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Abstract 

A study was  made of thermal molten-salt breeder reactors (MSBR) t o  ' ' 

identify important design and development problems. The purpose of the  
study w a s  t o  arganize these problems in to  a program which would produce . 
components for  use i n  a molten-salt breeder experiment (MSBE). 

The reference design concept i s  a two-region, two-fluid system w i t h  
the  fue l  s a l t  separated from tbe  blanket salt by graphite tubes. The 
energy produced in  the  reactor f lu id  i s  transferred t o  a secondary 
coolant-salt c i r cu i t ,  which couples the reactor t o  a supercritical. stem 
cycle. The specific development problems t o  be studied include the  
reactor core and heafi exchanger hydraulics, pumps for  the  three salt 
systems, heat t ransfer  i n  the  heat exchangers and boiler-superheater, 
mechanical valves for  salt flow control, control rod and drive, pressure 
r e l i e f  i n  coolant system, c e l l  insulation and heaters, and the  cover gas 
system. The program ineludes separate loops for  the  boiler-superheater 
and for  the  coves gas system in  addition t o  several s m a l l  t e s t  stands 
for  individual components. 

The f inal  demonstratfon of the performance of the components and 
system w i l l  be made i n  an essent ial ly  isothermal engineering test uni t  
(ETU) . I n  addition t o  providing performance demdnstrations , t he  ETU 
w i l l  be used t o  t r a i n  operators f o r  the  MSBE. A cost surmnary and 
schedule for  the  program cover eight years from the  start of the  project.  
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INTRODUCTION 

The conceptual design of a 1000-Mw(e) Molten-Salt ~ r e e d e r  Reactor 
(MSBR) i s  described i n  O F U Y L - ~ ~ ~ ~ .  The Molten-Salt Reactor Experiment 
(%RE) :.now opera t ing ,  represents  a  f i r s t  s t e p  i n  t h e  development of 
such a r e a c t o r .  A Molten-Salt Breeder Experiment (MSBE) i s  proposed a s  
t h e  next s t e p .  This r e a c t o r  would be a 100- t o  150-Mw(th) model of t h e  
MSBR designed t o  demonstrate a l l  .aspects  of t h e  breeder technology under 
condit ions a t  l e a s t  as  severe a s  th-ose proposed f o r  t h e  fu l l - sca le  
breeder.  Components and systems f o r  t h e  MSBE would incorpora te  all t h e  
fea tu res  of  t h e  fu l l - sca le  u n i t s  so  t h a t  "scaling-upM t h e  equipment t o  
h igher  power l e v e l '  would be t h e  maJ.or t a s k  i n  bui ld ing t h e  reference  
breeder.  

The purpose of t h i s  r epor t '  i s  t o  descr ibe  t h e  present  s t a t u s  of 
development of components and systems f o r  molten-salt  r eac to r s  and t o  
present  a  development' program f o r  t h e  MSBE. Since no design has been 
made f o r  t h e  breeder experiment, t h e  program i s  based on a s tudy of  t h e  
problems of t h e  reference rlesj..gn assuming t h a t  t h e  MSBE would be a 
"scaled-down" vers ion  o f f t h e  modular concept described i n  t h e  reference  
r e p o r t .  For purposes of organizing t h i s  r epor t  and t h e  development 
program, t h e  p l a n t  was subdivided i n t o  components, systems, and genera l  
problem a reas .  The design,  t h e  problems, t h e  present  s t a t u s  of t h e  
technology, and t h e  requi red  development a r e  discussed f o r  each sub- 
d iv i s ion .  

GENERAL STATUS'OF TECHNOLOGY 

The i n i t i a l  technology development f o r  molten-salt  r eac to r s  was 
done i n  t h e  e a r l y  1950's  i n  t h e  A i r c r a f t  Nuclear Propulsion (ANP)  Pro- 
gram a t  Oak Ridge National  Laboratory. I n  car ry ing out  t h i s  program, 
much information on t h e  phys ica l ,  chemical, and engineering cha rac te r i s -  
t i c s  of molten-salt  systems was obtained from s tud ies  of f l u o r i d e  salt 
chemistry, and mate r i a l s  compa t ib i l i ty ,  and f'rom development of curr~pon- 
e n t s  , m a t e r i a l s ,  f a b r i c a t i o n  methods, and r e a c t o r  maintenance methods. 
I n  1954 t h e  Ai rc ra f t  Reactor Experiment (ARE) ,  a  2-1/2 Mw(th) molten- 
s a l t  reactor--fueled with UFq dissolved i n  a  mixture of zirconium and 
sodium f l u o r i d e s ,  moderated with beryl l ium oxide,  and containcd i n  
Inconel--was b u i l t  and operated success fu l ly  at o u t l e t  salt temperatures 
up t o  1650 '~ .  

The present  molten-salt  r eac to r  program was i n i t i a t e d  i n  1957, draw- 
ing upon t h e  information developed i n  t h e  ANP program a s  we l l  a s  
beginning new i n v e s t i g a t i o n s .  By 1960 enough favora'ble experimental 
r e s u l t s  were obtained t o  support au thor iza t ion  f o r  design and construc- 
t i o n  of a  10-Mw(th) Molten-Salt Reactor Experiment (MsFE) .  The M3RE 
i n i t i a t e d  power operat ion i n  e a r l y  1966, and provides f a c i l i t i e s  f o r  
t e s t i n g  f u e l  s a l t ,  g raph i t e  , and Hastel loy 'N under appropr ia te  r e a c t o r  
opera t ing  condit ions.  The bas ic  r e a c t o r  performance t o  da te  has been 
outstanding,  and ind ica tes  t h a t  t h e  d e s i r a b l e  f e a t u r e s  of t h e  molten- 
s a l t  concept can be embodied i n  a  p r a c t i c a l  r e a c t o r  t h a t  can be 
cons t ructed ,  operated,  and mai~~l ; a i i~ed  with s a f e t y  and r e l i a b i l i t y .  



PURPOSE AND SCOPE OF DEVELOPMENT PROGRAM 

The purpose of t h e  program i s  t o  provide components and systems 
wi th  demonstrated r e l i a b i l i t y  f o r  use i n  t h e  MSBE. A l l  components and 
systems musl; be of  a design t h a t  can be scaled  up t o  t h e  higher power, 
l e v e l  of t h e  MSBR. The development of new types of equipment and 
improvement of e x i s t i n g  equipment r equ i re  t h a t  l i f e - t e s t s  be performed. 
Such t e s t s  provide information on l i m i t i n g  opera t ional  c h a r a c t e r i s t i c s  
and assist i n  p r e d i c t i n g  maintenance requirements. I n  add i t ion ,  c e r t a i n  
performance t e s t s  must be made on components when operated a s  p a r t  of 
a system t o  provide information f o r  evaluating t h e  compat ib i l i ty  of t h e  
component with t h e  system. 

The development of new types of equipment such as t h e  s t m m  genera- 
t o r ,  t h e  off-gas d i sposa l  system, t h e  sal t-cooled control  rod,  and t h e  
long s h a f t  molten-salt pumps w i l l  require sepa,rat,e t - es t  f a c i l i t i e s  of 
s i g n i f i c a n t  s i z e .  :en a d d i t i o n ,  t h e r e  w i l l  be n.umcrous small t e s t s  con- 
ducted t o  assist i n  resolving design fea tu res  a s  wel l  as  t o  e s t a b l i s h  
t h e  expected l i f e  of some  component.^.. These small t e s t s  may be conducted 
i n  s e p a r a t e  f a c i l i t i e s  but  i n  many cases they can be incorporated i n t o  
one of t h e  l a r g e r  t e s t  f a c i l i t i e s .  I n  many areas  t h c  technology i s  
reasonably wel l  e s t a b l i s h e d  , but conservative engineering .reqi.~ircs 
performance and l i f e  t e s t i n g  of the components t o  make s u r e  they w i l l  
ope ra te  s a t i s f a c t o r i l y  with t h e  reac to r .  

For 8 r i ~ l a l  demonstration ot' t h e  r e l i a b i l i t y  and compat ib i l i ty  of 
a l l  molten-salt connected components and systems, an Engineering Test 
Unit (ETU) , a f u l l - s c a l e  opera t ing model of t h i s  MSBE, wi 11 he constructed 
and operated,  e s s e n t i a l l y  i so thermal ly ,  over t h e  ranges of tempera,tl~re 

s a l t  flow proposed f o r  t h e  MSBE. A s  described in the appropriate 
s e c t i o n s ,  t h e  f i n a l  evaluat ion of t h e  components w i l l  be made while 
opera t ing a s  a p a r t  of t h i s  system. The model w i l l  a l s o  be used t o  t r a i n  
opera tors  f o r  t h e  r e a c t o r  and t o  demonstrate t h e  maintenance procedures 
and equipment. 

REACTOR CORE 

Rcvi.cw of  IIydraulic Tes ts  of the W M  Core 

The MSRE r e a c t o r  v e s s e l ' i s  a 5 - f t -d im by 8-ft-high tank t h a t  con- 
t a i n s  a 55-in.-dim by 67-in.-high g raph i te  core s t r u c t u r e .  Under design 
condi t ions  of  10 Mw of r eac to r  h e a t ,  t h e  f u e l  s a l t  would e n t e r  t h e  flow 
d i s t r i b u t o r  at t h e  t op  of t h e  vesse l  a t  1 1 7 5 ' ~  and 20 ps ig .  The f u e l  
i s  d i s t r i b u t e d  evenly around t h e  circumference of t h e  v e s s e l  and then 
flows tu rbu len t ly  downward i n  a s p i r a l  path through a 1-in.  annulus 
between t h e  vesse l  wal l  and t h e  core can. The s a l t  loses  i t s  r o t a t i o n a l  
motion i n  t h e  s t r a igh ten ing  vanes i n  t h e  lower plenum and tu rns  and 
flows upward through t h e  g raph i t e  matrix i n  t h e  core can. The graphi te  
matr ix  i s  an assembly of v e r t i c a l  b a r s ,  2 i n .  by 2 i n .  by about 67 i n .  
long.  The f u e l  flows i n  0.4-in. by 1.2-in. channels t h a t  a r e  formed 
by grooves i n  t h e  s ides  of t h e  ba r s .  There a r e  about 1140 of these  



passages. Fuel was t o  leave the  t o p  of t h e  r eac to r  a t  1225'F. Addi- 
t ioAa l  desc r ip t ion  of t h e  MSFtE core i s  given i n  t h e  MSRE Design Report. 2 
The core development program was divided i n t o  two phases. The f i r s t  
phase cons is ted  of bui ld ing and t e s t i n g  a 1 / 5  l i n e a r l y  sca led  p l a s t i c  
model. This model was operated with water and was r e l a t i v e l y  inexpensive. 
It was used a s  a r a p i d  method of checking t h e  prel iminary design t o  
e s t a b l i s h  t h e  a c c e p t a b i l i t y  of  major concepts. 

The second phase cons is ted  of bui ld ing and t e s t i n g  a f u l l - s c a l e  
model of t h e  core a t  t h e  r a t e d  flow. ' T h i s  model was used t o  e s t a b l i s h  
t h e  design.  The core vesse l  was made of carbon s t e e l  and t h e  moderator 
ba r s  were extruded from aluminum. This  model was used f o r  a f i n a l  and 
much more d e t a i l e d  look a t  t h e  hydrablic  and thermal c h a r a c t e r i s t i c s  of 
t h e  core.  Some of t h e  major items s tud ied  were: 

1. Overal l  pressure drop ,and d i s t r i b u t i o n  of t h i s  pressure  drop 
among the  core components. 

2. Flow d i s t r i b u t i o n  by t h e  vo lu te .  

3 .  Eff ic iency of t h e  s w i r l  k i l l e r s  i n  t h e  lower v e s s e l  head. 

4. Heat t r a n s f e r  c o e f f i c i e n t s  i n  t h e  lower and upper heads t o  , 

assure  adequate vesse l  wall  cooling.  

5 .  Flow d i s t r i b u t i o n s  i n  t h e  lower ,and upper head t o  a s su re  t h a t  
no stagnant  s a l t  pockets were p resen t .  

6 .  Tendency of p a r t i c u l a t e  matter  t o  s e t t l e  out i n  t h e  lower 
v e s s e l  head, on t h e  tops  of  t h e  core b a r s ,  and on t h e  core support 
f lange  . 

7. Various o t h e r  more minor phenomena. 

Most of t h e  measurements were made wi th  water i n  t h e  loop,  and a t  
flow r a t e s  from t h e  design flow down t o  25% of t h e  design flow. With 
water ,  however, , the Reynolds number was severa l  t imes higher than would 
be expected f o r  f u e l  s a l t . a t  t h e  noted flow r a t e .  To a t t a i n  Reynolds 
s i m i l a r i t y ,  a thickening agent was added t o  t h e  water t o  inc rease  i t s  
v i s c o s i t y ,  and t h e r e f o r e  decrease t h e  Reynolds number. Severa l  of t h e  
items i n  t h e  above l i s t  were then rechecked. The agreement between 
measurements i n  t h e  1 / 5  s c a l e  model, t h e  f u l l - s c a l e  model with water ,  
and t h e  f u l l - s c a l e  model with thickened water ,  was good where equivalent  
measurements were made. None of  t h e s e  measurements were checked i n  a 
molten-salt  system. It was bel ieved t h a t  the  heat  and momentum t r a n s f e r  
analogies were adequately wel l  e s t a b l i s h e d  t o  ex t rapo la te  water da ta  t o  
a molten-salt  system with a degree of r e l i a b i l i t y  much g r e a t e r  than was 
requi red  t o  insure  adequate performance of t h e  MSRE. 

During the  course of MSRE core  development, seve ra l  small models 
were made t o ,  check some hydraulic  phenomena. Generally, t h e s e  models 
were made of p l a s t i c  and operated wi,th t a p  water .  



Hydraulic Tests  f o r  t he  MSBE Core 

The reac to r  core fok t h e  MSBE is  expected t o  be about 4 - f t -d im 
by 5-ft-high and composed of re-entrant  type graphi te  f u e l  c e l i s  through 
.which t h e  f u e l  salt  flows. The graphi te  tubes a r e  at tached t o  two plenum 
chambers at  th'e bottom of t h e  reactor  with graphite-to-metal t r a n s i t i o n  
s leeves .  Fuel f r o m t h e  entrance plenum flows up through the  outer  
annulus o f  t h e  f u e l  c e l l  and down through t he  cen t r a l  passage t o  t h e '  - . 

e x i t  plenwn. The ' f u e l  flows from the  e x i t  plenum t o  t h e  pump then 
.through t h e  heat exchanger and back t o  the  reac to r .  A 2-f't-thick blanket 
of  a thorium-containing salt and graphi te  surrounds t he  core.  The 
blanket  salt a l so  permeates t he  i n t e r s t i c e s  of  the  core l a t t i c e  'so 
f e r t i l e  mate r ia l  flows through the  core without mixing with t h e  f i s s i l e  
f u e l  s a l t .  

Generally speaking;the MSBE core w i l l  be s tudied more c r i t i c a l l y  
Lhwl the  MSIIE core because o f . i t s m u c h  higher power density.  The pro- 
posed development .program f o r  the 'MSBE core w i l l  be , in  many respects ,  
similar t o  t h a t  f o r  t h e  MSFE core,  and can be  thought of as  a two-phase 
program. 

The f i r s t  phase w i l l  be d i rec ted  toward making p l a s t i c  models ass 
necessary f o r  rap id  and preliminary checks' on major design concepts. 
This could take t h e  form of a complete scaled-down p l a s t i c  model as  i n  
t h e  MSRE, but probably no t .  Rather, small p l a s t i c  models of individual  
core components,' w i l l :  be'. built:"&nd teste,a..  ' Probable examples a r e  : 

1. A s m a l l  model of t he  fue l  s a l t  d i s t r i bu t i on  glenums would he 
b u i l t  and t e s t e d  f o r  proper flow d i s t r i bu t i on  t o  the  f u e l  c e l l s .  

2 .  A small 'model of thc blanket salt  d i s t r i b u t o r  would be b u i l t  
and t e s t e d  f o r  proper flow d i s t r i bu t i on .  

3. A s i ng l e  fu l l - sca le  model of a f u e l ' c e l l  would be b u i l t  and 
t e s t e d  with t ap  water  t o  measure t h e  pressure drop and check f o r  ade- 
qu i t e  degassing on s t a r t up .  

4.  Other models as needed t o  provide confidence i n  the  design. 

Assembled u n i t s  do not always behave as  one might expect from 
o'bserving individual  components. It i s  therefore. 'necessary t o  t e s t  
hydrau l ica l ly  a complete prototype of t h e  .core .  A ' fu l l - sca le  prototype 
i s  ava i l ab le  i n  t h e  ETU and it i s  planned t o  run t he  ETU wi th .water  
f o r  a period of t ime,  thus  f l u i d  measurements could be ea s i l y  obtained. 
However, it may take  6 months t o  a year t o  make a l l  the'measurements 
necessary i n  the  core. I t  would ce r t a i n ly  be undesirable t o  r e s t r i c t  
t h e  ETU t o  water operation f o r  t h i s  long a period of time. We there-  
f o r e  p lan ,  a s  phase two, t o  bu i l d  another and much l e s s  expensive 
prototype of the  core su i t ab l e  f o r  operating i n  a c i r cu l a t i ng  water loop. 
This spec i a l  loop w i l l  a l so  allow us t o  s t a r t  t e s t i n g  t he  core sooner than 
i n  t he '  ETU, poss ibly  i n  FY 1969. - The' loop w i l l  simulate both salt 
systems. The core s i z e  w i l l  be ha l f  t o  f u l l  s ca l e ,  although f u l l  s ca l e  



i s  probably more des i rab le .  The p r i n c i p a l  objec t ives  of t h i s  model 
w i  11 be : 

1. To demonstrate t h e  requi red  flow d i s t r i b u t i o n  of  f u e l  and 
blanket  s a l t  throughout t h e  core .  

0 

2. To insure  adequate flow f o r  cooling s t r u c t u r a l  members of t h e  
core.  

3. To demonstrate t h a t  no stagnant  f u e l  and blanket s a l t  regions 
e x i s t .  

4 .  To insure  complete degassing of a l l  f u e l  tubes during f i l l i n g  
and s t a r t u p .  

5.  To show t h a t  f l u i d  induced v ib ra t ions  a r e  below acceptable 
l e v e l s .  

These measurements w i l l  be made over a range of flow r a t e s  both 
above and below t h e  design values.  Water w i l l  be t h e  f l u i d  used i n  
most of t h e s e  t e s t s  and Reynolds s i m i l a r i t y  w i l l  not hold.  Where 
necessary,  t h e  measur:ements w i l l  be repeated with a th ickening agent 
added t o  t h e  water  t o  a t t a i n  Reynolds s i m i l a r i t y .  

Measurements made . i n  t h e  ETU would then be l i m i t e d  t o  those  thought 
necessary t o  confirm r e s u l t s  of t h e  water .model. Cer ta in ly  some da ta  
w i l l  be taken witoh water  i n  the  system. Some d i r e c t  measurements with 
s a l t  i n  t h e  system may be necessary,  although t h i s  w i l l  be a more 
d i f f i c u l t  t a s k  and might have t o  await development of a d d i t i o n a l  
instrumentat ion.  Nevertheless,  i f  some f l u i d  dynamic c h a r a c t e r i s t i c  of 
t h e  core i s  s u f f i c i e n t l y  c r i t i c a l ,  it could be checked out i n  t h e  ETU 
while c i r c u l a t i n g  s a l t .  

Fuel Ce l l  Tes ts  i n  Molten S a l t  

Demonstration o f  t h e  performance of f u l l - s c a l e  MSBE f u e l  c e l l s  
without r a d i a t i o n  i s  an important p a r t  of t h e  e a r l y  phases of core 
development f o r  t h e  MSBE.' A s  soon a s  p r a c t i c a b l e ,  r ep resen ta t ive  
graphi te  f u e l  c e l l s  w i l l  be operated with the  f u l l  design s a l t  f lows,  
temperatures and pressure  d i f ferences ; '  These t e s t s  w i l l  be run i n  t h e  
pump development loop and t h e  off-gas t e s t  loop. Removal and replace-  
ment by t h e  remote means w i l l  be demonstrated a s  p a r t  of t h i s  t e s t  pro- 
gram. 

CONTROL ROD AND DRIVE 

The design of t h e  MSBR takes  advantage of t h e  ease of adding f u e l  
while t h e  r eac to r  i s  opera t ing  t o  minimize t h e  excess r e a c t i v i t y  i n  the  
co re ,  t h e  a b i l i t y  t o  dra in  t h e  f u e l  t o  e f f e c t  complete shutdown and 
s a f e t y  funct ions .  However, a con t ro l  rod o r  rods ,  a s  y e t  undesigned, a r e  
included t o  permit short-term adjustments t o  t h e  r e a c t o r  temperature. 



Control Rod System f o r  the  MSRE 

The control  rod system f o r  the.MSRE cons i s t s  of a f l ex ib l e  poison 
rod t h a t  i s  moved i n  and out of a re-entrant  thimble by a continuous 
l ink-chain dr ive  mechanism. This chain dr ive  i s  control led  by a servo- 
motor through a magnetic-clutch arrangement which permits rap id  inser-  
t i o n  of the  poison rod. In addit ion t he r e  a r e  e l e c t r i c a l  synchros and 
potentiometers f o r  remote indicat ion of pos i t ion ,  l i m i t  switches f o r  
control .  of' t h e  range of motion, and a shock absorber t o  s top  the  rap id  
i n s e r t i o n .  The d r ive  un i t  and the  control  element a r e  cooled by c i r -  
cu l a t i ng  a i r  through t h e  d r ive  l-iousing and through the  center  of t he  
con t ro l  rod. 

The poison elements operate a t  a temperatwe i n  t h e  13nn to l b O O O ~  
range. The electromechanical dr ive  u n i t ,  mounted wel l  above t h e  reac to r  
vessel, i s  s , l igh t ly  above ambient c e l l  i i r  t.emperature which  doe^ not 
exceed 1 3 ~ ~ ~ .  Two condit ions dominated t h e  design, high-thimble tem- 
pera tu re  and maintenance-free operation. The electromechanical design 
of t he  dr ive  un i t  i s  s t ra ightforward,  complicated p r inc ipa l ly  by space 
r e s t r i c t i o n s .  It was not  expected t o  be troublesome. The service  
record of these  MSRF: rods azid associated dr ive  u n i t s  has been good but 
only because t h e  f i n a l  design was preceded by over a year  of concen- 
t r a t e d  developmental t e s t i n g  of a prototype u n i t .  As expected, these  
t e s t s  d isc losed a number of defects  and. confirmed t h e  qua l i ty  of . t h e  
f i n a l  vers ion.  

Control Scheme f o r  t h e  MSBR 

Although experience with t h e  control  rods f o r  the  MSRE prnviaes 
a u se fu l  background, t h e  con t ro l  rod and dr ive  f o r  the  MSBE w i l l  be 
considerably d i f f e r en t .  Design of t he  dr ive  should be straightforward 
bu t  a i rcoo l ing  of t h e  rod would not s u f f i c e  a t  t h e  much higher,pnwer 
dens i ty ,  and t he  metal thimble would absorb too  many of t he  neutrons 
needed f o r .  breeding 2 3 3 ~ ,  A l i k e l y  control  scheme fo r  the  MSBE invol.ves 
the  i n se r t i on  of t h e  control  element d i r e c t l y  i n t o  t h e  center  of the 
r e ac to r  core ,  without using a thimble, and l e t t i n g  t h e  f e r t i l e  blanket 
salt provide the  necessary cooling. I f  it proves necessary t n  p r n v i ? ~  
cooling f o r  t h e  por t ion of t h e  graphite rod which i s  i n  the gas space 
above t he  f e r t i l e  sa l t ,  a s m a l l  stream can be diver ted  from t h e  i n l e t  
l i n e  and d i rec ted  over the  rod. One problem of t h i s  scheme i s  t h a t  
The dr lve  mechanism must d s o  be within a gas space d i r e c t l y  connected 
t o  t h e  'blanket sa l t .  Not only does t h i s  radioact ive  environment present  
a problem of e l e c t r i c a l  design but it a l s o  makes t h e  r epa i r  of t he  dr ive  
diff icul?; .  A system of gas s e a l s  and buf fe r  c o r ~ t r o l  should be developed 
t o  permit t he  dr ive  t o  operate i n  a clean gas atmosphere. 

A khorough development and prototype t e s t i n g  program w i l l  be 
required.  Components of t h e  dr ive  and rod w i l l  be t e s t e d  separate ly ,  
a id  Lhen t e s t e d  i n  assembly i n  a simulated reac to r  environment. 
F ina l l y ,  t h e  rod w i l l  be operated i n  the  ETU. 



SALT PUMPS FOR MOLTEN SALT' 

The approach which w i l l  be followed t o  provide t h e  pumps required  
f o r  molten-salt breed'ers i s  out l ined.  A b r i e f  resumg i s  presented of 
t h e  present  s t a t u s  of  molt& sal t 'pump technology a t  ORNL and t h e  con- 
s ide ra t ions  given t o  using t h e  MSRE purrip configurat ion i n  the  breeder 
concept. A more des i rab le  pump configurat ion i s  broached, and t h e  prob- 
lems an t i c ipa ted  with it a r e  l i s t e d .  F ina l ly ,  t h e  s p e c i f i c  design and 
development problems f o r  t h e  new configurati'on a s  they a r e  p resen t ly  
envisioned a re  discussed i n  more d e t a i l .  

Present  Technology 

The present  s t a t u s  o f ' t h e  technology of:molten s a l t  pumps a t  ORNL 
i s  s e t  f o r t h  i n  References 3 ,  4 ,  5 and 6 .  I n  b r i e f ,  we have developed 
t h e  sump pump configurat ion i n  which t h e  impeller  i s  mounted on t h e  
lower end of t h e  pump s h a f t  beiow t h e  lower s h a f t  bearing. Conventional 
b a l l  bearings and s h a f t  s e a l s ,  lubr ica ted  and cooled with a petroleum 
base tu rb ine  o i l ,  a re  u t i l i z e d .  The v e r t i c a l  s h a f t  i s  mounted i n  a 
bearing housing t o  support and guide t h e  impeller  i n  t h e  pump volu te ,  
which i s  an i n t e g r a l  pa r t  of t h e  pump tank.  The pump tank a l s o  serves 
a s  t h e  expansion tank f o r  t h e  molten salt' system and i s  used i n  t h e  MSRE 

, f o r  t h e  removal of gaseous f i s s i o n  products such a s  3 5 ~ e . .  

These pumps have been b u i l t  i n  s i z e s  from 2 ' t o  1600 gprn t o  develop 
heads t o  400 f t  of f l u i d .  They have been used t o  pump molten s a l t s  
and l i q u i d  metals t o  temperatures of 1500'~.  The MSRE f u e l  salt  pump 
c i r c u l a t e s  1200 gprn normally a t  1 2 1 0 ' ~  agains t  49 f t  of head, and t h e  
coolant s a l t  pump c i r c u l a t e s  ,850 gpm normally a t  1020°F agains t  78 f t  of 
head. The MSRE prototype f u e l  pump' was operated a t  temperatures up t o  
1500°F. 

Four 5 gprn pumps, one 750 gprn and one 1200 gprn pump, were operated 
a t  temperatures above 1 2 0 0 ' ~  f o r  periods g r e a t e r  than one year .  The 
750 gprn pump was operated with molten s a l t  f o r  25,000 h r  a t  1 2 0 0 ' ~  i n  
a regime of  cav i t a t ion .  Another t e s t  pump which was equipped with a 
submerged journal  bearing lubr ica ted  with molten s a l t  was operated f o r  
12,000 h r ,  during which it was s t a r t e d  and stopped approximately 100 
t imes.  

Two pump c h a r k c t e r i s t i c s  of concern t o  operat ion of the  MSRE were 
determined i n  somewhat s p e c i a l  fashions . Techniques were developed using 
8 5 ~ r  t o  measure t h e  back dif.fusion of gaseous f i s s i o n  products agains t  
a flow of purge gas i n  t h e  s h a f t  annulus of t h e  MSRE f u e l  pump. The con- 
cen t ra t ion  of updissolved gas i n  t h e  c i r c u l a t i n g  molten s a l t  was measured 
f o r  t h e  MSRE.fue1 pump i n  t h e , p r o t o t y p e  pump t e s t  f a c i l i t y  using radia-  
t i o n  densitometry devices ar~d techniques adapted t o  the t a s k .  

Larger pumps, of designs s i m i l a r  t o  those  proposed f o r  l a r g e  molten 
s a l t  pumps, have been b u i l t  and operated i n  l i q u i d  metal cooled reac to r s .  
Operating condit ions f o r  t h r e e  such pumps a r e  given i n  Table 1. Experi- 
ence with these  pumps bears d i r e c t l y  on t h e  development of pumps f o r  t h e  



molten s a l t  breeder r e a c t o r s .  A survey7 of t h e  p e r t i n e n t  design fea tu res  
and t h e  opera t ing  experiences with t h e s e  l a r g e r  pumps i.s heine made t o  
s t i m u l a t e  and enhance t h e i r  con t r ibu t ion  t o  t h e  design of  t h e  breeder 
salt  pwnps . 

Table 1. Pumps f o r  Liquid Metal Reactors 

Hallam Fermi EBR-2 

Flow, gpm 7200 11,800 5500 
Head, f ' t  160 310 200 
Temperature , O F  1000 1000 800 
Speed, rpm 900 900 1035 

. Pumping power, bhp 3 50 1060 350 
Operating experience : 

H a l l a m  pumps accumulated severa l  thousand 
h r  of ump opcr,ation with sodiwl from 700 $ t o  950 F,  o f  which a t  l e a s t  1000 h r  was a t  
95O0l?. 

Fermi pumps accumulated over 7000 h r  operat ion 
inc luding two weeks a t  1000°F. 

, 

Requirements f o r  Pumps f o r  Breeder Reactors 

The p resen t ly  envisioned requirements of t h e  f u e l ,  b l anke t ,  and 
coolant  s a l t  pumps f o r  a 1000 MW( e )  Molten-Salt Breeder Reactor (MSBR) 
p lan t , and  f o r  t h e  Molten S a l t  Breeder Experiment (MSBE), a 150 ~ w ( t h )  
experiment, a r e  presented  i n  Table 2 .  T,entative  value^ f o r  pe r t inen t  
hydrau l i c  design parameters ,  e .g . ,  speed, s p e c i f i c  speed, a r e  given 
a l s o .  

The c e n t r i f u g a l  sump pumps developed and used i n  t h e  A i r c r a f t  
Reactor Experiment ( A R E ) ,  t h e  Ai rc ra f t  Reactor Test  program (ART),  and 
t h e  Molten-Salt Reactor Experiment (MSRX) received f i r s t  considerat ion 
f o r  app l i ca t ion  t o  t h e  Molten-Salt Breeder Reactor (MSBR) . There are 
a t  l e a s t  t h r e e  d i f fe rences  between t h e  MSRE and t h e  KSBR concept whose 
e f f e c t s  on t h e  thermal and nuclear  r ad ia t ion  environments w i l l  in f luence  
t h e  choice of the  pump conf igura t ion  f o r  t h e  MSBR. 

.Depending on t h e  type  of des igns , the  power r a t i n g  f o r  t h e  MSRR i s  
f i f t y  t o  200 t imes g r e a t e r  than MSRE design power. In  add i t ion ,  the  
separa t ion  d is tances  between i t s  r e a c t o r ,  heat  exchanger, and pump a r e  
equal  t o  o r  smal ler  than t h e  corresponding MSRE d i s t ances .  Thus the  
i n t e n s i t y  of t h e  nuclear  r a d i a t i o n s  i n  t h e  v i c i n i t y  of t h e  f u e l  pump 
w i l l  be  very much g r e a t e r  f o r  t h e  MSBR than t h e  MSRE. 



. - Table 2. Pumps f o r  Breeder Reactors 
I 

. . 
Fuel Blanket Coolant 

,2225 m ( t h )  MSBR' . . ' . . 

Number required 4" 4" 4" 

~ e s . i ~ n  temperature, OF . 1300 1300 1300 
. . 

Capacity, gpm 11,000 2000 16,000 

Heat, f't ' ' , ', ' 150 80 150 

Speed, rpm 1160 1160 1160 

Specific speed, Ns 2830 2150 3400 

NPSH, required,  f't . .  25 8 32 
( ~ e t  pos i t ive  suction head) 

- Impeller input power ,,' hp 990 - 250 1440 

150MwtMSBE . .  . ' 

Number required 

Design temperature, OF . '  

Capac i$y , gpm . 

Heat, f't 

Speed, rpm 

Specif ic  speed, 
s 

NPSH required,  ft 
(Net pos i t ive  suction head) 

Impeller input power, hp 

9 h e  same %ot.9,3.. n.urnher of pilmps 'is required fo r  a 1000 ~ w ( e )  p lant  
of t h e .  NSBR reference design o r  modular' design. 



Another d i f fe rence  concerns t h e  manner of heat ing t h e  MSBR. One 
of t h e  fea tu res  of t h e  MSBR concept i s  t h e  use of l a rge  furnaces t o  
conta in  t h e  f u e l ,  blanket  and coolant.. s a l t  systems and t o  maintain them 
at e leva ted  temperatures during reac to r  power operat ion.  The temperature 
i n  t h e  furnace f o r  t h e  f u e l  and blanket  s a l t  systems w i l l  range between 
1050 and 1150 '~ .  The temperature i n  t h e  coolant s a l t  system furnace may 
range between 700 and 1150 '~ .  

A l i s t  of t h e  condit ions and circumstances under which t h e  MSRE 
pump configurat ion may be used i n  t h e  f u e l  and blanket  sa.l,t systems 
include : 

a .  Provide a s p e c i a l l y  constructed and cooled p i t ,  both 
t o  maintain t h e  ambient tempera,ture f n r  t.hc hearing 
houslng i n  t h e  range 150 t o  175 '~ ,and reduce i n t e n s i t y  
of nuc1ea.r r ~ r l i  &.inns. 

b .  Develop s u i t a b l e  s h a f t  bearings and s e a l s  and t h e  
assoc ia ted  lubr ican t  f o r  operat ion a t  a  higher ambient 
temperature which, although s t i l l  req,uiring t h e  con- 
s t r u c t i o n  of a  pump p i t ,  would mate r i a l ly  reduce t h e  
heat  load on t h e  pump p i t  cooling system. 

c.  Return t o  t h e  concept of l o c a l  preheating of t h e  s a l t  
system components,with a t tendant  use of l o c a l  nuclear  
r a d i a t i o n  sh ie ld ing  and space cool ing, to  maintain t h e  
ambient temperature below 200 '~ .  

I n  a more des i rab le  pump conf igura t ion,  t h e  thermal and r8d.i ~ , t . i o n  
damage s e n s i t i v e  d r ive  motor i s  separated from t h e  pump, per  s e ,  by a 
s u f f i c i e n t l y  l a r g e  d is tance  t o  provide both reasonable thermal gradients  
i n  t h e  pump s t r u c t u r e  and adequate amounts of r ad ia t ion  atteni~a,t,j.nn 
m a t e r i a l s .  The approach i s  t o  separa . t~!  t h e  dr ive  motor from t h e  h o s t i l c  
environments by a s  l a r g e  a d is tance  as p rac t i cab le  within the  l i m i t s  
of ro'bordynamic, f a b r i c a t i o n ,  and r e a c t o r  layout  considerat ions.  h e -  
l iminary  study i n d i c a t e s  t h a t  t h e  required  . 'separation probably cannot 
be obta ined with t h e  MSRE pump configurat ion using a reasonable s h a f t  
diameter. Thus i n i t i a l  considera t ion wil l .  be given t o  a pump con- 
f i g u r a t i o n  t h a t  f e a t u r e s  a r a t h e r  long s lender  s h a f t  and u t i l i z e s  
molten s a l t  l u b r i c a t e d  bearings and probably s h a f t  dwpers .  

Program Scope -- 
The pump program w i l l  provide f o r  t h e  s-l;.udy and design of  t h e  f u e l ,  

b lanke t ,  and coolant s a l t  pumps f o r  t h e  l a r g e r  MSBR, and f o r  t h e  design 
and development of those  pumps f o r  t h e  smal ler  MSBE. The study w i l l  
inc lude t h e  evaluation of t h e  f e a s i b i l i t y  of t h e  long s h a f t  pump con- 
f i g u r a t i o n  and t h e  p r a c t i c a b i l i t y  of sca l ing  it down by a f a c t o r  of four  
to s u i t  the  MSBE.pump requirements. 

Our present  approach i s  t o  use one bas ic  pump ro ta ry  assembly 
design and t o  accommodate t h e  d i f fe rences  i n  t h e  hydraulic requirements 
f o r  t h e  t h r e e  pumps with appropr ia te  changes i n  t h e  hydraulic designs of 
t h e  impel ler  and vo lu te  and i n  t h e  c h a r a c t e r i s t i c s  of t h e  d r ive  motors. 



I f ,  f o r  reasons of r eac to r  system layout  t h e  co.olant s ' a l t  pump 
requ i res  sepa ra te  t rea tment ,  then'  e i t h e r  t h e  long s h a f t  conf igura t ion  
w i l l  be modified o r  t h e  MSRE pump configurat ion w i l l  be used, depending 
upon the, r e s u l t s  of  f u r t h e r  s tudy.  . 

One each of the .  f u e l ,  b l anke t ,  and coolant  salt  pumps w i l l  be pro- 
vided f o r  1) development, 2 )  the  Engineering Test Uni t ,  and 3,) t h e  Molten- 
S a l t  Breeder Experiment. , 

I n  essence, t h e  study por t ion  of  t h e  program w i l l  be focused on 
iden t i fy ing  pump .configurations t h a t  a r e  f e a s i b l e  f o r  t h e  MSBR, and 
t h e  development por t ion  of t h e  program w i l l  be concerned wi th  producing 
pumps f o r  the  MSBE, which . w i l l .  be scaled-down vers ions  of t h e  MSBR 
conf igura t ions .  During . the development of t h e  MSBE pumps, a t t e n t i o n  
w i l l  be given t o  t h e  problems of scaling-up components f o r  use i n  t h e  
MSBR pumps. 

Design and Development Program 

Because of t h e  importance of t h e  pumps and t h e  c lose  r e l a t i o n s h i p  
between t h e i r  design and- development, t h e s e  two a c t i v i t i e s  a r e  considered 
t o  be one. I n  t h i s  , a c t i v i t y  t h e  major problems a r e  expected t o  inc lude:  

s e l e c t i n g  a hydraulic  design,  
choosing a s a t i s f a c t o r y  rotordynamic conf igura t ion ,  
con t ro l l ing  t h e  t o t a l  p l a s t i c  s t r a i n  i n  t h e  pump caused 
by temperature cycling of t h e  system, 
s p e c i e i n g  purge gas requirements t o  prevent back 
d i f fus ion  of gaseous f i s s i o n  products t o  r a d i a t i o n  
s e n s i t i v e  regions of t h e  pump, 
con t ro l l ing  adequately any flow which passes through 
t h e  pump tank ,  a )  t o  prevent t h e  re-entrainment of 
xenon-laden gas i n  t h e  r e c i r c u l a t i n g  s a l t ,  and b )  
t o  prevent stoppage of purge gas flow by f reez ing  of 
s a l t  sp lash  o r  ae roso l  i n  t h e  pump s h a f t  annulus, 
designing and proof t e s t i n g  an adequate s h a f t  damper, 
a molten-salt  l u b r i c a t e d  bea r ing ,  and any s h a f t  s e a l  
t h a t  1s l a r g e r  i n  dlameter than now used,  
verif 'ying t h e  adequacy of t h e  hydraul ic  and ro tor-  
dynamic design s , 
providing pump r e l i a b i l i t y ,  and 
obtaining confidence i n  scaling-up t h e  MSBE pumps t o  
f i t  t h e  requirements of la rge-sca le  p l a n t s .  

E f f e c t s  of Physical  P roper t i e s  of breeder S a l t s  on Punp Design 

Density and v i s c o s i t y  a r e  t h e  two physica l  p roper t i e s  of molten 
s a l t s  which s t rongly  affect.  puhp design. ~ a i t  dens i ty  mainly a f f e c t s  
t h e  torque  requirements f o r  t h e  pump 'impeller and requ i res  t h a t  t h e  
sha f t  has s u f f i c i e n t  t o r s i o n a l  s t r e n g t h  and t h a t  t h e  d r ive  motor pro- 
duces t h e  r equ i red '  torque.  Both of these  i tems,  which a r e  under t h e  
con t ro l  of t h e  pump des igner ,  shoul'd present  no ;,untoward problem i n  
t h e  drsigil  of t l lc  breeder pumps. 



Viscosity s t rongly  a f f ec t s  t h e  l i f e  cha r ac t e r i s t i c s  of t he  hydro- 
dynamic bear ings ,  which we an t i c i pa t e  w i l l  be used i n  t he  breeder pumps. 
The values of t h e  v i s cos i t y  f o r  a l l  t h r ee  breeder reactor  salts a r e  
s i m i l a r  and g r ea t e r  than water '  and should present  no untoward problem 
i n  t h e  design of molten salt 1ubricate.d bearings.  

Spec i f i c  Design Problems and Goals 

Separation Requirement. The p r inc ipa l  f ea tu re  of t h e  long sha f t  
pump configuration.  i s  t he  use of s u f f i c i e n t  separation distance and 
- - 

sh ie ld ing  t o  provide f o r  t e n  years of operation of t h e  dr ive  motor. Such 
a configuration requ i res  a long,  s lender  shaf t  guided a t  i t s  lower end by 
a molten-salt bearing and a t  i t s  upper end by a more conventional bearing 
and us ing,  hopefully,  a conventional, e a s i l y  r ~ p l e n i s h a b l e  Lubricant. 
A sha f t  damper w i l l  probably be necessary t o  provide f o r  operation a t  a 
speed above t he  f i r s t  c r i t i c a l  frequency of t h e  shaft-bearing ayatem. 

Estimates of t h e  separat ion dis tance  between t he  pump impeller  and 
d r ive  motor w i l l  be made based on t h e  an t i c ipa ted  f l ux  of neutrons and 
gamma rad ia t ion  at t h e  motor and t h e  sh ie ld ing  required t o  provide 
ten-year l i f e  f o r  t h e  r ad i a t i on  damage s ens i t i ve  mater ia ls  i n  t he  f u e l  
and blanket  pumps. 

Hydraulic Design. We plan t o  s e l e c t  t h e  hydraulic design which 
w i l l  provide the  required head ( H )  and capacity (Q) a t  a s  high shaf t  
speed- (N) as good p r ac t i c e  and the  ava i l ab le  net  pos i t ive  suction head 
(NPSH) i n  t h e  system w i l l  permit.  This approach should permit t he  use 
of a r e l a t i v e l y  small diameter impeller  and volute a n d  should minimize 
t h e  p a r a s i t i c  volume of s a l t .  Vanes f o r  t h e  back s ide  of t h e  i m p ~ l J e r ,  
sui ta 'b le  f o r  reducing hydraulic t h r u s t , w i l l  receive considerat ion.  

Rotordynamic ~ n a l y s i s ' .  The p r i nc ipa l  ana ly t i c a l  problem w e  an t i c i -  
pa te  concerns t he  s e l ec t i on  of s a t i s f ac to ry  pump rotordynamic configura- 
t l o n s .  These should provide r e l i a b l e  and economic pumps f o r  t he  f u e l ,  
b lanke t ,  and coolant salt c i r c u i t s  i n  t h e  MSBR, which can be scaled- 
down by a f ac to r  of approximately four f o r  use i n  t h e  MSBE. 

The rotordynamics of  t h e  proposed "long shaf t "  configuration a r e  
new t o  us and w i l l  be analyzed extensively t o  determine a su i t ab l e  
arrangement of s h a f t ,  bear ings ,  and shaf% damper. We plan t o  s e l e c t  two 
o r  t h r e e  out of severa l  promising shaft-bearing configurations which 
provide t h e  required separa t ion ,  and t o  subject  them t o  *otordynamic 
a n d y  sis . The locat l ~ n  and perfo,rmance cha rac t e r i s t i c s  of both sha f t  
dampers and bearings necessary t o  provide a s a f e  margin of fa t igue  l i f e  
f o r  t h e  sha f t  during ten-year operation w i l l  be determined f o r  several  
values of sha f t  diameter. The. configuration which has t h e  bes t  chance 
of providing r e l i a b l e  pumps w i l l  be chosen f o r  development. Appropriate 
rotordynamic analys is  of a reduced scope w i l l  be performed f o r  t h e  
coolant s a l t  pump, i f  a d i f f  e i en t  configuration i s  require.d. 



P l a s t i c  S t r a i n .  Temperature cycles i n  a ' s a l t  system can impose 
increments of p l a s t i c  s t r a i n  i n  t h e  high-temperature por t ions  o f . t h e  

' pump due t o  changes i n  e i t h e r  thermal s t r e s s e s  assoc ia ted ,wi th  s t eep  
temperature gradients  o r  mechanical s t r e s s e s  associa ted  with p ipe  
anchor forces  and moments exer ted ,on  pump nozzles.  We noted t h a t  t h e  
l a r g e s t  temperature gradients .  associa ted  with t h e  nuclear  operation of 
the  MSRE f u e l  pump were caused by heat  deposited i n  t h e  p u p  wal ls  by 
gaseous f i s s i o n  products;  It i s  l i k e l y  t h a t  more f i s s i o n  products w i l l  . 

be present  and.heat  w i l l  be deposited i n  l a r g e r  q u a n t i t i e s  i n  t h e  salt 
rese rvo i r  i n  the  MSBR f u e l  pump. We plan t o  use  a small  por t ion  of 
t h e  c i r c u l a t i n g  f u e l  s a l t  t o  remove t h e  hea t .  The . . t o t a l .  p l a s t  i c  s t r a i n  
i n  t h e  pump nozzles, . result ing from t h e  forces  associa ted  with heating 
and cooling t h e  system and changing reac to r  power l e v e l s ,  w i l l  be 
est imated f o r  a  speci.fied number of - cyc les .  ' Measures w i l l  be taken t o  
keep t h e  t o t a l  s t r a i n  within t h e  p l a s t i c  f a t igue  s t reng th  of t h e  con- 
t a i n e r  mate r i a l .  

Purge Gas Requirements. An i n e r t  purge gas w i l l  be used i n  t h e  
MSBR, as  i n  t h e  MSRE, t o  :- (1) remove, ' d i l u t e . ,  and t r anspor t  t o  an 

- 

appropriate t r a p  system t h e  xenon and other  gaseous f i s s i o n  products 
from t h e  f u e l  s a l t ;  ( 2 )  reduce t h e  back d i f fus ion  of these  gaseous 
f i s s i o n  products i n t o  rad ia t ion  s e n s i t i v e  regions of t h e  pump; and 
( 3 )  remove any lubr ican t  t h a t  l eaks  pas t  a  s h a f t  s e a l  without per- 
mi t t ing  t h e  leakage t o  e n t e r  the  pumped s a l t .  The amount of purge 
gas required  f o r  t h e  f u e l  and blanket  s a l t  pumps w i l l  be much l a r g e r  
than f o r  t h e  E R E  f u e l  pump, and a recycle system w i l l  be used t o  
conserve gas ,  The recycle system i s  t r e a t e d  i n  t h e  sec t ion  on t h e  
offgas system. The smaller  purge gas flow f o r  t h e  coolant s a l t  pump 
may permit open-cycle operat ion.  

Size-Scaling Requirements. Pumps f o r  t h e  MSBR and MSBE should use 
t h e  same general  configurat ions.  The f e a s i b i l i t y  of  sca l ing  up t h e  
MSBE pllmps by a f a c t o r  of four  f o r  appl ica t ion t o  t h e  MSBR w i l l  be one 
c r i t e r i o n  f o r  acceptance of-MSBE pump design. The sca l ing  of t h e  ro tor-  
dynamic configurat ion w i l l  be made a . p a r t  of t h e  aha lys i s  of t h e  MSBR 
pumps, which, i n  t u r n ,  should e s t a b l i s h  t h e  requirements f o r  s c a l i n g  
t h e  molten s a l t  bearings &d dampers. Fabr ica t ion,  inspect ion,  handling, 
assembly, an8 InstaPPation of t h e  MSBR. pumps w i l l  1-eceipva study t o  
determine -1;hat the  101% s h a f t  configurat ion w i l l  not impose expensive 
so lu t ions  f o r  l a r g e  molten-salt systems. We plan t o  have t h e  MSBE 
pumps fabr ica ted  by indus t ry ,  and t o  discuss extens ively  with them 
during t h i s  time t h e  fabr ica t ion  problems of the. MSBR pumps. The neces- 
s i t y  f o r  proof -tes-t;ing.'the : ' la rge ,  p q p , s  : ' in  molten s a l t  w i l l  rece ive  much 
a t tent ion.  during s i m i l a r  t e s t s  with the  MSBE pumps. 

Spec i f i c  Development Problems and Goals 

The. development of t h e  MSBE pumps w i l l  e n t a i l  t h e  t e s t i n g  of pumps 
and c e r t a i n  pump components and t h e  feedback of information from these  
t e s t s  t o  pump design,  and w i l l  include a l l  t h e  aspects  of d e t a i l e d  hard- 
ware fabr ica t ion .  The main problems an t i c ipa ted  with t h e  long s h a f t  
pump configurat ion include : (1) demonstrating t h e  adequacy of t h e  design 



and t h e  r e l i a b i l i t y  of t h e  shaf t  damper and t h e  molten-salt bearing 
i n  component t e s t e r s ;  (2)  providing adequate control  of t h e  bypass s a l t  
flow which ca r r i e s  f ission-product  laden helium in to  t h e  pump tank;  and 
( 3 )  ve r i fy ing  t h e  adequacy of t he  hydraulic,  rotordynamic, and purge gas 
designs f o r  each complete pump. The long-time r e l i a b i l i t y  ( a v a i l a b i l i t y )  
of t h e  pumps w i l l  be demonstrated i n  endurance t e s t s .  The f e a s i b i l i t y  
of ve r i fy ing  t he  rotordynamic cha. racter is t ics  of l a rge  pumps i n  room 
temperature shaker t e s t s  of s m a l l  models of shaft-bearing-damper con- 
f i gu ra t i ons  w i l l  be s tud ied  a l so .  Since many of these  development t a sks  
a r e  of routine na tu re ,  only those problems whose resolut ion meets 
s p e c i f i c  and s i gn i f i c an t  goals a re  discussed below: 

Fuel and Blanket Pumps 

Shaf t  Damper Tester .  The hydraulic performance and t he  mechanical 
design of t h e  damper w i l l  be ve r i f i ed  i n  what we anticipa.t*e w i l l  be a 
room-temperature t e s t e r  us ing a  f l u i d  which approximates t he  kinematic 
v i s c o s i t y  of t h e  damper working f l u i d .  'The damping coef f i c ien t  required 
t o  reduce shaf t  f lexure  s t r e s s  t o  a  value s a t i s f ac to ry  t o  provide ten-  
year  pump l i f e  w i l l  be  deduced during rotordynamic analys is  of t h e  pumps. 
I n  t h e  t e s t e r ,  we an t i c i pa t e  imposing on t h e  damper a  s inusoidal  t r ans -  
ve rse  motion of known amplitude and frequency and deducing th.e damping 
coe f f i c i en t  from measurements of t h e  force  necessary t o  sus ta in  t h a t  
motion. Sa t i s fac to ry  cor re la t ion  between predic ted and experimental 
values of t h e  damping coe f f i c i en t  would provide confidence i n  extrapo- 
l a t i n g  t he  hydraulic and mechanical designs of shaf t  dampers t o  pumps 
f o r  t h e  large-scale  systems. 

Molten-Salt Bearing Tes.ter. The operating s t a b i l i t y  of the  bearing 
and t h e  s t a r t - s t op  wear res i s t ance  of t h e  bearing mater ia ls  w i l l  be 
v e r i f i e d  i n  a  component t e s t e r .  We a r ~ t i c i p a t e  f i r s t  operating a  su i t ab l e  
bearing configuration a t  room temperature with a  f l u i d  having the  
approximate kinematic v i s cos i t y  of the  appropriate s a l t  i n  order t o  
i n su re  s t a b l e  operation of t h e  bearing. Next, t h e  bearing w i l l  be 
operated i n  the  appropriate molten salt  i n  t h e  t e s t e r  f o r  more than 
t h e  an t i c ipa ted  number of starts and s tops  f o r  t he  pump i n  t h e  MSBE. 
Then, t h e  bearing w i l l  be thermally cycled over t he  temperature range 
and t h e  number of cycles an t i c ipa ted  f o r  t he  MSBE and operated i n  
an endurance t e s t  t o  obtain confidence i n  t h e  adequacy and r e l i a b i l i t y  
o f  i t s  mechanical design. The t e s t e r  w i l l  be designed t o  accommodate 
Zkie l a r g e r  diameter 'bearings an t i c ipa ted  f o r  pumps f o r  large-scale 
systems. Su f f i c i en t  t e s t s  w i l l  be made with mockup f l u i d  t o  e s t ab l i sh  
t h e  s t a b i l i t y  of  the.  l a rge r  bearings.  

Pump Test F a c i l i t y .  We plan t o  v e r i f y . t h e  hydraulic and rotor-  
dynamic designs and t o  e s t ab l i sh  control  of salt bypass flow, i .e .  , t o  
e l iminate  s a l t  sp lash  and re-entrainment of xenon-laden gas i n  t he  
r e c i r cu l a t ed  s a l t  using a  f1ut.d which has kinematic v i s cos i t y  s imi la r  
t o  t h e  appropriate s a l t .  Then t he  hydraulic and rotordynamic designs 
and t h e  functions of t h e  purge gas system w i l l  be checked i n  molten 
salt  operat ion,  a f t e r  which t h e  r e l i a b i l i t y  of t he  pump w i l l  be inves t i -  
gated during endurance t e s t s .  Maintainabil i ty of t he  pump w i l l  be 
demonstrated during these  t e s t s  a l so .  



It w i l l  be necessary t o  perform several  kinds of room temperature 
t e s t s  with each of the  t h r ee  salt pump designs using a su i t ab l e  f l u i d .  
These t e s t s  include : 1) checking the  hydraulic design performance, 
2)  developing appropriate controls  f o r  required bypass flows through 
the  .pump tank,  3) providing adequate capacity f o r  degassing the  l i qu id ,  
and 4)  determining t he  adequacy of t he  pump design t o  meet spec i a l ,  
t r an s i en t  o r  emergency conditions encountered i n  reac to r  operation o r  
of revis ions  t o  pump design deemed necessary. Preliminary study indi-  
ca tes  these  t e s t ' s  can be performed f o r  a l l  t h r ee  pumps i n  a s i ng l e  room 
temperature f a c i l i t y  using an appropriate f l u i d .  

The differences i n  t h e  chemistry and physical  proper t ies  of t he  
three  s a l t s  and i n  t he  flow r a t e  requirements f o r  t he  individual  s a l t  
c i rcu i t s ,  ind ica te  t he  d e s i r a b i l i t y  of using t h r e e  high temperature. 
pump t e s t  f a c i l i t i e s ,  one each f o r  t h e  f u e l ,  b lanket ,  and coolant s a l t  
PUPS 

A f a c i l i t y  f o r  makfng a room temperature rotordynamic.test  of the  
fu l l - s ca l e - ro t a ry  assembly w i l l  a l s o  be provided, i f  . t h e  r e s u l t s  of the  
rotordynamic analyses ind ica te  t.hig necess i ty .  

Coolant ' S a l t  'Pumps.. I n  t he  event t h a t  t he  ERE pump configuration 
i s  chosen over t he  1ong . shaf t  configuration f o r  the  coolant salt pump, 
t he  following development program w i l l  be c a r r i ed  out. 

The leakage performance and l i f e  ' cha rac t e r i s t i c s  of t h e  shaf t  s e a l  
w i l l  be obt,ained a t  an ea r ly  p rac t i cab le  date.  The bearing-shaft-seal 
configuration w i l l  be mocked up and operated a t  design speed and tem- 

p 

.perature using a good,grade turbine  o i l  t o  l ub r i ca t e  the  s ea l .  Follow- 
on t e s t s  w i l l  be made, with l a rge r  diameter s h a f t  s ea l s  su i t ab l e  f o r  the  
coolant s a l t  pumps i n  large-scale systems. 

I n  addit ion t o  the  molten salt pump t e s t  f a c i l i t y  al luded t o  
previously,  a  room temperature pump t e s t  f a c i l i t y  su i t ed  t o  the  water 
t e s t  development of t he  MSRE pump configuration w i l l  be provided. The 
hydraulic design of the  pump w i l l  be checked and s a t i s f ac to ry  controls  
f o r  the  bypass flow of s a l t  i n  the  pump tank w i l l  be developed. Subse- 
quently,performance and endurance t e s t s  w i l l  be performed with molten 
s a l t  i n  t h e  high temperature f a c i l i t y .  

HEAT EXCHANGERS 

Review of Heat Exchangers i n  t h e  MSRE 

Although 10 Mw(th) was the.nominal power l e v e l  f o r  the  design cal-  
cula t ions  f o r  t h e  MSF3,. t h e  ac tua l  capab i l i ty  i s  l imi ted  t o  about:'. 
7 .5  MW( t ) . Both t h e  primary heat exchanger ( f u e l  s a l t  t o  coolant s a l t  ) 
and . the  r ad i a to r  (coolant s a l t  t o  a i r )  contr ibute  t o  th i . s  reduced capacity.  
A review a t  each heat exchanger w i l l  be very b r i e f l y  summarized. 

The primary heat  exchanger i s  a  conventional cross b a f f l e s ,  U-tube 
exchanger., with f u e l  s a l t  on t h e  s h e l l  s i de  and coolant s a l t  on t h e  tube 



s i d e .  For a more d e t a i l e d  descr ip t ion see Ref. 8. The. observed overa l l  
hea t  t r a n s f e r  coe f f i c i en t  was about 60% of t h e  estimated design coef f i c ien t  
( r e f s .  9 and 1 0 ) .  The i n i t i a l  design of t h i s  heat  exchanger was reviewed 
i n  d e t a i l  and t h e  following s i gn i f i c an t  items noted: 

1. Heat t r a n s f e r  coe f f i c i en t s  and pressure drops were computed 
from conventional re la t ionsh ips  f o r  normal f l u i d s .  

2.  The physical  p roper t i es  of s a l t  used i n  t h e  desigrl were 
those  bel ieved t o  be correct  at t h a t  time. 

3. A t o t a l  contingency f ac to r  of something over 20% was 
included i n  t h e  hea t  t r a n s f e r  area .  

I n  t r y i n g  t o  determine why t h e  measured coef f i c ien t  was so  low, many 
t h ings  were considered. The following a r e  the  most pe r t inen t .  

1. Since s a l t  does not wet Hastel loy N ,  t h e  question of 
a helium gas f i lm on t h e  tubes was considered. This 
was discounted by pressure  re lease  t e s t s  discussed 
i n  r e f .  9 and o ther  considerat ions.  

2.  The question of an insu la t ing  sca le  was considered. The 
very high res i s t ance  of Hastelloy N t o  a t t ack  by fue l  
s a l t  i n  a good many loops and the  reac to r  made t h i s  a 
neg l ig ib le  considerat ion.  Also, t he r e  has beer1 very 
l i t t l e ,  i f  any, drop i n  U with time i n  t h e  reac to r .  

3.  'l'he physical  p roper t i es  'of s a l t  were iooked a t  
c r i t i c a l l y ,  and here in  l i e s  what we bel ieve  t o  be 
t h e  discrepancy. 

Specifical ly ' , iL involves t he  thermal conductivi ty.  Shown i n  t h e  
t a b l e  a r e  values of thermal conductivi ty used i n  t h e  heat  exchanger 
design. These values were est imated from da ta  on s imi la r  but not  
i d e n t i c a l  s a l t s .  Also shown a r e  recent ly  measured values ( r e f . l i )  f o r  
f u e l  salt  and an est imated value f o r  coolant s a l t .  

Fuel S a l t  Coolant S a l t  

Values used i n  o r i g i n a l  design 2.75 3.5 
Measured value ( r e f .  11) 0.83 Not ye t  

-measured 
Estimated f o r  coolant salt = (0.83)(3.5/2.75) -- 1.06 

Now i f  t h e  ove ra l l  heat  t r a n s f e r  coef f i c ien t  of  t h e  primary heat  exchanger 
i s  recomputed with thes'e new values of thermal conductivi ty,  then t h e  
measured and computed values agree qu i t e  wel l .  



The primary heat  exchanger w a s  t e s t e d  with water a f t e r  it was 
b u i l t .  '-The tubes vibra ted excessively i n  t h e  ba f f l e s  a t  flows g r ea t e r  
than about 2 /3 ' o f  t h e  design flow through t he  s h e l l ,  and t h e  s h e l l  s i de  
pressure drop was, excessive. Modifications were made t o  t igh ten  t h e  
tubes i n  t h e  b a f f l e s  and t o  reduce the  pressure drop a t  t h e  o u t l e t  
nozzle. The exchanger .has :been operated f o r  about 9000 h r  a t  high tem- 
pera ture  with salt without obvious d i f f i c u l t y .  

The rad ia to r  consis ts  of ,120 tubes ,  each about 30 f t  long, i n  the  
form of an S-shaped bundle. A i r  blows across t h e  tube bundle a t  r i g h t  
angles t o  remove t h e ' h e a t .  For a  more de ta i l ed  descr ip t ion,  see  r e f .  8  . 
The observed overa l l  heat  t r a n s f e r  coef f i c ien t  was about 68% of t he  
design coe f f i c i en t .  ( r e f s .  9  and 10  ) .  The i n i t i a l  design of t h e  r ad i a to r  
was reviewed i n  d e t a i l  and t h e  following s i gn i f i c an t  items noted: 

1. The s a l t  s i de  ,coeff ic ient  was computed 'from conventional 
re la t ionsh ips  f o r  normal f l u id s .  I n  t h e  rad ia toc  t h i s  i s  
a  negl ig ible .  considerat'ion, however, because. only about 
2 % . o f  the  res i s t ance  t o  heat '  t r a n s f e r  i s  through t h e  s a l t  
film.. ' ' 

2. A desggn e r r o r  was found i n  t h e  ca lcu la t ion  of t h e  a i r  
coef f i c ien t  .. This resu l t ed  i n  t he  est imated outside 
&ef f i c i en t  being about 14% too  high. 

3 . :  ' A contingency f ac to r  o f  bnly about 4% was included i n  
t he  heat I i r a k f e r  area .  

I f  the  overa l l  coef f id ien t  i s  recomputed t o  account; f:or the  e r r o r  
mentioned i n  item 2 ,  then t h e  observed coef f i c ien t  i s  about 75% of the  
design coef f i c ien t .  We bel ieve  t h a t  a  discrepancy of t h i s  magnitude 
i s  not unreasonable when t h e  unconventional configuration of . t he  
r ad i a to r  is considere'd. A 20 t o ' 30% contingency f ac to r  should have 
been included i n . t h e  design heat  t r a n s f e r  a rea  t o  be ce r ta in  of 10 Mw 
capacity.  

The coriclusion we haye a r r ived  a t , a f t e r  looking a t  t he  performance 
of both heat  exch,angers i n  d e t a i l ,  i s  t ha t  no unique heat  t r a n s f e r  
problems ex i s t  i n  t he  MSRE &hat can be a'l;tributed t o  some unusual 
behavior of t he  molten salt .  

Fundamental ~ o i t e n '  S a l t  Heat  rans sf e r  

Heat t r a n s f e r  with molten-salt mixtures was extensively s tudied 
during t he  period 1950-1957 as a  pa r t  of t he  ANP e f f o r t ,  and the  period 
1958-1961 as  a pa r t  of t h e  MSR program. The mixtures invest igated a re  
tabula ted below along with ce r t a i n  pe r t inen t  parameters : 



S a l t  Mixture 
Cornposit ion  

(mole% ) 
Reynolds ' Test  Sect ion 
Modulus Mat e r  i a 1  

NaN02-NaN03- 
KNO 

Nickel 
Nickel,  
Inconel ,  
316 ss 
Inconel ,  
316 SS, 
Hastel loy B 
Inconel  
Inconel 
T n n n n ~ l  
Inconel  
Inconel ,  
Hastel loy N 
Inconel ,  
347 ss 
Inconel ,  
316 ss 

While these  experiments ind ica ted  t h a t  t h e  molten s a l t s  have t h e  
h e a t  t r a n s f e r  and f l u i d  mechanical p roper t i e s  of common f l u i d s  ( 0 . 5  < 
Npr < 100) ,* t h e  same s t u d i e s  showed t h a t  such phenomena a s  non-wetting 
and i n t e r f a c i a l  depos i t s  could d r a s t i c a l l y  reduce the  hea t  t r a n s f e r .  
S ince  t h e s e  e f f e c t s  a r e  d i f f i c u l t  t o  p r e d i c t ,  the hea.t* tr?..n.sfer charac- 
t e r i s t i c s  of  t h e  molten s a l t s  f o r  c r i t i c a l  app l i ca t ions  should be ex- 
per imenta l ly  e s t ab l i shed .  A.bibliogra,phy covering ORNL s t u d i e s  on 
molten-sal t  heat  t r a n s f e r  i s  given i n  references  1. through 8 . 

1. Hi W .  xoffman, Tui-bulent Forced Convection Heat Transfer  i n  
Cj,rcular Tubes Containing Molten Sodium Hydroxide, UOAEC 
Report ORNL-1370, OKNL (1952);  see  a l s o  Heat Transfer  and 
F l u i d  Mechanics I n s t i t u t e ,  p 83,  S tanford  Universi ty P ress ,  
S tanford ,  C a l i f .  (1953).  

2. H.  W .  Hoffman and J .  Lones , Fused S a l t  Heat Transfer-  
P a r t  11: Forced Convection Heat Transfer  i n  C i rcu la r  Tubes 
Containing NaF-KF-LiF Eu tec t i c  , USAEC Report ORNL-1777, 
ORNL (1955). 

3. I1 . W ,  II~rL'rrrw wid S . I. Cohcn , P L l r C d  E d t  lleat 'l1l>ansrer- 
P a r t  111: Forced Convection Heat ' l ' ransfer i n  C i rcu la r  
Tubes Containing the  S a l t  Mixture NaN02-NaN03-KN03, 
USAEC Report oRNL-2433, ORNL (1960).  

4. H. W. Hoffman, Fused S a l t  Heat Transfer ,  Reactor Heat 
Transfer  Information Meeting Oct. 18-19, 1954 , p.  23, 
USAEC Report BNL-311, Brookhaven National  Labor a t  ory  
( c l a s s i f i e d ) .  

*The P r a n d t l  modulus, Npi f o r  t h e  t abu la ted  mixtures ranges from 1 t o  10.  



5. H .  W.  Hoffman, Molten S a l t  Heat Transfer ,  Reactor Heat 
Transfer  Conference of 1956, p. 50, USAl3C Report TID-7329 
( ~ t  . 3)  , ( c l a s s i f i e d ) .  

6.  H .  W .  Hoffman, Molten S a l t  Heat Transfer ,  USAEC Report 
0RN~-~F-58-2-40, ORNL (1958). 

7. ANP Quar t .  Prog. Repts. Period Ending Sept .  10 ,  1955, 
p.  149, USAEC Report oRNL-1947 ; Period Ending 'Dec . 10,  
1955, p .  170,  USAEC Report ORNL-2012; Period Ending 
Mar. 1 0 ,  1956, p. 171, USAEC Report ORNL-2061; Period 
Ending June 30, 1957, p. 99, USAEC Report oRNL-2340; 
Period Ending Sept .  30, 1957, p .  103, USAEC Report ORNL-2387; 
Period Ending Dec. 31, 1957 , ' p .  57, USAEC Report oRNL-2440. 

8. MSR Quart .  Prog . ' Repts . Period 'Ending Jan.  31, 1958 , .  p . 37, 
USAEC Report 0 ~ ~ ~ - 2 4 7 4 ;  Period Ending June 30, 1958, p. 43, 
USAEC Report ORNL-2551; Period Ending Oct. 31, 1958, p. 46, 
USAEC Report 0 ~ ~ - 2 6 2 6 ;  Period Ending Jan.  31, 1959, p.  67, 
USmC ~ e p o ' r t  0 ~ ~ ~ - 2 6 8 4  ; Period Ending Apr. 30, 1959 ,' p. 4 1 ,  
USAEC Report ORNL-2773; P.eriod Ending Ju ly  31, 1959, p. 39, 
USAEC Report ORNL-2799; Period Ending Oct. 31, 1959, p. 23, 
USmC Report ORNL-2890 ; Periods Ending Jan.  31 and Apr. 30, 
1960, p. 27,  USAEC Report ORNL-2973; Period Ending 
J u l y  31, 1960 ,. p . 86, USAEC Report OWL-3014 ; Period Ending 
Feb . ' 28, 1961, p. 140, USAEC' Report OKNL-3122 ; Period 

' Ending Aug. 31, 1961, p. 132', USAEC Report OWL-3215. 

For added assurance and f o r  o ther  reasons,  a molten s a l t  heat  
t r a n s f e r  loop w i l l  be b u i l t .  Generally t h e  loop w i l l  be small and 
or iented  toward fundamental heat  t r a n s f e r  r a t h e r  than toward component 
t e s t i n g .  It w i l l  'be capable of operat ing with a v a r i e t y  of s a l t s  and 
container mate r i a l s .  Some of i t s  object ives  w i l l  be t o  evaluate :  

1. Trarisfer coef f i c ien t s  and pressure  drop with s a l t  
flowing a x i a l l y  on t h e  i n s i d e  &d outside of t h e  tubes .  

2. Thermal e f f e c t s  of poss ib le  corro,sion and s c a l e  deposi ts  
on the  tubes .  

3. Ef fec t s  of c i r c u l a t i n g  gas bubbles on' heat t r a n s f e r .  
T h i ~  could be signif icant .  i f  t h e  s a l t  does not we t . the  
tubes ,  and i s  of concern i n  t h e  MSBE because gas bubbles 
w i l l  be i n t e n t i o n a l l y  i n j e c t e d  in to  the fi1e1 sa. l t ,  a.t, 
t h e  i n l e t  t o  the  @rimary heat  exchanger t o  a i d  i n  s t r i p p i n g  
Xennn-1.35. 



Heat Exchangers f o r  Breeder Reactors 

Molten-salt breeder reactors  bf . , the reference design make use of 
f i v e  d i f f e r e n t  hea t  exchangers: (1) t h e  fue l '  s a l t  heat  exchanger, 
( 2 )  the  blanket  salt heat  exchanger, (3)  t h e  b o i l e r  superheater ,  
( 4 )  t h e  steam rehea te r ,  and ( 5 )  t h e  reheat  steam preheater .  These heat  
exchangers w i l l  be l a rge ly  designed and b u i l t  by commercid manufacturers. 
Fabr icat ion procedures w i l l  be develo ed by t h e  manufacturers o r  a s  p a r t  
of t he  mate r ia l s  development program. P2However, any heat t r a n s f e r  o r  f l u i d  
flow s tud i e s  necessary t o  assure  adequate performance of t h e  u n i t s  i s  n : 
p a r t  of t h i s  component development program. 

h r e l  S a l t  Heat Exchanger 

The f i nc t i on  of t h i s  heat  exchanger i s  t o  t r a n s f e r  heat  from the  
f u e l  s a l t  t o  the coolant s a l t .  The heat exchangers i n  each of t h e  MSBR 
c i r c u i t s  has a capaci ty  of 528 Mw. The MSBE w i l l  have one heat  exchanger 
wi th  a capaci ty  of 150 Mw. 

The f u e l  s a l t  i s  i n  the  tubes and makes two passes through t he  ex- 
changer. F i r s t  it goes.  downwakd through an annular bundle of tubes near 
t h e  cen te r .  It reverses  d i rec t ion  i n  a ,  f l oa t i ng  head and then paase.s up 
through another annular  tube bundle a t  t h e  outer  periphery. The coolant 
sal t  on t h e  s h e l l  s i de  flows generally countercurrent t o  the  f u e l  s a l t .  
Baff les  ' a r e  incorporated t o  a t t a i n  cross flow. The: coolant s a l t  ou t l e t  
i s  through a pipe located a t  t h e  center  of the  heat  exchanger and running 
i t s  e n t i r e  length.  This heat  exchanger, and all o ther  heat exchangers 
i n  t h i s  r epo r t ,  a r e  i n  t h e  conceptual design s tage  a n d  subject  to change 
a s  more design work i s  done on t h e  r e a c t o r . .  

A hea t  exchanger of  f u l l  MSBE s i z e  w i l l  be b u i l t  and t e s t e d  i n  
t h e  ETU. The ETU i s  conceived of as  an isothermal loop; never theless ,  
it w i l l  have. a l a r g e  capacity f o r  heat ing f l u i d s .  With t h i s  :heat source 
ava i l ab l e  and with water in '  the  system, we expect t o  measure reasonably 
we l l  t h e  overa l l  heat  t r a n s f e r  coef f i c ien t .  This w i l l  charact.erize the 
heat  exchanger phys ica l ly ;  t h a t  i s ,  t h e  combined e f f e c t s  of b a f f l e s ,  un- 
conventional geometry, e t c  . The overall, heat t r a n s f e r  r .neff i .c<.~nt r a n  
then  be extrapola ted t o  a s a l t - s a l t  system. While water' i s  i n  t h e  ETU, 
the  pressure  drop through t h e  heat exchanger w i l l  be measured. I n  
add i t ion ,  t h e  un i t  w i l l  be checked f o r  f l u i d  induced v ib ra t ions .  A s  
many of t h e  measurements ' as poss ible  w i l l  be checked again with s a l t  i n  
t h e  system. 

Because of t h e  unconventional configuration of t h i s  heat exchanger, 
var ious  s m a l l  models may have t o  be  b u i l t  t o  serve as  a check of t he  
hydraulic and s t r u c t u r a l  design. For ins tance ,a  r e l a t i v e l y  small p l a s t i c  
model t o  run on water  would be used t o  look a t  t h e  adequacy of t h e  flow 
d i s t r i b u t i o n  produced by t h e  coolant s a l t  i n l e t  volute.  Also, because 
of t h e  complexity introduced by combining t h e  pump with t h e  heat  ex- 
changer, models may have t o  be b u i l t  t o  measure thermally induced 
s t r e s s e s .  



Blanket Sa l t  Heat Exchanger 
. . 

The purpose' of t h i s  exchanger i s  . to  t rans fkr .  heat from t h e  blanket 
s a l t  t o  the  .coolant .sail%.. 'The MSBR exchang.ers .each have a capacity 
of 28 Mw. The MSBE would have a 5- t o  8-~w'exchai1~er.  They a r e  s imilar  
t o  t he  f u e l  salt heat exchangers and the  same comments and.program apply. 

, Steam Reheater '. 

The fundtion d f  t h i s  exch&nger is t o  reheat 'steam from t h e  high- 
pressure turbine  before it i s  admitted t o  the. . intermediate pressure 
turbine.  The MSm plant has e ight  ' reheaters ,  each r a t ed  a t  36 Mw; t h e  
MSBE would have a 12- t o  18-~w unit.! , .The reheater  would be s ing le  pass 
of steam and coolant s a l t  with t h e  steam i n  t h e  tubes and the  s a l t  flowing 
countercurrently through t h e  'disc-and-doughnut-baffled s h e l l .  Control 
of t h e  steam .ou t le t  ' temperature- i s  obtai,ned by varying t h e  s a l t  flow. 

. . 

, Generally, t h i s  heat. exchanger i s  conkentional, and no fundamental 
heat t r a n s f e r  problems &re .for.eseen,. . Again, t h e  .overall  heat t r a n s f e r  
coef f ic ien t  should be measured i n  t h e  ETU; poss ibly 'wi th  s a l t  on t h e  
s h e l l  s ide  and low-pressure' 'superheated. steam on the.  tube s ide .  

, . 

Reheat steam Preheaters 

The function of t h i s  heat  exchanger i s  t o  preheat t h e  high pressure 
turbine exhaust t o  6 5 0 ' ~  before it reaches .the reheaters .  This i s  
necessary t o  minimize the.chanpes of Preezing' the coolant s a l t  Tn t he  
reheaters.  The heating! t l u id '  i s  steam a t  3500 p s i a  hd . lOOOO~.  The 
exchanger i s  U-shaped containing. a s ing le  pass of U tubes.  Exhaust 
steam from the .  high-pressuzie . turbine makes a s ing le  pass through t h e  
s h e l l  s i de ;  it i s  superheated throughout. Throt t le  steam makes a s ing le  
pass through t h e  .tubes ~ ~ o u n t ~ r c u r r e n t l y ;  it i s  supe rc r i t i c a l  throughout. 
The heat  t r a n s f e r  coef f ic ien t  on t he  tube s ide  i s h i g h  compared t o  t he  
overa l l  coef f ic ien t ,  so. t ha t  e'ven t h e  'boundary l aye r  temperature i s  
f a i r l y  well' above t h e  c r i t i c a l  point .  ' No development work i s  planned f o r  
t h i s  -heat  exchanger. . The ' u n i t  f o r  t h e  MSBE w i l l  be. designed with ample 
capacity and. the  overa l l  heat t r @ s f e r  coef f tc ien t  w i l l  be measured 
during the  operation of +he reactor .  ' 

. ~ 

r oiler-superheater, . 
. . 

The function of . these heat .exchangers i s  t o  take heat  from t h e  coolant 
s a l t  . and. generate supercri t ic .al .  steam f o r  t he  turbines .  Each of 16 
exchangers i n  t h e  MSBR has a capacity.  o f .  121 Mw. Two exchangers 
of about 60-~w capacity each o r  one, of 120 Mw capacity would be used i n  
the  EBE. Physically,  the .hea t  exchangers are  U s h e l l  with a s ing le  pass 
of U tubes. The s h e l l  s ide  has :cross flow ba f f l e s  with a var iable  p i t ch .  
The p i tch  i s  greates t  in'  'the . 'ckntral  port ion of t h e  exchanger where the  
bulk f l u i d  temp:erature difference i s  highest .  S a l t  on t h e  s h e l l  s ide  and 
supe rc r i t i c a l  water on t he  tube s i de  flow countercurrently. This heat  
exchanger i s  conventional except f o r  t he  supe rc r i t i c a l  aspect of t h e  
water. Coolant s a l t  i s  supplied through a t h r o t t l i n g  valve which permits 
control  of t h e  ou t l e t  steam temperature. . 



The choice of t h e  s u p e r c r i t i c a l  steam cycle f o r  t h e  MSBR steam 
generakor was based on considerat ions of t h e  high melting point  of 
t h e  f u e l  and coolant s a l t ,  t h e  l a rge  thermal s t r e s s e s  which a r e  produced 
i n  t he  tube  w a l l  during normal operation,  and t h e  higher thermal e f f i c ien-  
cy which may be obtained with the  s u p e r c r i t i c a l  cycle.  

We p r e f e r  t o  operate t h e  fue l  and coolant s a l t  system such t h a t  even 
l o c a l  f reez ing  would not occur. The l e l  sa l t ,  which f reezes  a t  about 
850°F, w i l l  be kept  from freezing i n  t he  f u e l  heat  exchanger by maintaining 
t h e  temperature of t h e  coolant s a l t  above 850 '~ .  and the  coolant s a l t  w i l l  
be kept from f reez ing  by maintaining t h e  feedwater temperature a t  about 
7 0 0 ° ~ .  Conventionally, a  feedwater temperature of l e s s  than 575OF i s  used 
bu t  t h e  higher  temperature i s  possible with t h e  supe rc r i t i c a l  system. 
Also, by r a i s i ng  t h e  feedwater tempera.ture, t h e  temperature gradient  
across  t h e  tube w a l l  i s  reduced t o  about 1/2 with a. corresponding reduc- 
t i o n  Ln t h e  thermal s t r e s s  f o r  normal operation.  

Rapid thermal cycling of the tube w a l l  which i s  produced by a rapid  
o s c i l l a t i o n  of t h e  steam-water in te r face  i n  s u b c r i t i c a l  systems w i l l  be 
g r e a t l y  reduced by t h e  v i r t u a l  el imination of the  phase change i n  going 
through t h e  c r i t i c a l  temperature i n  the  s u p e r c r i t i c a l  pressure system. 

The thermal e f f i c iency  considerat ion i s  consis tent  with t h e  t rend  
of t h e  power indust ry  toward t h e  use of s u p e r c r i t i c a l  steam systems t o  
obta in  t h e  highest e f f i c i ency  f o r  t he  temperature. Since t h e  high n icke l  
a l l oy  i s  t o  be used t o  contain t he  coolant s a l t  anyway, t he r e  w i l l  be 
no add i t i ona l  penalty from the  'materials  s tandpoint .  The study of t he  
compat ibi l i ty  of Hastel loy N with supercri t i .ca1 steam w i l l  be done a s  s 
p a r t  of t h e  mater ia ls  program. 12 

Several  inveskigations of heat  t r a n s f e r  t o  si.ipercritica1 water 
have been reported i n  t h e  l i t e r a t u r e .  Notabb  are two investje;a.t,i.nns, 
one by Babcock and Wilcox ( r e f .  13)  and t h e  &her by Westinghouse ( r e f . 14 ) .  
Both programs a r e  qu i t e  extensive.  The programs were ca r r i ed  out 
independently and yie lded p r a c t i c a l l y  i den t i c a l  heat  t r a n s f e r  coef f i c ien t  
co r r e l a t i ons .  A s  a r e s u l t  of t h i s ,  we be l i eve  t h a t  extensive work 
d i r ec t ed  toward f'undamentally measuring and correla.tj .ng coef f i c ien t s  i s  
unwarranted a t  t h i s  time. Nevertheless, the  technology of s u p e r c r i t i c a l  
hea t  t r a n s f e r  i s  r e l a t i v e l y  new and t he r e  a r e  questions of corrosion,  
s ca l e  depos i t s ,  thermal s t r e s s e s ,  e t c .  and how these  a f fec t  tube ger- 
formance. One of' t h e  most po t en t i a l l y  ser ious  unknowns concerns supar- 
c r i t i c a l  hea t  t r a n s f e r  whis t l e .  "Whistle" i s  a phenomenon much l i k e  the  
more conventional bo i l i ng  songs, but confined t o  supe rc r i t i c a l  systems. 
Sumetlrnes t h i s  whis t le  i s  associated with extensive tube v ib ra t ions  
and flow o s c i l l a t i o n s .  L i t t l e  i s  known about t h e  cause and e f f e c t  of 
t h i s  phenomenon. 

Two developmental programs a r e  planned concerning supe rc r i t i c a l  
heat t r a n s f e r .  The f i r s t  w i l l  be a r a t he r  fundamentally or iented study 
i n  a s m a l l  l aboratory  loop. One or poss ibly  two supe rc r i t i c a l  steam 
generating loops w i l l  be involved. This program i s  intended primari ly 
t o  look a t  whis t le  from a mechanistic point  of view. Calculated heat 
t r a n s f e r  coe f f i c i en t s  w i l l  a l s o  be confirmed. 



The second program involves a l a rge r  two f l u i d  ( s a l t  and water) 
system, and can be thought of as a component development loop. This loop. 
w i l l  f ea tu re  two' o r  three  fu l l - s i zed  tubes from the  b o i l e r  superheater .  
The tubes w i l l  .be operated a t  t h e i r  r a ted  heat load with c i r cu l a t i ng  salt 
on t h e  s h e l l  s i de  t r an s f e r r i ng  heat t o  water i n  the  tubes a t  s u p e r c r i t i c a l  
condit ions.  Some of the  p r i nc ipa l  object ives  of t h i s  loop a re  as 
follows : 
. . 

. . 

1. To assure'  the.absence of supe rc r i t i c a l  whis t l e  i n  a nearly 
exact .duplicate of t h e  b b i l e r  superheater tubes and under 
s imi lar  condit ions.  

2. To confirm the  ove ra l l  heat  t r a n s f e r  coef f i c ien t  ca lcula ted 
f o r  t he  b o i l e r  superheater .  

3. To gain experience i n  corrosi'on and ' sca le  buildup i n  a 
once-through system of ' t h i s  type ,  and t o  observe t h e  feed- 
water '  chemical 'contr61 necessary f o r  acceptable r e s u l t s .  
Additional information w i l l  be gotten on t he  compatibil i ty 
of Hastelloy N i n  st@&, however, the  major program f o r  t h i s  
study i s  a pa r t  of the  mater ia ls  development program. 

4,. Circulat ing bubbles tTould .be added t o  t he  s a l t  loop t o  
see i f  any reduction.  i n  overal l . 'heat  t r a n s f e r  coef f i c ien t  

. . 

r e s u l t s .  '. 

5 .  A s  .one' of t he  f i n a l  experiments, one of the  s u p e r c r i t i c a l  
steam tubes would be  i n t en t i ona l l y  ruptured t o  see  i f  the  
s a l t  s ide  pressure re lease  system i s  adequate. This t e s t  
should y i e l d  valuable inf.ormation. -bn t h e  e f f e c t  of a 
s imi la r  incident  i n .  t h e  'lvlSBE. 

Figure 1. i s  a diagram-of t h i s  loop. 

The a7bove, program should provide an adequate demonstration of t he  
heat  t r a n s f e r  performance of the  b o i l e r  superheater ,  'even though it is  
confined t o  two o r  . th ree  tubes .  The e n t i r e  ' b o i l e r  superheater  w i l l  
be t e s t e d  isothermally i n  t h e  ETU. A s  i n  t h e  case of a l l  o ther  heat  
exchangers, . its pressure drops, f l u i d  induced' tube vibra t ions  and 
overa l l  heat  t r a n s f e r  coef f i c ien t  (sal t  t o  a i r . o r  low pressure steam) 
w i l l  be measured. 

Heat Tra.ns.f e r  Enhancement 

As a long-range goalYy.he'at t r a n s f e r  enhancement may *be a method 
of reducing capi t  a 1  cost  and fue l  salt.. inventory. Pa r t i cu l a r  reference 
i s  made t o  a t u b e  shape devised by C .  G .  Lawson ( r e f .  1 5 ) .  This tube 
fea tu res  a "wavy1' surface and i s  unique i n  t h a t  i n s ide  heat  t r a n s f e r  
coef f i c ien t s  have been doubled i n  such a way t h a t  Colburn's analogy 
holds. That i s  t o  say ,  the  ins ide  heat t r an s f e r  coef f i c ien t  increases 
i n  the  same proportion as  t h e  f l u i d  f r i c t i o n  f ac to r .  A given enhanced 
tube w i l l  t r an s f e r  t h e  same quant i ty  of heat  as a longer smooth tube 
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i f  both have t h e  same flow and pressure drop. Both tubes would requ i re  
t h e  same pumping power. The tubes t e s t e d  s o  f a r  a r e  of b r a s s ,  and t h e  
"waves" a re  s p i r a l  grooves produced by drawing . t h e  tubes through a 
planetary swaging head containing four  b a l l s  o r  needles. The indentions 
l e f t  by t h e  b a l l s  a re  t h e  s p i r a l  grooves. Tests  have been conducted only 
with water. Tubes of t h i s  type should be use fu l  i n  any heat  exchanger 
i n  t h e  r e a c t o r  system including t h e  tu rb ine  condenser, but would be very 
important i n  the  f u e l  t o  coolant s a l t  heat exchanger i n  providing a 
s i g n i f i c a n t  decrease i n  t h e  f u e l  inventory. 

A study w i l l  be made of t h e  use of t h e  enhanced heat  t r a n s f e r  i n  
t h e  f u e l  heat exchanger and i f  t h e  concept i s  compatible, then measure- 
ments w i l l  be made using s a l t i n  t h e  spec ia l  tubes .  

PRESSUFlE RELIEF 1N.COOLANT SYSTEM 
. .  . 

One of the  purposes of using ah intermediate s a l t  t o  separa te  t h e  
f u e l  and steam systems i s  t o  prevent t h e  high-pressure steam from leaking 
i n t o  t h e  highly radioact ive  f u e l  region and c rea t ing  a gross rupture  of 
t h e  low-pressure p ipe  o r  vesse l  w a l l s .  A pressure  r e l i e f  system i s  pro- 
posed f o r  t h e  coolant salt s i d e  of t h e  steam genera tor  and rehea te r  t o  
handle t h e  t o t a l  flow of steam r e s u l t i n g  from t h e  rupture  of severa l  
steam tubes without p u t t i n g  an excessive pressure  on t h e  hea t  exchangers. 
There i s  no equivalent  requirement i n  t h e  MSRE. 

This problem can be mostly solved by design s t u d i e s  and t e s t s  using 
compressed gas and water. However, some t e s t s  may be required  of t h e  
discharge of s u p e r c r i t i c a l  steain i n t o  c o o l a n t . s a l t  and t h e  re lease  of 
steam and salt mixtures through rupture  d i scs  'and blow-do? l i n e s .  

DRAIN AND STORAGE TANKS 

The d ra in  and s torage  tank system provides f o r  t h e  s a f e  s torage  of 
t h e  . f u e l ,  b lanket ,  and coolant s a l t s  when they a r e  not i n  t h e  c i r c u l a t i n g  
systems. In  addi t ion  t o  maintaining the  s a l t s  above t h e  l iquidus  tem- 
pe ra tu re ,  t h e r e  a r e  provisions f o r  removing t h e  a f t e r -hea t  from t h e  f u e l  
and b1;inket s a l t s  and f o r  maintaining ati i n e r t  cover gas overpressure t o  
prevent t h e  inleakage of moisture and oxygen. A method f o r  determining 
t h e  l e v e l  of s a l t  i n  t h e  tank i s  a l s o  provided. 

Drain Tank System f o r  t h e  E R E  

Four tanks a re  provided $or s torage  of' t h e  salt mixtures when they 
a r e  not i n  use i n  t h e  fuel-  and coolaht -sa l t  c i r c u l a t i n g  systems of t h e  
MSRE. Two f u e l - s a l t  dra in  tanks  and a f l u s h - s a l t  tank a r e  connected t o  
t h e  reac to r  ,by means of t h e  f i l l  and dra in  l i n e  which contains f reeze  
valves t o  control  t h e  s a l t  flow. One dra in  tank i s  provided f o r  t h e  
coolant s a l t .  



A f u e l  dra in  t a n k  is  50 i n .  i n  diameter by 86 i n .  high and has a 
volume of about 80 f t 3 ,  s u f f i c i e n t  t o  hold i n  a n o n c r i t i c a l  geometry 
a l l  t h e  salt t h a t  can be contained i n  t h e  f u e l  c i r c u l a t i n g  system. The 
tank i s , p r o v i d e d  wi th  a cool ing system capable of removing 100 kw.of 
f ission-product  decay h e a t ,  t h e  cooling 'being accomplished by bo i l ing  
water  i n  32 bayonet tubes  t h a t  a re  i n s e r t e d  i n  thimbles i n  the  tank.  

The f l u s h - s a l t  tank i s  s i m i l a r  t o  t h e  f u e l - s a l t  tank except t h a t  
it has no thimbles o r  cool ing system. New f l u s h  s a l t  i s  l i k e  f u e l  s a l t  
b u t  without f i s s i l e  o r  f e r t i l e  mater ia l .  It i s  used t o  wash t h e  f u e l  
c i r c u l a t i n g  system before  f u e l  i s  added and a f t e r  f u e l  i s  drained,  and 
t h e  only decay hea t ing  i s  by t h e  small quant i ty  of f i s s i o n  products 
t h a t  it removes from t h e  equipment. 

The coolant -sa l t  tank resembles t h e  f lush-sa l t  t ank ,  but  it i s  
40 i n .  i n  il3amet,~.r by 7H 5.n. h i g h  nnd t ,hp .rro.l,im~ is 50 ft3. 

The tanks  a r e  provided wi th  devices t o  i n d i c a t e  high and low 
l i q u i d  l e v e l s ,  with weigh c e l l s  t o  ind ica te  t h e  weight of t h e  tanks  and 
t h e i r  contents ,  and wi th  thermocouples t o  i n d i c a t e  t h e  temperatures a t  
s e v e r a l  p o i n t s  on t h e  t ank  su r face .  

These tanks a r e  i n s t a l l e d  i n  i n s u l a t e d  furnaces which a r e  heated  
with e l e c t r i c a l  r e s i s t a n c e  hea te r s .  The experience with t h e  e l e c t r i c a l l y  
heated  furnaces i n  t h e  MSRE has been very good. A t e s t  un i t  was brought 
up t o  a temperature of 1200°F i n  1963 and has operated e s s e n t i a l l y  without 
i n t e r r u p t i o n  f o r  25,600 hours.  The f a i l u r e  of an e l e c t r i c a l  l e a d ,  which 
occurred s h o r t l y  a f t e r  t h e  s t a r t u p ,  was t r a c e d  t o  a poor weld a t  a. 
, junction. This ,junction was redesigned t o  permit inspect ion and no 
f u r t h e r  t r o u b l e  has  been encountered from e i t h e r  t h e  t e s t  un i t  o r  t h e  
h e a t e r s  i n  t h e  d ra in  t anks  of t h e  MSRE. 

Another problem encountered with t h e  MSFE d m i n  t ~ ~ ~ k s  was t h e  
s t a r t u p  of  t h e  steam cooling system. I n  t h e  standby condi t ion ,  t h e  
bayonet tubes  a re  a t  t h e  dra in  tank temperatur'e of g r e a t e r  than 1 0 0 0 ° ~ .  
To s t a r t  t h e  cooling system, water i s  allowed t o  run down t h e  center-  
most t u b e ,  cooling a s  it goes. T h e r e . i s  no method,in t h e  present  system 
of reducing the  thermal shock t o  t h e  tube t h a t  r e s u l t s  from t h i s  sudden 
cooling.  The t e s t s  run on MSRF: prototype cooling tubes demonstrated 
(1) t h a t  t h e r e  was no s i g n i f i c a n t  hazard even i f  one of t h e  tubes d id  
f a i l  s i n c e  it was e a s i l y  detec ted ,  and ( 2 )  t h a t  t h e r e  were s u f f i c i e n t  
thermal cycles a v a i l a b l e  before  f a i l u r e  t o  operate through the  expected 
l i f e  of t h e  MSRE. 

Drain Tank System f o r  t h e  MSBE 

The f u e l ,  b lanke t ,  and coolant systems w i l l  r equ i re  separa te  dra in  
o r  s torage  areas .  ~ e d a u s e  of c r i t i c a l  mass considera t ions ,  t h e  f u e l  
s to rage  .area w i l l  contain severa l  tanks each of which w i l l  have a cooling 
system t h a t  may be similar t o  t h e  one i n  t h e  MSRE dra in  tank system. 
Although t h i s  cooling system would not be necessary i f  t h e  f u e l  could be 
he ld  i n  t h e . h e a t  exchanger-fuel pwip system f o r  a f t e r  heat  decay, it would 



not be p r a c t i c a l . t o  delay a maintenance operation' jus t  f o r  t h i s  purpose. 
Therefore, the  s torage tank cooling system must have su f f i c i en t  capacity 
t o  t ake  care of t he  heat ex i s t i ng . sho r t l y  a f t e r  r eac to r  shutdown; 

The blanket s a l t  system does not  l a v e  an..automatic dra in  fea ture .  
i n  t h e  c i rcu la t ing  system but w i l l  have a dra in  tank system s imi la r  t o  
t h e  fue l  s torage system. The amount of af ter -heat  removal needed w i l l  
be considerably l e s s  'than f o r . t h e  fue l  system.but some provision must 
be made. The coolant  s a l t  dra in  tank a rea  w i l l ' b e  separate  from t h e  f u e l  
blanket s a l t  s torage area  t o  t ake  advantage of t h e  lower temperature 
required f o r  t h e  coolant .  s a l t .  The inventory f o r  both t he  blanket and 
coolant s a l t  i s  l a rge  enough . t o  require. severa l  tanks.  

The design of the  drain tank system f o r  t he  MSBR has not  been 
ca r r i ed  . f a r  enough t o  give. good de f i n i t i on  t o  t he  development program. 
I f  the %RE dra in  tank sys temcan be used', a,new.method of s tar t -up and. 
operation must be developed. The major.therma1 shock i n  t h e  MSRE cooling 
system occurs when'the water i s  f i r s t  i n t roduced . . i n to the  centermost 
t ube  thereby suddenly reducing t he  tube temperature from above 1 0 0 0 ' ~  
t o  the  operating temperature of:about 212'. A more gent le  s t a r t up  could 
be accomplished by repiping tlie',system t o  permit t h e  use o f - low pressure 
steam i n i t i a l l y , a n d  then by reducing t h e  steam qua l i ty  a t r a n s i t i o n  t o  
water could be made? .The use of water as t h e  normal: operating coolant 
would permit t he  use  o f ' a  s to rage  system f o r  eme'rgency cooling. 

I f  a d i f f e r en t  system i s  devised. .for t h e  MSBR, some development 
and t e s t i n g ,  as yet. .  undefined, w i l l  undoubtedly be required. .  I n  any event ,  
t h e  t e s t  s tand used f o r  the  .%RE coolers w i l l  be reac t iva ted  o r  a new t e s t  
s tand w i l l  be b u i l t  f o r  t h i s  program. 

Another. area  which must, -be invest igated . is  t he  method , of maintain- 
ing the  drain tanks a t  temperature. 'The system: i n  t he  MSRE used a 
furnace f o r  each tank,  removable heater- insula t ion packages f o r  t he  
piping,  and space coolers t o  remove t h e  heat'.which leaks through t h e  
insu la t ion ,  thereby mazntaining .a  1ow.temperature i n  t h e  dra in  c e l l ,  
One advantage of ' t h i s  arrangement i s  t h a t  it allowed much leeway i n  
the choice o f  mater ia ls  a d  equipment th&t, would be used i n  t h e  c e l l .  
The disadvantages are t h a t , a . f a i l u r e  of the  space cooler  i n  t h e - c e l l  
would permit t he  cell- temperabure t o  r i s e  excessively and t h a t  t h e  
heater-insulat ion packs ' e s  involve many i n t r i c a t e  shapes which a r e  
d i f f i c u l t  t o  f ab r i c a t e  d d . m a i n t a i n .  The MSBE proposes t o  i n s t a l l  t h e  
tanks and,piping i n  heated c e l l s ,  one c e l l  f o r  t he  f u e l  and blanket 
dra tn  tanks and one . c e l l :  . for  t h e  coolant s a l t  tanks.  In  addi t ion t o  
the  c e l l  wa l l ,  insu la t ion  and containment membrane, the re  a re  c e l l  
hea te r s ,  .vessel  supports ,  instrumentation,  and service  l i n e  disconnects 
a l l  of which must be examined f o r  compatibi l i ty with t h e  high tempera- 
t u r e  environment. Many of these problems.are comon t o  those  found i n  
t h e  reac to r  c e l l .  



VALVES FOR MOLTEN SALTS 

Means of con t ro l l ing  t h e  flow of molten s a l t  w i l l  be needed i n  a l l  
of t h e  systems of t h e  MSBR. The requirements range from absolute shut- 
o f f  of t h e  flow i n  t h e  f i l l ,  d ra in ,  and t r a n s f e r  l i n e s  of t h e  f u e l ,  
b lanke t ,  and coolant systems t o  t h e  t h r o t t l i n g  of t h e  flow of the  coolant 
sal t  t o  t h e  steam rehea te r  and t o  t h e  boiler-superheater .  The coolant s a l t  
flow w i l l  be normally 14,600 gpm t o  t h e  b o i l e r  s ~ ~ p e r h e a t e r s  and 2200 gpm 
t o  t h e  rehea te r s .  The con t ro l  scheme f o r  operating t he  p lan t  during 
s t a r t u p  and other  o f f  design conditions has not been f i rmly es tabl ished,  
but  it i s  est imated t h a t  t h e  t h r o t t l i n g  range may be down t o  about 
20% of t h e  fill flow but i n  no case w i l l  it have t o  go t o  zero flow. 
Methods of achieving these  requirements include var iable  flow pumps, 
mechanical t h r o t t l i n g  and cutoff  valves ,  frozen salt  cutoff  valves ,  and 
balanced pressure barometric legs  t o  provide and ma,i nta.in fl nw i nt,errilp- 
t i o n .  'A b r i e f  discussion of t h e  s t a t u s  o r  these methods i s  given below. 

Some development work w a s  done on an emergency dra in  o r  dump valve 
f o r  use i n  the  molten s a l t  of t he  Ai rc ra f t  Reactor Test .  This valve con- 
s i s t e d  of a spher ica l  metal plug which f i t t e d  i n t o  a sj.milar metal s ea t  
t o  form a s e a l .  The leakage permitted through t h i s  valve was l e s s  than 
1 cc/hr .  The posi t ioning of t h e  plug was accomplished by t he  movement 
of a stem through a bellows s ea l .  The guiding was done on t he  helium 
gas s i d e  of t h e  bellows. Among t h e  accomplishments of t h i s  work was 
t h e  development of a method of a t taching a Kenametal plug and soat. t o  an, 
Inconel  stem and valve.body. One of the  d i f f i c u l t i e s  encountered was 
t h e  tendency of t h e  valve t o  s t i c k  a f t e r  an extended period i n  t h e  closed 
pos i t ion .  Although t h e  valve tended t o  s t i c k  eGen a f t e r  t h e  Kenametal 
w a s  adopted, t he r e  were i-'nd'i'cat'f'ons t h a t  t h e  s t i ck ing  then was due t o  
g a l l i n g  of t he  ex t e r i o r  guides. Unfortunately, t h i s  program was termi- 
nated before  it was completed and t h e  question was not resolved. During 
t h e  t e s t s  i n  connection with t h i s  development, noiie of t he  ' va3ves ,would 
cons i s ten t ly  l eak  less. .  th$.':lO: cc/hr.,-.although some of them d id  approach 
t h i s .  

Valves f o r  use with l i q u i d  meti1 systems have been developed and 
success fu l ly  demonstrated. One feature .  of these  valves which prevents 
t h e i r  being adopted d i r e c t l y  f o r  use with molten s a l t  i s  t h e  frozen 
metal  sha f t  s e a l .  S t a t i c  s e a l s  using frozen molten s a l t s  have been used 
with f reeze  f langes ,  access po r t s ,  and f reeze  valves?  however, t h e  glass-  
l i k e  character  of t h e  frozen salt makes i t s  use i n  a dynamic s e a l  
doubtful  . 

AII alLerriate t o  t h e  mechanical t h r o t t l i n g  valve f o r  control l ing s a l t  
flow would be t o  provide var iab le  flow s a l t  pumps, one f o r  t h e  steam 
r ehea t e r ,  and a second f o r  t h e  boiler-superheater .  Whibe it appears 
t h a t  such a scheme i s  f e a s i b l e ,  t he r e  a re  o ther  considerat ions which 
make the  use of a mechanical valve more a t t r a c t i v e  f o r  control l ing the  
salt  flow t o  t h e  steam rehea te r ,  and a.  var iable  flow pump f o r  c i r cu l a t -  
ing  t he  coolant sal t .  



An a l t e rna t i ve  t o  t he  mechanical cutoff  valve i s  a f reeze  valve.  
Freeze valves f o r  use i n  1-112 i n .  pipes were developed f o r  use i n  t he  
%RE and, except f o r  a poss ible  l im i t a t i on  on t h e  expected l i f e  because 
of t he  s t r e s s  produced i n  thermal cycling during t h e  freeze-thaw opera- 
t i o n ,  these  valves have .performed wel l  and should be adaptable f o r  use 
i n  t he  MSBR. The thermal cycling problem w i l l  have t o  be studied.  
Br ie f ly ,  t h e  valve consis ts  of a f l a t t ened  sect ion of , p ipe ,  cooled a t  
t h e  center  by an ins'ulated a i r  stream, and a heated furnace which 
encloses the  e n t i r e  valve. This arrangement controls  t h e  manner i n  
which the  salt  freezes and thaws s.o as t o  prevent .damage r e su l t i ng  from 
trapped l i q u i d  expansion during t h e  thaw.'    odes of operation poss ible  
f o r  these  valves include:  (1) open, ( 2 )  closed but re&dy t o  open on a 
power f a i l u r e ,  ( 3 )  closed and. t o  remain closed on a power f a i l u r e ,  and 
(4) closed but ready t o  open rapidly  ( l e s s  than 1 5  minutes) on demand. 
The time required t o  f reeze  a valve var ies  from 5 t o  30 minutes depending 
on t he  s t a r t i n g  temperature and t h e  time required t o  thaw var ies  from 
l e s s  than 15 minutes up t o  several  hours depending on t h e  mode of 
operation a t  t he  time of t he  demand. 

Another-method of con t ro l l ing  t h e  flow i s  t h e  use of t h e  balanced 
pressure barometric l e g  t o  provide a i d  maintain t h e  flow in te r rup t ion  
except when a control led  t r a n s f e r  i s  needed. Br ie f ly ,  t h e  flow i s  
control led  by d i f f e r e n t i a l  gas pressures between t h e  source and t h e  
receiver  and the' quant i ty  t r an s f e r r ed  i s  l imi ted  by t h e  volumes avai lable  
t o  t he  t r a n s f e r  l i n e s .  This system i s  pa r t i cu l a r l y  a t t r a c t i v e  f o r  use 
i n  el iminating t h e  thermal s t r e s s  associa ted with f reeze ,va lves  where 
t r an s f e r s  a r e  very frequent but involve only a s m a l l  quanti ty of sa l t .  
i n  each. t r an s f e r .  

The development program i n i t i a l l y  w i l l  consist  of a design study t o  
determine more exactly t he  requirement of the  system f o r  flow control .  
A mekhanical t h r o t t l e  valve f o r  use i n  .high flow streams w i l l  be 
designed and t e s t e d  i n  connection with one of t h e  salt  pump loops. A 
mechanical valve f o r  t he  shutoff  of small flows w i l l  be designed and 
s tudied f o r  poss ible  use i n  t r a n s f e r  l i n e s .  The de~elopment of t h e  
valve operator w i l l  be a p a r t  of t h i s  program. A study w i l l  be made of 
t he  f i l l ,  dra in ,  and t r a n s f e r  flow r a t e  requirements t o  determine t h e  
s i z e  of Vaves  needed and t h e  appropr ia te . f reeze  valve w i l l  be designed 
and t e s t ed .  F ina l ly ,  a study w i l l  be made of t h e  use of balanced'  
pressure method of flow control  t o  determine t h e  l imi ta t ions  and i f  t h e  
problems a re  reasonable, a system f o r  control led  t r a n s f e r  w i l l  be 
developed f o r  process systems. 

SALT SAMPLERS 

The s a l t  sampler consis ts  of a mechanism f o r  lowering a capsule 
i n t o  a f r e e  surface o f t h e  s a l t  from which t h e  sample i s  t o  be taken.  
Since t h e  sample capsule must pass through both t h e  .primary and secon- 
dary containment boundaries , it i s  necessary t h a t  s u i t  able valves ,  
access po r t s ,  and t ranspor t  mechanisms be provided t o  prevent t h e  
accidenta l  r e lease  of a c t i v i t y .  I n  addi t ion,  it i s  necessary t h a t  a 



high l e v e l  of r e l i a b i l i t y  of the  mechanisms involved be es tab l i shed ,  
and t h a t  a r e l i a b l e  maintenance scheme be devised t o  replace a l l  com- 
ponents of t h e  sampler system with a minimum delay. 

The sampler i n  t h e  MSFE contains th ree  primary s e a l  closures 
through which t h e  sample i s  t r an s f e r r ed  i n  sequence. The f i r s t  c losure  
cons i s t s  of two ga t e  valves with helium buffer  and leak detectors  
a t  t h e  valve  s e a t s .  This closure i s o l a t e s  the  sampler from the  tank 
t h a t  i s  being sampled except when t h e  sample i s  ac tua l ly  being withdrawn. 
These valves a r e  replaceable but require  t h a t  t h e  reac to r  be shut down 
during replacement. 

The second closure cons i s t s  of a s ing le  door with a helium buffered 
and leak  detected s e a l .  This door provides access t o  t h e  capsule 
lowering mechanism and i s  opened only a f t e r  t h e  f i r s t  closure i s  closed 
and sealed.  The sample capsule i s  i n se r t ed  and removed through t h i s  
door with a hand-operated mechanical manipulator. 

The t h i r d  c losure  i s  a b a l l  valve with a helium buffered and leak  
de tec ted  s e a l .  A cy l i nd r i ca l  t r anspor t  conta iner  i s  lowered through t h i s  
valve ,  t h e  sampler i n s t a l l e d ,  and t h e  sealed container i s  removed i n t o  a 
shie lded c a r r i e r .  

The capsule lowering mechanism ,'* which i s  .between t h e  f i r s t  and 
second c losures ,  cons i s t s  of severa l  e l e c t r i c a l l y  operated components 
including a motor and a cable drum with cable and capsule lat.ch. 

I n  general , the  sampler system has opera tedsa t i s fac to r i ly  through 
t h e  removal of 239 samples and t he  inse r t ion  of 96 enriching capsules. 
The only d i f f i c u l t y  with t h e  system, which required complete shu t t ing  
down of t h e  reac to r  t o  r e p a i r ,  occurred when an e l e c t r i c a l  connection 
on t he  innermost c losure  opened due t o  a shorted connector. This 
equipment was designed t o  insure  t h a t  .it could be maintained but with no 
s t rong  emphasis on speed of maintenance. Approximately one week w a s  
required t o  disassemble, r e p a i r ,  and replace t h e  f a u t y  item, under 
condit ions of medium radioact ive  contamination ( 6 0  R/hr a t  surface of 
t h e  component). 

A more objective approach i s  needed f o r  t h e  maintenance of the  
sampler f o r  the  MSBE. F i r s t ,  it should not be necessary t o  shut down 
t h e  r eac to r  t o  r epa i r  t he  sampler. Secondly, t h e  time required t o  
r e p a l r  any' port ion of t h e  sampler system should be l e s s  than t h e  required 
sampling i n t e rva l .  With t he  experience gained from t h e  MSRE sampler as  
a guide,  t h e  e n t i r e  sampler design w i l l  be reviewed f o r  changes which 
w i l l  improve the, mainta inabi l i ty ,and t h e  success of these  changes w i l l  
be demonstrated i n  a prototype sampler t o  be used on the  ETU. 

One simplifying f ea tu r e  of t h e  MSBE i s  t h a t  t he  sampling need not 
be c a r r i e d  out i n  t h e  reac to r  c e l l .  Since a port ion of the  f u e l  and 
blanket stream w i l l  be bypassed' continuously t o  t h e  chemical process 
p l a n t ,  t h e  sampling s t a t i o n  might be i n s t a l l e d  i n  a c e l l  adjacent t o  t h e  
a n a l y t i c a l  f a c i l i t y  such t h a t  t he  s a l t  coming from the  reac to r  t o  t h e  



process p lan t  ,and from the  process plant  back t o  t h e  reac tor  could be 
analyzed. 'for material  control  and inventory purposes. Development needed ,, 

i s  t o  enable one sampler t o  serve severa l  s tages  i n  the  chemical process 
p lan t .  

. . GAS SYSTEM 

The design of t h e  MSBR.gas system w i l l  be based i n  p a r t  on experience 
gained from previous l i q u i d  fue l  reac tors ,  the  ART, t h e  HRT , and t h e  MSRE , 
and i n  pa r t  on design c r i t e r i a  pecul iar  t o  t h e  MSBR. 

A s  i n  t he  MSRE , t h e  MSBR. gas system w i l l  : , 

. . 

1. S t r i p  xenon-135 from the  f i e 1  system. 

2. Dispose :of radioactive f i s s i on  ,gases and. daughters. 

3. Protect  t h e  sal* from oxidizing atmospheres. 

4. provide motive power f o r  s a l t  t . ransfer .  

5. Furnish miscellaneous services  'such as  purging, venting,  
and leak detection.  

Compared with t h e  MSRE , t h e .  MSBR cover gas supply system w i l l ,  have 
a l a r g e r  capacity.:'md w i l l  u t i l i z e  helium recycled from t h e  offgas 
system. The MSBR offgas system plans o r  contemplates t h e  , following 
features  which were not a p a r t .  of t he  MSRE. system. 

I. ~ a i i d  .:stripping of xenon-135 from t h e  fue l  system 
by in jec t ing  helium .at  t h e  heat  exchanger i n l e t  
and removing xenon-enriched helium by means of a .  
gas separator downst ream o f .  t h e  heat  .. exchanger. The 
helium 'from t h e  separator '  w i l l  be returned t o  t he  
fue l  stream a f t e r .  passing through a holdup' system 
designed . t o  reduce t h e  concentration of Xe-135 by a 
f ac to r  of 40. 

2. Removal of Kr-85 and t r i t i u m  from t h e  charcoal bed 
e f f l uen t ,  with co l lec t ion ,  recompression and reuse of 
the helium, and concentration and storage of t h e  Kr-85 
and t r i t ium.  

MSRE Cover and O f  fgas Systems 

A de t a i l ed  description of t h e  MSRE cover and offgas system may be 
found. in  t he  MSRE Design and ,Operations R e p ~ r t . ~  Only a b r i e f  :descrip- 
t i o n  wi l l ' . be  presented here.  



A helium cover-gas system p r o t e c t s  t h e  oxygen-sensitive f u e l  
from contact  with a i r  and moisture. Commercial helium i s  supplied i n  
a tank t r u c k  and i s  passed through a p u r i f i c a t i o n  system t o  reduce t h e  
oxygen and water content  below 1 ppm before it i s  admitted t o  t h e  
r e a c t o r  systems. A flow of 200 f t3 /day (STP) i s  passed continuously 
through t h e  f u e l  pump bowl t o  t r anspor t  the  f i s s i o n  product gases t o  
a c t i v a t e d  charcoal  adsorber beds. The radioact ive  xenon i s  r e ta ined  
on t h e  charcoal  f o r  a minimum of 90 days, and the  krypton f o r  7-112 
days,  which is  s u f f i c i e n t  f'or a l l  but  t h e  8 5 ~ r  t o  decay t o  i n s i g n i f i -  
ctu1-L l e v e l s .  The 8 5 ~ r  i s  maintained wel l  within to le rance ,  t h e  
e f f l u e n t  gas being d i l u t e d  with 21,000 cfm of a i r ,  f i l t e r e d ,  monitored, 
and dispersed from a 3-ft-diam by 100 f t  high s t ack .  Some tritium i s  
a l s o  produced i n  t h e  r e a c t o r .  I ts  behavior has not been s tud ied  but 
we assume t h a t  it too  i s  discharged t o  t h e  ataosghere. T ~ P  qi:.antity 
produced i s  such t h a t  t h e  concentrat ion i n  t h e  a i r  does not exceed AEC 
l i m i t s .  

A s  described i n  t h e  sec t ion.  on pump development, t h e  MSFE pump 
a l s o  conta ins  an arrangement f o r  spraying t h e  s a l t  i n t o  t h e  gas space 
of the  pump i n  f i n e  streams such t h a t  t h e  gas  i s  permitted t o  separa te  
from t h e  s a l t .  Experiments conducted, on this arrangement i n  a small 
t e s t  loop ind ica ted  t h a t  t h e  e f f i c iency  of t h i s  separa.%ion would be 
l e s s  than 1 5 % ,  probably due t o  t h e  extremely shor t  contact ing time 
a v a i l a b l e  i n  t h e  gas space. The experience gained i n  t h e  MSRF: has 
i n d i c a t e d  t h a t  t h e  apparent e f f i c i ency  may be a s  high as  75%. It i s  
bel ieved t h a t  t h e  apparent higher separa t ion e f f i c iency  i s  t h e  r e s u l t  
of a s m a l l  volume f r a c t i o n  of  gas bubbles c i r c u l a t i n g  i n  the  salt .  On 
t h e  average these  bubbles make 20 t r i p s  around t h e  fi!.e3 1.oo-p and then 
pass through t h e  spray r i n g  i n t o  t h e  pump bowl where they can s epa , ra t .~  
from t h e  s a l t .  The xenon concentrat ion i n  t h e  bubbles should be i n  
equi l ibr ium with t h e  concentrat ion of xenon dissolved i n  t h e  salt .  
Since t h e  s o l u b i l i t y  i n  salt i s  very low, most of t h e  xenon w i l l  he 
i n  t h e  bubbles. This type of  bubble-liquid contactor  i s  proposed f o r  
use i n  t h e  MSBR except that ,  6 'biibble w i L %  not rcoidc  i n  t h e  loop fur 
more than 1 c i r c u i t .  

The cover gas system i s  a l s o  used t o  p ressur ize  t h e  dra in  tanks t o  
move molten salts i n t o  t h e  f u e l  and coolant  c i r c u l a t i n g  systems. Gas 
from these  operat ions i s  passed through charcoal  beds and f i l t e r s  before 
it i s  discharged through t h e  offgas s tack.  

MSRE Gas System Performance 

Performance of t h e  covti- gas tiupply and d f3 t r ibu t ion  s y  s'tem has 
been s a t i s f a c t o r y .  Buildup of  oxide i n  t h e  f u e l  s a l t  during 
Q10,000 hours of operat ion has been n e g l i g i b l e ,  ind ica t ing  t h a t  t h e  
p u r i t y  of t h e  helium gas has been adequate. The helium p u r i f i e r  
system, t h e  pressure  and flow con t ro l s ,  and t h e  leak de tec to r  system 
have o f f e r e d  no mechanical problems. 

Minor d i f f i c u l t i e s  have been experienced as  follows : 



1. .Gas pur i f ic 'a t ion - t h e  indicated moisture content of 
t he  pur i f i ed  gas has va r ied-  f rom, less  than t h e  1 ppm 
control  point  to:as high as 10 ppm. It . i s  not known 
i f  t he  va r ia t ion  i s  . rea l  o r  perhaps is  a systematic 
e r ro r  i n  t he  ana ly t i c a l .  instrument. Some development 
work i s  under way t o  evaluate th is ,problem f o r  the  
MSRE . 

2. Back di f fus ion - pressure v a r i a t i o n s . i n  t h e  dra in  
tanks caused back.di f fus ion of a c t i v i t y  i n t o  t he  
helium supply l i n e  with r e su l t an t . h igh  rad ia t ion  
l e v e l  i n  t h e  adjacent  work area.  The s i t u a t i o n  was 
corrected.  by providing a s m a l l ,  continuous. purge 
of clean gas through t h e  l i n e s .  

3. Rupture d i scs  - t h e  supply l i n e  rupture d i sc  ( p ro t ec t s  
s a l t  vesse l s  from excess f a i l e d  several  
times during t he  pre-nuclear operating period.  The 
t rouble  was ascribed t o  t h e  lower r a t i o  of rupture  t o  
operating pressures ,  and t he  problem was corrected by 
reducing t h e  header operating pressure.  

Delay t e s t s  were run on t he  MSRE charcoal beds during the  pre- 
nuclear period. The krypton delay time was found t o  agree with t he  
predic ted value within acceptable l i m i t s .  This f a c t ,  coupled with 
experience during MSRE power .operation, ind ica tes  t h a t  the  bas ic  
technology o f .  charcoal bed design i s  adequate. 

The following d i f f i c u l t i e s  were experienced with t h e  MSRF: offgas 
system: 

1. Foreign mat ter ,  which resu l t ed  from inleakage of o i l  
from the  f u e l  pump lub r i ca t i ng  system, caused plugging 
of control  valves ,  flow r e s t r i c t o r s ,  and f i l t e r s .  The 
r e su l t i ng  l o s s  of control  of pump bowl over-pressure 
and off-gas flow caused several  in te r rup t ions  i n  reac to r  
operations.  The problem i s  being corrected by modifi- 
ca t ions  i n  f'uel pump design and by t h e  use of f i l t e r s  
of improved design. The invest igat ion of t h i s  
problem yie lded valuable experience i n  t h e  design of 
f i l t e r s  f o r  radioact ive  gases (e .g .  , the  importance 
of adequate heat  t r a n s f e r )  , and i n  t h e  hot c e l l  
examination of components. The work a l s o  served t o  
emphasize t h e  po t en t i a l  problem of sa l t -mis t  carryover 
i n  t h e  of fgas . 

2. A. flow r e s t r i c t i o n  r e su l t ed  i n  t h e  dra in  tank vent 
header' when t h e  poppet i n  an in - l ine  r e l i e f  valve 
became disengaged from the  valve body and became 
X0dg.e.d. i n  t h e  piping a t  the  i n l e t  t o  t h e  aux i l i a ry  
charcoal bed. 



3. Control va lves ,  which operated i n  t h e  very low flow 
of  4 l i t e r s / m i n  of dry helium, tended t o  g d l  i n  t h e  
s l i d i n g  su r faces  between t h e  valve plug and t h e  valve 
s e a t .  This problem has becn rcduced,by using d i f -  
f e r e n t  ma te r i a l s  and by opening t h e  clearances between 
t h e  plug and s e a t .  

4.  I n t e r m i t t e n t  plugging occurred a t  the  i n l e t  t o  t h e  main 
charcoal  beds. This t r o u b l e ,  which has p e r s i s t e d  
throughout t h e  power opera t ion,  was a t  f i r s t  r e l i eved  
pe r iod ica l ly  by blowing back from t h e  charcoal  bed 
i n t o  t h e  holdup volume. As a r e s u l t  of hot  c e l l  
examination of offgas  system components, t h e  d i f f i c u l t y  
was ascr ibed t o  accumuations of  polymerized organic 
s o l i d s .  I n  recent  months t h e  r a t e  of plugging has been 
appreciably lower,  poss ib ly  due t o  t h e  improved f i l t e r s  
mentioned i n  1. abo;e, and r e s t r i c t i o n s ,  when excessive,  
have been c lea red  by heat ing t h e  charcoal  bed i n l e t  
l i n e s  t o  about 800°F. 

MSBR Offgas System 
.;:;.> 

The offgas system..$$$p.osed f o r  t h e  MSBR i s  shown schematically 
on Figure 2 .  The fUeq;;sTS'tern .. :..:I.-. . offgas stream i s  a combination of helium 
flows from t h e  gas sega$&.tor and from t h e  piimp bowl vapor space. The - .. 5-G \ 
pump bowl e f f l u e n t  i,s:."a co l l ec t ion  of miscellaneous purge gases f r o m .  
p laces  such as  the,.'pump s h a f t  annulus and t h e  l e v e l  i n d i c a t o r  instrument 
bubblers .  The two ofzgas streams combine a t  t h e  cyclone separa tor  where 
en t ra ined  salt i s  removed. The offgas stream then combines with s i m i l a r  
streams from t h e  o the r  t h r e e  reac to r  modules ,* and t h e  t o t a l  offgas 
stream passes through t h e  48-hr holdup system where t h e  gas i s  f i l t e r e d  
t o  remove s o l i d  daughter products and t h e  .xenon-135 concentration i s  
reduced by rad ioac t ive  decay t o  about 2-112% of i t s  i n i t i a l  value.  A t  
t h e  o u t l e t  of t h e  48-hr holdup sjsstem, t h e  offgas i s  s p l i t  i n t o  two 
streams.  One, comprising about 96% of t h e  t o t a l  flow, i s  returned t o  
t h e  f'uel system a t  t h e  f u e l  pump suct ion l i n e  by means of a gas in jec-  
t i o n  system. The i n j e c t i o n  r a t e  i s  ca lcu la ted  t o  maintain t h e  volume 
f r a c t i o n  of gas' a t  t h e  point  of i n j e c t i o n  equal t o  1% of t h e  f i e 1  flow. 
This value f o r  t h e  c i r c u l a t i n g  void f r a c t i o n  i s  t e n t a t i v e ,  however, 
pending r e s u l t s  of development s tud ies  t o  be made on t h e  d i f fus ion r a t e  
of  xenon from t h e  s a l t  t o  t h e  c i r c u l a t i n g  bubbles. 

The balance of t h e  f i e1  system offgas flow i s  combined with blanket 
pump of fgas  from t h e  four  modules and t h e  combined stream passes i n  order  
through long delay charcoal  beds ,  a t r i t i u m  removal system and a 
krypton-85 t rapping system, and i s  then recompressed and returned t o  t h e  
purge gas supply system. 

*The term module i s  used interchangeably i n  t h i s  discussion t o  represent  
one heat  exchanger and pump c i r c u i t  i n  t h e  1000 m ( e )  MSBR of reference 
design o r  one complete r e a c t o r  system i n  a 1000 Mw(e) MSBR p lan t  contain- 
i n g  four  reac to r s  of modular designs.  
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Thus, t h e  offgas  system cons i s t s  of two r e c i r c u l a t i n g  loops ,  one a 
h igh flow system f o r  r a p i d  removal of xenon-135 from t h e  reac to r  f u e l  
s tream, and t h e  o t h e r  a low flow system f o r  removal of long-lived a c t i v i t y  
and recovery of helium. Current est imates of t h e  various flow r a t e s  a r e  
as fol lows : 

Flow Rate,  scfm Helium 
One Module Four Modules 

Input  t o  Fuel system 
S t r i p p e r  Gas . . 6.5 26 
Miscellaneous' Purge 0.25 1 
Total  Input 6.75 2 7 

Ef f luen t  from Fuel System 
Gas Separa tor  6 . 5  2 6 
~ i s c t l i a ~ t o u s  , ~ u i - ~ e  0.25 1 
Tot a 1  EfFluent 6.75 27 

Throughput f o r  48 h r  Holdup System ---- 27 

S t  r i p p e r  Gas Recycle 6.5 26 

Throughput f o r  Blanket System 0.25 1 

Throughput f o r  Long Delay Charcoal Bed ---- 2 

Throughput f o r  Tri t ium and Krypton ---- 
Removal System 

Clean Helium Recycle ---- 2 

The an t i c ipa ted  temperature and pressure  l e v e l s  at various points  i n  
t h e  system are  t a b u l a t e d  on Figure 2. 

I n  addi t ion  t o  t h e  main offgas system, provision i s  made f o r  handling 
t h e  fol lowing gas streams : 

1. In te rmi t t en t  vent ing of l a r g e  volumes of helium f r o m t h e  
f u e l  blanket  and coolant system dra in  t anks .  

2 .  A continuous flow of about .0.8 scfm of helium from t h e  
coolant pumps. This stream w i l l  contain some shor t  
l i v c d ,  induccd a c t i v i t y  p lus  a high p a r t i a l  pressure 
of BF3. 

3.  A more-or-less continuous low flow offgas  stream con- 
t a i n i n g  gaseous f i s s i o n  product a c t i v i t y  from t h e  chemical 
processing p l a n t .  



These gases a r e  p r e t r e a t e d  t o  remove undesirable contaminants such 
as  BF3 and f l u o r i n e  and then d i r e c t e d  through a high flow, a u x i l i a r y  
charcoal bed. Depending.on t h e  outcome of futuke f e a s i b i l i t y  s t u d i e s ,  
t h e ,  e f f l u e n t  from t h e  auxi l ia ry . .  charcoal  bed may be d i l u t e d  with a i r  
from t h e  bu i ld ing  v e n t i l a t i o n  system and discharged t o  t h e  atmosphere 
through .an io:dine t r a p  and absolute  f i l t e r  system, o r  it may be p u r i f i e d ,  
recompressed and re turned t o  t h e  helium supply header. The present  flow 
sheet  shows t h i s  ma te r i a l  a s  being vented t o  t h e  s t ack .  

MSBE Offgas System 

The MSBE offgas system w i l l  be a .  s c a l e  model of t h e  proposed MSBR. 
system A d  as  such w i l l  se rve  . a s .  a f i n a l  proving gnound t o  check t h e  . 

adequacy of  t h e  individual  components.and of t h e  i n t e g r a t e d  system. 
Since t h e  f u e l  flow r a t e  i n  t h e  MSBE i s  about 40% of t h e  flow i n . o n e  MSBR 
-module, components common t o  each module, such as t h e  gas separa to r  and 
t h e  gas i n j e c t o r ,  w i l l  be about 215 MSBR s c a l e .  The s c a l e  o f t h e  o the r  
components w i l l  vary .from 1 1 4  t b , ' l / l 0 .  as '  shown, ,on Table 3. 

Table 3. . MSBE Offgas System Scal ing  Factors  

System Flow Rate MSRE 
MSBR MSBE Scale 

Fuel , gpm 11 ,OOU* 4400 215 

Gas ingectiorl & s t r i p p i n g ,  scfm 6.5" 2 .6  215 

Cyclbne separa to r  : 
Gas, scfm 6.5" 2 . 6 .  2/5 
S a l t ,  gpm 50* 2 0 215 

48-hr holdup system, sc f  ' 27 2.85 1/10 

~ i o l o ~ i c a l  charcoal  beds, scf'm 2 0.5 1 1 4  
Kr-85 t r app ing  system, scf'm 2 0 .5  114  

H e l i u m  compressor, scfm 3 0 75 114 

*Per r e a c t o r  module. 

Development Program 

Gas system components which requ i re  development are '  t h e  gas separa- 
t o r ,  t he  ~ a l t  powered gas i n j e c t o r ,  t h e  cyclone separa to r ,  t h e  f i l t e r  
system f o r  f i s s i o n  products ,  t h e  gas compressor, t h e  8 5 ~ r  s t r i p p i n g  
system, t h e  tritium removal system and t h e  gas sampler. 



Gas Separator  

The gas separa to r  w i l l  be located i n  t h e  f u e l  pipe between t h e  heat  
exchanger o u t l e t  and t h e  reac to r  i n l e t .  I n  t h i s  region t he  reac to r  i n l e t  
l i n e  surrounds, and i s  concentric wi th ,  t h e  reac to r  ou t le t  l i n e ,  forming 
an annular  duct. The separator  f o r  the  MSBR, w i l l  consis t  of about 
15  i d e n t i c a l  vor tex  bubble separator  u n i t s  of t h e  same diameter a s . t h e  
annulus width and d i s t r i bu t ed  about t h e  annulus as shown i n  Figure 3: 
The separa to r  f o r  t he  MSBE w i l l  use t he  full-sc:ale, MSBR: separa to r  u n i t ,  
but  only s i x  of t h e  vor tex u n i t s  w i l l  be required becai.~se of t h e  lower 
s a l t  flow r a t e .  

For t h e  MSBR, each individual  un i t  should have the  capab i l i ty  of re- 
moving a l l  bubbles l a r g e r  than 0.01 i n .  diam and t h e  capacity t o  3cparate 
0.44 scfm of gas from a flow of 750 gpm of salt. The Eas takeoff  l i n e s  
w i l l  be connected t o  a common header leading t o  t h e  cyclone aegarator.  
About 50 gpm of s a l t ,  equal t o  about 40% of t h e  t o t a l  volume flow w i l l  
be discharged t o  t h e  cyclone separator  along with t he  gas.  

A considerable amount of  t heo re t i c a l  and experimental work was done 
jn connection with t h e  gas separation problem i n  t he  aqueous homogeneous 
r eac to r s .  16,17,18,19 The program w i l l  j.ncliide (1) appl ica t ion of 
those  r e s u l t s  t o  t h e  design of a fu l l - sca le  u n i t ,  and ( 2 )  proof t e s t i n g  
of a prototype u n i t  i n  water and salt loops. 

Mass Transfer  t o  Ci rcu la t ing  Bubbles 

One of t h e  unce r t a in t i e s  i n  estima.tjng the  ~ f f i c i e n c y  of t he  propooed 
system f o r  removing 1 3 5 ~ e  and a l l  o the r  noble gases frnm tshe syst.em i s  
t h e  r a t e  of mass t r a n s f e r  from t h e  f u e l  salt t o  t h e  c i r cu l a t i ng  bubbles. 
This r a t e  i s  in t imate ly  associa ted with t h e  mass t r a n s f e r  coeff ic ient  t,n 
t h e  bubbles. Only a moderate amount of information on t h i s  merhanism 
i s  ava i l ab l e  from t h e  l i t e r a t u r e  and generally it i s  not  d i r e c t l y  appli-  
cable.  A program involving a water loop and some r e l a t i v e l y  insoluble  
gas (perhaps oxygen) w i l l  'be used t o  measure t h e  mass t r a n s f e r  coef f i c ien t  
t o  s m a l l  bubbles c i r cu l a t i ng  i n  a tu rbu len t  stream. This information 
w i l l  then be extrapola ted t o  t h e  fue l  sa l t -hel . i~~m hi~hhlc  system by maEE 
t r a n s f e r  analogy. It i s  hoped t o  be able t o  confirm these  r e s u l t s  i n  t h e  
gas system t e s t  loop and t h e  engineering t e s t  u n i t .  

S a l t  -Powered In j e c to r  

The Xe-135 s t r i pp ing  system requires  in jec t ion  of helium i n t o  t he  
f u e l  s1;l .e~~ ut Llle heat  exchanger i n l e t .  The required gas flow i s  about 
6.5 scfm. The ava i l ab l e  gas head, which i s  t h e  pressure a t  t h e  ou t l e t  
of  t h e  48-hr holdup system, i s  about 2 ps ig .  The s t a t i c  pressure of 
t h e  salt a t  t he  point  of i n j ec t i on  i s  about 9 ps ig .  We be l i eve  t h a t  t h e  
gas i n j ec t i on  can be e f f ec t ed  by u t i l i z i n g  t h e  energy i n  t h e  salt  stream. 
The device might be e i t h e r  a commercial, l i q u i d  powered gas i n j e c t o r  o r  
a fu l l - f low ventur i  sec t ion .  A s  a backup, t he  p o s s i b i l i t y  of using a 
mechanical compressor w i l l  a l s o  be  invest igated.  The program w i l l  include 
small-scale t e s t s  t o  evaluate t h e  a l t e r n a t e s ,  followed by construction 
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Fig. 3.  Vortex Gas Sepzrator 



and t e s t i n g  of an MSBE prototype u n i t .  The main problems w i l l  be t o  
demonstrate (1) a b i l i t y  t o  perform a t  t h e  prescr ibed MSBE design con- 
d i t i o n s ,  ( 2 )  compat ib i l i ty  with the  overa l l  gas handling system, (3 )  
adequate se rv ice  l i f e  and ( 4 )  r ep laceab i l i ty .  

Cyclone Separa tor  

A cyclone separa to r  i s  provided t o  remove salt which i s  ent ra ined 
by t h e  gas  coming from t h e  gas separa tor .  The underflow i s  re turned t o  
the  f'uel stream by way o f  t h e  pump bowl. The design of t h e  u n i t  w i l l  
be based on e x i s t i n g  technology, bu t ,  t h i s  work w i l l  be deferred  pending 
development of d a t a  on t h e  operat ing c h a r a c t e r i s t i c s  of t h e  gas separa tor .  
The program w i l l  cons i s t  merely of proof- tes t ing  t h e  f i n a l  design. 

Salt-Mist Removal 

Of'fgas system components must be protec ted  Srom S a l t  nlist. A program 
w i l l  be required  t o  determine t h e  na tu re  and s e v e r i t y  of t h e  sa l t -mis t  
problem, and t o  develop a s a t i s f a c t o r y  entrainment separa t ion system. 
Tes t s  w i l l  b e  conducted i n  a loop incorpora t ing flow of f u e l  and offgas 
at design condi t ions .  The program w i l l  include ( 1) charac te r i za t ion  of 
o f fgas  contaminants and ( 2 )  proof- tes t ing  of various poss ib le  m i s t  
t r app ing  devices. The MSBR m i s t  t r a p  G i l l  be loca ted  a t  t h e  o u t l e t  of 
t h e  cyclone separator . 

The problem with t h e  entrainment, of a s a l t  mist i n  t h e  gas  l i n e s  
of t h e  MSRE was f i r s t  encountered i n  one of t h e  offgas l i n e s  coming 
from t h e  pump bowl. The gas flows f r o m t h e  pump bowl a t  about 4 l i t e r s /  
min and t r a v e l s  through a holdup volume of 170 l i t e r s  before en te r ing  a 
f i l t e r  and valve assembly. It was found t h a t  very f i n e  p a r t i c l e s  of  
salt were carrying through t h e  holdup volume, going through t h e  f i l t e r  
and deposi t ing  i n  t h e  opening of t h e  valve u l t ima te ly  causing a flow 
stoppage. Since t h e  quan t i ty  of salt  was very s m a l l  and did  not seem 
t o  present  o ther  problems, t h e  d i f f i c u l t y  was solved by changing t h e  
pore s i z e  of the  f i l t e r  from 25 u t o  one c lose r  t o  10 p .  A t  t h e  same 
t ime t e s t s  were i n i t i a t e d  t o  charac te r i ze  t h e  p a r t i c l e s  coming from 
t h e  bowl of  a s i m i l a r  pump being operated i n  a t e s t  loop. It was found 
t h a t  t h e  p a r t i c l e s  were formed as a m i s t  of t h e  c i r c u l a t i n g  s a l t  and 
were not  t h e  r e s u l t  of condensation of a s a l t  vapor. The proposed 
s o l u t i o n  t o  t h i s  problem, which is  t o  be t e s t e d  f o r  use i n  t h e  MSRE replace- 
ment pump, i s  t o  i n s t a l l  a heated meta l l i c  f i l t e r  element i n  t h e  pump bowl 
such t h a t  any s a l t  caught on t h e  f i l t e r  w i l l  run back i n t o  t h e  pump 
bowl. The MSBE could p o t e n t i a l l y  have a more severe problem s ince  t h e  
gas leaves  t h e  pump bowl a t  about 3U t lmes t h e  r a t e  Sor t h e  MSIIE. A 
simi$ar so lu t ion  i s  proposed f o r  t h e  MSBE but it must be t e s t e d  a t  
t h e  h igher  gas flow. 



Fiss ion  Product F i l t e r  

A t  a power 1 e v e l . o f  2200 Mw thermal,  f i s s i o n  products w i l l  be pro- 
duced a t  a r a t e  of about 0 . 1  y gm-moles/day, khere y i s  t h e  y i e l d  i n  
per  cent .  Since y i e l d s  of kryptons and xeilons range up t o  6..'5%, t h e  t o t a l  
production of xenon and krypton w i l l  be on t h e  order  o f '  s eve ra l  hundred 
grams pe r  day ( see  Table .'4 ) . .Except f o r  Kr-85, e s s e n t i a l l y  100% of t h e  
radioact ive  krypt ons and xenons w i l i  decay t o  s o l i d  daughter products 
which w i l l '  depos i t '  i n  t h e  r e a c t o r  system o r  a t  some.point i n  t h e  'of fgas  
system. The loca t ion  and r a t e  of deposi t ion w i l l  be  a function of t h e  
decay constant  and t h e  l o c a l  flow r a t e  and geometyy. I n . t h e  MSBR, a 
f i l t e r  system i s  . requi red .  upstream of . t h e  48-hr charcoal  beds t o  remove 
s o l i d  daughters from t h e  offgas  stream. The purpose i s  t o  minimize the  
deposi t ion of s o l i d s  i n .  undesired p laces ,  such as  on valve t r i m ,  and t o  
minimize t h e  carry-over o f . s o l i d s  i n t o  t h e  charcoal  beds. The equivalent  
system f o r  the,MSBE w i l l  be designed u t i l i z i n g  experience g a i n e d , i n  t h e  
design and operat ion.  of f i l t e r s  f o r  t h e  MSRE offgas  system. The prime con- 
s i d e r a t i o n s  a r e  (1) ade,quate. heat  d i s s i p a t i o n ,  ( 2 )  adequate servcce l i f e  
and ( 3 )  ease 'of r e p a i r  o r  replacement. 

Production of  Gaseous Fiss ion  Products i n  MSBR* 
Power Level - 2200 M w t  

I so tope ,  i , ( t l / 2 I i  
'i gms /day 

Xe 133 5.27 d 6.5 8 6 
Xe. 135 9.13 h r  6.2 

. . 
83 

.Xe 137 3.9 m 5.9 81 
Xe 138 1 7  m 5 5 7 6 
Xe ,139. 4 1  s 4.7 6 5 
'Xe 140 . 1 6  s 3.7 52 - 

Tota l  K r  and Xe 

- - - - - - 

*Kr-85 and s h o r t  l i v e d  ( t  112 < 5 s e c s )  a r e  not  shown. 



~ r - 8 5  and Tri t ium Removal System 

A t  a power of 2200 Mw thermal,  t h e  MSBR w i l l  produce an estimated 
2000 cur ies lday of Kr-85 (10.27 y r  h a l f - l i f e )  and. 2800 curieslday of 
t r i t i u m  (12.26 y r  h a l f - l i f e )  . About 25% of t he  tritium w i l l  be produced 
i n  t he  blanket .  Since t he r e  i s  no information avai lable  a t  present  
which would ind ica te  an a l t e r n a t e  f a t e  f o r  the  tritium, it i s  assumed 
t h a t  it ,  as  wel l  as t h e  Kr-85, w i l l  pass e s s en t i a l l y  undecayed through 
t h e  charcoal  bed r e t en t i on  system. A cleanup system w i l l  be provided 
which w i l l  reduce t he  Kr-85 and t r i t i u m t o  a l e v e l  which w i l l  permit 
helium t o  be returned t o  t h e  purge gas system o r  vented t o  the  s tack.  
The current  concept of the  cleanup system provides f o r  a s e r i e s  operation 
wherein t h e  helium w i l l  pass f i r s t  through a tritium removal s t a t i o n  and 
then through a cryogenic absorber t o  remove ~ r - 8 5 .  The Kr-85 system w i l l  
be of t h e  regenerative type,  with per iodic  t r a n s f e r  of t h e  s t r ipped  
mate r ia l  t o  s torage cyl inders .  

The development program w i l l  include:  

1. An evaluation of poss ible  methods of t r i t i u m  removal followed 
by mockup and t e s t i n g  of se lec ted  un i t s .  Two systems a r e  current ly  under 
considera t ion:  (1) an ox id ize r ,  such as  hot CuO, followed by a chemical 
t r a p  t o  remove t h e  31f20 and ( 2 )  a chemical r eac to r  which w i l l  bind t he  
t r i t i u m  i n  t he  form of a hydride. 

2. Mockup and t e s t i n g  of t he  Kr-85 removal system. 

It i s  planned t o  use t h e  MSF3 offgas system a s  a t e s t  s ta t ion.  f o r  
t h i s  work. 

Gas Compressor 

The helfum e f r l uen t  from t h e  Kr-85 trapping system w i l l  be recycled 
.lso Bhc puP'gt gas llcttder. A compressor w l l l  be required t o  recompress 
t he  gas t o  about 30 ps ig  i n  order  t o  permit adequate flow control  t o  
t he  various purge and bubbler l i n e s .  Operating conditions f o r  t he  MSBR 
a r e :  flow - 3 scfm, i n l e t  pressure - 0 p s i g ,  discharge pressure - 30 
ps ig .  One of the  main problems w i l l  be t o  provide a system which w i l l  
no t  add c o n t a n a n t s  t o  t h e  gas.  It i s  an t ic ipa ted  t h a t  requirements 
w i l l  be met by a commescially-ava,il,~~hle dieph.ragm compxeccor. Thc pro- 
gram w i l l  include (1) a survey and paper evaluation of commercial un i t s  
and ( 2 )  proof- tes t ing of se lec ted  u n i t s  both on t e s t  s tand and as pa r t  
of t h e  in tegra ted  gas system. 

Gas Sampler 

Control o r  check samples w i l l  be required from the  rec i rcu la t ing  
gas and t h e  main offgas  stream. Analyses df these  gas samp1.e~ w i l l  be 
used t o  provide add i t i ona l  information about t he  chemistry of molten- 
s a l t  r eac to rs .  The major problem w i l l  be t o  develop and proof-test  
adequate sampling techniques.  The offgas sample un i t  cur ren t ly  being 
i n s t a l l e d  a t  the  MSRE w i l l  provide t h e  bas ic  technology f o r  t h i s  work. 



MSBE Gas system Test Loop 

It w i l l  be necessary to.demonstrate t h e  adequacy and r e l i a b i l i t y  of 
the  xenon s t r i p p i n g  and offgas system components when operat ing as  an 
in tegra ted  system. Such a demonstration can bes t  be made by means of a 
t e s t  system incorporat ing a s a l t  c i r cu la t ing :  loop tj-ith ' su i table  connec- 
t i o n s  f o r  t h e  various gas c i r c u l a t i n g  loops. ,Figure 4. shows a schematic 
diagram of t h e  proposed loop layout .  Provisions a r e  made f o r :  

1. Gas i n j e c t i o n  and separa t ion.  
2 .  S a l t  powered gas c i r c u l a t i o n .  
3. Recompression-recycle system. 

The salt loop contains an e x t r a  t e s t  sec t ion f o r  mate r i a l s  t e s t i n g  
a n d a  tank t o  simulate reac to r  holdup. The gas.system contains t e s t  
sec t ions  f o r  component ' t e s t  o r  component s imulat ion.  The. s a l t  flow r a t e  
w i l l  .be 1000 gpm. 

This loop w i l l  a l s o  be used t o  evaluate t h e  performance of sca le  
models of t h e  components.. The ne t  mass t r anspor t '  of t h e  gas t o  t h e  
ent ra ined bubbles i n j e c t e d  i n t o  t h e  s a l t  w i l l  be determined and t h e  
e f f i c iency  f o r  removal of t h e  bubbles by t h e  separa tor  w i l l  be.measured. 
The use o f . t h e  salt d r ivenexhaus te r '  a s  a prime mover f o r  the  gas 
rec i rcu la t ion  system w i l l  be demonstrated as  w i l l  t h e  e f f e c t  of t h e  gas 
i n j e c t i o n  system on t h e  s t a b i l i t y  of t h e  l i q u i d  l e v e l ,  t h e  s t a b i l i t y  
of the, gas r e c i r c u l a t i o n ,  and t h e  xenon removal r a t e .  I n  s h o r t ,  t h i ~  
t e s t  loop w i l l  serve Lo proof t e s t  t h e  concept. 

CELL FURNACE AND SHIELDING 

The c e l l  containing t h e  f u e l  .and blanket  s a l t s  i s  t o  be maintained 
above t h e  l iqu idus  temperature of; both s . a l t s  (about 1 0 4 0 ~ ~ ) .  The c e l l s  
containing coolant s a l t  only -a re  t o  be operated above the  l iquidus  
temperature of t h e  coolant (about 7 0 0 ~ ~ ) .  However, t h e r e  a r e  times when 
t h e  coolant c e l l  must a l s o  opera te  above- 1 0 4 0 ~ ~ .  s o  t h e  rurnace w i l l  be 
designed f o r  1150'~.  The c e l l  temperatures a r e  t o  be maintained by 
rad ian t  heat ing surfaces .  Thermal insu la t ion  and cooling w i l l  be applied 
as  required  t o  p ro tec t  concrete,  equipment suppor ts ,  instrumentat ion,  e t c  

The concept of maintaining t h e  e n t i r e  c e l l  a t  t h e  e levated  tempera- 
t u r e  d i f f e r s  from t h e  method used i n  previous molten s a l t  work. The 
c loses t  approach t o  t h e  proposed method i s  i n  t h e  thermal-shield reactor-  
furnace arrangement i n  t h e  MSRE. Here t h e  r e a c t o r  i s  i n s t a l l e d  i n  a 
water-cooled thermal s h i e l d  t h a t  has thermal insu la t ion  on t h e  inner  
surfaces .  The heat  f o r  the  furnace i s  supplied by e l e c t r i c a l  h e a t e r s  
which a r e  i n s e r t e d  through t h e  top  of t h e  furnace.  The cooling system 
i n  t h e  thermal s h i e l d  removes t h e  heat  deposited by t h e  nuclear  source 
and a l s o  t h e  heat  t h a t  leaks through t h e  thermal i n s u l a t i o n .  This 
system has operated s a t i s f a c t o r i l y  except f o r  t h e  minor problem of 
keeping r a d i o l y t i c  gas from accumulating i n  some p a r t s  of t h e  thermal 
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sh ie ld .  This problem was a t  l e a s t  p a r t i a l l y  solved by i n s t a l l i n g  an 
add i t iona l  c i r c u l a t i n g  pump t o  increase  t h e  flow through t h e  water  
passages and by making provisions f o r  t h e  removal of t h e  ent ra ined gas. 

One bas ic  problem which evolves from t h i s  system r e s u l t s  from t h e  
necess i ty  of using water a s  %,he heat  removal medium. The maximum cred ib le  
accident  f o r  t h e  MSRE involves the  in t imate  mixing of s a l t  leaking frbm 
t h e  f u e l  system i n t o  water leaking from t h e  thermal s h i e l d  system. Steam 
i s  generated and t h i s  produces a . h i g h  pressure  i n  t h e  reac to r  c e l l .  
In  t h e  MSRE, a pressure ,si.ip'p're.ss.iIon system i s  used t o  l i m i t  t h e  pressure  
and t o  contain t h e  f i s s i o n  products should such an accident  occur. 

S tudies  w i l l  be made of designs of furnace arid s h i e l d  combinations 
f o r  t h e  MSBE .with t h e  object ive  of e l iminat ing t h e  p o s s i b i l i t y  of mixing 
of salt and water;  

The heat  f o r  these  c e l l s  might be supplied by gas o r  o i l  burners 
mounted outside t h e  c e l l  but with t h e  hot gases passing through t h e  
c e l l  i n  r a d i a t i n g  f i n  tubes o r  e l e c t r i c a l  ' hea te r s  mounted i n  re-entrant  
tubes i n  t h e  c e l l .  The 'selected method a n d ' t h e  prbposed d'e'sign w i l l  

. . .  require  te ' s t ing .  : . : 

The arrangement f o r  cooling t h e  supports f o r  t h e  r e a c t o r  vesse l  
must be t e s t e d .  The e f f e c t  of temperature changes i n  t h e  supports on 
t h e  vesse l  alignment must be examined under t h e  condit ions expected 
during t h e  system s t a r t u p  and during a f a i l u r e  of t h e  support cooling 
system. 

Some s m a l l  s c a l e  mockups w i l l  be b u i l t  t o  gi.ve a i d  i n  design 
arrangement and evaluat ion.  The f i n a l  checkout of t h e  system w i l l  be 
done i n  t h e  ETU. 

STEAM - SYSTEM 

The steam conditions i n  t h e  MSBR st'eam cycle a r e  almost i d e n t i c a l  
t o  those  i n  the  Bul l  Run P lan t  of t h e  TVA except t h a t  a reheat  steam- 
preheater ,  a mixing t e e  on t h e  feedwater l i n e ,  a n d , a  feedwater pressure- 
booster  pump have been added. The technology involved i n  these t h r e e  
components i s  such t h a t  the  design and'construction should be s t r a i g h t -  
forward. These u n i t s  w i l l  be spec i f i ed  i n  s u f f i c i e n t  d e t a i l  s o  t h a t  
they can be designed and fabr ica ted  by an experienced manufacturer. 
While s:ome t e s t i n g  would be done by t h e  manufacturer, t h e  f i n a l  t e s t i n g  
f o r  performance and s e r v i c e a b i l i t y  could be done, elsewhere, perhaps a t  
t h e  Bull  Run P lan t .  Preliminary i n q u i r i e s  t o  vendors have been met 
with s u f f i c i e n t  i n t e r e s t  and confidence t o  i n d i c a t e  t h a t  t h i s  approach 
t o  t h e  procurement problem i s  a reasonable one. 



TURBINE GENERATOR 

A 60 Mwe turbine-genera tor  i s  smal ler  than i s  normally suppl ied  by 
t h e  major manufacturers f o r  a 3500 ps i -1000°~  - 1000°F' reheat  cycle.  
Here t o o ,  a pre l iminary  inquiry  ind ica ted  t h a t  such a u n i t  i s  t e c h n i c a l l y  
f e a s i b l e  and could be made, however, i n t e r s t a g e  leakage i n  t h e  small  
high p ressure  end would reduce t h e  e f f i c i ency .  The cos t  f o r  t h i s  s m a l l  
s u p e r c r i t i c a l  p ressu re  u n i t  would run from 10% to 25% more than f o r  a 
comparable un i t  a t  a lower,  more conventional pressure .  It i~ des i rab le  
t o  produce s u p e r c r i t i c a l  steam i n  order  t o  reduce some of t h e  thermal 
s t r e s s  problems i n  t h e  steam genera tor .  A study w i l l  be requi red  t o  
decide whether t o  use a s u p e r c r i t i c a l  tu rb ine  o r  t o  t h r o t t l e  t h e  steam 
t o  lower p ressure  and use t h e  more conventional u n i t .  

I n  summary, it appears t h a t  t h e  steam system can be t a i l o r e d  t o  f i t  
t h e  MSBE requirements and t h a t  no extens-i.ve development i s  nececcary t o  
produce t h e  equipment o r  t o  insure  t h a t  it meets t h e  program require-  
ment s .  

ENGINEERING TEST UNIT 

The f i n a l  demonstration of t h e  components and systems f o r  the  MSBE 
w i l l  be done i n  a f u l l  s c a l e  engineering t e s t  u n i t  modeled a f t e r  the  r eac to r .  
The components f o r  t h i s  model a re  t o  be exac t ly  t h e  same as  those  intended 
f o r  use i n  t h e  MSBE and i n  f a c t  some of t h e s e  u n i t s ,  a f t e r  demonstrating 
a s a t i s f a c t o r y  perform&ce i n  the  ETU, might serve  a s  spare p a r t s  f o r  t h e  
r e a c t o r  experiment. It i s  expected t h e  experience gained i n  bui ld ing 
and opera t ing  t h e  ETU w i l l  considerably shor ten  t h e  s t a r t u p  t ime f o r  
t h e  MSBE. 

The primary purposes f o r  t h e  Engineering Tes t  Unit a r e  t h r e e :  

1. It w i l l  provide an i n t e g r a t e d  t e s t  a t  f u l l  temperatures,  press i . res ,  
and f lows,  but i n  an unradioact ive '  environment of th.e r eac to r  f u e l ,  
blanket  , and coolant systems ; t h e '  f u e l  and b lanket  processing systems ; 
and t h e i r  major a u x i l i a r i e s  ., 

2 .  The equipment w i l l  'be t h e  f i r s t  manufactured of Hastel loy N by. 
commercial f a b r i c a t o r s  . This w i l l  provide an opport i~ni  t.y t o n  q i ~ ~ l  i f y  
the  manufacturers t o  b u i l d  r e a c t o r  equipment An'd t h e  modifi.ed, Hastel loy N 
a s  a s t r u c t u r a l  m a t e r i a l .  The same manufa.~t.lirers w i l l  make a second 
group of components f o r  t h e  'MSBE, and they should be o f  suger io r  qua.lit,y. 

3. It w i l l  provide a p lan t  f o r  thoroughly t r a i n i n g  the  operat ions 
and maintenance s t a f f  and f o r  thoroughly t e s t i n g  t h e  mainten8.n.c~ equip- 
ment and procedures before  t h e  s t a r t u p  of the  MSBE. 
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The design of  t h e  ETU w i l l  be based on t h e  MSBE flowsheet shown 
i n  Figure  5 .  The t e s t  u n i t  w i l l  be complete through t h e  boiler-super- 
h e a t e r  and t h e  steam r e h e a t e r  but w i l l  not inc lude  t h e  s u p e r c r i t i c a l  steam 
system. It w i l l  inc lude  t h o s e  p a r t s  of t h e  of fgas  system t h a t  a r e  requi red  
t o  i n j e c t  gas  i n t o  t h e  c i r c u l a t i n g  f u e l  s tream, remove gas from t h e  f u e l  
s tream, and separa te  entrainment from t h e  gas before  it goes t o  t h e  
carbon beds. The f u e l  s a l t ,  blanket s a l t ,  and coolant salt d ra in  tank 
system w i l l  be included.  

A p i l o t  p lan t  w i l l  be provided f o r  processing t h e  f u e l  and blanket 
s a l t s .  How complete t h a t  p l a n t  w i l l  be has not been decided. The 
equipment t o  be used f o r  e f f e c t i n g  t r a n s f e r s  between t h e  r eac to r  and t h e  
process ing p lan t  w i l l  c e r t a i n l y  be included.  We a l s o  expect t o  provide 
equipment f o r  f l u o r i n a t i n g ,  d i s t i l l i n g ,  and r e c o n s t i t u t i n g  t h e  s a l t s  but 
have no t  y e t  f u l l y  decided whether t h i s  i s  f u l l y  necessary.  

We plan t o  i n s t a l l  t h e  ETU In an exf s t fng  buflafng ,, proba-bly I n  
t h e  Y-12 a rea .  This w i l l  involve removing e x i s t i n g  equipment and 
f l o o r s ,  i n s t a l l i n g  t h e  c e l l  l i n e r s  and cooling system, i n s u l a t i o n ,  vesse l  
suppor t s ,  and c o o l e r s ,  c e l l  hea te r s  and represen ta t ive  sec t ions  of water- 
cooled concre te  s h i e l d i n g .  The method of pene t ra t ing  t h e  furnace- 
containment wal l  w i l l  be used i n  r ep resen ta t ive  loca t ionc  ~ u c h  as s a l t  
p i p i n g ,  instrument l i n e s ,  and gas supply and vent  l i n e s .  

The program w i l l  use  t h e  designs and drawings prepared f o r  t h e  
r e a c t o r  and w i l l  p repare  only those  a d d i t i o n a l  designs necessary t o  
adapt t h e  r e a c t o r  t o  t h e  experimental i n s t a l l a t i o n s .  Much of t h e  
vendor ' s  development and t e s t i n g  of f a b r i c a t i o n  methods w i l l  be done 
i n  bu i ld ing  components f o r  t h e  ETU. 

The systems w i l l  opera te  isothermally during most of t h e i r  experi-  
mental l i f e  although it i s  planned t h a t  some represen ta t ive  temperature 
d i f f e r e n c e s  across  components may be generated by g r e a t l y  reducing 
t h e  s a l t  flow and t h r o t t l i n g  small q u a n t i t i e s  of steam out of t h e  steam 
genera tors .  In  a d d i t i o n ,  some thermal t r a n s i e n t s  w i l l  be produced t o  
h e l p  i n  developing a s t a r t u p  procedure which w i l l  minimize t h e  thermal 
shock t o  t h e  system. 

A s  ou t l ined  i n  t h e  program on heat  t r a n s f e r  equipment, it i s  
planned t h a t  i n i t i a l l y  t h e  ind iv idua l  s a l t  loops w i l l  be operated with 
water  s o  t h a t  t h e  hydraul ic  c h a r a c t e r i s t i c s  of  t h e  loops may be evaluated.  
Since t h e r e  w i l l  be  considerable heat  input  capaci ty  ava i l ab le  t o  t h e  
loops ,  it i s  planned t h a t  some hea t  t r a n s f e r  da ta  w i l l  be obtained 
durlng t h e  per lod  of opera t ion  with water .  

Another a r e a ,  i n  which some prel iminary experience w i l l  be gained,  
i s  t h e  con t ro l  of  t h e  coolant  s a l t  flow through t h e  two steam genera tors  
and r e h e a t e r  t o  h e l p  adsjust t h e  system f o r  car ry ing reduced power loads .  
A s  descr ibed i n  t h e  design proposal ,  t h i s  w i l l  be done by varying t h e  
coolant  pump speed and t h e  p o s i t i o n  of t h e  valpe which con t ro l s  t h e  s a l t  
flow t o  t h e  r ehea te r .  



The adequacy of t h e  r e a c t o r  and component support system w i l l  be 
evaluated during .thermal s t a r t u p .  The s t r e s s e s  a t  c r i t i c a l  vesse l  
nozzles and penet ra t ions  w i l l  be measured with t h e  system a t  reduced 
temperature by reproducing s t r a i n s  measured during thermal s t a r t u p .  

While t h e  purpose of t h e  ETU w i l l  be t o  evaluate  a s  many of t h e  
components and systems as a r e  ready a t  the  t ime ,  t h e  u n i t  i s  scheduled 
t o  s t a r t u p ,  it i s  an t i c ipa ted  t h a t  some expedients w i l l  be necessary t o  
meet t h e  s t a r tup .  da te .  Such th ings  a s  d i r e c t  access maintenance w i l l  
be used i n i t i a l l y  with demonstration of t h e  remote technique developed 
f o r  radioact ive  systems t o  be made a t  a l a t e r  da te .  Where a v a i l a b l e ,  
representa t ive  reactor-grade i n s t  rumentat ion w i l l  be used, however, i f  
t he  a c t u a l  instrument i s  not ready, some s u b s t i t u t e  measure w i l l  be 
taken with provision made t o  i n s t a l l  t h e  r eac to r  grade equipment l a t e r .  

The operat ion of t h e  ETU w i l l  be continuous during t h e  t e s t i n g  
period with molten s a l t s .  During t h i s  time t h e  p l a n t  w i l l  be s t a f f e d  
l a r g e l y  by opera tors  and engineers i n  t r a i n i n g  f o r  assignment t o  t h e  
=BE. This w i l l  provide a well  t r a i n e d  s t a f f  f o r  t h e  s t a r t u p  of  t h e  
breeder experiment. 

SCHEDULE AND COST 

The schedule and c o s t s  a r e  shown on Table 5 and were est imated 
on t h e  b a s i s  t h a t  t h e  program begins with FY 1968 and t h a t  t h e  ETU and 
KSRE 5 ,ns ta l la t ions  should be completed by t h e  end of FY 1971 and ' 

FY 1974, r e spec t ive ly .  The main e f f o r t  of t h e  development program i s  
centered on bui ld ing components of MSBE s i z e ,  assembling them i n t o  
systems and t e s t i n g  them i n  t h e  Engineering Tes t  Unit.  



Table 5. Cost Summary - Conponent and System Development 

($ thousands ) FY 
68 69 70 71 72 73 7 4 75 Totals 

Core flow t e s t s  100 150 150 150 100 50 700 

Control rod t e s t s  100 250 150 $00 80 80 80 40 880 

Pumps 600 1400 , 600. 350 280 2 00 150 150 37 30 

Heat t ransfer  studies 100 400 100 100 80 - - - 
. . 

780 

60 30 . 50 140 
vl 

Steam system vendor t e s t s  o 

Sa l t  samples 100 150 120 100 5 0 50 5 0 620 

Cel l  f'urnaze - 130 100 100 . ~ O O  50 50. 50 5 0' 620 

Drain tank and storage . 50 80 50 5 0 2 30 
tank cooler 

Sa l t  valve .s 30 200 150 100 : 50 5 0 20 20 670 

Gas system 130 400 200 150 I00 ' lCi0 5 0 50 1180 

ETU  how-n separately i n  sunmary CF 66-7-39 

Total, 3 12130 3140 - i 1680: 1270 840 5 60 400 360 95 50 
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