LA-5618-MS

Informal Report

UC-28
Reporting Date: April 1974
Issued: May 1974

Slit Scattering in the EPICS Beam Line

by

Norbert Ensslin*
H. A. Thiessen
"Guest Scientist. Permanent address: University of Colorado, Boulder, CO.

This report was prepered as an sccount of work sponsored by the United Sutes Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, sabcontrectors, or thelr employees, makes any warranty, express or implied, or essumes any legel tiability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

In the interest of prompt distribution, this LAMS report was not edited by the Technical Information staff.

slit scattering in the epics beam line
by
Horbert Ensslin and H. A. Thiessen

Abstract

abstanct A tonce Carlo calculation of the interaction of charged particics with collimating slits was used to simulate the EPICS channel and spectrometer. The program was applied to the design of collimating jaws for the channel and to the selection of event rejection tests for the spestzometer. It was possible to predict the expected backgrounds of muons, pretens, and slitseacterat pions.

1. DESCRIPTION OF PROGRAM

Parificles emanating from a target are simulaked by choosing rays of random position and angle with respect to a common origin. The rays are traced through a serics of silits, which may be collimating faus, vacuum plpes, or magnet pole tips. The slits may have rectangular or elilptiend apertures, and may be straight, sloping, or parabolic in cross scecion.

Composition of the slits is desermined by spectfyins the radiacion lengen, collision length, and energy loss of finimum lonizing phons. The values used are listed in fable I.
table I
atomic and nuclear properties of slit materials*

Matorial	2	Radiation Lesgeth cm	Collision Length (Hadrons) ca \qquad	Mintimum dE/dx mey/cn
C	6	16.9	26.8	4.00
Al	13	8.86	29.3	1.66
Fe	26	1.44	12.8	12.9
H	74	0.36	7.8	22.6
U	92	0.29	8.75	20.5

*From i. Barash-Selumidt et al., "Reviev of Particie Properises:" UCRE-B030, 2969.

Widle che particle is iniside the silt materfal, is is stepped through in steps that are initially 1 a in size. but which increase sradually to sbout 1 cm . At each step, the particle is allowed to scacter about ics direction of mozion. The angle of seater is chosen randomiy frow a gaussian distritucion of standard ecersation

$$
\sqrt{\left\langle 0^{2}\right\rangle}=21.3 \frac{E}{p^{2}} \sqrt{\frac{\mathrm{E}}{c_{\mathrm{Fad}}}}
$$

where $E=$ cotal energy (MeV), P - momentua (HeV), and $t / t_{\text {rad }}$ is the distance craveled. in radiacion lengths. The coillsion length allows for che random removil of pions due so nuclear inceractions without considering spectific reactions. As the parcicle moves through the eatertal, its energy is progressively reduced. If the muleiple scatcerins or energy loss becoses excessive, the particie is discarded. If a scep carriea che ray out of the slic ascerial, it is first craced back to the boundary before proceeding.

The values in table t were also vaed for muons and protons, with two exceptions. Since mons do not interact strongly with nuclei, no collision length uas uned. Since protons are not minimumlonizing in the range of momenta covered by EPICS, larger values of $d E / d x$ vere used. ${ }^{1}$

Thin lenses can be introduced at any boundary between two slits. They are of the form

$$
\left(\begin{array}{c}
x \\
\frac{d x}{d z} \\
6
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / f_{x} & 1 & 0_{x} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
\frac{d x}{d z} \\
0 \\
0
\end{array}\right)
$$

Whare \underline{x} is the transuerse displacement, \underline{z} is the distance along the cencral ray, of is the deviation in momentum from the central ray, \underline{q} is the focal lenth, and \underline{D} is the angular dispersion. The matrix elements correspond to the dominant first-order coefficients used by the compuece code trassport ${ }^{2}$, with the exception that $\underline{0}$ is replaced by cin D.

The random decay of pions inco auons and neucrinos is alloved for. In the rest framo of the pion, the dircetion of the cwitced muon is chosen randomily. Also coneidered ls the decay of muons into electrons, but aince this occurs relatively infrequently and involves a three.body final seate, che kinemetics are treated oniy approximacely.

It would be possible to simulate the interaction physies or the magnet optics nore accurately. Howaver, as cucin compuser cime as possible is devoted to simulacing the scatecring of particles which strike slice at grazing angles. This is done by using smaller seep sizes near the edges of the silte and by using step sizes as anall as practical. Figure 1 shows the results of a test to deteraine the step aize needed. Pions of 200 MeV kinctic enersy vero allowed to striks a large, slighty curved uranium fav at grazing incidence, as illustrated in Fig. 2. The energy distribution of the plons chac re-tmerge from the silt is difficult to predict exactiy, but it should be a rapldly decreasing function of encrgy, wh perhaps a long casi. Figure 3 yields such a shaye for sufficientiy smill scep sizer. Alchough 0.25 ma appears to be significantiy better than 1.0 mm in chis: cest, both slaes were found to give essentlaliy the same resules in simulating the EPICS channcl. A1so, a $1.0-\mathrm{mn}$ sten was found to be the smallest pracisial aize in cerms of running cises.

Fig. 1. Etregy distribution of slit-seattered pions is 3 function of step size inside slit.

Fig, 2. Geometry of single silt teste.

The program employs two Independent random number generatifg sequences. One is used to gencrate nev rays, she othir co crace clims through sifts. the of the same set of initial ray: can reduce seatistical uncertainties in canes wherc it $\{s$ necensary co study elue effect of a small change in sift geometry.

Fig. 3. Distribution of the maximum depth attained by plons wifh re-cmerged from a slit. Twom thiteds of che pions penetrated to depths of Less than 0.1 min $U, 0.5$ in stecl.

II. SINGLE SLIT RESULTS

Inithal teses with a single silt, as in Fig. 2, shoued chat the best collimation of an incident beam is obtained with slightly curved jaws of high Z material. High 2 incranses the energy loss, collision loss, and muiciple scactering of a paricicle which ence.s the silit. This increases the probability thac che parciele will be abuorbed or at least scafeored out of the beam. A snall curvature (sbout 50-cm radius) was futud to be more effective chan a flat surface. This was true even for a perfectly parallel incident beam, where there was no possibliLey of parcicles passing through a cornct of the silt. A small curvature allows particles co strike the sift at a larger angle, uhich apparently ankes it more difficult for then to seater out again.

If was found chac about $1 / 3$ of the perticles Which struck the sitt romemorged. Host of these had penctrated to depelas of oniy $0.1-0.5$ into the
slit, as illustrated in Fig. 3. This inolies that a coating of higher 2 or lower 2 material can significantly alter the properties of a slit. Although many particles re-emerged, only 10^{-3} scattered back into the phase sface of a "target" positioned downstream. In order to determine if this ratio would be substantially increased by double or criple scatterings if there were other silts farther downatream, a stedy of the full EPICS channel was undertaken.

III. EPICS CHANNEL SLMULATION

The ERICS chandel consists of fout 52.5° bending magnets and ter pairs of moveable steel or uranius jaws. These must select pions of a given energy range and collimate them into a beam at the scatcerIng target. Figure 4 illustrates the positions of che slits and lenses used to simulate the channel, and Table II lists the dimensions and focal lengchs. In the horizontal plane, the optics are point-tom parallel, with crossed E and B fields after the first mognet to separate protons. In the vertical plane, the optics are point-to-point, with $9.2 \mathrm{~cm} / 2 \mathrm{dis}-$ persion at the scattering target.

Horizontal focussing is accomplished only by the fringe fields at the entrance and exit of the nagnets. The focal lengths of the equivalent thin lenses are ${ }^{2}$

$$
\begin{gathered}
\frac{1}{f y}=\frac{\tan (B-\dot{\theta}}{\rho} \\
\dot{\theta}=\frac{1+\sin ^{2} B}{B}\left[k_{1}\left(\frac{g_{1}}{\rho}\right)-k_{2}\left(\frac{k_{1} g}{\rho}\right)^{2} \tan B\right]
\end{gathered}
$$

Where $k_{1}=0.4, k_{2}=4.4$ (ciamped Rogowski fringing field), $8 / 2=4.445 \mathrm{~cm}$ (half apercure of magnet). $\rho=76.40 \mathrm{ca}$ (radius of curgature of the central trajectory), and G is the angle of the pole face with che rotrail to the central trajectory. ψ is the correction to $\&$ produced by the fringing fields. Because of the fringing fleids, these lenses should actually be positioned near the effective field boundary. However, it was possible to reprefuce the first-order optics and the beam envelope to wiehin S-10\% with the lenses positioned at the actual pole boundaries.

The production target was simulated by choosing zays randanly over a.2-cis interval in the vertical direction, and over a $3,0-\mathrm{cm}$ interval along the
Verifigal Blane

Production
 forgat

Fig．4．EPICS channel slits and lenses．
proton beam．In the horizontal direction，a gaussian distribution with a standard deviation of 1.0 cm was used to choose rays．This distribution reproduces the proton beam profile in the horizontal direction， but the width has been increased to simulate in part the higher order aberrations in the channel optics． These inizial coordinates were then rotated by 35° and projected down the channel．The initial phase space was chosen large enough to include all rays with a reasonable chance of scattering into the acceptunce of the channel．

Pions and protons were started into che channel
in this manner．They were traced through all of the

TABLE IIA
EPICS CHANNEL SLITS
2A， $2 B$ define the position of the slit along the central trajectory．The half－aperture is $A+2 S L P(Z-2 C)+(Z-2 C)^{2} / 2 R C$.

Cor	tion	24	Lb	ご（2）	ZCiY，	＜！${ }_{\text {¢（8）}}$	＜SL ${ }^{(Y)}$	HC（ X$)$	WC（Y）	A (x)	（v）
1	Fe	15．2．j	3R．1c	38.15	38．1	．0－55	－0ち55	0.000	0.000	5.000	5.080
2	Fe	$3 \mathrm{B}$.	34.30	38.30	34．3n	－U／50	－1750	0.000	0.000	3.830	3.830
3	Fe	38.30	49.81	49.40	44.811	3.0000	4.7000	G．0n0	0.000	10.000	5.000
4	W	\＄3．010	60.100	68． 40	64．90	n． 6000	． 11074	0.400	n．91\％ 0	5.556	2.169
5	H	my． 711	76．130	68． 70	68.70	11.6000	－0094	45.120	4.5973	5.556	2.169
6	Fe	P6．90	4．37．20	？ 0.70	76．91）	13.0000	o－doin	0.010	0.000	16.000	5.000
7	\mathbf{v}	137.20	1ヵr． 60	199．70	14\％．90	0．ucon	6．1000	20.000	$: 00.000$	11.200	5.000
8	Fe	152．60	165．』0	102.60	182．en	0.0000	$0 \cdot 10$ an	U．000	0.0010	30.000	5.000
9	\mathbf{u}	165.10	190.3	17% 8，	177．AU	1．0．00\％	H－anuo	20.000	－0．0lu	50.600	3.600
10	Fe	120.50	292．5：	190．50	191．5u	0.0000	6．0Uto	0.000	0.060	20．000	5.000
11	Fe	2920．60	3nP．bc	3n2．50	5uides	9.0000	$0 \cdot .10 \cup 0$	0.000	10．000	40.000	4.4 .5
12	Fe	372.50	35R．50	3U？： 4	302．50	1），ưU0	0．0900	6.000	0.001	60.000	4．4．45
13	Fe	352．b0	3h2000	352．50	352．5：	n．UuOO	0．0000	6.000	$: 0.000$	40.000	4.445
24	Fe	3rid．5il	5h5．ht	brs．jo	565.501	U．UVOO	C．0JU0	6.000	0.000	20.000	5.000
15	U	265．50	bF3．40	568．90	0.004	O．Wuvis	0.0000	CS．000	0.000	2．000	5.000
16	Fe	513．0n	540．50	210．50	5911． 51	\therefore UJ00	（1）idoun	U． 000	0.000	50.000	5.090
17	\mathbf{U}	5190．50	b95．tu	0.00	49J．10	a．Uuno	0.7000	0.000	50.0011	50.000	4.645
18	Fe	545．50	bやすぐ	－42．14	662.1 .0	0.6000	0．030）	0.000	0.000	50.000	5.000
19	Fe	042.111	652．14	652.10	652.10	0.11000	0.3000	0.1000	10.000	34.090	6.645
20	Fe	6is．14	71）．iv	752.10	70く．11	H．lU0u	\％－\％JU0	0.000	0．0ut	30.0000	4．645
21	Fe	172．10	14．3．ic	702.10	70c．is	1．0000	lif． 1000	$\because .000$	10.005	34.000	4.465
22	Fe	78.810	7.34 .66	734．60	734.44	1）．0300	$0=0000$	0.000	0.0134	20.000	5.000
23	Fe	734.60	737.04	737.10	737.17	n．0000	U．JU00	11.000	0.0110	5 V .004	5.000
24	Fe	714.00	762．：6	162.10	762.10	0.0000	1，0000	0.000	0.01111	¢0．000	5.000
25	Fe	Tuseln	\％\％7．io	156．60	764．6．	0.0000	0.3006	U． 000	0.0010	13.000	5.000
26	Fe	167.17	612．1u	012．10	H12．13	U－0v00	6－ 0060	0.000	0.000	20.000	5.000
27	Fe	6：c．10	H2？．16	dア2．10	822．13	12．0400	C．DO4O	0.000	10．000	30.000	4.445
28	Fe	－22．10	872．1i	6－2．d0	47ぐ1」	＂11001	is． 000 c	0.000	0.0110	30.000	4.465
29	Fe	872．10	HH2．10	472．10	872．1．	11.0001	0.0000	0.000	10.000	30.000	4．4．5
30	Fe	3AC． 0	454.40	454．40	454．40	O．6U00	0.0000	4.000	0.0170	20．000	5.000
31	U	9750．40	$9 \mathrm{Ht-411}$	\＄60．50	0.00	（i．UUDu	－ 3000	50．000	0.000	5.000	5.000
32	Fe	－304．40	991．10	4R1．10	482.0	\％．iJ0U	C． 0000	0.000	0.061	20.000	5.000
33	U	791． 10	90750． 19	0.00		：3，6000	0.3000	$0 \cdot 000$	50.010	50.000	1.700
34	Fe	v40． 10	10900u：	1194．60	11994．0．1	い．いしOC	$\cdots \mathrm{OLUO}$	C．000	0.000	30.000	5.000
35	\mathbf{v}	－1494．00	1107.00	1800．00	$0 \cdot 0 \cdot 1$	d．uvor？	1．0000	－ 0.000	0.000	16.006	5.000
36	Fe	1199.60	1110．ü6	1118.00	1118．nis	U． 6.500	1．0000	0.000	0.000	50.000	5.000
37	U	1118．00	1833．40	0.50	1125.40	1，11000	u－ 0000	0.000	50.000	50.000	3.000
38	Fe	1133.00	18bidun	11n2．00	1162．00	C．VUOO	1.11000	0.000	0.000	50.000	5.000
39	Fe	1162.03	117E．10	1272.00	1172．0．	0.0000	v．1000	0.000	10.000	40．000	4.645
40	Ke	1172000	－＜22．リ0	142］．0u	12せ2．0：	－bu0n	0－1000	0.000	0.060	40.000	4.465
41	Fe	1227.00	123i．00	1222.10	122＜0011	0.0000	1.00000	0.000	10.000	40.000	4.465
42	Fe	18360110	1524.01.	15P4．v0	1524．00	1）．1000	0.6000	0.000	0.0014	50.000	5.000

TABLE IIB

EPJCS CHANNEL LENSES

is	$-1 / \mathrm{Ex}_{x}$	$-1 / f y$	פx	DY
11	0．00000Ju	－－ا）．tal ？	O．，0u	1，000
12	－．0．371リ＝1	3．0usuo， 2	7．${ }^{\text {（0）}}$	．， 000
14	0．020072u	－10133．3	10．000	J．000）
19	0．Uつ00うけう	－．0） 3 10 L^{3}	1，1100	0.0010
21	－vo73？．ve	こりりいいらいす	－10．100	0.0110
2%	0.00000 us	－vリ；0．J＋7	0.100	0.0110
2\％	0.11000700	－9，160，？	11.100	10.000
24	－ 10073206	リ．Jいいいいう0	－10．：60	0.000
30	0.0900000	－．0033032	0.0000	0.003
39	0．V0004jJ	－00133．3	0.1100	3.0013
41	－U371．tc	J．v0jutus）	15．th0	9．0¢1）
$4 ?$	0.0000000	－（1）4 以2，	1． 100	J．OOD

The lenses are positioned between slits $\mathrm{N}, \mathrm{N}-1$ ．
slits and lenses，as described in Part 1 ．The pions， slit－scattered pions，muons，and protons which emer－ ged were required to pass through the $20-\mathrm{cm}$ by 8．89． cm area covered by the scattering target．Sift scat－ cered pions were found to comprise 0.1% of all pions passed，in accord with the single slit restits des－ cribed earlier．

Since optical aberrations are quite large in the channel（about $1 / 2-\mathrm{cm}$ spot size at the cross－ overs），the above result seemed unrealistically small．Two methods of simulating the channel aber－ rations were tried．Firstly，each pair of jaws was set to intercept 5% of the beam envelope defined by the preceding pair．This method yielded a back－ ground of 0．2\％slit－scattered pions．Secondly，each lens was made to fiuctuate sligitly in strength for every pion by adding a small random number to the focal length，The random number was chosen from a gaussian distribution，whose width was set to re－ produce the 1／2－cm displacements mentioned above． This method yielded a background of 0.4% ．

Incident pions of momentum lower than the ac－ ceptance of the channel were not passed．Pions of higher momentum，up to 35% higher，contributed an additiomal 0.2% scatcered pions to the 0.4% or less described above．The 0.6% slit－scatered pions can－ not be distinguished by the spectrometer，and will produce a background at the focal plane．

This background appears to be concentrated at the posicions of the regular peaks．In other words， most slit－scatrered pions strike the target close to
the position expected on the basis of the $9.2 \mathrm{~cm} / \%$ dispersion of the channel．As iliustrated in Fig．5， histograms of unscattered pions and scatcered pions have nearly identical widths of 3×10^{-3} and $4 x$ 10^{-3} ．respectively．of course，the resolution of the actual channel is much better，since the pros am employs only first－order optics，with added aberra－ tions．However，even under the best of circumstan－ ces－an actual channel resolution of 2×10^{-4} and the same scattered pion width of 4×10^{-3} —it will not be possible to distinguish the 0.6% scattered pions from the resolution function and radiation tail of the main peak．As long as the channel is tuned well enough to keep the percentage of slit－ scattered pions small，this background may be ignor－ ed．Pion peaks can be fitted with an empirical re－ solution function that includes most slit－scattered pions．The remainder（about 10^{-4} of the height of the main peak）will blend with the large－energy－loss radiation tail and with the muons and slit－scattered pions produced in the spectrometer（described below）．

The incident flux of protons is estimated to be about ten times as great as the incident flux of pions．${ }^{3}$ In the program，most protons were removed by the simulated proton separator．The remainder confitituted an additional background of about 0.3% of the number of pions．

At 100 MeV ，the wion contamination is about 35% of the number of pions．At 200 MeV it 1325% ，and at 300 MeV it is 20\％．This background will not be serious unless che spectrometer is positioned near $0^{\circ} \quad$ K．Seth has studied this case and has found that the background cannot be reduced even by

Fig．5．Distribution of pions at the scattering target，projected to the focal plane of the spectrometer．
substantially closing the slits. This is because muons produced near the production target or any of the crossover points will be refocussed. Closing the slits located at the crossovers will remove these muons only in the same proportion that it will remove pions.

A simulation of the entrance to the pion channel (Fig. 6) was used to study the design of the fixed collimator. This water cooled collimator shields the first moveable jaws from the intense spray of particles emanating from the production target. The study predicted that the fixed slits should be of low 2 material in order to reduce the number of particles scattered back into the opening between the moveable jaws. Since these jaws define the solid angle, the fixed slits which precede them should, ideally, do nothing more than serve as a heat shield. As a compromise between the need for low atomic number and high attenuation, the fixed collimator will be made of stainless steel.

Initially, at least, the channel will lack the fifth set of moveable jaws. Some or all of the other uranium jaws will be encased in steel to decrease the possibility of contamination. Even thin layers of steel will essentially determine the collimating properties of the jaws, as deacribed in Part II. Honever, simulation of these conditions has shown no noticeable increase in the background of sift-scattered pions due to the use of steel rather than uranium. On the other hand, when one pair of curved jaws was temporarily replaced by flat jaws, the background rose by $25-30 \%$.

Fig. 6. Entrance to EPICS channel.

IV. EPICS SPECTROMETER SIMULATION

In addicion to the background of slit-scattered pions already present at the scattering target, backgrounds will be generated by the decay and scattering of pions in the spectrometer. There are no special slits in the spectrometer to reduce these new backgrounds. However, multiwire helical chambers and thin scintillators will be positioned at the entrance and exit of the spectrometer dipoles. With these detectors, it will be possible to test each event to decide if its flight path is consistent with that expected from the magnet optics. Counting rates will probably be low enough (about $10^{2} / \mathrm{sec}$ or less) to carry out these rejection tests on-1ine during the course of the experiment.

The first helical chamber and scintillator aie situated at the image of the spectrometer triplet. To first order the information available here can be related to the scattering target by

$$
\begin{equation*}
x_{1}=-x_{T} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y_{1}=\phi_{\mathrm{T}} / 5.048 \tag{2}
\end{equation*}
$$

(x is the vertical, momentum-analyzing plane.)
The second and third helical chambers provide x_{2}, y_{2}, θ_{2}, and ϕ_{2} at the exit of the spectrometer. A second scintillator is positioned near these chambers, and the time difference between the second and first scintillators provides the time-of-flight between the entrance and exit of the spectrometer dipoles. To f irst order, the entrance and exit can be related by

$$
\begin{align*}
& \delta=.2384 x_{2}+.2384 x_{1}, \tag{3}\\
& \theta_{T}=\theta_{2}+2.172 x_{1}-2.172 x_{2}, \tag{4}\\
& y_{T}=-.678 y_{2}-.288 y_{1}, \tag{5}\\
& \phi_{2}=-1.505 y_{2}-3.526 y_{1} . \tag{6}
\end{align*}
$$

These equations suggest the following rejection tests:

1. First helical chamber must fire. From Equations 1 and 2, this is equivalent to testing X_{T}, ϕ_{T} to make sure they are reasonable.

2．Second and third helical chambers must fire． This automaticaliy eliminates many muons and s．it－scattered pions，at least in the initial configuration of the spectrometer，where the chambers span only half of the exit aperture．
3．Deviation from the central momentum δ（as cal－ culated from Eq．3）must lie within $\pm 5 \%$ ，the range of the focal plane which the helical cham－ bers initially span．

4．θ at the target（as calculated from Eq．4）must ile within the acceptance of the triflet，about ± 100 mrad．
5．y at the target（as calculated from Eq．5）must lie within the size of the target，$\pm 4.45 \mathrm{~cm}$ ．
6．The calculated exit angle ϕ_{2}（Eq．6）must agree with the measured angle．Equation 6 can be re－ written as a test of ϕ_{T} ，but in its present form it is perhaps more obvious that it is a very sensitive test for large angle pion decay．
7．The time－uf－flight between the entrance and the exit of the spectrometer dipoles must be reason－ able．For 200 MeV pions，this will be $25,0 \mathrm{~ns}$. The above rejection tests were situlated in the program in order to eliminate the backgrounds due to slit－scattered pions and muons．Table III lists the slits and lenses used to reprocuce the spectrometer． Again，the optics are good to about 5\％．Particles were chosen at the scattering target with their
vercical position correlated to their momentun，as yaquired by the dispersion of the channel，to within a small random errcr corresponding to a resolution of $2 \times 10^{-4}, x_{1}, y_{1}, x_{2}, y_{2}, \theta_{2}$ ，and ϕ_{2} were as－ sigred random errors based on the chamber wire spac－ ing and expected multiple scattering，as sumarized in Table IV．The particle flight time was assigned an error of 1.0 nsec FWHM．Histograms of pions，slit scattered pions，and muons were calculated for each rejection test．Rejection criteria were set by the requirement that each rejected inttival contain at least as many muons as pions．Under these conditions， it was possible to reject about 80% of the muons and 70% of the slit－scattered pions，at a loss of 3 or 4\％ of the total pions．An example of this is given in Table：V．

The final ratio of muons to pions was about 3% at $100 \mathrm{MeV}, 7 \%$ at 200 MeV ，and 8% at 300 MeV ．The variation is due primarily to the time－of－tilight re－ jection test，thich is more effective at lower energies．With a resolution of 1.0 nsec $F W H M_{4}$ time－ of－flight was a useful test even at 200 MeV ．A re－ solution of 2.0 nsec was also＝ried；this substan－ tially increased the muon background even at 100 MeV ． Since the spectrum of muon flight times overlaps the pion flight time，and extends to both longer and shorter times，it is important to achieve very good resolution on this measurement．

TABLE IIIA
EPICS SPECTROMETER SLITS
ZA， $2 B$ define the position of the slit along the central trajectory．The half－aperture is $A+Z S L P(Z-Z C)+$ $(Z-Z C)^{2 / 2 R C}$ ．

Composition		74	23	$7 \mathrm{C}(\mathrm{x})$	2C（r）	LSLP（x）	2SI．U（Y）	Re（ x ）	AC（Y）	B（ Y ）	$\Delta(Y)$
1	Fe	二2．1：	1rid，R A	144． $\mathrm{Al}_{\text {\％}}$		Severas	A．atam	$4 \cdot 9$ and	\cdots－inct	15.240	9.985
2	Fe	$18^{2} 4.87$	150．6A	159．nb	159．6A	2．0tar		Pata	A，ien	17．560	14．544
3	Fe	150．6\％	274．63	3世4．h（1）	20山，क？	0.00 .30	T－math	N．cap	3 copr	17．5su	14．000
4	Fe	2，14．6\％	249．6\％	200．nll	2：10．h，	A．0030	T． 50.04	い．こun	A．pers		17．54\％
5	Fe	204．0．	294．6．4	290．mal	294.60	Nopbin	A．\＃3n	$x^{2} \cdot \operatorname{tas}$	3．760		17．54r
6	Fe	794．6．	359．64	330.5 ．	330.514		\because－ 3 Atict		（4．けんィ	17．5mm	14．0．544
7	Fe	33？．n．	409.37	497.3 .7	499．3：4	V．P．P．tyt		\therefore－196	6．0．0\％	17.508	14.508 Cl
8	Fe	490．7\％	6404．7．	490.37	409.37	$F \cdot P$ P14	＊． 4.764	1．9．0．0	A．vスn	12.30 r	$11 . \mathrm{Mat}$
9	Fe	6id．${ }^{3}$	657.74	65N．7．	$65 i 1.74$	0.8 ¢！ap	3.3 arg		14．30．3	SA．4アN゙	A．89\％
10	Fe	－5：．7：	726．d．a	724．4A	72n．d．	6 －140\％		\cdots	A．inat	SP． 42 C	R． 29%
11	Fe	720.46	7hte．5\％	7hn．ct	7nh．5！	θ atior	$\cdots{ }^{-1509}$	\bigcirc	$\overrightarrow{r a m}$	sh． 42 l	$8.89{ }^{\circ}$
12	Fe	7ヵん．50	776.54	7nto． 50	7nct． $4{ }^{\text {at }}$	in pran			1rapori	5月．32\％	8.894
13	Fe	77n．56	941．50	941．54	341．5：1	v．0！ispr		14.460	P．pan	39．7ar	9．2ar
14	Fe	941．50	946．5．4	0146.53	$90^{\circ} \mathrm{s} .54$	ropuer	P．tagtan	1． 030	N． Bran	39．704	9.208
15	Fe	Oun．54	916．58	01ヶ．51？	916．5！	P．prati		4．Anat	10．vas：	5月， $\mathrm{S}_{\text {2r }}$	8.890
16	Fe	01% ． 50	95ヶ．が	7bh．t！	956．ht：	Q．fiong		$5.4 \mathrm{Cl}^{\circ}$	A．ior	55．42r	P．894
17	Fe	75月．t．	103？．＂	1．93．004	1432.0	FOPaga	7． 61005	C．ens	－	58．42i	R．890
18	Fe	1432.06	1 Au2．	1： 12 ？	1332．0\％	Y．fora	F－D．ati	Cound	10．cAa	58．429	8．89\％
19	Fe		11R4．s．a	1湤？成		T． 3 P64 4	$\cdots \mathrm{AHOCH}$	\cdots Athat	a．rap	43.140	9.2046

TABLE IIIB

EPICS SPECTRONETER LENSES

The lenses are positiored between slits $\mathrm{N}, \mathrm{N}-1$.

-1/fx -1/fy	rx	ar
	: 28.4	a.apa
	$\therefore 0^{\circ}$	A. 0^{3} an
	$\mathrm{c}^{\text {a }}$ - $\mathrm{Cl}^{\text {a }}$	-aba
	-6.e.	E.tar
	0.45 ?	P. 19 ?
	*. ${ }^{\text {P': }}$	\% Ma
	1. . ${ }^{\text {a }}$	9.9?\%
	$1 \because 10$	
	1.402	

TABLE IV
RMS ERRORS ASSIGNED TO HELICAL CHAMBER DATA
table v
EPICS SPECTROMETER REJECTION TESTS

	Pass	$\begin{aligned} & \text { Miss } \\ & \text { HC2 } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Miss} \\ \mathrm{HCl} \\ \hline \end{gathered}$	Delta REJ	$\begin{aligned} & Y T \\ & \text { REJ } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { PHI2 } \\ \text { REJ } \end{array}$	$\begin{array}{r} \text { THTT } \\ \text { REJ } \\ \hline \end{array}$	$\begin{aligned} & \text { TOF } \\ & \text { SEJ } \end{aligned}$	FINAL Pass
Pions	12119	45	18	50	41	220	55	69	11705
Muons	4239	1332	31	895	1305	2445	708	471	854
Scattered Pions	89								24

An example of the use of rejection tests to decrease the background of muons and slit-scattered pions associated with 200 MeV elastically scattered pions. Many particles are rejected by more than one test.

Decreasing the y-direction wire spacing from
3 mm to 2 m was also tried. This did not significantly improve the number of rejected muons.

Figures 7 and 8 illustrate the simulated momentum distribution of pions and mucns at the focal plane after 200 MeV elastically scattered pions were traced through the spectrometer. Several satellite peaks and background tails were produced by the muons and slit-scattered pions. Since these effects should scale roughly with momentum, similar backgrounds will be associated with every inelastic peak in the pion spectrum.

Most of the muons which pass the rejection tests appear in three peaks:

Forward decays of pions early in the spectrometer yield muons that look like pions of 1 or 2% higher momentum. This produces a high nergy muon tail and a small satellite peak (Fig. 7), about 2\% of the area of the main peak, which may have to be allowed for during the analysis of weak inelastic peaks that lie at several percent higher energy than very strong inelastic peaks. At 100 MeV , time-offlight eliminates this satellite peak.

Early backward decays of pions produce muons that look like pions of $40-50 \%$ lower momentum.

This peak (Fig. 8) could interfere with quasi~elastic scattering experiments at low energies, bst it is only about 0.1% of the elastic peak in area.

Very late forward decays of pions yield muons that are indistinguishable from pions. They produce a peak (Fig. 7) of about 2% of the area of the main peak and directly under it. Again, this background cannot be eliminated by line shape fitting of the main peak. However, since these muons were pions in

Fig. 7. Simulated momentum distribution of pions and muons at the focal plane of the EPICS spectrometer after 200 MeV elastic pion scattering. $+2 \%$ to elastic region.

Fig. 8. Simulated momentum distribution of pions and muons at the focal plane of the EPICS spectrometer after 200 MeV elastic pion scattering. Elastic to -55% region.
the spectrometer dipoles, there is no error in including them with the main peak. The problem will arise in assigning an "effective flight path" to the spectrometer. This needs to be done whenever it is necessary to correct the measured pion cross section for the decay of pions between the scattering target and the focal plane.

The background tails due to muons and slitscattered pions (Fig. 8) have been examined down to 55% of the elastic momentum-5 inelastic settings of the spectrometer. They remain small, 10^{-3} to 10^{-4} of the height of the elastic peak, over this region.

There is no evidence for a pion "ghost peal" produced by elastic energy pions scatteriag from the walls of the vacuum chamber when the spectrometer current is set to sample inelastic events. of course, a 10^{-3} or 10^{-4} background tail may be comparable in size to the radiation tail, but within the present statistics it appears to be a smooth background. The rejection tests have reduced its size by a factor of five.

Not simulated in the program is a lucite counter, situated behind the helical chambers, which will reject protons. However, the present results should serve as a reasonable prediction of the actual backgrounds and rejection tests. The data analysis program will base its rejection tests on calculations of $X_{T}, y_{T}, \theta_{T}, \phi_{T}$, and δ through fourth order. This should improve the tests, but on the other hand it will be more difficult m set the rejection criteria, since the actual identity of the particles will not be known.

References

1. Joseph F. Janni, "Calculations of Energy Loss, etc.." U.S.A.F. Technical Report No. AFWL-TR-65-150.
2. K. L. Brown and S. K. Howry, TPANSPORT/360, SLAC-91, p. 2-3.
3. D. Cochran et al., "Production of Charged Pions by $370-\mathrm{MeV}$ Protons from Hydrogen and Selected Nuclef," Phys. Rev. D6, 11 (1972) 3085.
