MAGNETIC FORCE WELDING APPLICATIONS
AT BATTELLE-NORTHWEST

R. F. BOOLEN

MAY 1967

BATTELLE-NORTHWEST
BATTELLE MEMORIAL INSTITUTE / PACIFIC NORTHWEST LABORATORY
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

PACIFIC NORTHWEST LABORATORY
RICHLAND, WASHINGTON
operated by
BATTelle MEMORIAL INSTITUTE
for the
UNITED STATES ATOMIC ENERGY COMMISSION UNDER CONTRACT AT(45-1)-1830

PRINTED BY/FOR THE U. S. ATOMIC ENERGY COMMISSION
MAGNETIC FORCE WELDING APPLICATIONS
AT BATTLE NORTHWEST

By

R. F. Boolen
Materials Development Section
Materials Department

May 1967

PACIFIC NORTHWEST LABORATORY
RICHLAND, WASHINGTON
MAGNETIC FORCE WELDING APPLICATIONS
AT BATTelle-northwest
R. F. Boolen

INTRODUCTION

Magnetic force welding was originally applied to welding precious metals to contactor assemblies for use in the electrical industry. The process was applicable because of the large current pulses generated which are necessary to resistance weld the high conductivity parts.

The very high heating rates used require a special means of maintaining pressure on the parts during welding. An electromagnet is used for this purpose because it has a very fast response and therefore can be precisely synchronized with welding heat. The use of the electromagnet makes possible the high rate of change in forge pressure without undesirable over forging effects during or after weld cycle completion. The weld energy used (depending on material and cross sectional area) is adjusted by varying pulse time duration of the applied current. Some requirements are listed in Table I.

TABLE I. Current-Time Requirements for Various Materials Magnetic Force Welding

<table>
<thead>
<tr>
<th>Material</th>
<th>Welding Current, peak A/in.²</th>
<th>Current on Time, msec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten</td>
<td>1,500,000</td>
<td>5</td>
</tr>
<tr>
<td>Tungsten Cermet</td>
<td>1,500,000</td>
<td>7</td>
</tr>
<tr>
<td>TD Nickel</td>
<td>1,500,000</td>
<td>4</td>
</tr>
<tr>
<td>SAP</td>
<td>1,500,000</td>
<td>6</td>
</tr>
<tr>
<td>Zircaloy</td>
<td>500,000</td>
<td>12 (Two Pulses)</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1,100,000</td>
<td>15 (Two Pulses)</td>
</tr>
</tbody>
</table>
Since magnetic force welding supplies sufficient energy and pressure to the work pieces to perform the weld in a few milliseconds, "tramp" element contamination or spread in highly reactive and refractory metals is minimized. Grain growth is minimized because the work pieces are not melted. Both these advantages greatly reduce the susceptibility of the weld to corrosion and/or cracking. Dispersion strengthened and cermet materials have been welded with little or no effect on the ceramic phase itself or its distribution.

EXPERIENCE

The introduction of magnetic force welding in the nuclear industry came as a result of studies on making end closures on zircaloy fuel rods. Following the construction and installation of a special horizontal 100 KVA magnetic force butt welder, it was demonstrated to be a very desirable process for making very reproducible high integrity fuel element closures in the Plutonium Recycle Test Program. The techniques developed under this program were then applied to many other materials of interest to the nuclear industry.

Investigations to date have included welding studies on materials in the ferrous, nickel base, reactive, and refractory metal categories—even graphite has been successfully welded by the process. The following is a partial list of the materials which have been studied:

- Stainless Steel
- Stainless Steel - UO₂ cermets
- Incoloy
- Nickel
- Tantalum
- Beryllium
- Tungsten
- Tungsten - UO₂ cermets
Thoria Dispersed Tungsten
Thoria Dispersed Nickel (reference included)
Molybdenum
Graphite (reference included)

The microstructures of cross sectional weld areas in a representative selection of the listed materials are shown in the appendix. In most cases studied, the welds are applicable to both capsule and fuel element closures. These studies also demonstrate that magnetic force welding is applicable to closures of capsules constructed of a variety of nuclear and space age metals.

POTENTIAL

In addition to the previously mentioned desirable qualities imparted to welded metals, magnetic force welding has some very special advantages in the encapsulation of various specific materials:

1. Due to the short welding time, very little heat is transferred to the capsule itself (the capsule is held in an electrode which acts as an excellent chill block). Materials with low melting or volatilization points may be easily encapsulated without damage.
2. Almost any desired atmosphere and pressure, including vacuum, may be incorporated in the finished capsule.
3. The process is particularly well suited to high production rates--being limited only by manual or automated transfers of the work pieces themselves.

Magnetic force welding techniques can be particularly applicable to isotope encapsulation processes because of all the aforementioned considerations.
APPENDIX
FIGURE A-1. 100 KVA Special Horizontal Magnetic Force Welder
FIGURE A-2. Schematic Illustration of Magnetic Force Welder
FIGURE A-4. Zircaloy End Closure - Upset Free Magnetic Force Welded
FIGURE A-5. End Closure Cross Section Magnetic Force
Welded SAP Material (0.563 in. OD X 0.027 in.
Wall Tube--External Flash Removed--73,000 A--
6 msec)
FIGURE A-6. Magnetic Force Butt Welded - Beryllium
FIGURE A-7. Incoloy (0.500 in. OD Tube--0.025 Wall--29,000 A--8.3 msec)
FIGURE A-8. Tantalum Weld (0.430 in. OD Tube--1/32 in. Wall--35,000 A--8.3 msec)
FIGURE A-9. Magnetic Force Welded SS Clad SS-\text{UO}_2\text{ Cermet}

FIGURE A-10. Magnetic Force Welded Nickel End Closure

FIGURE A-12. Magnetic Force Welded TD Nickel End Closure

FIGURE A-14. Magnetic Force Welded Molybdenum
Graphite Welding by Magnetic Force Closure Process: Closure Caps are Welded on the End of Graphite Tubes
DISTRIBUTION

<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Recipient Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. G. Holsted</td>
</tr>
</tbody>
</table>
| 1 | Atomic Energy Commission, Washington Division of Space Nuclear Systems
| | W. Colston |
| 277 | Division of Technical Information Extension |
| 1 | duPont Company, Aiken
| | J. P. Faraci |
| 1 | IBM Corporation, Oswego, N.Y.
| | H. C. Barber |
| 1 | Marston Excelsior Limited Subsidiary Imperial Chemical Industries Limited Wobaston Road, Fordhouses, Wolverhampton, Great Britain
| | R. H. Kenyon |
| 3 | Richland Operations Office
| | C. L. Robinson
| | R. K. Sharp
| | Technical Information Library |
| 1 | Sandia Corporation, Albuquerque
| | J. Jacobs |
| 1 | University of California, Livermore(BML)
<p>| | Dr. James Hadley |</p>
<table>
<thead>
<tr>
<th>Number of Copies</th>
<th>Battelle-Northwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>R. J. Baker</td>
</tr>
<tr>
<td></td>
<td>R. F. Boolen (10)</td>
</tr>
<tr>
<td></td>
<td>J. J. Cadwell</td>
</tr>
<tr>
<td></td>
<td>G. M. Dalen</td>
</tr>
<tr>
<td></td>
<td>D. R. de Halas</td>
</tr>
<tr>
<td></td>
<td>K. Drumheller</td>
</tr>
<tr>
<td></td>
<td>J. E. Minor</td>
</tr>
<tr>
<td></td>
<td>R. L. Moore</td>
</tr>
<tr>
<td></td>
<td>E. E. Voiland</td>
</tr>
<tr>
<td></td>
<td>O. J. Wick</td>
</tr>
<tr>
<td></td>
<td>Technical Information Files (5)</td>
</tr>
<tr>
<td></td>
<td>Technical Publications (2)</td>
</tr>
</tbody>
</table>