Using this expression along with 

00 2 shCT -~ To-{P,Q) = 2 fo sh ~ d~ T (P1 Q 1 ~) 
sh ~ · 

and 

T(P1 Q,~) i /"' 
do- sh 0" ~ Tc:r(P, Q) = 2Tr . 

-· 00 
sh ~ 

the equation 

(24a) 

(24b) 

is achieved. Equation (25) looks the same as Eq. (9), but it should be remembered that 

the regions of integration are quite different as are the definitions of T tT in the two 

cases. 
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B. Subtracr!on Procedure and Behavior of the Two ... Partide Irreducible Part 

where 

with 

and 

W• , h d f. .. • 2p " o 2P , . . 
1th t .e -e •rHr!on ~ = ··.·., ' = ~ cri s , Eq. (24-a) can be written as 

T (P Q. ) 
. "f:i' • if . • 

t {Pif Q) 
6' 

vt!' {Pif Q) 

a- \.>l 
' 

- ..l..j . . ="'"+1 . Q'-'.'. . . Q .. " .. 
= { ~ )' r..,..{P, Q) = { ~ }· t (P, Q) 

L~ '2 Lt' "'"1!1" . · 
. (26) 

1(5"' J . T(P, Q,b}) 

{27) 

(28) 

2' 2 

Q Ap-· l+P~~~ r g-··-·-·'>···l(j · 
' f!J' ~ • . . \ 

= {_ . . 00(,)_ II!+. 1 "'. ·~·· ~ ·J V(P,Q.~~J 
"" 2P/Q ..... . r.; Q . 

/"'!§)\ 
\L:7) 

Now define the renormaiizotion operator, r I by 

T •p I"\' 
~(-, ~} = (1- r + r) v.,.(P,Q) + ~" J K3 I A~ (K) !2 

dKT,.(P, K)(l ~ r +r) 

V:tr(K, Q) 
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as in the space ... ! ik~ case. Thu-s, we can write 

(30) 

where 

:::: ( £_ )'l+ht+ 3:::_ {K3df<1 ~~ (K) 12 r!eg{P, K} (~)Hie-
Lr tT J . .., . L!\. 

(31) 

and r!69 obeys !he integral equation 

. cr+l -tt+i 
= (~) (vcr(P,Q)~vc-{O_,Q)).,.(~)· (v ... 

0
(P,Q)-..v,..&(O,Q)} 

~+1 
+. 2'1r.,v_ 3.-~K. l_ A_ 3F (V) t!2 ruReg(\1';, K)' {' Q ' . r (V a·) 10 Q\., - !'- u 0 ,"- r \ ~ j 1 V . \ r-..1 ... V , 1 ; 1 

(§' - Li'. - ~ f$' """' 

(32) 

If 

v (P1 Q) "' v~(O,.Q) r ~ jot 0 
tt" P hxsd 

Q..-.,.oo 

as !n the space .... !ike case, then r:es(P, Q) wHi go to zero in the above i imlt1 and 

Eq. (30) is the analog of the light cone expansion. It should be emphasized., however~' 

that in the space..,.! ike case i; (P) represented part of .the matrix e!e..rnent of a local 

operator when ~ = 0, l, 2, • • , while in the Hms ... iike case ~here is no obvious 



connection between ~ i<r(P) and the matrix elements of any local operators. It should 

be noted that (30) and (31) give the equation 

<T+1 ' tr+1 
t (P,Q)---+ (~) r;_(P,Q)ttr(O,Q)-(~) r _ _}P,Q)t_r(O,Q) 
0" . Q-. (X) "' \1 

for Re cr > 0, and that both terms on the right-hand side of this equation are equally 

important in general. Also, r;.(P, Q) has poles in cr, for example at U' = 1, but 

these poles do not appear in the asymptotic form of tcr(P, Q) given above. 

Before directly confronting the question of the P independence of V(P, Q), 

for large Q , let us first discuss a problem, many of whose aspects may be more familiar 

to the reader. Consider, then, the self-energy amplitude, I: (q2), defined by 

[ 2 2 2 J-1 . J iqx 4 4 I:q>q>(q ) - (q - m ) = • e d x <T q>(x) q,(O)>o. We envision a 11 q> 

type 11 field theory where there are two massive scalar mesons, q> and X , whose renor

malized masses are m 
1 

and m
2

, interacting by means of g
1 

q> 
4 , g

2 
x4

, and 

g3 q,
2 X2 

terms in the Lag_rangian. Begin by regulating the theory, in a Pauli-Vi liars 

manner, with a regulator mass A . Consider, first, any particular graph contributing 

to l:~(q2) ·which doe~ ~ot have any internal self-energy parts I:ct>ct>, I:ct>t' or 

E ~ ~ . Such ~ graph we denote by E ct>t (q2
) . The full functional dependence of 

I: is given by 

- -r: 2 ~ 2 2 2 2 
. ct>t (q ) = L. tel> ( ~ ' 1\ ' m 1 ' m2 ) 

where only coup I ing dependences, irrelevant for a fixed graph, have been suppressed. 



------

27. 

Now for 

(33) 

..,.~.._ , ,..fi m· • d. ' d., · f ~ · ' l 2 1 d . A2. 
1 ~tdt :s!' ""·s i and m

2 
epenaencs !Sdppears rom ~ Wtlen l q l on ""'\ , .... , 

2 . 2 \L} • d . . . - f f . h ~- . 2 • . ore much greater than m 
1 

and m
2 

,. m ependont.y o. w .. etnar q !S space-! 1ke1 

t!me·ilke, or complex~ If subtractions ars perfonned at opoint !arge compared to m1 · 

and m
2 

then the tenorrnc:Hzed cmplitiJde w!Ua!so be osymptoticd!!y independent. of 

rn 1 cmd m._ • These statements are d the heart of the renormaii~atio!'1 group approach 
I L . 

tb ias-ge off.,.shel I behavior .. 
;.,_. 

In Figure 3 a typicol discontinuity of I:~ it cor:-esponding ro ah intermediate 

stde ! 2 is shown. Srroight !i~es !nd!cote q:. particles while wiggly Bnes itldicde X 

I' 
ri-. I W -1 im ri & r. ~ · -~ ; I" · d! .- !'I~· · ·t*'# pa .. !c.es. e <:;.;.a ...•. no. 10, any ponscu.ar .s-o •.• mu .• ,.. 

{34) 

o particular discontinuHy !s Ihvoived. To show tf-.ot {34) is correct !t is enough to show 

that 

, .. 
. !m 
2 m1 4l»O 
2 . 2 

m2 =pm1 

p fixed 

,...; 

disc l L~(q2} = 0 (35) 
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along with a similar statement with the roles of m
1 

and m
2 

interchanged. To show 

that (35) is correct we need to show that the strength of the mas~ singularity of 

-
a~2 disci L ''(q

2
) is only logarithmic. This is the same as showing that the strength 

-
of the possible mass singularity of disc. r (q2) is only like m2(1n m2>" in the 

I <f>cl> . . 

approach to the zero-mass theory. (For the p~rposes of counting the overall strength 

of mass singularities it is not necessary to distinguish m 
1 

from m
2 

• ) 

The possible mass singularities in disci E <M' (q2
) occur when the invariant 

mass of some subset of the particles in the state i approaches the zero mass thresholds 

of A and B (see Figure 3). Thus the important region of phase space is where some 

set of particles ( 1, 2, • • • j) in the state i have momenta such that 

(.k 1 + k2 + · · + kj )
2 
_. 0 • What needs to be ascertained is the strength of the singu

larity in the amp I itudes A and B versus the suppressing factor of the phase space 

when a zero-mass threshold is approached. Call Kj = ·k
1 

+ k
2 

+ · · + kj • Then, as 

shown in Appendix B, 

4 a {k + k + · · 1 2 

for small a
2 

when the particles 1, 2, • • j are massless. Thus a mass singularity in 

disc. E (q
2

) like In m
2 

will occur if the product of the strengths of the threshold 
I eM> 2 -(j-1) 

singularities in A and B are I ike (a ) · • If j is an even number the maximum 

sf·rength of the threshold singularity of A occurs when the j particles go into two 



port! des. 
2\ "";{i --2}/2 • • . 

Then A has a singularity !ike (a J • Sm·Hiarl y., for B • Thus, the 

total strength of the mass singuiadty is 

for even j so fudt no mass s!nguiority occu:S. , If j is odd the max!mum strength of the 

. ' ? ... ·-3)/2 . 2 • . I -. f A . ( -) (I 'f +h • • i • . . . L a s:ngu.onty o !s , a 1 • e J porhc es c~n go snto c m:ntmum ot h:ree 

• I ' ( 2,--{l-1} /2 • ,. h • • I . . . I • . . - I I 
pa!t!C!es, ana \a r !!' t e J part1c.es can go into a sing,e particle. Si~nLany 

for B , If the j parHcles cou!d go h:to ~ single particle in both A and S the total 

singularity would be ! Ike 

and a mass singularity \\'$,Old occur, Suf2 such a case is ruled out by our assumption 

that !:# has no interne! self-energy parts. Thus.; rhe maximum singu!a~ity occurs 

when the j particles go tn!'o o si~gie pdrt!cle in or:e of the amplitudes~ A or B 1 

or;d Into three partkles In the other amp! !tude. Then the singularity Is iike 

.. 
diSC • 

'! 

I 

) 

2 2 2 q , 1\. >> m1, 



30~ 

Furthermore, it is clear that one can add internal self-energy parts so long as 

discontinuities are added in such a way thor total discontinuities are taken for all in-

. temal propagators. As an example consider Figure 4. If no three of the lines k
1 

, 

k
2

, k
3 1 k

4 1 k
5 

can go into a single line both in both A and B 1 and if no one of the 

lines k
1 1 k

2 1 k
3 1 k

4 1 k
5 

goes into a self-energy part in either the upper or lower 

amplitudes, A or B, then the sum of. the three discontinuities shown in Figure 4 will 

have the property (34) even though A and B may contain numerous self-energy inser-

tions. 

We now proceed to vrT (P, Q) • For any given diagram, contributing to 

v (PI Q,Cal) I 

I i 
V (P, Q,Cal) ~ 

p 

2 2 
1 +p -4m . . 2/ a2 n;2 = nQ Cal dCal 1-~ 
2P/Q Q 

V (P, Q, Cal) 

corresponds to a sum of discontinuities of the type shown in Figure 5 where one of the 

internal lines has been given a mass, P, and thus singled out from the other internal 

lines. Since V is two particle irreducible the line p cannot be part of any self-

energy insertion. Thus, 

2 2 
1 + P -4m 

I ·a2 Ff[;p2 
dCal Cal 1 -

2P/Q a2
!o)
2 

must be independent of P for Q large so long as internal renormalizations are done 

at some point 1\ . (However, it is clear that the P dependence of the above integral 
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fegration over t:: we cdi"i conduds that v& (P., Q) becomes independent of P 1 for 

huge Q I SC• ior.-g as . Re ct ~ 1 • A somewha.t sx~ended drgument i~ given !n Append!x 

C which indicatss the1r viY{Pf Q) becomes :~dependent of P' 1 for large Q , so !eng 

C Moss 1.,sert!ons and the Ceil ian .... Symon:z:!k Equation . 

f
,~ ~~ 1 

The ope rotor m-~ + (3 ...::... ~ 4 ( J 
::... om . ' og 

gumant then proceeds as in P.ait C of SecHcn It Write (25), symbo!ica!!y, as 

A 

=·V 
~ 

;;;_. '"·· ,..- - ') \! "~ Li'i ,_,, 
= '~ff + ti !ft" . ~j 'li{$" 

;;.. ~ "' 

(25~} 

Fer Q large we mdy drop the Vtr terrris. (Remember VIF stands for V($""(P1 Q) for 



" "' " the first V in (36) and . Yq- ( K, Q) for the second V in (36).) Then 

Since the kernel of (37) is the same as in (25') we can write, -1 < Rea- <. 1 , 

and 

Here, 

,.. 
Tcr(P, Q) ~ 

Q CX> 

P fixed 

" . r: i r. (P,Q) t. (O,Q) , 1cr 100 
i =± 

,., 
- L i r. (P, Q) ·t. (0, Q) 

IG'" Ia" 
i=± 

fir(P, Q) = ~ I K
3 [A~ (K) J 2 

dK v()'" (P, K) 'ia ( K, Q) 

32~ 

(37) 

(38) 

(39) 

+ ( ~ /f K3 
[ b~ (K) ]

2 
(K')

3 (A~ (K') ]
2 

dK dK' r.,. (P, K) V .. (K, K') ri .. (K', Q) 

(40) 

Now, for -1 < Re <r < 1 we may write (39) in detail as 

[ m
2 ~ + ~ _!_ - 4 ~}fC(P, Q) t_(O, Q) - r (P, Q) t (0, Q)J am" a6 t:v v -a- -v 

,.. "' = r_(P,Q) tcr(O,Q) -r (P,Q) t (O,Q) 
" -fl' .. , 



. (f +1 
lim ( ~) f;.(P, Q) = aft ; 
~>~o 

? e 
l!J t~(O,Q) = aa- t,.-(O,Q) ..., (~) b_EYt'"'tt(O,Q) 

2 -If 
- a . t (0., Q) .. (;) b..,. t~{O, Q) 

"'f" -(i" Q.l '\$ ... 

33. 

2 tf 

= (m~) b 
Q -&-

These equations can be written as 

2 t;" 

= '"" (;) b t {0, Q) 
QL ... i1 ""t' 

(41a) 

2 -(1 

= - ( ~) bu teo (01 Q) (41b) 

o: 
2 ·"'er 

'm ) ' .. (0 Q) • \~ Dq·q I 
(42) 
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a
11 

and br depend on g in a manner similar to (3 and ·l( • Equations (41) and 

(42) should be valid in the whole u plane although the identification of t~ (0, Q) 

with lim t,. (P, Q) is only valid for Re rr > 0 • For the examples of the next 
P-+0. 

section Eq. (41) reduces to 

(eJ - aO") tO"(O,Q) = 0 ··' 

but we cannot expect an uncoupled equation to hold in the general circumstance. 

. . ~ : ' I; 
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IV. Two Examples 

As examples we shall consider the set of graphs generated by the Bethe-Salpeter 

equation, Eq. (5), when the potential is given by the graph shown in Figure 6. 

V(p,q) = 
2 

g 
a,r 

where s = (p-+ q)2 in the space-like case and s = (p- q)2 in the time-like case. 

A. Space-I ike Case (30) 

The ~iagonalized equation is obtained from (12) and reads 

a- J 3 2 tG'(P,Q) = viS"(P,Q) +32 K I 6 F(K) I dK tcr(P, K) v<r ( K, 0) (42) 
rr 

where 

/l.F(K) 
-i 1 = 

(21T)4 K2 2 . I 

+m :.. t6 

and 

1 -
P

2
+4m

2 
(X) 

2 

J [ R&l~ 2 
vcr (P, Q) = g 

de, c, -cr 1 + 1 - 2 2 Q (c,-1) 
1m p2 

P2+4 2 Q c, 1 -1 + m 2 
a2 Q (w-1) 

(43) 

with Re cr > - 1 ~ We can go directly to the C1:1llan-Symanzi_k Eq. (22) with ~ = '( = 0 • 
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Thus, 

(44) 

where 

A 

acr = rcr (0) 

"" In order: to evaluate r;- (0) one ne_eds to know the solution for t,.(P, Q), as_is 
. 2 

clear from (21b). However, to order 9 we can calculate acr trivially as 

ao- = 

= 

= 

= 

= -

2 a 2.,.11'_ 
lim m ·:2 

~? am cr 
1'\~a:J 

1\2 
2 a 2 1-lim 9 m2 

m :-2 
1\-+oo am 8 

16cr (2n) 
0 

2 (5f 
l.im -9 

8 

[~+~r 1\-to::J 16r(2n) 

2 !"' d..," -tr 
9 

8 
160" (2n) 

1 



2 
9 

acr = 8 (211') 16cs (o-- 1) 

so that 

in the leading logarithmic approxim.ation. 

8. Time-like Case 

8 

2 
9 

37. 

(45) 

2 
(211') 16cs (o- -1) 

(:,) X ~ ~ j (46) 

2 2 
Wher:' q = Q > 0 the potential, V , has the same fonn as in the space-1 ike 

case. 

v (p, q) (47) 

where now s = (p- q)
2 

• Equation (47) is shown in Figure 7. Now, in the leading 

logarithmic approximation, 

where 

-orr = 
2P a+ 1 A 

lim (C'S) rcr (P,Q) 
a ... co 
p.,.o 
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To first order in 9
2 

Thus 

Thus 

- 1. 2 a 2-(f' n j" K
3 

dK 
atr' = •m m :-2am 8 2 2 2 vcr (0, K) 

1\-+oo (2n) rr 0 I K - m J 

. 2 

1 
4m 

.2 J: K3 dK 
-·-;;T 

4m2 - lim 2 a 9 1 K dww"' 1 -ocr = m :-2". 
(2n)8 8cr ·I K2-m2J2 K2(l-(,)) . 1\+oo am 

~m 
0 

I. 2 a 
= 1m m -:---1 

1\ .. oo am 

92 !"21m2 y dy 11-4/y ~ 4 
8 2 0 . dw .,a- -1 - y(l ..... ) 

C2n> 16 a- 4 . . 1 Y- 1 1 · 

2 
= lim ~ 

1\-+a> (2n) 16cr 

2 
9 
8 (2n) 161T 

2 

(-~)(~) 

I A2 12 -::T - 1 
m 

- 9 0 CT - - --8~---
(21T) 160" (0" + 1 ) 

2 
9 

8 
1 2 (21Y) 16cr (a + 1) 

2 .fo dww"' T(P,Q,w)--.~>(~2) ~ cr~l. 

(48) 

(49) 
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Apr)endix A 

In -this appendix two examples wi II be given which show ·how T(.P, Q, ~) 
. . . . .. 

and V(P, Q, ~> . behave for_ Ia~ ~alues of Q • We besin with the contributic;)n 

to T(P, Q, .. ) show~ in· _Figure 8. 

(q-.p.~ k - k )21®(q .- p - E - E_ ) 
I .\ • . 1 2 _J 0 0 1 2 . 

.f. (kl + k2 +p)2 .,2 

' . 

where internal particl~s have been taken to have zero mass. Write . . 

·where 

. . . 2'.· 2 
· k = (E

1 
,_k

1 
,k

1
z); E

1 
= -· k-+k. , ·._k

1
·: = (k · ··k ·) l -1 · 1z _. ·· ]?C:' · 1 y · 

Now,'ch~, a c~rdinate .frame where 

q = ( Q, 0, o, 0) 

( 
wQ, pl wQ) 

P. 7G 2 +·';;Q .I 0, 0, 2 • · 

(A.l) 
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then 

if we .are interested in finding the strength of the singularity· at p2 = ·0 , for 

fixed w , (k 
1 

+ k
2 

+ p)
2 

must be the order of . pi- • To achieve this it is necessary 

that E. - k. so. that 

and so 

I IZ 

. k k 
+ (". lz k2 + 2z k2 - 2k • k ) r- -2 r::- -1 -1 -2 2z lz 

: I 

clearly the result is a logarithmic divergence in p2 , since (A 2) is a positive 

defi~ite quantity .in .!!1 and .!!2 , and the volume d2~1 • d2~ is four dimensi~nal. 

Also the logarithmic singularity occurs when ·klz'· and k
2

z are proportional to 

..,~ while J .!!1, J and I·!:~ ·1 are on the order of P • .The singul('.lrity occurs . 
. . 

becaUse the Single particle poles are reached when· k
1 

1 k
2 

1 and P Care eSS~n-

fially pgrallel and proportiol'lgl momenta. As de$r,;ribed in Seetlon.lfl th• votume 

(A.2) 
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of phase space for (p + kl + k2)
2 z p2 is proportional to (pl-)2 which almost 

balance~ the (~) -2 
comin.g from the two propagators, resulting in a In p2 term. 

The second example to be discussed involves the contribution to V(P, Q, ~o») 

shown in Figure 9. 

da p (a , m ) 1
~ 2 2 2 . ] 

where r = q - p - k. and the term in ( l 
in 'f 4 

theory. Again the zero mass limit has been taken. In the coordinate 

system where 

q = ( Q, 0, 0, 0) 

~o»Q p2 (o) Q) 
p· = ( T + ;Q I 0, 0, T 

we write 

with 

X = E ' y = E- k 
z 



Thus, for fixed w , 

ee ·x 

V(P, Q, f&l)a:. 2w · fo dx J: . dy 

.;,-

~im 
m-oO 

h ·. . ;.' ..... 

. ·. ·> . '.. , ::~: · 2 · 2x . 
·. · [Gf(f.;.~)+.p;i(l-;+;cs)+ wQy 

lm ·-..2 · _2 2 2 · 
~(1 - ta») +p:-(1 - w + w~) + " Q y 

42. 

- 2Qx 
2 • 

- m. + 1€ 

+ 2 Q ~ . - i e:.J . 

The dominant contribution to. v comes from X- y- Q which gives v aln2 
Q. 

In order to obtairt the dominant p dependence y ":"' p2 /Q while X...., Q so that 

· v - c1 P'-;Q2 ln2 fl;-1\2 + c
2 

p2;a2 In· ~/-A 2 + c
3 

PJ-;cl . 

_2 2 
If Cd is small then the dominant p dependence comes from X- Q I y .-p-/w .Q • 

Then the p2 dependence looks like 

Note.that when X :>. > y I as is. the case above, 

X z k 
z 

so that ·k ·,.., Q while 
z 

2 -JL 
I y ""'. 2k. 

z 

• Only when ·~ bec.omes as small as 

P/Q are j ~ j and ki comparable~ The abo've example. uiustrates .the gen~ral 
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case that so long as w > > P/Q the dominant P dependence comes when a low 

mass system of particles moves parallel to p and with the same velocity as p • 

As a special case of the last example we consider the graph in Figure 10. 

·Here 

V(P, Q, w)a 2~ 2x ~ .. -a P""(l+WQ")+wQy 
2 2w [ dy!. dx In w 

2 
S(Q (1 -w) -2Qx +Cal Qy~ 

o y -A · 

for small pl . The x integration can be done explicitly to give 

1r 
V(P, Q, w)a Q JQ~::> 21p2(~)+w~ 

dy In . -I\ 2 -=1 
0 

Let y = p2 /Q .. w2 z • Then 

c},} (1 -Col) 
7 (2 -wT 

Va d 1 2~(l.+z~. z n . 
2 

• 
-wA 

The singularity in pl occurs, 'roughly, when z is finite so that V has the form 

for the dominClnt P dependence. 
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Appendix B 

In this appendix t~ n.,.particle phase space, near the threshold of a zero 

mass ·theory, will be given. let· 

. 'I" 2 
where (k~ (k;f = k · = 0 •. Although d ~n. is an'invariant function of 

pl = p2 
we shall find it conv~nient to choose a coordinate frame where 

P > > P • Thus we write 
0 

- ( p2 ) ~ - - p + 2p , o, 0, p 

and 

d~ 
.n 

···:dk 
···nz 

E .,. 
p2 . . ,· 

6(. E 1 + E
2 

+ ••• + En - p - -) 6(k + k + ••• + k - p). 
2p · lz 2z nz 

· The 6 · functio~ require. that. k. >) f k. f ··unl.ess ~ ...... k. j and k. are both 
. ' .IZ , -t f · I"Z 

of.the order fl;2p ~ For the moment suppose that k. >> J k. I :.· .. ·· 
IZ -t . · . 
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Then 

del> 
n 

- dk1z dk2z 
- 1< -r-· .. 

1z 2z 

dk 
nz 

k nz 
6(~1 + ~2 + · • • + ~n ) 

k2 k2 . k 2. 
-1 -2 
6~ + ~ + .•• + 

1z 2z 

-n· 

2k 

p;. 
- -) 6(k 1 + k2 + . • • • + k . 2p z z · nz 

- p) • 

Set k. = a.p then 
IZ I 

del> 
n 

where 0 ~ a. ~ 1 • But 
I 

... 

da 
n 

a 
n 

k 2 
-n +
a· 

n 

nz 

nn-1 p2 2 
( )

n-
= ...,-(n.....,-2,....,)!.- a1 a2 • • ·an 

and. 

da 
n 

6(1 -a -a -
1 2 

. . . 

6(~1 + ~2 + • • • + ~n ) 

- a -2 
- a ) 

n 

-a 
n 

1 
>=~ (n-1)~ ' 



so 

dell 
n 
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If j k.j and 'k. 1 for a particular i 1 are both of the order p2 /2p then an 
-1 IZ 

additional. facto~ of p2 /2p occurs so that this region is not important and the. 

above result for d ·'» is exact. / 
n 

Appendix C 

In Part 8 of Section Ill it was argued that 

1 

£ w d w V(P1 Q, w) 
0 . 

becomes independent of ·P for large Q 1 and that the correction terms are like 

p2 /02 
up to logarithms. In order to show that 

. CT 

[; J I - 4rJ. jo}Q2 J V(P1 0 1 w) 

has this same pro,lerty it is necessary to determine how V(P, Q, w) behaves both 

when w is finite and when w - 2P/Q. The independence on P when u = 1 
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indicates that for the region of finite "' 

and examples previously worked out in Appendix A suggest that 

(C .1) 

when "' is small. We shall now give an argument to indicate that Eq. (~.1) 

should hold in general. 

The argument given in Section Ill involved the product of factors coming 

from the phase space of a zero mass theory times the threshold singularities present. 

Refer now to Figure 5. Choose a coordinate system 

,q = ( Q, 0, 01 0) 

(o)Q p2 wQ 
p = (y + wQ 1 01 0, T) 

when w > > P/Q. Now, for fixed (o) and large Q a threshold involving p 

is reached when 

(p + kl + k2. + .•• + 

As we have seen in Appendix A this means that 

k. - !_2Q I I k. , - p 
IZ -1 = 1, 2, ••• i 

:;o that t·ht;~ particles align with p • Now as It) qecomes small. less alignment 
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will occur until there is no alignment at (;!II when w - P/Q. This is illustrated 

i.n the examples of Appendix A. More quantitatively call . 

then 

(p + K.)2 = f:2 + 2p • K. + K~ 
I I I 

= p;. + wQ (K. - K ) + 2pl K. + K~ 
10 jz wcr 10 I 

and 

3 3 3 
4 . d k 1 d k2 d k. 4 

d 'I' = d K. -E -E · ••• __J_E 5 (K. - k
1 

- k
2 

- ••• - k.) 
. . I 1 2 j I I 

·e (a
2 ~ (p + KJ2 

) ® (Q - K. ) 
I 10 

attains a maximum when a
2 

is chosen to be pi /w • (a2 cannot be1 chosen 

significantly greater than F(l;w or d,~ loses all P de~ndence.) 

2·-2 I . . ~ 2~ -i]2 d'i' -(a )I d4K. ® (Q-K.) ® a -wQ K. -K.) --
0 

K .. -K. 
. I 10 JO IZ "' 10 I 

. 2 i -2 _2 ..2 2 2 i-1 ..2 2 
- (a ) (P'"" /w) (t'"" /w ) - (a ) (tr /w ) • 

The threshold singularity gives a factor (a2) -j+ 1 so altogether 

V(P, Q, w) - V(O, Q, w) ""' p2 j 1}Q2 
(C..2} 

for large Q and small (j) ThE! f~Qtor of 1/Gf ~ome~ Into (C,2) Q$ th$. ~nly 



possible quantitY, to s~t _the scale for the mass singularity. Thus 

1 + f2-4m 

(' ~" .,u r; J 1 -Apl /Q2~r V(P, Q, w) = 

J2P/Q 

49. 

v (P, Q) 
CT ·• 

will becomes independent of P, for large Q, so long as Re cr > - 1 • 
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FIGURE CAPTIONS 

Figure 1. An illustration of Eq. (5). 

Figure 2. An illustration of Eq. (25). 

Figure 3. A particular discontinuity of a self-energy graph. 

53. 

Figure 4. A particular discontinuity of a self-energy graph where discontinuities 

over internal propagators are added. 

Figure 5. An integrated inclusive cross section as related to a discontinuity of a 

self-energy amplitude. 

Figure 6. A potential used in .the Bethe-Salpeter equation. · 

Figure 7. A potential used in the Bethe-Salpeter equation. 

Figure 8. A two particle reducible amplitude. 

Figure 9. A two particle irreducible amplitude. 

Figure 10. A two particle irreducible amplitude. 
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