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A GAMMA-RAY ATTENUATION METHOD FOR VOID FRACTION 
DETERMINATIONS IN EXPERIMENTAL BOILING HEAT 

TRANSFER TEST FACILITIES 

H. H. Hooker and G. F . Popper 

ABSTRACT 

Gamma rays emanating from a radioactive source 
a r e beamed through and a r e attenuated by s t eam-wate r mix­
t u r e s contained in a s imulated reac to r flow channel. The 
emergen t radiat ion is detected by a scinti l lation c r y s t a l -
photomult ipl ier tube a s sembly . 

An express ion is developed which yields the void f r ac ­
tion when the de tec tor output with the channel empty, filled 
with water , and containing the mixture in question, is known. 

The pr inc ipa l sources of e r r o r s inherent in the method 
a r e analyzed and the i r magnitudes computed for a specific 
t e s t facil i ty. With a uniform bubble dis tr ibut ion in this faci l-
itys the maximum poss ib le e r r o r in void fraction is approx­
imate ly ± 0 . 0 3 . 

The method is a lso applied to th ree idealized p r e f e r ­
ential phase dis t r ibut ions s imulated in Luci te . However, the 
l a rge d i sc repancy between calculated and measured void 
fract ions i l l u s t r a t e s the need for more refined exper imenta l 
techniques where non-uniform dis t r ibut ion of voids a r e en­
countered. Such techniques a r e being developed. 

L THEORY 

The accu ra t e de te rmina t ion of the volumetr ic s team void fraction, 
a, of w a t e r - s t e a m mix tu res i s essen t ia l to the design of wa te r -modera t ed 
boiling r e a c t o r s . The technique of m e a s u r e m e n t to be descr ibed is based 
upon the pr incip le that , as gamma rays pa s s through mat te r , the photons 
a r e absorbed and the in tensi ty d e c r e a s e s exponentially with the dis tance 
t r a v e r s e d . The extent of absorpt ion is proport ional to the intensi ty of the 
radiat ion and to the th ickness of the medium at a given point: 

dl = -julds , (1) 



where 

I = intensi ty of radiat ion ( r / h r ) 
fj. = l inear absorpt ion coefficient of the ma te r i a l t r a v e r s e d (cm~^) 

ds = th ickness of ma te r i a l t r a v e r s e d (cm). 

When a coll imated beam of monoenerget ic gamma rays of initial intensi ty 
IQ pas ses through a ma te r i a l s cen t imete r s thick, the intensity of the e m e r ­
gent beam is obtained by integrating Eq. (1): 

I = (lo) exp (-/is) (2) 

II. APPLICATION TO STEAM-WATER MIXTURES 

In the determinat ion of a , it is assumed that (1) the gamma rad ia ­
tion is monoenerget ici (2) the s t eam-wa te r mixture can be represen ted by 
l aye r s of s t eam and water perpendicular to the incident radiat ion: and (3) 
only the radiat ion pass ing through the s t eam-wate r mixture reaches the 
scinti l lat ion c r y s t a l . In p resen t prac t ice radiat ion from a source pa s se s 
through a vesse l or flow channel containing water and s t eam bubbles. The 
attenuated radiat ion then impinges on a scinti l lat ion c rys ta l which is 
mounted on the face of a photomultiplier tube. The c rys ta l - tube assembly 
is enclosed to prevent the ent rance of extraneous light. The cur ren t output 
of the photomultiplier tube is amplified and recorded on an Es t e r l i ne -
Angus r e c o r d e r . This is known as the integrated intensity method of m e a s ­
uring radiat ion. 

With reference to the i l lus t ra t ion, and assuming that a col l imated 
beam of monoenerget ic radiat ion pas se s through s t ruc tura l m a t e r i a l s , 
water , and s team in any o rde r , the intensity of the exit radiat ion is given 
by: 

I = (lo) [exp ( - P I d)] [exp (-pzx)] [exp -/ij (x@ - x)] 

= (lo) [exp - (Ml d + fiaxo)] [exp { -x (pz - Ms) >] (3) 
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Under conditions of constant t empe ra tu r e and p r e s s u r e , j^i, jiis /i-,,. 
d. and Xg a r e constant.; then 

I = (kj) (lo) exp (-M'x) . (4) 

where 

ki = a constant = exp {-{Hi d + n-j, XQ)} 

f i ' = M?_ - ^ j 

If A is the perpendicular a r e a of the channel "seen" by the detectors 
the amount of radiat ion pass ing through A is given by 

* = lA 

= (kj) (A) (lo) exp (-M^x) . (5) 

li the res'olting radiat ion, $ , is allowed to impinge on a f luorescent c rys ta l 
whose light output i s proport ional to the amount of exciting radiation, 

# v =f , i (T)# 

= (k,) f ,(T) (A) (lo) exp(.M'x) , (6) 

where 

$^ = amount of visible light 

*v 
f 4 (T) = • = convers ion efficiency of the scintil lation c rys t a l . 

$ 
The convers ion efficiency can be assumed to be constant over the range of 
fluxes involved, but i ts value is a function of t e m p e r a t u r e . i l =2,3) 

If a fixed fraction, ks, of the generated light falls on the photocathode 
of a photomult ipl ier tube, the tube anode cur ren t output i i s : 

i = (k3) [f2(T)](Vj^)M*v) 

= (ki) [fi(T)] (ks) [f2(T)] {^r^r (A) (IQ) exp (-p'x) (7) 

where 

f̂  ( T ) = a value de te rmined by the conversion efficiency of the photo­
mul t ip l ier tube and the units in which voltage is expressed , 
and is a lso t e m p e r a t u r e dependent 

vjj = photomult ipl ier tube supply voltage. 

http://temperature.il


It is apparent froin the t e r m (vĵ )"̂  that the tube supply voltage must be regu­
lated with seven t i m e s the p rec i s ion requi red in the output of the photomulti­
pl ier tube. 

The cu r ren t signal, (Eq. 7), is fed into a l inear amplifier whose out­
put voltage V i s : 

V = (kg) (i) (8) 

= (kg) (ki) [fi(T)] (k3) [f2(T)] (v^)^ (A) do) exp (-M'x) 

= [ f3 (T) ]exp( -p 'x ) 

where 

kg = t r ans fe r c h a r a c t e r i s t i c of the cu r ren t amplifier 

fsCT) = (kj) [f,(T)] (k3) [£AT)] (kg) (vi^)' (A) do) 

By definition 

a.^zJL (9) 
X0 

or 

X = (xo) (1 - a) 

Substitution of Eq. (9) into Eq. (8) gives 

v = [fa(T)] exp - {/i'xo (1 - a ) } (10) 

= [faCT)] [exp (-M'xo)] [exp (p' a XQ)] 

When 

a= 1, 

then 

V = Vg 

or, from Eq. (10), 

Ve=f3(T) , (11) 



where 

Vg = actual output voltage for an empty channel. 

When 

a = 0, 

then 

V = Vf 

or , f rom Eq. (10), 

Vf = [f3(T)]exp(-M'xo) . (12) 

where 

V£ = actual output voltage for a full channel. 

Substitution of Eqs . (11) and (12) into Eq. (10), gives 

/ v \«' 
' ^e ' v = v f ^ ^ j . (13) 

Taking the logar i thm of both s ides of Eq. (13), t h e r e is obtained 

(14) 
\ f̂ y 

or 

i n (v/v |) 

i n (ve/vf) 

Thus a plot of a as a function of i n v should produce a s t ra ight l ine . 
If the values of Vg and Vf a r e known, in te rmedia te values of a may be ob­
tained from such a l inear plot on semi - log paper . This involves reading 
the ins t rument deflection f rom the char t , plotting the empty and full deflec­
tions as logar i thmic coordina tes , connecting these points with a s t ra ight 
l ine, and reading a for any deflection f rom this plot. 

III. DESCRIPTION OF APPARATUS 

F igu re 1 is a plan view of the appara tus used to deter inine the void 
fraction in two-phase mix tures contained in an e lec t r ica l ly heated, ver t ica l , 
rec tangular , s ta in less s teel flow channel . The source and detector compo­
nents a r e mounted on a c a r r i a g e (Fig, 2) which t r a v e r s e s the length of the 



w
 

li 

-53 
IT

 

Is' I m
-

^
'f.J

ia 

^^ 

•ii 
i 

IK
 

g 



channel. The ca r r i age is r igidly affixed to four nylon-graphite l inear b e a r ­
ings which r ide on two rods (1 in. d ia . ) . The rods a r e fastened to the heated 
channel to minimize misal ignment between the ca r r i age and channel due to 
the rmal expansion. A dr ive motor and linkage, and counterbalancing 
weights, a re provided for positioning the ca r r i age at any des i red location 
along the length of the channel. 

A. Gamma-Ray Source 

The source consis ts of a thulium pellet (0.190 in. dia.) enclosed 
in an aluminum container and i r rad ia ted to produce 9 r / h r at a distance of 
6 in. in a i r . The end product is the isotope thulium-170 which has a half-
life of approximately 129 days and two energy peaks : 0.053 Mev and 
0.084 Mev. To provide the monoenerget ic radiation neces sa ry for these 
m e a s u r e m e n t s , the lower energy K-X- ray peak must be adequately ab­
sorbed. This is accomplished by placing an absorber equivalent to at least 
1 gm/cin^ of lead between the source and the s t eam-wate r mixture being 
measured.(4) in the p resen t apparatus a 0.25-in. thick s teel plate i s used 
for this purpose . A cut-away drawing of the source , shield, and coll imator 
is shown in F ig . 3. 
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B. Scintil lation Crys ta l -Photomul t ip l i e r Tube Assembly 

The scinti l lat ion crys ta l -photomul t ip l ie r tube assembly is shown 
m Fig . 4(a). The c rys ta l i s tha l l ium-act iva ted sodium iodide, I4 in. d iam­
eter by 1 m . thick. The photomult ipl ier tube is e i ther an RCA-Type 5819 or 
a DuMont-Type 6292. The only special cha rac t e r i s t i c requi red of the photo­
mult ipl ier tube is that it have a ve ry low da rk cu r ren t (about 0.01 x 10"^amp) 
Dark cu r r en t r e f e r s to that cu r r en t produced within the photomult ipl ier in 
the absence of l ight. This da rk cu r ren t a r i s e s from two major cause s : 
(1) leakage paths from the high potentials on the photocathode and dynodes, 
and (2) from the thermionic emiss ion of e lec t rons from the photocathode 
and dynodes. The d a r k cu r ren t of the tube se ts a lower l imit on the intensity 
of radiat ion that can be m e a s u r e d accura te ly . As thulium-170 has a ra ther 
shor t half- l ife, the radiat ion intensi ty of the source d e c r e a s e s after a short 
per iod to the point where this lower l imi t of accura te detection i s approached 
unless the photomult ipl ier tube dark cu r r en t is very low. 

A Lucite light guide is affixed to the face of the tube for the p u r ­
pose of optically coupling the tube to the scinti l lat ion c r y s t a l . The tube, 
light guide, and mu-me ta l shield a r e par t i a l ly sealed in an altiminum can. 
The scinti l lat ion c rys t a l is coupled to the light guide with si l icone g r e a s e 
and the enc losure completed, making the en t i re a s sembly light tight,(5) 

The scint i l lat ion c rys t a l i s pro tec ted f rom extraneous radiat ion 
by a lead shield (Fig, 4b) which sur rounds the c rys t a l and extends over par t 
of the photomult ipl ier tube can. The rec tangular window in the face of the 
shield is slightly g r e a t e r than the width of the flow channel. Photographic 
film is inse r ted in the slot in the face of the shield to facil i tate alignment 
of the window with the flow channel . 

Cc Magnetic Shielding 

The face of the photomult ipl ier tube is located 5 in. f rom the 
flow channel which, at t i m e s , is heated by a maximum of 3,250 amp . 
Therefore , shielding is r equ i red to at tenuate the magnetic field produced 
by the a-c c u r r e n t s so that the output cu r r en t of the tube is essent ia l ly 
independent of this field. In addition to the m u - m e t a l cylinder which s u r ­
rounds the body of the tube, the external shielding includes th ree concen* 
t r i e mu-me ta l enc losures and a 0.25-in, thick annealed s teel box. 

D, Cooling System 

Water cooling coils of copper tubing - one coil wrapped tightly 
around the tube can, and the other so ldered to the magnetic shield - a r e 
used to maintain the photomult ipl ier tube at a fa i r ly constant t e m p e r a t u r e 
of '^20"C. The cooling sys tem reduces the t e m p e r a t u r e - s e n s i t i v e drif ts 
inherent m this type of tube and c rys t a l , and p ro tec t s the tube f rom the 
high ambient t e m p e r a t u r e surroimding the flow channel . 
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E. Ins t rumentat ion 

The ins t rumenta t ion cons is t s of a cu r r en t amplif ier and a neg­
ative high-voltage supply, and a d-c Es te r l ine -Angus r e c o r d e r (Fig . 5). 

The photomult ipl ier tube output is fed to the cu r ren t amplif ier 
whose output voltage is propor t ional to the input cu r r en t . The amplif ier 
has fu l l - sca le input ranges of I x 10"* 5 x 10~^, 2 x 10*^, 1 x 10"t 5 x 10"*, 
2 X 10"^, and 1 x 10"* amp which^ in tu rn , cor respond to 10 volts output. 
The negative high-voltage supply is requi red for the photocathodes and 
dynodes of the photomult ipl ier tube . The supply is regulated to 0.1% to 
prevent l a rge changes in tube gain. 

The r e c o r d e r has a range of 0 to 10 vol ts , and a pen swing t ime 
of 1 s e c . This slow response effectively damps out many of the var ia t ions 
in voltage due to the s ta t i s t ica l na tu re of the radiat ion being m e a s u r e d and 
aids in de termining s t eady- s t a t e va lues . R e c o r d e r s having fas te r response 
a r e available if t r ans ien t m e a s u r e m e n t s a r e d e s i r e d . 

F . Lucite Mock-Up of P re fe ren t i a l Phase Distr ibut ions 

Under ce r t a in conditions in boiling channels , p re feren t ia l phase 
dis t r ibut ions corresponding to var ious flow pa t t e rns a r e encountered in 
two-phase m i x t u r e s . F o r example: in the local boiling region of the chan­
nel (region of incipient boiling), it is believed that the s t eam bubbles form 
on the channel walls while the remaining volume of the channel i s most ly 
wa te r . In th is c a s e the s t e a m - w a t e r mix ture cannot be i l lus t ra ted by 
l aye r s of water and s t eam perpendicular to the incident radiat ion (see 
i l lus t ra t ion, p . 4), and Eq, (15) no longer gives the t rue void fract ion. 

The deviat ions f rom the void-fract ion equation (Eq. 15) p r o ­
duced by the pre fe ren t ia l phase dis t r ibut ions were de te rmined with the 
aid of the fu l l - sca le mock-up of the boiling channel shown in F ig , 6, The 
source and photomult ipl ier tube were posit ioned to duplicate the geomet ry 
of the radiat ion path. The flow pa t te rns se lected for study were constructed 
of Lucite because of i t s c lose s imi l a r i t y to water in density and absorpt ion 
coefficient. The voids in the Lucite were s imulated by machining p r e ­
de te rmined geomet r ic pa t t e rns to effect the corresponding phase 
d is t r ibu t ions . 

The Lucite blocks (Fig . 7) w e r e placed in the mock-up channel 
and the i r respec t ive void fractions de te rmined with r e spec t to (1) an empty 
channeli (2) an a i r - f i l led channel; and (3) a solid block of Luci te . The 
void fract ions were then computed by Eq. (15) and compared with the m e a s ­
ured va lues . The r e su l t s of these t e s t s a r e d i scussed in the following 
sect ion. 
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IV. ERROR ANALYSIS 

Several sou rces of e r r o r inherent in the descr ibed method of m e a s ­
uring s t eam void fract ion were analyzed to de te rmine the over -a l l accuracy 
of the r e su l t s obtained froin both tes t fac i l i t ies . The f i r s t group of e r r o r s 
includes those a r i s ing from the e lec t ronics of the sys t em. The second 
group covers the sou rces of e r r o r in the measurement technique. The third 
group of e r r o r s points out the l imi ta t ions of the sys tem when preferent ia l 
dis tr ibut ion pa t t e rns a r e encountered. 

Provided the e r r o r i s sma l l , the per cent e r r o r in s t eam void frac­
tion; <x. for any source of e r r o r is 

% E r r o r = 
a 

ha Avf 

a 

Av. 

a 
(100) (16) 

where a is given by Eq (15) and Av, Av£, Avg a r e absolute e r r o r s of the 
indicated quant i t ies . 

F r o m Eq, (15) 

da 1 

V i n 
(17) 

Svf 

ha 

i n f ^ 

i n f ^ : 

(18) 

Vf 

i n (v/vf) 

Sve ^ ve [ in (ve/vf)f 
(19) 

Substitution of Eqsc (17), (18)., and (19) into Eq, (16) gives 

% E r r o r = 
Av 

a v l n ( — 
.Vf 

(^-i)H't 
av£ inp 

Vvf 

T 2 

(^-e) Vf 

a v . i n f - ^ 
Vf 

(100) 

(20) 

Substitution for a in Eq. (20) yields 

'Av 
% E r r o r = i n 

V / \ V. 

/Avf 

I ?)-(v)-(^)Mi) 100 

Vf 
inf-^Un' ^ 

Vf 

(21) 



L e t 

a = 

and 

Vf 

b = VJ; 

(22) 

(23) 

Then from Eq. (13), 

V = b(a)^ . (24) 

Upon substituting Eqs . (22), (23) and (24) into Eq. (21), t he re is obtained 

% E r r o r = 
Av 

— I '^ (^ ' - V V , 
AVi; 

i n (a) 
i - a l ^^e i n (a)a 

100 

i n (a) i n (a)a _ 

(25) 

For given e r r o r s , Av, Avf, and Avg, the maximum per cent e r r o r is 

100 
% E r r o r = 

Av \ / Avr \ 
i n (a) -!- ( ~\ i n (a) '-" ̂  (a i n (a)a 

[ i n (a) i n (a)^ 
(26) 

If all voltage m e a s u r e m e n t s a r e in e r r o r by the same percen tage , or 

i ^ ^ (100) = ^ ^ ) (100) = ( ^ ^ ) (100) = K 

the maximum per cent e r r o r becomes . 

% E r r o r = K 

i n (a) i n (a)<^ 
i n (a)^ 

2K 

a i n (a) 
(27) 

If all voltage measu remen t s a r e in e r r o r by a ce r ta in per cent of ful l -scale 
voltage, or 

Av \ / ^V£ \ / Av \ 
,100) = ( ^ ) (100) = ( - ± ) (100) = c 

Vf 

where vr r e p r e s e n t s the fu l l -sca le voltage, the maximum per cent e r r o r 
becornes 

% E r r o r = 
Vfs C 

G. b i n (a) 
-a a a +1 - a + — 

a 
vfs C ' 

a b i n (a) 
- + l . a ( l - l ) 

(28) 



The probable percentage e r ror in a is , for any source of error , 

Substitution of Eqs. (17), (18), (19) and (15) into Eq. (29) gives 

% P .E . = {¥) 
''(-) 

m rvJj - M \ ' 1 (100) 

(30) 

Substitution of Eqs. (22), (23), and (24) into Eq. (30) yields 

% P.E. = 
100 

in(a) in(a)a 
^""^ [in(a)f + ( ^ ) [(ina)^"«^f + ( ^ y n a ) ^ ] 2 

""f ""̂  (31) 

If all voltage measurements are in er ror by the same percentage, or 

' ^ ) (100) = (^] (100) = ( ^ ^ (100) = K' 

where K' is the probable percentage er ror in the reading, then 

% P.E. = i n (a) in (a)^ 
' [ in(a)]2 + [ln(a)^"^]2 + [in(a)aj2 

-K 
2[1 - a + (a)2] 

(a) i n (a) 

For er rors which are a percentage of full scale, or 

Avf ' Av 
Vfs 

Avf 
(100) =( 1) (100) = ( i ) (100) = c 

vfs Vfs 

(32) 



where C is the probable percentage e r r o r in the reading, then 

% P . E . = 
Vfs C 

b i n (a) i n (a) a 
t'"'^'U[^n(a)'-]^.[^-"(^'"i^ 

(a) 2a (a)^ 

V f s C 

a b i n (a) 
(a)"2a + (i . a ) 2 + (a)2(a) - 2 (33) 

A. E r r o r s in Elec t ronics System 

One source of e r r o r in the e lec t ronics of the sys tem is the 
t r ans fe r cha rac t e r i s t i c of the amplif ier , ks. This constant was found to 
vary 0.5% of full scale for an 18-hr period without zero adjustment. The 
zero drift, which is a par t of the t r ans fe r cha rac t e r i s t i c , was also found 
to vary 0.5% of full scale in 18 h r . There fore , the changes in the t rans fe r 
cha rac te r i s t i c were p r i m a r i l y due to ze ro drift . As the ze ro is adjusted 
p r io r to each measu remen t , this source of e r r o r is essent ia l ly el iminated. 

Another source of e r r o r is the var ia t ion in gain of the photo­
mult ipl ier tube with var ia t ions of i ts supply voltage, vi^. As photomultiplier 
tube gain changes as the seventh power of vj^, for small var ia t ions in v|^, 
the e r r o r from these var ia t ions is seven t imes the regulation of the supply 
voltage. The regulation of the supply voltage was measu red to be within 
0.1%, or a maximum e r r o r of (7) (± 0.05%) or ±0.35%. F igure 8 shows the 
maximum per cent e r r o r calculated by Eq. (27), and the probable per cent 
e r r o r in a calculated by Eq, (32) for typical values of a and b obtained in 
the tes t fac i l i t ies . 

The thi rd source of e r r o r is the reduction in gain of the c rys ta l 
tube assembly with increas ing t e m p e r a t u r e . The average t empera tu re co­
efficient of the assembly was measu red to be -0.19%/°F over the range 
from 62 to 110*F.l3) As cooling coils a r e util ized, the maximum varia t ion 
in t empe ra tu r e of the assembly was measu red to be ± 2°F, or a maximum 
e r r o r of ± 0.38%. F igure 9 shows the maximum e r r o r calculated by 
Eq. (27), and the probable e r r o r in a calculated by Eq. (32) for typical 
values of a and b . 

B. E r r o r s in Measuring Technique 

One source of e r r o r exis ts when a fixed amount of radiat ion 
reaches the detector by "paral le l pa ths" external to the s t eam-wa te r mix­
t u r e . If the fixed amount of radiat ion is such that every measuremen t 
(v, Vf, Vg) is inc reased by a constant value Avj, then the per cent e r r o r in 
a is calculated by Eq. (25). KAv^ is smal l , where C = Avi/vfg, then 



Vfs C ( a ) - ^ - l + a 
% E r r o r = 

(i4)l 
a b i n (a) 

a = 0, Eq. (34) is inde te rmina te . Therefore , at a = 0, 

(34) 

% E r r o r = vfg C 
1 - - - i n (a) 

a 
b i n (a) 

(35) 
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If a l a rge fixed amount of radiat ion reaches the detector by some 
para l le l path so that every measu remen t of v is increased by a constant 
value, Av, then 

i n (v'/v>f) 

^ = i n ( v > e / V f ) ' 

where the p r imes indicate apparent va lues . Consequently, 

(36) 

i n [(v + Avi)/(vf + Avi)] 

i n [ ( v e + Avi)/(vf + Avj)] 
(37) 

where 

Avi = the increment in v due to the para l le l paths of radiat ion. 

Letting 

o r 

and 

—® = a = empty-to-full ra t io , 
Vf 

Ve - a Vf 

Avi = kvf , 

it follows from Eq. (13) that 

a V = Vf a 

Substituting these values in Eq. (19) yields 

i n [(vf a ^ + kvf)/(vf + kvf)] 
a ' = i n [(avf + kvf)/(vf + kvf)] 

o r 

i n [(a^ + k ) / ( l +k ) ] 

°'' " i n [(a + k ) / ( H - k ) ] • 

The per cent e r r o r in a i s : 

% E r r o r = [ ^ - i j (lOO) 

i n [ ( a « + k ) / ( l - f k ) ] _̂ " 

a i n [(a + k ) / ( l + k ) ] 
(100) 

(38) 

(39) 

(40) 



F o r a = 0, Eq. (40) is inde te rmina te . Therefore, at a = 0, 

% Er r o r = 
i n (a) 

(1 + k ) i n [(a + k ) / ( l +k ) ] 
(100) (41) 

In F i g . 10, the per cent e r r o r is plotted as a function of a for two pa i r s of 
values of a and k. The e r r o r in void fraction is relat ively smiall even when 
a substant ial fraction of the total radiat ion a r r i ve s at the detector via 
fixed para l le l pa ths . 
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On the tes t faci l i t ies , the window in the scintil lation c rys ta l shield 
is made slightly l a rge r than the channel width to facilitate alignment of the 
window with the channel. As the ma te r i a l external to the tes t section is 
s tee l and the window width and channel width a r e known, the fl\ix reaching 



the de tec tor by "para l le l pa ths" can be calculated for a pa r t i cu la r t e s t 
facility: 

$p = Ap lo exp ( - ^ Xp) (42) 

*f = A lo exp {-^2 x) (43) 

where 
*I>p = the flux reaching the detector by some "paral le l pa ths" 

$f = the flux reaching the detector through a channel filled with 
water 

A = the a r e a of the para l le l path "seen" by the detector 

|ip = the absorpt ion coefficient of the "paral le l path" m a t e r i a l 

Xp = the thickness of the m a t e r i a l in the "paral le l path" 

A = the a r e a of the channel "seen" by the detector 

^2. = the absorpt ion coefficient of water 

X = the dis tance through the water path . 

Dividing Eq. (42) by Eq. (43), 

* A 
_P.= - ^ e x p ( f i 2 X - | i p X ) (44) 
*f A ^ P 

F o r a typical tes t facility: 

^2, « 0.180 per cm for water at 70F and for a radiat ion energy of 
0.084 Mev. 

^ p as 3.93 per cm for s tee l a t 70F and for a radiat ion energy of 
0.084 Mev.(6) 

X = Xp = 5.08 cm 

Ap = 0 ,125 in^. 

A = 0.5 i n . ^ 

Therefore 

^ -(0.25) exp 1(5.08) (-3.93)1 

= 6.25 X 10' .10 
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As $ is propor t ioal to v, 

Vp = (6.25 X 10-^°) (Avf) = Avi 

and 

C = 
Av| 
Vfs 

The per cent e r r o r in a caused by this "paral le l path" is negligible. 

Another source of e r r o r is the accuracy to which the s t r ip char t 
recording vol tmeter can be read . The maximum per cent e r r o r in a is 
obtained by Eq. (28) where 

(a^)( ioo)=c 
= ± 0.125% , 

which is approximately the resolut ion of the scale on the Es ter l ine Angus 
r e c o r d e r . The probable per cent e r r o r in a is obtained from Eq. (33). The 
maximum and the probable per cent e r r o r s in a for inaccuracies in read­
ing the s t r ip char t a r e shown in F ig . 11 for a = 2 and b = 0 . 5 . 
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Consider now the effect of making the hot empty m e a s u r e m e n t at a 
p r e s s u r e different from that of the void data runs to which it is applied. 
If in Eq. (3), x = 0, (a = 1), then 

Ig = k^ exp {-IJ.3 xo) , (45) 

where : 

Ig = the radiat ion intensity obtained with a s team-f i l led tes t section 

k^ = lo exp (-Ml d) . (46) 

Since v is proport ional to I, and if x = 0, 

Vg =k^ exp {-^3 Xo) , (47) 

where 

le 

Similar ly , letting x = XQ ( a = 0) in Eq. (3) 

If =k6 

from which it follows that 

vf = hj exp (»^2 Xo) . (49) 

exp (-P3X0) expixo ( ^ 3 - ^ 2 ) 1 . (48) 

Assuming an e r roneous attenuation coefficient, jJ.^,, the apparent hot 
empty value for v becomes 

v ; =k7 exp (-M3X0) , (50) 

where the p r i m e s indicate apparent va lues . 

F r o m Eqs . (47), (49), and (50), it follows that 

^ - = exp | (xo) (̂ 2 -Mi)} (51) 

and 

^ = e x p | ( x o ) (MS^JUE)} ' (52) 



If the apparent void fract ion is r epresen ted by a", where 

a ' = 

i n (v/vf) 

i n (v4/vf) 

and the t rue void fract ion is r ep resen ted by a , then the per cent e r r o r in 
a is given by 

% E r r o r = f-^ - 1 j (lOO) (53) 

o r 

% E r r o r = 
" in(vg/vf) 

- 1 (100) 
= _in (v ' /vf) 

Substitution of Eq. (51) and (52) into Eq. (54) yields 

(54) 

% E r r o r = (J^lA^.l) (100) (55) 

The absorpt ion coefficient for s t eam under the conditions employed is 
propor t ional to the densi ty, so that 

% E r r o r = (£A.^PI ^i] (100) (56) 

where 

P2 = density of water at exper imenta l t empera tu re and p r e s s u r e 

P3 = density of s t eam at exper imenta l t empera tu re and p r e s s u r e 

P I = densi ty of s t eam at some other t empera tu re and /o r p r e s s u r e 
at which the "empty" reading is made . 

F igu re 12 (a) shows the per cent e r r o r in a for the case where 
exper imenta l runs and hot "full" readings a r e made at some p r e s s u r e 
and "empty" readings a r e made at a tmospher ic p r e s s u r e with sa tura ted 
s team filling the channel . The e r r o r can be el iminated by applying the 
corresponding cor rec t ion factor plotted in F ig . 12 (b). 
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C. E r r o r s Aris ing from Decay of Radiation Source 

Another source of e r r o r is the decay of the g a m m a - r a y source 
over the period during which the tes t s a r e m a d e . The e r r o r in the void 
fraction is de termined by assuming the decay period to be 8 h r . The 
radiat ion intensity after t ime t i s : 

where 

Î  = lo exp {-Xl) , (57) 

t = maximum t ime elapsed between the f i rs t and las t readings 

lo = initial intensity 

\ = decay constant . 

As the half-life of thulium is about 129 days , and X= 0 . 6 9 3 1 / T , where T is 
the half-life in hours , there is obtained 

\ = lo exp [ - (0.6931) (8)/(129) (24) ] 

= lo exp (-0.001789) 

= 0.9982 (lo) . 



As I is proport ional to v, 

vt = 0.9982 (v) 

and the e r r o r is a percentage of the reading, or 

( ^ ) ( 1 0 0 ) = - 0.18% . 

The max imum e r r o r will occur if-a set of "full" readings is taken 
at the beginning of an 8-hour period, and the "empty" reading is taken at 
the conclusion of the same per iod. Under these conditions, and using 
Eq. (25) the per cent e r r o r in s t eam void fraction is constant and is only 
0.26% for a = 2. This i s cons idered negligible. 

D. E r r o r s Due to P re fe ren t i a l Phase Distr ibutions 

1. Calculated 

As mentioned previously, Eq. (15) no longer gives the t rue 
s t eam void fraction when preferent ia l phase dis t r ibut ions a r e encoiantered 
in boiling channels . The theore t ica l per cent e r r o r in the determinat ion of 
s t eam void fract ion for ce r t a in idealized phase distr ibut ions can be calcu­
lated by the equations der ived in the Appendix. The three selected phase 
dis t r ibut ions a r e shown in F i g . 7. 

a. Steam on Channel Walls 

With s team p resen t on al l channel walls.- and with a 
medium having an attenuation constant, jj., filling the remainder of the 
channel, 

^ _ X , XQ -̂  X Xc - (X)^ + X XQ ^^g^ 

By a method s imi l a r to that used to de te rmine the effect of external 
para l le l paths , 

where 

v ' /_a\ n + h /{h + l)^ ~ 4 h a fh -1 //(h + 1)^-4 h a ] 
Vf = U ) L 2 '̂  2 " l̂ 2 ^ 2 J 

exp^ ^ J ( l - h / 2 ) + / ( h + 1)2 . 4 h a / i l l . (59) 

ve a = 
Vf 



h = xc 
Xo 

v ' = a m e a s u r e d voltage which is in e r r o r because of preferent ia l 
phase dis t r ibut ion effects. 

b . Cylindrical Steam Voids 

Although the cyl indrical s t eam void dis t r ibut ion does 
not r e p r e s e n t a r ea l i s t i c two-phase distr ibut ion, it was selected because it 
could be readi ly checked with a Lucite mock-up . F o r this preferent ia l phas 
dis t r ibut ion 

a = 
TT r ' 

x ^ X-

and 

Vf 

a =• 

C -s-W 

= 1 + a (a - 1) . 

c. Columns of Spherical Bubbles 

With coliimns of spher ica l bubbles in the channel 

4 TT r^ m n 

(60) 

(61) 

3 Xo X Q X-yy 
(62) 

and 

r.= i + 
Vf 

7T m 

^c ^w 

{(2nr/xo) in(a) - l} {exp^ (2n r/xp)} + 1 ^2 

{ ( 2 n 2 ) ^ ) 2 | [ in (a ) f 
(63) 

where 

m = number of identical coluinns 

n = number of bubbles per column 

a = I ^ 
Vf 

r = bubble rad ius , 

F o r all th ree ca se s , the apparent void fract ion may 
be expres sed by 

i n (vg/vf) 
(64) 
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2. Calculated vs Measured 

The validity of the calculated void fractions was checked 
by m e a s u r e m e n t s on Lucite mock-ups designed to simulate the three types 
of preferent ia l phase d is t r ibut ions . The measured values include e r r o r s 
in the e lec t ronics sys tem and measur ing technique and indicate the maxi ­
mum per cent e r r o r for a given preferent ia l phase distribution.C^) 

F igure 13 shows the calcxilated vs the measured per cent 
e r r o r in void fraction for the case of s team on the channel walls with values 
of h = 1/4 and a = 2. F igure 14 contains s imi la r information for cyl indri­
cal voids where a = 2. 
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The Lucite model of the spher ica l void pat tern contained a 
column of five bubbles, each 3/8 in. in d i ame te r . The measu red void f r ac ­
tion was 0.415. The theore t ica l void calculation indicated a value of 0.320, 
The actual void fraction was 0.281. 

It is believed that the large d iscrepancy between the calcu­
lated and the measu red e r r o r s with preferent ia l phase distr ibut ions is due 
to an effect of geometry, such as non-uniformity of incident radiat ion. 
Studies a r e being made to resolve the d i sc repanc ies and to develop methods 
for el iminating the e r r o r s in the sys t em. 

E. Verification of Theory 

The mock-up channel facility (Fig. 6) was also used to de­
te rmine whether a t ruly exponential attenuation as a function of voids is 
obtained with l ayers of s t eam and water disposed perpendicular to the path 
of radiat ion. The tes t r e su l t s indicated that, for all p rac t ica l purposes , 
this re lat ionship does exis t . 
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SCHEMATIC OF HOMOGENEOUS MIXTURE TEST APPARATUS 

Two s e r i e s of 
t es t s were performed to verify 
the assumption that a homo­
geneous mixture of bubbles in 
water can be represen ted by 
a l te rna te l ayers of s team and 
water a r ranged perpendicular 
to the incident radiat ion. The 
f i r s t s e r i e s of t e s t s were made 
on a mock-up channel filled 
with Lucite chips . Void f r a c ­
tions ranging from-^0.820 to 
0.660 were simulated by com­
press ing the m a s s of chips to 
var ious d e g r e e s . The resu l t s 
indicated e r r o r s well within 
the accuracy of the sys tem. 

The second s e r i e s 
of t e s t s was performed with 
a i r -wa t e r m i x t u r e s . The tes t 
equipment is shown schemat i ­
cally in F ig . 15. The channel 
was siinulated by a square 
t r anspa ren t container par t ia l ly 
filled with wa te r . The smal l 
bubbles were produced by 



adding a smal l quantity of wetting agent to the water and by injecting a i r 
through the fritted glass plate near the bottom of the container . If the 
initial assumpt ion is co r rec t , no apparent change in density should be ob­
served as a i r is bubbled through the water , because the total quantities of 
a i r and water in the path of radiat ion r emain unchanged. The a i r , however, 
is now presen t as smal l bubbles in the channel and from all visual ob­
serva t ions the mixture appeared to be homogeneous. Void fractions ranging 
from ze ro to 0.500 were studied. Again the resu l t s showed e r r o r s which 
were within the accuracy of the sys tem. 

IV. CONCLUSIONS 

50 

M 

F r o m the resu l t s of the e r r o r analysis it is apparent that there a r e 
seve ra l l imitat ions on the ability of this sys tem to accurate ly measu re 
s team void f rac t ions . The mos t important l imitation is the loss of accuracy 

in the s team void fraction region 
below 0.100. For a uniform d i s ­
tribution of s team voids, the maxi ­
mum probable per cent e r r o r in the 
region between 0.100 and 1.00 occurs 
with a void fraction of 0.100 and is 
± 7.5% from all causes in the p r e s ­
ent sys tem. The maximum p e rcen t 
e r r o r for this region is ±29%. A 
plot of total per cent e r r o r in s team 
void fraction is shown in F ig . 16. 
The solid line is maximum per cent 
e r r o r and the dashed line is the 

j 0 . . - ^ j ^ . ___r^_ __ _ ^ _ _.• probable per cent e r r o r for a = 2 

and b = 0.5. It can be seen that a 
maximum absolute e r r o r of ap­
proximately ±0.029 is applicable 
over the full void range. 

The following m e a s u r e s 
should be taken to enhance the a c ­
curacy of the system: 
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(1) improve the regulation of the 
photomultiplier tube high-
voltage supply; 

(2) modify the tube-crys ta l cooling 
sys tem to reduce t empera tu re 
var ia t ions; and 

(3) employ a more sensit ive 
r e c o r d e r . 



When a non-uniform dis t r ibut ion of s t eam void fract ion i s known to 
exist , a sys t em should be used wherein the port ion of the channel being ob­
served at any one instant i s a smal l fract ion of the total width of the 
channel . Thus the region examined becomes one having a m o r e near ly uni ­
form dis t r ibut ion of s t eam bubbles, with the consequent reduction of e r r o r s 
caused by the sensi t ivi ty of the sys tem to preferent ia l (non-uniform) void 
d i s t r ibu t ions . It follows that a curve of s t eam void fract ion v e r s u s channel 
width can be drawn and the curve in tegra ted to obtain the average s t eam 
void fract ion. The r e s u l t s of p r e l im ina ry t e s t s based on this approach show 
a reduction by at l eas t a factor of 2 in the e r r o r s a r i s ing from prefe ren t ia l 
phase distributions.^®»°/ 
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A P P E N D I X 

DERIVATION O F EQUATIONS F O R T H E O R E T I C A L P E R CENT E R R O R 
IN S T E A M VOID F R A C T I O N F O R I D E A L I Z E D PHASE DISTRIBUTIONS 

L O C A L BOILING DISTRIBUTION 

With r e f e r e n c e to the i l l u s t r a t i o n , the l ight a r e a deno te s s t e a m p r e s ­
ent on a l l c h a n n e l w a l l s and the c r o s s ha t ch ing a m e d i u m having a l i n e a r 
a b s o r p t i o n coef f ic ien t , jd. 

B y def in i t ion , 

X^ Xo - X^ - X^ + X Xo 

a 
X_ Xo 

(1) 

R e a r r a n g e m e n t of t e r m s l e a d s to 

X = 
Xo - x^ + ^ ( x ^ -Xo)2- 4 Xo x^(a -1) X J , + X - X Q 

, (2] 

Now 

* i = [xc - (xc + X - Xo) ] x ^ lo = (xo - x) x ^ lo 

*2 = (xc + X - Xo) x ^ lo exp {-ji x) 

% = Xj, x ^ lo exp (-/ixo) 

<De = x^ x ^ lo 

The t o t a l flux i s 

(3) 

(4) 

(5) 

(6) 

and 

* t = *l +"^2 

$• = (xo - x) x ^ lo + (x^ + X - Xo) x ^ lo exp (-^x) 

= X5, X lo exp (-Mxo) 
w 

Xg - X 
exp (ju Xo) + 

X + X - Xo 

ti 
k-~r 

I 

exp {-|i (x - Xo)} 



D i v i s i o n by $£ l e a d s to 

# 1 / Xg - X 

Since v i s p r o p o r t i o n a l to $, and 

— = exp (^xg) = a, 
Vf 

t hen 

^ a(x0 - x) a(x^ + X - Xg) 
= + exp (-ux) 

Vf ^c ^c 

= -r-~ [xo - X + (xc + X - Xo) e x p ^ ( -x /xg)] 
^ c 

Le t 

x^ = hxo 

T h e n f r o m E q . (2) 

Xo (1 - h) + / x ^ (h - l ) 2 - 4 h ( x o ) ^ (a - 1) 
X = • 

and 

1 - h + l / (h + 1)^ - 4 h a X 

Xo " 2 

Aga in , l e t t i ng x^, = hx© in Eq . (8) , and e m p l o y i n g E q . (10), 

_v̂  _ a r 1 - h + / ( h + if - 4 h a 
V, = h f " 2 

(h „ 1 + 1 ~ h + l/(h+ 1)̂  - 4ha I 

expa - [jl - h + /(h + 1)2-4 ha|/2Jl 

= ^ iU ^ ^(h + 1)^-4 ha fh - 1 (h + 1)̂  - 4 ha 

-fjl - h +/( h + l)2T7h^|/2Jl expa - i 1 - h + 



F r o m Eq. (64), p . 28 , 

i n (v'/vf) 
a ' =• 

in(vg/Vf) 

and 

( I - l) (100) =%Er 

CYLINDRICAL STEAM VOIDS 

r o r 

Again, 

With reference to the i l lustrat 

a = 

^1 = 

^z = 

*f 

^'e 

*e 

4>f 

TTr^ 

Xc x ^ 

lo [xo x ^ - TT r^] 

loTT r2 

= lo Xj, x ^ exp (-

= lo x^ x ^ 

= exp (^xo) = a 

exp (• 

|UXo) 

• 

• / i X g ) 

T h e t o t a l flux i s 

= lo [x^ x ^ - TT r^J exp (-/ixo) + Ig TT r^ 

^ = 1 _ ^ ^ ' + TT r^ ^^ , . 
* £ X.^ Xy^ X j , X ^ 

= 1 . Z ^ +^^L£!= l + ( a . l ) ( a ) 
^c ^w "̂ c •''w 

Since v is proport ional to #, 

" ' = 1 + (a - 1) (a) 

(1 

(1 

(1 

(1 

V. f 



Again from Eq. (64), 

^^ i n (v^vf) 
in (vg/vf) 

and 

( ™ - l ) (100) = % E r r o r . 

The l imiting value of r is 

Xg x .^ 

^=T"°^"2" 

depending on which is the smal les t value. Therefore , the l imiting value 
of a is 

TT X, c ^ ^ 
a - or 

< 4 x,„ 4 x^ 
^ w c 

COLUMN OF SPHERICAL BUBBLES 

The attenuation of a cylinder containing one bubble is de termined 
init ially. With reference to the i l lus t ra t ion . 

r-z 
pde 

r-z 

— I 

p2 + z2 = r^ 

2 2 

z = r - p^ 

d$i = IQ pdp 6.9 exp J - 2/i (r - z) I 

(20) 

(21) 

(22) 



' r Pz-n 
#1 = lo exp ( -2 / i r ) I exp(2 / i z )pdp | dS 

/o t/O 

= 2 7rIo exp (-2/ i ' r ) I exp (2/iz) p d p 

pdp = -zdz 

when p = 0, z = r 

and when 

p = r , z = 0 

*i = 2 7T Ig exp {-ZjJir) / exp (2/iz) zdz 

= 2 TT IQ exp (-2/ir) I z exp (-2/iz) dz 
Jo 

= 2 TT Ig exp ( -2^r ) 
exp (2|iz) 

4/1^ 
(2^2 " 1) 

= •̂ 10 exp (-2jUr) 

7T lo 

(2/ir - 1) exp (2ftr) + 1 

2fi2 

2fi2 

[Z ^ r - 1 + exp (-2^r)J 

F o r n cyl inders stacked ver t i ca l ly (see i l lustrat ion) , 

$1 = 2Tr IQ exp (-2 nfxr) 

{IT) (IO) 

(2 n/iz - 1) exp (2 n ^ z) 
- i r 

(2) (n2) (ju2) 

4 n^ /i2 

[(2) (n) (iu) (r) - 1 + e x p ( - 2 n / x r ) ] 

(27) 

(28) 

(29) 

Let the total path length equal Xo > 2nr. Then a cylindrical 
path r ema ins , having a depth 

X = Xg - 2 nr (30) 



The a t t e n u a t i o n wi th t h i s c y l i n d e r i s 

4>{ = $ 1 exp | - M ( X O - 2 n r ) l 

•"•IQ exp ( - ^ X Q ) 
[(2 n / i r - 1) exp {Z njir) + 1] 

2 n2 /i2 

F o r m i d e n t i c a l c o l u m n s of s p h e r i c a l b u b b l e s , 

*m = ™*1 

m 7 T IQ e x p (-/jxp) 
= ^ ^ ^ T T i L (2 n | i r - 1) e x p (2 UJIT) + 1] 

If t h e t o t a l a r e a e x a m i n e d i s 

A = X.^ X^y , 

a n d t h e p r o j e c t e d a r e a of m c o l u m n s of b u b b l e s i s 

m TT r^ , 

t h e a r e a d e v o i d of b u b b l e s i s 

A - m TT r^ = Xj, x.^ - m 7T r^ 

T h e f l u x r e c e i v e d f r o m t h e a r e a x^, x.̂ ^̂  - m TT r^ i s 

^ 2 = lo [xc x ^ - m TT r ^ ] e x p ( -MXQ) 

T h e t o t a l f l u x r e a c h i n g t h e d e t e c t o r i s 

^' = * , ^ + * 2 
m 

= Is exp (-MXg) Xj, x^^y. mTT 
'(2 n | i r - 1) exp (2 n / i r ) + 1 

. 2 n2 ^2 ~ 

Now a g a i n 

% = lo Xg -Hv ^xp (-|iXo) 

^e ~ •'•0 X(~ x^y 

F r o m Eq , (16) 

i n (a) 
| i = 

X g 



Then 

exp (2 n,ur) = exp [(2 n r/xg) i n (a)] 

= exp3^ (2 n r/:io) • (36) 

Substituting Eqs (35) and (36) in Eq (34) and dividing by <% . 

r m i {(2 n r/xg) (in a) - l] {expa (2 n r/xg)} + 1 ^ 

(2nY(xg)Min(a ) f 
(37) 

As $ is propor t ional to v 

$' _ v^ 
$f Vf 

F r o m Eq. (64) 

i n (v>/vf) 

(38) 

a' in(Vg/vf) 

By definition 

4 TT r^ n m 
3 Xc X ^ Xg a = 

and 

a E r r o r = -™ - 1 (100) 
a 
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