A SIMULATION STUDY OF PLUTONIUM GAMMA RAY GROUPINGS FOR ISOTOPIC RATIO DETERMINATIONS

Raymond Gunnink

June 10, 1974

NOTICE

"This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights."

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $... *, Microfiche $0.95

<table>
<thead>
<tr>
<th>Pages</th>
<th>NTIS Selling Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-50</td>
<td>$4.00</td>
</tr>
<tr>
<td>51-150</td>
<td>$5.45</td>
</tr>
<tr>
<td>151-325</td>
<td>$7.60</td>
</tr>
<tr>
<td>326-500</td>
<td>$10.60</td>
</tr>
<tr>
<td>501-1000</td>
<td>$13.60</td>
</tr>
</tbody>
</table>
A SIMULATION STUDY OF PLUTONIUM GAMMA RAY GROUPINGS FOR ISOTOPIC RATIO DETERMINATIONS

Raymond Gunnink

MS. date: June 10, 1974
Contents

Abstract ... 1
Introduction 1
Experimental Approach 2
Simulator Computer Program 4
Results .. 7
Conclusions 13
References 16
Appendix .. 17
A SIMULATION STUDY OF PLUTONIUM GAMMA RAY GROUPINGS FOR ISOTOPIC RATIO DETERMINATIONS*

Abstract

A promising nondestructive method for measuring plutonium isotopic abundance ratios is the analysis of neighboring gamma rays in a spectral grouping whose members belong to different isotopes. We have made a preliminary study of all such peak groupings capable of yielding this kind of information. This report describes the groups studied and the procedures used, and it contains the results we have obtained using a computer program we developed for predicting the ultimate levels of precision that can be obtained.

Introduction

The complete analysis of plutonium frequently includes measurements for the isotopic ratios of 238,239,240,241,242Pu and for 241Am content. Although these ratios are generally determined by destructive methods, there is increasing incentive for, and some progress toward, measuring plutonium isotopic ratios by nondestructive techniques.

One of the more promising of such techniques involves the measurement of the gamma rays emitted by the radioactive sample. Good results have been obtained for solutions. However, non-uniformly packaged or inhomogeneous samples are much more difficult to measure because of uncertainties in counting efficiency and in gamma-ray attenuation by the sample matrix or other absorbing materials.

It has been recognized for some time that one way to minimize the influences of these experimental problems is to select a set of neighboring peaks in the spectrum that are due to the different isotopes in the sample and compute the isotopic ratios from the observed peak intensities. Since the energies are nearly equal, the efficiency and attenuation differences are small, and the ratio of isotopic abundances can be directly related to the peak intensities.

We have made a study of all peak groupings that can yield information on plutonium isotopic ratios. To help us in this study, we have developed a computer

*This work was sponsored by the Office of Nuclear Materials Safeguards of the U. S. Atomic Energy Commission.
program for synthesizing the pertinent

groupings and simulating the analysis of
spectra taken under a wide variety of
counting conditions.

Experimental Approach

If the intensities of two or more
gamma rays that have similar energies,
and arise from different isotopes can be
measured accurately, then the ratio of
the isotopic abundances can be calculated
from the equation

\[
\frac{A}{B} = \frac{I_1}{\epsilon_1 Y_1} \left/ \frac{I_2}{\epsilon_2 Y_2} \right. = \frac{I_1 \epsilon_2 Y_2}{I_2 \epsilon_1 Y_1},
\]

where

- \(\frac{A}{B} \) = isotope ratio of interest,
- \(I_1, I_2 \) = peak intensities of the gamma
 rays arising from isotopes \(A \) and \(B \),
- \(\epsilon_1, \epsilon_2 \) = counting efficiencies for the
 respective gamma rays, and
- \(Y_1, Y_2 \) = the gamma yield or branching
 intensities of the respective
 gamma rays.

Although it may not be possible to
obtain accurate absolute values of \(\epsilon \) and
\(Y \) individually, it is possible to obtain
accurate ratios over a small energy
range. The accuracy of the calculated
isotopic ratio is then largely limited by
the precision with which the peak
intensities are measured.

Gamma-ray energies and emission
probabilities have been reported pre-
viously, and some preliminary studies
have been made that show the type of
peak interferences that exist. In the
present study, we have examined the
eight peak groupings tabulated in Table 1.
Aside from the 43-51 keV peak region,
which is nearly always obscured by the
prominent 59 keV peak from \(^{241}\text{Am} \),
these groupings represent all the spectral
possibilities for which isotopic ratio
measurements can be made. Of these,
some will provide better results than
others, and some are much more difficult
to interpret than others. Furthermore,
a rather large variety of counting condi-
tions could be investigated. These might
include detector parameters, such as
resolution and counting efficiency; source
parameters, such as sample size,
homogeneity, isotopic content, and age
following chemical purification; and
counting parameters, such as count rate,
length of count, and use of absorbers.
Table 1. Eight peak grouping useful for isotopic ratio determinations.

<table>
<thead>
<tr>
<th>Group I:</th>
<th>Group V:</th>
<th>Group VI:</th>
<th>Group VII:</th>
<th>Group VIII:</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.67 U x ray</td>
<td>203.52</td>
<td>239(^{235})Pu</td>
<td>241(^{237})U(^{241})Am (^{241})Am</td>
<td>241(^{237})U(^{241})Am</td>
</tr>
<tr>
<td>97.08 Np x ray</td>
<td>207.98</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>98.44 U x ray</td>
<td></td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>98.81 (^{238})Pu</td>
<td></td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>99.00 (^{241})Am</td>
<td></td>
<td>332.30</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>99.54 (^{239})Pu</td>
<td></td>
<td>332.80</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>101.07 Np x ray</td>
<td>336.35</td>
<td>341.48</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>103.00 (^{239})Pu</td>
<td></td>
<td>344.96</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>103.03 (^{241})Am</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.67 (^{241})Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.75 (^{240})Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.23</td>
<td>367.02</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>Group II:</td>
<td>368.53</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>110 - 121 keV</td>
<td>368.65</td>
<td>370.85</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>(very complex group including x rays and gamma rays from all the isotopes)</td>
<td>375.02</td>
<td>376.57</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>123.01 (^{241})Am</td>
<td></td>
<td>380.16</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>123.67 (^{239})Pu</td>
<td></td>
<td>382.70</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>124.52 (^{239})Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.17 (^{239})Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.30 (^{241})Am</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129.28 (^{239})Pu</td>
<td></td>
<td>632.80</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>Group III:</td>
<td>633.19</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>141.64 (^{239})Pu</td>
<td></td>
<td>637.97</td>
<td>239(^{235})Pu</td>
<td>239(^{235})Pu</td>
</tr>
<tr>
<td>144.19 (^{239})Pu</td>
<td></td>
<td>640.15</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>146.05 (^{239})Pu</td>
<td></td>
<td>641.37</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>146.55 (^{241})Am</td>
<td></td>
<td>642.30</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>148.60 (^{241})Pu</td>
<td></td>
<td>646.02</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>150.12 (^{241})Am</td>
<td></td>
<td>649.50</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>152.77 (^{238})Pu</td>
<td></td>
<td>652.19</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>Group IV:</td>
<td>652.88</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>160.00 (^{241})Pu</td>
<td></td>
<td>654.86</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>160.35 (^{240})Pu</td>
<td></td>
<td>658.99</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>161.45 (^{239})Pu</td>
<td></td>
<td>662.37</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
<tr>
<td>164.60 (^{241})Pu-(^{237})U(^{241})Am</td>
<td></td>
<td>644.67</td>
<td>241(^{237})U, 241(^{241})Am</td>
<td>241(^{237})U, 241(^{241})Am</td>
</tr>
</tbody>
</table>

The 742 keV peak of \(^{238}\)Pu is not really part of the peak grouping, but for the purpose of the simulator program it is treated as such.

-3-
Simulator Computer Program

To begin to assess the effects of even a fraction of these parameters through experimental studies would entail much effort. Furthermore, many of the materials are not readily available. In order to assess the feasibility of making isotopic ratio measurements by gamma-ray spectrometry, a computer simulation code was written. Its purpose was two-fold: first, to indicate the level of precision that one might hope to obtain for isotopic ratios based on spectral information in the various peak groupings, and second, to make sensitivity studies for the various parameters involved in the analysis, to see how variations in their values influence the results. The first study establishes the degree of precision that could be obtained if counting statistics were the determining factor in the analysis of the peak grouping. The second study identifies the analytical parameters most likely to influence the precision of the results and, consequently, those aspects of the experimental design to which the most attention must be given.

The steps in the computer program can be broken into two parts. The first phase of the program involves the synthesis of simulated data for a peak grouping counted under a particular set of conditions, In the second phase, this grouping is analyzed under a selected set of conditions. The input parameters to the program are the following: total net count in the peak grouping, background levels before and after the peak grouping (the code assumes a five-channel background), a reference peak for positioning the remaining peaks in the grouping, the spectrometer gain and other parameters describing the peak shape characteristics, the isotopic ratios for the system being studied, the gamma rays energies and their emission probabilities, the half-lives of the isotopes, and the number of iterations or replicate analyses.

The individual steps in the program are as follows:

(1) After reading in the input information, a response curve or data envelope is generated for each of the components represented in the particular peak grouping being investigated. This is done by computing the profile for each peak at the position it holds relative to a reference position, and normalizing its intensity to the gamma emission probability per decay. Procedures for doing this, and the equations used, are described in a previous report. ¹

The channel-by-channel addition of these peaks produces sets of idealized spectra, one for each isotopic component, with the intensities of each normalized to an arbitrary unit amount of the isotope.

(2) A composite spectrum is produced by a linear addition of the component spectra after each has been multiplied by its fractional abundance as specified in the data input.

(3) The composite spectrum is normalized to the total net count requested.
Each channel count is adjusted to simulate counting fluctuations in accordance with Poisson statistics. This is done by calling a random-number generator to select a number from 0 to 1. This number, used in conjunction with the normal distribution curve, is used to superimpose a statistical variation on the channel counts. Not only are the designated background levels included in this calculational process, but the background counting statistics at the endpoints of the peak grouping (based on a five-channel background) are also folded into the composite spectrum.

The energy reference peak is now relocated by fitting the top seven channels of the designated peak. This new reference position will differ slightly from the input value as a result of the statistical variations that have been introduced into the channel counts.

The component gamma-ray response functions are recomputed using the newly determined reference position.

A least-squares fit is used to fit the idealized component spectra to the composite spectrum.

The isotopic percentages are computed, based on the fit, and are compared with the input values. Errors are assigned to the values.

The entire process is repeated many times to assess the reproducibility.

Many of the values used as input constants required some experimental basis—such as peak shape characteristics, total net counts, and background levels. For the purposes of our study, we obtained or estimated these input values from actual spectra we had acquired on several weapons-grade plutonium samples using a small 1 cc Ge(Li) detector and a larger coaxial detector. In general, the study assumed a 1 kg PuO$_2$ sample, a counting time of 1 h, and a count rate of ~5000 Hz. However, a few analyses were made for a 1 g PuO$_2$ sample, and different absorbers were used to attenuate the low-energy

<table>
<thead>
<tr>
<th>Burn up (M\text{Wd/t})</th>
<th>238\text{Pu}</th>
<th>239\text{Pu}</th>
<th>240\text{Pu}</th>
<th>241\text{Pu}</th>
<th>242\text{Pu}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weapons grade</td>
<td>0.01</td>
<td>93</td>
<td>6</td>
<td>0.3</td>
<td>0.04</td>
</tr>
<tr>
<td>5-10 000</td>
<td>0.10</td>
<td>87</td>
<td>10</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>15-18 000</td>
<td>0.15</td>
<td>75</td>
<td>18</td>
<td>4.3</td>
<td>1.7</td>
</tr>
<tr>
<td>25-27 000</td>
<td>1.00</td>
<td>58</td>
<td>23</td>
<td>9.0</td>
<td>7.9</td>
</tr>
<tr>
<td>38-40 000</td>
<td>2.00</td>
<td>43</td>
<td>27</td>
<td>13.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table 2. Approximate isotopic abundances corresponding to different burn up categories.
Fig. 1. A spectrum of PuO$_2$ using a large Ge(Li) detector.
gamma rays. A typical total spectrum is shown in Fig. 1.

The study covered five different isotopic blends based on a classification scheme reported by Bishop and Taylor. The isotopic abundances, corresponding to different fuel burn-up categories, are shown in Table 2. For the purpose of this study, we have assumed an ^{241}Am growth of 1 year.

Results

The results of the simulator program for each of the eight peak groupings listed in Table 1 are shown graphically in Figs. 2-10. These figures indicate the minimum uncertainty that can be expected in the results for each of the isotopic compositions listed in Table 2. Computer plots of the simulated data used for the analysis are shown in the Appendix. They also show how the various components contribute to the structure of the composite peak grouping, and they are very useful for visualizing the complexity of the spectral region being studied and how its structure changes with isotopic composition.

Figures 2 and 3 show results using a 1 cc Ge spectrometer system. Its efficiency falls rapidly above 100 keV, but its high resolution (550 eV at 122 keV)

![Graph showing reproducibility of results using a Ge spectrometer system.](image-url)
Fig. 3. Reproducibility of results using the 100 keV region. (1 hr equivalent count of 200 kg/m³ plutonium solution.)

Fig. 4. Reproducibility of results using the 125 keV region.
Fig. 5. Reproducibility of results using the 145 keV region. (Asterisks indicate total net count. Values in parentheses are the average background counts.)

Fig. 6. Reproducibility of results using the 160 keV region. (Asterisks indicate total net count. Values in parentheses are the average background counts.)
is absolutely essential if information is to be obtained from the gamma and x-ray peaks in the 100 keV complex. A gain of 0.075 keV/channel was used for this region.

All of the other spectra are based on results from a detector having an efficiency of 10% at 1.33 MeV relative to a 3 in. X 3 in. NaI detector. The resolution of this detector (measured at FWHM) was 1.1 keV at 122 keV and 1.9 keV at 1332 keV. A 1.6 mm cadmium absorber was generally used, and for the higher energy groupings an additional 6.35 mm of lead was also used. The energy scaling for these spectra corresponded to a gain of 0.25 keV/channel.

Fig. 7. Reproducibility of results using the 208 keV region. (Asterisks indicate total net count. Values in parentheses are the average background counts.)
Fig. 8. Reproducibility of results using the 335 keV region. The upper group of curves is for a 1 h count using a 1.6 mm cadmium absorber. The lower group of curves is for a 4 h count using an additional 6.35 mm lead absorber.
Fig. 9. Reproducibility of results using the 370 keV region. The upper group of curves is for a 1 h count using a 1.6 mm cadmium absorber. The lower group of curves is for a 4 h count using an additional 6.35 mm lead absorber. (Asterisks indicate total net count. Values in parentheses are the average background counts.)
Conclusions

Some of the conclusions that can be drawn from the results are the following:

1. There is no one spectral region that can be used to completely characterize the plutonium isotopic composition of a sample. Instead, a combination of groups must be used. The optimum combination depends on such factors as isotopic composition, age, purity and sample matrix.

2. Some groups will yield a more precise ratio than others. However, circumstances may dictate the use of less desirable spectral regions. For example, plutonium that has been recently separated from spent fuel rods will still contain substantial levels of fission products, particularly ^{95}Zr and ^{95}Nb. The quantities that are present before appreciable decay has occurred are sufficient to obscure any useful spectral information above 500 keV. As a result, the peak grouping at 630 keV is useful only when analyzing aged material.

3. In the present study, each peak grouping was analyzed without benefit of information available from the analysis of some other grouping. In practice, however, an analytical program involving
all available information should be used, and this should improve the precision of some of the results.

(4) Before adopting a certain analysis scheme, sensitivity tests should be run to determine which parameters influence the results most. For example, although Fig. 7 indicates that the 203-208 keV peak doublet is quite useful for measuring the $^{239}\text{Pu}/^{241}\text{Pu}$ ratio, simulation runs indicate that the ratio is very sensitive to the characterization of the peak "tailing," an observation that can be made visually by looking at the corresponding figures for this doublet in the Appendix.

By way of additional illustrations, Figs. 11 and 12 show the biases that result when the FWHM and channel positions are varied by 1% in the analysis of data in the 100 keV region.

(5) It appears that the usefulness of the 335 and 370 keV peak groupings has been largely overlooked. Together, they may provide the best information on the $^{239}\text{Pu}/^{241}\text{Pu}$ ratio and yield the best value for the ^{241}Am content if the 630 keV region is inaccessible.

(6) The 100 keV region, in principle, contains a wealth of information. However, it is not only extremely

![Fig. 11. Sensitivity of results to a 1% change in FWHM using data in the 100 keV peak complex.](image-url)
complex, but it also contains both gamma rays and x-rays. This results in having to contend with two distinctly different peak shapes.

An additional complication is the presence of plutonium x-rays coming from alpha-induced x-ray fluorescence. In its favor, it should be pointed out that the 100 keV grouping is very intense, partially because it resides below the K-shell binding energy of plutonium and consequently is not attenuated by the sample to any greater extent than is a gamma ray of 180 keV.

Furthermore, the quantitative analysis of the 104.23 peak may be the only hope for determining 240Pu content if the 630 keV region is inaccessible.

The gamma-ray energies and branching intensities reported in Ref. 1 are probably not accurate enough for the type of isotopic measurements that are envisioned. We plan to redetermine the branching intensities for the various plutonium isotopes, giving particular care to obtaining very accurate intensity relationships for the eight peak groupings reported in this study.
References

Appendix

The figures in the Appendix are in pairs; the first simply displays the total channel count and background curve for a given peak grouping, and the second shows the component structure making up the total observed spectral region. One such pair of plots is displayed for each of the five isotopic compositions shown in Table 2 of the text.
SPECTRUM ID IS 93PCT PU 100 KEV
TOTAL COUNTS = 3.00E+05
SPECTRUM ID IS T5PCT PU 100 KEV
TOTAL COUNTS = 3.00E+06
SPECTRUM ID IS 58PCT PU 100 KEV
TOTAL COUNTS = 3.00E+06
TOTAL COUNTS = 3.00E+06

SPECTRUM ID IS JPECT PU 100 KEY
SPECTRUM ID IS 93PCT 1.20KEV 1.0GM
TOTAL COUNTS = 3.00E+06
TOTAL COUNTS = 3.00E+06
SPECTRUM ID IS SPECT '20kEy 1Gh
TOTAL COUNTS = 3.00E+06

SPECTRUM ID IS T55CT120KEV1GM
TOTAL COUNTS = 3.0E+06

Spectrum ID is 15pect 120Kev 16M
TOTAL COUNTS = 2.40E+05
SPECTRUM ID IS SPECT PU 145 KEY;
TOTAL COUNTS = 4.80E+05

SPECTRUM ID IS 8.76 CT PU 1.45 KEV
TOTAL COUNTS = 6.00E+05
SPECTRUM ID IS SPECTR PU 145 KEY
SPECTRUM ID IS 93PCT PU 160 KEV
TOTAL COUNTS = 1.20E+05
SPECTRUM ID IS 87PCT PU 160 KEV
TOTAL COUNTS = 2.40E+05
SPECTRUM ID IS 75PCT PU 160 KEV
TOTAL COUNTS = 3.00E+05
SPECTRUM ID IS 58PCT PU 160 KEV
TOTAL COUNTS = 3.00E+05
SPECTRUM ID IS 45PCT PU 160 KEV
TOTAL COUNTS = 3.00E+05
SPECTRUM ID IS 93PCT PU 208 KEV
TOTAL COUNTS = 2.00E+05
SPECTRUM ID IS 87PCT PU 208 KEV
TOTAL COUNTS = 5.00E+06
SPECTRUM ID IS 75PCT PU 208 KEV
TOTAL COUNTS = 7.00E+06
SPECTRUM ID IS 58PCT PU 208 KEV
TOTAL COUNTS = 8.00E+06
SPECTRUM ID IS 45PCT PU 208 KEV
TOTAL COUNTS = 8.00E+06
SPECTRUM ID IS 93PCT PU 335 KEV
TOTAL COUNTS = 1.00E+06
TOTAL COUNTS = 1.00E+06
SPECTRUM ID IS 87PC Pu 335 KEY
TOTAL COUNTS = 1.00E+06

SPECTRUM ID IS SPECT PU 335 KEY
SPECTRUM ID IS 58PCT PU 335 KEV
TOTAL COUNTS = 1.00E+06
TOTAL COUNTS = 1.60×10^4

SPECTRUM ID IS 9999 PU 570 KEY
SPECTRUM ID IS 87PCT PU 370 KEV
TOTAL COUNTS = 1.00E+06

TOTAL COUNTS = 6.00E+05

SPECTRUM ID IS SPECT PU 370 KEY
SPECTRUM ID IS 95PCT PU 630 KEV
TOTAL COUNTS = 4.00E+05
TOTAL COUNTS = 4.0E+05

SPECTRUM ID IS 87PC PU 630 KEY
TOTAL COUNTS = 4.00E+05
SPECTRUM IS TENSITY PU 630 KEY
SPECTRUM ID IS 58PCT PU 630 KEV
TOTAL COUNTS = 4.00E+05
SPECTRUM ID IS 45PC PU 630 KEV
TOTAL COUNTS = 4.00E+05