In research in support of the GCRE, procedures for the fabrication of stainless steel-clad flat-plate fuel elements having a core of 28 w/o UN dispersed in an iron-18 w/o chromium--14 w/o nickel--2.5 w/o molybdenum matrix were developed. The preparation of UN and its compatibility with the components of the matrix alloy were studied. The UN for the program was prepared by nitriding uranium metal at 850 C and then dissociating the U/sub 2/N/sub 3/ produced to UN in a vacuum at 1300 C. In compatibility studies, UN reacted with nickel alone at 1800 F, but no reaction with nickel was …
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
In research in support of the GCRE, procedures for the fabrication of stainless steel-clad flat-plate fuel elements having a core of 28 w/o UN dispersed in an iron-18 w/o chromium--14 w/o nickel--2.5 w/o molybdenum matrix were developed. The preparation of UN and its compatibility with the components of the matrix alloy were studied. The UN for the program was prepared by nitriding uranium metal at 850 C and then dissociating the U/sub 2/N/sub 3/ produced to UN in a vacuum at 1300 C. In compatibility studies, UN reacted with nickel alone at 1800 F, but no reaction with nickel was observed when the other matrix components were also present. The effects of fabricational variables were evaluated by metallographic examination, longitudinal and transverse tensile tests, bend tests, and corrosion tests. Studies indicated that minus 200 plus 325-mesh UN dispersed in a minus 325-mesh elemental-powder matrix rolled green vith a 30 per cent initial reduction at 2100 F and then annealed 3 hr at 2300 F produced the best fuel core. (auth)
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Paprocki, S. J.; Keller, D. L.; Cunningham, G. W. & Foulds Jr., A. K.Development of Uranium Nitride-Stainless Steel Dispersion Fuel Elements,
report,
July 31, 1959;
Columbus, Ohio.
(https://digital.library.unt.edu/ark:/67531/metadc1021039/:
accessed November 14, 2025),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.